f2d46c476ef872b2f4d66546b37ff87114103712
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 /* Clean up namespace so we can include obj-elf.h too. */
44 static int mips_output_flavor (void);
45 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
46 #undef OBJ_PROCESS_STAB
47 #undef OUTPUT_FLAVOR
48 #undef S_GET_ALIGN
49 #undef S_GET_SIZE
50 #undef S_SET_ALIGN
51 #undef S_SET_SIZE
52 #undef obj_frob_file
53 #undef obj_frob_file_after_relocs
54 #undef obj_frob_symbol
55 #undef obj_pop_insert
56 #undef obj_sec_sym_ok_for_reloc
57 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
58
59 #include "obj-elf.h"
60 /* Fix any of them that we actually care about. */
61 #undef OUTPUT_FLAVOR
62 #define OUTPUT_FLAVOR mips_output_flavor()
63
64 #include "elf/mips.h"
65
66 #ifndef ECOFF_DEBUGGING
67 #define NO_ECOFF_DEBUGGING
68 #define ECOFF_DEBUGGING 0
69 #endif
70
71 int mips_flag_mdebug = -1;
72
73 /* Control generation of .pdr sections. Off by default on IRIX: the native
74 linker doesn't know about and discards them, but relocations against them
75 remain, leading to rld crashes. */
76 #ifdef TE_IRIX
77 int mips_flag_pdr = FALSE;
78 #else
79 int mips_flag_pdr = TRUE;
80 #endif
81
82 #include "ecoff.h"
83
84 static char *mips_regmask_frag;
85
86 #define ZERO 0
87 #define ATREG 1
88 #define S0 16
89 #define S7 23
90 #define TREG 24
91 #define PIC_CALL_REG 25
92 #define KT0 26
93 #define KT1 27
94 #define GP 28
95 #define SP 29
96 #define FP 30
97 #define RA 31
98
99 #define ILLEGAL_REG (32)
100
101 #define AT mips_opts.at
102
103 extern int target_big_endian;
104
105 /* The name of the readonly data section. */
106 #define RDATA_SECTION_NAME ".rodata"
107
108 /* Ways in which an instruction can be "appended" to the output. */
109 enum append_method {
110 /* Just add it normally. */
111 APPEND_ADD,
112
113 /* Add it normally and then add a nop. */
114 APPEND_ADD_WITH_NOP,
115
116 /* Turn an instruction with a delay slot into a "compact" version. */
117 APPEND_ADD_COMPACT,
118
119 /* Insert the instruction before the last one. */
120 APPEND_SWAP
121 };
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
131 a copy of INSN_MO->match with the operands filled in. If we have
132 decided to use an extended MIPS16 instruction, this includes the
133 extension. */
134 unsigned long insn_opcode;
135
136 /* The frag that contains the instruction. */
137 struct frag *frag;
138
139 /* The offset into FRAG of the first instruction byte. */
140 long where;
141
142 /* The relocs associated with the instruction, if any. */
143 fixS *fixp[3];
144
145 /* True if this entry cannot be moved from its current position. */
146 unsigned int fixed_p : 1;
147
148 /* True if this instruction occurred in a .set noreorder block. */
149 unsigned int noreorder_p : 1;
150
151 /* True for mips16 instructions that jump to an absolute address. */
152 unsigned int mips16_absolute_jump_p : 1;
153
154 /* True if this instruction is complete. */
155 unsigned int complete_p : 1;
156
157 /* True if this instruction is cleared from history by unconditional
158 branch. */
159 unsigned int cleared_p : 1;
160 };
161
162 /* The ABI to use. */
163 enum mips_abi_level
164 {
165 NO_ABI = 0,
166 O32_ABI,
167 O64_ABI,
168 N32_ABI,
169 N64_ABI,
170 EABI_ABI
171 };
172
173 /* MIPS ABI we are using for this output file. */
174 static enum mips_abi_level mips_abi = NO_ABI;
175
176 /* Whether or not we have code that can call pic code. */
177 int mips_abicalls = FALSE;
178
179 /* Whether or not we have code which can be put into a shared
180 library. */
181 static bfd_boolean mips_in_shared = TRUE;
182
183 /* This is the set of options which may be modified by the .set
184 pseudo-op. We use a struct so that .set push and .set pop are more
185 reliable. */
186
187 struct mips_set_options
188 {
189 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
190 if it has not been initialized. Changed by `.set mipsN', and the
191 -mipsN command line option, and the default CPU. */
192 int isa;
193 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
194 <asename>', by command line options, and based on the default
195 architecture. */
196 int ase;
197 /* Whether we are assembling for the mips16 processor. 0 if we are
198 not, 1 if we are, and -1 if the value has not been initialized.
199 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
200 -nomips16 command line options, and the default CPU. */
201 int mips16;
202 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
203 1 if we are, and -1 if the value has not been initialized. Changed
204 by `.set micromips' and `.set nomicromips', and the -mmicromips
205 and -mno-micromips command line options, and the default CPU. */
206 int micromips;
207 /* Non-zero if we should not reorder instructions. Changed by `.set
208 reorder' and `.set noreorder'. */
209 int noreorder;
210 /* Non-zero if we should not permit the register designated "assembler
211 temporary" to be used in instructions. The value is the register
212 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
213 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
214 unsigned int at;
215 /* Non-zero if we should warn when a macro instruction expands into
216 more than one machine instruction. Changed by `.set nomacro' and
217 `.set macro'. */
218 int warn_about_macros;
219 /* Non-zero if we should not move instructions. Changed by `.set
220 move', `.set volatile', `.set nomove', and `.set novolatile'. */
221 int nomove;
222 /* Non-zero if we should not optimize branches by moving the target
223 of the branch into the delay slot. Actually, we don't perform
224 this optimization anyhow. Changed by `.set bopt' and `.set
225 nobopt'. */
226 int nobopt;
227 /* Non-zero if we should not autoextend mips16 instructions.
228 Changed by `.set autoextend' and `.set noautoextend'. */
229 int noautoextend;
230 /* Restrict general purpose registers and floating point registers
231 to 32 bit. This is initially determined when -mgp32 or -mfp32
232 is passed but can changed if the assembler code uses .set mipsN. */
233 int gp32;
234 int fp32;
235 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
236 command line option, and the default CPU. */
237 int arch;
238 /* True if ".set sym32" is in effect. */
239 bfd_boolean sym32;
240 /* True if floating-point operations are not allowed. Changed by .set
241 softfloat or .set hardfloat, by command line options -msoft-float or
242 -mhard-float. The default is false. */
243 bfd_boolean soft_float;
244
245 /* True if only single-precision floating-point operations are allowed.
246 Changed by .set singlefloat or .set doublefloat, command-line options
247 -msingle-float or -mdouble-float. The default is false. */
248 bfd_boolean single_float;
249 };
250
251 /* This is the struct we use to hold the current set of options. Note
252 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
253 -1 to indicate that they have not been initialized. */
254
255 /* True if -mgp32 was passed. */
256 static int file_mips_gp32 = -1;
257
258 /* True if -mfp32 was passed. */
259 static int file_mips_fp32 = -1;
260
261 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
262 static int file_mips_soft_float = 0;
263
264 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
265 static int file_mips_single_float = 0;
266
267 static struct mips_set_options mips_opts =
268 {
269 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
270 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
271 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* gp32 */ 0,
272 /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
273 /* soft_float */ FALSE, /* single_float */ FALSE
274 };
275
276 /* The set of ASEs that were selected on the command line, either
277 explicitly via ASE options or implicitly through things like -march. */
278 static unsigned int file_ase;
279
280 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
281 static unsigned int file_ase_explicit;
282
283 /* These variables are filled in with the masks of registers used.
284 The object format code reads them and puts them in the appropriate
285 place. */
286 unsigned long mips_gprmask;
287 unsigned long mips_cprmask[4];
288
289 /* MIPS ISA we are using for this output file. */
290 static int file_mips_isa = ISA_UNKNOWN;
291
292 /* True if any MIPS16 code was produced. */
293 static int file_ase_mips16;
294
295 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
296 || mips_opts.isa == ISA_MIPS32R2 \
297 || mips_opts.isa == ISA_MIPS64 \
298 || mips_opts.isa == ISA_MIPS64R2)
299
300 /* True if any microMIPS code was produced. */
301 static int file_ase_micromips;
302
303 /* True if we want to create R_MIPS_JALR for jalr $25. */
304 #ifdef TE_IRIX
305 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
306 #else
307 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
308 because there's no place for any addend, the only acceptable
309 expression is a bare symbol. */
310 #define MIPS_JALR_HINT_P(EXPR) \
311 (!HAVE_IN_PLACE_ADDENDS \
312 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
313 #endif
314
315 /* The argument of the -march= flag. The architecture we are assembling. */
316 static int file_mips_arch = CPU_UNKNOWN;
317 static const char *mips_arch_string;
318
319 /* The argument of the -mtune= flag. The architecture for which we
320 are optimizing. */
321 static int mips_tune = CPU_UNKNOWN;
322 static const char *mips_tune_string;
323
324 /* True when generating 32-bit code for a 64-bit processor. */
325 static int mips_32bitmode = 0;
326
327 /* True if the given ABI requires 32-bit registers. */
328 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
329
330 /* Likewise 64-bit registers. */
331 #define ABI_NEEDS_64BIT_REGS(ABI) \
332 ((ABI) == N32_ABI \
333 || (ABI) == N64_ABI \
334 || (ABI) == O64_ABI)
335
336 /* Return true if ISA supports 64 bit wide gp registers. */
337 #define ISA_HAS_64BIT_REGS(ISA) \
338 ((ISA) == ISA_MIPS3 \
339 || (ISA) == ISA_MIPS4 \
340 || (ISA) == ISA_MIPS5 \
341 || (ISA) == ISA_MIPS64 \
342 || (ISA) == ISA_MIPS64R2)
343
344 /* Return true if ISA supports 64 bit wide float registers. */
345 #define ISA_HAS_64BIT_FPRS(ISA) \
346 ((ISA) == ISA_MIPS3 \
347 || (ISA) == ISA_MIPS4 \
348 || (ISA) == ISA_MIPS5 \
349 || (ISA) == ISA_MIPS32R2 \
350 || (ISA) == ISA_MIPS64 \
351 || (ISA) == ISA_MIPS64R2)
352
353 /* Return true if ISA supports 64-bit right rotate (dror et al.)
354 instructions. */
355 #define ISA_HAS_DROR(ISA) \
356 ((ISA) == ISA_MIPS64R2 \
357 || (mips_opts.micromips \
358 && ISA_HAS_64BIT_REGS (ISA)) \
359 )
360
361 /* Return true if ISA supports 32-bit right rotate (ror et al.)
362 instructions. */
363 #define ISA_HAS_ROR(ISA) \
364 ((ISA) == ISA_MIPS32R2 \
365 || (ISA) == ISA_MIPS64R2 \
366 || (mips_opts.ase & ASE_SMARTMIPS) \
367 || mips_opts.micromips \
368 )
369
370 /* Return true if ISA supports single-precision floats in odd registers. */
371 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
372 ((ISA) == ISA_MIPS32 \
373 || (ISA) == ISA_MIPS32R2 \
374 || (ISA) == ISA_MIPS64 \
375 || (ISA) == ISA_MIPS64R2)
376
377 /* Return true if ISA supports move to/from high part of a 64-bit
378 floating-point register. */
379 #define ISA_HAS_MXHC1(ISA) \
380 ((ISA) == ISA_MIPS32R2 \
381 || (ISA) == ISA_MIPS64R2)
382
383 #define HAVE_32BIT_GPRS \
384 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
385
386 #define HAVE_32BIT_FPRS \
387 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
388
389 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
390 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
391
392 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
393
394 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
395
396 /* True if relocations are stored in-place. */
397 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
398
399 /* The ABI-derived address size. */
400 #define HAVE_64BIT_ADDRESSES \
401 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
402 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
403
404 /* The size of symbolic constants (i.e., expressions of the form
405 "SYMBOL" or "SYMBOL + OFFSET"). */
406 #define HAVE_32BIT_SYMBOLS \
407 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
408 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
409
410 /* Addresses are loaded in different ways, depending on the address size
411 in use. The n32 ABI Documentation also mandates the use of additions
412 with overflow checking, but existing implementations don't follow it. */
413 #define ADDRESS_ADD_INSN \
414 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
415
416 #define ADDRESS_ADDI_INSN \
417 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
418
419 #define ADDRESS_LOAD_INSN \
420 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
421
422 #define ADDRESS_STORE_INSN \
423 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
424
425 /* Return true if the given CPU supports the MIPS16 ASE. */
426 #define CPU_HAS_MIPS16(cpu) \
427 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
428 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
429
430 /* Return true if the given CPU supports the microMIPS ASE. */
431 #define CPU_HAS_MICROMIPS(cpu) 0
432
433 /* True if CPU has a dror instruction. */
434 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
435
436 /* True if CPU has a ror instruction. */
437 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
438
439 /* True if CPU is in the Octeon family */
440 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
441
442 /* True if CPU has seq/sne and seqi/snei instructions. */
443 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
444
445 /* True, if CPU has support for ldc1 and sdc1. */
446 #define CPU_HAS_LDC1_SDC1(CPU) \
447 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
448
449 /* True if mflo and mfhi can be immediately followed by instructions
450 which write to the HI and LO registers.
451
452 According to MIPS specifications, MIPS ISAs I, II, and III need
453 (at least) two instructions between the reads of HI/LO and
454 instructions which write them, and later ISAs do not. Contradicting
455 the MIPS specifications, some MIPS IV processor user manuals (e.g.
456 the UM for the NEC Vr5000) document needing the instructions between
457 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
458 MIPS64 and later ISAs to have the interlocks, plus any specific
459 earlier-ISA CPUs for which CPU documentation declares that the
460 instructions are really interlocked. */
461 #define hilo_interlocks \
462 (mips_opts.isa == ISA_MIPS32 \
463 || mips_opts.isa == ISA_MIPS32R2 \
464 || mips_opts.isa == ISA_MIPS64 \
465 || mips_opts.isa == ISA_MIPS64R2 \
466 || mips_opts.arch == CPU_R4010 \
467 || mips_opts.arch == CPU_R5900 \
468 || mips_opts.arch == CPU_R10000 \
469 || mips_opts.arch == CPU_R12000 \
470 || mips_opts.arch == CPU_R14000 \
471 || mips_opts.arch == CPU_R16000 \
472 || mips_opts.arch == CPU_RM7000 \
473 || mips_opts.arch == CPU_VR5500 \
474 || mips_opts.micromips \
475 )
476
477 /* Whether the processor uses hardware interlocks to protect reads
478 from the GPRs after they are loaded from memory, and thus does not
479 require nops to be inserted. This applies to instructions marked
480 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
481 level I and microMIPS mode instructions are always interlocked. */
482 #define gpr_interlocks \
483 (mips_opts.isa != ISA_MIPS1 \
484 || mips_opts.arch == CPU_R3900 \
485 || mips_opts.arch == CPU_R5900 \
486 || mips_opts.micromips \
487 )
488
489 /* Whether the processor uses hardware interlocks to avoid delays
490 required by coprocessor instructions, and thus does not require
491 nops to be inserted. This applies to instructions marked
492 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
493 between instructions marked INSN_WRITE_COND_CODE and ones marked
494 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
495 levels I, II, and III and microMIPS mode instructions are always
496 interlocked. */
497 /* Itbl support may require additional care here. */
498 #define cop_interlocks \
499 ((mips_opts.isa != ISA_MIPS1 \
500 && mips_opts.isa != ISA_MIPS2 \
501 && mips_opts.isa != ISA_MIPS3) \
502 || mips_opts.arch == CPU_R4300 \
503 || mips_opts.micromips \
504 )
505
506 /* Whether the processor uses hardware interlocks to protect reads
507 from coprocessor registers after they are loaded from memory, and
508 thus does not require nops to be inserted. This applies to
509 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
510 requires at MIPS ISA level I and microMIPS mode instructions are
511 always interlocked. */
512 #define cop_mem_interlocks \
513 (mips_opts.isa != ISA_MIPS1 \
514 || mips_opts.micromips \
515 )
516
517 /* Is this a mfhi or mflo instruction? */
518 #define MF_HILO_INSN(PINFO) \
519 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
520
521 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
522 has been selected. This implies, in particular, that addresses of text
523 labels have their LSB set. */
524 #define HAVE_CODE_COMPRESSION \
525 ((mips_opts.mips16 | mips_opts.micromips) != 0)
526
527 /* MIPS PIC level. */
528
529 enum mips_pic_level mips_pic;
530
531 /* 1 if we should generate 32 bit offsets from the $gp register in
532 SVR4_PIC mode. Currently has no meaning in other modes. */
533 static int mips_big_got = 0;
534
535 /* 1 if trap instructions should used for overflow rather than break
536 instructions. */
537 static int mips_trap = 0;
538
539 /* 1 if double width floating point constants should not be constructed
540 by assembling two single width halves into two single width floating
541 point registers which just happen to alias the double width destination
542 register. On some architectures this aliasing can be disabled by a bit
543 in the status register, and the setting of this bit cannot be determined
544 automatically at assemble time. */
545 static int mips_disable_float_construction;
546
547 /* Non-zero if any .set noreorder directives were used. */
548
549 static int mips_any_noreorder;
550
551 /* Non-zero if nops should be inserted when the register referenced in
552 an mfhi/mflo instruction is read in the next two instructions. */
553 static int mips_7000_hilo_fix;
554
555 /* The size of objects in the small data section. */
556 static unsigned int g_switch_value = 8;
557 /* Whether the -G option was used. */
558 static int g_switch_seen = 0;
559
560 #define N_RMASK 0xc4
561 #define N_VFP 0xd4
562
563 /* If we can determine in advance that GP optimization won't be
564 possible, we can skip the relaxation stuff that tries to produce
565 GP-relative references. This makes delay slot optimization work
566 better.
567
568 This function can only provide a guess, but it seems to work for
569 gcc output. It needs to guess right for gcc, otherwise gcc
570 will put what it thinks is a GP-relative instruction in a branch
571 delay slot.
572
573 I don't know if a fix is needed for the SVR4_PIC mode. I've only
574 fixed it for the non-PIC mode. KR 95/04/07 */
575 static int nopic_need_relax (symbolS *, int);
576
577 /* handle of the OPCODE hash table */
578 static struct hash_control *op_hash = NULL;
579
580 /* The opcode hash table we use for the mips16. */
581 static struct hash_control *mips16_op_hash = NULL;
582
583 /* The opcode hash table we use for the microMIPS ASE. */
584 static struct hash_control *micromips_op_hash = NULL;
585
586 /* This array holds the chars that always start a comment. If the
587 pre-processor is disabled, these aren't very useful */
588 const char comment_chars[] = "#";
589
590 /* This array holds the chars that only start a comment at the beginning of
591 a line. If the line seems to have the form '# 123 filename'
592 .line and .file directives will appear in the pre-processed output */
593 /* Note that input_file.c hand checks for '#' at the beginning of the
594 first line of the input file. This is because the compiler outputs
595 #NO_APP at the beginning of its output. */
596 /* Also note that C style comments are always supported. */
597 const char line_comment_chars[] = "#";
598
599 /* This array holds machine specific line separator characters. */
600 const char line_separator_chars[] = ";";
601
602 /* Chars that can be used to separate mant from exp in floating point nums */
603 const char EXP_CHARS[] = "eE";
604
605 /* Chars that mean this number is a floating point constant */
606 /* As in 0f12.456 */
607 /* or 0d1.2345e12 */
608 const char FLT_CHARS[] = "rRsSfFdDxXpP";
609
610 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
611 changed in read.c . Ideally it shouldn't have to know about it at all,
612 but nothing is ideal around here.
613 */
614
615 static char *insn_error;
616
617 static int auto_align = 1;
618
619 /* When outputting SVR4 PIC code, the assembler needs to know the
620 offset in the stack frame from which to restore the $gp register.
621 This is set by the .cprestore pseudo-op, and saved in this
622 variable. */
623 static offsetT mips_cprestore_offset = -1;
624
625 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
626 more optimizations, it can use a register value instead of a memory-saved
627 offset and even an other register than $gp as global pointer. */
628 static offsetT mips_cpreturn_offset = -1;
629 static int mips_cpreturn_register = -1;
630 static int mips_gp_register = GP;
631 static int mips_gprel_offset = 0;
632
633 /* Whether mips_cprestore_offset has been set in the current function
634 (or whether it has already been warned about, if not). */
635 static int mips_cprestore_valid = 0;
636
637 /* This is the register which holds the stack frame, as set by the
638 .frame pseudo-op. This is needed to implement .cprestore. */
639 static int mips_frame_reg = SP;
640
641 /* Whether mips_frame_reg has been set in the current function
642 (or whether it has already been warned about, if not). */
643 static int mips_frame_reg_valid = 0;
644
645 /* To output NOP instructions correctly, we need to keep information
646 about the previous two instructions. */
647
648 /* Whether we are optimizing. The default value of 2 means to remove
649 unneeded NOPs and swap branch instructions when possible. A value
650 of 1 means to not swap branches. A value of 0 means to always
651 insert NOPs. */
652 static int mips_optimize = 2;
653
654 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
655 equivalent to seeing no -g option at all. */
656 static int mips_debug = 0;
657
658 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
659 #define MAX_VR4130_NOPS 4
660
661 /* The maximum number of NOPs needed to fill delay slots. */
662 #define MAX_DELAY_NOPS 2
663
664 /* The maximum number of NOPs needed for any purpose. */
665 #define MAX_NOPS 4
666
667 /* A list of previous instructions, with index 0 being the most recent.
668 We need to look back MAX_NOPS instructions when filling delay slots
669 or working around processor errata. We need to look back one
670 instruction further if we're thinking about using history[0] to
671 fill a branch delay slot. */
672 static struct mips_cl_insn history[1 + MAX_NOPS];
673
674 /* Nop instructions used by emit_nop. */
675 static struct mips_cl_insn nop_insn;
676 static struct mips_cl_insn mips16_nop_insn;
677 static struct mips_cl_insn micromips_nop16_insn;
678 static struct mips_cl_insn micromips_nop32_insn;
679
680 /* The appropriate nop for the current mode. */
681 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn \
682 : (mips_opts.micromips ? &micromips_nop16_insn : &nop_insn))
683
684 /* The size of NOP_INSN in bytes. */
685 #define NOP_INSN_SIZE (HAVE_CODE_COMPRESSION ? 2 : 4)
686
687 /* If this is set, it points to a frag holding nop instructions which
688 were inserted before the start of a noreorder section. If those
689 nops turn out to be unnecessary, the size of the frag can be
690 decreased. */
691 static fragS *prev_nop_frag;
692
693 /* The number of nop instructions we created in prev_nop_frag. */
694 static int prev_nop_frag_holds;
695
696 /* The number of nop instructions that we know we need in
697 prev_nop_frag. */
698 static int prev_nop_frag_required;
699
700 /* The number of instructions we've seen since prev_nop_frag. */
701 static int prev_nop_frag_since;
702
703 /* Relocations against symbols are sometimes done in two parts, with a HI
704 relocation and a LO relocation. Each relocation has only 16 bits of
705 space to store an addend. This means that in order for the linker to
706 handle carries correctly, it must be able to locate both the HI and
707 the LO relocation. This means that the relocations must appear in
708 order in the relocation table.
709
710 In order to implement this, we keep track of each unmatched HI
711 relocation. We then sort them so that they immediately precede the
712 corresponding LO relocation. */
713
714 struct mips_hi_fixup
715 {
716 /* Next HI fixup. */
717 struct mips_hi_fixup *next;
718 /* This fixup. */
719 fixS *fixp;
720 /* The section this fixup is in. */
721 segT seg;
722 };
723
724 /* The list of unmatched HI relocs. */
725
726 static struct mips_hi_fixup *mips_hi_fixup_list;
727
728 /* The frag containing the last explicit relocation operator.
729 Null if explicit relocations have not been used. */
730
731 static fragS *prev_reloc_op_frag;
732
733 /* Map normal MIPS register numbers to mips16 register numbers. */
734
735 #define X ILLEGAL_REG
736 static const int mips32_to_16_reg_map[] =
737 {
738 X, X, 2, 3, 4, 5, 6, 7,
739 X, X, X, X, X, X, X, X,
740 0, 1, X, X, X, X, X, X,
741 X, X, X, X, X, X, X, X
742 };
743 #undef X
744
745 /* Map mips16 register numbers to normal MIPS register numbers. */
746
747 static const unsigned int mips16_to_32_reg_map[] =
748 {
749 16, 17, 2, 3, 4, 5, 6, 7
750 };
751
752 /* Map normal MIPS register numbers to microMIPS register numbers. */
753
754 #define mips32_to_micromips_reg_b_map mips32_to_16_reg_map
755 #define mips32_to_micromips_reg_c_map mips32_to_16_reg_map
756 #define mips32_to_micromips_reg_d_map mips32_to_16_reg_map
757 #define mips32_to_micromips_reg_e_map mips32_to_16_reg_map
758 #define mips32_to_micromips_reg_f_map mips32_to_16_reg_map
759 #define mips32_to_micromips_reg_g_map mips32_to_16_reg_map
760 #define mips32_to_micromips_reg_l_map mips32_to_16_reg_map
761
762 #define X ILLEGAL_REG
763 /* reg type h: 4, 5, 6. */
764 static const int mips32_to_micromips_reg_h_map[] =
765 {
766 X, X, X, X, 4, 5, 6, X,
767 X, X, X, X, X, X, X, X,
768 X, X, X, X, X, X, X, X,
769 X, X, X, X, X, X, X, X
770 };
771
772 /* reg type m: 0, 17, 2, 3, 16, 18, 19, 20. */
773 static const int mips32_to_micromips_reg_m_map[] =
774 {
775 0, X, 2, 3, X, X, X, X,
776 X, X, X, X, X, X, X, X,
777 4, 1, 5, 6, 7, X, X, X,
778 X, X, X, X, X, X, X, X
779 };
780
781 /* reg type q: 0, 2-7. 17. */
782 static const int mips32_to_micromips_reg_q_map[] =
783 {
784 0, X, 2, 3, 4, 5, 6, 7,
785 X, X, X, X, X, X, X, X,
786 X, 1, X, X, X, X, X, X,
787 X, X, X, X, X, X, X, X
788 };
789
790 #define mips32_to_micromips_reg_n_map mips32_to_micromips_reg_m_map
791 #undef X
792
793 /* Map microMIPS register numbers to normal MIPS register numbers. */
794
795 #define micromips_to_32_reg_b_map mips16_to_32_reg_map
796 #define micromips_to_32_reg_c_map mips16_to_32_reg_map
797 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
798 #define micromips_to_32_reg_e_map mips16_to_32_reg_map
799 #define micromips_to_32_reg_f_map mips16_to_32_reg_map
800 #define micromips_to_32_reg_g_map mips16_to_32_reg_map
801
802 /* The microMIPS registers with type h. */
803 static const unsigned int micromips_to_32_reg_h_map[] =
804 {
805 5, 5, 6, 4, 4, 4, 4, 4
806 };
807
808 /* The microMIPS registers with type i. */
809 static const unsigned int micromips_to_32_reg_i_map[] =
810 {
811 6, 7, 7, 21, 22, 5, 6, 7
812 };
813
814 #define micromips_to_32_reg_l_map mips16_to_32_reg_map
815
816 /* The microMIPS registers with type m. */
817 static const unsigned int micromips_to_32_reg_m_map[] =
818 {
819 0, 17, 2, 3, 16, 18, 19, 20
820 };
821
822 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
823
824 /* The microMIPS registers with type q. */
825 static const unsigned int micromips_to_32_reg_q_map[] =
826 {
827 0, 17, 2, 3, 4, 5, 6, 7
828 };
829
830 /* microMIPS imm type B. */
831 static const int micromips_imm_b_map[] =
832 {
833 1, 4, 8, 12, 16, 20, 24, -1
834 };
835
836 /* microMIPS imm type C. */
837 static const int micromips_imm_c_map[] =
838 {
839 128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 255, 32768, 65535
840 };
841
842 /* Classifies the kind of instructions we're interested in when
843 implementing -mfix-vr4120. */
844 enum fix_vr4120_class
845 {
846 FIX_VR4120_MACC,
847 FIX_VR4120_DMACC,
848 FIX_VR4120_MULT,
849 FIX_VR4120_DMULT,
850 FIX_VR4120_DIV,
851 FIX_VR4120_MTHILO,
852 NUM_FIX_VR4120_CLASSES
853 };
854
855 /* ...likewise -mfix-loongson2f-jump. */
856 static bfd_boolean mips_fix_loongson2f_jump;
857
858 /* ...likewise -mfix-loongson2f-nop. */
859 static bfd_boolean mips_fix_loongson2f_nop;
860
861 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
862 static bfd_boolean mips_fix_loongson2f;
863
864 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
865 there must be at least one other instruction between an instruction
866 of type X and an instruction of type Y. */
867 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
868
869 /* True if -mfix-vr4120 is in force. */
870 static int mips_fix_vr4120;
871
872 /* ...likewise -mfix-vr4130. */
873 static int mips_fix_vr4130;
874
875 /* ...likewise -mfix-24k. */
876 static int mips_fix_24k;
877
878 /* ...likewise -mfix-cn63xxp1 */
879 static bfd_boolean mips_fix_cn63xxp1;
880
881 /* We don't relax branches by default, since this causes us to expand
882 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
883 fail to compute the offset before expanding the macro to the most
884 efficient expansion. */
885
886 static int mips_relax_branch;
887 \f
888 /* The expansion of many macros depends on the type of symbol that
889 they refer to. For example, when generating position-dependent code,
890 a macro that refers to a symbol may have two different expansions,
891 one which uses GP-relative addresses and one which uses absolute
892 addresses. When generating SVR4-style PIC, a macro may have
893 different expansions for local and global symbols.
894
895 We handle these situations by generating both sequences and putting
896 them in variant frags. In position-dependent code, the first sequence
897 will be the GP-relative one and the second sequence will be the
898 absolute one. In SVR4 PIC, the first sequence will be for global
899 symbols and the second will be for local symbols.
900
901 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
902 SECOND are the lengths of the two sequences in bytes. These fields
903 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
904 the subtype has the following flags:
905
906 RELAX_USE_SECOND
907 Set if it has been decided that we should use the second
908 sequence instead of the first.
909
910 RELAX_SECOND_LONGER
911 Set in the first variant frag if the macro's second implementation
912 is longer than its first. This refers to the macro as a whole,
913 not an individual relaxation.
914
915 RELAX_NOMACRO
916 Set in the first variant frag if the macro appeared in a .set nomacro
917 block and if one alternative requires a warning but the other does not.
918
919 RELAX_DELAY_SLOT
920 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
921 delay slot.
922
923 RELAX_DELAY_SLOT_16BIT
924 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
925 16-bit instruction.
926
927 RELAX_DELAY_SLOT_SIZE_FIRST
928 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
929 the macro is of the wrong size for the branch delay slot.
930
931 RELAX_DELAY_SLOT_SIZE_SECOND
932 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
933 the macro is of the wrong size for the branch delay slot.
934
935 The frag's "opcode" points to the first fixup for relaxable code.
936
937 Relaxable macros are generated using a sequence such as:
938
939 relax_start (SYMBOL);
940 ... generate first expansion ...
941 relax_switch ();
942 ... generate second expansion ...
943 relax_end ();
944
945 The code and fixups for the unwanted alternative are discarded
946 by md_convert_frag. */
947 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
948
949 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
950 #define RELAX_SECOND(X) ((X) & 0xff)
951 #define RELAX_USE_SECOND 0x10000
952 #define RELAX_SECOND_LONGER 0x20000
953 #define RELAX_NOMACRO 0x40000
954 #define RELAX_DELAY_SLOT 0x80000
955 #define RELAX_DELAY_SLOT_16BIT 0x100000
956 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
957 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
958
959 /* Branch without likely bit. If label is out of range, we turn:
960
961 beq reg1, reg2, label
962 delay slot
963
964 into
965
966 bne reg1, reg2, 0f
967 nop
968 j label
969 0: delay slot
970
971 with the following opcode replacements:
972
973 beq <-> bne
974 blez <-> bgtz
975 bltz <-> bgez
976 bc1f <-> bc1t
977
978 bltzal <-> bgezal (with jal label instead of j label)
979
980 Even though keeping the delay slot instruction in the delay slot of
981 the branch would be more efficient, it would be very tricky to do
982 correctly, because we'd have to introduce a variable frag *after*
983 the delay slot instruction, and expand that instead. Let's do it
984 the easy way for now, even if the branch-not-taken case now costs
985 one additional instruction. Out-of-range branches are not supposed
986 to be common, anyway.
987
988 Branch likely. If label is out of range, we turn:
989
990 beql reg1, reg2, label
991 delay slot (annulled if branch not taken)
992
993 into
994
995 beql reg1, reg2, 1f
996 nop
997 beql $0, $0, 2f
998 nop
999 1: j[al] label
1000 delay slot (executed only if branch taken)
1001 2:
1002
1003 It would be possible to generate a shorter sequence by losing the
1004 likely bit, generating something like:
1005
1006 bne reg1, reg2, 0f
1007 nop
1008 j[al] label
1009 delay slot (executed only if branch taken)
1010 0:
1011
1012 beql -> bne
1013 bnel -> beq
1014 blezl -> bgtz
1015 bgtzl -> blez
1016 bltzl -> bgez
1017 bgezl -> bltz
1018 bc1fl -> bc1t
1019 bc1tl -> bc1f
1020
1021 bltzall -> bgezal (with jal label instead of j label)
1022 bgezall -> bltzal (ditto)
1023
1024
1025 but it's not clear that it would actually improve performance. */
1026 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1027 ((relax_substateT) \
1028 (0xc0000000 \
1029 | ((at) & 0x1f) \
1030 | ((toofar) ? 0x20 : 0) \
1031 | ((link) ? 0x40 : 0) \
1032 | ((likely) ? 0x80 : 0) \
1033 | ((uncond) ? 0x100 : 0)))
1034 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1035 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1036 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1037 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1038 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1039 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1040
1041 /* For mips16 code, we use an entirely different form of relaxation.
1042 mips16 supports two versions of most instructions which take
1043 immediate values: a small one which takes some small value, and a
1044 larger one which takes a 16 bit value. Since branches also follow
1045 this pattern, relaxing these values is required.
1046
1047 We can assemble both mips16 and normal MIPS code in a single
1048 object. Therefore, we need to support this type of relaxation at
1049 the same time that we support the relaxation described above. We
1050 use the high bit of the subtype field to distinguish these cases.
1051
1052 The information we store for this type of relaxation is the
1053 argument code found in the opcode file for this relocation, whether
1054 the user explicitly requested a small or extended form, and whether
1055 the relocation is in a jump or jal delay slot. That tells us the
1056 size of the value, and how it should be stored. We also store
1057 whether the fragment is considered to be extended or not. We also
1058 store whether this is known to be a branch to a different section,
1059 whether we have tried to relax this frag yet, and whether we have
1060 ever extended a PC relative fragment because of a shift count. */
1061 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1062 (0x80000000 \
1063 | ((type) & 0xff) \
1064 | ((small) ? 0x100 : 0) \
1065 | ((ext) ? 0x200 : 0) \
1066 | ((dslot) ? 0x400 : 0) \
1067 | ((jal_dslot) ? 0x800 : 0))
1068 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1069 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1070 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1071 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1072 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1073 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1074 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1075 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1076 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1077 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1078 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1079 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1080
1081 /* For microMIPS code, we use relaxation similar to one we use for
1082 MIPS16 code. Some instructions that take immediate values support
1083 two encodings: a small one which takes some small value, and a
1084 larger one which takes a 16 bit value. As some branches also follow
1085 this pattern, relaxing these values is required.
1086
1087 We can assemble both microMIPS and normal MIPS code in a single
1088 object. Therefore, we need to support this type of relaxation at
1089 the same time that we support the relaxation described above. We
1090 use one of the high bits of the subtype field to distinguish these
1091 cases.
1092
1093 The information we store for this type of relaxation is the argument
1094 code found in the opcode file for this relocation, the register
1095 selected as the assembler temporary, whether the branch is
1096 unconditional, whether it is compact, whether it stores the link
1097 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1098 branches to a sequence of instructions is enabled, and whether the
1099 displacement of a branch is too large to fit as an immediate argument
1100 of a 16-bit and a 32-bit branch, respectively. */
1101 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1102 relax32, toofar16, toofar32) \
1103 (0x40000000 \
1104 | ((type) & 0xff) \
1105 | (((at) & 0x1f) << 8) \
1106 | ((uncond) ? 0x2000 : 0) \
1107 | ((compact) ? 0x4000 : 0) \
1108 | ((link) ? 0x8000 : 0) \
1109 | ((relax32) ? 0x10000 : 0) \
1110 | ((toofar16) ? 0x20000 : 0) \
1111 | ((toofar32) ? 0x40000 : 0))
1112 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1113 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1114 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1115 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1116 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1117 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1118 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1119
1120 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1121 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1122 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1123 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1124 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1125 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1126
1127 /* Sign-extend 16-bit value X. */
1128 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1129
1130 /* Is the given value a sign-extended 32-bit value? */
1131 #define IS_SEXT_32BIT_NUM(x) \
1132 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1133 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1134
1135 /* Is the given value a sign-extended 16-bit value? */
1136 #define IS_SEXT_16BIT_NUM(x) \
1137 (((x) &~ (offsetT) 0x7fff) == 0 \
1138 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1139
1140 /* Is the given value a sign-extended 12-bit value? */
1141 #define IS_SEXT_12BIT_NUM(x) \
1142 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1143
1144 /* Is the given value a sign-extended 9-bit value? */
1145 #define IS_SEXT_9BIT_NUM(x) \
1146 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1147
1148 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1149 #define IS_ZEXT_32BIT_NUM(x) \
1150 (((x) &~ (offsetT) 0xffffffff) == 0 \
1151 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1152
1153 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
1154 VALUE << SHIFT. VALUE is evaluated exactly once. */
1155 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
1156 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
1157 | (((VALUE) & (MASK)) << (SHIFT)))
1158
1159 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1160 SHIFT places. */
1161 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1162 (((STRUCT) >> (SHIFT)) & (MASK))
1163
1164 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1165 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1166
1167 include/opcode/mips.h specifies operand fields using the macros
1168 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1169 with "MIPS16OP" instead of "OP". */
1170 #define INSERT_OPERAND(MICROMIPS, FIELD, INSN, VALUE) \
1171 do \
1172 if (!(MICROMIPS)) \
1173 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1174 OP_MASK_##FIELD, OP_SH_##FIELD); \
1175 else \
1176 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1177 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD); \
1178 while (0)
1179 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1180 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1181 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1182
1183 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1184 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1185 (!(MICROMIPS) \
1186 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1187 : EXTRACT_BITS ((INSN).insn_opcode, \
1188 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1189 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1190 EXTRACT_BITS ((INSN).insn_opcode, \
1191 MIPS16OP_MASK_##FIELD, \
1192 MIPS16OP_SH_##FIELD)
1193
1194 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1195 #define MIPS16_EXTEND (0xf000U << 16)
1196 \f
1197 /* Whether or not we are emitting a branch-likely macro. */
1198 static bfd_boolean emit_branch_likely_macro = FALSE;
1199
1200 /* Global variables used when generating relaxable macros. See the
1201 comment above RELAX_ENCODE for more details about how relaxation
1202 is used. */
1203 static struct {
1204 /* 0 if we're not emitting a relaxable macro.
1205 1 if we're emitting the first of the two relaxation alternatives.
1206 2 if we're emitting the second alternative. */
1207 int sequence;
1208
1209 /* The first relaxable fixup in the current frag. (In other words,
1210 the first fixup that refers to relaxable code.) */
1211 fixS *first_fixup;
1212
1213 /* sizes[0] says how many bytes of the first alternative are stored in
1214 the current frag. Likewise sizes[1] for the second alternative. */
1215 unsigned int sizes[2];
1216
1217 /* The symbol on which the choice of sequence depends. */
1218 symbolS *symbol;
1219 } mips_relax;
1220 \f
1221 /* Global variables used to decide whether a macro needs a warning. */
1222 static struct {
1223 /* True if the macro is in a branch delay slot. */
1224 bfd_boolean delay_slot_p;
1225
1226 /* Set to the length in bytes required if the macro is in a delay slot
1227 that requires a specific length of instruction, otherwise zero. */
1228 unsigned int delay_slot_length;
1229
1230 /* For relaxable macros, sizes[0] is the length of the first alternative
1231 in bytes and sizes[1] is the length of the second alternative.
1232 For non-relaxable macros, both elements give the length of the
1233 macro in bytes. */
1234 unsigned int sizes[2];
1235
1236 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1237 instruction of the first alternative in bytes and first_insn_sizes[1]
1238 is the length of the first instruction of the second alternative.
1239 For non-relaxable macros, both elements give the length of the first
1240 instruction in bytes.
1241
1242 Set to zero if we haven't yet seen the first instruction. */
1243 unsigned int first_insn_sizes[2];
1244
1245 /* For relaxable macros, insns[0] is the number of instructions for the
1246 first alternative and insns[1] is the number of instructions for the
1247 second alternative.
1248
1249 For non-relaxable macros, both elements give the number of
1250 instructions for the macro. */
1251 unsigned int insns[2];
1252
1253 /* The first variant frag for this macro. */
1254 fragS *first_frag;
1255 } mips_macro_warning;
1256 \f
1257 /* Prototypes for static functions. */
1258
1259 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1260
1261 static void append_insn
1262 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1263 bfd_boolean expansionp);
1264 static void mips_no_prev_insn (void);
1265 static void macro_build (expressionS *, const char *, const char *, ...);
1266 static void mips16_macro_build
1267 (expressionS *, const char *, const char *, va_list *);
1268 static void load_register (int, expressionS *, int);
1269 static void macro_start (void);
1270 static void macro_end (void);
1271 static void macro (struct mips_cl_insn * ip);
1272 static void mips16_macro (struct mips_cl_insn * ip);
1273 static void mips_ip (char *str, struct mips_cl_insn * ip);
1274 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1275 static void mips16_immed
1276 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1277 unsigned int, unsigned long *);
1278 static size_t my_getSmallExpression
1279 (expressionS *, bfd_reloc_code_real_type *, char *);
1280 static void my_getExpression (expressionS *, char *);
1281 static void s_align (int);
1282 static void s_change_sec (int);
1283 static void s_change_section (int);
1284 static void s_cons (int);
1285 static void s_float_cons (int);
1286 static void s_mips_globl (int);
1287 static void s_option (int);
1288 static void s_mipsset (int);
1289 static void s_abicalls (int);
1290 static void s_cpload (int);
1291 static void s_cpsetup (int);
1292 static void s_cplocal (int);
1293 static void s_cprestore (int);
1294 static void s_cpreturn (int);
1295 static void s_dtprelword (int);
1296 static void s_dtpreldword (int);
1297 static void s_tprelword (int);
1298 static void s_tpreldword (int);
1299 static void s_gpvalue (int);
1300 static void s_gpword (int);
1301 static void s_gpdword (int);
1302 static void s_ehword (int);
1303 static void s_cpadd (int);
1304 static void s_insn (int);
1305 static void md_obj_begin (void);
1306 static void md_obj_end (void);
1307 static void s_mips_ent (int);
1308 static void s_mips_end (int);
1309 static void s_mips_frame (int);
1310 static void s_mips_mask (int reg_type);
1311 static void s_mips_stab (int);
1312 static void s_mips_weakext (int);
1313 static void s_mips_file (int);
1314 static void s_mips_loc (int);
1315 static bfd_boolean pic_need_relax (symbolS *, asection *);
1316 static int relaxed_branch_length (fragS *, asection *, int);
1317 static int validate_mips_insn (const struct mips_opcode *);
1318 static int validate_micromips_insn (const struct mips_opcode *);
1319 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1320 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1321
1322 /* Table and functions used to map between CPU/ISA names, and
1323 ISA levels, and CPU numbers. */
1324
1325 struct mips_cpu_info
1326 {
1327 const char *name; /* CPU or ISA name. */
1328 int flags; /* MIPS_CPU_* flags. */
1329 int ase; /* Set of ASEs implemented by the CPU. */
1330 int isa; /* ISA level. */
1331 int cpu; /* CPU number (default CPU if ISA). */
1332 };
1333
1334 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1335
1336 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1337 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1338 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1339 \f
1340 /* Command-line options. */
1341 const char *md_shortopts = "O::g::G:";
1342
1343 enum options
1344 {
1345 OPTION_MARCH = OPTION_MD_BASE,
1346 OPTION_MTUNE,
1347 OPTION_MIPS1,
1348 OPTION_MIPS2,
1349 OPTION_MIPS3,
1350 OPTION_MIPS4,
1351 OPTION_MIPS5,
1352 OPTION_MIPS32,
1353 OPTION_MIPS64,
1354 OPTION_MIPS32R2,
1355 OPTION_MIPS64R2,
1356 OPTION_MIPS16,
1357 OPTION_NO_MIPS16,
1358 OPTION_MIPS3D,
1359 OPTION_NO_MIPS3D,
1360 OPTION_MDMX,
1361 OPTION_NO_MDMX,
1362 OPTION_DSP,
1363 OPTION_NO_DSP,
1364 OPTION_MT,
1365 OPTION_NO_MT,
1366 OPTION_VIRT,
1367 OPTION_NO_VIRT,
1368 OPTION_SMARTMIPS,
1369 OPTION_NO_SMARTMIPS,
1370 OPTION_DSPR2,
1371 OPTION_NO_DSPR2,
1372 OPTION_EVA,
1373 OPTION_NO_EVA,
1374 OPTION_MICROMIPS,
1375 OPTION_NO_MICROMIPS,
1376 OPTION_MCU,
1377 OPTION_NO_MCU,
1378 OPTION_COMPAT_ARCH_BASE,
1379 OPTION_M4650,
1380 OPTION_NO_M4650,
1381 OPTION_M4010,
1382 OPTION_NO_M4010,
1383 OPTION_M4100,
1384 OPTION_NO_M4100,
1385 OPTION_M3900,
1386 OPTION_NO_M3900,
1387 OPTION_M7000_HILO_FIX,
1388 OPTION_MNO_7000_HILO_FIX,
1389 OPTION_FIX_24K,
1390 OPTION_NO_FIX_24K,
1391 OPTION_FIX_LOONGSON2F_JUMP,
1392 OPTION_NO_FIX_LOONGSON2F_JUMP,
1393 OPTION_FIX_LOONGSON2F_NOP,
1394 OPTION_NO_FIX_LOONGSON2F_NOP,
1395 OPTION_FIX_VR4120,
1396 OPTION_NO_FIX_VR4120,
1397 OPTION_FIX_VR4130,
1398 OPTION_NO_FIX_VR4130,
1399 OPTION_FIX_CN63XXP1,
1400 OPTION_NO_FIX_CN63XXP1,
1401 OPTION_TRAP,
1402 OPTION_BREAK,
1403 OPTION_EB,
1404 OPTION_EL,
1405 OPTION_FP32,
1406 OPTION_GP32,
1407 OPTION_CONSTRUCT_FLOATS,
1408 OPTION_NO_CONSTRUCT_FLOATS,
1409 OPTION_FP64,
1410 OPTION_GP64,
1411 OPTION_RELAX_BRANCH,
1412 OPTION_NO_RELAX_BRANCH,
1413 OPTION_MSHARED,
1414 OPTION_MNO_SHARED,
1415 OPTION_MSYM32,
1416 OPTION_MNO_SYM32,
1417 OPTION_SOFT_FLOAT,
1418 OPTION_HARD_FLOAT,
1419 OPTION_SINGLE_FLOAT,
1420 OPTION_DOUBLE_FLOAT,
1421 OPTION_32,
1422 OPTION_CALL_SHARED,
1423 OPTION_CALL_NONPIC,
1424 OPTION_NON_SHARED,
1425 OPTION_XGOT,
1426 OPTION_MABI,
1427 OPTION_N32,
1428 OPTION_64,
1429 OPTION_MDEBUG,
1430 OPTION_NO_MDEBUG,
1431 OPTION_PDR,
1432 OPTION_NO_PDR,
1433 OPTION_MVXWORKS_PIC,
1434 OPTION_END_OF_ENUM
1435 };
1436
1437 struct option md_longopts[] =
1438 {
1439 /* Options which specify architecture. */
1440 {"march", required_argument, NULL, OPTION_MARCH},
1441 {"mtune", required_argument, NULL, OPTION_MTUNE},
1442 {"mips0", no_argument, NULL, OPTION_MIPS1},
1443 {"mips1", no_argument, NULL, OPTION_MIPS1},
1444 {"mips2", no_argument, NULL, OPTION_MIPS2},
1445 {"mips3", no_argument, NULL, OPTION_MIPS3},
1446 {"mips4", no_argument, NULL, OPTION_MIPS4},
1447 {"mips5", no_argument, NULL, OPTION_MIPS5},
1448 {"mips32", no_argument, NULL, OPTION_MIPS32},
1449 {"mips64", no_argument, NULL, OPTION_MIPS64},
1450 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1451 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1452
1453 /* Options which specify Application Specific Extensions (ASEs). */
1454 {"mips16", no_argument, NULL, OPTION_MIPS16},
1455 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1456 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1457 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1458 {"mdmx", no_argument, NULL, OPTION_MDMX},
1459 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1460 {"mdsp", no_argument, NULL, OPTION_DSP},
1461 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1462 {"mmt", no_argument, NULL, OPTION_MT},
1463 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1464 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1465 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1466 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1467 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1468 {"meva", no_argument, NULL, OPTION_EVA},
1469 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1470 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1471 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1472 {"mmcu", no_argument, NULL, OPTION_MCU},
1473 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1474 {"mvirt", no_argument, NULL, OPTION_VIRT},
1475 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1476
1477 /* Old-style architecture options. Don't add more of these. */
1478 {"m4650", no_argument, NULL, OPTION_M4650},
1479 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1480 {"m4010", no_argument, NULL, OPTION_M4010},
1481 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1482 {"m4100", no_argument, NULL, OPTION_M4100},
1483 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1484 {"m3900", no_argument, NULL, OPTION_M3900},
1485 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1486
1487 /* Options which enable bug fixes. */
1488 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1489 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1490 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1491 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1492 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1493 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1494 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1495 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1496 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1497 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1498 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1499 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1500 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1501 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1502 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1503
1504 /* Miscellaneous options. */
1505 {"trap", no_argument, NULL, OPTION_TRAP},
1506 {"no-break", no_argument, NULL, OPTION_TRAP},
1507 {"break", no_argument, NULL, OPTION_BREAK},
1508 {"no-trap", no_argument, NULL, OPTION_BREAK},
1509 {"EB", no_argument, NULL, OPTION_EB},
1510 {"EL", no_argument, NULL, OPTION_EL},
1511 {"mfp32", no_argument, NULL, OPTION_FP32},
1512 {"mgp32", no_argument, NULL, OPTION_GP32},
1513 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1514 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1515 {"mfp64", no_argument, NULL, OPTION_FP64},
1516 {"mgp64", no_argument, NULL, OPTION_GP64},
1517 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1518 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1519 {"mshared", no_argument, NULL, OPTION_MSHARED},
1520 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1521 {"msym32", no_argument, NULL, OPTION_MSYM32},
1522 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1523 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1524 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1525 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1526 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1527
1528 /* Strictly speaking this next option is ELF specific,
1529 but we allow it for other ports as well in order to
1530 make testing easier. */
1531 {"32", no_argument, NULL, OPTION_32},
1532
1533 /* ELF-specific options. */
1534 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1535 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1536 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1537 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1538 {"xgot", no_argument, NULL, OPTION_XGOT},
1539 {"mabi", required_argument, NULL, OPTION_MABI},
1540 {"n32", no_argument, NULL, OPTION_N32},
1541 {"64", no_argument, NULL, OPTION_64},
1542 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1543 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1544 {"mpdr", no_argument, NULL, OPTION_PDR},
1545 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1546 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1547
1548 {NULL, no_argument, NULL, 0}
1549 };
1550 size_t md_longopts_size = sizeof (md_longopts);
1551 \f
1552 /* Information about either an Application Specific Extension or an
1553 optional architecture feature that, for simplicity, we treat in the
1554 same way as an ASE. */
1555 struct mips_ase
1556 {
1557 /* The name of the ASE, used in both the command-line and .set options. */
1558 const char *name;
1559
1560 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1561 and 64-bit architectures, the flags here refer to the subset that
1562 is available on both. */
1563 unsigned int flags;
1564
1565 /* The ASE_* flag used for instructions that are available on 64-bit
1566 architectures but that are not included in FLAGS. */
1567 unsigned int flags64;
1568
1569 /* The command-line options that turn the ASE on and off. */
1570 int option_on;
1571 int option_off;
1572
1573 /* The minimum required architecture revisions for MIPS32, MIPS64,
1574 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1575 int mips32_rev;
1576 int mips64_rev;
1577 int micromips32_rev;
1578 int micromips64_rev;
1579 };
1580
1581 /* A table of all supported ASEs. */
1582 static const struct mips_ase mips_ases[] = {
1583 { "dsp", ASE_DSP, ASE_DSP64,
1584 OPTION_DSP, OPTION_NO_DSP,
1585 2, 2, 2, 2 },
1586
1587 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1588 OPTION_DSPR2, OPTION_NO_DSPR2,
1589 2, 2, 2, 2 },
1590
1591 { "eva", ASE_EVA, 0,
1592 OPTION_EVA, OPTION_NO_EVA,
1593 2, 2, 2, 2 },
1594
1595 { "mcu", ASE_MCU, 0,
1596 OPTION_MCU, OPTION_NO_MCU,
1597 2, 2, 2, 2 },
1598
1599 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1600 { "mdmx", ASE_MDMX, 0,
1601 OPTION_MDMX, OPTION_NO_MDMX,
1602 -1, 1, -1, -1 },
1603
1604 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1605 { "mips3d", ASE_MIPS3D, 0,
1606 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1607 2, 1, -1, -1 },
1608
1609 { "mt", ASE_MT, 0,
1610 OPTION_MT, OPTION_NO_MT,
1611 2, 2, -1, -1 },
1612
1613 { "smartmips", ASE_SMARTMIPS, 0,
1614 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1615 1, -1, -1, -1 },
1616
1617 { "virt", ASE_VIRT, ASE_VIRT64,
1618 OPTION_VIRT, OPTION_NO_VIRT,
1619 2, 2, 2, 2 }
1620 };
1621
1622 /* The set of ASEs that require -mfp64. */
1623 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
1624
1625 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1626 static const unsigned int mips_ase_groups[] = {
1627 ASE_DSP | ASE_DSPR2
1628 };
1629 \f
1630 /* Pseudo-op table.
1631
1632 The following pseudo-ops from the Kane and Heinrich MIPS book
1633 should be defined here, but are currently unsupported: .alias,
1634 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1635
1636 The following pseudo-ops from the Kane and Heinrich MIPS book are
1637 specific to the type of debugging information being generated, and
1638 should be defined by the object format: .aent, .begin, .bend,
1639 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1640 .vreg.
1641
1642 The following pseudo-ops from the Kane and Heinrich MIPS book are
1643 not MIPS CPU specific, but are also not specific to the object file
1644 format. This file is probably the best place to define them, but
1645 they are not currently supported: .asm0, .endr, .lab, .struct. */
1646
1647 static const pseudo_typeS mips_pseudo_table[] =
1648 {
1649 /* MIPS specific pseudo-ops. */
1650 {"option", s_option, 0},
1651 {"set", s_mipsset, 0},
1652 {"rdata", s_change_sec, 'r'},
1653 {"sdata", s_change_sec, 's'},
1654 {"livereg", s_ignore, 0},
1655 {"abicalls", s_abicalls, 0},
1656 {"cpload", s_cpload, 0},
1657 {"cpsetup", s_cpsetup, 0},
1658 {"cplocal", s_cplocal, 0},
1659 {"cprestore", s_cprestore, 0},
1660 {"cpreturn", s_cpreturn, 0},
1661 {"dtprelword", s_dtprelword, 0},
1662 {"dtpreldword", s_dtpreldword, 0},
1663 {"tprelword", s_tprelword, 0},
1664 {"tpreldword", s_tpreldword, 0},
1665 {"gpvalue", s_gpvalue, 0},
1666 {"gpword", s_gpword, 0},
1667 {"gpdword", s_gpdword, 0},
1668 {"ehword", s_ehword, 0},
1669 {"cpadd", s_cpadd, 0},
1670 {"insn", s_insn, 0},
1671
1672 /* Relatively generic pseudo-ops that happen to be used on MIPS
1673 chips. */
1674 {"asciiz", stringer, 8 + 1},
1675 {"bss", s_change_sec, 'b'},
1676 {"err", s_err, 0},
1677 {"half", s_cons, 1},
1678 {"dword", s_cons, 3},
1679 {"weakext", s_mips_weakext, 0},
1680 {"origin", s_org, 0},
1681 {"repeat", s_rept, 0},
1682
1683 /* For MIPS this is non-standard, but we define it for consistency. */
1684 {"sbss", s_change_sec, 'B'},
1685
1686 /* These pseudo-ops are defined in read.c, but must be overridden
1687 here for one reason or another. */
1688 {"align", s_align, 0},
1689 {"byte", s_cons, 0},
1690 {"data", s_change_sec, 'd'},
1691 {"double", s_float_cons, 'd'},
1692 {"float", s_float_cons, 'f'},
1693 {"globl", s_mips_globl, 0},
1694 {"global", s_mips_globl, 0},
1695 {"hword", s_cons, 1},
1696 {"int", s_cons, 2},
1697 {"long", s_cons, 2},
1698 {"octa", s_cons, 4},
1699 {"quad", s_cons, 3},
1700 {"section", s_change_section, 0},
1701 {"short", s_cons, 1},
1702 {"single", s_float_cons, 'f'},
1703 {"stabd", s_mips_stab, 'd'},
1704 {"stabn", s_mips_stab, 'n'},
1705 {"stabs", s_mips_stab, 's'},
1706 {"text", s_change_sec, 't'},
1707 {"word", s_cons, 2},
1708
1709 { "extern", ecoff_directive_extern, 0},
1710
1711 { NULL, NULL, 0 },
1712 };
1713
1714 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1715 {
1716 /* These pseudo-ops should be defined by the object file format.
1717 However, a.out doesn't support them, so we have versions here. */
1718 {"aent", s_mips_ent, 1},
1719 {"bgnb", s_ignore, 0},
1720 {"end", s_mips_end, 0},
1721 {"endb", s_ignore, 0},
1722 {"ent", s_mips_ent, 0},
1723 {"file", s_mips_file, 0},
1724 {"fmask", s_mips_mask, 'F'},
1725 {"frame", s_mips_frame, 0},
1726 {"loc", s_mips_loc, 0},
1727 {"mask", s_mips_mask, 'R'},
1728 {"verstamp", s_ignore, 0},
1729 { NULL, NULL, 0 },
1730 };
1731
1732 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1733 purpose of the `.dc.a' internal pseudo-op. */
1734
1735 int
1736 mips_address_bytes (void)
1737 {
1738 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1739 }
1740
1741 extern void pop_insert (const pseudo_typeS *);
1742
1743 void
1744 mips_pop_insert (void)
1745 {
1746 pop_insert (mips_pseudo_table);
1747 if (! ECOFF_DEBUGGING)
1748 pop_insert (mips_nonecoff_pseudo_table);
1749 }
1750 \f
1751 /* Symbols labelling the current insn. */
1752
1753 struct insn_label_list
1754 {
1755 struct insn_label_list *next;
1756 symbolS *label;
1757 };
1758
1759 static struct insn_label_list *free_insn_labels;
1760 #define label_list tc_segment_info_data.labels
1761
1762 static void mips_clear_insn_labels (void);
1763 static void mips_mark_labels (void);
1764 static void mips_compressed_mark_labels (void);
1765
1766 static inline void
1767 mips_clear_insn_labels (void)
1768 {
1769 register struct insn_label_list **pl;
1770 segment_info_type *si;
1771
1772 if (now_seg)
1773 {
1774 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1775 ;
1776
1777 si = seg_info (now_seg);
1778 *pl = si->label_list;
1779 si->label_list = NULL;
1780 }
1781 }
1782
1783 /* Mark instruction labels in MIPS16/microMIPS mode. */
1784
1785 static inline void
1786 mips_mark_labels (void)
1787 {
1788 if (HAVE_CODE_COMPRESSION)
1789 mips_compressed_mark_labels ();
1790 }
1791 \f
1792 static char *expr_end;
1793
1794 /* Expressions which appear in instructions. These are set by
1795 mips_ip. */
1796
1797 static expressionS imm_expr;
1798 static expressionS imm2_expr;
1799 static expressionS offset_expr;
1800
1801 /* Relocs associated with imm_expr and offset_expr. */
1802
1803 static bfd_reloc_code_real_type imm_reloc[3]
1804 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1805 static bfd_reloc_code_real_type offset_reloc[3]
1806 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1807
1808 /* This is set to the resulting size of the instruction to be produced
1809 by mips16_ip if an explicit extension is used or by mips_ip if an
1810 explicit size is supplied. */
1811
1812 static unsigned int forced_insn_length;
1813
1814 /* True if we are assembling an instruction. All dot symbols defined during
1815 this time should be treated as code labels. */
1816
1817 static bfd_boolean mips_assembling_insn;
1818
1819 /* The pdr segment for per procedure frame/regmask info. Not used for
1820 ECOFF debugging. */
1821
1822 static segT pdr_seg;
1823
1824 /* The default target format to use. */
1825
1826 #if defined (TE_FreeBSD)
1827 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1828 #elif defined (TE_TMIPS)
1829 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1830 #else
1831 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1832 #endif
1833
1834 const char *
1835 mips_target_format (void)
1836 {
1837 switch (OUTPUT_FLAVOR)
1838 {
1839 case bfd_target_elf_flavour:
1840 #ifdef TE_VXWORKS
1841 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1842 return (target_big_endian
1843 ? "elf32-bigmips-vxworks"
1844 : "elf32-littlemips-vxworks");
1845 #endif
1846 return (target_big_endian
1847 ? (HAVE_64BIT_OBJECTS
1848 ? ELF_TARGET ("elf64-", "big")
1849 : (HAVE_NEWABI
1850 ? ELF_TARGET ("elf32-n", "big")
1851 : ELF_TARGET ("elf32-", "big")))
1852 : (HAVE_64BIT_OBJECTS
1853 ? ELF_TARGET ("elf64-", "little")
1854 : (HAVE_NEWABI
1855 ? ELF_TARGET ("elf32-n", "little")
1856 : ELF_TARGET ("elf32-", "little"))));
1857 default:
1858 abort ();
1859 return NULL;
1860 }
1861 }
1862
1863 /* Return the ISA revision that is currently in use, or 0 if we are
1864 generating code for MIPS V or below. */
1865
1866 static int
1867 mips_isa_rev (void)
1868 {
1869 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1870 return 2;
1871
1872 /* microMIPS implies revision 2 or above. */
1873 if (mips_opts.micromips)
1874 return 2;
1875
1876 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1877 return 1;
1878
1879 return 0;
1880 }
1881
1882 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1883
1884 static unsigned int
1885 mips_ase_mask (unsigned int flags)
1886 {
1887 unsigned int i;
1888
1889 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1890 if (flags & mips_ase_groups[i])
1891 flags |= mips_ase_groups[i];
1892 return flags;
1893 }
1894
1895 /* Check whether the current ISA supports ASE. Issue a warning if
1896 appropriate. */
1897
1898 static void
1899 mips_check_isa_supports_ase (const struct mips_ase *ase)
1900 {
1901 const char *base;
1902 int min_rev, size;
1903 static unsigned int warned_isa;
1904 static unsigned int warned_fp32;
1905
1906 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
1907 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
1908 else
1909 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
1910 if ((min_rev < 0 || mips_isa_rev () < min_rev)
1911 && (warned_isa & ase->flags) != ase->flags)
1912 {
1913 warned_isa |= ase->flags;
1914 base = mips_opts.micromips ? "microMIPS" : "MIPS";
1915 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
1916 if (min_rev < 0)
1917 as_warn (_("The %d-bit %s architecture does not support the"
1918 " `%s' extension"), size, base, ase->name);
1919 else
1920 as_warn (_("The `%s' extension requires %s%d revision %d or greater"),
1921 ase->name, base, size, min_rev);
1922 }
1923 if ((ase->flags & FP64_ASES)
1924 && mips_opts.fp32
1925 && (warned_fp32 & ase->flags) != ase->flags)
1926 {
1927 warned_fp32 |= ase->flags;
1928 as_warn (_("The `%s' extension requires 64-bit FPRs"), ase->name);
1929 }
1930 }
1931
1932 /* Check all enabled ASEs to see whether they are supported by the
1933 chosen architecture. */
1934
1935 static void
1936 mips_check_isa_supports_ases (void)
1937 {
1938 unsigned int i, mask;
1939
1940 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1941 {
1942 mask = mips_ase_mask (mips_ases[i].flags);
1943 if ((mips_opts.ase & mask) == mips_ases[i].flags)
1944 mips_check_isa_supports_ase (&mips_ases[i]);
1945 }
1946 }
1947
1948 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
1949 that were affected. */
1950
1951 static unsigned int
1952 mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p)
1953 {
1954 unsigned int mask;
1955
1956 mask = mips_ase_mask (ase->flags);
1957 mips_opts.ase &= ~mask;
1958 if (enabled_p)
1959 mips_opts.ase |= ase->flags;
1960 return mask;
1961 }
1962
1963 /* Return the ASE called NAME, or null if none. */
1964
1965 static const struct mips_ase *
1966 mips_lookup_ase (const char *name)
1967 {
1968 unsigned int i;
1969
1970 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1971 if (strcmp (name, mips_ases[i].name) == 0)
1972 return &mips_ases[i];
1973 return NULL;
1974 }
1975
1976 /* Return the length of a microMIPS instruction in bytes. If bits of
1977 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1978 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1979 major opcode) will require further modifications to the opcode
1980 table. */
1981
1982 static inline unsigned int
1983 micromips_insn_length (const struct mips_opcode *mo)
1984 {
1985 return (mo->mask >> 16) == 0 ? 2 : 4;
1986 }
1987
1988 /* Return the length of MIPS16 instruction OPCODE. */
1989
1990 static inline unsigned int
1991 mips16_opcode_length (unsigned long opcode)
1992 {
1993 return (opcode >> 16) == 0 ? 2 : 4;
1994 }
1995
1996 /* Return the length of instruction INSN. */
1997
1998 static inline unsigned int
1999 insn_length (const struct mips_cl_insn *insn)
2000 {
2001 if (mips_opts.micromips)
2002 return micromips_insn_length (insn->insn_mo);
2003 else if (mips_opts.mips16)
2004 return mips16_opcode_length (insn->insn_opcode);
2005 else
2006 return 4;
2007 }
2008
2009 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2010
2011 static void
2012 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2013 {
2014 size_t i;
2015
2016 insn->insn_mo = mo;
2017 insn->insn_opcode = mo->match;
2018 insn->frag = NULL;
2019 insn->where = 0;
2020 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2021 insn->fixp[i] = NULL;
2022 insn->fixed_p = (mips_opts.noreorder > 0);
2023 insn->noreorder_p = (mips_opts.noreorder > 0);
2024 insn->mips16_absolute_jump_p = 0;
2025 insn->complete_p = 0;
2026 insn->cleared_p = 0;
2027 }
2028
2029 /* Record the current MIPS16/microMIPS mode in now_seg. */
2030
2031 static void
2032 mips_record_compressed_mode (void)
2033 {
2034 segment_info_type *si;
2035
2036 si = seg_info (now_seg);
2037 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2038 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2039 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2040 si->tc_segment_info_data.micromips = mips_opts.micromips;
2041 }
2042
2043 /* Read a standard MIPS instruction from BUF. */
2044
2045 static unsigned long
2046 read_insn (char *buf)
2047 {
2048 if (target_big_endian)
2049 return bfd_getb32 ((bfd_byte *) buf);
2050 else
2051 return bfd_getl32 ((bfd_byte *) buf);
2052 }
2053
2054 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2055 the next byte. */
2056
2057 static char *
2058 write_insn (char *buf, unsigned int insn)
2059 {
2060 md_number_to_chars (buf, insn, 4);
2061 return buf + 4;
2062 }
2063
2064 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2065 has length LENGTH. */
2066
2067 static unsigned long
2068 read_compressed_insn (char *buf, unsigned int length)
2069 {
2070 unsigned long insn;
2071 unsigned int i;
2072
2073 insn = 0;
2074 for (i = 0; i < length; i += 2)
2075 {
2076 insn <<= 16;
2077 if (target_big_endian)
2078 insn |= bfd_getb16 ((char *) buf);
2079 else
2080 insn |= bfd_getl16 ((char *) buf);
2081 buf += 2;
2082 }
2083 return insn;
2084 }
2085
2086 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2087 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2088
2089 static char *
2090 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2091 {
2092 unsigned int i;
2093
2094 for (i = 0; i < length; i += 2)
2095 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2096 return buf + length;
2097 }
2098
2099 /* Install INSN at the location specified by its "frag" and "where" fields. */
2100
2101 static void
2102 install_insn (const struct mips_cl_insn *insn)
2103 {
2104 char *f = insn->frag->fr_literal + insn->where;
2105 if (HAVE_CODE_COMPRESSION)
2106 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2107 else
2108 write_insn (f, insn->insn_opcode);
2109 mips_record_compressed_mode ();
2110 }
2111
2112 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2113 and install the opcode in the new location. */
2114
2115 static void
2116 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2117 {
2118 size_t i;
2119
2120 insn->frag = frag;
2121 insn->where = where;
2122 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2123 if (insn->fixp[i] != NULL)
2124 {
2125 insn->fixp[i]->fx_frag = frag;
2126 insn->fixp[i]->fx_where = where;
2127 }
2128 install_insn (insn);
2129 }
2130
2131 /* Add INSN to the end of the output. */
2132
2133 static void
2134 add_fixed_insn (struct mips_cl_insn *insn)
2135 {
2136 char *f = frag_more (insn_length (insn));
2137 move_insn (insn, frag_now, f - frag_now->fr_literal);
2138 }
2139
2140 /* Start a variant frag and move INSN to the start of the variant part,
2141 marking it as fixed. The other arguments are as for frag_var. */
2142
2143 static void
2144 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2145 relax_substateT subtype, symbolS *symbol, offsetT offset)
2146 {
2147 frag_grow (max_chars);
2148 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2149 insn->fixed_p = 1;
2150 frag_var (rs_machine_dependent, max_chars, var,
2151 subtype, symbol, offset, NULL);
2152 }
2153
2154 /* Insert N copies of INSN into the history buffer, starting at
2155 position FIRST. Neither FIRST nor N need to be clipped. */
2156
2157 static void
2158 insert_into_history (unsigned int first, unsigned int n,
2159 const struct mips_cl_insn *insn)
2160 {
2161 if (mips_relax.sequence != 2)
2162 {
2163 unsigned int i;
2164
2165 for (i = ARRAY_SIZE (history); i-- > first;)
2166 if (i >= first + n)
2167 history[i] = history[i - n];
2168 else
2169 history[i] = *insn;
2170 }
2171 }
2172
2173 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2174 the idea is to make it obvious at a glance that each errata is
2175 included. */
2176
2177 static void
2178 init_vr4120_conflicts (void)
2179 {
2180 #define CONFLICT(FIRST, SECOND) \
2181 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2182
2183 /* Errata 21 - [D]DIV[U] after [D]MACC */
2184 CONFLICT (MACC, DIV);
2185 CONFLICT (DMACC, DIV);
2186
2187 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2188 CONFLICT (DMULT, DMULT);
2189 CONFLICT (DMULT, DMACC);
2190 CONFLICT (DMACC, DMULT);
2191 CONFLICT (DMACC, DMACC);
2192
2193 /* Errata 24 - MT{LO,HI} after [D]MACC */
2194 CONFLICT (MACC, MTHILO);
2195 CONFLICT (DMACC, MTHILO);
2196
2197 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2198 instruction is executed immediately after a MACC or DMACC
2199 instruction, the result of [either instruction] is incorrect." */
2200 CONFLICT (MACC, MULT);
2201 CONFLICT (MACC, DMULT);
2202 CONFLICT (DMACC, MULT);
2203 CONFLICT (DMACC, DMULT);
2204
2205 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2206 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2207 DDIV or DDIVU instruction, the result of the MACC or
2208 DMACC instruction is incorrect.". */
2209 CONFLICT (DMULT, MACC);
2210 CONFLICT (DMULT, DMACC);
2211 CONFLICT (DIV, MACC);
2212 CONFLICT (DIV, DMACC);
2213
2214 #undef CONFLICT
2215 }
2216
2217 struct regname {
2218 const char *name;
2219 unsigned int num;
2220 };
2221
2222 #define RTYPE_MASK 0x1ff00
2223 #define RTYPE_NUM 0x00100
2224 #define RTYPE_FPU 0x00200
2225 #define RTYPE_FCC 0x00400
2226 #define RTYPE_VEC 0x00800
2227 #define RTYPE_GP 0x01000
2228 #define RTYPE_CP0 0x02000
2229 #define RTYPE_PC 0x04000
2230 #define RTYPE_ACC 0x08000
2231 #define RTYPE_CCC 0x10000
2232 #define RNUM_MASK 0x000ff
2233 #define RWARN 0x80000
2234
2235 #define GENERIC_REGISTER_NUMBERS \
2236 {"$0", RTYPE_NUM | 0}, \
2237 {"$1", RTYPE_NUM | 1}, \
2238 {"$2", RTYPE_NUM | 2}, \
2239 {"$3", RTYPE_NUM | 3}, \
2240 {"$4", RTYPE_NUM | 4}, \
2241 {"$5", RTYPE_NUM | 5}, \
2242 {"$6", RTYPE_NUM | 6}, \
2243 {"$7", RTYPE_NUM | 7}, \
2244 {"$8", RTYPE_NUM | 8}, \
2245 {"$9", RTYPE_NUM | 9}, \
2246 {"$10", RTYPE_NUM | 10}, \
2247 {"$11", RTYPE_NUM | 11}, \
2248 {"$12", RTYPE_NUM | 12}, \
2249 {"$13", RTYPE_NUM | 13}, \
2250 {"$14", RTYPE_NUM | 14}, \
2251 {"$15", RTYPE_NUM | 15}, \
2252 {"$16", RTYPE_NUM | 16}, \
2253 {"$17", RTYPE_NUM | 17}, \
2254 {"$18", RTYPE_NUM | 18}, \
2255 {"$19", RTYPE_NUM | 19}, \
2256 {"$20", RTYPE_NUM | 20}, \
2257 {"$21", RTYPE_NUM | 21}, \
2258 {"$22", RTYPE_NUM | 22}, \
2259 {"$23", RTYPE_NUM | 23}, \
2260 {"$24", RTYPE_NUM | 24}, \
2261 {"$25", RTYPE_NUM | 25}, \
2262 {"$26", RTYPE_NUM | 26}, \
2263 {"$27", RTYPE_NUM | 27}, \
2264 {"$28", RTYPE_NUM | 28}, \
2265 {"$29", RTYPE_NUM | 29}, \
2266 {"$30", RTYPE_NUM | 30}, \
2267 {"$31", RTYPE_NUM | 31}
2268
2269 #define FPU_REGISTER_NAMES \
2270 {"$f0", RTYPE_FPU | 0}, \
2271 {"$f1", RTYPE_FPU | 1}, \
2272 {"$f2", RTYPE_FPU | 2}, \
2273 {"$f3", RTYPE_FPU | 3}, \
2274 {"$f4", RTYPE_FPU | 4}, \
2275 {"$f5", RTYPE_FPU | 5}, \
2276 {"$f6", RTYPE_FPU | 6}, \
2277 {"$f7", RTYPE_FPU | 7}, \
2278 {"$f8", RTYPE_FPU | 8}, \
2279 {"$f9", RTYPE_FPU | 9}, \
2280 {"$f10", RTYPE_FPU | 10}, \
2281 {"$f11", RTYPE_FPU | 11}, \
2282 {"$f12", RTYPE_FPU | 12}, \
2283 {"$f13", RTYPE_FPU | 13}, \
2284 {"$f14", RTYPE_FPU | 14}, \
2285 {"$f15", RTYPE_FPU | 15}, \
2286 {"$f16", RTYPE_FPU | 16}, \
2287 {"$f17", RTYPE_FPU | 17}, \
2288 {"$f18", RTYPE_FPU | 18}, \
2289 {"$f19", RTYPE_FPU | 19}, \
2290 {"$f20", RTYPE_FPU | 20}, \
2291 {"$f21", RTYPE_FPU | 21}, \
2292 {"$f22", RTYPE_FPU | 22}, \
2293 {"$f23", RTYPE_FPU | 23}, \
2294 {"$f24", RTYPE_FPU | 24}, \
2295 {"$f25", RTYPE_FPU | 25}, \
2296 {"$f26", RTYPE_FPU | 26}, \
2297 {"$f27", RTYPE_FPU | 27}, \
2298 {"$f28", RTYPE_FPU | 28}, \
2299 {"$f29", RTYPE_FPU | 29}, \
2300 {"$f30", RTYPE_FPU | 30}, \
2301 {"$f31", RTYPE_FPU | 31}
2302
2303 #define FPU_CONDITION_CODE_NAMES \
2304 {"$fcc0", RTYPE_FCC | 0}, \
2305 {"$fcc1", RTYPE_FCC | 1}, \
2306 {"$fcc2", RTYPE_FCC | 2}, \
2307 {"$fcc3", RTYPE_FCC | 3}, \
2308 {"$fcc4", RTYPE_FCC | 4}, \
2309 {"$fcc5", RTYPE_FCC | 5}, \
2310 {"$fcc6", RTYPE_FCC | 6}, \
2311 {"$fcc7", RTYPE_FCC | 7}
2312
2313 #define COPROC_CONDITION_CODE_NAMES \
2314 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2315 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2316 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2317 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2318 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2319 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2320 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2321 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2322
2323 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2324 {"$a4", RTYPE_GP | 8}, \
2325 {"$a5", RTYPE_GP | 9}, \
2326 {"$a6", RTYPE_GP | 10}, \
2327 {"$a7", RTYPE_GP | 11}, \
2328 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2329 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2330 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2331 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2332 {"$t0", RTYPE_GP | 12}, \
2333 {"$t1", RTYPE_GP | 13}, \
2334 {"$t2", RTYPE_GP | 14}, \
2335 {"$t3", RTYPE_GP | 15}
2336
2337 #define O32_SYMBOLIC_REGISTER_NAMES \
2338 {"$t0", RTYPE_GP | 8}, \
2339 {"$t1", RTYPE_GP | 9}, \
2340 {"$t2", RTYPE_GP | 10}, \
2341 {"$t3", RTYPE_GP | 11}, \
2342 {"$t4", RTYPE_GP | 12}, \
2343 {"$t5", RTYPE_GP | 13}, \
2344 {"$t6", RTYPE_GP | 14}, \
2345 {"$t7", RTYPE_GP | 15}, \
2346 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2347 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2348 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2349 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2350
2351 /* Remaining symbolic register names */
2352 #define SYMBOLIC_REGISTER_NAMES \
2353 {"$zero", RTYPE_GP | 0}, \
2354 {"$at", RTYPE_GP | 1}, \
2355 {"$AT", RTYPE_GP | 1}, \
2356 {"$v0", RTYPE_GP | 2}, \
2357 {"$v1", RTYPE_GP | 3}, \
2358 {"$a0", RTYPE_GP | 4}, \
2359 {"$a1", RTYPE_GP | 5}, \
2360 {"$a2", RTYPE_GP | 6}, \
2361 {"$a3", RTYPE_GP | 7}, \
2362 {"$s0", RTYPE_GP | 16}, \
2363 {"$s1", RTYPE_GP | 17}, \
2364 {"$s2", RTYPE_GP | 18}, \
2365 {"$s3", RTYPE_GP | 19}, \
2366 {"$s4", RTYPE_GP | 20}, \
2367 {"$s5", RTYPE_GP | 21}, \
2368 {"$s6", RTYPE_GP | 22}, \
2369 {"$s7", RTYPE_GP | 23}, \
2370 {"$t8", RTYPE_GP | 24}, \
2371 {"$t9", RTYPE_GP | 25}, \
2372 {"$k0", RTYPE_GP | 26}, \
2373 {"$kt0", RTYPE_GP | 26}, \
2374 {"$k1", RTYPE_GP | 27}, \
2375 {"$kt1", RTYPE_GP | 27}, \
2376 {"$gp", RTYPE_GP | 28}, \
2377 {"$sp", RTYPE_GP | 29}, \
2378 {"$s8", RTYPE_GP | 30}, \
2379 {"$fp", RTYPE_GP | 30}, \
2380 {"$ra", RTYPE_GP | 31}
2381
2382 #define MIPS16_SPECIAL_REGISTER_NAMES \
2383 {"$pc", RTYPE_PC | 0}
2384
2385 #define MDMX_VECTOR_REGISTER_NAMES \
2386 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2387 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2388 {"$v2", RTYPE_VEC | 2}, \
2389 {"$v3", RTYPE_VEC | 3}, \
2390 {"$v4", RTYPE_VEC | 4}, \
2391 {"$v5", RTYPE_VEC | 5}, \
2392 {"$v6", RTYPE_VEC | 6}, \
2393 {"$v7", RTYPE_VEC | 7}, \
2394 {"$v8", RTYPE_VEC | 8}, \
2395 {"$v9", RTYPE_VEC | 9}, \
2396 {"$v10", RTYPE_VEC | 10}, \
2397 {"$v11", RTYPE_VEC | 11}, \
2398 {"$v12", RTYPE_VEC | 12}, \
2399 {"$v13", RTYPE_VEC | 13}, \
2400 {"$v14", RTYPE_VEC | 14}, \
2401 {"$v15", RTYPE_VEC | 15}, \
2402 {"$v16", RTYPE_VEC | 16}, \
2403 {"$v17", RTYPE_VEC | 17}, \
2404 {"$v18", RTYPE_VEC | 18}, \
2405 {"$v19", RTYPE_VEC | 19}, \
2406 {"$v20", RTYPE_VEC | 20}, \
2407 {"$v21", RTYPE_VEC | 21}, \
2408 {"$v22", RTYPE_VEC | 22}, \
2409 {"$v23", RTYPE_VEC | 23}, \
2410 {"$v24", RTYPE_VEC | 24}, \
2411 {"$v25", RTYPE_VEC | 25}, \
2412 {"$v26", RTYPE_VEC | 26}, \
2413 {"$v27", RTYPE_VEC | 27}, \
2414 {"$v28", RTYPE_VEC | 28}, \
2415 {"$v29", RTYPE_VEC | 29}, \
2416 {"$v30", RTYPE_VEC | 30}, \
2417 {"$v31", RTYPE_VEC | 31}
2418
2419 #define MIPS_DSP_ACCUMULATOR_NAMES \
2420 {"$ac0", RTYPE_ACC | 0}, \
2421 {"$ac1", RTYPE_ACC | 1}, \
2422 {"$ac2", RTYPE_ACC | 2}, \
2423 {"$ac3", RTYPE_ACC | 3}
2424
2425 static const struct regname reg_names[] = {
2426 GENERIC_REGISTER_NUMBERS,
2427 FPU_REGISTER_NAMES,
2428 FPU_CONDITION_CODE_NAMES,
2429 COPROC_CONDITION_CODE_NAMES,
2430
2431 /* The $txx registers depends on the abi,
2432 these will be added later into the symbol table from
2433 one of the tables below once mips_abi is set after
2434 parsing of arguments from the command line. */
2435 SYMBOLIC_REGISTER_NAMES,
2436
2437 MIPS16_SPECIAL_REGISTER_NAMES,
2438 MDMX_VECTOR_REGISTER_NAMES,
2439 MIPS_DSP_ACCUMULATOR_NAMES,
2440 {0, 0}
2441 };
2442
2443 static const struct regname reg_names_o32[] = {
2444 O32_SYMBOLIC_REGISTER_NAMES,
2445 {0, 0}
2446 };
2447
2448 static const struct regname reg_names_n32n64[] = {
2449 N32N64_SYMBOLIC_REGISTER_NAMES,
2450 {0, 0}
2451 };
2452
2453 /* Check if S points at a valid register specifier according to TYPES.
2454 If so, then return 1, advance S to consume the specifier and store
2455 the register's number in REGNOP, otherwise return 0. */
2456
2457 static int
2458 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2459 {
2460 symbolS *symbolP;
2461 char *e;
2462 char save_c;
2463 int reg = -1;
2464
2465 /* Find end of name. */
2466 e = *s;
2467 if (is_name_beginner (*e))
2468 ++e;
2469 while (is_part_of_name (*e))
2470 ++e;
2471
2472 /* Terminate name. */
2473 save_c = *e;
2474 *e = '\0';
2475
2476 /* Look for a register symbol. */
2477 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
2478 {
2479 int r = S_GET_VALUE (symbolP);
2480 if (r & types)
2481 reg = r & RNUM_MASK;
2482 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
2483 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
2484 reg = (r & RNUM_MASK) - 2;
2485 }
2486 /* Else see if this is a register defined in an itbl entry. */
2487 else if ((types & RTYPE_GP) && itbl_have_entries)
2488 {
2489 char *n = *s;
2490 unsigned long r;
2491
2492 if (*n == '$')
2493 ++n;
2494 if (itbl_get_reg_val (n, &r))
2495 reg = r & RNUM_MASK;
2496 }
2497
2498 /* Advance to next token if a register was recognised. */
2499 if (reg >= 0)
2500 *s = e;
2501 else if (types & RWARN)
2502 as_warn (_("Unrecognized register name `%s'"), *s);
2503
2504 *e = save_c;
2505 if (regnop)
2506 *regnop = reg;
2507 return reg >= 0;
2508 }
2509
2510 /* Check if S points at a valid register list according to TYPES.
2511 If so, then return 1, advance S to consume the list and store
2512 the registers present on the list as a bitmask of ones in REGLISTP,
2513 otherwise return 0. A valid list comprises a comma-separated
2514 enumeration of valid single registers and/or dash-separated
2515 contiguous register ranges as determined by their numbers.
2516
2517 As a special exception if one of s0-s7 registers is specified as
2518 the range's lower delimiter and s8 (fp) is its upper one, then no
2519 registers whose numbers place them between s7 and s8 (i.e. $24-$29)
2520 are selected; they have to be listed separately if needed. */
2521
2522 static int
2523 reglist_lookup (char **s, unsigned int types, unsigned int *reglistp)
2524 {
2525 unsigned int reglist = 0;
2526 unsigned int lastregno;
2527 bfd_boolean ok = TRUE;
2528 unsigned int regmask;
2529 char *s_endlist = *s;
2530 char *s_reset = *s;
2531 unsigned int regno;
2532
2533 while (reg_lookup (s, types, &regno))
2534 {
2535 lastregno = regno;
2536 if (**s == '-')
2537 {
2538 (*s)++;
2539 ok = reg_lookup (s, types, &lastregno);
2540 if (ok && lastregno < regno)
2541 ok = FALSE;
2542 if (!ok)
2543 break;
2544 }
2545
2546 if (lastregno == FP && regno >= S0 && regno <= S7)
2547 {
2548 lastregno = S7;
2549 reglist |= 1 << FP;
2550 }
2551 regmask = 1 << lastregno;
2552 regmask = (regmask << 1) - 1;
2553 regmask ^= (1 << regno) - 1;
2554 reglist |= regmask;
2555
2556 s_endlist = *s;
2557 if (**s != ',')
2558 break;
2559 (*s)++;
2560 }
2561
2562 if (ok)
2563 *s = s_endlist;
2564 else
2565 *s = s_reset;
2566 if (reglistp)
2567 *reglistp = reglist;
2568 return ok && reglist != 0;
2569 }
2570
2571 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
2572 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
2573
2574 static bfd_boolean
2575 is_opcode_valid (const struct mips_opcode *mo)
2576 {
2577 int isa = mips_opts.isa;
2578 int ase = mips_opts.ase;
2579 int fp_s, fp_d;
2580 unsigned int i;
2581
2582 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2583 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2584 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
2585 ase |= mips_ases[i].flags64;
2586
2587 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
2588 return FALSE;
2589
2590 /* Check whether the instruction or macro requires single-precision or
2591 double-precision floating-point support. Note that this information is
2592 stored differently in the opcode table for insns and macros. */
2593 if (mo->pinfo == INSN_MACRO)
2594 {
2595 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2596 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2597 }
2598 else
2599 {
2600 fp_s = mo->pinfo & FP_S;
2601 fp_d = mo->pinfo & FP_D;
2602 }
2603
2604 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2605 return FALSE;
2606
2607 if (fp_s && mips_opts.soft_float)
2608 return FALSE;
2609
2610 return TRUE;
2611 }
2612
2613 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
2614 selected ISA and architecture. */
2615
2616 static bfd_boolean
2617 is_opcode_valid_16 (const struct mips_opcode *mo)
2618 {
2619 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
2620 }
2621
2622 /* Return TRUE if the size of the microMIPS opcode MO matches one
2623 explicitly requested. Always TRUE in the standard MIPS mode. */
2624
2625 static bfd_boolean
2626 is_size_valid (const struct mips_opcode *mo)
2627 {
2628 if (!mips_opts.micromips)
2629 return TRUE;
2630
2631 if (!forced_insn_length)
2632 return TRUE;
2633 if (mo->pinfo == INSN_MACRO)
2634 return FALSE;
2635 return forced_insn_length == micromips_insn_length (mo);
2636 }
2637
2638 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
2639 of the preceding instruction. Always TRUE in the standard MIPS mode.
2640
2641 We don't accept macros in 16-bit delay slots to avoid a case where
2642 a macro expansion fails because it relies on a preceding 32-bit real
2643 instruction to have matched and does not handle the operands correctly.
2644 The only macros that may expand to 16-bit instructions are JAL that
2645 cannot be placed in a delay slot anyway, and corner cases of BALIGN
2646 and BGT (that likewise cannot be placed in a delay slot) that decay to
2647 a NOP. In all these cases the macros precede any corresponding real
2648 instruction definitions in the opcode table, so they will match in the
2649 second pass where the size of the delay slot is ignored and therefore
2650 produce correct code. */
2651
2652 static bfd_boolean
2653 is_delay_slot_valid (const struct mips_opcode *mo)
2654 {
2655 if (!mips_opts.micromips)
2656 return TRUE;
2657
2658 if (mo->pinfo == INSN_MACRO)
2659 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
2660 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2661 && micromips_insn_length (mo) != 4)
2662 return FALSE;
2663 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2664 && micromips_insn_length (mo) != 2)
2665 return FALSE;
2666
2667 return TRUE;
2668 }
2669
2670 /* This function is called once, at assembler startup time. It should set up
2671 all the tables, etc. that the MD part of the assembler will need. */
2672
2673 void
2674 md_begin (void)
2675 {
2676 const char *retval = NULL;
2677 int i = 0;
2678 int broken = 0;
2679
2680 if (mips_pic != NO_PIC)
2681 {
2682 if (g_switch_seen && g_switch_value != 0)
2683 as_bad (_("-G may not be used in position-independent code"));
2684 g_switch_value = 0;
2685 }
2686
2687 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
2688 as_warn (_("Could not set architecture and machine"));
2689
2690 op_hash = hash_new ();
2691
2692 for (i = 0; i < NUMOPCODES;)
2693 {
2694 const char *name = mips_opcodes[i].name;
2695
2696 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
2697 if (retval != NULL)
2698 {
2699 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2700 mips_opcodes[i].name, retval);
2701 /* Probably a memory allocation problem? Give up now. */
2702 as_fatal (_("Broken assembler. No assembly attempted."));
2703 }
2704 do
2705 {
2706 if (mips_opcodes[i].pinfo != INSN_MACRO)
2707 {
2708 if (!validate_mips_insn (&mips_opcodes[i]))
2709 broken = 1;
2710 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2711 {
2712 create_insn (&nop_insn, mips_opcodes + i);
2713 if (mips_fix_loongson2f_nop)
2714 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
2715 nop_insn.fixed_p = 1;
2716 }
2717 }
2718 ++i;
2719 }
2720 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
2721 }
2722
2723 mips16_op_hash = hash_new ();
2724
2725 i = 0;
2726 while (i < bfd_mips16_num_opcodes)
2727 {
2728 const char *name = mips16_opcodes[i].name;
2729
2730 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
2731 if (retval != NULL)
2732 as_fatal (_("internal: can't hash `%s': %s"),
2733 mips16_opcodes[i].name, retval);
2734 do
2735 {
2736 if (mips16_opcodes[i].pinfo != INSN_MACRO
2737 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
2738 != mips16_opcodes[i].match))
2739 {
2740 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
2741 mips16_opcodes[i].name, mips16_opcodes[i].args);
2742 broken = 1;
2743 }
2744 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2745 {
2746 create_insn (&mips16_nop_insn, mips16_opcodes + i);
2747 mips16_nop_insn.fixed_p = 1;
2748 }
2749 ++i;
2750 }
2751 while (i < bfd_mips16_num_opcodes
2752 && strcmp (mips16_opcodes[i].name, name) == 0);
2753 }
2754
2755 micromips_op_hash = hash_new ();
2756
2757 i = 0;
2758 while (i < bfd_micromips_num_opcodes)
2759 {
2760 const char *name = micromips_opcodes[i].name;
2761
2762 retval = hash_insert (micromips_op_hash, name,
2763 (void *) &micromips_opcodes[i]);
2764 if (retval != NULL)
2765 as_fatal (_("internal: can't hash `%s': %s"),
2766 micromips_opcodes[i].name, retval);
2767 do
2768 if (micromips_opcodes[i].pinfo != INSN_MACRO)
2769 {
2770 struct mips_cl_insn *micromips_nop_insn;
2771
2772 if (!validate_micromips_insn (&micromips_opcodes[i]))
2773 broken = 1;
2774
2775 if (micromips_insn_length (micromips_opcodes + i) == 2)
2776 micromips_nop_insn = &micromips_nop16_insn;
2777 else if (micromips_insn_length (micromips_opcodes + i) == 4)
2778 micromips_nop_insn = &micromips_nop32_insn;
2779 else
2780 continue;
2781
2782 if (micromips_nop_insn->insn_mo == NULL
2783 && strcmp (name, "nop") == 0)
2784 {
2785 create_insn (micromips_nop_insn, micromips_opcodes + i);
2786 micromips_nop_insn->fixed_p = 1;
2787 }
2788 }
2789 while (++i < bfd_micromips_num_opcodes
2790 && strcmp (micromips_opcodes[i].name, name) == 0);
2791 }
2792
2793 if (broken)
2794 as_fatal (_("Broken assembler. No assembly attempted."));
2795
2796 /* We add all the general register names to the symbol table. This
2797 helps us detect invalid uses of them. */
2798 for (i = 0; reg_names[i].name; i++)
2799 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
2800 reg_names[i].num, /* & RNUM_MASK, */
2801 &zero_address_frag));
2802 if (HAVE_NEWABI)
2803 for (i = 0; reg_names_n32n64[i].name; i++)
2804 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
2805 reg_names_n32n64[i].num, /* & RNUM_MASK, */
2806 &zero_address_frag));
2807 else
2808 for (i = 0; reg_names_o32[i].name; i++)
2809 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2810 reg_names_o32[i].num, /* & RNUM_MASK, */
2811 &zero_address_frag));
2812
2813 mips_no_prev_insn ();
2814
2815 mips_gprmask = 0;
2816 mips_cprmask[0] = 0;
2817 mips_cprmask[1] = 0;
2818 mips_cprmask[2] = 0;
2819 mips_cprmask[3] = 0;
2820
2821 /* set the default alignment for the text section (2**2) */
2822 record_alignment (text_section, 2);
2823
2824 bfd_set_gp_size (stdoutput, g_switch_value);
2825
2826 /* On a native system other than VxWorks, sections must be aligned
2827 to 16 byte boundaries. When configured for an embedded ELF
2828 target, we don't bother. */
2829 if (strncmp (TARGET_OS, "elf", 3) != 0
2830 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2831 {
2832 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2833 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2834 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2835 }
2836
2837 /* Create a .reginfo section for register masks and a .mdebug
2838 section for debugging information. */
2839 {
2840 segT seg;
2841 subsegT subseg;
2842 flagword flags;
2843 segT sec;
2844
2845 seg = now_seg;
2846 subseg = now_subseg;
2847
2848 /* The ABI says this section should be loaded so that the
2849 running program can access it. However, we don't load it
2850 if we are configured for an embedded target */
2851 flags = SEC_READONLY | SEC_DATA;
2852 if (strncmp (TARGET_OS, "elf", 3) != 0)
2853 flags |= SEC_ALLOC | SEC_LOAD;
2854
2855 if (mips_abi != N64_ABI)
2856 {
2857 sec = subseg_new (".reginfo", (subsegT) 0);
2858
2859 bfd_set_section_flags (stdoutput, sec, flags);
2860 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2861
2862 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2863 }
2864 else
2865 {
2866 /* The 64-bit ABI uses a .MIPS.options section rather than
2867 .reginfo section. */
2868 sec = subseg_new (".MIPS.options", (subsegT) 0);
2869 bfd_set_section_flags (stdoutput, sec, flags);
2870 bfd_set_section_alignment (stdoutput, sec, 3);
2871
2872 /* Set up the option header. */
2873 {
2874 Elf_Internal_Options opthdr;
2875 char *f;
2876
2877 opthdr.kind = ODK_REGINFO;
2878 opthdr.size = (sizeof (Elf_External_Options)
2879 + sizeof (Elf64_External_RegInfo));
2880 opthdr.section = 0;
2881 opthdr.info = 0;
2882 f = frag_more (sizeof (Elf_External_Options));
2883 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2884 (Elf_External_Options *) f);
2885
2886 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2887 }
2888 }
2889
2890 if (ECOFF_DEBUGGING)
2891 {
2892 sec = subseg_new (".mdebug", (subsegT) 0);
2893 (void) bfd_set_section_flags (stdoutput, sec,
2894 SEC_HAS_CONTENTS | SEC_READONLY);
2895 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2896 }
2897 else if (mips_flag_pdr)
2898 {
2899 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2900 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2901 SEC_READONLY | SEC_RELOC
2902 | SEC_DEBUGGING);
2903 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2904 }
2905
2906 subseg_set (seg, subseg);
2907 }
2908
2909 if (! ECOFF_DEBUGGING)
2910 md_obj_begin ();
2911
2912 if (mips_fix_vr4120)
2913 init_vr4120_conflicts ();
2914 }
2915
2916 void
2917 md_mips_end (void)
2918 {
2919 mips_emit_delays ();
2920 if (! ECOFF_DEBUGGING)
2921 md_obj_end ();
2922 }
2923
2924 void
2925 md_assemble (char *str)
2926 {
2927 struct mips_cl_insn insn;
2928 bfd_reloc_code_real_type unused_reloc[3]
2929 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2930
2931 imm_expr.X_op = O_absent;
2932 imm2_expr.X_op = O_absent;
2933 offset_expr.X_op = O_absent;
2934 imm_reloc[0] = BFD_RELOC_UNUSED;
2935 imm_reloc[1] = BFD_RELOC_UNUSED;
2936 imm_reloc[2] = BFD_RELOC_UNUSED;
2937 offset_reloc[0] = BFD_RELOC_UNUSED;
2938 offset_reloc[1] = BFD_RELOC_UNUSED;
2939 offset_reloc[2] = BFD_RELOC_UNUSED;
2940
2941 mips_mark_labels ();
2942 mips_assembling_insn = TRUE;
2943
2944 if (mips_opts.mips16)
2945 mips16_ip (str, &insn);
2946 else
2947 {
2948 mips_ip (str, &insn);
2949 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2950 str, insn.insn_opcode));
2951 }
2952
2953 if (insn_error)
2954 as_bad ("%s `%s'", insn_error, str);
2955 else if (insn.insn_mo->pinfo == INSN_MACRO)
2956 {
2957 macro_start ();
2958 if (mips_opts.mips16)
2959 mips16_macro (&insn);
2960 else
2961 macro (&insn);
2962 macro_end ();
2963 }
2964 else
2965 {
2966 if (imm_expr.X_op != O_absent)
2967 append_insn (&insn, &imm_expr, imm_reloc, FALSE);
2968 else if (offset_expr.X_op != O_absent)
2969 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
2970 else
2971 append_insn (&insn, NULL, unused_reloc, FALSE);
2972 }
2973
2974 mips_assembling_insn = FALSE;
2975 }
2976
2977 /* Convenience functions for abstracting away the differences between
2978 MIPS16 and non-MIPS16 relocations. */
2979
2980 static inline bfd_boolean
2981 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2982 {
2983 switch (reloc)
2984 {
2985 case BFD_RELOC_MIPS16_JMP:
2986 case BFD_RELOC_MIPS16_GPREL:
2987 case BFD_RELOC_MIPS16_GOT16:
2988 case BFD_RELOC_MIPS16_CALL16:
2989 case BFD_RELOC_MIPS16_HI16_S:
2990 case BFD_RELOC_MIPS16_HI16:
2991 case BFD_RELOC_MIPS16_LO16:
2992 return TRUE;
2993
2994 default:
2995 return FALSE;
2996 }
2997 }
2998
2999 static inline bfd_boolean
3000 micromips_reloc_p (bfd_reloc_code_real_type reloc)
3001 {
3002 switch (reloc)
3003 {
3004 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3005 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3006 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3007 case BFD_RELOC_MICROMIPS_GPREL16:
3008 case BFD_RELOC_MICROMIPS_JMP:
3009 case BFD_RELOC_MICROMIPS_HI16:
3010 case BFD_RELOC_MICROMIPS_HI16_S:
3011 case BFD_RELOC_MICROMIPS_LO16:
3012 case BFD_RELOC_MICROMIPS_LITERAL:
3013 case BFD_RELOC_MICROMIPS_GOT16:
3014 case BFD_RELOC_MICROMIPS_CALL16:
3015 case BFD_RELOC_MICROMIPS_GOT_HI16:
3016 case BFD_RELOC_MICROMIPS_GOT_LO16:
3017 case BFD_RELOC_MICROMIPS_CALL_HI16:
3018 case BFD_RELOC_MICROMIPS_CALL_LO16:
3019 case BFD_RELOC_MICROMIPS_SUB:
3020 case BFD_RELOC_MICROMIPS_GOT_PAGE:
3021 case BFD_RELOC_MICROMIPS_GOT_OFST:
3022 case BFD_RELOC_MICROMIPS_GOT_DISP:
3023 case BFD_RELOC_MICROMIPS_HIGHEST:
3024 case BFD_RELOC_MICROMIPS_HIGHER:
3025 case BFD_RELOC_MICROMIPS_SCN_DISP:
3026 case BFD_RELOC_MICROMIPS_JALR:
3027 return TRUE;
3028
3029 default:
3030 return FALSE;
3031 }
3032 }
3033
3034 static inline bfd_boolean
3035 jmp_reloc_p (bfd_reloc_code_real_type reloc)
3036 {
3037 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
3038 }
3039
3040 static inline bfd_boolean
3041 got16_reloc_p (bfd_reloc_code_real_type reloc)
3042 {
3043 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
3044 || reloc == BFD_RELOC_MICROMIPS_GOT16);
3045 }
3046
3047 static inline bfd_boolean
3048 hi16_reloc_p (bfd_reloc_code_real_type reloc)
3049 {
3050 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
3051 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
3052 }
3053
3054 static inline bfd_boolean
3055 lo16_reloc_p (bfd_reloc_code_real_type reloc)
3056 {
3057 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
3058 || reloc == BFD_RELOC_MICROMIPS_LO16);
3059 }
3060
3061 static inline bfd_boolean
3062 jalr_reloc_p (bfd_reloc_code_real_type reloc)
3063 {
3064 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
3065 }
3066
3067 /* Return true if RELOC is a PC-relative relocation that does not have
3068 full address range. */
3069
3070 static inline bfd_boolean
3071 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
3072 {
3073 switch (reloc)
3074 {
3075 case BFD_RELOC_16_PCREL_S2:
3076 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3077 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3078 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3079 return TRUE;
3080
3081 case BFD_RELOC_32_PCREL:
3082 return HAVE_64BIT_ADDRESSES;
3083
3084 default:
3085 return FALSE;
3086 }
3087 }
3088
3089 /* Return true if the given relocation might need a matching %lo().
3090 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
3091 need a matching %lo() when applied to local symbols. */
3092
3093 static inline bfd_boolean
3094 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
3095 {
3096 return (HAVE_IN_PLACE_ADDENDS
3097 && (hi16_reloc_p (reloc)
3098 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
3099 all GOT16 relocations evaluate to "G". */
3100 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
3101 }
3102
3103 /* Return the type of %lo() reloc needed by RELOC, given that
3104 reloc_needs_lo_p. */
3105
3106 static inline bfd_reloc_code_real_type
3107 matching_lo_reloc (bfd_reloc_code_real_type reloc)
3108 {
3109 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
3110 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
3111 : BFD_RELOC_LO16));
3112 }
3113
3114 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
3115 relocation. */
3116
3117 static inline bfd_boolean
3118 fixup_has_matching_lo_p (fixS *fixp)
3119 {
3120 return (fixp->fx_next != NULL
3121 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
3122 && fixp->fx_addsy == fixp->fx_next->fx_addsy
3123 && fixp->fx_offset == fixp->fx_next->fx_offset);
3124 }
3125
3126 /* This function returns true if modifying a register requires a
3127 delay. */
3128
3129 static int
3130 reg_needs_delay (unsigned int reg)
3131 {
3132 unsigned long prev_pinfo;
3133
3134 prev_pinfo = history[0].insn_mo->pinfo;
3135 if (! mips_opts.noreorder
3136 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
3137 && ! gpr_interlocks)
3138 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
3139 && ! cop_interlocks)))
3140 {
3141 /* A load from a coprocessor or from memory. All load delays
3142 delay the use of general register rt for one instruction. */
3143 /* Itbl support may require additional care here. */
3144 know (prev_pinfo & INSN_WRITE_GPR_T);
3145 if (reg == EXTRACT_OPERAND (mips_opts.micromips, RT, history[0]))
3146 return 1;
3147 }
3148
3149 return 0;
3150 }
3151
3152 /* Move all labels in LABELS to the current insertion point. TEXT_P
3153 says whether the labels refer to text or data. */
3154
3155 static void
3156 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
3157 {
3158 struct insn_label_list *l;
3159 valueT val;
3160
3161 for (l = labels; l != NULL; l = l->next)
3162 {
3163 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
3164 symbol_set_frag (l->label, frag_now);
3165 val = (valueT) frag_now_fix ();
3166 /* MIPS16/microMIPS text labels are stored as odd. */
3167 if (text_p && HAVE_CODE_COMPRESSION)
3168 ++val;
3169 S_SET_VALUE (l->label, val);
3170 }
3171 }
3172
3173 /* Move all labels in insn_labels to the current insertion point
3174 and treat them as text labels. */
3175
3176 static void
3177 mips_move_text_labels (void)
3178 {
3179 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
3180 }
3181
3182 static bfd_boolean
3183 s_is_linkonce (symbolS *sym, segT from_seg)
3184 {
3185 bfd_boolean linkonce = FALSE;
3186 segT symseg = S_GET_SEGMENT (sym);
3187
3188 if (symseg != from_seg && !S_IS_LOCAL (sym))
3189 {
3190 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
3191 linkonce = TRUE;
3192 /* The GNU toolchain uses an extension for ELF: a section
3193 beginning with the magic string .gnu.linkonce is a
3194 linkonce section. */
3195 if (strncmp (segment_name (symseg), ".gnu.linkonce",
3196 sizeof ".gnu.linkonce" - 1) == 0)
3197 linkonce = TRUE;
3198 }
3199 return linkonce;
3200 }
3201
3202 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
3203 linker to handle them specially, such as generating jalx instructions
3204 when needed. We also make them odd for the duration of the assembly,
3205 in order to generate the right sort of code. We will make them even
3206 in the adjust_symtab routine, while leaving them marked. This is
3207 convenient for the debugger and the disassembler. The linker knows
3208 to make them odd again. */
3209
3210 static void
3211 mips_compressed_mark_label (symbolS *label)
3212 {
3213 gas_assert (HAVE_CODE_COMPRESSION);
3214
3215 if (mips_opts.mips16)
3216 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
3217 else
3218 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
3219 if ((S_GET_VALUE (label) & 1) == 0
3220 /* Don't adjust the address if the label is global or weak, or
3221 in a link-once section, since we'll be emitting symbol reloc
3222 references to it which will be patched up by the linker, and
3223 the final value of the symbol may or may not be MIPS16/microMIPS. */
3224 && !S_IS_WEAK (label)
3225 && !S_IS_EXTERNAL (label)
3226 && !s_is_linkonce (label, now_seg))
3227 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
3228 }
3229
3230 /* Mark preceding MIPS16 or microMIPS instruction labels. */
3231
3232 static void
3233 mips_compressed_mark_labels (void)
3234 {
3235 struct insn_label_list *l;
3236
3237 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
3238 mips_compressed_mark_label (l->label);
3239 }
3240
3241 /* End the current frag. Make it a variant frag and record the
3242 relaxation info. */
3243
3244 static void
3245 relax_close_frag (void)
3246 {
3247 mips_macro_warning.first_frag = frag_now;
3248 frag_var (rs_machine_dependent, 0, 0,
3249 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
3250 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
3251
3252 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
3253 mips_relax.first_fixup = 0;
3254 }
3255
3256 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
3257 See the comment above RELAX_ENCODE for more details. */
3258
3259 static void
3260 relax_start (symbolS *symbol)
3261 {
3262 gas_assert (mips_relax.sequence == 0);
3263 mips_relax.sequence = 1;
3264 mips_relax.symbol = symbol;
3265 }
3266
3267 /* Start generating the second version of a relaxable sequence.
3268 See the comment above RELAX_ENCODE for more details. */
3269
3270 static void
3271 relax_switch (void)
3272 {
3273 gas_assert (mips_relax.sequence == 1);
3274 mips_relax.sequence = 2;
3275 }
3276
3277 /* End the current relaxable sequence. */
3278
3279 static void
3280 relax_end (void)
3281 {
3282 gas_assert (mips_relax.sequence == 2);
3283 relax_close_frag ();
3284 mips_relax.sequence = 0;
3285 }
3286
3287 /* Return true if IP is a delayed branch or jump. */
3288
3289 static inline bfd_boolean
3290 delayed_branch_p (const struct mips_cl_insn *ip)
3291 {
3292 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3293 | INSN_COND_BRANCH_DELAY
3294 | INSN_COND_BRANCH_LIKELY)) != 0;
3295 }
3296
3297 /* Return true if IP is a compact branch or jump. */
3298
3299 static inline bfd_boolean
3300 compact_branch_p (const struct mips_cl_insn *ip)
3301 {
3302 if (mips_opts.mips16)
3303 return (ip->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
3304 | MIPS16_INSN_COND_BRANCH)) != 0;
3305 else
3306 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
3307 | INSN2_COND_BRANCH)) != 0;
3308 }
3309
3310 /* Return true if IP is an unconditional branch or jump. */
3311
3312 static inline bfd_boolean
3313 uncond_branch_p (const struct mips_cl_insn *ip)
3314 {
3315 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
3316 || (mips_opts.mips16
3317 ? (ip->insn_mo->pinfo & MIPS16_INSN_UNCOND_BRANCH) != 0
3318 : (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0));
3319 }
3320
3321 /* Return true if IP is a branch-likely instruction. */
3322
3323 static inline bfd_boolean
3324 branch_likely_p (const struct mips_cl_insn *ip)
3325 {
3326 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
3327 }
3328
3329 /* Return the type of nop that should be used to fill the delay slot
3330 of delayed branch IP. */
3331
3332 static struct mips_cl_insn *
3333 get_delay_slot_nop (const struct mips_cl_insn *ip)
3334 {
3335 if (mips_opts.micromips
3336 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3337 return &micromips_nop32_insn;
3338 return NOP_INSN;
3339 }
3340
3341 /* Return the mask of core registers that IP reads or writes. */
3342
3343 static unsigned int
3344 gpr_mod_mask (const struct mips_cl_insn *ip)
3345 {
3346 unsigned long pinfo2;
3347 unsigned int mask;
3348
3349 mask = 0;
3350 pinfo2 = ip->insn_mo->pinfo2;
3351 if (mips_opts.micromips)
3352 {
3353 if (pinfo2 & INSN2_MOD_GPR_MD)
3354 mask |= 1 << micromips_to_32_reg_d_map[EXTRACT_OPERAND (1, MD, *ip)];
3355 if (pinfo2 & INSN2_MOD_GPR_MF)
3356 mask |= 1 << micromips_to_32_reg_f_map[EXTRACT_OPERAND (1, MF, *ip)];
3357 if (pinfo2 & INSN2_MOD_SP)
3358 mask |= 1 << SP;
3359 }
3360 return mask;
3361 }
3362
3363 /* Return the mask of core registers that IP reads. */
3364
3365 static unsigned int
3366 gpr_read_mask (const struct mips_cl_insn *ip)
3367 {
3368 unsigned long pinfo, pinfo2;
3369 unsigned int mask;
3370
3371 mask = gpr_mod_mask (ip);
3372 pinfo = ip->insn_mo->pinfo;
3373 pinfo2 = ip->insn_mo->pinfo2;
3374 if (mips_opts.mips16)
3375 {
3376 if (pinfo & MIPS16_INSN_READ_X)
3377 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3378 if (pinfo & MIPS16_INSN_READ_Y)
3379 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3380 if (pinfo & MIPS16_INSN_READ_T)
3381 mask |= 1 << TREG;
3382 if (pinfo & MIPS16_INSN_READ_SP)
3383 mask |= 1 << SP;
3384 if (pinfo & MIPS16_INSN_READ_31)
3385 mask |= 1 << RA;
3386 if (pinfo & MIPS16_INSN_READ_Z)
3387 mask |= 1 << (mips16_to_32_reg_map
3388 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
3389 if (pinfo & MIPS16_INSN_READ_GPR_X)
3390 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3391 }
3392 else
3393 {
3394 if (pinfo2 & INSN2_READ_GPR_D)
3395 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3396 if (pinfo & INSN_READ_GPR_T)
3397 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3398 if (pinfo & INSN_READ_GPR_S)
3399 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3400 if (pinfo2 & INSN2_READ_GP)
3401 mask |= 1 << GP;
3402 if (pinfo2 & INSN2_READ_GPR_31)
3403 mask |= 1 << RA;
3404 if (pinfo2 & INSN2_READ_GPR_Z)
3405 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3406 }
3407 if (mips_opts.micromips)
3408 {
3409 if (pinfo2 & INSN2_READ_GPR_MC)
3410 mask |= 1 << micromips_to_32_reg_c_map[EXTRACT_OPERAND (1, MC, *ip)];
3411 if (pinfo2 & INSN2_READ_GPR_ME)
3412 mask |= 1 << micromips_to_32_reg_e_map[EXTRACT_OPERAND (1, ME, *ip)];
3413 if (pinfo2 & INSN2_READ_GPR_MG)
3414 mask |= 1 << micromips_to_32_reg_g_map[EXTRACT_OPERAND (1, MG, *ip)];
3415 if (pinfo2 & INSN2_READ_GPR_MJ)
3416 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3417 if (pinfo2 & INSN2_READ_GPR_MMN)
3418 {
3419 mask |= 1 << micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
3420 mask |= 1 << micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
3421 }
3422 if (pinfo2 & INSN2_READ_GPR_MP)
3423 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3424 if (pinfo2 & INSN2_READ_GPR_MQ)
3425 mask |= 1 << micromips_to_32_reg_q_map[EXTRACT_OPERAND (1, MQ, *ip)];
3426 }
3427 /* Don't include register 0. */
3428 return mask & ~1;
3429 }
3430
3431 /* Return the mask of core registers that IP writes. */
3432
3433 static unsigned int
3434 gpr_write_mask (const struct mips_cl_insn *ip)
3435 {
3436 unsigned long pinfo, pinfo2;
3437 unsigned int mask;
3438
3439 mask = gpr_mod_mask (ip);
3440 pinfo = ip->insn_mo->pinfo;
3441 pinfo2 = ip->insn_mo->pinfo2;
3442 if (mips_opts.mips16)
3443 {
3444 if (pinfo & MIPS16_INSN_WRITE_X)
3445 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3446 if (pinfo & MIPS16_INSN_WRITE_Y)
3447 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3448 if (pinfo & MIPS16_INSN_WRITE_Z)
3449 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
3450 if (pinfo & MIPS16_INSN_WRITE_T)
3451 mask |= 1 << TREG;
3452 if (pinfo & MIPS16_INSN_WRITE_SP)
3453 mask |= 1 << SP;
3454 if (pinfo & MIPS16_INSN_WRITE_31)
3455 mask |= 1 << RA;
3456 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3457 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3458 }
3459 else
3460 {
3461 if (pinfo & INSN_WRITE_GPR_D)
3462 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3463 if (pinfo & INSN_WRITE_GPR_T)
3464 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3465 if (pinfo & INSN_WRITE_GPR_S)
3466 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3467 if (pinfo & INSN_WRITE_GPR_31)
3468 mask |= 1 << RA;
3469 if (pinfo2 & INSN2_WRITE_GPR_Z)
3470 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3471 }
3472 if (mips_opts.micromips)
3473 {
3474 if (pinfo2 & INSN2_WRITE_GPR_MB)
3475 mask |= 1 << micromips_to_32_reg_b_map[EXTRACT_OPERAND (1, MB, *ip)];
3476 if (pinfo2 & INSN2_WRITE_GPR_MHI)
3477 {
3478 mask |= 1 << micromips_to_32_reg_h_map[EXTRACT_OPERAND (1, MH, *ip)];
3479 mask |= 1 << micromips_to_32_reg_i_map[EXTRACT_OPERAND (1, MI, *ip)];
3480 }
3481 if (pinfo2 & INSN2_WRITE_GPR_MJ)
3482 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3483 if (pinfo2 & INSN2_WRITE_GPR_MP)
3484 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3485 }
3486 /* Don't include register 0. */
3487 return mask & ~1;
3488 }
3489
3490 /* Return the mask of floating-point registers that IP reads. */
3491
3492 static unsigned int
3493 fpr_read_mask (const struct mips_cl_insn *ip)
3494 {
3495 unsigned long pinfo, pinfo2;
3496 unsigned int mask;
3497
3498 mask = 0;
3499 pinfo = ip->insn_mo->pinfo;
3500 pinfo2 = ip->insn_mo->pinfo2;
3501 if (!mips_opts.mips16)
3502 {
3503 if (pinfo2 & INSN2_READ_FPR_D)
3504 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3505 if (pinfo & INSN_READ_FPR_S)
3506 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3507 if (pinfo & INSN_READ_FPR_T)
3508 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3509 if (pinfo & INSN_READ_FPR_R)
3510 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FR, *ip);
3511 if (pinfo2 & INSN2_READ_FPR_Z)
3512 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3513 }
3514 /* Conservatively treat all operands to an FP_D instruction are doubles.
3515 (This is overly pessimistic for things like cvt.d.s.) */
3516 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3517 mask |= mask << 1;
3518 return mask;
3519 }
3520
3521 /* Return the mask of floating-point registers that IP writes. */
3522
3523 static unsigned int
3524 fpr_write_mask (const struct mips_cl_insn *ip)
3525 {
3526 unsigned long pinfo, pinfo2;
3527 unsigned int mask;
3528
3529 mask = 0;
3530 pinfo = ip->insn_mo->pinfo;
3531 pinfo2 = ip->insn_mo->pinfo2;
3532 if (!mips_opts.mips16)
3533 {
3534 if (pinfo & INSN_WRITE_FPR_D)
3535 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3536 if (pinfo & INSN_WRITE_FPR_S)
3537 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3538 if (pinfo & INSN_WRITE_FPR_T)
3539 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3540 if (pinfo2 & INSN2_WRITE_FPR_Z)
3541 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3542 }
3543 /* Conservatively treat all operands to an FP_D instruction are doubles.
3544 (This is overly pessimistic for things like cvt.s.d.) */
3545 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3546 mask |= mask << 1;
3547 return mask;
3548 }
3549
3550 /* Classify an instruction according to the FIX_VR4120_* enumeration.
3551 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
3552 by VR4120 errata. */
3553
3554 static unsigned int
3555 classify_vr4120_insn (const char *name)
3556 {
3557 if (strncmp (name, "macc", 4) == 0)
3558 return FIX_VR4120_MACC;
3559 if (strncmp (name, "dmacc", 5) == 0)
3560 return FIX_VR4120_DMACC;
3561 if (strncmp (name, "mult", 4) == 0)
3562 return FIX_VR4120_MULT;
3563 if (strncmp (name, "dmult", 5) == 0)
3564 return FIX_VR4120_DMULT;
3565 if (strstr (name, "div"))
3566 return FIX_VR4120_DIV;
3567 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
3568 return FIX_VR4120_MTHILO;
3569 return NUM_FIX_VR4120_CLASSES;
3570 }
3571
3572 #define INSN_ERET 0x42000018
3573 #define INSN_DERET 0x4200001f
3574
3575 /* Return the number of instructions that must separate INSN1 and INSN2,
3576 where INSN1 is the earlier instruction. Return the worst-case value
3577 for any INSN2 if INSN2 is null. */
3578
3579 static unsigned int
3580 insns_between (const struct mips_cl_insn *insn1,
3581 const struct mips_cl_insn *insn2)
3582 {
3583 unsigned long pinfo1, pinfo2;
3584 unsigned int mask;
3585
3586 /* This function needs to know which pinfo flags are set for INSN2
3587 and which registers INSN2 uses. The former is stored in PINFO2 and
3588 the latter is tested via INSN2_USES_GPR. If INSN2 is null, PINFO2
3589 will have every flag set and INSN2_USES_GPR will always return true. */
3590 pinfo1 = insn1->insn_mo->pinfo;
3591 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
3592
3593 #define INSN2_USES_GPR(REG) \
3594 (insn2 == NULL || (gpr_read_mask (insn2) & (1U << (REG))) != 0)
3595
3596 /* For most targets, write-after-read dependencies on the HI and LO
3597 registers must be separated by at least two instructions. */
3598 if (!hilo_interlocks)
3599 {
3600 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
3601 return 2;
3602 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
3603 return 2;
3604 }
3605
3606 /* If we're working around r7000 errata, there must be two instructions
3607 between an mfhi or mflo and any instruction that uses the result. */
3608 if (mips_7000_hilo_fix
3609 && !mips_opts.micromips
3610 && MF_HILO_INSN (pinfo1)
3611 && INSN2_USES_GPR (EXTRACT_OPERAND (0, RD, *insn1)))
3612 return 2;
3613
3614 /* If we're working around 24K errata, one instruction is required
3615 if an ERET or DERET is followed by a branch instruction. */
3616 if (mips_fix_24k && !mips_opts.micromips)
3617 {
3618 if (insn1->insn_opcode == INSN_ERET
3619 || insn1->insn_opcode == INSN_DERET)
3620 {
3621 if (insn2 == NULL
3622 || insn2->insn_opcode == INSN_ERET
3623 || insn2->insn_opcode == INSN_DERET
3624 || delayed_branch_p (insn2))
3625 return 1;
3626 }
3627 }
3628
3629 /* If working around VR4120 errata, check for combinations that need
3630 a single intervening instruction. */
3631 if (mips_fix_vr4120 && !mips_opts.micromips)
3632 {
3633 unsigned int class1, class2;
3634
3635 class1 = classify_vr4120_insn (insn1->insn_mo->name);
3636 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
3637 {
3638 if (insn2 == NULL)
3639 return 1;
3640 class2 = classify_vr4120_insn (insn2->insn_mo->name);
3641 if (vr4120_conflicts[class1] & (1 << class2))
3642 return 1;
3643 }
3644 }
3645
3646 if (!HAVE_CODE_COMPRESSION)
3647 {
3648 /* Check for GPR or coprocessor load delays. All such delays
3649 are on the RT register. */
3650 /* Itbl support may require additional care here. */
3651 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
3652 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
3653 {
3654 know (pinfo1 & INSN_WRITE_GPR_T);
3655 if (INSN2_USES_GPR (EXTRACT_OPERAND (0, RT, *insn1)))
3656 return 1;
3657 }
3658
3659 /* Check for generic coprocessor hazards.
3660
3661 This case is not handled very well. There is no special
3662 knowledge of CP0 handling, and the coprocessors other than
3663 the floating point unit are not distinguished at all. */
3664 /* Itbl support may require additional care here. FIXME!
3665 Need to modify this to include knowledge about
3666 user specified delays! */
3667 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
3668 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
3669 {
3670 /* Handle cases where INSN1 writes to a known general coprocessor
3671 register. There must be a one instruction delay before INSN2
3672 if INSN2 reads that register, otherwise no delay is needed. */
3673 mask = fpr_write_mask (insn1);
3674 if (mask != 0)
3675 {
3676 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
3677 return 1;
3678 }
3679 else
3680 {
3681 /* Read-after-write dependencies on the control registers
3682 require a two-instruction gap. */
3683 if ((pinfo1 & INSN_WRITE_COND_CODE)
3684 && (pinfo2 & INSN_READ_COND_CODE))
3685 return 2;
3686
3687 /* We don't know exactly what INSN1 does. If INSN2 is
3688 also a coprocessor instruction, assume there must be
3689 a one instruction gap. */
3690 if (pinfo2 & INSN_COP)
3691 return 1;
3692 }
3693 }
3694
3695 /* Check for read-after-write dependencies on the coprocessor
3696 control registers in cases where INSN1 does not need a general
3697 coprocessor delay. This means that INSN1 is a floating point
3698 comparison instruction. */
3699 /* Itbl support may require additional care here. */
3700 else if (!cop_interlocks
3701 && (pinfo1 & INSN_WRITE_COND_CODE)
3702 && (pinfo2 & INSN_READ_COND_CODE))
3703 return 1;
3704 }
3705
3706 #undef INSN2_USES_GPR
3707
3708 return 0;
3709 }
3710
3711 /* Return the number of nops that would be needed to work around the
3712 VR4130 mflo/mfhi errata if instruction INSN immediately followed
3713 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
3714 that are contained within the first IGNORE instructions of HIST. */
3715
3716 static int
3717 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
3718 const struct mips_cl_insn *insn)
3719 {
3720 int i, j;
3721 unsigned int mask;
3722
3723 /* Check if the instruction writes to HI or LO. MTHI and MTLO
3724 are not affected by the errata. */
3725 if (insn != 0
3726 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
3727 || strcmp (insn->insn_mo->name, "mtlo") == 0
3728 || strcmp (insn->insn_mo->name, "mthi") == 0))
3729 return 0;
3730
3731 /* Search for the first MFLO or MFHI. */
3732 for (i = 0; i < MAX_VR4130_NOPS; i++)
3733 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
3734 {
3735 /* Extract the destination register. */
3736 mask = gpr_write_mask (&hist[i]);
3737
3738 /* No nops are needed if INSN reads that register. */
3739 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
3740 return 0;
3741
3742 /* ...or if any of the intervening instructions do. */
3743 for (j = 0; j < i; j++)
3744 if (gpr_read_mask (&hist[j]) & mask)
3745 return 0;
3746
3747 if (i >= ignore)
3748 return MAX_VR4130_NOPS - i;
3749 }
3750 return 0;
3751 }
3752
3753 #define BASE_REG_EQ(INSN1, INSN2) \
3754 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
3755 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
3756
3757 /* Return the minimum alignment for this store instruction. */
3758
3759 static int
3760 fix_24k_align_to (const struct mips_opcode *mo)
3761 {
3762 if (strcmp (mo->name, "sh") == 0)
3763 return 2;
3764
3765 if (strcmp (mo->name, "swc1") == 0
3766 || strcmp (mo->name, "swc2") == 0
3767 || strcmp (mo->name, "sw") == 0
3768 || strcmp (mo->name, "sc") == 0
3769 || strcmp (mo->name, "s.s") == 0)
3770 return 4;
3771
3772 if (strcmp (mo->name, "sdc1") == 0
3773 || strcmp (mo->name, "sdc2") == 0
3774 || strcmp (mo->name, "s.d") == 0)
3775 return 8;
3776
3777 /* sb, swl, swr */
3778 return 1;
3779 }
3780
3781 struct fix_24k_store_info
3782 {
3783 /* Immediate offset, if any, for this store instruction. */
3784 short off;
3785 /* Alignment required by this store instruction. */
3786 int align_to;
3787 /* True for register offsets. */
3788 int register_offset;
3789 };
3790
3791 /* Comparison function used by qsort. */
3792
3793 static int
3794 fix_24k_sort (const void *a, const void *b)
3795 {
3796 const struct fix_24k_store_info *pos1 = a;
3797 const struct fix_24k_store_info *pos2 = b;
3798
3799 return (pos1->off - pos2->off);
3800 }
3801
3802 /* INSN is a store instruction. Try to record the store information
3803 in STINFO. Return false if the information isn't known. */
3804
3805 static bfd_boolean
3806 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
3807 const struct mips_cl_insn *insn)
3808 {
3809 /* The instruction must have a known offset. */
3810 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
3811 return FALSE;
3812
3813 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
3814 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
3815 return TRUE;
3816 }
3817
3818 /* Return the number of nops that would be needed to work around the 24k
3819 "lost data on stores during refill" errata if instruction INSN
3820 immediately followed the 2 instructions described by HIST.
3821 Ignore hazards that are contained within the first IGNORE
3822 instructions of HIST.
3823
3824 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
3825 for the data cache refills and store data. The following describes
3826 the scenario where the store data could be lost.
3827
3828 * A data cache miss, due to either a load or a store, causing fill
3829 data to be supplied by the memory subsystem
3830 * The first three doublewords of fill data are returned and written
3831 into the cache
3832 * A sequence of four stores occurs in consecutive cycles around the
3833 final doubleword of the fill:
3834 * Store A
3835 * Store B
3836 * Store C
3837 * Zero, One or more instructions
3838 * Store D
3839
3840 The four stores A-D must be to different doublewords of the line that
3841 is being filled. The fourth instruction in the sequence above permits
3842 the fill of the final doubleword to be transferred from the FSB into
3843 the cache. In the sequence above, the stores may be either integer
3844 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
3845 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
3846 different doublewords on the line. If the floating point unit is
3847 running in 1:2 mode, it is not possible to create the sequence above
3848 using only floating point store instructions.
3849
3850 In this case, the cache line being filled is incorrectly marked
3851 invalid, thereby losing the data from any store to the line that
3852 occurs between the original miss and the completion of the five
3853 cycle sequence shown above.
3854
3855 The workarounds are:
3856
3857 * Run the data cache in write-through mode.
3858 * Insert a non-store instruction between
3859 Store A and Store B or Store B and Store C. */
3860
3861 static int
3862 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
3863 const struct mips_cl_insn *insn)
3864 {
3865 struct fix_24k_store_info pos[3];
3866 int align, i, base_offset;
3867
3868 if (ignore >= 2)
3869 return 0;
3870
3871 /* If the previous instruction wasn't a store, there's nothing to
3872 worry about. */
3873 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3874 return 0;
3875
3876 /* If the instructions after the previous one are unknown, we have
3877 to assume the worst. */
3878 if (!insn)
3879 return 1;
3880
3881 /* Check whether we are dealing with three consecutive stores. */
3882 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
3883 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3884 return 0;
3885
3886 /* If we don't know the relationship between the store addresses,
3887 assume the worst. */
3888 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
3889 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
3890 return 1;
3891
3892 if (!fix_24k_record_store_info (&pos[0], insn)
3893 || !fix_24k_record_store_info (&pos[1], &hist[0])
3894 || !fix_24k_record_store_info (&pos[2], &hist[1]))
3895 return 1;
3896
3897 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
3898
3899 /* Pick a value of ALIGN and X such that all offsets are adjusted by
3900 X bytes and such that the base register + X is known to be aligned
3901 to align bytes. */
3902
3903 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
3904 align = 8;
3905 else
3906 {
3907 align = pos[0].align_to;
3908 base_offset = pos[0].off;
3909 for (i = 1; i < 3; i++)
3910 if (align < pos[i].align_to)
3911 {
3912 align = pos[i].align_to;
3913 base_offset = pos[i].off;
3914 }
3915 for (i = 0; i < 3; i++)
3916 pos[i].off -= base_offset;
3917 }
3918
3919 pos[0].off &= ~align + 1;
3920 pos[1].off &= ~align + 1;
3921 pos[2].off &= ~align + 1;
3922
3923 /* If any two stores write to the same chunk, they also write to the
3924 same doubleword. The offsets are still sorted at this point. */
3925 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
3926 return 0;
3927
3928 /* A range of at least 9 bytes is needed for the stores to be in
3929 non-overlapping doublewords. */
3930 if (pos[2].off - pos[0].off <= 8)
3931 return 0;
3932
3933 if (pos[2].off - pos[1].off >= 24
3934 || pos[1].off - pos[0].off >= 24
3935 || pos[2].off - pos[0].off >= 32)
3936 return 0;
3937
3938 return 1;
3939 }
3940
3941 /* Return the number of nops that would be needed if instruction INSN
3942 immediately followed the MAX_NOPS instructions given by HIST,
3943 where HIST[0] is the most recent instruction. Ignore hazards
3944 between INSN and the first IGNORE instructions in HIST.
3945
3946 If INSN is null, return the worse-case number of nops for any
3947 instruction. */
3948
3949 static int
3950 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
3951 const struct mips_cl_insn *insn)
3952 {
3953 int i, nops, tmp_nops;
3954
3955 nops = 0;
3956 for (i = ignore; i < MAX_DELAY_NOPS; i++)
3957 {
3958 tmp_nops = insns_between (hist + i, insn) - i;
3959 if (tmp_nops > nops)
3960 nops = tmp_nops;
3961 }
3962
3963 if (mips_fix_vr4130 && !mips_opts.micromips)
3964 {
3965 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
3966 if (tmp_nops > nops)
3967 nops = tmp_nops;
3968 }
3969
3970 if (mips_fix_24k && !mips_opts.micromips)
3971 {
3972 tmp_nops = nops_for_24k (ignore, hist, insn);
3973 if (tmp_nops > nops)
3974 nops = tmp_nops;
3975 }
3976
3977 return nops;
3978 }
3979
3980 /* The variable arguments provide NUM_INSNS extra instructions that
3981 might be added to HIST. Return the largest number of nops that
3982 would be needed after the extended sequence, ignoring hazards
3983 in the first IGNORE instructions. */
3984
3985 static int
3986 nops_for_sequence (int num_insns, int ignore,
3987 const struct mips_cl_insn *hist, ...)
3988 {
3989 va_list args;
3990 struct mips_cl_insn buffer[MAX_NOPS];
3991 struct mips_cl_insn *cursor;
3992 int nops;
3993
3994 va_start (args, hist);
3995 cursor = buffer + num_insns;
3996 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
3997 while (cursor > buffer)
3998 *--cursor = *va_arg (args, const struct mips_cl_insn *);
3999
4000 nops = nops_for_insn (ignore, buffer, NULL);
4001 va_end (args);
4002 return nops;
4003 }
4004
4005 /* Like nops_for_insn, but if INSN is a branch, take into account the
4006 worst-case delay for the branch target. */
4007
4008 static int
4009 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
4010 const struct mips_cl_insn *insn)
4011 {
4012 int nops, tmp_nops;
4013
4014 nops = nops_for_insn (ignore, hist, insn);
4015 if (delayed_branch_p (insn))
4016 {
4017 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
4018 hist, insn, get_delay_slot_nop (insn));
4019 if (tmp_nops > nops)
4020 nops = tmp_nops;
4021 }
4022 else if (compact_branch_p (insn))
4023 {
4024 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
4025 if (tmp_nops > nops)
4026 nops = tmp_nops;
4027 }
4028 return nops;
4029 }
4030
4031 /* Fix NOP issue: Replace nops by "or at,at,zero". */
4032
4033 static void
4034 fix_loongson2f_nop (struct mips_cl_insn * ip)
4035 {
4036 gas_assert (!HAVE_CODE_COMPRESSION);
4037 if (strcmp (ip->insn_mo->name, "nop") == 0)
4038 ip->insn_opcode = LOONGSON2F_NOP_INSN;
4039 }
4040
4041 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
4042 jr target pc &= 'hffff_ffff_cfff_ffff. */
4043
4044 static void
4045 fix_loongson2f_jump (struct mips_cl_insn * ip)
4046 {
4047 gas_assert (!HAVE_CODE_COMPRESSION);
4048 if (strcmp (ip->insn_mo->name, "j") == 0
4049 || strcmp (ip->insn_mo->name, "jr") == 0
4050 || strcmp (ip->insn_mo->name, "jalr") == 0)
4051 {
4052 int sreg;
4053 expressionS ep;
4054
4055 if (! mips_opts.at)
4056 return;
4057
4058 sreg = EXTRACT_OPERAND (0, RS, *ip);
4059 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
4060 return;
4061
4062 ep.X_op = O_constant;
4063 ep.X_add_number = 0xcfff0000;
4064 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
4065 ep.X_add_number = 0xffff;
4066 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
4067 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
4068 }
4069 }
4070
4071 static void
4072 fix_loongson2f (struct mips_cl_insn * ip)
4073 {
4074 if (mips_fix_loongson2f_nop)
4075 fix_loongson2f_nop (ip);
4076
4077 if (mips_fix_loongson2f_jump)
4078 fix_loongson2f_jump (ip);
4079 }
4080
4081 /* IP is a branch that has a delay slot, and we need to fill it
4082 automatically. Return true if we can do that by swapping IP
4083 with the previous instruction.
4084 ADDRESS_EXPR is an operand of the instruction to be used with
4085 RELOC_TYPE. */
4086
4087 static bfd_boolean
4088 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
4089 bfd_reloc_code_real_type *reloc_type)
4090 {
4091 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
4092 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
4093
4094 /* -O2 and above is required for this optimization. */
4095 if (mips_optimize < 2)
4096 return FALSE;
4097
4098 /* If we have seen .set volatile or .set nomove, don't optimize. */
4099 if (mips_opts.nomove)
4100 return FALSE;
4101
4102 /* We can't swap if the previous instruction's position is fixed. */
4103 if (history[0].fixed_p)
4104 return FALSE;
4105
4106 /* If the previous previous insn was in a .set noreorder, we can't
4107 swap. Actually, the MIPS assembler will swap in this situation.
4108 However, gcc configured -with-gnu-as will generate code like
4109
4110 .set noreorder
4111 lw $4,XXX
4112 .set reorder
4113 INSN
4114 bne $4,$0,foo
4115
4116 in which we can not swap the bne and INSN. If gcc is not configured
4117 -with-gnu-as, it does not output the .set pseudo-ops. */
4118 if (history[1].noreorder_p)
4119 return FALSE;
4120
4121 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
4122 This means that the previous instruction was a 4-byte one anyhow. */
4123 if (mips_opts.mips16 && history[0].fixp[0])
4124 return FALSE;
4125
4126 /* If the branch is itself the target of a branch, we can not swap.
4127 We cheat on this; all we check for is whether there is a label on
4128 this instruction. If there are any branches to anything other than
4129 a label, users must use .set noreorder. */
4130 if (seg_info (now_seg)->label_list)
4131 return FALSE;
4132
4133 /* If the previous instruction is in a variant frag other than this
4134 branch's one, we cannot do the swap. This does not apply to
4135 MIPS16 code, which uses variant frags for different purposes. */
4136 if (!mips_opts.mips16
4137 && history[0].frag
4138 && history[0].frag->fr_type == rs_machine_dependent)
4139 return FALSE;
4140
4141 /* We do not swap with instructions that cannot architecturally
4142 be placed in a branch delay slot, such as SYNC or ERET. We
4143 also refrain from swapping with a trap instruction, since it
4144 complicates trap handlers to have the trap instruction be in
4145 a delay slot. */
4146 prev_pinfo = history[0].insn_mo->pinfo;
4147 if (prev_pinfo & INSN_NO_DELAY_SLOT)
4148 return FALSE;
4149
4150 /* Check for conflicts between the branch and the instructions
4151 before the candidate delay slot. */
4152 if (nops_for_insn (0, history + 1, ip) > 0)
4153 return FALSE;
4154
4155 /* Check for conflicts between the swapped sequence and the
4156 target of the branch. */
4157 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
4158 return FALSE;
4159
4160 /* If the branch reads a register that the previous
4161 instruction sets, we can not swap. */
4162 gpr_read = gpr_read_mask (ip);
4163 prev_gpr_write = gpr_write_mask (&history[0]);
4164 if (gpr_read & prev_gpr_write)
4165 return FALSE;
4166
4167 /* If the branch writes a register that the previous
4168 instruction sets, we can not swap. */
4169 gpr_write = gpr_write_mask (ip);
4170 if (gpr_write & prev_gpr_write)
4171 return FALSE;
4172
4173 /* If the branch writes a register that the previous
4174 instruction reads, we can not swap. */
4175 prev_gpr_read = gpr_read_mask (&history[0]);
4176 if (gpr_write & prev_gpr_read)
4177 return FALSE;
4178
4179 /* If one instruction sets a condition code and the
4180 other one uses a condition code, we can not swap. */
4181 pinfo = ip->insn_mo->pinfo;
4182 if ((pinfo & INSN_READ_COND_CODE)
4183 && (prev_pinfo & INSN_WRITE_COND_CODE))
4184 return FALSE;
4185 if ((pinfo & INSN_WRITE_COND_CODE)
4186 && (prev_pinfo & INSN_READ_COND_CODE))
4187 return FALSE;
4188
4189 /* If the previous instruction uses the PC, we can not swap. */
4190 prev_pinfo2 = history[0].insn_mo->pinfo2;
4191 if (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC))
4192 return FALSE;
4193 if (mips_opts.micromips && (prev_pinfo2 & INSN2_READ_PC))
4194 return FALSE;
4195
4196 /* If the previous instruction has an incorrect size for a fixed
4197 branch delay slot in microMIPS mode, we cannot swap. */
4198 pinfo2 = ip->insn_mo->pinfo2;
4199 if (mips_opts.micromips
4200 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
4201 && insn_length (history) != 2)
4202 return FALSE;
4203 if (mips_opts.micromips
4204 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
4205 && insn_length (history) != 4)
4206 return FALSE;
4207
4208 /* On R5900 short loops need to be fixed by inserting a nop in
4209 the branch delay slots.
4210 A short loop can be terminated too early. */
4211 if (mips_opts.arch == CPU_R5900
4212 /* Check if instruction has a parameter, ignore "j $31". */
4213 && (address_expr != NULL)
4214 /* Parameter must be 16 bit. */
4215 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
4216 /* Branch to same segment. */
4217 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
4218 /* Branch to same code fragment. */
4219 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
4220 /* Can only calculate branch offset if value is known. */
4221 && symbol_constant_p(address_expr->X_add_symbol)
4222 /* Check if branch is really conditional. */
4223 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
4224 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
4225 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
4226 {
4227 int distance;
4228 /* Check if loop is shorter than 6 instructions including
4229 branch and delay slot. */
4230 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
4231 if (distance <= 20)
4232 {
4233 int i;
4234 int rv;
4235
4236 rv = FALSE;
4237 /* When the loop includes branches or jumps,
4238 it is not a short loop. */
4239 for (i = 0; i < (distance / 4); i++)
4240 {
4241 if ((history[i].cleared_p)
4242 || delayed_branch_p(&history[i]))
4243 {
4244 rv = TRUE;
4245 break;
4246 }
4247 }
4248 if (rv == FALSE)
4249 {
4250 /* Insert nop after branch to fix short loop. */
4251 return FALSE;
4252 }
4253 }
4254 }
4255
4256 return TRUE;
4257 }
4258
4259 /* Decide how we should add IP to the instruction stream.
4260 ADDRESS_EXPR is an operand of the instruction to be used with
4261 RELOC_TYPE. */
4262
4263 static enum append_method
4264 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
4265 bfd_reloc_code_real_type *reloc_type)
4266 {
4267 unsigned long pinfo;
4268
4269 /* The relaxed version of a macro sequence must be inherently
4270 hazard-free. */
4271 if (mips_relax.sequence == 2)
4272 return APPEND_ADD;
4273
4274 /* We must not dabble with instructions in a ".set norerorder" block. */
4275 if (mips_opts.noreorder)
4276 return APPEND_ADD;
4277
4278 /* Otherwise, it's our responsibility to fill branch delay slots. */
4279 if (delayed_branch_p (ip))
4280 {
4281 if (!branch_likely_p (ip)
4282 && can_swap_branch_p (ip, address_expr, reloc_type))
4283 return APPEND_SWAP;
4284
4285 pinfo = ip->insn_mo->pinfo;
4286 if (mips_opts.mips16
4287 && ISA_SUPPORTS_MIPS16E
4288 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)))
4289 return APPEND_ADD_COMPACT;
4290
4291 return APPEND_ADD_WITH_NOP;
4292 }
4293
4294 return APPEND_ADD;
4295 }
4296
4297 /* IP is a MIPS16 instruction whose opcode we have just changed.
4298 Point IP->insn_mo to the new opcode's definition. */
4299
4300 static void
4301 find_altered_mips16_opcode (struct mips_cl_insn *ip)
4302 {
4303 const struct mips_opcode *mo, *end;
4304
4305 end = &mips16_opcodes[bfd_mips16_num_opcodes];
4306 for (mo = ip->insn_mo; mo < end; mo++)
4307 if ((ip->insn_opcode & mo->mask) == mo->match)
4308 {
4309 ip->insn_mo = mo;
4310 return;
4311 }
4312 abort ();
4313 }
4314
4315 /* For microMIPS macros, we need to generate a local number label
4316 as the target of branches. */
4317 #define MICROMIPS_LABEL_CHAR '\037'
4318 static unsigned long micromips_target_label;
4319 static char micromips_target_name[32];
4320
4321 static char *
4322 micromips_label_name (void)
4323 {
4324 char *p = micromips_target_name;
4325 char symbol_name_temporary[24];
4326 unsigned long l;
4327 int i;
4328
4329 if (*p)
4330 return p;
4331
4332 i = 0;
4333 l = micromips_target_label;
4334 #ifdef LOCAL_LABEL_PREFIX
4335 *p++ = LOCAL_LABEL_PREFIX;
4336 #endif
4337 *p++ = 'L';
4338 *p++ = MICROMIPS_LABEL_CHAR;
4339 do
4340 {
4341 symbol_name_temporary[i++] = l % 10 + '0';
4342 l /= 10;
4343 }
4344 while (l != 0);
4345 while (i > 0)
4346 *p++ = symbol_name_temporary[--i];
4347 *p = '\0';
4348
4349 return micromips_target_name;
4350 }
4351
4352 static void
4353 micromips_label_expr (expressionS *label_expr)
4354 {
4355 label_expr->X_op = O_symbol;
4356 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
4357 label_expr->X_add_number = 0;
4358 }
4359
4360 static void
4361 micromips_label_inc (void)
4362 {
4363 micromips_target_label++;
4364 *micromips_target_name = '\0';
4365 }
4366
4367 static void
4368 micromips_add_label (void)
4369 {
4370 symbolS *s;
4371
4372 s = colon (micromips_label_name ());
4373 micromips_label_inc ();
4374 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
4375 }
4376
4377 /* If assembling microMIPS code, then return the microMIPS reloc
4378 corresponding to the requested one if any. Otherwise return
4379 the reloc unchanged. */
4380
4381 static bfd_reloc_code_real_type
4382 micromips_map_reloc (bfd_reloc_code_real_type reloc)
4383 {
4384 static const bfd_reloc_code_real_type relocs[][2] =
4385 {
4386 /* Keep sorted incrementally by the left-hand key. */
4387 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
4388 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
4389 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
4390 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
4391 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
4392 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
4393 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
4394 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
4395 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
4396 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
4397 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
4398 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
4399 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
4400 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
4401 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
4402 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
4403 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
4404 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
4405 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
4406 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
4407 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
4408 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
4409 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
4410 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
4411 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
4412 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
4413 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
4414 };
4415 bfd_reloc_code_real_type r;
4416 size_t i;
4417
4418 if (!mips_opts.micromips)
4419 return reloc;
4420 for (i = 0; i < ARRAY_SIZE (relocs); i++)
4421 {
4422 r = relocs[i][0];
4423 if (r > reloc)
4424 return reloc;
4425 if (r == reloc)
4426 return relocs[i][1];
4427 }
4428 return reloc;
4429 }
4430
4431 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
4432 Return true on success, storing the resolved value in RESULT. */
4433
4434 static bfd_boolean
4435 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
4436 offsetT *result)
4437 {
4438 switch (reloc)
4439 {
4440 case BFD_RELOC_MIPS_HIGHEST:
4441 case BFD_RELOC_MICROMIPS_HIGHEST:
4442 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
4443 return TRUE;
4444
4445 case BFD_RELOC_MIPS_HIGHER:
4446 case BFD_RELOC_MICROMIPS_HIGHER:
4447 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
4448 return TRUE;
4449
4450 case BFD_RELOC_HI16_S:
4451 case BFD_RELOC_MICROMIPS_HI16_S:
4452 case BFD_RELOC_MIPS16_HI16_S:
4453 *result = ((operand + 0x8000) >> 16) & 0xffff;
4454 return TRUE;
4455
4456 case BFD_RELOC_HI16:
4457 case BFD_RELOC_MICROMIPS_HI16:
4458 case BFD_RELOC_MIPS16_HI16:
4459 *result = (operand >> 16) & 0xffff;
4460 return TRUE;
4461
4462 case BFD_RELOC_LO16:
4463 case BFD_RELOC_MICROMIPS_LO16:
4464 case BFD_RELOC_MIPS16_LO16:
4465 *result = operand & 0xffff;
4466 return TRUE;
4467
4468 case BFD_RELOC_UNUSED:
4469 *result = operand;
4470 return TRUE;
4471
4472 default:
4473 return FALSE;
4474 }
4475 }
4476
4477 /* Output an instruction. IP is the instruction information.
4478 ADDRESS_EXPR is an operand of the instruction to be used with
4479 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
4480 a macro expansion. */
4481
4482 static void
4483 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
4484 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
4485 {
4486 unsigned long prev_pinfo2, pinfo;
4487 bfd_boolean relaxed_branch = FALSE;
4488 enum append_method method;
4489 bfd_boolean relax32;
4490 int branch_disp;
4491
4492 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
4493 fix_loongson2f (ip);
4494
4495 file_ase_mips16 |= mips_opts.mips16;
4496 file_ase_micromips |= mips_opts.micromips;
4497
4498 prev_pinfo2 = history[0].insn_mo->pinfo2;
4499 pinfo = ip->insn_mo->pinfo;
4500
4501 if (mips_opts.micromips
4502 && !expansionp
4503 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
4504 && micromips_insn_length (ip->insn_mo) != 2)
4505 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
4506 && micromips_insn_length (ip->insn_mo) != 4)))
4507 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
4508 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
4509
4510 if (address_expr == NULL)
4511 ip->complete_p = 1;
4512 else if (reloc_type[0] <= BFD_RELOC_UNUSED
4513 && reloc_type[1] == BFD_RELOC_UNUSED
4514 && reloc_type[2] == BFD_RELOC_UNUSED
4515 && address_expr->X_op == O_constant)
4516 {
4517 switch (*reloc_type)
4518 {
4519 case BFD_RELOC_MIPS_JMP:
4520 {
4521 int shift;
4522
4523 shift = mips_opts.micromips ? 1 : 2;
4524 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4525 as_bad (_("jump to misaligned address (0x%lx)"),
4526 (unsigned long) address_expr->X_add_number);
4527 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4528 & 0x3ffffff);
4529 ip->complete_p = 1;
4530 }
4531 break;
4532
4533 case BFD_RELOC_MIPS16_JMP:
4534 if ((address_expr->X_add_number & 3) != 0)
4535 as_bad (_("jump to misaligned address (0x%lx)"),
4536 (unsigned long) address_expr->X_add_number);
4537 ip->insn_opcode |=
4538 (((address_expr->X_add_number & 0x7c0000) << 3)
4539 | ((address_expr->X_add_number & 0xf800000) >> 7)
4540 | ((address_expr->X_add_number & 0x3fffc) >> 2));
4541 ip->complete_p = 1;
4542 break;
4543
4544 case BFD_RELOC_16_PCREL_S2:
4545 {
4546 int shift;
4547
4548 shift = mips_opts.micromips ? 1 : 2;
4549 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4550 as_bad (_("branch to misaligned address (0x%lx)"),
4551 (unsigned long) address_expr->X_add_number);
4552 if (!mips_relax_branch)
4553 {
4554 if ((address_expr->X_add_number + (1 << (shift + 15)))
4555 & ~((1 << (shift + 16)) - 1))
4556 as_bad (_("branch address range overflow (0x%lx)"),
4557 (unsigned long) address_expr->X_add_number);
4558 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4559 & 0xffff);
4560 }
4561 }
4562 break;
4563
4564 default:
4565 {
4566 offsetT value;
4567
4568 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
4569 &value))
4570 {
4571 ip->insn_opcode |= value & 0xffff;
4572 ip->complete_p = 1;
4573 }
4574 }
4575 break;
4576 }
4577 }
4578
4579 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
4580 {
4581 /* There are a lot of optimizations we could do that we don't.
4582 In particular, we do not, in general, reorder instructions.
4583 If you use gcc with optimization, it will reorder
4584 instructions and generally do much more optimization then we
4585 do here; repeating all that work in the assembler would only
4586 benefit hand written assembly code, and does not seem worth
4587 it. */
4588 int nops = (mips_optimize == 0
4589 ? nops_for_insn (0, history, NULL)
4590 : nops_for_insn_or_target (0, history, ip));
4591 if (nops > 0)
4592 {
4593 fragS *old_frag;
4594 unsigned long old_frag_offset;
4595 int i;
4596
4597 old_frag = frag_now;
4598 old_frag_offset = frag_now_fix ();
4599
4600 for (i = 0; i < nops; i++)
4601 add_fixed_insn (NOP_INSN);
4602 insert_into_history (0, nops, NOP_INSN);
4603
4604 if (listing)
4605 {
4606 listing_prev_line ();
4607 /* We may be at the start of a variant frag. In case we
4608 are, make sure there is enough space for the frag
4609 after the frags created by listing_prev_line. The
4610 argument to frag_grow here must be at least as large
4611 as the argument to all other calls to frag_grow in
4612 this file. We don't have to worry about being in the
4613 middle of a variant frag, because the variants insert
4614 all needed nop instructions themselves. */
4615 frag_grow (40);
4616 }
4617
4618 mips_move_text_labels ();
4619
4620 #ifndef NO_ECOFF_DEBUGGING
4621 if (ECOFF_DEBUGGING)
4622 ecoff_fix_loc (old_frag, old_frag_offset);
4623 #endif
4624 }
4625 }
4626 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
4627 {
4628 int nops;
4629
4630 /* Work out how many nops in prev_nop_frag are needed by IP,
4631 ignoring hazards generated by the first prev_nop_frag_since
4632 instructions. */
4633 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
4634 gas_assert (nops <= prev_nop_frag_holds);
4635
4636 /* Enforce NOPS as a minimum. */
4637 if (nops > prev_nop_frag_required)
4638 prev_nop_frag_required = nops;
4639
4640 if (prev_nop_frag_holds == prev_nop_frag_required)
4641 {
4642 /* Settle for the current number of nops. Update the history
4643 accordingly (for the benefit of any future .set reorder code). */
4644 prev_nop_frag = NULL;
4645 insert_into_history (prev_nop_frag_since,
4646 prev_nop_frag_holds, NOP_INSN);
4647 }
4648 else
4649 {
4650 /* Allow this instruction to replace one of the nops that was
4651 tentatively added to prev_nop_frag. */
4652 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
4653 prev_nop_frag_holds--;
4654 prev_nop_frag_since++;
4655 }
4656 }
4657
4658 method = get_append_method (ip, address_expr, reloc_type);
4659 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
4660
4661 dwarf2_emit_insn (0);
4662 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
4663 so "move" the instruction address accordingly.
4664
4665 Also, it doesn't seem appropriate for the assembler to reorder .loc
4666 entries. If this instruction is a branch that we are going to swap
4667 with the previous instruction, the two instructions should be
4668 treated as a unit, and the debug information for both instructions
4669 should refer to the start of the branch sequence. Using the
4670 current position is certainly wrong when swapping a 32-bit branch
4671 and a 16-bit delay slot, since the current position would then be
4672 in the middle of a branch. */
4673 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
4674
4675 relax32 = (mips_relax_branch
4676 /* Don't try branch relaxation within .set nomacro, or within
4677 .set noat if we use $at for PIC computations. If it turns
4678 out that the branch was out-of-range, we'll get an error. */
4679 && !mips_opts.warn_about_macros
4680 && (mips_opts.at || mips_pic == NO_PIC)
4681 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
4682 as they have no complementing branches. */
4683 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
4684
4685 if (!HAVE_CODE_COMPRESSION
4686 && address_expr
4687 && relax32
4688 && *reloc_type == BFD_RELOC_16_PCREL_S2
4689 && delayed_branch_p (ip))
4690 {
4691 relaxed_branch = TRUE;
4692 add_relaxed_insn (ip, (relaxed_branch_length
4693 (NULL, NULL,
4694 uncond_branch_p (ip) ? -1
4695 : branch_likely_p (ip) ? 1
4696 : 0)), 4,
4697 RELAX_BRANCH_ENCODE
4698 (AT,
4699 uncond_branch_p (ip),
4700 branch_likely_p (ip),
4701 pinfo & INSN_WRITE_GPR_31,
4702 0),
4703 address_expr->X_add_symbol,
4704 address_expr->X_add_number);
4705 *reloc_type = BFD_RELOC_UNUSED;
4706 }
4707 else if (mips_opts.micromips
4708 && address_expr
4709 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
4710 || *reloc_type > BFD_RELOC_UNUSED)
4711 && (delayed_branch_p (ip) || compact_branch_p (ip))
4712 /* Don't try branch relaxation when users specify
4713 16-bit/32-bit instructions. */
4714 && !forced_insn_length)
4715 {
4716 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
4717 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
4718 int uncond = uncond_branch_p (ip) ? -1 : 0;
4719 int compact = compact_branch_p (ip);
4720 int al = pinfo & INSN_WRITE_GPR_31;
4721 int length32;
4722
4723 gas_assert (address_expr != NULL);
4724 gas_assert (!mips_relax.sequence);
4725
4726 relaxed_branch = TRUE;
4727 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
4728 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
4729 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
4730 relax32, 0, 0),
4731 address_expr->X_add_symbol,
4732 address_expr->X_add_number);
4733 *reloc_type = BFD_RELOC_UNUSED;
4734 }
4735 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
4736 {
4737 /* We need to set up a variant frag. */
4738 gas_assert (address_expr != NULL);
4739 add_relaxed_insn (ip, 4, 0,
4740 RELAX_MIPS16_ENCODE
4741 (*reloc_type - BFD_RELOC_UNUSED,
4742 forced_insn_length == 2, forced_insn_length == 4,
4743 delayed_branch_p (&history[0]),
4744 history[0].mips16_absolute_jump_p),
4745 make_expr_symbol (address_expr), 0);
4746 }
4747 else if (mips_opts.mips16 && insn_length (ip) == 2)
4748 {
4749 if (!delayed_branch_p (ip))
4750 /* Make sure there is enough room to swap this instruction with
4751 a following jump instruction. */
4752 frag_grow (6);
4753 add_fixed_insn (ip);
4754 }
4755 else
4756 {
4757 if (mips_opts.mips16
4758 && mips_opts.noreorder
4759 && delayed_branch_p (&history[0]))
4760 as_warn (_("extended instruction in delay slot"));
4761
4762 if (mips_relax.sequence)
4763 {
4764 /* If we've reached the end of this frag, turn it into a variant
4765 frag and record the information for the instructions we've
4766 written so far. */
4767 if (frag_room () < 4)
4768 relax_close_frag ();
4769 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4770 }
4771
4772 if (mips_relax.sequence != 2)
4773 {
4774 if (mips_macro_warning.first_insn_sizes[0] == 0)
4775 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
4776 mips_macro_warning.sizes[0] += insn_length (ip);
4777 mips_macro_warning.insns[0]++;
4778 }
4779 if (mips_relax.sequence != 1)
4780 {
4781 if (mips_macro_warning.first_insn_sizes[1] == 0)
4782 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
4783 mips_macro_warning.sizes[1] += insn_length (ip);
4784 mips_macro_warning.insns[1]++;
4785 }
4786
4787 if (mips_opts.mips16)
4788 {
4789 ip->fixed_p = 1;
4790 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
4791 }
4792 add_fixed_insn (ip);
4793 }
4794
4795 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
4796 {
4797 bfd_reloc_code_real_type final_type[3];
4798 reloc_howto_type *howto0;
4799 reloc_howto_type *howto;
4800 int i;
4801
4802 /* Perform any necessary conversion to microMIPS relocations
4803 and find out how many relocations there actually are. */
4804 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
4805 final_type[i] = micromips_map_reloc (reloc_type[i]);
4806
4807 /* In a compound relocation, it is the final (outermost)
4808 operator that determines the relocated field. */
4809 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
4810 if (!howto)
4811 abort ();
4812
4813 if (i > 1)
4814 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
4815 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
4816 bfd_get_reloc_size (howto),
4817 address_expr,
4818 howto0 && howto0->pc_relative,
4819 final_type[0]);
4820
4821 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
4822 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
4823 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
4824
4825 /* These relocations can have an addend that won't fit in
4826 4 octets for 64bit assembly. */
4827 if (HAVE_64BIT_GPRS
4828 && ! howto->partial_inplace
4829 && (reloc_type[0] == BFD_RELOC_16
4830 || reloc_type[0] == BFD_RELOC_32
4831 || reloc_type[0] == BFD_RELOC_MIPS_JMP
4832 || reloc_type[0] == BFD_RELOC_GPREL16
4833 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
4834 || reloc_type[0] == BFD_RELOC_GPREL32
4835 || reloc_type[0] == BFD_RELOC_64
4836 || reloc_type[0] == BFD_RELOC_CTOR
4837 || reloc_type[0] == BFD_RELOC_MIPS_SUB
4838 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
4839 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
4840 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
4841 || reloc_type[0] == BFD_RELOC_MIPS_REL16
4842 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
4843 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
4844 || hi16_reloc_p (reloc_type[0])
4845 || lo16_reloc_p (reloc_type[0])))
4846 ip->fixp[0]->fx_no_overflow = 1;
4847
4848 /* These relocations can have an addend that won't fit in 2 octets. */
4849 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
4850 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
4851 ip->fixp[0]->fx_no_overflow = 1;
4852
4853 if (mips_relax.sequence)
4854 {
4855 if (mips_relax.first_fixup == 0)
4856 mips_relax.first_fixup = ip->fixp[0];
4857 }
4858 else if (reloc_needs_lo_p (*reloc_type))
4859 {
4860 struct mips_hi_fixup *hi_fixup;
4861
4862 /* Reuse the last entry if it already has a matching %lo. */
4863 hi_fixup = mips_hi_fixup_list;
4864 if (hi_fixup == 0
4865 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4866 {
4867 hi_fixup = ((struct mips_hi_fixup *)
4868 xmalloc (sizeof (struct mips_hi_fixup)));
4869 hi_fixup->next = mips_hi_fixup_list;
4870 mips_hi_fixup_list = hi_fixup;
4871 }
4872 hi_fixup->fixp = ip->fixp[0];
4873 hi_fixup->seg = now_seg;
4874 }
4875
4876 /* Add fixups for the second and third relocations, if given.
4877 Note that the ABI allows the second relocation to be
4878 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
4879 moment we only use RSS_UNDEF, but we could add support
4880 for the others if it ever becomes necessary. */
4881 for (i = 1; i < 3; i++)
4882 if (reloc_type[i] != BFD_RELOC_UNUSED)
4883 {
4884 ip->fixp[i] = fix_new (ip->frag, ip->where,
4885 ip->fixp[0]->fx_size, NULL, 0,
4886 FALSE, final_type[i]);
4887
4888 /* Use fx_tcbit to mark compound relocs. */
4889 ip->fixp[0]->fx_tcbit = 1;
4890 ip->fixp[i]->fx_tcbit = 1;
4891 }
4892 }
4893 install_insn (ip);
4894
4895 /* Update the register mask information. */
4896 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
4897 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
4898
4899 switch (method)
4900 {
4901 case APPEND_ADD:
4902 insert_into_history (0, 1, ip);
4903 break;
4904
4905 case APPEND_ADD_WITH_NOP:
4906 {
4907 struct mips_cl_insn *nop;
4908
4909 insert_into_history (0, 1, ip);
4910 nop = get_delay_slot_nop (ip);
4911 add_fixed_insn (nop);
4912 insert_into_history (0, 1, nop);
4913 if (mips_relax.sequence)
4914 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
4915 }
4916 break;
4917
4918 case APPEND_ADD_COMPACT:
4919 /* Convert MIPS16 jr/jalr into a "compact" jump. */
4920 gas_assert (mips_opts.mips16);
4921 ip->insn_opcode |= 0x0080;
4922 find_altered_mips16_opcode (ip);
4923 install_insn (ip);
4924 insert_into_history (0, 1, ip);
4925 break;
4926
4927 case APPEND_SWAP:
4928 {
4929 struct mips_cl_insn delay = history[0];
4930 if (mips_opts.mips16)
4931 {
4932 know (delay.frag == ip->frag);
4933 move_insn (ip, delay.frag, delay.where);
4934 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
4935 }
4936 else if (relaxed_branch || delay.frag != ip->frag)
4937 {
4938 /* Add the delay slot instruction to the end of the
4939 current frag and shrink the fixed part of the
4940 original frag. If the branch occupies the tail of
4941 the latter, move it backwards to cover the gap. */
4942 delay.frag->fr_fix -= branch_disp;
4943 if (delay.frag == ip->frag)
4944 move_insn (ip, ip->frag, ip->where - branch_disp);
4945 add_fixed_insn (&delay);
4946 }
4947 else
4948 {
4949 move_insn (&delay, ip->frag,
4950 ip->where - branch_disp + insn_length (ip));
4951 move_insn (ip, history[0].frag, history[0].where);
4952 }
4953 history[0] = *ip;
4954 delay.fixed_p = 1;
4955 insert_into_history (0, 1, &delay);
4956 }
4957 break;
4958 }
4959
4960 /* If we have just completed an unconditional branch, clear the history. */
4961 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
4962 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
4963 {
4964 unsigned int i;
4965
4966 mips_no_prev_insn ();
4967
4968 for (i = 0; i < ARRAY_SIZE (history); i++)
4969 history[i].cleared_p = 1;
4970 }
4971
4972 /* We need to emit a label at the end of branch-likely macros. */
4973 if (emit_branch_likely_macro)
4974 {
4975 emit_branch_likely_macro = FALSE;
4976 micromips_add_label ();
4977 }
4978
4979 /* We just output an insn, so the next one doesn't have a label. */
4980 mips_clear_insn_labels ();
4981 }
4982
4983 /* Forget that there was any previous instruction or label.
4984 When BRANCH is true, the branch history is also flushed. */
4985
4986 static void
4987 mips_no_prev_insn (void)
4988 {
4989 prev_nop_frag = NULL;
4990 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
4991 mips_clear_insn_labels ();
4992 }
4993
4994 /* This function must be called before we emit something other than
4995 instructions. It is like mips_no_prev_insn except that it inserts
4996 any NOPS that might be needed by previous instructions. */
4997
4998 void
4999 mips_emit_delays (void)
5000 {
5001 if (! mips_opts.noreorder)
5002 {
5003 int nops = nops_for_insn (0, history, NULL);
5004 if (nops > 0)
5005 {
5006 while (nops-- > 0)
5007 add_fixed_insn (NOP_INSN);
5008 mips_move_text_labels ();
5009 }
5010 }
5011 mips_no_prev_insn ();
5012 }
5013
5014 /* Start a (possibly nested) noreorder block. */
5015
5016 static void
5017 start_noreorder (void)
5018 {
5019 if (mips_opts.noreorder == 0)
5020 {
5021 unsigned int i;
5022 int nops;
5023
5024 /* None of the instructions before the .set noreorder can be moved. */
5025 for (i = 0; i < ARRAY_SIZE (history); i++)
5026 history[i].fixed_p = 1;
5027
5028 /* Insert any nops that might be needed between the .set noreorder
5029 block and the previous instructions. We will later remove any
5030 nops that turn out not to be needed. */
5031 nops = nops_for_insn (0, history, NULL);
5032 if (nops > 0)
5033 {
5034 if (mips_optimize != 0)
5035 {
5036 /* Record the frag which holds the nop instructions, so
5037 that we can remove them if we don't need them. */
5038 frag_grow (nops * NOP_INSN_SIZE);
5039 prev_nop_frag = frag_now;
5040 prev_nop_frag_holds = nops;
5041 prev_nop_frag_required = 0;
5042 prev_nop_frag_since = 0;
5043 }
5044
5045 for (; nops > 0; --nops)
5046 add_fixed_insn (NOP_INSN);
5047
5048 /* Move on to a new frag, so that it is safe to simply
5049 decrease the size of prev_nop_frag. */
5050 frag_wane (frag_now);
5051 frag_new (0);
5052 mips_move_text_labels ();
5053 }
5054 mips_mark_labels ();
5055 mips_clear_insn_labels ();
5056 }
5057 mips_opts.noreorder++;
5058 mips_any_noreorder = 1;
5059 }
5060
5061 /* End a nested noreorder block. */
5062
5063 static void
5064 end_noreorder (void)
5065 {
5066 mips_opts.noreorder--;
5067 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
5068 {
5069 /* Commit to inserting prev_nop_frag_required nops and go back to
5070 handling nop insertion the .set reorder way. */
5071 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
5072 * NOP_INSN_SIZE);
5073 insert_into_history (prev_nop_frag_since,
5074 prev_nop_frag_required, NOP_INSN);
5075 prev_nop_frag = NULL;
5076 }
5077 }
5078
5079 /* Set up global variables for the start of a new macro. */
5080
5081 static void
5082 macro_start (void)
5083 {
5084 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
5085 memset (&mips_macro_warning.first_insn_sizes, 0,
5086 sizeof (mips_macro_warning.first_insn_sizes));
5087 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
5088 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
5089 && delayed_branch_p (&history[0]));
5090 switch (history[0].insn_mo->pinfo2
5091 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
5092 {
5093 case INSN2_BRANCH_DELAY_32BIT:
5094 mips_macro_warning.delay_slot_length = 4;
5095 break;
5096 case INSN2_BRANCH_DELAY_16BIT:
5097 mips_macro_warning.delay_slot_length = 2;
5098 break;
5099 default:
5100 mips_macro_warning.delay_slot_length = 0;
5101 break;
5102 }
5103 mips_macro_warning.first_frag = NULL;
5104 }
5105
5106 /* Given that a macro is longer than one instruction or of the wrong size,
5107 return the appropriate warning for it. Return null if no warning is
5108 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
5109 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
5110 and RELAX_NOMACRO. */
5111
5112 static const char *
5113 macro_warning (relax_substateT subtype)
5114 {
5115 if (subtype & RELAX_DELAY_SLOT)
5116 return _("Macro instruction expanded into multiple instructions"
5117 " in a branch delay slot");
5118 else if (subtype & RELAX_NOMACRO)
5119 return _("Macro instruction expanded into multiple instructions");
5120 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
5121 | RELAX_DELAY_SLOT_SIZE_SECOND))
5122 return ((subtype & RELAX_DELAY_SLOT_16BIT)
5123 ? _("Macro instruction expanded into a wrong size instruction"
5124 " in a 16-bit branch delay slot")
5125 : _("Macro instruction expanded into a wrong size instruction"
5126 " in a 32-bit branch delay slot"));
5127 else
5128 return 0;
5129 }
5130
5131 /* Finish up a macro. Emit warnings as appropriate. */
5132
5133 static void
5134 macro_end (void)
5135 {
5136 /* Relaxation warning flags. */
5137 relax_substateT subtype = 0;
5138
5139 /* Check delay slot size requirements. */
5140 if (mips_macro_warning.delay_slot_length == 2)
5141 subtype |= RELAX_DELAY_SLOT_16BIT;
5142 if (mips_macro_warning.delay_slot_length != 0)
5143 {
5144 if (mips_macro_warning.delay_slot_length
5145 != mips_macro_warning.first_insn_sizes[0])
5146 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
5147 if (mips_macro_warning.delay_slot_length
5148 != mips_macro_warning.first_insn_sizes[1])
5149 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
5150 }
5151
5152 /* Check instruction count requirements. */
5153 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
5154 {
5155 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
5156 subtype |= RELAX_SECOND_LONGER;
5157 if (mips_opts.warn_about_macros)
5158 subtype |= RELAX_NOMACRO;
5159 if (mips_macro_warning.delay_slot_p)
5160 subtype |= RELAX_DELAY_SLOT;
5161 }
5162
5163 /* If both alternatives fail to fill a delay slot correctly,
5164 emit the warning now. */
5165 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
5166 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
5167 {
5168 relax_substateT s;
5169 const char *msg;
5170
5171 s = subtype & (RELAX_DELAY_SLOT_16BIT
5172 | RELAX_DELAY_SLOT_SIZE_FIRST
5173 | RELAX_DELAY_SLOT_SIZE_SECOND);
5174 msg = macro_warning (s);
5175 if (msg != NULL)
5176 as_warn ("%s", msg);
5177 subtype &= ~s;
5178 }
5179
5180 /* If both implementations are longer than 1 instruction, then emit the
5181 warning now. */
5182 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
5183 {
5184 relax_substateT s;
5185 const char *msg;
5186
5187 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
5188 msg = macro_warning (s);
5189 if (msg != NULL)
5190 as_warn ("%s", msg);
5191 subtype &= ~s;
5192 }
5193
5194 /* If any flags still set, then one implementation might need a warning
5195 and the other either will need one of a different kind or none at all.
5196 Pass any remaining flags over to relaxation. */
5197 if (mips_macro_warning.first_frag != NULL)
5198 mips_macro_warning.first_frag->fr_subtype |= subtype;
5199 }
5200
5201 /* Instruction operand formats used in macros that vary between
5202 standard MIPS and microMIPS code. */
5203
5204 static const char * const brk_fmt[2] = { "c", "mF" };
5205 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
5206 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
5207 static const char * const lui_fmt[2] = { "t,u", "s,u" };
5208 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
5209 static const char * const mfhl_fmt[2] = { "d", "mj" };
5210 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
5211 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
5212
5213 #define BRK_FMT (brk_fmt[mips_opts.micromips])
5214 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
5215 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
5216 #define LUI_FMT (lui_fmt[mips_opts.micromips])
5217 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
5218 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips])
5219 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
5220 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
5221
5222 /* Read a macro's relocation codes from *ARGS and store them in *R.
5223 The first argument in *ARGS will be either the code for a single
5224 relocation or -1 followed by the three codes that make up a
5225 composite relocation. */
5226
5227 static void
5228 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
5229 {
5230 int i, next;
5231
5232 next = va_arg (*args, int);
5233 if (next >= 0)
5234 r[0] = (bfd_reloc_code_real_type) next;
5235 else
5236 for (i = 0; i < 3; i++)
5237 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
5238 }
5239
5240 /* Build an instruction created by a macro expansion. This is passed
5241 a pointer to the count of instructions created so far, an
5242 expression, the name of the instruction to build, an operand format
5243 string, and corresponding arguments. */
5244
5245 static void
5246 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
5247 {
5248 const struct mips_opcode *mo = NULL;
5249 bfd_reloc_code_real_type r[3];
5250 const struct mips_opcode *amo;
5251 struct hash_control *hash;
5252 struct mips_cl_insn insn;
5253 va_list args;
5254
5255 va_start (args, fmt);
5256
5257 if (mips_opts.mips16)
5258 {
5259 mips16_macro_build (ep, name, fmt, &args);
5260 va_end (args);
5261 return;
5262 }
5263
5264 r[0] = BFD_RELOC_UNUSED;
5265 r[1] = BFD_RELOC_UNUSED;
5266 r[2] = BFD_RELOC_UNUSED;
5267 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
5268 amo = (struct mips_opcode *) hash_find (hash, name);
5269 gas_assert (amo);
5270 gas_assert (strcmp (name, amo->name) == 0);
5271
5272 do
5273 {
5274 /* Search until we get a match for NAME. It is assumed here that
5275 macros will never generate MDMX, MIPS-3D, or MT instructions.
5276 We try to match an instruction that fulfils the branch delay
5277 slot instruction length requirement (if any) of the previous
5278 instruction. While doing this we record the first instruction
5279 seen that matches all the other conditions and use it anyway
5280 if the requirement cannot be met; we will issue an appropriate
5281 warning later on. */
5282 if (strcmp (fmt, amo->args) == 0
5283 && amo->pinfo != INSN_MACRO
5284 && is_opcode_valid (amo)
5285 && is_size_valid (amo))
5286 {
5287 if (is_delay_slot_valid (amo))
5288 {
5289 mo = amo;
5290 break;
5291 }
5292 else if (!mo)
5293 mo = amo;
5294 }
5295
5296 ++amo;
5297 gas_assert (amo->name);
5298 }
5299 while (strcmp (name, amo->name) == 0);
5300
5301 gas_assert (mo);
5302 create_insn (&insn, mo);
5303 for (;;)
5304 {
5305 switch (*fmt++)
5306 {
5307 case '\0':
5308 break;
5309
5310 case ',':
5311 case '(':
5312 case ')':
5313 continue;
5314
5315 case '+':
5316 switch (*fmt++)
5317 {
5318 case 'A':
5319 case 'E':
5320 INSERT_OPERAND (mips_opts.micromips,
5321 EXTLSB, insn, va_arg (args, int));
5322 continue;
5323
5324 case 'B':
5325 case 'F':
5326 /* Note that in the macro case, these arguments are already
5327 in MSB form. (When handling the instruction in the
5328 non-macro case, these arguments are sizes from which
5329 MSB values must be calculated.) */
5330 INSERT_OPERAND (mips_opts.micromips,
5331 INSMSB, insn, va_arg (args, int));
5332 continue;
5333
5334 case 'J':
5335 gas_assert (!mips_opts.micromips);
5336 INSERT_OPERAND (0, CODE10, insn, va_arg (args, int));
5337 continue;
5338
5339 case 'C':
5340 case 'G':
5341 case 'H':
5342 /* Note that in the macro case, these arguments are already
5343 in MSBD form. (When handling the instruction in the
5344 non-macro case, these arguments are sizes from which
5345 MSBD values must be calculated.) */
5346 INSERT_OPERAND (mips_opts.micromips,
5347 EXTMSBD, insn, va_arg (args, int));
5348 continue;
5349
5350 case 'Q':
5351 gas_assert (!mips_opts.micromips);
5352 INSERT_OPERAND (0, SEQI, insn, va_arg (args, int));
5353 continue;
5354
5355 case 'j':
5356 INSERT_OPERAND (mips_opts.micromips, EVAOFFSET, insn, va_arg (args, int));
5357 continue;
5358
5359 default:
5360 abort ();
5361 }
5362 continue;
5363
5364 case '2':
5365 INSERT_OPERAND (mips_opts.micromips, BP, insn, va_arg (args, int));
5366 continue;
5367
5368 case 'n':
5369 gas_assert (mips_opts.micromips);
5370 case 't':
5371 case 'w':
5372 case 'E':
5373 INSERT_OPERAND (mips_opts.micromips, RT, insn, va_arg (args, int));
5374 continue;
5375
5376 case 'c':
5377 gas_assert (!mips_opts.micromips);
5378 INSERT_OPERAND (0, CODE, insn, va_arg (args, int));
5379 continue;
5380
5381 case 'W':
5382 gas_assert (!mips_opts.micromips);
5383 case 'T':
5384 INSERT_OPERAND (mips_opts.micromips, FT, insn, va_arg (args, int));
5385 continue;
5386
5387 case 'G':
5388 if (mips_opts.micromips)
5389 INSERT_OPERAND (1, RS, insn, va_arg (args, int));
5390 else
5391 INSERT_OPERAND (0, RD, insn, va_arg (args, int));
5392 continue;
5393
5394 case 'K':
5395 gas_assert (!mips_opts.micromips);
5396 case 'd':
5397 INSERT_OPERAND (mips_opts.micromips, RD, insn, va_arg (args, int));
5398 continue;
5399
5400 case 'U':
5401 gas_assert (!mips_opts.micromips);
5402 {
5403 int tmp = va_arg (args, int);
5404
5405 INSERT_OPERAND (0, RT, insn, tmp);
5406 INSERT_OPERAND (0, RD, insn, tmp);
5407 }
5408 continue;
5409
5410 case 'V':
5411 case 'S':
5412 gas_assert (!mips_opts.micromips);
5413 INSERT_OPERAND (0, FS, insn, va_arg (args, int));
5414 continue;
5415
5416 case 'z':
5417 continue;
5418
5419 case '<':
5420 INSERT_OPERAND (mips_opts.micromips,
5421 SHAMT, insn, va_arg (args, int));
5422 continue;
5423
5424 case 'D':
5425 gas_assert (!mips_opts.micromips);
5426 INSERT_OPERAND (0, FD, insn, va_arg (args, int));
5427 continue;
5428
5429 case 'B':
5430 gas_assert (!mips_opts.micromips);
5431 INSERT_OPERAND (0, CODE20, insn, va_arg (args, int));
5432 continue;
5433
5434 case 'J':
5435 gas_assert (!mips_opts.micromips);
5436 INSERT_OPERAND (0, CODE19, insn, va_arg (args, int));
5437 continue;
5438
5439 case 'q':
5440 gas_assert (!mips_opts.micromips);
5441 INSERT_OPERAND (0, CODE2, insn, va_arg (args, int));
5442 continue;
5443
5444 case 'b':
5445 case 's':
5446 case 'r':
5447 case 'v':
5448 INSERT_OPERAND (mips_opts.micromips, RS, insn, va_arg (args, int));
5449 continue;
5450
5451 case 'i':
5452 case 'j':
5453 macro_read_relocs (&args, r);
5454 gas_assert (*r == BFD_RELOC_GPREL16
5455 || *r == BFD_RELOC_MIPS_HIGHER
5456 || *r == BFD_RELOC_HI16_S
5457 || *r == BFD_RELOC_LO16
5458 || *r == BFD_RELOC_MIPS_GOT_OFST);
5459 continue;
5460
5461 case 'o':
5462 macro_read_relocs (&args, r);
5463 continue;
5464
5465 case 'u':
5466 macro_read_relocs (&args, r);
5467 gas_assert (ep != NULL
5468 && (ep->X_op == O_constant
5469 || (ep->X_op == O_symbol
5470 && (*r == BFD_RELOC_MIPS_HIGHEST
5471 || *r == BFD_RELOC_HI16_S
5472 || *r == BFD_RELOC_HI16
5473 || *r == BFD_RELOC_GPREL16
5474 || *r == BFD_RELOC_MIPS_GOT_HI16
5475 || *r == BFD_RELOC_MIPS_CALL_HI16))));
5476 continue;
5477
5478 case 'p':
5479 gas_assert (ep != NULL);
5480
5481 /*
5482 * This allows macro() to pass an immediate expression for
5483 * creating short branches without creating a symbol.
5484 *
5485 * We don't allow branch relaxation for these branches, as
5486 * they should only appear in ".set nomacro" anyway.
5487 */
5488 if (ep->X_op == O_constant)
5489 {
5490 /* For microMIPS we always use relocations for branches.
5491 So we should not resolve immediate values. */
5492 gas_assert (!mips_opts.micromips);
5493
5494 if ((ep->X_add_number & 3) != 0)
5495 as_bad (_("branch to misaligned address (0x%lx)"),
5496 (unsigned long) ep->X_add_number);
5497 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
5498 as_bad (_("branch address range overflow (0x%lx)"),
5499 (unsigned long) ep->X_add_number);
5500 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
5501 ep = NULL;
5502 }
5503 else
5504 *r = BFD_RELOC_16_PCREL_S2;
5505 continue;
5506
5507 case 'a':
5508 gas_assert (ep != NULL);
5509 *r = BFD_RELOC_MIPS_JMP;
5510 continue;
5511
5512 case 'C':
5513 gas_assert (!mips_opts.micromips);
5514 INSERT_OPERAND (0, COPZ, insn, va_arg (args, unsigned long));
5515 continue;
5516
5517 case 'k':
5518 INSERT_OPERAND (mips_opts.micromips,
5519 CACHE, insn, va_arg (args, unsigned long));
5520 continue;
5521
5522 case '|':
5523 gas_assert (mips_opts.micromips);
5524 INSERT_OPERAND (1, TRAP, insn, va_arg (args, int));
5525 continue;
5526
5527 case '.':
5528 gas_assert (mips_opts.micromips);
5529 INSERT_OPERAND (1, OFFSET10, insn, va_arg (args, int));
5530 continue;
5531
5532 case '\\':
5533 INSERT_OPERAND (mips_opts.micromips,
5534 3BITPOS, insn, va_arg (args, unsigned int));
5535 continue;
5536
5537 case '~':
5538 INSERT_OPERAND (mips_opts.micromips,
5539 OFFSET12, insn, va_arg (args, unsigned long));
5540 continue;
5541
5542 case 'N':
5543 gas_assert (mips_opts.micromips);
5544 INSERT_OPERAND (1, BCC, insn, va_arg (args, int));
5545 continue;
5546
5547 case 'm': /* Opcode extension character. */
5548 gas_assert (mips_opts.micromips);
5549 switch (*fmt++)
5550 {
5551 case 'j':
5552 INSERT_OPERAND (1, MJ, insn, va_arg (args, int));
5553 break;
5554
5555 case 'p':
5556 INSERT_OPERAND (1, MP, insn, va_arg (args, int));
5557 break;
5558
5559 case 'F':
5560 INSERT_OPERAND (1, IMMF, insn, va_arg (args, int));
5561 break;
5562
5563 default:
5564 abort ();
5565 }
5566 continue;
5567
5568 default:
5569 abort ();
5570 }
5571 break;
5572 }
5573 va_end (args);
5574 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5575
5576 append_insn (&insn, ep, r, TRUE);
5577 }
5578
5579 static void
5580 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
5581 va_list *args)
5582 {
5583 struct mips_opcode *mo;
5584 struct mips_cl_insn insn;
5585 bfd_reloc_code_real_type r[3]
5586 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
5587
5588 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
5589 gas_assert (mo);
5590 gas_assert (strcmp (name, mo->name) == 0);
5591
5592 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
5593 {
5594 ++mo;
5595 gas_assert (mo->name);
5596 gas_assert (strcmp (name, mo->name) == 0);
5597 }
5598
5599 create_insn (&insn, mo);
5600 for (;;)
5601 {
5602 int c;
5603
5604 c = *fmt++;
5605 switch (c)
5606 {
5607 case '\0':
5608 break;
5609
5610 case ',':
5611 case '(':
5612 case ')':
5613 continue;
5614
5615 case 'y':
5616 case 'w':
5617 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
5618 continue;
5619
5620 case 'x':
5621 case 'v':
5622 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
5623 continue;
5624
5625 case 'z':
5626 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
5627 continue;
5628
5629 case 'Z':
5630 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
5631 continue;
5632
5633 case '0':
5634 case 'S':
5635 case 'P':
5636 case 'R':
5637 continue;
5638
5639 case 'X':
5640 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
5641 continue;
5642
5643 case 'Y':
5644 {
5645 int regno;
5646
5647 regno = va_arg (*args, int);
5648 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
5649 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
5650 }
5651 continue;
5652
5653 case '<':
5654 case '>':
5655 case '4':
5656 case '5':
5657 case 'H':
5658 case 'W':
5659 case 'D':
5660 case 'j':
5661 case '8':
5662 case 'V':
5663 case 'C':
5664 case 'U':
5665 case 'k':
5666 case 'K':
5667 case 'p':
5668 case 'q':
5669 {
5670 offsetT value;
5671
5672 gas_assert (ep != NULL);
5673
5674 if (ep->X_op != O_constant)
5675 *r = (int) BFD_RELOC_UNUSED + c;
5676 else if (calculate_reloc (*r, ep->X_add_number, &value))
5677 {
5678 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
5679 ep = NULL;
5680 *r = BFD_RELOC_UNUSED;
5681 }
5682 }
5683 continue;
5684
5685 case '6':
5686 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
5687 continue;
5688 }
5689
5690 break;
5691 }
5692
5693 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5694
5695 append_insn (&insn, ep, r, TRUE);
5696 }
5697
5698 /*
5699 * Sign-extend 32-bit mode constants that have bit 31 set and all
5700 * higher bits unset.
5701 */
5702 static void
5703 normalize_constant_expr (expressionS *ex)
5704 {
5705 if (ex->X_op == O_constant
5706 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5707 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5708 - 0x80000000);
5709 }
5710
5711 /*
5712 * Sign-extend 32-bit mode address offsets that have bit 31 set and
5713 * all higher bits unset.
5714 */
5715 static void
5716 normalize_address_expr (expressionS *ex)
5717 {
5718 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
5719 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
5720 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5721 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5722 - 0x80000000);
5723 }
5724
5725 /*
5726 * Generate a "jalr" instruction with a relocation hint to the called
5727 * function. This occurs in NewABI PIC code.
5728 */
5729 static void
5730 macro_build_jalr (expressionS *ep, int cprestore)
5731 {
5732 static const bfd_reloc_code_real_type jalr_relocs[2]
5733 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
5734 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
5735 const char *jalr;
5736 char *f = NULL;
5737
5738 if (MIPS_JALR_HINT_P (ep))
5739 {
5740 frag_grow (8);
5741 f = frag_more (0);
5742 }
5743 if (mips_opts.micromips)
5744 {
5745 jalr = mips_opts.noreorder && !cprestore ? "jalr" : "jalrs";
5746 if (MIPS_JALR_HINT_P (ep)
5747 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
5748 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
5749 else
5750 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
5751 }
5752 else
5753 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
5754 if (MIPS_JALR_HINT_P (ep))
5755 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
5756 }
5757
5758 /*
5759 * Generate a "lui" instruction.
5760 */
5761 static void
5762 macro_build_lui (expressionS *ep, int regnum)
5763 {
5764 gas_assert (! mips_opts.mips16);
5765
5766 if (ep->X_op != O_constant)
5767 {
5768 gas_assert (ep->X_op == O_symbol);
5769 /* _gp_disp is a special case, used from s_cpload.
5770 __gnu_local_gp is used if mips_no_shared. */
5771 gas_assert (mips_pic == NO_PIC
5772 || (! HAVE_NEWABI
5773 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
5774 || (! mips_in_shared
5775 && strcmp (S_GET_NAME (ep->X_add_symbol),
5776 "__gnu_local_gp") == 0));
5777 }
5778
5779 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
5780 }
5781
5782 /* Generate a sequence of instructions to do a load or store from a constant
5783 offset off of a base register (breg) into/from a target register (treg),
5784 using AT if necessary. */
5785 static void
5786 macro_build_ldst_constoffset (expressionS *ep, const char *op,
5787 int treg, int breg, int dbl)
5788 {
5789 gas_assert (ep->X_op == O_constant);
5790
5791 /* Sign-extending 32-bit constants makes their handling easier. */
5792 if (!dbl)
5793 normalize_constant_expr (ep);
5794
5795 /* Right now, this routine can only handle signed 32-bit constants. */
5796 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
5797 as_warn (_("operand overflow"));
5798
5799 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
5800 {
5801 /* Signed 16-bit offset will fit in the op. Easy! */
5802 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
5803 }
5804 else
5805 {
5806 /* 32-bit offset, need multiple instructions and AT, like:
5807 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
5808 addu $tempreg,$tempreg,$breg
5809 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
5810 to handle the complete offset. */
5811 macro_build_lui (ep, AT);
5812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
5813 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
5814
5815 if (!mips_opts.at)
5816 as_bad (_("Macro used $at after \".set noat\""));
5817 }
5818 }
5819
5820 /* set_at()
5821 * Generates code to set the $at register to true (one)
5822 * if reg is less than the immediate expression.
5823 */
5824 static void
5825 set_at (int reg, int unsignedp)
5826 {
5827 if (imm_expr.X_op == O_constant
5828 && imm_expr.X_add_number >= -0x8000
5829 && imm_expr.X_add_number < 0x8000)
5830 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
5831 AT, reg, BFD_RELOC_LO16);
5832 else
5833 {
5834 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5835 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
5836 }
5837 }
5838
5839 /* Warn if an expression is not a constant. */
5840
5841 static void
5842 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
5843 {
5844 if (ex->X_op == O_big)
5845 as_bad (_("unsupported large constant"));
5846 else if (ex->X_op != O_constant)
5847 as_bad (_("Instruction %s requires absolute expression"),
5848 ip->insn_mo->name);
5849
5850 if (HAVE_32BIT_GPRS)
5851 normalize_constant_expr (ex);
5852 }
5853
5854 /* Count the leading zeroes by performing a binary chop. This is a
5855 bulky bit of source, but performance is a LOT better for the
5856 majority of values than a simple loop to count the bits:
5857 for (lcnt = 0; (lcnt < 32); lcnt++)
5858 if ((v) & (1 << (31 - lcnt)))
5859 break;
5860 However it is not code size friendly, and the gain will drop a bit
5861 on certain cached systems.
5862 */
5863 #define COUNT_TOP_ZEROES(v) \
5864 (((v) & ~0xffff) == 0 \
5865 ? ((v) & ~0xff) == 0 \
5866 ? ((v) & ~0xf) == 0 \
5867 ? ((v) & ~0x3) == 0 \
5868 ? ((v) & ~0x1) == 0 \
5869 ? !(v) \
5870 ? 32 \
5871 : 31 \
5872 : 30 \
5873 : ((v) & ~0x7) == 0 \
5874 ? 29 \
5875 : 28 \
5876 : ((v) & ~0x3f) == 0 \
5877 ? ((v) & ~0x1f) == 0 \
5878 ? 27 \
5879 : 26 \
5880 : ((v) & ~0x7f) == 0 \
5881 ? 25 \
5882 : 24 \
5883 : ((v) & ~0xfff) == 0 \
5884 ? ((v) & ~0x3ff) == 0 \
5885 ? ((v) & ~0x1ff) == 0 \
5886 ? 23 \
5887 : 22 \
5888 : ((v) & ~0x7ff) == 0 \
5889 ? 21 \
5890 : 20 \
5891 : ((v) & ~0x3fff) == 0 \
5892 ? ((v) & ~0x1fff) == 0 \
5893 ? 19 \
5894 : 18 \
5895 : ((v) & ~0x7fff) == 0 \
5896 ? 17 \
5897 : 16 \
5898 : ((v) & ~0xffffff) == 0 \
5899 ? ((v) & ~0xfffff) == 0 \
5900 ? ((v) & ~0x3ffff) == 0 \
5901 ? ((v) & ~0x1ffff) == 0 \
5902 ? 15 \
5903 : 14 \
5904 : ((v) & ~0x7ffff) == 0 \
5905 ? 13 \
5906 : 12 \
5907 : ((v) & ~0x3fffff) == 0 \
5908 ? ((v) & ~0x1fffff) == 0 \
5909 ? 11 \
5910 : 10 \
5911 : ((v) & ~0x7fffff) == 0 \
5912 ? 9 \
5913 : 8 \
5914 : ((v) & ~0xfffffff) == 0 \
5915 ? ((v) & ~0x3ffffff) == 0 \
5916 ? ((v) & ~0x1ffffff) == 0 \
5917 ? 7 \
5918 : 6 \
5919 : ((v) & ~0x7ffffff) == 0 \
5920 ? 5 \
5921 : 4 \
5922 : ((v) & ~0x3fffffff) == 0 \
5923 ? ((v) & ~0x1fffffff) == 0 \
5924 ? 3 \
5925 : 2 \
5926 : ((v) & ~0x7fffffff) == 0 \
5927 ? 1 \
5928 : 0)
5929
5930 /* load_register()
5931 * This routine generates the least number of instructions necessary to load
5932 * an absolute expression value into a register.
5933 */
5934 static void
5935 load_register (int reg, expressionS *ep, int dbl)
5936 {
5937 int freg;
5938 expressionS hi32, lo32;
5939
5940 if (ep->X_op != O_big)
5941 {
5942 gas_assert (ep->X_op == O_constant);
5943
5944 /* Sign-extending 32-bit constants makes their handling easier. */
5945 if (!dbl)
5946 normalize_constant_expr (ep);
5947
5948 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
5949 {
5950 /* We can handle 16 bit signed values with an addiu to
5951 $zero. No need to ever use daddiu here, since $zero and
5952 the result are always correct in 32 bit mode. */
5953 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5954 return;
5955 }
5956 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
5957 {
5958 /* We can handle 16 bit unsigned values with an ori to
5959 $zero. */
5960 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5961 return;
5962 }
5963 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
5964 {
5965 /* 32 bit values require an lui. */
5966 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5967 if ((ep->X_add_number & 0xffff) != 0)
5968 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5969 return;
5970 }
5971 }
5972
5973 /* The value is larger than 32 bits. */
5974
5975 if (!dbl || HAVE_32BIT_GPRS)
5976 {
5977 char value[32];
5978
5979 sprintf_vma (value, ep->X_add_number);
5980 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5981 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5982 return;
5983 }
5984
5985 if (ep->X_op != O_big)
5986 {
5987 hi32 = *ep;
5988 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5989 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5990 hi32.X_add_number &= 0xffffffff;
5991 lo32 = *ep;
5992 lo32.X_add_number &= 0xffffffff;
5993 }
5994 else
5995 {
5996 gas_assert (ep->X_add_number > 2);
5997 if (ep->X_add_number == 3)
5998 generic_bignum[3] = 0;
5999 else if (ep->X_add_number > 4)
6000 as_bad (_("Number larger than 64 bits"));
6001 lo32.X_op = O_constant;
6002 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
6003 hi32.X_op = O_constant;
6004 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
6005 }
6006
6007 if (hi32.X_add_number == 0)
6008 freg = 0;
6009 else
6010 {
6011 int shift, bit;
6012 unsigned long hi, lo;
6013
6014 if (hi32.X_add_number == (offsetT) 0xffffffff)
6015 {
6016 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
6017 {
6018 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
6019 return;
6020 }
6021 if (lo32.X_add_number & 0x80000000)
6022 {
6023 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
6024 if (lo32.X_add_number & 0xffff)
6025 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
6026 return;
6027 }
6028 }
6029
6030 /* Check for 16bit shifted constant. We know that hi32 is
6031 non-zero, so start the mask on the first bit of the hi32
6032 value. */
6033 shift = 17;
6034 do
6035 {
6036 unsigned long himask, lomask;
6037
6038 if (shift < 32)
6039 {
6040 himask = 0xffff >> (32 - shift);
6041 lomask = (0xffff << shift) & 0xffffffff;
6042 }
6043 else
6044 {
6045 himask = 0xffff << (shift - 32);
6046 lomask = 0;
6047 }
6048 if ((hi32.X_add_number & ~(offsetT) himask) == 0
6049 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
6050 {
6051 expressionS tmp;
6052
6053 tmp.X_op = O_constant;
6054 if (shift < 32)
6055 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
6056 | (lo32.X_add_number >> shift));
6057 else
6058 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
6059 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
6060 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
6061 reg, reg, (shift >= 32) ? shift - 32 : shift);
6062 return;
6063 }
6064 ++shift;
6065 }
6066 while (shift <= (64 - 16));
6067
6068 /* Find the bit number of the lowest one bit, and store the
6069 shifted value in hi/lo. */
6070 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
6071 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
6072 if (lo != 0)
6073 {
6074 bit = 0;
6075 while ((lo & 1) == 0)
6076 {
6077 lo >>= 1;
6078 ++bit;
6079 }
6080 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
6081 hi >>= bit;
6082 }
6083 else
6084 {
6085 bit = 32;
6086 while ((hi & 1) == 0)
6087 {
6088 hi >>= 1;
6089 ++bit;
6090 }
6091 lo = hi;
6092 hi = 0;
6093 }
6094
6095 /* Optimize if the shifted value is a (power of 2) - 1. */
6096 if ((hi == 0 && ((lo + 1) & lo) == 0)
6097 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
6098 {
6099 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
6100 if (shift != 0)
6101 {
6102 expressionS tmp;
6103
6104 /* This instruction will set the register to be all
6105 ones. */
6106 tmp.X_op = O_constant;
6107 tmp.X_add_number = (offsetT) -1;
6108 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
6109 if (bit != 0)
6110 {
6111 bit += shift;
6112 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
6113 reg, reg, (bit >= 32) ? bit - 32 : bit);
6114 }
6115 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
6116 reg, reg, (shift >= 32) ? shift - 32 : shift);
6117 return;
6118 }
6119 }
6120
6121 /* Sign extend hi32 before calling load_register, because we can
6122 generally get better code when we load a sign extended value. */
6123 if ((hi32.X_add_number & 0x80000000) != 0)
6124 hi32.X_add_number |= ~(offsetT) 0xffffffff;
6125 load_register (reg, &hi32, 0);
6126 freg = reg;
6127 }
6128 if ((lo32.X_add_number & 0xffff0000) == 0)
6129 {
6130 if (freg != 0)
6131 {
6132 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
6133 freg = reg;
6134 }
6135 }
6136 else
6137 {
6138 expressionS mid16;
6139
6140 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
6141 {
6142 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
6143 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
6144 return;
6145 }
6146
6147 if (freg != 0)
6148 {
6149 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
6150 freg = reg;
6151 }
6152 mid16 = lo32;
6153 mid16.X_add_number >>= 16;
6154 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
6155 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
6156 freg = reg;
6157 }
6158 if ((lo32.X_add_number & 0xffff) != 0)
6159 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
6160 }
6161
6162 static inline void
6163 load_delay_nop (void)
6164 {
6165 if (!gpr_interlocks)
6166 macro_build (NULL, "nop", "");
6167 }
6168
6169 /* Load an address into a register. */
6170
6171 static void
6172 load_address (int reg, expressionS *ep, int *used_at)
6173 {
6174 if (ep->X_op != O_constant
6175 && ep->X_op != O_symbol)
6176 {
6177 as_bad (_("expression too complex"));
6178 ep->X_op = O_constant;
6179 }
6180
6181 if (ep->X_op == O_constant)
6182 {
6183 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
6184 return;
6185 }
6186
6187 if (mips_pic == NO_PIC)
6188 {
6189 /* If this is a reference to a GP relative symbol, we want
6190 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
6191 Otherwise we want
6192 lui $reg,<sym> (BFD_RELOC_HI16_S)
6193 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6194 If we have an addend, we always use the latter form.
6195
6196 With 64bit address space and a usable $at we want
6197 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6198 lui $at,<sym> (BFD_RELOC_HI16_S)
6199 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
6200 daddiu $at,<sym> (BFD_RELOC_LO16)
6201 dsll32 $reg,0
6202 daddu $reg,$reg,$at
6203
6204 If $at is already in use, we use a path which is suboptimal
6205 on superscalar processors.
6206 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6207 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
6208 dsll $reg,16
6209 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
6210 dsll $reg,16
6211 daddiu $reg,<sym> (BFD_RELOC_LO16)
6212
6213 For GP relative symbols in 64bit address space we can use
6214 the same sequence as in 32bit address space. */
6215 if (HAVE_64BIT_SYMBOLS)
6216 {
6217 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6218 && !nopic_need_relax (ep->X_add_symbol, 1))
6219 {
6220 relax_start (ep->X_add_symbol);
6221 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
6222 mips_gp_register, BFD_RELOC_GPREL16);
6223 relax_switch ();
6224 }
6225
6226 if (*used_at == 0 && mips_opts.at)
6227 {
6228 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
6229 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
6230 macro_build (ep, "daddiu", "t,r,j", reg, reg,
6231 BFD_RELOC_MIPS_HIGHER);
6232 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
6233 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
6234 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
6235 *used_at = 1;
6236 }
6237 else
6238 {
6239 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
6240 macro_build (ep, "daddiu", "t,r,j", reg, reg,
6241 BFD_RELOC_MIPS_HIGHER);
6242 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
6243 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
6244 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
6245 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
6246 }
6247
6248 if (mips_relax.sequence)
6249 relax_end ();
6250 }
6251 else
6252 {
6253 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6254 && !nopic_need_relax (ep->X_add_symbol, 1))
6255 {
6256 relax_start (ep->X_add_symbol);
6257 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
6258 mips_gp_register, BFD_RELOC_GPREL16);
6259 relax_switch ();
6260 }
6261 macro_build_lui (ep, reg);
6262 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
6263 reg, reg, BFD_RELOC_LO16);
6264 if (mips_relax.sequence)
6265 relax_end ();
6266 }
6267 }
6268 else if (!mips_big_got)
6269 {
6270 expressionS ex;
6271
6272 /* If this is a reference to an external symbol, we want
6273 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6274 Otherwise we want
6275 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6276 nop
6277 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6278 If there is a constant, it must be added in after.
6279
6280 If we have NewABI, we want
6281 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
6282 unless we're referencing a global symbol with a non-zero
6283 offset, in which case cst must be added separately. */
6284 if (HAVE_NEWABI)
6285 {
6286 if (ep->X_add_number)
6287 {
6288 ex.X_add_number = ep->X_add_number;
6289 ep->X_add_number = 0;
6290 relax_start (ep->X_add_symbol);
6291 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6292 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6293 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6294 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6295 ex.X_op = O_constant;
6296 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
6297 reg, reg, BFD_RELOC_LO16);
6298 ep->X_add_number = ex.X_add_number;
6299 relax_switch ();
6300 }
6301 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6302 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6303 if (mips_relax.sequence)
6304 relax_end ();
6305 }
6306 else
6307 {
6308 ex.X_add_number = ep->X_add_number;
6309 ep->X_add_number = 0;
6310 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6311 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6312 load_delay_nop ();
6313 relax_start (ep->X_add_symbol);
6314 relax_switch ();
6315 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6316 BFD_RELOC_LO16);
6317 relax_end ();
6318
6319 if (ex.X_add_number != 0)
6320 {
6321 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6322 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6323 ex.X_op = O_constant;
6324 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
6325 reg, reg, BFD_RELOC_LO16);
6326 }
6327 }
6328 }
6329 else if (mips_big_got)
6330 {
6331 expressionS ex;
6332
6333 /* This is the large GOT case. If this is a reference to an
6334 external symbol, we want
6335 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6336 addu $reg,$reg,$gp
6337 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
6338
6339 Otherwise, for a reference to a local symbol in old ABI, we want
6340 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6341 nop
6342 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6343 If there is a constant, it must be added in after.
6344
6345 In the NewABI, for local symbols, with or without offsets, we want:
6346 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6347 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6348 */
6349 if (HAVE_NEWABI)
6350 {
6351 ex.X_add_number = ep->X_add_number;
6352 ep->X_add_number = 0;
6353 relax_start (ep->X_add_symbol);
6354 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6355 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6356 reg, reg, mips_gp_register);
6357 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6358 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6359 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6360 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6361 else if (ex.X_add_number)
6362 {
6363 ex.X_op = O_constant;
6364 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6365 BFD_RELOC_LO16);
6366 }
6367
6368 ep->X_add_number = ex.X_add_number;
6369 relax_switch ();
6370 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6371 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6372 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6373 BFD_RELOC_MIPS_GOT_OFST);
6374 relax_end ();
6375 }
6376 else
6377 {
6378 ex.X_add_number = ep->X_add_number;
6379 ep->X_add_number = 0;
6380 relax_start (ep->X_add_symbol);
6381 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6382 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6383 reg, reg, mips_gp_register);
6384 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6385 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6386 relax_switch ();
6387 if (reg_needs_delay (mips_gp_register))
6388 {
6389 /* We need a nop before loading from $gp. This special
6390 check is required because the lui which starts the main
6391 instruction stream does not refer to $gp, and so will not
6392 insert the nop which may be required. */
6393 macro_build (NULL, "nop", "");
6394 }
6395 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6396 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6397 load_delay_nop ();
6398 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6399 BFD_RELOC_LO16);
6400 relax_end ();
6401
6402 if (ex.X_add_number != 0)
6403 {
6404 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6405 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6406 ex.X_op = O_constant;
6407 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6408 BFD_RELOC_LO16);
6409 }
6410 }
6411 }
6412 else
6413 abort ();
6414
6415 if (!mips_opts.at && *used_at == 1)
6416 as_bad (_("Macro used $at after \".set noat\""));
6417 }
6418
6419 /* Move the contents of register SOURCE into register DEST. */
6420
6421 static void
6422 move_register (int dest, int source)
6423 {
6424 /* Prefer to use a 16-bit microMIPS instruction unless the previous
6425 instruction specifically requires a 32-bit one. */
6426 if (mips_opts.micromips
6427 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
6428 macro_build (NULL, "move", "mp,mj", dest, source);
6429 else
6430 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
6431 dest, source, 0);
6432 }
6433
6434 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
6435 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
6436 The two alternatives are:
6437
6438 Global symbol Local sybmol
6439 ------------- ------------
6440 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
6441 ... ...
6442 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
6443
6444 load_got_offset emits the first instruction and add_got_offset
6445 emits the second for a 16-bit offset or add_got_offset_hilo emits
6446 a sequence to add a 32-bit offset using a scratch register. */
6447
6448 static void
6449 load_got_offset (int dest, expressionS *local)
6450 {
6451 expressionS global;
6452
6453 global = *local;
6454 global.X_add_number = 0;
6455
6456 relax_start (local->X_add_symbol);
6457 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6458 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6459 relax_switch ();
6460 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6461 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6462 relax_end ();
6463 }
6464
6465 static void
6466 add_got_offset (int dest, expressionS *local)
6467 {
6468 expressionS global;
6469
6470 global.X_op = O_constant;
6471 global.X_op_symbol = NULL;
6472 global.X_add_symbol = NULL;
6473 global.X_add_number = local->X_add_number;
6474
6475 relax_start (local->X_add_symbol);
6476 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
6477 dest, dest, BFD_RELOC_LO16);
6478 relax_switch ();
6479 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
6480 relax_end ();
6481 }
6482
6483 static void
6484 add_got_offset_hilo (int dest, expressionS *local, int tmp)
6485 {
6486 expressionS global;
6487 int hold_mips_optimize;
6488
6489 global.X_op = O_constant;
6490 global.X_op_symbol = NULL;
6491 global.X_add_symbol = NULL;
6492 global.X_add_number = local->X_add_number;
6493
6494 relax_start (local->X_add_symbol);
6495 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
6496 relax_switch ();
6497 /* Set mips_optimize around the lui instruction to avoid
6498 inserting an unnecessary nop after the lw. */
6499 hold_mips_optimize = mips_optimize;
6500 mips_optimize = 2;
6501 macro_build_lui (&global, tmp);
6502 mips_optimize = hold_mips_optimize;
6503 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
6504 relax_end ();
6505
6506 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
6507 }
6508
6509 /* Emit a sequence of instructions to emulate a branch likely operation.
6510 BR is an ordinary branch corresponding to one to be emulated. BRNEG
6511 is its complementing branch with the original condition negated.
6512 CALL is set if the original branch specified the link operation.
6513 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
6514
6515 Code like this is produced in the noreorder mode:
6516
6517 BRNEG <args>, 1f
6518 nop
6519 b <sym>
6520 delay slot (executed only if branch taken)
6521 1:
6522
6523 or, if CALL is set:
6524
6525 BRNEG <args>, 1f
6526 nop
6527 bal <sym>
6528 delay slot (executed only if branch taken)
6529 1:
6530
6531 In the reorder mode the delay slot would be filled with a nop anyway,
6532 so code produced is simply:
6533
6534 BR <args>, <sym>
6535 nop
6536
6537 This function is used when producing code for the microMIPS ASE that
6538 does not implement branch likely instructions in hardware. */
6539
6540 static void
6541 macro_build_branch_likely (const char *br, const char *brneg,
6542 int call, expressionS *ep, const char *fmt,
6543 unsigned int sreg, unsigned int treg)
6544 {
6545 int noreorder = mips_opts.noreorder;
6546 expressionS expr1;
6547
6548 gas_assert (mips_opts.micromips);
6549 start_noreorder ();
6550 if (noreorder)
6551 {
6552 micromips_label_expr (&expr1);
6553 macro_build (&expr1, brneg, fmt, sreg, treg);
6554 macro_build (NULL, "nop", "");
6555 macro_build (ep, call ? "bal" : "b", "p");
6556
6557 /* Set to true so that append_insn adds a label. */
6558 emit_branch_likely_macro = TRUE;
6559 }
6560 else
6561 {
6562 macro_build (ep, br, fmt, sreg, treg);
6563 macro_build (NULL, "nop", "");
6564 }
6565 end_noreorder ();
6566 }
6567
6568 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
6569 the condition code tested. EP specifies the branch target. */
6570
6571 static void
6572 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
6573 {
6574 const int call = 0;
6575 const char *brneg;
6576 const char *br;
6577
6578 switch (type)
6579 {
6580 case M_BC1FL:
6581 br = "bc1f";
6582 brneg = "bc1t";
6583 break;
6584 case M_BC1TL:
6585 br = "bc1t";
6586 brneg = "bc1f";
6587 break;
6588 case M_BC2FL:
6589 br = "bc2f";
6590 brneg = "bc2t";
6591 break;
6592 case M_BC2TL:
6593 br = "bc2t";
6594 brneg = "bc2f";
6595 break;
6596 default:
6597 abort ();
6598 }
6599 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
6600 }
6601
6602 /* Emit a two-argument branch macro specified by TYPE, using SREG as
6603 the register tested. EP specifies the branch target. */
6604
6605 static void
6606 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
6607 {
6608 const char *brneg = NULL;
6609 const char *br;
6610 int call = 0;
6611
6612 switch (type)
6613 {
6614 case M_BGEZ:
6615 br = "bgez";
6616 break;
6617 case M_BGEZL:
6618 br = mips_opts.micromips ? "bgez" : "bgezl";
6619 brneg = "bltz";
6620 break;
6621 case M_BGEZALL:
6622 gas_assert (mips_opts.micromips);
6623 br = "bgezals";
6624 brneg = "bltz";
6625 call = 1;
6626 break;
6627 case M_BGTZ:
6628 br = "bgtz";
6629 break;
6630 case M_BGTZL:
6631 br = mips_opts.micromips ? "bgtz" : "bgtzl";
6632 brneg = "blez";
6633 break;
6634 case M_BLEZ:
6635 br = "blez";
6636 break;
6637 case M_BLEZL:
6638 br = mips_opts.micromips ? "blez" : "blezl";
6639 brneg = "bgtz";
6640 break;
6641 case M_BLTZ:
6642 br = "bltz";
6643 break;
6644 case M_BLTZL:
6645 br = mips_opts.micromips ? "bltz" : "bltzl";
6646 brneg = "bgez";
6647 break;
6648 case M_BLTZALL:
6649 gas_assert (mips_opts.micromips);
6650 br = "bltzals";
6651 brneg = "bgez";
6652 call = 1;
6653 break;
6654 default:
6655 abort ();
6656 }
6657 if (mips_opts.micromips && brneg)
6658 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
6659 else
6660 macro_build (ep, br, "s,p", sreg);
6661 }
6662
6663 /* Emit a three-argument branch macro specified by TYPE, using SREG and
6664 TREG as the registers tested. EP specifies the branch target. */
6665
6666 static void
6667 macro_build_branch_rsrt (int type, expressionS *ep,
6668 unsigned int sreg, unsigned int treg)
6669 {
6670 const char *brneg = NULL;
6671 const int call = 0;
6672 const char *br;
6673
6674 switch (type)
6675 {
6676 case M_BEQ:
6677 case M_BEQ_I:
6678 br = "beq";
6679 break;
6680 case M_BEQL:
6681 case M_BEQL_I:
6682 br = mips_opts.micromips ? "beq" : "beql";
6683 brneg = "bne";
6684 break;
6685 case M_BNE:
6686 case M_BNE_I:
6687 br = "bne";
6688 break;
6689 case M_BNEL:
6690 case M_BNEL_I:
6691 br = mips_opts.micromips ? "bne" : "bnel";
6692 brneg = "beq";
6693 break;
6694 default:
6695 abort ();
6696 }
6697 if (mips_opts.micromips && brneg)
6698 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
6699 else
6700 macro_build (ep, br, "s,t,p", sreg, treg);
6701 }
6702
6703 /*
6704 * Build macros
6705 * This routine implements the seemingly endless macro or synthesized
6706 * instructions and addressing modes in the mips assembly language. Many
6707 * of these macros are simple and are similar to each other. These could
6708 * probably be handled by some kind of table or grammar approach instead of
6709 * this verbose method. Others are not simple macros but are more like
6710 * optimizing code generation.
6711 * One interesting optimization is when several store macros appear
6712 * consecutively that would load AT with the upper half of the same address.
6713 * The ensuing load upper instructions are ommited. This implies some kind
6714 * of global optimization. We currently only optimize within a single macro.
6715 * For many of the load and store macros if the address is specified as a
6716 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
6717 * first load register 'at' with zero and use it as the base register. The
6718 * mips assembler simply uses register $zero. Just one tiny optimization
6719 * we're missing.
6720 */
6721 static void
6722 macro (struct mips_cl_insn *ip)
6723 {
6724 unsigned int treg, sreg, dreg, breg;
6725 unsigned int tempreg;
6726 int mask;
6727 int used_at = 0;
6728 expressionS label_expr;
6729 expressionS expr1;
6730 expressionS *ep;
6731 const char *s;
6732 const char *s2;
6733 const char *fmt;
6734 int likely = 0;
6735 int coproc = 0;
6736 int offbits = 16;
6737 int call = 0;
6738 int jals = 0;
6739 int dbl = 0;
6740 int imm = 0;
6741 int ust = 0;
6742 int lp = 0;
6743 int ab = 0;
6744 int off;
6745 offsetT maxnum;
6746 bfd_reloc_code_real_type r;
6747 int hold_mips_optimize;
6748
6749 gas_assert (! mips_opts.mips16);
6750
6751 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
6752 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
6753 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
6754 mask = ip->insn_mo->mask;
6755
6756 label_expr.X_op = O_constant;
6757 label_expr.X_op_symbol = NULL;
6758 label_expr.X_add_symbol = NULL;
6759 label_expr.X_add_number = 0;
6760
6761 expr1.X_op = O_constant;
6762 expr1.X_op_symbol = NULL;
6763 expr1.X_add_symbol = NULL;
6764 expr1.X_add_number = 1;
6765
6766 switch (mask)
6767 {
6768 case M_DABS:
6769 dbl = 1;
6770 case M_ABS:
6771 /* bgez $a0,1f
6772 move v0,$a0
6773 sub v0,$zero,$a0
6774 1:
6775 */
6776
6777 start_noreorder ();
6778
6779 if (mips_opts.micromips)
6780 micromips_label_expr (&label_expr);
6781 else
6782 label_expr.X_add_number = 8;
6783 macro_build (&label_expr, "bgez", "s,p", sreg);
6784 if (dreg == sreg)
6785 macro_build (NULL, "nop", "");
6786 else
6787 move_register (dreg, sreg);
6788 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
6789 if (mips_opts.micromips)
6790 micromips_add_label ();
6791
6792 end_noreorder ();
6793 break;
6794
6795 case M_ADD_I:
6796 s = "addi";
6797 s2 = "add";
6798 goto do_addi;
6799 case M_ADDU_I:
6800 s = "addiu";
6801 s2 = "addu";
6802 goto do_addi;
6803 case M_DADD_I:
6804 dbl = 1;
6805 s = "daddi";
6806 s2 = "dadd";
6807 if (!mips_opts.micromips)
6808 goto do_addi;
6809 if (imm_expr.X_op == O_constant
6810 && imm_expr.X_add_number >= -0x200
6811 && imm_expr.X_add_number < 0x200)
6812 {
6813 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
6814 break;
6815 }
6816 goto do_addi_i;
6817 case M_DADDU_I:
6818 dbl = 1;
6819 s = "daddiu";
6820 s2 = "daddu";
6821 do_addi:
6822 if (imm_expr.X_op == O_constant
6823 && imm_expr.X_add_number >= -0x8000
6824 && imm_expr.X_add_number < 0x8000)
6825 {
6826 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
6827 break;
6828 }
6829 do_addi_i:
6830 used_at = 1;
6831 load_register (AT, &imm_expr, dbl);
6832 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6833 break;
6834
6835 case M_AND_I:
6836 s = "andi";
6837 s2 = "and";
6838 goto do_bit;
6839 case M_OR_I:
6840 s = "ori";
6841 s2 = "or";
6842 goto do_bit;
6843 case M_NOR_I:
6844 s = "";
6845 s2 = "nor";
6846 goto do_bit;
6847 case M_XOR_I:
6848 s = "xori";
6849 s2 = "xor";
6850 do_bit:
6851 if (imm_expr.X_op == O_constant
6852 && imm_expr.X_add_number >= 0
6853 && imm_expr.X_add_number < 0x10000)
6854 {
6855 if (mask != M_NOR_I)
6856 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
6857 else
6858 {
6859 macro_build (&imm_expr, "ori", "t,r,i",
6860 treg, sreg, BFD_RELOC_LO16);
6861 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
6862 }
6863 break;
6864 }
6865
6866 used_at = 1;
6867 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
6868 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6869 break;
6870
6871 case M_BALIGN:
6872 switch (imm_expr.X_add_number)
6873 {
6874 case 0:
6875 macro_build (NULL, "nop", "");
6876 break;
6877 case 2:
6878 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
6879 break;
6880 case 1:
6881 case 3:
6882 macro_build (NULL, "balign", "t,s,2", treg, sreg,
6883 (int) imm_expr.X_add_number);
6884 break;
6885 default:
6886 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
6887 (unsigned long) imm_expr.X_add_number);
6888 break;
6889 }
6890 break;
6891
6892 case M_BC1FL:
6893 case M_BC1TL:
6894 case M_BC2FL:
6895 case M_BC2TL:
6896 gas_assert (mips_opts.micromips);
6897 macro_build_branch_ccl (mask, &offset_expr,
6898 EXTRACT_OPERAND (1, BCC, *ip));
6899 break;
6900
6901 case M_BEQ_I:
6902 case M_BEQL_I:
6903 case M_BNE_I:
6904 case M_BNEL_I:
6905 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6906 treg = 0;
6907 else
6908 {
6909 treg = AT;
6910 used_at = 1;
6911 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
6912 }
6913 /* Fall through. */
6914 case M_BEQL:
6915 case M_BNEL:
6916 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
6917 break;
6918
6919 case M_BGEL:
6920 likely = 1;
6921 case M_BGE:
6922 if (treg == 0)
6923 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
6924 else if (sreg == 0)
6925 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
6926 else
6927 {
6928 used_at = 1;
6929 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6930 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6931 &offset_expr, AT, ZERO);
6932 }
6933 break;
6934
6935 case M_BGEZL:
6936 case M_BGEZALL:
6937 case M_BGTZL:
6938 case M_BLEZL:
6939 case M_BLTZL:
6940 case M_BLTZALL:
6941 macro_build_branch_rs (mask, &offset_expr, sreg);
6942 break;
6943
6944 case M_BGTL_I:
6945 likely = 1;
6946 case M_BGT_I:
6947 /* Check for > max integer. */
6948 maxnum = 0x7fffffff;
6949 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6950 {
6951 maxnum <<= 16;
6952 maxnum |= 0xffff;
6953 maxnum <<= 16;
6954 maxnum |= 0xffff;
6955 }
6956 if (imm_expr.X_op == O_constant
6957 && imm_expr.X_add_number >= maxnum
6958 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6959 {
6960 do_false:
6961 /* Result is always false. */
6962 if (! likely)
6963 macro_build (NULL, "nop", "");
6964 else
6965 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
6966 break;
6967 }
6968 if (imm_expr.X_op != O_constant)
6969 as_bad (_("Unsupported large constant"));
6970 ++imm_expr.X_add_number;
6971 /* FALLTHROUGH */
6972 case M_BGE_I:
6973 case M_BGEL_I:
6974 if (mask == M_BGEL_I)
6975 likely = 1;
6976 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6977 {
6978 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
6979 &offset_expr, sreg);
6980 break;
6981 }
6982 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6983 {
6984 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
6985 &offset_expr, sreg);
6986 break;
6987 }
6988 maxnum = 0x7fffffff;
6989 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6990 {
6991 maxnum <<= 16;
6992 maxnum |= 0xffff;
6993 maxnum <<= 16;
6994 maxnum |= 0xffff;
6995 }
6996 maxnum = - maxnum - 1;
6997 if (imm_expr.X_op == O_constant
6998 && imm_expr.X_add_number <= maxnum
6999 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
7000 {
7001 do_true:
7002 /* result is always true */
7003 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
7004 macro_build (&offset_expr, "b", "p");
7005 break;
7006 }
7007 used_at = 1;
7008 set_at (sreg, 0);
7009 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7010 &offset_expr, AT, ZERO);
7011 break;
7012
7013 case M_BGEUL:
7014 likely = 1;
7015 case M_BGEU:
7016 if (treg == 0)
7017 goto do_true;
7018 else if (sreg == 0)
7019 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7020 &offset_expr, ZERO, treg);
7021 else
7022 {
7023 used_at = 1;
7024 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
7025 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7026 &offset_expr, AT, ZERO);
7027 }
7028 break;
7029
7030 case M_BGTUL_I:
7031 likely = 1;
7032 case M_BGTU_I:
7033 if (sreg == 0
7034 || (HAVE_32BIT_GPRS
7035 && imm_expr.X_op == O_constant
7036 && imm_expr.X_add_number == -1))
7037 goto do_false;
7038 if (imm_expr.X_op != O_constant)
7039 as_bad (_("Unsupported large constant"));
7040 ++imm_expr.X_add_number;
7041 /* FALLTHROUGH */
7042 case M_BGEU_I:
7043 case M_BGEUL_I:
7044 if (mask == M_BGEUL_I)
7045 likely = 1;
7046 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7047 goto do_true;
7048 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7049 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7050 &offset_expr, sreg, ZERO);
7051 else
7052 {
7053 used_at = 1;
7054 set_at (sreg, 1);
7055 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7056 &offset_expr, AT, ZERO);
7057 }
7058 break;
7059
7060 case M_BGTL:
7061 likely = 1;
7062 case M_BGT:
7063 if (treg == 0)
7064 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
7065 else if (sreg == 0)
7066 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
7067 else
7068 {
7069 used_at = 1;
7070 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
7071 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7072 &offset_expr, AT, ZERO);
7073 }
7074 break;
7075
7076 case M_BGTUL:
7077 likely = 1;
7078 case M_BGTU:
7079 if (treg == 0)
7080 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7081 &offset_expr, sreg, ZERO);
7082 else if (sreg == 0)
7083 goto do_false;
7084 else
7085 {
7086 used_at = 1;
7087 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
7088 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7089 &offset_expr, AT, ZERO);
7090 }
7091 break;
7092
7093 case M_BLEL:
7094 likely = 1;
7095 case M_BLE:
7096 if (treg == 0)
7097 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
7098 else if (sreg == 0)
7099 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
7100 else
7101 {
7102 used_at = 1;
7103 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
7104 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7105 &offset_expr, AT, ZERO);
7106 }
7107 break;
7108
7109 case M_BLEL_I:
7110 likely = 1;
7111 case M_BLE_I:
7112 maxnum = 0x7fffffff;
7113 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
7114 {
7115 maxnum <<= 16;
7116 maxnum |= 0xffff;
7117 maxnum <<= 16;
7118 maxnum |= 0xffff;
7119 }
7120 if (imm_expr.X_op == O_constant
7121 && imm_expr.X_add_number >= maxnum
7122 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
7123 goto do_true;
7124 if (imm_expr.X_op != O_constant)
7125 as_bad (_("Unsupported large constant"));
7126 ++imm_expr.X_add_number;
7127 /* FALLTHROUGH */
7128 case M_BLT_I:
7129 case M_BLTL_I:
7130 if (mask == M_BLTL_I)
7131 likely = 1;
7132 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7133 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
7134 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7135 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
7136 else
7137 {
7138 used_at = 1;
7139 set_at (sreg, 0);
7140 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7141 &offset_expr, AT, ZERO);
7142 }
7143 break;
7144
7145 case M_BLEUL:
7146 likely = 1;
7147 case M_BLEU:
7148 if (treg == 0)
7149 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7150 &offset_expr, sreg, ZERO);
7151 else if (sreg == 0)
7152 goto do_true;
7153 else
7154 {
7155 used_at = 1;
7156 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
7157 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7158 &offset_expr, AT, ZERO);
7159 }
7160 break;
7161
7162 case M_BLEUL_I:
7163 likely = 1;
7164 case M_BLEU_I:
7165 if (sreg == 0
7166 || (HAVE_32BIT_GPRS
7167 && imm_expr.X_op == O_constant
7168 && imm_expr.X_add_number == -1))
7169 goto do_true;
7170 if (imm_expr.X_op != O_constant)
7171 as_bad (_("Unsupported large constant"));
7172 ++imm_expr.X_add_number;
7173 /* FALLTHROUGH */
7174 case M_BLTU_I:
7175 case M_BLTUL_I:
7176 if (mask == M_BLTUL_I)
7177 likely = 1;
7178 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7179 goto do_false;
7180 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7181 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
7182 &offset_expr, sreg, ZERO);
7183 else
7184 {
7185 used_at = 1;
7186 set_at (sreg, 1);
7187 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7188 &offset_expr, AT, ZERO);
7189 }
7190 break;
7191
7192 case M_BLTL:
7193 likely = 1;
7194 case M_BLT:
7195 if (treg == 0)
7196 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
7197 else if (sreg == 0)
7198 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
7199 else
7200 {
7201 used_at = 1;
7202 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
7203 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7204 &offset_expr, AT, ZERO);
7205 }
7206 break;
7207
7208 case M_BLTUL:
7209 likely = 1;
7210 case M_BLTU:
7211 if (treg == 0)
7212 goto do_false;
7213 else if (sreg == 0)
7214 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7215 &offset_expr, ZERO, treg);
7216 else
7217 {
7218 used_at = 1;
7219 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
7220 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
7221 &offset_expr, AT, ZERO);
7222 }
7223 break;
7224
7225 case M_DEXT:
7226 {
7227 /* Use unsigned arithmetic. */
7228 addressT pos;
7229 addressT size;
7230
7231 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
7232 {
7233 as_bad (_("Unsupported large constant"));
7234 pos = size = 1;
7235 }
7236 else
7237 {
7238 pos = imm_expr.X_add_number;
7239 size = imm2_expr.X_add_number;
7240 }
7241
7242 if (pos > 63)
7243 {
7244 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
7245 pos = 1;
7246 }
7247 if (size == 0 || size > 64 || (pos + size - 1) > 63)
7248 {
7249 as_bad (_("Improper extract size (%lu, position %lu)"),
7250 (unsigned long) size, (unsigned long) pos);
7251 size = 1;
7252 }
7253
7254 if (size <= 32 && pos < 32)
7255 {
7256 s = "dext";
7257 fmt = "t,r,+A,+C";
7258 }
7259 else if (size <= 32)
7260 {
7261 s = "dextu";
7262 fmt = "t,r,+E,+H";
7263 }
7264 else
7265 {
7266 s = "dextm";
7267 fmt = "t,r,+A,+G";
7268 }
7269 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
7270 (int) (size - 1));
7271 }
7272 break;
7273
7274 case M_DINS:
7275 {
7276 /* Use unsigned arithmetic. */
7277 addressT pos;
7278 addressT size;
7279
7280 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
7281 {
7282 as_bad (_("Unsupported large constant"));
7283 pos = size = 1;
7284 }
7285 else
7286 {
7287 pos = imm_expr.X_add_number;
7288 size = imm2_expr.X_add_number;
7289 }
7290
7291 if (pos > 63)
7292 {
7293 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
7294 pos = 1;
7295 }
7296 if (size == 0 || size > 64 || (pos + size - 1) > 63)
7297 {
7298 as_bad (_("Improper insert size (%lu, position %lu)"),
7299 (unsigned long) size, (unsigned long) pos);
7300 size = 1;
7301 }
7302
7303 if (pos < 32 && (pos + size - 1) < 32)
7304 {
7305 s = "dins";
7306 fmt = "t,r,+A,+B";
7307 }
7308 else if (pos >= 32)
7309 {
7310 s = "dinsu";
7311 fmt = "t,r,+E,+F";
7312 }
7313 else
7314 {
7315 s = "dinsm";
7316 fmt = "t,r,+A,+F";
7317 }
7318 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
7319 (int) (pos + size - 1));
7320 }
7321 break;
7322
7323 case M_DDIV_3:
7324 dbl = 1;
7325 case M_DIV_3:
7326 s = "mflo";
7327 goto do_div3;
7328 case M_DREM_3:
7329 dbl = 1;
7330 case M_REM_3:
7331 s = "mfhi";
7332 do_div3:
7333 if (treg == 0)
7334 {
7335 as_warn (_("Divide by zero."));
7336 if (mips_trap)
7337 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7338 else
7339 macro_build (NULL, "break", BRK_FMT, 7);
7340 break;
7341 }
7342
7343 start_noreorder ();
7344 if (mips_trap)
7345 {
7346 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7347 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7348 }
7349 else
7350 {
7351 if (mips_opts.micromips)
7352 micromips_label_expr (&label_expr);
7353 else
7354 label_expr.X_add_number = 8;
7355 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7356 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7357 macro_build (NULL, "break", BRK_FMT, 7);
7358 if (mips_opts.micromips)
7359 micromips_add_label ();
7360 }
7361 expr1.X_add_number = -1;
7362 used_at = 1;
7363 load_register (AT, &expr1, dbl);
7364 if (mips_opts.micromips)
7365 micromips_label_expr (&label_expr);
7366 else
7367 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
7368 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
7369 if (dbl)
7370 {
7371 expr1.X_add_number = 1;
7372 load_register (AT, &expr1, dbl);
7373 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
7374 }
7375 else
7376 {
7377 expr1.X_add_number = 0x80000000;
7378 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
7379 }
7380 if (mips_trap)
7381 {
7382 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
7383 /* We want to close the noreorder block as soon as possible, so
7384 that later insns are available for delay slot filling. */
7385 end_noreorder ();
7386 }
7387 else
7388 {
7389 if (mips_opts.micromips)
7390 micromips_label_expr (&label_expr);
7391 else
7392 label_expr.X_add_number = 8;
7393 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
7394 macro_build (NULL, "nop", "");
7395
7396 /* We want to close the noreorder block as soon as possible, so
7397 that later insns are available for delay slot filling. */
7398 end_noreorder ();
7399
7400 macro_build (NULL, "break", BRK_FMT, 6);
7401 }
7402 if (mips_opts.micromips)
7403 micromips_add_label ();
7404 macro_build (NULL, s, MFHL_FMT, dreg);
7405 break;
7406
7407 case M_DIV_3I:
7408 s = "div";
7409 s2 = "mflo";
7410 goto do_divi;
7411 case M_DIVU_3I:
7412 s = "divu";
7413 s2 = "mflo";
7414 goto do_divi;
7415 case M_REM_3I:
7416 s = "div";
7417 s2 = "mfhi";
7418 goto do_divi;
7419 case M_REMU_3I:
7420 s = "divu";
7421 s2 = "mfhi";
7422 goto do_divi;
7423 case M_DDIV_3I:
7424 dbl = 1;
7425 s = "ddiv";
7426 s2 = "mflo";
7427 goto do_divi;
7428 case M_DDIVU_3I:
7429 dbl = 1;
7430 s = "ddivu";
7431 s2 = "mflo";
7432 goto do_divi;
7433 case M_DREM_3I:
7434 dbl = 1;
7435 s = "ddiv";
7436 s2 = "mfhi";
7437 goto do_divi;
7438 case M_DREMU_3I:
7439 dbl = 1;
7440 s = "ddivu";
7441 s2 = "mfhi";
7442 do_divi:
7443 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7444 {
7445 as_warn (_("Divide by zero."));
7446 if (mips_trap)
7447 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7448 else
7449 macro_build (NULL, "break", BRK_FMT, 7);
7450 break;
7451 }
7452 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7453 {
7454 if (strcmp (s2, "mflo") == 0)
7455 move_register (dreg, sreg);
7456 else
7457 move_register (dreg, ZERO);
7458 break;
7459 }
7460 if (imm_expr.X_op == O_constant
7461 && imm_expr.X_add_number == -1
7462 && s[strlen (s) - 1] != 'u')
7463 {
7464 if (strcmp (s2, "mflo") == 0)
7465 {
7466 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
7467 }
7468 else
7469 move_register (dreg, ZERO);
7470 break;
7471 }
7472
7473 used_at = 1;
7474 load_register (AT, &imm_expr, dbl);
7475 macro_build (NULL, s, "z,s,t", sreg, AT);
7476 macro_build (NULL, s2, MFHL_FMT, dreg);
7477 break;
7478
7479 case M_DIVU_3:
7480 s = "divu";
7481 s2 = "mflo";
7482 goto do_divu3;
7483 case M_REMU_3:
7484 s = "divu";
7485 s2 = "mfhi";
7486 goto do_divu3;
7487 case M_DDIVU_3:
7488 s = "ddivu";
7489 s2 = "mflo";
7490 goto do_divu3;
7491 case M_DREMU_3:
7492 s = "ddivu";
7493 s2 = "mfhi";
7494 do_divu3:
7495 start_noreorder ();
7496 if (mips_trap)
7497 {
7498 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7499 macro_build (NULL, s, "z,s,t", sreg, treg);
7500 /* We want to close the noreorder block as soon as possible, so
7501 that later insns are available for delay slot filling. */
7502 end_noreorder ();
7503 }
7504 else
7505 {
7506 if (mips_opts.micromips)
7507 micromips_label_expr (&label_expr);
7508 else
7509 label_expr.X_add_number = 8;
7510 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7511 macro_build (NULL, s, "z,s,t", sreg, treg);
7512
7513 /* We want to close the noreorder block as soon as possible, so
7514 that later insns are available for delay slot filling. */
7515 end_noreorder ();
7516 macro_build (NULL, "break", BRK_FMT, 7);
7517 if (mips_opts.micromips)
7518 micromips_add_label ();
7519 }
7520 macro_build (NULL, s2, MFHL_FMT, dreg);
7521 break;
7522
7523 case M_DLCA_AB:
7524 dbl = 1;
7525 case M_LCA_AB:
7526 call = 1;
7527 goto do_la;
7528 case M_DLA_AB:
7529 dbl = 1;
7530 case M_LA_AB:
7531 do_la:
7532 /* Load the address of a symbol into a register. If breg is not
7533 zero, we then add a base register to it. */
7534
7535 if (dbl && HAVE_32BIT_GPRS)
7536 as_warn (_("dla used to load 32-bit register"));
7537
7538 if (!dbl && HAVE_64BIT_OBJECTS)
7539 as_warn (_("la used to load 64-bit address"));
7540
7541 if (offset_expr.X_op == O_constant
7542 && offset_expr.X_add_number >= -0x8000
7543 && offset_expr.X_add_number < 0x8000)
7544 {
7545 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
7546 "t,r,j", treg, sreg, BFD_RELOC_LO16);
7547 break;
7548 }
7549
7550 if (mips_opts.at && (treg == breg))
7551 {
7552 tempreg = AT;
7553 used_at = 1;
7554 }
7555 else
7556 {
7557 tempreg = treg;
7558 }
7559
7560 if (offset_expr.X_op != O_symbol
7561 && offset_expr.X_op != O_constant)
7562 {
7563 as_bad (_("Expression too complex"));
7564 offset_expr.X_op = O_constant;
7565 }
7566
7567 if (offset_expr.X_op == O_constant)
7568 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
7569 else if (mips_pic == NO_PIC)
7570 {
7571 /* If this is a reference to a GP relative symbol, we want
7572 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
7573 Otherwise we want
7574 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
7575 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7576 If we have a constant, we need two instructions anyhow,
7577 so we may as well always use the latter form.
7578
7579 With 64bit address space and a usable $at we want
7580 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7581 lui $at,<sym> (BFD_RELOC_HI16_S)
7582 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7583 daddiu $at,<sym> (BFD_RELOC_LO16)
7584 dsll32 $tempreg,0
7585 daddu $tempreg,$tempreg,$at
7586
7587 If $at is already in use, we use a path which is suboptimal
7588 on superscalar processors.
7589 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7590 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7591 dsll $tempreg,16
7592 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
7593 dsll $tempreg,16
7594 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
7595
7596 For GP relative symbols in 64bit address space we can use
7597 the same sequence as in 32bit address space. */
7598 if (HAVE_64BIT_SYMBOLS)
7599 {
7600 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7601 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7602 {
7603 relax_start (offset_expr.X_add_symbol);
7604 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7605 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7606 relax_switch ();
7607 }
7608
7609 if (used_at == 0 && mips_opts.at)
7610 {
7611 macro_build (&offset_expr, "lui", LUI_FMT,
7612 tempreg, BFD_RELOC_MIPS_HIGHEST);
7613 macro_build (&offset_expr, "lui", LUI_FMT,
7614 AT, BFD_RELOC_HI16_S);
7615 macro_build (&offset_expr, "daddiu", "t,r,j",
7616 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7617 macro_build (&offset_expr, "daddiu", "t,r,j",
7618 AT, AT, BFD_RELOC_LO16);
7619 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
7620 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
7621 used_at = 1;
7622 }
7623 else
7624 {
7625 macro_build (&offset_expr, "lui", LUI_FMT,
7626 tempreg, BFD_RELOC_MIPS_HIGHEST);
7627 macro_build (&offset_expr, "daddiu", "t,r,j",
7628 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7629 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7630 macro_build (&offset_expr, "daddiu", "t,r,j",
7631 tempreg, tempreg, BFD_RELOC_HI16_S);
7632 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7633 macro_build (&offset_expr, "daddiu", "t,r,j",
7634 tempreg, tempreg, BFD_RELOC_LO16);
7635 }
7636
7637 if (mips_relax.sequence)
7638 relax_end ();
7639 }
7640 else
7641 {
7642 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7643 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7644 {
7645 relax_start (offset_expr.X_add_symbol);
7646 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7647 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7648 relax_switch ();
7649 }
7650 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7651 as_bad (_("Offset too large"));
7652 macro_build_lui (&offset_expr, tempreg);
7653 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7654 tempreg, tempreg, BFD_RELOC_LO16);
7655 if (mips_relax.sequence)
7656 relax_end ();
7657 }
7658 }
7659 else if (!mips_big_got && !HAVE_NEWABI)
7660 {
7661 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7662
7663 /* If this is a reference to an external symbol, and there
7664 is no constant, we want
7665 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7666 or for lca or if tempreg is PIC_CALL_REG
7667 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7668 For a local symbol, we want
7669 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7670 nop
7671 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7672
7673 If we have a small constant, and this is a reference to
7674 an external symbol, we want
7675 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7676 nop
7677 addiu $tempreg,$tempreg,<constant>
7678 For a local symbol, we want the same instruction
7679 sequence, but we output a BFD_RELOC_LO16 reloc on the
7680 addiu instruction.
7681
7682 If we have a large constant, and this is a reference to
7683 an external symbol, we want
7684 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7685 lui $at,<hiconstant>
7686 addiu $at,$at,<loconstant>
7687 addu $tempreg,$tempreg,$at
7688 For a local symbol, we want the same instruction
7689 sequence, but we output a BFD_RELOC_LO16 reloc on the
7690 addiu instruction.
7691 */
7692
7693 if (offset_expr.X_add_number == 0)
7694 {
7695 if (mips_pic == SVR4_PIC
7696 && breg == 0
7697 && (call || tempreg == PIC_CALL_REG))
7698 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
7699
7700 relax_start (offset_expr.X_add_symbol);
7701 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7702 lw_reloc_type, mips_gp_register);
7703 if (breg != 0)
7704 {
7705 /* We're going to put in an addu instruction using
7706 tempreg, so we may as well insert the nop right
7707 now. */
7708 load_delay_nop ();
7709 }
7710 relax_switch ();
7711 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7712 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
7713 load_delay_nop ();
7714 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7715 tempreg, tempreg, BFD_RELOC_LO16);
7716 relax_end ();
7717 /* FIXME: If breg == 0, and the next instruction uses
7718 $tempreg, then if this variant case is used an extra
7719 nop will be generated. */
7720 }
7721 else if (offset_expr.X_add_number >= -0x8000
7722 && offset_expr.X_add_number < 0x8000)
7723 {
7724 load_got_offset (tempreg, &offset_expr);
7725 load_delay_nop ();
7726 add_got_offset (tempreg, &offset_expr);
7727 }
7728 else
7729 {
7730 expr1.X_add_number = offset_expr.X_add_number;
7731 offset_expr.X_add_number =
7732 SEXT_16BIT (offset_expr.X_add_number);
7733 load_got_offset (tempreg, &offset_expr);
7734 offset_expr.X_add_number = expr1.X_add_number;
7735 /* If we are going to add in a base register, and the
7736 target register and the base register are the same,
7737 then we are using AT as a temporary register. Since
7738 we want to load the constant into AT, we add our
7739 current AT (from the global offset table) and the
7740 register into the register now, and pretend we were
7741 not using a base register. */
7742 if (breg == treg)
7743 {
7744 load_delay_nop ();
7745 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7746 treg, AT, breg);
7747 breg = 0;
7748 tempreg = treg;
7749 }
7750 add_got_offset_hilo (tempreg, &offset_expr, AT);
7751 used_at = 1;
7752 }
7753 }
7754 else if (!mips_big_got && HAVE_NEWABI)
7755 {
7756 int add_breg_early = 0;
7757
7758 /* If this is a reference to an external, and there is no
7759 constant, or local symbol (*), with or without a
7760 constant, we want
7761 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7762 or for lca or if tempreg is PIC_CALL_REG
7763 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7764
7765 If we have a small constant, and this is a reference to
7766 an external symbol, we want
7767 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7768 addiu $tempreg,$tempreg,<constant>
7769
7770 If we have a large constant, and this is a reference to
7771 an external symbol, we want
7772 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7773 lui $at,<hiconstant>
7774 addiu $at,$at,<loconstant>
7775 addu $tempreg,$tempreg,$at
7776
7777 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
7778 local symbols, even though it introduces an additional
7779 instruction. */
7780
7781 if (offset_expr.X_add_number)
7782 {
7783 expr1.X_add_number = offset_expr.X_add_number;
7784 offset_expr.X_add_number = 0;
7785
7786 relax_start (offset_expr.X_add_symbol);
7787 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7788 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7789
7790 if (expr1.X_add_number >= -0x8000
7791 && expr1.X_add_number < 0x8000)
7792 {
7793 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7794 tempreg, tempreg, BFD_RELOC_LO16);
7795 }
7796 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7797 {
7798 /* If we are going to add in a base register, and the
7799 target register and the base register are the same,
7800 then we are using AT as a temporary register. Since
7801 we want to load the constant into AT, we add our
7802 current AT (from the global offset table) and the
7803 register into the register now, and pretend we were
7804 not using a base register. */
7805 if (breg != treg)
7806 dreg = tempreg;
7807 else
7808 {
7809 gas_assert (tempreg == AT);
7810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7811 treg, AT, breg);
7812 dreg = treg;
7813 add_breg_early = 1;
7814 }
7815
7816 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7817 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7818 dreg, dreg, AT);
7819
7820 used_at = 1;
7821 }
7822 else
7823 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7824
7825 relax_switch ();
7826 offset_expr.X_add_number = expr1.X_add_number;
7827
7828 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7829 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7830 if (add_breg_early)
7831 {
7832 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7833 treg, tempreg, breg);
7834 breg = 0;
7835 tempreg = treg;
7836 }
7837 relax_end ();
7838 }
7839 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
7840 {
7841 relax_start (offset_expr.X_add_symbol);
7842 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7843 BFD_RELOC_MIPS_CALL16, mips_gp_register);
7844 relax_switch ();
7845 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7846 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7847 relax_end ();
7848 }
7849 else
7850 {
7851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7852 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7853 }
7854 }
7855 else if (mips_big_got && !HAVE_NEWABI)
7856 {
7857 int gpdelay;
7858 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7859 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7860 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7861
7862 /* This is the large GOT case. If this is a reference to an
7863 external symbol, and there is no constant, we want
7864 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7865 addu $tempreg,$tempreg,$gp
7866 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7867 or for lca or if tempreg is PIC_CALL_REG
7868 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7869 addu $tempreg,$tempreg,$gp
7870 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7871 For a local symbol, we want
7872 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7873 nop
7874 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7875
7876 If we have a small constant, and this is a reference to
7877 an external symbol, we want
7878 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7879 addu $tempreg,$tempreg,$gp
7880 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7881 nop
7882 addiu $tempreg,$tempreg,<constant>
7883 For a local symbol, we want
7884 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7885 nop
7886 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
7887
7888 If we have a large constant, and this is a reference to
7889 an external symbol, we want
7890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7891 addu $tempreg,$tempreg,$gp
7892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7893 lui $at,<hiconstant>
7894 addiu $at,$at,<loconstant>
7895 addu $tempreg,$tempreg,$at
7896 For a local symbol, we want
7897 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7898 lui $at,<hiconstant>
7899 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
7900 addu $tempreg,$tempreg,$at
7901 */
7902
7903 expr1.X_add_number = offset_expr.X_add_number;
7904 offset_expr.X_add_number = 0;
7905 relax_start (offset_expr.X_add_symbol);
7906 gpdelay = reg_needs_delay (mips_gp_register);
7907 if (expr1.X_add_number == 0 && breg == 0
7908 && (call || tempreg == PIC_CALL_REG))
7909 {
7910 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7911 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7912 }
7913 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7915 tempreg, tempreg, mips_gp_register);
7916 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7917 tempreg, lw_reloc_type, tempreg);
7918 if (expr1.X_add_number == 0)
7919 {
7920 if (breg != 0)
7921 {
7922 /* We're going to put in an addu instruction using
7923 tempreg, so we may as well insert the nop right
7924 now. */
7925 load_delay_nop ();
7926 }
7927 }
7928 else if (expr1.X_add_number >= -0x8000
7929 && expr1.X_add_number < 0x8000)
7930 {
7931 load_delay_nop ();
7932 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7933 tempreg, tempreg, BFD_RELOC_LO16);
7934 }
7935 else
7936 {
7937 /* If we are going to add in a base register, and the
7938 target register and the base register are the same,
7939 then we are using AT as a temporary register. Since
7940 we want to load the constant into AT, we add our
7941 current AT (from the global offset table) and the
7942 register into the register now, and pretend we were
7943 not using a base register. */
7944 if (breg != treg)
7945 dreg = tempreg;
7946 else
7947 {
7948 gas_assert (tempreg == AT);
7949 load_delay_nop ();
7950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7951 treg, AT, breg);
7952 dreg = treg;
7953 }
7954
7955 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7956 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7957
7958 used_at = 1;
7959 }
7960 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
7961 relax_switch ();
7962
7963 if (gpdelay)
7964 {
7965 /* This is needed because this instruction uses $gp, but
7966 the first instruction on the main stream does not. */
7967 macro_build (NULL, "nop", "");
7968 }
7969
7970 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7971 local_reloc_type, mips_gp_register);
7972 if (expr1.X_add_number >= -0x8000
7973 && expr1.X_add_number < 0x8000)
7974 {
7975 load_delay_nop ();
7976 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7977 tempreg, tempreg, BFD_RELOC_LO16);
7978 /* FIXME: If add_number is 0, and there was no base
7979 register, the external symbol case ended with a load,
7980 so if the symbol turns out to not be external, and
7981 the next instruction uses tempreg, an unnecessary nop
7982 will be inserted. */
7983 }
7984 else
7985 {
7986 if (breg == treg)
7987 {
7988 /* We must add in the base register now, as in the
7989 external symbol case. */
7990 gas_assert (tempreg == AT);
7991 load_delay_nop ();
7992 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7993 treg, AT, breg);
7994 tempreg = treg;
7995 /* We set breg to 0 because we have arranged to add
7996 it in in both cases. */
7997 breg = 0;
7998 }
7999
8000 macro_build_lui (&expr1, AT);
8001 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8002 AT, AT, BFD_RELOC_LO16);
8003 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8004 tempreg, tempreg, AT);
8005 used_at = 1;
8006 }
8007 relax_end ();
8008 }
8009 else if (mips_big_got && HAVE_NEWABI)
8010 {
8011 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
8012 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
8013 int add_breg_early = 0;
8014
8015 /* This is the large GOT case. If this is a reference to an
8016 external symbol, and there is no constant, we want
8017 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8018 add $tempreg,$tempreg,$gp
8019 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8020 or for lca or if tempreg is PIC_CALL_REG
8021 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
8022 add $tempreg,$tempreg,$gp
8023 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
8024
8025 If we have a small constant, and this is a reference to
8026 an external symbol, we want
8027 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8028 add $tempreg,$tempreg,$gp
8029 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8030 addi $tempreg,$tempreg,<constant>
8031
8032 If we have a large constant, and this is a reference to
8033 an external symbol, we want
8034 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8035 addu $tempreg,$tempreg,$gp
8036 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8037 lui $at,<hiconstant>
8038 addi $at,$at,<loconstant>
8039 add $tempreg,$tempreg,$at
8040
8041 If we have NewABI, and we know it's a local symbol, we want
8042 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8043 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
8044 otherwise we have to resort to GOT_HI16/GOT_LO16. */
8045
8046 relax_start (offset_expr.X_add_symbol);
8047
8048 expr1.X_add_number = offset_expr.X_add_number;
8049 offset_expr.X_add_number = 0;
8050
8051 if (expr1.X_add_number == 0 && breg == 0
8052 && (call || tempreg == PIC_CALL_REG))
8053 {
8054 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
8055 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
8056 }
8057 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
8058 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8059 tempreg, tempreg, mips_gp_register);
8060 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8061 tempreg, lw_reloc_type, tempreg);
8062
8063 if (expr1.X_add_number == 0)
8064 ;
8065 else if (expr1.X_add_number >= -0x8000
8066 && expr1.X_add_number < 0x8000)
8067 {
8068 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
8069 tempreg, tempreg, BFD_RELOC_LO16);
8070 }
8071 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
8072 {
8073 /* If we are going to add in a base register, and the
8074 target register and the base register are the same,
8075 then we are using AT as a temporary register. Since
8076 we want to load the constant into AT, we add our
8077 current AT (from the global offset table) and the
8078 register into the register now, and pretend we were
8079 not using a base register. */
8080 if (breg != treg)
8081 dreg = tempreg;
8082 else
8083 {
8084 gas_assert (tempreg == AT);
8085 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8086 treg, AT, breg);
8087 dreg = treg;
8088 add_breg_early = 1;
8089 }
8090
8091 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
8092 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
8093
8094 used_at = 1;
8095 }
8096 else
8097 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
8098
8099 relax_switch ();
8100 offset_expr.X_add_number = expr1.X_add_number;
8101 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8102 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8103 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8104 tempreg, BFD_RELOC_MIPS_GOT_OFST);
8105 if (add_breg_early)
8106 {
8107 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8108 treg, tempreg, breg);
8109 breg = 0;
8110 tempreg = treg;
8111 }
8112 relax_end ();
8113 }
8114 else
8115 abort ();
8116
8117 if (breg != 0)
8118 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
8119 break;
8120
8121 case M_MSGSND:
8122 gas_assert (!mips_opts.micromips);
8123 {
8124 unsigned long temp = (treg << 16) | (0x01);
8125 macro_build (NULL, "c2", "C", temp);
8126 }
8127 break;
8128
8129 case M_MSGLD:
8130 gas_assert (!mips_opts.micromips);
8131 {
8132 unsigned long temp = (0x02);
8133 macro_build (NULL, "c2", "C", temp);
8134 }
8135 break;
8136
8137 case M_MSGLD_T:
8138 gas_assert (!mips_opts.micromips);
8139 {
8140 unsigned long temp = (treg << 16) | (0x02);
8141 macro_build (NULL, "c2", "C", temp);
8142 }
8143 break;
8144
8145 case M_MSGWAIT:
8146 gas_assert (!mips_opts.micromips);
8147 macro_build (NULL, "c2", "C", 3);
8148 break;
8149
8150 case M_MSGWAIT_T:
8151 gas_assert (!mips_opts.micromips);
8152 {
8153 unsigned long temp = (treg << 16) | 0x03;
8154 macro_build (NULL, "c2", "C", temp);
8155 }
8156 break;
8157
8158 case M_J_A:
8159 /* The j instruction may not be used in PIC code, since it
8160 requires an absolute address. We convert it to a b
8161 instruction. */
8162 if (mips_pic == NO_PIC)
8163 macro_build (&offset_expr, "j", "a");
8164 else
8165 macro_build (&offset_expr, "b", "p");
8166 break;
8167
8168 /* The jal instructions must be handled as macros because when
8169 generating PIC code they expand to multi-instruction
8170 sequences. Normally they are simple instructions. */
8171 case M_JALS_1:
8172 dreg = RA;
8173 /* Fall through. */
8174 case M_JALS_2:
8175 gas_assert (mips_opts.micromips);
8176 jals = 1;
8177 goto jal;
8178 case M_JAL_1:
8179 dreg = RA;
8180 /* Fall through. */
8181 case M_JAL_2:
8182 jal:
8183 if (mips_pic == NO_PIC)
8184 {
8185 s = jals ? "jalrs" : "jalr";
8186 if (mips_opts.micromips
8187 && dreg == RA
8188 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8189 macro_build (NULL, s, "mj", sreg);
8190 else
8191 macro_build (NULL, s, JALR_FMT, dreg, sreg);
8192 }
8193 else
8194 {
8195 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
8196 && mips_cprestore_offset >= 0);
8197
8198 if (sreg != PIC_CALL_REG)
8199 as_warn (_("MIPS PIC call to register other than $25"));
8200
8201 s = (mips_opts.micromips && (!mips_opts.noreorder || cprestore)
8202 ? "jalrs" : "jalr");
8203 if (mips_opts.micromips
8204 && dreg == RA
8205 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8206 macro_build (NULL, s, "mj", sreg);
8207 else
8208 macro_build (NULL, s, JALR_FMT, dreg, sreg);
8209 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
8210 {
8211 if (mips_cprestore_offset < 0)
8212 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8213 else
8214 {
8215 if (!mips_frame_reg_valid)
8216 {
8217 as_warn (_("No .frame pseudo-op used in PIC code"));
8218 /* Quiet this warning. */
8219 mips_frame_reg_valid = 1;
8220 }
8221 if (!mips_cprestore_valid)
8222 {
8223 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8224 /* Quiet this warning. */
8225 mips_cprestore_valid = 1;
8226 }
8227 if (mips_opts.noreorder)
8228 macro_build (NULL, "nop", "");
8229 expr1.X_add_number = mips_cprestore_offset;
8230 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
8231 mips_gp_register,
8232 mips_frame_reg,
8233 HAVE_64BIT_ADDRESSES);
8234 }
8235 }
8236 }
8237
8238 break;
8239
8240 case M_JALS_A:
8241 gas_assert (mips_opts.micromips);
8242 jals = 1;
8243 /* Fall through. */
8244 case M_JAL_A:
8245 if (mips_pic == NO_PIC)
8246 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
8247 else if (mips_pic == SVR4_PIC)
8248 {
8249 /* If this is a reference to an external symbol, and we are
8250 using a small GOT, we want
8251 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
8252 nop
8253 jalr $ra,$25
8254 nop
8255 lw $gp,cprestore($sp)
8256 The cprestore value is set using the .cprestore
8257 pseudo-op. If we are using a big GOT, we want
8258 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
8259 addu $25,$25,$gp
8260 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
8261 nop
8262 jalr $ra,$25
8263 nop
8264 lw $gp,cprestore($sp)
8265 If the symbol is not external, we want
8266 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8267 nop
8268 addiu $25,$25,<sym> (BFD_RELOC_LO16)
8269 jalr $ra,$25
8270 nop
8271 lw $gp,cprestore($sp)
8272
8273 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
8274 sequences above, minus nops, unless the symbol is local,
8275 which enables us to use GOT_PAGE/GOT_OFST (big got) or
8276 GOT_DISP. */
8277 if (HAVE_NEWABI)
8278 {
8279 if (!mips_big_got)
8280 {
8281 relax_start (offset_expr.X_add_symbol);
8282 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8283 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
8284 mips_gp_register);
8285 relax_switch ();
8286 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8287 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
8288 mips_gp_register);
8289 relax_end ();
8290 }
8291 else
8292 {
8293 relax_start (offset_expr.X_add_symbol);
8294 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
8295 BFD_RELOC_MIPS_CALL_HI16);
8296 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
8297 PIC_CALL_REG, mips_gp_register);
8298 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8299 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
8300 PIC_CALL_REG);
8301 relax_switch ();
8302 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8303 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
8304 mips_gp_register);
8305 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8306 PIC_CALL_REG, PIC_CALL_REG,
8307 BFD_RELOC_MIPS_GOT_OFST);
8308 relax_end ();
8309 }
8310
8311 macro_build_jalr (&offset_expr, 0);
8312 }
8313 else
8314 {
8315 relax_start (offset_expr.X_add_symbol);
8316 if (!mips_big_got)
8317 {
8318 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8319 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
8320 mips_gp_register);
8321 load_delay_nop ();
8322 relax_switch ();
8323 }
8324 else
8325 {
8326 int gpdelay;
8327
8328 gpdelay = reg_needs_delay (mips_gp_register);
8329 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
8330 BFD_RELOC_MIPS_CALL_HI16);
8331 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
8332 PIC_CALL_REG, mips_gp_register);
8333 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8334 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
8335 PIC_CALL_REG);
8336 load_delay_nop ();
8337 relax_switch ();
8338 if (gpdelay)
8339 macro_build (NULL, "nop", "");
8340 }
8341 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8342 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
8343 mips_gp_register);
8344 load_delay_nop ();
8345 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8346 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
8347 relax_end ();
8348 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
8349
8350 if (mips_cprestore_offset < 0)
8351 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8352 else
8353 {
8354 if (!mips_frame_reg_valid)
8355 {
8356 as_warn (_("No .frame pseudo-op used in PIC code"));
8357 /* Quiet this warning. */
8358 mips_frame_reg_valid = 1;
8359 }
8360 if (!mips_cprestore_valid)
8361 {
8362 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8363 /* Quiet this warning. */
8364 mips_cprestore_valid = 1;
8365 }
8366 if (mips_opts.noreorder)
8367 macro_build (NULL, "nop", "");
8368 expr1.X_add_number = mips_cprestore_offset;
8369 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
8370 mips_gp_register,
8371 mips_frame_reg,
8372 HAVE_64BIT_ADDRESSES);
8373 }
8374 }
8375 }
8376 else if (mips_pic == VXWORKS_PIC)
8377 as_bad (_("Non-PIC jump used in PIC library"));
8378 else
8379 abort ();
8380
8381 break;
8382
8383 case M_LBUE_AB:
8384 ab = 1;
8385 case M_LBUE_OB:
8386 s = "lbue";
8387 fmt = "t,+j(b)";
8388 offbits = 9;
8389 goto ld_st;
8390 case M_LHUE_AB:
8391 ab = 1;
8392 case M_LHUE_OB:
8393 s = "lhue";
8394 fmt = "t,+j(b)";
8395 offbits = 9;
8396 goto ld_st;
8397 case M_LBE_AB:
8398 ab = 1;
8399 case M_LBE_OB:
8400 s = "lbe";
8401 fmt = "t,+j(b)";
8402 offbits = 9;
8403 goto ld_st;
8404 case M_LHE_AB:
8405 ab = 1;
8406 case M_LHE_OB:
8407 s = "lhe";
8408 fmt = "t,+j(b)";
8409 offbits = 9;
8410 goto ld_st;
8411 case M_LLE_AB:
8412 ab = 1;
8413 case M_LLE_OB:
8414 s = "lle";
8415 fmt = "t,+j(b)";
8416 offbits = 9;
8417 goto ld_st;
8418 case M_LWE_AB:
8419 ab = 1;
8420 case M_LWE_OB:
8421 s = "lwe";
8422 fmt = "t,+j(b)";
8423 offbits = 9;
8424 goto ld_st;
8425 case M_LWLE_AB:
8426 ab = 1;
8427 case M_LWLE_OB:
8428 s = "lwle";
8429 fmt = "t,+j(b)";
8430 offbits = 9;
8431 goto ld_st;
8432 case M_LWRE_AB:
8433 ab = 1;
8434 case M_LWRE_OB:
8435 s = "lwre";
8436 fmt = "t,+j(b)";
8437 offbits = 9;
8438 goto ld_st;
8439 case M_SBE_AB:
8440 ab = 1;
8441 case M_SBE_OB:
8442 s = "sbe";
8443 fmt = "t,+j(b)";
8444 offbits = 9;
8445 goto ld_st;
8446 case M_SCE_AB:
8447 ab = 1;
8448 case M_SCE_OB:
8449 s = "sce";
8450 fmt = "t,+j(b)";
8451 offbits = 9;
8452 goto ld_st;
8453 case M_SHE_AB:
8454 ab = 1;
8455 case M_SHE_OB:
8456 s = "she";
8457 fmt = "t,+j(b)";
8458 offbits = 9;
8459 goto ld_st;
8460 case M_SWE_AB:
8461 ab = 1;
8462 case M_SWE_OB:
8463 s = "swe";
8464 fmt = "t,+j(b)";
8465 offbits = 9;
8466 goto ld_st;
8467 case M_SWLE_AB:
8468 ab = 1;
8469 case M_SWLE_OB:
8470 s = "swle";
8471 fmt = "t,+j(b)";
8472 offbits = 9;
8473 goto ld_st;
8474 case M_SWRE_AB:
8475 ab = 1;
8476 case M_SWRE_OB:
8477 s = "swre";
8478 fmt = "t,+j(b)";
8479 offbits = 9;
8480 goto ld_st;
8481 case M_ACLR_AB:
8482 ab = 1;
8483 case M_ACLR_OB:
8484 s = "aclr";
8485 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8486 fmt = "\\,~(b)";
8487 offbits = 12;
8488 goto ld_st;
8489 case M_ASET_AB:
8490 ab = 1;
8491 case M_ASET_OB:
8492 s = "aset";
8493 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8494 fmt = "\\,~(b)";
8495 offbits = 12;
8496 goto ld_st;
8497 case M_LB_AB:
8498 ab = 1;
8499 s = "lb";
8500 fmt = "t,o(b)";
8501 goto ld;
8502 case M_LBU_AB:
8503 ab = 1;
8504 s = "lbu";
8505 fmt = "t,o(b)";
8506 goto ld;
8507 case M_LH_AB:
8508 ab = 1;
8509 s = "lh";
8510 fmt = "t,o(b)";
8511 goto ld;
8512 case M_LHU_AB:
8513 ab = 1;
8514 s = "lhu";
8515 fmt = "t,o(b)";
8516 goto ld;
8517 case M_LW_AB:
8518 ab = 1;
8519 s = "lw";
8520 fmt = "t,o(b)";
8521 goto ld;
8522 case M_LWC0_AB:
8523 ab = 1;
8524 gas_assert (!mips_opts.micromips);
8525 s = "lwc0";
8526 fmt = "E,o(b)";
8527 /* Itbl support may require additional care here. */
8528 coproc = 1;
8529 goto ld_st;
8530 case M_LWC1_AB:
8531 ab = 1;
8532 s = "lwc1";
8533 fmt = "T,o(b)";
8534 /* Itbl support may require additional care here. */
8535 coproc = 1;
8536 goto ld_st;
8537 case M_LWC2_AB:
8538 ab = 1;
8539 case M_LWC2_OB:
8540 s = "lwc2";
8541 fmt = COP12_FMT;
8542 offbits = (mips_opts.micromips ? 12 : 16);
8543 /* Itbl support may require additional care here. */
8544 coproc = 1;
8545 goto ld_st;
8546 case M_LWC3_AB:
8547 ab = 1;
8548 gas_assert (!mips_opts.micromips);
8549 s = "lwc3";
8550 fmt = "E,o(b)";
8551 /* Itbl support may require additional care here. */
8552 coproc = 1;
8553 goto ld_st;
8554 case M_LWL_AB:
8555 ab = 1;
8556 case M_LWL_OB:
8557 s = "lwl";
8558 fmt = MEM12_FMT;
8559 offbits = (mips_opts.micromips ? 12 : 16);
8560 goto ld_st;
8561 case M_LWR_AB:
8562 ab = 1;
8563 case M_LWR_OB:
8564 s = "lwr";
8565 fmt = MEM12_FMT;
8566 offbits = (mips_opts.micromips ? 12 : 16);
8567 goto ld_st;
8568 case M_LDC1_AB:
8569 ab = 1;
8570 s = "ldc1";
8571 fmt = "T,o(b)";
8572 /* Itbl support may require additional care here. */
8573 coproc = 1;
8574 goto ld_st;
8575 case M_LDC2_AB:
8576 ab = 1;
8577 case M_LDC2_OB:
8578 s = "ldc2";
8579 fmt = COP12_FMT;
8580 offbits = (mips_opts.micromips ? 12 : 16);
8581 /* Itbl support may require additional care here. */
8582 coproc = 1;
8583 goto ld_st;
8584 case M_LQC2_AB:
8585 ab = 1;
8586 s = "lqc2";
8587 fmt = "E,o(b)";
8588 /* Itbl support may require additional care here. */
8589 coproc = 1;
8590 goto ld_st;
8591 case M_LDC3_AB:
8592 ab = 1;
8593 s = "ldc3";
8594 fmt = "E,o(b)";
8595 /* Itbl support may require additional care here. */
8596 coproc = 1;
8597 goto ld_st;
8598 case M_LDL_AB:
8599 ab = 1;
8600 case M_LDL_OB:
8601 s = "ldl";
8602 fmt = MEM12_FMT;
8603 offbits = (mips_opts.micromips ? 12 : 16);
8604 goto ld_st;
8605 case M_LDR_AB:
8606 ab = 1;
8607 case M_LDR_OB:
8608 s = "ldr";
8609 fmt = MEM12_FMT;
8610 offbits = (mips_opts.micromips ? 12 : 16);
8611 goto ld_st;
8612 case M_LL_AB:
8613 ab = 1;
8614 case M_LL_OB:
8615 s = "ll";
8616 fmt = MEM12_FMT;
8617 offbits = (mips_opts.micromips ? 12 : 16);
8618 goto ld;
8619 case M_LLD_AB:
8620 ab = 1;
8621 case M_LLD_OB:
8622 s = "lld";
8623 fmt = MEM12_FMT;
8624 offbits = (mips_opts.micromips ? 12 : 16);
8625 goto ld;
8626 case M_LWU_AB:
8627 ab = 1;
8628 case M_LWU_OB:
8629 s = "lwu";
8630 fmt = MEM12_FMT;
8631 offbits = (mips_opts.micromips ? 12 : 16);
8632 goto ld;
8633 case M_LWP_AB:
8634 ab = 1;
8635 case M_LWP_OB:
8636 gas_assert (mips_opts.micromips);
8637 s = "lwp";
8638 fmt = "t,~(b)";
8639 offbits = 12;
8640 lp = 1;
8641 goto ld;
8642 case M_LDP_AB:
8643 ab = 1;
8644 case M_LDP_OB:
8645 gas_assert (mips_opts.micromips);
8646 s = "ldp";
8647 fmt = "t,~(b)";
8648 offbits = 12;
8649 lp = 1;
8650 goto ld;
8651 case M_LWM_AB:
8652 ab = 1;
8653 case M_LWM_OB:
8654 gas_assert (mips_opts.micromips);
8655 s = "lwm";
8656 fmt = "n,~(b)";
8657 offbits = 12;
8658 goto ld_st;
8659 case M_LDM_AB:
8660 ab = 1;
8661 case M_LDM_OB:
8662 gas_assert (mips_opts.micromips);
8663 s = "ldm";
8664 fmt = "n,~(b)";
8665 offbits = 12;
8666 goto ld_st;
8667
8668 ld:
8669 /* We don't want to use $0 as tempreg. */
8670 if (breg == treg + lp || treg + lp == ZERO)
8671 goto ld_st;
8672 else
8673 tempreg = treg + lp;
8674 goto ld_noat;
8675
8676 case M_SB_AB:
8677 ab = 1;
8678 s = "sb";
8679 fmt = "t,o(b)";
8680 goto ld_st;
8681 case M_SH_AB:
8682 ab = 1;
8683 s = "sh";
8684 fmt = "t,o(b)";
8685 goto ld_st;
8686 case M_SW_AB:
8687 ab = 1;
8688 s = "sw";
8689 fmt = "t,o(b)";
8690 goto ld_st;
8691 case M_SWC0_AB:
8692 ab = 1;
8693 gas_assert (!mips_opts.micromips);
8694 s = "swc0";
8695 fmt = "E,o(b)";
8696 /* Itbl support may require additional care here. */
8697 coproc = 1;
8698 goto ld_st;
8699 case M_SWC1_AB:
8700 ab = 1;
8701 s = "swc1";
8702 fmt = "T,o(b)";
8703 /* Itbl support may require additional care here. */
8704 coproc = 1;
8705 goto ld_st;
8706 case M_SWC2_AB:
8707 ab = 1;
8708 case M_SWC2_OB:
8709 s = "swc2";
8710 fmt = COP12_FMT;
8711 offbits = (mips_opts.micromips ? 12 : 16);
8712 /* Itbl support may require additional care here. */
8713 coproc = 1;
8714 goto ld_st;
8715 case M_SWC3_AB:
8716 ab = 1;
8717 gas_assert (!mips_opts.micromips);
8718 s = "swc3";
8719 fmt = "E,o(b)";
8720 /* Itbl support may require additional care here. */
8721 coproc = 1;
8722 goto ld_st;
8723 case M_SWL_AB:
8724 ab = 1;
8725 case M_SWL_OB:
8726 s = "swl";
8727 fmt = MEM12_FMT;
8728 offbits = (mips_opts.micromips ? 12 : 16);
8729 goto ld_st;
8730 case M_SWR_AB:
8731 ab = 1;
8732 case M_SWR_OB:
8733 s = "swr";
8734 fmt = MEM12_FMT;
8735 offbits = (mips_opts.micromips ? 12 : 16);
8736 goto ld_st;
8737 case M_SC_AB:
8738 ab = 1;
8739 case M_SC_OB:
8740 s = "sc";
8741 fmt = MEM12_FMT;
8742 offbits = (mips_opts.micromips ? 12 : 16);
8743 goto ld_st;
8744 case M_SCD_AB:
8745 ab = 1;
8746 case M_SCD_OB:
8747 s = "scd";
8748 fmt = MEM12_FMT;
8749 offbits = (mips_opts.micromips ? 12 : 16);
8750 goto ld_st;
8751 case M_CACHE_AB:
8752 ab = 1;
8753 case M_CACHE_OB:
8754 s = "cache";
8755 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
8756 offbits = (mips_opts.micromips ? 12 : 16);
8757 goto ld_st;
8758 case M_CACHEE_AB:
8759 ab = 1;
8760 case M_CACHEE_OB:
8761 s = "cachee";
8762 fmt = "k,+j(b)";
8763 offbits = 9;
8764 goto ld_st;
8765 case M_PREF_AB:
8766 ab = 1;
8767 case M_PREF_OB:
8768 s = "pref";
8769 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
8770 offbits = (mips_opts.micromips ? 12 : 16);
8771 goto ld_st;
8772 case M_PREFE_AB:
8773 ab = 1;
8774 case M_PREFE_OB:
8775 s = "prefe";
8776 fmt = "k,+j(b)";
8777 offbits = 9;
8778 goto ld_st;
8779 case M_SDC1_AB:
8780 ab = 1;
8781 s = "sdc1";
8782 fmt = "T,o(b)";
8783 coproc = 1;
8784 /* Itbl support may require additional care here. */
8785 goto ld_st;
8786 case M_SDC2_AB:
8787 ab = 1;
8788 case M_SDC2_OB:
8789 s = "sdc2";
8790 fmt = COP12_FMT;
8791 offbits = (mips_opts.micromips ? 12 : 16);
8792 /* Itbl support may require additional care here. */
8793 coproc = 1;
8794 goto ld_st;
8795 case M_SQC2_AB:
8796 ab = 1;
8797 s = "sqc2";
8798 fmt = "E,o(b)";
8799 /* Itbl support may require additional care here. */
8800 coproc = 1;
8801 goto ld_st;
8802 case M_SDC3_AB:
8803 ab = 1;
8804 gas_assert (!mips_opts.micromips);
8805 s = "sdc3";
8806 fmt = "E,o(b)";
8807 /* Itbl support may require additional care here. */
8808 coproc = 1;
8809 goto ld_st;
8810 case M_SDL_AB:
8811 ab = 1;
8812 case M_SDL_OB:
8813 s = "sdl";
8814 fmt = MEM12_FMT;
8815 offbits = (mips_opts.micromips ? 12 : 16);
8816 goto ld_st;
8817 case M_SDR_AB:
8818 ab = 1;
8819 case M_SDR_OB:
8820 s = "sdr";
8821 fmt = MEM12_FMT;
8822 offbits = (mips_opts.micromips ? 12 : 16);
8823 goto ld_st;
8824 case M_SWP_AB:
8825 ab = 1;
8826 case M_SWP_OB:
8827 gas_assert (mips_opts.micromips);
8828 s = "swp";
8829 fmt = "t,~(b)";
8830 offbits = 12;
8831 goto ld_st;
8832 case M_SDP_AB:
8833 ab = 1;
8834 case M_SDP_OB:
8835 gas_assert (mips_opts.micromips);
8836 s = "sdp";
8837 fmt = "t,~(b)";
8838 offbits = 12;
8839 goto ld_st;
8840 case M_SWM_AB:
8841 ab = 1;
8842 case M_SWM_OB:
8843 gas_assert (mips_opts.micromips);
8844 s = "swm";
8845 fmt = "n,~(b)";
8846 offbits = 12;
8847 goto ld_st;
8848 case M_SDM_AB:
8849 ab = 1;
8850 case M_SDM_OB:
8851 gas_assert (mips_opts.micromips);
8852 s = "sdm";
8853 fmt = "n,~(b)";
8854 offbits = 12;
8855
8856 ld_st:
8857 tempreg = AT;
8858 used_at = 1;
8859 ld_noat:
8860 if (offset_expr.X_op != O_constant
8861 && offset_expr.X_op != O_symbol)
8862 {
8863 as_bad (_("Expression too complex"));
8864 offset_expr.X_op = O_constant;
8865 }
8866
8867 if (HAVE_32BIT_ADDRESSES
8868 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8869 {
8870 char value [32];
8871
8872 sprintf_vma (value, offset_expr.X_add_number);
8873 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8874 }
8875
8876 /* A constant expression in PIC code can be handled just as it
8877 is in non PIC code. */
8878 if (offset_expr.X_op == O_constant)
8879 {
8880 int hipart = 0;
8881
8882 expr1.X_add_number = offset_expr.X_add_number;
8883 normalize_address_expr (&expr1);
8884 if ((offbits == 0 || offbits == 16)
8885 && !IS_SEXT_16BIT_NUM (expr1.X_add_number))
8886 {
8887 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
8888 & ~(bfd_vma) 0xffff);
8889 hipart = 1;
8890 }
8891 else if (offbits == 12 && !IS_SEXT_12BIT_NUM (expr1.X_add_number))
8892 {
8893 expr1.X_add_number = ((expr1.X_add_number + 0x800)
8894 & ~(bfd_vma) 0xfff);
8895 hipart = 1;
8896 }
8897 else if (offbits == 9 && !IS_SEXT_9BIT_NUM (expr1.X_add_number))
8898 {
8899 expr1.X_add_number = ((expr1.X_add_number + 0x100)
8900 & ~(bfd_vma) 0x1ff);
8901 hipart = 1;
8902 }
8903 if (hipart)
8904 {
8905 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
8906 if (breg != 0)
8907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8908 tempreg, tempreg, breg);
8909 breg = tempreg;
8910 }
8911 if (offbits == 0)
8912 {
8913 if (offset_expr.X_add_number == 0)
8914 tempreg = breg;
8915 else
8916 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
8917 "t,r,j", tempreg, breg, BFD_RELOC_LO16);
8918 macro_build (NULL, s, fmt, treg, tempreg);
8919 }
8920 else if (offbits == 16)
8921 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
8922 else
8923 macro_build (NULL, s, fmt,
8924 treg, (unsigned long) offset_expr.X_add_number, breg);
8925 }
8926 else if (offbits != 16)
8927 {
8928 /* The offset field is too narrow to be used for a low-part
8929 relocation, so load the whole address into the auxillary
8930 register. In the case of "A(b)" addresses, we first load
8931 absolute address "A" into the register and then add base
8932 register "b". In the case of "o(b)" addresses, we simply
8933 need to add 16-bit offset "o" to base register "b", and
8934 offset_reloc already contains the relocations associated
8935 with "o". */
8936 if (ab)
8937 {
8938 load_address (tempreg, &offset_expr, &used_at);
8939 if (breg != 0)
8940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8941 tempreg, tempreg, breg);
8942 }
8943 else
8944 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8945 tempreg, breg, -1,
8946 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8947 expr1.X_add_number = 0;
8948 if (offbits == 0)
8949 macro_build (NULL, s, fmt, treg, tempreg);
8950 else
8951 macro_build (NULL, s, fmt,
8952 treg, (unsigned long) expr1.X_add_number, tempreg);
8953 }
8954 else if (mips_pic == NO_PIC)
8955 {
8956 /* If this is a reference to a GP relative symbol, and there
8957 is no base register, we want
8958 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8959 Otherwise, if there is no base register, we want
8960 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8961 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8962 If we have a constant, we need two instructions anyhow,
8963 so we always use the latter form.
8964
8965 If we have a base register, and this is a reference to a
8966 GP relative symbol, we want
8967 addu $tempreg,$breg,$gp
8968 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
8969 Otherwise we want
8970 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8971 addu $tempreg,$tempreg,$breg
8972 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8973 With a constant we always use the latter case.
8974
8975 With 64bit address space and no base register and $at usable,
8976 we want
8977 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8978 lui $at,<sym> (BFD_RELOC_HI16_S)
8979 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8980 dsll32 $tempreg,0
8981 daddu $tempreg,$at
8982 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8983 If we have a base register, we want
8984 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8985 lui $at,<sym> (BFD_RELOC_HI16_S)
8986 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8987 daddu $at,$breg
8988 dsll32 $tempreg,0
8989 daddu $tempreg,$at
8990 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8991
8992 Without $at we can't generate the optimal path for superscalar
8993 processors here since this would require two temporary registers.
8994 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8995 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8996 dsll $tempreg,16
8997 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8998 dsll $tempreg,16
8999 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
9000 If we have a base register, we want
9001 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9002 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9003 dsll $tempreg,16
9004 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
9005 dsll $tempreg,16
9006 daddu $tempreg,$tempreg,$breg
9007 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
9008
9009 For GP relative symbols in 64bit address space we can use
9010 the same sequence as in 32bit address space. */
9011 if (HAVE_64BIT_SYMBOLS)
9012 {
9013 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9014 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9015 {
9016 relax_start (offset_expr.X_add_symbol);
9017 if (breg == 0)
9018 {
9019 macro_build (&offset_expr, s, fmt, treg,
9020 BFD_RELOC_GPREL16, mips_gp_register);
9021 }
9022 else
9023 {
9024 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9025 tempreg, breg, mips_gp_register);
9026 macro_build (&offset_expr, s, fmt, treg,
9027 BFD_RELOC_GPREL16, tempreg);
9028 }
9029 relax_switch ();
9030 }
9031
9032 if (used_at == 0 && mips_opts.at)
9033 {
9034 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
9035 BFD_RELOC_MIPS_HIGHEST);
9036 macro_build (&offset_expr, "lui", LUI_FMT, AT,
9037 BFD_RELOC_HI16_S);
9038 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
9039 tempreg, BFD_RELOC_MIPS_HIGHER);
9040 if (breg != 0)
9041 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
9042 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
9043 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
9044 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
9045 tempreg);
9046 used_at = 1;
9047 }
9048 else
9049 {
9050 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
9051 BFD_RELOC_MIPS_HIGHEST);
9052 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
9053 tempreg, BFD_RELOC_MIPS_HIGHER);
9054 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
9055 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
9056 tempreg, BFD_RELOC_HI16_S);
9057 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
9058 if (breg != 0)
9059 macro_build (NULL, "daddu", "d,v,t",
9060 tempreg, tempreg, breg);
9061 macro_build (&offset_expr, s, fmt, treg,
9062 BFD_RELOC_LO16, tempreg);
9063 }
9064
9065 if (mips_relax.sequence)
9066 relax_end ();
9067 break;
9068 }
9069
9070 if (breg == 0)
9071 {
9072 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9073 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9074 {
9075 relax_start (offset_expr.X_add_symbol);
9076 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
9077 mips_gp_register);
9078 relax_switch ();
9079 }
9080 macro_build_lui (&offset_expr, tempreg);
9081 macro_build (&offset_expr, s, fmt, treg,
9082 BFD_RELOC_LO16, tempreg);
9083 if (mips_relax.sequence)
9084 relax_end ();
9085 }
9086 else
9087 {
9088 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9089 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9090 {
9091 relax_start (offset_expr.X_add_symbol);
9092 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9093 tempreg, breg, mips_gp_register);
9094 macro_build (&offset_expr, s, fmt, treg,
9095 BFD_RELOC_GPREL16, tempreg);
9096 relax_switch ();
9097 }
9098 macro_build_lui (&offset_expr, tempreg);
9099 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9100 tempreg, tempreg, breg);
9101 macro_build (&offset_expr, s, fmt, treg,
9102 BFD_RELOC_LO16, tempreg);
9103 if (mips_relax.sequence)
9104 relax_end ();
9105 }
9106 }
9107 else if (!mips_big_got)
9108 {
9109 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9110
9111 /* If this is a reference to an external symbol, we want
9112 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9113 nop
9114 <op> $treg,0($tempreg)
9115 Otherwise we want
9116 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9117 nop
9118 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9119 <op> $treg,0($tempreg)
9120
9121 For NewABI, we want
9122 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9123 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
9124
9125 If there is a base register, we add it to $tempreg before
9126 the <op>. If there is a constant, we stick it in the
9127 <op> instruction. We don't handle constants larger than
9128 16 bits, because we have no way to load the upper 16 bits
9129 (actually, we could handle them for the subset of cases
9130 in which we are not using $at). */
9131 gas_assert (offset_expr.X_op == O_symbol);
9132 if (HAVE_NEWABI)
9133 {
9134 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9135 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9136 if (breg != 0)
9137 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9138 tempreg, tempreg, breg);
9139 macro_build (&offset_expr, s, fmt, treg,
9140 BFD_RELOC_MIPS_GOT_OFST, tempreg);
9141 break;
9142 }
9143 expr1.X_add_number = offset_expr.X_add_number;
9144 offset_expr.X_add_number = 0;
9145 if (expr1.X_add_number < -0x8000
9146 || expr1.X_add_number >= 0x8000)
9147 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9148 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9149 lw_reloc_type, mips_gp_register);
9150 load_delay_nop ();
9151 relax_start (offset_expr.X_add_symbol);
9152 relax_switch ();
9153 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
9154 tempreg, BFD_RELOC_LO16);
9155 relax_end ();
9156 if (breg != 0)
9157 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9158 tempreg, tempreg, breg);
9159 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
9160 }
9161 else if (mips_big_got && !HAVE_NEWABI)
9162 {
9163 int gpdelay;
9164
9165 /* If this is a reference to an external symbol, we want
9166 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9167 addu $tempreg,$tempreg,$gp
9168 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9169 <op> $treg,0($tempreg)
9170 Otherwise we want
9171 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9172 nop
9173 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9174 <op> $treg,0($tempreg)
9175 If there is a base register, we add it to $tempreg before
9176 the <op>. If there is a constant, we stick it in the
9177 <op> instruction. We don't handle constants larger than
9178 16 bits, because we have no way to load the upper 16 bits
9179 (actually, we could handle them for the subset of cases
9180 in which we are not using $at). */
9181 gas_assert (offset_expr.X_op == O_symbol);
9182 expr1.X_add_number = offset_expr.X_add_number;
9183 offset_expr.X_add_number = 0;
9184 if (expr1.X_add_number < -0x8000
9185 || expr1.X_add_number >= 0x8000)
9186 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9187 gpdelay = reg_needs_delay (mips_gp_register);
9188 relax_start (offset_expr.X_add_symbol);
9189 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
9190 BFD_RELOC_MIPS_GOT_HI16);
9191 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
9192 mips_gp_register);
9193 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9194 BFD_RELOC_MIPS_GOT_LO16, tempreg);
9195 relax_switch ();
9196 if (gpdelay)
9197 macro_build (NULL, "nop", "");
9198 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9199 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9200 load_delay_nop ();
9201 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
9202 tempreg, BFD_RELOC_LO16);
9203 relax_end ();
9204
9205 if (breg != 0)
9206 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9207 tempreg, tempreg, breg);
9208 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
9209 }
9210 else if (mips_big_got && HAVE_NEWABI)
9211 {
9212 /* If this is a reference to an external symbol, we want
9213 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9214 add $tempreg,$tempreg,$gp
9215 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9216 <op> $treg,<ofst>($tempreg)
9217 Otherwise, for local symbols, we want:
9218 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9219 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9220 gas_assert (offset_expr.X_op == O_symbol);
9221 expr1.X_add_number = offset_expr.X_add_number;
9222 offset_expr.X_add_number = 0;
9223 if (expr1.X_add_number < -0x8000
9224 || expr1.X_add_number >= 0x8000)
9225 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9226 relax_start (offset_expr.X_add_symbol);
9227 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
9228 BFD_RELOC_MIPS_GOT_HI16);
9229 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
9230 mips_gp_register);
9231 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9232 BFD_RELOC_MIPS_GOT_LO16, tempreg);
9233 if (breg != 0)
9234 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9235 tempreg, tempreg, breg);
9236 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
9237
9238 relax_switch ();
9239 offset_expr.X_add_number = expr1.X_add_number;
9240 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9241 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9242 if (breg != 0)
9243 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9244 tempreg, tempreg, breg);
9245 macro_build (&offset_expr, s, fmt, treg,
9246 BFD_RELOC_MIPS_GOT_OFST, tempreg);
9247 relax_end ();
9248 }
9249 else
9250 abort ();
9251
9252 break;
9253
9254 case M_LI:
9255 case M_LI_S:
9256 load_register (treg, &imm_expr, 0);
9257 break;
9258
9259 case M_DLI:
9260 load_register (treg, &imm_expr, 1);
9261 break;
9262
9263 case M_LI_SS:
9264 if (imm_expr.X_op == O_constant)
9265 {
9266 used_at = 1;
9267 load_register (AT, &imm_expr, 0);
9268 macro_build (NULL, "mtc1", "t,G", AT, treg);
9269 break;
9270 }
9271 else
9272 {
9273 gas_assert (offset_expr.X_op == O_symbol
9274 && strcmp (segment_name (S_GET_SEGMENT
9275 (offset_expr.X_add_symbol)),
9276 ".lit4") == 0
9277 && offset_expr.X_add_number == 0);
9278 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
9279 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
9280 break;
9281 }
9282
9283 case M_LI_D:
9284 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
9285 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
9286 order 32 bits of the value and the low order 32 bits are either
9287 zero or in OFFSET_EXPR. */
9288 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
9289 {
9290 if (HAVE_64BIT_GPRS)
9291 load_register (treg, &imm_expr, 1);
9292 else
9293 {
9294 int hreg, lreg;
9295
9296 if (target_big_endian)
9297 {
9298 hreg = treg;
9299 lreg = treg + 1;
9300 }
9301 else
9302 {
9303 hreg = treg + 1;
9304 lreg = treg;
9305 }
9306
9307 if (hreg <= 31)
9308 load_register (hreg, &imm_expr, 0);
9309 if (lreg <= 31)
9310 {
9311 if (offset_expr.X_op == O_absent)
9312 move_register (lreg, 0);
9313 else
9314 {
9315 gas_assert (offset_expr.X_op == O_constant);
9316 load_register (lreg, &offset_expr, 0);
9317 }
9318 }
9319 }
9320 break;
9321 }
9322
9323 /* We know that sym is in the .rdata section. First we get the
9324 upper 16 bits of the address. */
9325 if (mips_pic == NO_PIC)
9326 {
9327 macro_build_lui (&offset_expr, AT);
9328 used_at = 1;
9329 }
9330 else
9331 {
9332 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9333 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9334 used_at = 1;
9335 }
9336
9337 /* Now we load the register(s). */
9338 if (HAVE_64BIT_GPRS)
9339 {
9340 used_at = 1;
9341 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
9342 }
9343 else
9344 {
9345 used_at = 1;
9346 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
9347 if (treg != RA)
9348 {
9349 /* FIXME: How in the world do we deal with the possible
9350 overflow here? */
9351 offset_expr.X_add_number += 4;
9352 macro_build (&offset_expr, "lw", "t,o(b)",
9353 treg + 1, BFD_RELOC_LO16, AT);
9354 }
9355 }
9356 break;
9357
9358 case M_LI_DD:
9359 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
9360 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
9361 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
9362 the value and the low order 32 bits are either zero or in
9363 OFFSET_EXPR. */
9364 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
9365 {
9366 used_at = 1;
9367 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
9368 if (HAVE_64BIT_FPRS)
9369 {
9370 gas_assert (HAVE_64BIT_GPRS);
9371 macro_build (NULL, "dmtc1", "t,S", AT, treg);
9372 }
9373 else
9374 {
9375 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
9376 if (offset_expr.X_op == O_absent)
9377 macro_build (NULL, "mtc1", "t,G", 0, treg);
9378 else
9379 {
9380 gas_assert (offset_expr.X_op == O_constant);
9381 load_register (AT, &offset_expr, 0);
9382 macro_build (NULL, "mtc1", "t,G", AT, treg);
9383 }
9384 }
9385 break;
9386 }
9387
9388 gas_assert (offset_expr.X_op == O_symbol
9389 && offset_expr.X_add_number == 0);
9390 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
9391 if (strcmp (s, ".lit8") == 0)
9392 {
9393 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
9394 {
9395 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
9396 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
9397 break;
9398 }
9399 breg = mips_gp_register;
9400 r = BFD_RELOC_MIPS_LITERAL;
9401 goto dob;
9402 }
9403 else
9404 {
9405 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
9406 used_at = 1;
9407 if (mips_pic != NO_PIC)
9408 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9409 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9410 else
9411 {
9412 /* FIXME: This won't work for a 64 bit address. */
9413 macro_build_lui (&offset_expr, AT);
9414 }
9415
9416 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
9417 {
9418 macro_build (&offset_expr, "ldc1", "T,o(b)",
9419 treg, BFD_RELOC_LO16, AT);
9420 break;
9421 }
9422 breg = AT;
9423 r = BFD_RELOC_LO16;
9424 goto dob;
9425 }
9426
9427 case M_L_DOB:
9428 /* Even on a big endian machine $fn comes before $fn+1. We have
9429 to adjust when loading from memory. */
9430 r = BFD_RELOC_LO16;
9431 dob:
9432 gas_assert (!mips_opts.micromips);
9433 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
9434 macro_build (&offset_expr, "lwc1", "T,o(b)",
9435 target_big_endian ? treg + 1 : treg, r, breg);
9436 /* FIXME: A possible overflow which I don't know how to deal
9437 with. */
9438 offset_expr.X_add_number += 4;
9439 macro_build (&offset_expr, "lwc1", "T,o(b)",
9440 target_big_endian ? treg : treg + 1, r, breg);
9441 break;
9442
9443 case M_S_DOB:
9444 gas_assert (!mips_opts.micromips);
9445 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
9446 /* Even on a big endian machine $fn comes before $fn+1. We have
9447 to adjust when storing to memory. */
9448 macro_build (&offset_expr, "swc1", "T,o(b)",
9449 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
9450 offset_expr.X_add_number += 4;
9451 macro_build (&offset_expr, "swc1", "T,o(b)",
9452 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
9453 break;
9454
9455 case M_L_DAB:
9456 gas_assert (!mips_opts.micromips);
9457 /*
9458 * The MIPS assembler seems to check for X_add_number not
9459 * being double aligned and generating:
9460 * lui at,%hi(foo+1)
9461 * addu at,at,v1
9462 * addiu at,at,%lo(foo+1)
9463 * lwc1 f2,0(at)
9464 * lwc1 f3,4(at)
9465 * But, the resulting address is the same after relocation so why
9466 * generate the extra instruction?
9467 */
9468 /* Itbl support may require additional care here. */
9469 coproc = 1;
9470 fmt = "T,o(b)";
9471 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9472 {
9473 s = "ldc1";
9474 goto ld_st;
9475 }
9476 s = "lwc1";
9477 goto ldd_std;
9478
9479 case M_S_DAB:
9480 gas_assert (!mips_opts.micromips);
9481 /* Itbl support may require additional care here. */
9482 coproc = 1;
9483 fmt = "T,o(b)";
9484 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9485 {
9486 s = "sdc1";
9487 goto ld_st;
9488 }
9489 s = "swc1";
9490 goto ldd_std;
9491
9492 case M_LQ_AB:
9493 fmt = "t,o(b)";
9494 s = "lq";
9495 goto ld;
9496
9497 case M_SQ_AB:
9498 fmt = "t,o(b)";
9499 s = "sq";
9500 goto ld_st;
9501
9502 case M_LD_AB:
9503 fmt = "t,o(b)";
9504 if (HAVE_64BIT_GPRS)
9505 {
9506 s = "ld";
9507 goto ld;
9508 }
9509 s = "lw";
9510 goto ldd_std;
9511
9512 case M_SD_AB:
9513 fmt = "t,o(b)";
9514 if (HAVE_64BIT_GPRS)
9515 {
9516 s = "sd";
9517 goto ld_st;
9518 }
9519 s = "sw";
9520
9521 ldd_std:
9522 if (offset_expr.X_op != O_symbol
9523 && offset_expr.X_op != O_constant)
9524 {
9525 as_bad (_("Expression too complex"));
9526 offset_expr.X_op = O_constant;
9527 }
9528
9529 if (HAVE_32BIT_ADDRESSES
9530 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
9531 {
9532 char value [32];
9533
9534 sprintf_vma (value, offset_expr.X_add_number);
9535 as_bad (_("Number (0x%s) larger than 32 bits"), value);
9536 }
9537
9538 /* Even on a big endian machine $fn comes before $fn+1. We have
9539 to adjust when loading from memory. We set coproc if we must
9540 load $fn+1 first. */
9541 /* Itbl support may require additional care here. */
9542 if (!target_big_endian)
9543 coproc = 0;
9544
9545 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
9546 {
9547 /* If this is a reference to a GP relative symbol, we want
9548 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
9549 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
9550 If we have a base register, we use this
9551 addu $at,$breg,$gp
9552 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
9553 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
9554 If this is not a GP relative symbol, we want
9555 lui $at,<sym> (BFD_RELOC_HI16_S)
9556 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9557 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9558 If there is a base register, we add it to $at after the
9559 lui instruction. If there is a constant, we always use
9560 the last case. */
9561 if (offset_expr.X_op == O_symbol
9562 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9563 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9564 {
9565 relax_start (offset_expr.X_add_symbol);
9566 if (breg == 0)
9567 {
9568 tempreg = mips_gp_register;
9569 }
9570 else
9571 {
9572 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9573 AT, breg, mips_gp_register);
9574 tempreg = AT;
9575 used_at = 1;
9576 }
9577
9578 /* Itbl support may require additional care here. */
9579 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9580 BFD_RELOC_GPREL16, tempreg);
9581 offset_expr.X_add_number += 4;
9582
9583 /* Set mips_optimize to 2 to avoid inserting an
9584 undesired nop. */
9585 hold_mips_optimize = mips_optimize;
9586 mips_optimize = 2;
9587 /* Itbl support may require additional care here. */
9588 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9589 BFD_RELOC_GPREL16, tempreg);
9590 mips_optimize = hold_mips_optimize;
9591
9592 relax_switch ();
9593
9594 offset_expr.X_add_number -= 4;
9595 }
9596 used_at = 1;
9597 macro_build_lui (&offset_expr, AT);
9598 if (breg != 0)
9599 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9600 /* Itbl support may require additional care here. */
9601 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9602 BFD_RELOC_LO16, AT);
9603 /* FIXME: How do we handle overflow here? */
9604 offset_expr.X_add_number += 4;
9605 /* Itbl support may require additional care here. */
9606 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9607 BFD_RELOC_LO16, AT);
9608 if (mips_relax.sequence)
9609 relax_end ();
9610 }
9611 else if (!mips_big_got)
9612 {
9613 /* If this is a reference to an external symbol, we want
9614 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9615 nop
9616 <op> $treg,0($at)
9617 <op> $treg+1,4($at)
9618 Otherwise we want
9619 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9620 nop
9621 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9622 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9623 If there is a base register we add it to $at before the
9624 lwc1 instructions. If there is a constant we include it
9625 in the lwc1 instructions. */
9626 used_at = 1;
9627 expr1.X_add_number = offset_expr.X_add_number;
9628 if (expr1.X_add_number < -0x8000
9629 || expr1.X_add_number >= 0x8000 - 4)
9630 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9631 load_got_offset (AT, &offset_expr);
9632 load_delay_nop ();
9633 if (breg != 0)
9634 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9635
9636 /* Set mips_optimize to 2 to avoid inserting an undesired
9637 nop. */
9638 hold_mips_optimize = mips_optimize;
9639 mips_optimize = 2;
9640
9641 /* Itbl support may require additional care here. */
9642 relax_start (offset_expr.X_add_symbol);
9643 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9644 BFD_RELOC_LO16, AT);
9645 expr1.X_add_number += 4;
9646 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9647 BFD_RELOC_LO16, AT);
9648 relax_switch ();
9649 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9650 BFD_RELOC_LO16, AT);
9651 offset_expr.X_add_number += 4;
9652 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9653 BFD_RELOC_LO16, AT);
9654 relax_end ();
9655
9656 mips_optimize = hold_mips_optimize;
9657 }
9658 else if (mips_big_got)
9659 {
9660 int gpdelay;
9661
9662 /* If this is a reference to an external symbol, we want
9663 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9664 addu $at,$at,$gp
9665 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
9666 nop
9667 <op> $treg,0($at)
9668 <op> $treg+1,4($at)
9669 Otherwise we want
9670 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9671 nop
9672 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9673 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9674 If there is a base register we add it to $at before the
9675 lwc1 instructions. If there is a constant we include it
9676 in the lwc1 instructions. */
9677 used_at = 1;
9678 expr1.X_add_number = offset_expr.X_add_number;
9679 offset_expr.X_add_number = 0;
9680 if (expr1.X_add_number < -0x8000
9681 || expr1.X_add_number >= 0x8000 - 4)
9682 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9683 gpdelay = reg_needs_delay (mips_gp_register);
9684 relax_start (offset_expr.X_add_symbol);
9685 macro_build (&offset_expr, "lui", LUI_FMT,
9686 AT, BFD_RELOC_MIPS_GOT_HI16);
9687 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9688 AT, AT, mips_gp_register);
9689 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9690 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
9691 load_delay_nop ();
9692 if (breg != 0)
9693 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9694 /* Itbl support may require additional care here. */
9695 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9696 BFD_RELOC_LO16, AT);
9697 expr1.X_add_number += 4;
9698
9699 /* Set mips_optimize to 2 to avoid inserting an undesired
9700 nop. */
9701 hold_mips_optimize = mips_optimize;
9702 mips_optimize = 2;
9703 /* Itbl support may require additional care here. */
9704 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9705 BFD_RELOC_LO16, AT);
9706 mips_optimize = hold_mips_optimize;
9707 expr1.X_add_number -= 4;
9708
9709 relax_switch ();
9710 offset_expr.X_add_number = expr1.X_add_number;
9711 if (gpdelay)
9712 macro_build (NULL, "nop", "");
9713 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9714 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9715 load_delay_nop ();
9716 if (breg != 0)
9717 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9718 /* Itbl support may require additional care here. */
9719 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9720 BFD_RELOC_LO16, AT);
9721 offset_expr.X_add_number += 4;
9722
9723 /* Set mips_optimize to 2 to avoid inserting an undesired
9724 nop. */
9725 hold_mips_optimize = mips_optimize;
9726 mips_optimize = 2;
9727 /* Itbl support may require additional care here. */
9728 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9729 BFD_RELOC_LO16, AT);
9730 mips_optimize = hold_mips_optimize;
9731 relax_end ();
9732 }
9733 else
9734 abort ();
9735
9736 break;
9737
9738 case M_LD_OB:
9739 s = HAVE_64BIT_GPRS ? "ld" : "lw";
9740 goto sd_ob;
9741 case M_SD_OB:
9742 s = HAVE_64BIT_GPRS ? "sd" : "sw";
9743 sd_ob:
9744 macro_build (&offset_expr, s, "t,o(b)", treg,
9745 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9746 breg);
9747 if (!HAVE_64BIT_GPRS)
9748 {
9749 offset_expr.X_add_number += 4;
9750 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
9751 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9752 breg);
9753 }
9754 break;
9755
9756
9757 case M_SAA_AB:
9758 ab = 1;
9759 case M_SAA_OB:
9760 s = "saa";
9761 offbits = 0;
9762 fmt = "t,(b)";
9763 goto ld_st;
9764 case M_SAAD_AB:
9765 ab = 1;
9766 case M_SAAD_OB:
9767 s = "saad";
9768 offbits = 0;
9769 fmt = "t,(b)";
9770 goto ld_st;
9771
9772 /* New code added to support COPZ instructions.
9773 This code builds table entries out of the macros in mip_opcodes.
9774 R4000 uses interlocks to handle coproc delays.
9775 Other chips (like the R3000) require nops to be inserted for delays.
9776
9777 FIXME: Currently, we require that the user handle delays.
9778 In order to fill delay slots for non-interlocked chips,
9779 we must have a way to specify delays based on the coprocessor.
9780 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
9781 What are the side-effects of the cop instruction?
9782 What cache support might we have and what are its effects?
9783 Both coprocessor & memory require delays. how long???
9784 What registers are read/set/modified?
9785
9786 If an itbl is provided to interpret cop instructions,
9787 this knowledge can be encoded in the itbl spec. */
9788
9789 case M_COP0:
9790 s = "c0";
9791 goto copz;
9792 case M_COP1:
9793 s = "c1";
9794 goto copz;
9795 case M_COP2:
9796 s = "c2";
9797 goto copz;
9798 case M_COP3:
9799 s = "c3";
9800 copz:
9801 gas_assert (!mips_opts.micromips);
9802 /* For now we just do C (same as Cz). The parameter will be
9803 stored in insn_opcode by mips_ip. */
9804 macro_build (NULL, s, "C", ip->insn_opcode);
9805 break;
9806
9807 case M_MOVE:
9808 move_register (dreg, sreg);
9809 break;
9810
9811 case M_DMUL:
9812 dbl = 1;
9813 case M_MUL:
9814 if (mips_opts.arch == CPU_R5900)
9815 {
9816 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", dreg, sreg, treg);
9817 }
9818 else
9819 {
9820 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
9821 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9822 }
9823 break;
9824
9825 case M_DMUL_I:
9826 dbl = 1;
9827 case M_MUL_I:
9828 /* The MIPS assembler some times generates shifts and adds. I'm
9829 not trying to be that fancy. GCC should do this for us
9830 anyway. */
9831 used_at = 1;
9832 load_register (AT, &imm_expr, dbl);
9833 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
9834 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9835 break;
9836
9837 case M_DMULO_I:
9838 dbl = 1;
9839 case M_MULO_I:
9840 imm = 1;
9841 goto do_mulo;
9842
9843 case M_DMULO:
9844 dbl = 1;
9845 case M_MULO:
9846 do_mulo:
9847 start_noreorder ();
9848 used_at = 1;
9849 if (imm)
9850 load_register (AT, &imm_expr, dbl);
9851 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
9852 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9853 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
9854 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9855 if (mips_trap)
9856 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
9857 else
9858 {
9859 if (mips_opts.micromips)
9860 micromips_label_expr (&label_expr);
9861 else
9862 label_expr.X_add_number = 8;
9863 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
9864 macro_build (NULL, "nop", "");
9865 macro_build (NULL, "break", BRK_FMT, 6);
9866 if (mips_opts.micromips)
9867 micromips_add_label ();
9868 }
9869 end_noreorder ();
9870 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9871 break;
9872
9873 case M_DMULOU_I:
9874 dbl = 1;
9875 case M_MULOU_I:
9876 imm = 1;
9877 goto do_mulou;
9878
9879 case M_DMULOU:
9880 dbl = 1;
9881 case M_MULOU:
9882 do_mulou:
9883 start_noreorder ();
9884 used_at = 1;
9885 if (imm)
9886 load_register (AT, &imm_expr, dbl);
9887 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
9888 sreg, imm ? AT : treg);
9889 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9890 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9891 if (mips_trap)
9892 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
9893 else
9894 {
9895 if (mips_opts.micromips)
9896 micromips_label_expr (&label_expr);
9897 else
9898 label_expr.X_add_number = 8;
9899 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
9900 macro_build (NULL, "nop", "");
9901 macro_build (NULL, "break", BRK_FMT, 6);
9902 if (mips_opts.micromips)
9903 micromips_add_label ();
9904 }
9905 end_noreorder ();
9906 break;
9907
9908 case M_DROL:
9909 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9910 {
9911 if (dreg == sreg)
9912 {
9913 tempreg = AT;
9914 used_at = 1;
9915 }
9916 else
9917 {
9918 tempreg = dreg;
9919 }
9920 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
9921 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
9922 break;
9923 }
9924 used_at = 1;
9925 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9926 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
9927 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
9928 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9929 break;
9930
9931 case M_ROL:
9932 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9933 {
9934 if (dreg == sreg)
9935 {
9936 tempreg = AT;
9937 used_at = 1;
9938 }
9939 else
9940 {
9941 tempreg = dreg;
9942 }
9943 macro_build (NULL, "negu", "d,w", tempreg, treg);
9944 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
9945 break;
9946 }
9947 used_at = 1;
9948 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9949 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
9950 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
9951 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9952 break;
9953
9954 case M_DROL_I:
9955 {
9956 unsigned int rot;
9957 char *l;
9958 char *rr;
9959
9960 if (imm_expr.X_op != O_constant)
9961 as_bad (_("Improper rotate count"));
9962 rot = imm_expr.X_add_number & 0x3f;
9963 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9964 {
9965 rot = (64 - rot) & 0x3f;
9966 if (rot >= 32)
9967 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9968 else
9969 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9970 break;
9971 }
9972 if (rot == 0)
9973 {
9974 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9975 break;
9976 }
9977 l = (rot < 0x20) ? "dsll" : "dsll32";
9978 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
9979 rot &= 0x1f;
9980 used_at = 1;
9981 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
9982 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9983 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9984 }
9985 break;
9986
9987 case M_ROL_I:
9988 {
9989 unsigned int rot;
9990
9991 if (imm_expr.X_op != O_constant)
9992 as_bad (_("Improper rotate count"));
9993 rot = imm_expr.X_add_number & 0x1f;
9994 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9995 {
9996 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
9997 break;
9998 }
9999 if (rot == 0)
10000 {
10001 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
10002 break;
10003 }
10004 used_at = 1;
10005 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
10006 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
10007 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
10008 }
10009 break;
10010
10011 case M_DROR:
10012 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
10013 {
10014 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
10015 break;
10016 }
10017 used_at = 1;
10018 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
10019 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
10020 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
10021 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
10022 break;
10023
10024 case M_ROR:
10025 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
10026 {
10027 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
10028 break;
10029 }
10030 used_at = 1;
10031 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
10032 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
10033 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
10034 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
10035 break;
10036
10037 case M_DROR_I:
10038 {
10039 unsigned int rot;
10040 char *l;
10041 char *rr;
10042
10043 if (imm_expr.X_op != O_constant)
10044 as_bad (_("Improper rotate count"));
10045 rot = imm_expr.X_add_number & 0x3f;
10046 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
10047 {
10048 if (rot >= 32)
10049 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
10050 else
10051 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
10052 break;
10053 }
10054 if (rot == 0)
10055 {
10056 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
10057 break;
10058 }
10059 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
10060 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
10061 rot &= 0x1f;
10062 used_at = 1;
10063 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
10064 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
10065 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
10066 }
10067 break;
10068
10069 case M_ROR_I:
10070 {
10071 unsigned int rot;
10072
10073 if (imm_expr.X_op != O_constant)
10074 as_bad (_("Improper rotate count"));
10075 rot = imm_expr.X_add_number & 0x1f;
10076 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
10077 {
10078 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
10079 break;
10080 }
10081 if (rot == 0)
10082 {
10083 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
10084 break;
10085 }
10086 used_at = 1;
10087 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
10088 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
10089 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
10090 }
10091 break;
10092
10093 case M_SEQ:
10094 if (sreg == 0)
10095 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
10096 else if (treg == 0)
10097 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10098 else
10099 {
10100 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
10101 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
10102 }
10103 break;
10104
10105 case M_SEQ_I:
10106 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
10107 {
10108 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10109 break;
10110 }
10111 if (sreg == 0)
10112 {
10113 as_warn (_("Instruction %s: result is always false"),
10114 ip->insn_mo->name);
10115 move_register (dreg, 0);
10116 break;
10117 }
10118 if (CPU_HAS_SEQ (mips_opts.arch)
10119 && -512 <= imm_expr.X_add_number
10120 && imm_expr.X_add_number < 512)
10121 {
10122 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
10123 (int) imm_expr.X_add_number);
10124 break;
10125 }
10126 if (imm_expr.X_op == O_constant
10127 && imm_expr.X_add_number >= 0
10128 && imm_expr.X_add_number < 0x10000)
10129 {
10130 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
10131 }
10132 else if (imm_expr.X_op == O_constant
10133 && imm_expr.X_add_number > -0x8000
10134 && imm_expr.X_add_number < 0)
10135 {
10136 imm_expr.X_add_number = -imm_expr.X_add_number;
10137 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
10138 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10139 }
10140 else if (CPU_HAS_SEQ (mips_opts.arch))
10141 {
10142 used_at = 1;
10143 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10144 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
10145 break;
10146 }
10147 else
10148 {
10149 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10150 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
10151 used_at = 1;
10152 }
10153 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
10154 break;
10155
10156 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
10157 s = "slt";
10158 goto sge;
10159 case M_SGEU:
10160 s = "sltu";
10161 sge:
10162 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
10163 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
10164 break;
10165
10166 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
10167 case M_SGEU_I:
10168 if (imm_expr.X_op == O_constant
10169 && imm_expr.X_add_number >= -0x8000
10170 && imm_expr.X_add_number < 0x8000)
10171 {
10172 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
10173 dreg, sreg, BFD_RELOC_LO16);
10174 }
10175 else
10176 {
10177 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10178 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
10179 dreg, sreg, AT);
10180 used_at = 1;
10181 }
10182 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
10183 break;
10184
10185 case M_SGT: /* sreg > treg <==> treg < sreg */
10186 s = "slt";
10187 goto sgt;
10188 case M_SGTU:
10189 s = "sltu";
10190 sgt:
10191 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
10192 break;
10193
10194 case M_SGT_I: /* sreg > I <==> I < sreg */
10195 s = "slt";
10196 goto sgti;
10197 case M_SGTU_I:
10198 s = "sltu";
10199 sgti:
10200 used_at = 1;
10201 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10202 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
10203 break;
10204
10205 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
10206 s = "slt";
10207 goto sle;
10208 case M_SLEU:
10209 s = "sltu";
10210 sle:
10211 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
10212 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
10213 break;
10214
10215 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
10216 s = "slt";
10217 goto slei;
10218 case M_SLEU_I:
10219 s = "sltu";
10220 slei:
10221 used_at = 1;
10222 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10223 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
10224 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
10225 break;
10226
10227 case M_SLT_I:
10228 if (imm_expr.X_op == O_constant
10229 && imm_expr.X_add_number >= -0x8000
10230 && imm_expr.X_add_number < 0x8000)
10231 {
10232 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10233 break;
10234 }
10235 used_at = 1;
10236 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10237 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
10238 break;
10239
10240 case M_SLTU_I:
10241 if (imm_expr.X_op == O_constant
10242 && imm_expr.X_add_number >= -0x8000
10243 && imm_expr.X_add_number < 0x8000)
10244 {
10245 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
10246 BFD_RELOC_LO16);
10247 break;
10248 }
10249 used_at = 1;
10250 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10251 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
10252 break;
10253
10254 case M_SNE:
10255 if (sreg == 0)
10256 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
10257 else if (treg == 0)
10258 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
10259 else
10260 {
10261 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
10262 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
10263 }
10264 break;
10265
10266 case M_SNE_I:
10267 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
10268 {
10269 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
10270 break;
10271 }
10272 if (sreg == 0)
10273 {
10274 as_warn (_("Instruction %s: result is always true"),
10275 ip->insn_mo->name);
10276 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
10277 dreg, 0, BFD_RELOC_LO16);
10278 break;
10279 }
10280 if (CPU_HAS_SEQ (mips_opts.arch)
10281 && -512 <= imm_expr.X_add_number
10282 && imm_expr.X_add_number < 512)
10283 {
10284 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
10285 (int) imm_expr.X_add_number);
10286 break;
10287 }
10288 if (imm_expr.X_op == O_constant
10289 && imm_expr.X_add_number >= 0
10290 && imm_expr.X_add_number < 0x10000)
10291 {
10292 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
10293 }
10294 else if (imm_expr.X_op == O_constant
10295 && imm_expr.X_add_number > -0x8000
10296 && imm_expr.X_add_number < 0)
10297 {
10298 imm_expr.X_add_number = -imm_expr.X_add_number;
10299 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
10300 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10301 }
10302 else if (CPU_HAS_SEQ (mips_opts.arch))
10303 {
10304 used_at = 1;
10305 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10306 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
10307 break;
10308 }
10309 else
10310 {
10311 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10312 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
10313 used_at = 1;
10314 }
10315 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
10316 break;
10317
10318 case M_SUB_I:
10319 s = "addi";
10320 s2 = "sub";
10321 goto do_subi;
10322 case M_SUBU_I:
10323 s = "addiu";
10324 s2 = "subu";
10325 goto do_subi;
10326 case M_DSUB_I:
10327 dbl = 1;
10328 s = "daddi";
10329 s2 = "dsub";
10330 if (!mips_opts.micromips)
10331 goto do_subi;
10332 if (imm_expr.X_op == O_constant
10333 && imm_expr.X_add_number > -0x200
10334 && imm_expr.X_add_number <= 0x200)
10335 {
10336 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
10337 break;
10338 }
10339 goto do_subi_i;
10340 case M_DSUBU_I:
10341 dbl = 1;
10342 s = "daddiu";
10343 s2 = "dsubu";
10344 do_subi:
10345 if (imm_expr.X_op == O_constant
10346 && imm_expr.X_add_number > -0x8000
10347 && imm_expr.X_add_number <= 0x8000)
10348 {
10349 imm_expr.X_add_number = -imm_expr.X_add_number;
10350 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
10351 break;
10352 }
10353 do_subi_i:
10354 used_at = 1;
10355 load_register (AT, &imm_expr, dbl);
10356 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
10357 break;
10358
10359 case M_TEQ_I:
10360 s = "teq";
10361 goto trap;
10362 case M_TGE_I:
10363 s = "tge";
10364 goto trap;
10365 case M_TGEU_I:
10366 s = "tgeu";
10367 goto trap;
10368 case M_TLT_I:
10369 s = "tlt";
10370 goto trap;
10371 case M_TLTU_I:
10372 s = "tltu";
10373 goto trap;
10374 case M_TNE_I:
10375 s = "tne";
10376 trap:
10377 used_at = 1;
10378 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
10379 macro_build (NULL, s, "s,t", sreg, AT);
10380 break;
10381
10382 case M_TRUNCWS:
10383 case M_TRUNCWD:
10384 gas_assert (!mips_opts.micromips);
10385 gas_assert (mips_opts.isa == ISA_MIPS1);
10386 used_at = 1;
10387 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
10388 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
10389
10390 /*
10391 * Is the double cfc1 instruction a bug in the mips assembler;
10392 * or is there a reason for it?
10393 */
10394 start_noreorder ();
10395 macro_build (NULL, "cfc1", "t,G", treg, RA);
10396 macro_build (NULL, "cfc1", "t,G", treg, RA);
10397 macro_build (NULL, "nop", "");
10398 expr1.X_add_number = 3;
10399 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
10400 expr1.X_add_number = 2;
10401 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
10402 macro_build (NULL, "ctc1", "t,G", AT, RA);
10403 macro_build (NULL, "nop", "");
10404 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
10405 dreg, sreg);
10406 macro_build (NULL, "ctc1", "t,G", treg, RA);
10407 macro_build (NULL, "nop", "");
10408 end_noreorder ();
10409 break;
10410
10411 case M_ULH_A:
10412 ab = 1;
10413 case M_ULH:
10414 s = "lb";
10415 s2 = "lbu";
10416 off = 1;
10417 goto uld_st;
10418 case M_ULHU_A:
10419 ab = 1;
10420 case M_ULHU:
10421 s = "lbu";
10422 s2 = "lbu";
10423 off = 1;
10424 goto uld_st;
10425 case M_ULW_A:
10426 ab = 1;
10427 case M_ULW:
10428 s = "lwl";
10429 s2 = "lwr";
10430 offbits = (mips_opts.micromips ? 12 : 16);
10431 off = 3;
10432 goto uld_st;
10433 case M_ULD_A:
10434 ab = 1;
10435 case M_ULD:
10436 s = "ldl";
10437 s2 = "ldr";
10438 offbits = (mips_opts.micromips ? 12 : 16);
10439 off = 7;
10440 goto uld_st;
10441 case M_USH_A:
10442 ab = 1;
10443 case M_USH:
10444 s = "sb";
10445 s2 = "sb";
10446 off = 1;
10447 ust = 1;
10448 goto uld_st;
10449 case M_USW_A:
10450 ab = 1;
10451 case M_USW:
10452 s = "swl";
10453 s2 = "swr";
10454 offbits = (mips_opts.micromips ? 12 : 16);
10455 off = 3;
10456 ust = 1;
10457 goto uld_st;
10458 case M_USD_A:
10459 ab = 1;
10460 case M_USD:
10461 s = "sdl";
10462 s2 = "sdr";
10463 offbits = (mips_opts.micromips ? 12 : 16);
10464 off = 7;
10465 ust = 1;
10466
10467 uld_st:
10468 if (!ab && offset_expr.X_add_number >= 0x8000 - off)
10469 as_bad (_("Operand overflow"));
10470
10471 ep = &offset_expr;
10472 expr1.X_add_number = 0;
10473 if (ab)
10474 {
10475 used_at = 1;
10476 tempreg = AT;
10477 load_address (tempreg, ep, &used_at);
10478 if (breg != 0)
10479 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10480 tempreg, tempreg, breg);
10481 breg = tempreg;
10482 tempreg = treg;
10483 ep = &expr1;
10484 }
10485 else if (offbits == 12
10486 && (offset_expr.X_op != O_constant
10487 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number)
10488 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number + off)))
10489 {
10490 used_at = 1;
10491 tempreg = AT;
10492 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg,
10493 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10494 breg = tempreg;
10495 tempreg = treg;
10496 ep = &expr1;
10497 }
10498 else if (!ust && treg == breg)
10499 {
10500 used_at = 1;
10501 tempreg = AT;
10502 }
10503 else
10504 tempreg = treg;
10505
10506 if (off == 1)
10507 goto ulh_sh;
10508
10509 if (!target_big_endian)
10510 ep->X_add_number += off;
10511 if (offbits != 12)
10512 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10513 else
10514 macro_build (NULL, s, "t,~(b)",
10515 tempreg, (unsigned long) ep->X_add_number, breg);
10516
10517 if (!target_big_endian)
10518 ep->X_add_number -= off;
10519 else
10520 ep->X_add_number += off;
10521 if (offbits != 12)
10522 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10523 else
10524 macro_build (NULL, s2, "t,~(b)",
10525 tempreg, (unsigned long) ep->X_add_number, breg);
10526
10527 /* If necessary, move the result in tempreg to the final destination. */
10528 if (!ust && treg != tempreg)
10529 {
10530 /* Protect second load's delay slot. */
10531 load_delay_nop ();
10532 move_register (treg, tempreg);
10533 }
10534 break;
10535
10536 ulh_sh:
10537 used_at = 1;
10538 if (target_big_endian == ust)
10539 ep->X_add_number += off;
10540 tempreg = ust || ab ? treg : AT;
10541 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10542
10543 /* For halfword transfers we need a temporary register to shuffle
10544 bytes. Unfortunately for M_USH_A we have none available before
10545 the next store as AT holds the base address. We deal with this
10546 case by clobbering TREG and then restoring it as with ULH. */
10547 tempreg = ust == ab ? treg : AT;
10548 if (ust)
10549 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
10550
10551 if (target_big_endian == ust)
10552 ep->X_add_number -= off;
10553 else
10554 ep->X_add_number += off;
10555 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10556
10557 /* For M_USH_A re-retrieve the LSB. */
10558 if (ust && ab)
10559 {
10560 if (target_big_endian)
10561 ep->X_add_number += off;
10562 else
10563 ep->X_add_number -= off;
10564 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
10565 }
10566 /* For ULH and M_USH_A OR the LSB in. */
10567 if (!ust || ab)
10568 {
10569 tempreg = !ab ? AT : treg;
10570 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
10571 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
10572 }
10573 break;
10574
10575 default:
10576 /* FIXME: Check if this is one of the itbl macros, since they
10577 are added dynamically. */
10578 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
10579 break;
10580 }
10581 if (!mips_opts.at && used_at)
10582 as_bad (_("Macro used $at after \".set noat\""));
10583 }
10584
10585 /* Implement macros in mips16 mode. */
10586
10587 static void
10588 mips16_macro (struct mips_cl_insn *ip)
10589 {
10590 int mask;
10591 int xreg, yreg, zreg, tmp;
10592 expressionS expr1;
10593 int dbl;
10594 const char *s, *s2, *s3;
10595
10596 mask = ip->insn_mo->mask;
10597
10598 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
10599 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
10600 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
10601
10602 expr1.X_op = O_constant;
10603 expr1.X_op_symbol = NULL;
10604 expr1.X_add_symbol = NULL;
10605 expr1.X_add_number = 1;
10606
10607 dbl = 0;
10608
10609 switch (mask)
10610 {
10611 default:
10612 abort ();
10613
10614 case M_DDIV_3:
10615 dbl = 1;
10616 case M_DIV_3:
10617 s = "mflo";
10618 goto do_div3;
10619 case M_DREM_3:
10620 dbl = 1;
10621 case M_REM_3:
10622 s = "mfhi";
10623 do_div3:
10624 start_noreorder ();
10625 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
10626 expr1.X_add_number = 2;
10627 macro_build (&expr1, "bnez", "x,p", yreg);
10628 macro_build (NULL, "break", "6", 7);
10629
10630 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
10631 since that causes an overflow. We should do that as well,
10632 but I don't see how to do the comparisons without a temporary
10633 register. */
10634 end_noreorder ();
10635 macro_build (NULL, s, "x", zreg);
10636 break;
10637
10638 case M_DIVU_3:
10639 s = "divu";
10640 s2 = "mflo";
10641 goto do_divu3;
10642 case M_REMU_3:
10643 s = "divu";
10644 s2 = "mfhi";
10645 goto do_divu3;
10646 case M_DDIVU_3:
10647 s = "ddivu";
10648 s2 = "mflo";
10649 goto do_divu3;
10650 case M_DREMU_3:
10651 s = "ddivu";
10652 s2 = "mfhi";
10653 do_divu3:
10654 start_noreorder ();
10655 macro_build (NULL, s, "0,x,y", xreg, yreg);
10656 expr1.X_add_number = 2;
10657 macro_build (&expr1, "bnez", "x,p", yreg);
10658 macro_build (NULL, "break", "6", 7);
10659 end_noreorder ();
10660 macro_build (NULL, s2, "x", zreg);
10661 break;
10662
10663 case M_DMUL:
10664 dbl = 1;
10665 case M_MUL:
10666 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
10667 macro_build (NULL, "mflo", "x", zreg);
10668 break;
10669
10670 case M_DSUBU_I:
10671 dbl = 1;
10672 goto do_subu;
10673 case M_SUBU_I:
10674 do_subu:
10675 if (imm_expr.X_op != O_constant)
10676 as_bad (_("Unsupported large constant"));
10677 imm_expr.X_add_number = -imm_expr.X_add_number;
10678 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
10679 break;
10680
10681 case M_SUBU_I_2:
10682 if (imm_expr.X_op != O_constant)
10683 as_bad (_("Unsupported large constant"));
10684 imm_expr.X_add_number = -imm_expr.X_add_number;
10685 macro_build (&imm_expr, "addiu", "x,k", xreg);
10686 break;
10687
10688 case M_DSUBU_I_2:
10689 if (imm_expr.X_op != O_constant)
10690 as_bad (_("Unsupported large constant"));
10691 imm_expr.X_add_number = -imm_expr.X_add_number;
10692 macro_build (&imm_expr, "daddiu", "y,j", yreg);
10693 break;
10694
10695 case M_BEQ:
10696 s = "cmp";
10697 s2 = "bteqz";
10698 goto do_branch;
10699 case M_BNE:
10700 s = "cmp";
10701 s2 = "btnez";
10702 goto do_branch;
10703 case M_BLT:
10704 s = "slt";
10705 s2 = "btnez";
10706 goto do_branch;
10707 case M_BLTU:
10708 s = "sltu";
10709 s2 = "btnez";
10710 goto do_branch;
10711 case M_BLE:
10712 s = "slt";
10713 s2 = "bteqz";
10714 goto do_reverse_branch;
10715 case M_BLEU:
10716 s = "sltu";
10717 s2 = "bteqz";
10718 goto do_reverse_branch;
10719 case M_BGE:
10720 s = "slt";
10721 s2 = "bteqz";
10722 goto do_branch;
10723 case M_BGEU:
10724 s = "sltu";
10725 s2 = "bteqz";
10726 goto do_branch;
10727 case M_BGT:
10728 s = "slt";
10729 s2 = "btnez";
10730 goto do_reverse_branch;
10731 case M_BGTU:
10732 s = "sltu";
10733 s2 = "btnez";
10734
10735 do_reverse_branch:
10736 tmp = xreg;
10737 xreg = yreg;
10738 yreg = tmp;
10739
10740 do_branch:
10741 macro_build (NULL, s, "x,y", xreg, yreg);
10742 macro_build (&offset_expr, s2, "p");
10743 break;
10744
10745 case M_BEQ_I:
10746 s = "cmpi";
10747 s2 = "bteqz";
10748 s3 = "x,U";
10749 goto do_branch_i;
10750 case M_BNE_I:
10751 s = "cmpi";
10752 s2 = "btnez";
10753 s3 = "x,U";
10754 goto do_branch_i;
10755 case M_BLT_I:
10756 s = "slti";
10757 s2 = "btnez";
10758 s3 = "x,8";
10759 goto do_branch_i;
10760 case M_BLTU_I:
10761 s = "sltiu";
10762 s2 = "btnez";
10763 s3 = "x,8";
10764 goto do_branch_i;
10765 case M_BLE_I:
10766 s = "slti";
10767 s2 = "btnez";
10768 s3 = "x,8";
10769 goto do_addone_branch_i;
10770 case M_BLEU_I:
10771 s = "sltiu";
10772 s2 = "btnez";
10773 s3 = "x,8";
10774 goto do_addone_branch_i;
10775 case M_BGE_I:
10776 s = "slti";
10777 s2 = "bteqz";
10778 s3 = "x,8";
10779 goto do_branch_i;
10780 case M_BGEU_I:
10781 s = "sltiu";
10782 s2 = "bteqz";
10783 s3 = "x,8";
10784 goto do_branch_i;
10785 case M_BGT_I:
10786 s = "slti";
10787 s2 = "bteqz";
10788 s3 = "x,8";
10789 goto do_addone_branch_i;
10790 case M_BGTU_I:
10791 s = "sltiu";
10792 s2 = "bteqz";
10793 s3 = "x,8";
10794
10795 do_addone_branch_i:
10796 if (imm_expr.X_op != O_constant)
10797 as_bad (_("Unsupported large constant"));
10798 ++imm_expr.X_add_number;
10799
10800 do_branch_i:
10801 macro_build (&imm_expr, s, s3, xreg);
10802 macro_build (&offset_expr, s2, "p");
10803 break;
10804
10805 case M_ABS:
10806 expr1.X_add_number = 0;
10807 macro_build (&expr1, "slti", "x,8", yreg);
10808 if (xreg != yreg)
10809 move_register (xreg, yreg);
10810 expr1.X_add_number = 2;
10811 macro_build (&expr1, "bteqz", "p");
10812 macro_build (NULL, "neg", "x,w", xreg, xreg);
10813 }
10814 }
10815
10816 /* For consistency checking, verify that all bits are specified either
10817 by the match/mask part of the instruction definition, or by the
10818 operand list. */
10819 static int
10820 validate_mips_insn (const struct mips_opcode *opc)
10821 {
10822 const char *p = opc->args;
10823 char c;
10824 unsigned long used_bits = opc->mask;
10825
10826 if ((used_bits & opc->match) != opc->match)
10827 {
10828 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
10829 opc->name, opc->args);
10830 return 0;
10831 }
10832 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
10833 while (*p)
10834 switch (c = *p++)
10835 {
10836 case ',': break;
10837 case '(': break;
10838 case ')': break;
10839 case '+':
10840 switch (c = *p++)
10841 {
10842 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
10843 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
10844 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
10845 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
10846 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10847 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10848 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10849 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
10850 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10851 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10852 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10853 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10854 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10855 case 'I': break;
10856 case 'J': USE_BITS (OP_MASK_CODE10, OP_SH_CODE10); break;
10857 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10858 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
10859 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10860 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10861 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10862 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10863 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10864 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
10865 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10866 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10867 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
10868 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
10869 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
10870 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
10871 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
10872 case 'j': USE_BITS (OP_MASK_EVAOFFSET, OP_SH_EVAOFFSET); break;
10873
10874 default:
10875 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
10876 c, opc->name, opc->args);
10877 return 0;
10878 }
10879 break;
10880 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10881 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10882 case 'A': break;
10883 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
10884 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
10885 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10886 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10887 case 'F': break;
10888 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10889 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10890 case 'I': break;
10891 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
10892 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10893 case 'L': break;
10894 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
10895 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
10896 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
10897 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
10898 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10899 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
10900 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10901 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10902 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10903 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10904 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10905 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10906 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10907 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
10908 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10909 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
10910 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10911 case 'f': break;
10912 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
10913 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10914 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10915 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
10916 case 'l': break;
10917 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10918 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10919 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
10920 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10921 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10922 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10923 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10924 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10925 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10926 case 'x': break;
10927 case 'z': break;
10928 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
10929 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
10930 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10931 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
10932 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
10933 case '[': break;
10934 case ']': break;
10935 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10936 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
10937 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
10938 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
10939 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
10940 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10941 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
10942 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
10943 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
10944 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
10945 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
10946 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
10947 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
10948 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
10949 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
10950 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
10951 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
10952 case '\\': USE_BITS (OP_MASK_3BITPOS, OP_SH_3BITPOS); break;
10953 case '~': USE_BITS (OP_MASK_OFFSET12, OP_SH_OFFSET12); break;
10954 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10955 default:
10956 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
10957 c, opc->name, opc->args);
10958 return 0;
10959 }
10960 #undef USE_BITS
10961 if (used_bits != 0xffffffff)
10962 {
10963 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
10964 ~used_bits & 0xffffffff, opc->name, opc->args);
10965 return 0;
10966 }
10967 return 1;
10968 }
10969
10970 /* For consistency checking, verify that the length implied matches the
10971 major opcode and that all bits are specified either by the match/mask
10972 part of the instruction definition, or by the operand list. */
10973
10974 static int
10975 validate_micromips_insn (const struct mips_opcode *opc)
10976 {
10977 unsigned long match = opc->match;
10978 unsigned long mask = opc->mask;
10979 const char *p = opc->args;
10980 unsigned long insn_bits;
10981 unsigned long used_bits;
10982 unsigned long major;
10983 unsigned int length;
10984 char e;
10985 char c;
10986
10987 if ((mask & match) != match)
10988 {
10989 as_bad (_("Internal error: bad microMIPS opcode (mask error): %s %s"),
10990 opc->name, opc->args);
10991 return 0;
10992 }
10993 length = micromips_insn_length (opc);
10994 if (length != 2 && length != 4)
10995 {
10996 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
10997 "%s %s"), length, opc->name, opc->args);
10998 return 0;
10999 }
11000 major = match >> (10 + 8 * (length - 2));
11001 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
11002 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
11003 {
11004 as_bad (_("Internal error: bad microMIPS opcode "
11005 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
11006 return 0;
11007 }
11008
11009 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
11010 insn_bits = 1 << 4 * length;
11011 insn_bits <<= 4 * length;
11012 insn_bits -= 1;
11013 used_bits = mask;
11014 #define USE_BITS(field) \
11015 (used_bits |= MICROMIPSOP_MASK_##field << MICROMIPSOP_SH_##field)
11016 while (*p)
11017 switch (c = *p++)
11018 {
11019 case ',': break;
11020 case '(': break;
11021 case ')': break;
11022 case '+':
11023 e = c;
11024 switch (c = *p++)
11025 {
11026 case 'A': USE_BITS (EXTLSB); break;
11027 case 'B': USE_BITS (INSMSB); break;
11028 case 'C': USE_BITS (EXTMSBD); break;
11029 case 'D': USE_BITS (RS); USE_BITS (SEL); break;
11030 case 'E': USE_BITS (EXTLSB); break;
11031 case 'F': USE_BITS (INSMSB); break;
11032 case 'G': USE_BITS (EXTMSBD); break;
11033 case 'H': USE_BITS (EXTMSBD); break;
11034 case 'j': USE_BITS (EVAOFFSET); break;
11035 default:
11036 as_bad (_("Internal error: bad mips opcode "
11037 "(unknown extension operand type `%c%c'): %s %s"),
11038 e, c, opc->name, opc->args);
11039 return 0;
11040 }
11041 break;
11042 case 'm':
11043 e = c;
11044 switch (c = *p++)
11045 {
11046 case 'A': USE_BITS (IMMA); break;
11047 case 'B': USE_BITS (IMMB); break;
11048 case 'C': USE_BITS (IMMC); break;
11049 case 'D': USE_BITS (IMMD); break;
11050 case 'E': USE_BITS (IMME); break;
11051 case 'F': USE_BITS (IMMF); break;
11052 case 'G': USE_BITS (IMMG); break;
11053 case 'H': USE_BITS (IMMH); break;
11054 case 'I': USE_BITS (IMMI); break;
11055 case 'J': USE_BITS (IMMJ); break;
11056 case 'L': USE_BITS (IMML); break;
11057 case 'M': USE_BITS (IMMM); break;
11058 case 'N': USE_BITS (IMMN); break;
11059 case 'O': USE_BITS (IMMO); break;
11060 case 'P': USE_BITS (IMMP); break;
11061 case 'Q': USE_BITS (IMMQ); break;
11062 case 'U': USE_BITS (IMMU); break;
11063 case 'W': USE_BITS (IMMW); break;
11064 case 'X': USE_BITS (IMMX); break;
11065 case 'Y': USE_BITS (IMMY); break;
11066 case 'Z': break;
11067 case 'a': break;
11068 case 'b': USE_BITS (MB); break;
11069 case 'c': USE_BITS (MC); break;
11070 case 'd': USE_BITS (MD); break;
11071 case 'e': USE_BITS (ME); break;
11072 case 'f': USE_BITS (MF); break;
11073 case 'g': USE_BITS (MG); break;
11074 case 'h': USE_BITS (MH); break;
11075 case 'i': USE_BITS (MI); break;
11076 case 'j': USE_BITS (MJ); break;
11077 case 'l': USE_BITS (ML); break;
11078 case 'm': USE_BITS (MM); break;
11079 case 'n': USE_BITS (MN); break;
11080 case 'p': USE_BITS (MP); break;
11081 case 'q': USE_BITS (MQ); break;
11082 case 'r': break;
11083 case 's': break;
11084 case 't': break;
11085 case 'x': break;
11086 case 'y': break;
11087 case 'z': break;
11088 default:
11089 as_bad (_("Internal error: bad mips opcode "
11090 "(unknown extension operand type `%c%c'): %s %s"),
11091 e, c, opc->name, opc->args);
11092 return 0;
11093 }
11094 break;
11095 case '.': USE_BITS (OFFSET10); break;
11096 case '1': USE_BITS (STYPE); break;
11097 case '2': USE_BITS (BP); break;
11098 case '3': USE_BITS (SA3); break;
11099 case '4': USE_BITS (SA4); break;
11100 case '5': USE_BITS (IMM8); break;
11101 case '6': USE_BITS (RS); break;
11102 case '7': USE_BITS (DSPACC); break;
11103 case '8': USE_BITS (WRDSP); break;
11104 case '0': USE_BITS (DSPSFT); break;
11105 case '<': USE_BITS (SHAMT); break;
11106 case '>': USE_BITS (SHAMT); break;
11107 case '@': USE_BITS (IMM10); break;
11108 case 'B': USE_BITS (CODE10); break;
11109 case 'C': USE_BITS (COPZ); break;
11110 case 'D': USE_BITS (FD); break;
11111 case 'E': USE_BITS (RT); break;
11112 case 'G': USE_BITS (RS); break;
11113 case 'H': USE_BITS (SEL); break;
11114 case 'K': USE_BITS (RS); break;
11115 case 'M': USE_BITS (CCC); break;
11116 case 'N': USE_BITS (BCC); break;
11117 case 'R': USE_BITS (FR); break;
11118 case 'S': USE_BITS (FS); break;
11119 case 'T': USE_BITS (FT); break;
11120 case 'V': USE_BITS (FS); break;
11121 case '\\': USE_BITS (3BITPOS); break;
11122 case '^': USE_BITS (RD); break;
11123 case 'a': USE_BITS (TARGET); break;
11124 case 'b': USE_BITS (RS); break;
11125 case 'c': USE_BITS (CODE); break;
11126 case 'd': USE_BITS (RD); break;
11127 case 'h': USE_BITS (PREFX); break;
11128 case 'i': USE_BITS (IMMEDIATE); break;
11129 case 'j': USE_BITS (DELTA); break;
11130 case 'k': USE_BITS (CACHE); break;
11131 case 'n': USE_BITS (RT); break;
11132 case 'o': USE_BITS (DELTA); break;
11133 case 'p': USE_BITS (DELTA); break;
11134 case 'q': USE_BITS (CODE2); break;
11135 case 'r': USE_BITS (RS); break;
11136 case 's': USE_BITS (RS); break;
11137 case 't': USE_BITS (RT); break;
11138 case 'u': USE_BITS (IMMEDIATE); break;
11139 case 'v': USE_BITS (RS); break;
11140 case 'w': USE_BITS (RT); break;
11141 case 'y': USE_BITS (RS3); break;
11142 case 'z': break;
11143 case '|': USE_BITS (TRAP); break;
11144 case '~': USE_BITS (OFFSET12); break;
11145 default:
11146 as_bad (_("Internal error: bad microMIPS opcode "
11147 "(unknown operand type `%c'): %s %s"),
11148 c, opc->name, opc->args);
11149 return 0;
11150 }
11151 #undef USE_BITS
11152 if (used_bits != insn_bits)
11153 {
11154 if (~used_bits & insn_bits)
11155 as_bad (_("Internal error: bad microMIPS opcode "
11156 "(bits 0x%lx undefined): %s %s"),
11157 ~used_bits & insn_bits, opc->name, opc->args);
11158 if (used_bits & ~insn_bits)
11159 as_bad (_("Internal error: bad microMIPS opcode "
11160 "(bits 0x%lx defined): %s %s"),
11161 used_bits & ~insn_bits, opc->name, opc->args);
11162 return 0;
11163 }
11164 return 1;
11165 }
11166
11167 /* UDI immediates. */
11168 struct mips_immed {
11169 char type;
11170 unsigned int shift;
11171 unsigned long mask;
11172 const char * desc;
11173 };
11174
11175 static const struct mips_immed mips_immed[] = {
11176 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
11177 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
11178 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
11179 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
11180 { 0,0,0,0 }
11181 };
11182
11183 /* Check whether an odd floating-point register is allowed. */
11184 static int
11185 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
11186 {
11187 const char *s = insn->name;
11188
11189 if (insn->pinfo == INSN_MACRO)
11190 /* Let a macro pass, we'll catch it later when it is expanded. */
11191 return 1;
11192
11193 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || (mips_opts.arch == CPU_R5900))
11194 {
11195 /* Allow odd registers for single-precision ops. */
11196 switch (insn->pinfo & (FP_S | FP_D))
11197 {
11198 case FP_S:
11199 case 0:
11200 return 1; /* both single precision - ok */
11201 case FP_D:
11202 return 0; /* both double precision - fail */
11203 default:
11204 break;
11205 }
11206
11207 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
11208 s = strchr (insn->name, '.');
11209 if (argnum == 2)
11210 s = s != NULL ? strchr (s + 1, '.') : NULL;
11211 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
11212 }
11213
11214 /* Single-precision coprocessor loads and moves are OK too. */
11215 if ((insn->pinfo & FP_S)
11216 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
11217 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
11218 return 1;
11219
11220 return 0;
11221 }
11222
11223 /* Check if EXPR is a constant between MIN (inclusive) and MAX (exclusive)
11224 taking bits from BIT up. */
11225 static int
11226 expr_const_in_range (expressionS *ep, offsetT min, offsetT max, int bit)
11227 {
11228 return (ep->X_op == O_constant
11229 && (ep->X_add_number & ((1 << bit) - 1)) == 0
11230 && ep->X_add_number >= min << bit
11231 && ep->X_add_number < max << bit);
11232 }
11233
11234 /* This routine assembles an instruction into its binary format. As a
11235 side effect, it sets one of the global variables imm_reloc or
11236 offset_reloc to the type of relocation to do if one of the operands
11237 is an address expression. */
11238
11239 static void
11240 mips_ip (char *str, struct mips_cl_insn *ip)
11241 {
11242 bfd_boolean wrong_delay_slot_insns = FALSE;
11243 bfd_boolean need_delay_slot_ok = TRUE;
11244 struct mips_opcode *firstinsn = NULL;
11245 const struct mips_opcode *past;
11246 struct hash_control *hash;
11247 char *s;
11248 const char *args;
11249 char c = 0;
11250 struct mips_opcode *insn;
11251 char *argsStart;
11252 unsigned int regno;
11253 unsigned int lastregno;
11254 unsigned int destregno = 0;
11255 unsigned int lastpos = 0;
11256 unsigned int limlo, limhi;
11257 int sizelo;
11258 char *s_reset;
11259 offsetT min_range, max_range;
11260 long opend;
11261 char *name;
11262 int argnum;
11263 unsigned int rtype;
11264 char *dot;
11265 long end;
11266
11267 insn_error = NULL;
11268
11269 if (mips_opts.micromips)
11270 {
11271 hash = micromips_op_hash;
11272 past = &micromips_opcodes[bfd_micromips_num_opcodes];
11273 }
11274 else
11275 {
11276 hash = op_hash;
11277 past = &mips_opcodes[NUMOPCODES];
11278 }
11279 forced_insn_length = 0;
11280 insn = NULL;
11281
11282 /* We first try to match an instruction up to a space or to the end. */
11283 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
11284 continue;
11285
11286 /* Make a copy of the instruction so that we can fiddle with it. */
11287 name = alloca (end + 1);
11288 memcpy (name, str, end);
11289 name[end] = '\0';
11290
11291 for (;;)
11292 {
11293 insn = (struct mips_opcode *) hash_find (hash, name);
11294
11295 if (insn != NULL || !mips_opts.micromips)
11296 break;
11297 if (forced_insn_length)
11298 break;
11299
11300 /* See if there's an instruction size override suffix,
11301 either `16' or `32', at the end of the mnemonic proper,
11302 that defines the operation, i.e. before the first `.'
11303 character if any. Strip it and retry. */
11304 dot = strchr (name, '.');
11305 opend = dot != NULL ? dot - name : end;
11306 if (opend < 3)
11307 break;
11308 if (name[opend - 2] == '1' && name[opend - 1] == '6')
11309 forced_insn_length = 2;
11310 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
11311 forced_insn_length = 4;
11312 else
11313 break;
11314 memcpy (name + opend - 2, name + opend, end - opend + 1);
11315 }
11316 if (insn == NULL)
11317 {
11318 insn_error = _("Unrecognized opcode");
11319 return;
11320 }
11321
11322 /* For microMIPS instructions placed in a fixed-length branch delay slot
11323 we make up to two passes over the relevant fragment of the opcode
11324 table. First we try instructions that meet the delay slot's length
11325 requirement. If none matched, then we retry with the remaining ones
11326 and if one matches, then we use it and then issue an appropriate
11327 warning later on. */
11328 argsStart = s = str + end;
11329 for (;;)
11330 {
11331 bfd_boolean delay_slot_ok;
11332 bfd_boolean size_ok;
11333 bfd_boolean ok;
11334
11335 gas_assert (strcmp (insn->name, name) == 0);
11336
11337 ok = is_opcode_valid (insn);
11338 size_ok = is_size_valid (insn);
11339 delay_slot_ok = is_delay_slot_valid (insn);
11340 if (!delay_slot_ok && !wrong_delay_slot_insns)
11341 {
11342 firstinsn = insn;
11343 wrong_delay_slot_insns = TRUE;
11344 }
11345 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
11346 {
11347 static char buf[256];
11348
11349 if (insn + 1 < past && strcmp (insn->name, insn[1].name) == 0)
11350 {
11351 ++insn;
11352 continue;
11353 }
11354 if (wrong_delay_slot_insns && need_delay_slot_ok)
11355 {
11356 gas_assert (firstinsn);
11357 need_delay_slot_ok = FALSE;
11358 past = insn + 1;
11359 insn = firstinsn;
11360 continue;
11361 }
11362
11363 if (insn_error)
11364 return;
11365
11366 if (!ok)
11367 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
11368 mips_cpu_info_from_arch (mips_opts.arch)->name,
11369 mips_cpu_info_from_isa (mips_opts.isa)->name);
11370 else
11371 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
11372 8 * forced_insn_length);
11373 insn_error = buf;
11374
11375 return;
11376 }
11377
11378 create_insn (ip, insn);
11379 insn_error = NULL;
11380 argnum = 1;
11381 lastregno = 0xffffffff;
11382 for (args = insn->args;; ++args)
11383 {
11384 int is_mdmx;
11385
11386 s += strspn (s, " \t");
11387 is_mdmx = 0;
11388 switch (*args)
11389 {
11390 case '\0': /* end of args */
11391 if (*s == '\0')
11392 return;
11393 break;
11394
11395 case '2':
11396 /* DSP 2-bit unsigned immediate in bit 11 (for standard MIPS
11397 code) or 14 (for microMIPS code). */
11398 my_getExpression (&imm_expr, s);
11399 check_absolute_expr (ip, &imm_expr);
11400 if ((unsigned long) imm_expr.X_add_number != 1
11401 && (unsigned long) imm_expr.X_add_number != 3)
11402 {
11403 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
11404 (unsigned long) imm_expr.X_add_number);
11405 }
11406 INSERT_OPERAND (mips_opts.micromips,
11407 BP, *ip, imm_expr.X_add_number);
11408 imm_expr.X_op = O_absent;
11409 s = expr_end;
11410 continue;
11411
11412 case '3':
11413 /* DSP 3-bit unsigned immediate in bit 13 (for standard MIPS
11414 code) or 21 (for microMIPS code). */
11415 {
11416 unsigned long mask = (mips_opts.micromips
11417 ? MICROMIPSOP_MASK_SA3 : OP_MASK_SA3);
11418
11419 my_getExpression (&imm_expr, s);
11420 check_absolute_expr (ip, &imm_expr);
11421 if ((unsigned long) imm_expr.X_add_number > mask)
11422 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11423 mask, (unsigned long) imm_expr.X_add_number);
11424 INSERT_OPERAND (mips_opts.micromips,
11425 SA3, *ip, imm_expr.X_add_number);
11426 imm_expr.X_op = O_absent;
11427 s = expr_end;
11428 }
11429 continue;
11430
11431 case '4':
11432 /* DSP 4-bit unsigned immediate in bit 12 (for standard MIPS
11433 code) or 21 (for microMIPS code). */
11434 {
11435 unsigned long mask = (mips_opts.micromips
11436 ? MICROMIPSOP_MASK_SA4 : OP_MASK_SA4);
11437
11438 my_getExpression (&imm_expr, s);
11439 check_absolute_expr (ip, &imm_expr);
11440 if ((unsigned long) imm_expr.X_add_number > mask)
11441 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11442 mask, (unsigned long) imm_expr.X_add_number);
11443 INSERT_OPERAND (mips_opts.micromips,
11444 SA4, *ip, imm_expr.X_add_number);
11445 imm_expr.X_op = O_absent;
11446 s = expr_end;
11447 }
11448 continue;
11449
11450 case '5':
11451 /* DSP 8-bit unsigned immediate in bit 13 (for standard MIPS
11452 code) or 16 (for microMIPS code). */
11453 {
11454 unsigned long mask = (mips_opts.micromips
11455 ? MICROMIPSOP_MASK_IMM8 : OP_MASK_IMM8);
11456
11457 my_getExpression (&imm_expr, s);
11458 check_absolute_expr (ip, &imm_expr);
11459 if ((unsigned long) imm_expr.X_add_number > mask)
11460 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11461 mask, (unsigned long) imm_expr.X_add_number);
11462 INSERT_OPERAND (mips_opts.micromips,
11463 IMM8, *ip, imm_expr.X_add_number);
11464 imm_expr.X_op = O_absent;
11465 s = expr_end;
11466 }
11467 continue;
11468
11469 case '6':
11470 /* DSP 5-bit unsigned immediate in bit 16 (for standard MIPS
11471 code) or 21 (for microMIPS code). */
11472 {
11473 unsigned long mask = (mips_opts.micromips
11474 ? MICROMIPSOP_MASK_RS : OP_MASK_RS);
11475
11476 my_getExpression (&imm_expr, s);
11477 check_absolute_expr (ip, &imm_expr);
11478 if ((unsigned long) imm_expr.X_add_number > mask)
11479 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11480 mask, (unsigned long) imm_expr.X_add_number);
11481 INSERT_OPERAND (mips_opts.micromips,
11482 RS, *ip, imm_expr.X_add_number);
11483 imm_expr.X_op = O_absent;
11484 s = expr_end;
11485 }
11486 continue;
11487
11488 case '7': /* Four DSP accumulators in bits 11,12. */
11489 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11490 && s[3] >= '0' && s[3] <= '3')
11491 {
11492 regno = s[3] - '0';
11493 s += 4;
11494 INSERT_OPERAND (mips_opts.micromips, DSPACC, *ip, regno);
11495 continue;
11496 }
11497 else
11498 as_bad (_("Invalid dsp acc register"));
11499 break;
11500
11501 case '8':
11502 /* DSP 6-bit unsigned immediate in bit 11 (for standard MIPS
11503 code) or 14 (for microMIPS code). */
11504 {
11505 unsigned long mask = (mips_opts.micromips
11506 ? MICROMIPSOP_MASK_WRDSP
11507 : OP_MASK_WRDSP);
11508
11509 my_getExpression (&imm_expr, s);
11510 check_absolute_expr (ip, &imm_expr);
11511 if ((unsigned long) imm_expr.X_add_number > mask)
11512 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11513 mask, (unsigned long) imm_expr.X_add_number);
11514 INSERT_OPERAND (mips_opts.micromips,
11515 WRDSP, *ip, imm_expr.X_add_number);
11516 imm_expr.X_op = O_absent;
11517 s = expr_end;
11518 }
11519 continue;
11520
11521 case '9': /* Four DSP accumulators in bits 21,22. */
11522 gas_assert (!mips_opts.micromips);
11523 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11524 && s[3] >= '0' && s[3] <= '3')
11525 {
11526 regno = s[3] - '0';
11527 s += 4;
11528 INSERT_OPERAND (0, DSPACC_S, *ip, regno);
11529 continue;
11530 }
11531 else
11532 as_bad (_("Invalid dsp acc register"));
11533 break;
11534
11535 case '0':
11536 /* DSP 6-bit signed immediate in bit 16 (for standard MIPS
11537 code) or 20 (for microMIPS code). */
11538 {
11539 long mask = (mips_opts.micromips
11540 ? MICROMIPSOP_MASK_DSPSFT : OP_MASK_DSPSFT);
11541
11542 my_getExpression (&imm_expr, s);
11543 check_absolute_expr (ip, &imm_expr);
11544 min_range = -((mask + 1) >> 1);
11545 max_range = ((mask + 1) >> 1) - 1;
11546 if (imm_expr.X_add_number < min_range
11547 || imm_expr.X_add_number > max_range)
11548 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11549 (long) min_range, (long) max_range,
11550 (long) imm_expr.X_add_number);
11551 INSERT_OPERAND (mips_opts.micromips,
11552 DSPSFT, *ip, imm_expr.X_add_number);
11553 imm_expr.X_op = O_absent;
11554 s = expr_end;
11555 }
11556 continue;
11557
11558 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
11559 gas_assert (!mips_opts.micromips);
11560 my_getExpression (&imm_expr, s);
11561 check_absolute_expr (ip, &imm_expr);
11562 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
11563 {
11564 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11565 OP_MASK_RDDSP,
11566 (unsigned long) imm_expr.X_add_number);
11567 }
11568 INSERT_OPERAND (0, RDDSP, *ip, imm_expr.X_add_number);
11569 imm_expr.X_op = O_absent;
11570 s = expr_end;
11571 continue;
11572
11573 case ':': /* DSP 7-bit signed immediate in bit 19. */
11574 gas_assert (!mips_opts.micromips);
11575 my_getExpression (&imm_expr, s);
11576 check_absolute_expr (ip, &imm_expr);
11577 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
11578 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
11579 if (imm_expr.X_add_number < min_range ||
11580 imm_expr.X_add_number > max_range)
11581 {
11582 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11583 (long) min_range, (long) max_range,
11584 (long) imm_expr.X_add_number);
11585 }
11586 INSERT_OPERAND (0, DSPSFT_7, *ip, imm_expr.X_add_number);
11587 imm_expr.X_op = O_absent;
11588 s = expr_end;
11589 continue;
11590
11591 case '@': /* DSP 10-bit signed immediate in bit 16. */
11592 {
11593 long mask = (mips_opts.micromips
11594 ? MICROMIPSOP_MASK_IMM10 : OP_MASK_IMM10);
11595
11596 my_getExpression (&imm_expr, s);
11597 check_absolute_expr (ip, &imm_expr);
11598 min_range = -((mask + 1) >> 1);
11599 max_range = ((mask + 1) >> 1) - 1;
11600 if (imm_expr.X_add_number < min_range
11601 || imm_expr.X_add_number > max_range)
11602 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11603 (long) min_range, (long) max_range,
11604 (long) imm_expr.X_add_number);
11605 INSERT_OPERAND (mips_opts.micromips,
11606 IMM10, *ip, imm_expr.X_add_number);
11607 imm_expr.X_op = O_absent;
11608 s = expr_end;
11609 }
11610 continue;
11611
11612 case '^': /* DSP 5-bit unsigned immediate in bit 11. */
11613 gas_assert (mips_opts.micromips);
11614 my_getExpression (&imm_expr, s);
11615 check_absolute_expr (ip, &imm_expr);
11616 if (imm_expr.X_add_number & ~MICROMIPSOP_MASK_RD)
11617 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11618 MICROMIPSOP_MASK_RD,
11619 (unsigned long) imm_expr.X_add_number);
11620 INSERT_OPERAND (1, RD, *ip, imm_expr.X_add_number);
11621 imm_expr.X_op = O_absent;
11622 s = expr_end;
11623 continue;
11624
11625 case '!': /* MT usermode flag bit. */
11626 gas_assert (!mips_opts.micromips);
11627 my_getExpression (&imm_expr, s);
11628 check_absolute_expr (ip, &imm_expr);
11629 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
11630 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
11631 (unsigned long) imm_expr.X_add_number);
11632 INSERT_OPERAND (0, MT_U, *ip, imm_expr.X_add_number);
11633 imm_expr.X_op = O_absent;
11634 s = expr_end;
11635 continue;
11636
11637 case '$': /* MT load high flag bit. */
11638 gas_assert (!mips_opts.micromips);
11639 my_getExpression (&imm_expr, s);
11640 check_absolute_expr (ip, &imm_expr);
11641 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
11642 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
11643 (unsigned long) imm_expr.X_add_number);
11644 INSERT_OPERAND (0, MT_H, *ip, imm_expr.X_add_number);
11645 imm_expr.X_op = O_absent;
11646 s = expr_end;
11647 continue;
11648
11649 case '*': /* Four DSP accumulators in bits 18,19. */
11650 gas_assert (!mips_opts.micromips);
11651 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11652 s[3] >= '0' && s[3] <= '3')
11653 {
11654 regno = s[3] - '0';
11655 s += 4;
11656 INSERT_OPERAND (0, MTACC_T, *ip, regno);
11657 continue;
11658 }
11659 else
11660 as_bad (_("Invalid dsp/smartmips acc register"));
11661 break;
11662
11663 case '&': /* Four DSP accumulators in bits 13,14. */
11664 gas_assert (!mips_opts.micromips);
11665 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11666 s[3] >= '0' && s[3] <= '3')
11667 {
11668 regno = s[3] - '0';
11669 s += 4;
11670 INSERT_OPERAND (0, MTACC_D, *ip, regno);
11671 continue;
11672 }
11673 else
11674 as_bad (_("Invalid dsp/smartmips acc register"));
11675 break;
11676
11677 case '\\': /* 3-bit bit position. */
11678 {
11679 unsigned long mask = (mips_opts.micromips
11680 ? MICROMIPSOP_MASK_3BITPOS
11681 : OP_MASK_3BITPOS);
11682
11683 my_getExpression (&imm_expr, s);
11684 check_absolute_expr (ip, &imm_expr);
11685 if ((unsigned long) imm_expr.X_add_number > mask)
11686 as_warn (_("Bit position for %s not in range 0..%lu (%lu)"),
11687 ip->insn_mo->name,
11688 mask, (unsigned long) imm_expr.X_add_number);
11689 INSERT_OPERAND (mips_opts.micromips,
11690 3BITPOS, *ip, imm_expr.X_add_number);
11691 imm_expr.X_op = O_absent;
11692 s = expr_end;
11693 }
11694 continue;
11695
11696 case ',':
11697 ++argnum;
11698 if (*s++ == *args)
11699 continue;
11700 s--;
11701 switch (*++args)
11702 {
11703 case 'r':
11704 case 'v':
11705 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11706 continue;
11707
11708 case 'w':
11709 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11710 continue;
11711
11712 case 'W':
11713 gas_assert (!mips_opts.micromips);
11714 INSERT_OPERAND (0, FT, *ip, lastregno);
11715 continue;
11716
11717 case 'V':
11718 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
11719 continue;
11720 }
11721 break;
11722
11723 case '(':
11724 /* Handle optional base register.
11725 Either the base register is omitted or
11726 we must have a left paren. */
11727 /* This is dependent on the next operand specifier
11728 is a base register specification. */
11729 gas_assert (args[1] == 'b'
11730 || (mips_opts.micromips
11731 && args[1] == 'm'
11732 && (args[2] == 'l' || args[2] == 'n'
11733 || args[2] == 's' || args[2] == 'a')));
11734 if (*s == '\0' && args[1] == 'b')
11735 return;
11736 /* Fall through. */
11737
11738 case ')': /* These must match exactly. */
11739 if (*s++ == *args)
11740 continue;
11741 break;
11742
11743 case '[': /* These must match exactly. */
11744 case ']':
11745 gas_assert (!mips_opts.micromips);
11746 if (*s++ == *args)
11747 continue;
11748 break;
11749
11750 case '+': /* Opcode extension character. */
11751 switch (*++args)
11752 {
11753 case '1': /* UDI immediates. */
11754 case '2':
11755 case '3':
11756 case '4':
11757 gas_assert (!mips_opts.micromips);
11758 {
11759 const struct mips_immed *imm = mips_immed;
11760
11761 while (imm->type && imm->type != *args)
11762 ++imm;
11763 if (! imm->type)
11764 abort ();
11765 my_getExpression (&imm_expr, s);
11766 check_absolute_expr (ip, &imm_expr);
11767 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
11768 {
11769 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
11770 imm->desc ? imm->desc : ip->insn_mo->name,
11771 (unsigned long) imm_expr.X_add_number,
11772 (unsigned long) imm_expr.X_add_number);
11773 imm_expr.X_add_number &= imm->mask;
11774 }
11775 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
11776 << imm->shift);
11777 imm_expr.X_op = O_absent;
11778 s = expr_end;
11779 }
11780 continue;
11781
11782 case 'J': /* 10-bit hypcall code. */
11783 gas_assert (!mips_opts.micromips);
11784 {
11785 unsigned long mask = OP_MASK_CODE10;
11786
11787 my_getExpression (&imm_expr, s);
11788 check_absolute_expr (ip, &imm_expr);
11789 if ((unsigned long) imm_expr.X_add_number > mask)
11790 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11791 ip->insn_mo->name,
11792 mask, (unsigned long) imm_expr.X_add_number);
11793 INSERT_OPERAND (0, CODE10, *ip, imm_expr.X_add_number);
11794 imm_expr.X_op = O_absent;
11795 s = expr_end;
11796 }
11797 continue;
11798
11799 case 'A': /* ins/ext position, becomes LSB. */
11800 limlo = 0;
11801 limhi = 31;
11802 goto do_lsb;
11803 case 'E':
11804 limlo = 32;
11805 limhi = 63;
11806 goto do_lsb;
11807 do_lsb:
11808 my_getExpression (&imm_expr, s);
11809 check_absolute_expr (ip, &imm_expr);
11810 if ((unsigned long) imm_expr.X_add_number < limlo
11811 || (unsigned long) imm_expr.X_add_number > limhi)
11812 {
11813 as_bad (_("Improper position (%lu)"),
11814 (unsigned long) imm_expr.X_add_number);
11815 imm_expr.X_add_number = limlo;
11816 }
11817 lastpos = imm_expr.X_add_number;
11818 INSERT_OPERAND (mips_opts.micromips,
11819 EXTLSB, *ip, imm_expr.X_add_number);
11820 imm_expr.X_op = O_absent;
11821 s = expr_end;
11822 continue;
11823
11824 case 'B': /* ins size, becomes MSB. */
11825 limlo = 1;
11826 limhi = 32;
11827 goto do_msb;
11828 case 'F':
11829 limlo = 33;
11830 limhi = 64;
11831 goto do_msb;
11832 do_msb:
11833 my_getExpression (&imm_expr, s);
11834 check_absolute_expr (ip, &imm_expr);
11835 /* Check for negative input so that small negative numbers
11836 will not succeed incorrectly. The checks against
11837 (pos+size) transitively check "size" itself,
11838 assuming that "pos" is reasonable. */
11839 if ((long) imm_expr.X_add_number < 0
11840 || ((unsigned long) imm_expr.X_add_number
11841 + lastpos) < limlo
11842 || ((unsigned long) imm_expr.X_add_number
11843 + lastpos) > limhi)
11844 {
11845 as_bad (_("Improper insert size (%lu, position %lu)"),
11846 (unsigned long) imm_expr.X_add_number,
11847 (unsigned long) lastpos);
11848 imm_expr.X_add_number = limlo - lastpos;
11849 }
11850 INSERT_OPERAND (mips_opts.micromips, INSMSB, *ip,
11851 lastpos + imm_expr.X_add_number - 1);
11852 imm_expr.X_op = O_absent;
11853 s = expr_end;
11854 continue;
11855
11856 case 'C': /* ext size, becomes MSBD. */
11857 limlo = 1;
11858 limhi = 32;
11859 sizelo = 1;
11860 goto do_msbd;
11861 case 'G':
11862 limlo = 33;
11863 limhi = 64;
11864 sizelo = 33;
11865 goto do_msbd;
11866 case 'H':
11867 limlo = 33;
11868 limhi = 64;
11869 sizelo = 1;
11870 goto do_msbd;
11871 do_msbd:
11872 my_getExpression (&imm_expr, s);
11873 check_absolute_expr (ip, &imm_expr);
11874 /* The checks against (pos+size) don't transitively check
11875 "size" itself, assuming that "pos" is reasonable.
11876 We also need to check the lower bound of "size". */
11877 if ((long) imm_expr.X_add_number < sizelo
11878 || ((unsigned long) imm_expr.X_add_number
11879 + lastpos) < limlo
11880 || ((unsigned long) imm_expr.X_add_number
11881 + lastpos) > limhi)
11882 {
11883 as_bad (_("Improper extract size (%lu, position %lu)"),
11884 (unsigned long) imm_expr.X_add_number,
11885 (unsigned long) lastpos);
11886 imm_expr.X_add_number = limlo - lastpos;
11887 }
11888 INSERT_OPERAND (mips_opts.micromips,
11889 EXTMSBD, *ip, imm_expr.X_add_number - 1);
11890 imm_expr.X_op = O_absent;
11891 s = expr_end;
11892 continue;
11893
11894 case 'D':
11895 /* +D is for disassembly only; never match. */
11896 break;
11897
11898 case 'I':
11899 /* "+I" is like "I", except that imm2_expr is used. */
11900 my_getExpression (&imm2_expr, s);
11901 if (imm2_expr.X_op != O_big
11902 && imm2_expr.X_op != O_constant)
11903 insn_error = _("absolute expression required");
11904 if (HAVE_32BIT_GPRS)
11905 normalize_constant_expr (&imm2_expr);
11906 s = expr_end;
11907 continue;
11908
11909 case 'T': /* Coprocessor register. */
11910 gas_assert (!mips_opts.micromips);
11911 /* +T is for disassembly only; never match. */
11912 break;
11913
11914 case 't': /* Coprocessor register number. */
11915 gas_assert (!mips_opts.micromips);
11916 if (s[0] == '$' && ISDIGIT (s[1]))
11917 {
11918 ++s;
11919 regno = 0;
11920 do
11921 {
11922 regno *= 10;
11923 regno += *s - '0';
11924 ++s;
11925 }
11926 while (ISDIGIT (*s));
11927 if (regno > 31)
11928 as_bad (_("Invalid register number (%d)"), regno);
11929 else
11930 {
11931 INSERT_OPERAND (0, RT, *ip, regno);
11932 continue;
11933 }
11934 }
11935 else
11936 as_bad (_("Invalid coprocessor 0 register number"));
11937 break;
11938
11939 case 'x':
11940 /* bbit[01] and bbit[01]32 bit index. Give error if index
11941 is not in the valid range. */
11942 gas_assert (!mips_opts.micromips);
11943 my_getExpression (&imm_expr, s);
11944 check_absolute_expr (ip, &imm_expr);
11945 if ((unsigned) imm_expr.X_add_number > 31)
11946 {
11947 as_bad (_("Improper bit index (%lu)"),
11948 (unsigned long) imm_expr.X_add_number);
11949 imm_expr.X_add_number = 0;
11950 }
11951 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number);
11952 imm_expr.X_op = O_absent;
11953 s = expr_end;
11954 continue;
11955
11956 case 'X':
11957 /* bbit[01] bit index when bbit is used but we generate
11958 bbit[01]32 because the index is over 32. Move to the
11959 next candidate if index is not in the valid range. */
11960 gas_assert (!mips_opts.micromips);
11961 my_getExpression (&imm_expr, s);
11962 check_absolute_expr (ip, &imm_expr);
11963 if ((unsigned) imm_expr.X_add_number < 32
11964 || (unsigned) imm_expr.X_add_number > 63)
11965 break;
11966 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number - 32);
11967 imm_expr.X_op = O_absent;
11968 s = expr_end;
11969 continue;
11970
11971 case 'p':
11972 /* cins, cins32, exts and exts32 position field. Give error
11973 if it's not in the valid range. */
11974 gas_assert (!mips_opts.micromips);
11975 my_getExpression (&imm_expr, s);
11976 check_absolute_expr (ip, &imm_expr);
11977 if ((unsigned) imm_expr.X_add_number > 31)
11978 {
11979 as_bad (_("Improper position (%lu)"),
11980 (unsigned long) imm_expr.X_add_number);
11981 imm_expr.X_add_number = 0;
11982 }
11983 /* Make the pos explicit to simplify +S. */
11984 lastpos = imm_expr.X_add_number + 32;
11985 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number);
11986 imm_expr.X_op = O_absent;
11987 s = expr_end;
11988 continue;
11989
11990 case 'P':
11991 /* cins, cins32, exts and exts32 position field. Move to
11992 the next candidate if it's not in the valid range. */
11993 gas_assert (!mips_opts.micromips);
11994 my_getExpression (&imm_expr, s);
11995 check_absolute_expr (ip, &imm_expr);
11996 if ((unsigned) imm_expr.X_add_number < 32
11997 || (unsigned) imm_expr.X_add_number > 63)
11998 break;
11999 lastpos = imm_expr.X_add_number;
12000 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number - 32);
12001 imm_expr.X_op = O_absent;
12002 s = expr_end;
12003 continue;
12004
12005 case 's':
12006 /* cins and exts length-minus-one field. */
12007 gas_assert (!mips_opts.micromips);
12008 my_getExpression (&imm_expr, s);
12009 check_absolute_expr (ip, &imm_expr);
12010 if ((unsigned long) imm_expr.X_add_number > 31)
12011 {
12012 as_bad (_("Improper size (%lu)"),
12013 (unsigned long) imm_expr.X_add_number);
12014 imm_expr.X_add_number = 0;
12015 }
12016 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
12017 imm_expr.X_op = O_absent;
12018 s = expr_end;
12019 continue;
12020
12021 case 'S':
12022 /* cins32/exts32 and cins/exts aliasing cint32/exts32
12023 length-minus-one field. */
12024 gas_assert (!mips_opts.micromips);
12025 my_getExpression (&imm_expr, s);
12026 check_absolute_expr (ip, &imm_expr);
12027 if ((long) imm_expr.X_add_number < 0
12028 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
12029 {
12030 as_bad (_("Improper size (%lu)"),
12031 (unsigned long) imm_expr.X_add_number);
12032 imm_expr.X_add_number = 0;
12033 }
12034 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
12035 imm_expr.X_op = O_absent;
12036 s = expr_end;
12037 continue;
12038
12039 case 'Q':
12040 /* seqi/snei immediate field. */
12041 gas_assert (!mips_opts.micromips);
12042 my_getExpression (&imm_expr, s);
12043 check_absolute_expr (ip, &imm_expr);
12044 if ((long) imm_expr.X_add_number < -512
12045 || (long) imm_expr.X_add_number >= 512)
12046 {
12047 as_bad (_("Improper immediate (%ld)"),
12048 (long) imm_expr.X_add_number);
12049 imm_expr.X_add_number = 0;
12050 }
12051 INSERT_OPERAND (0, SEQI, *ip, imm_expr.X_add_number);
12052 imm_expr.X_op = O_absent;
12053 s = expr_end;
12054 continue;
12055
12056 case 'a': /* 8-bit signed offset in bit 6 */
12057 gas_assert (!mips_opts.micromips);
12058 my_getExpression (&imm_expr, s);
12059 check_absolute_expr (ip, &imm_expr);
12060 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
12061 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
12062 if (imm_expr.X_add_number < min_range
12063 || imm_expr.X_add_number > max_range)
12064 {
12065 as_bad (_("Offset not in range %ld..%ld (%ld)"),
12066 (long) min_range, (long) max_range,
12067 (long) imm_expr.X_add_number);
12068 }
12069 INSERT_OPERAND (0, OFFSET_A, *ip, imm_expr.X_add_number);
12070 imm_expr.X_op = O_absent;
12071 s = expr_end;
12072 continue;
12073
12074 case 'b': /* 8-bit signed offset in bit 3 */
12075 gas_assert (!mips_opts.micromips);
12076 my_getExpression (&imm_expr, s);
12077 check_absolute_expr (ip, &imm_expr);
12078 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
12079 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
12080 if (imm_expr.X_add_number < min_range
12081 || imm_expr.X_add_number > max_range)
12082 {
12083 as_bad (_("Offset not in range %ld..%ld (%ld)"),
12084 (long) min_range, (long) max_range,
12085 (long) imm_expr.X_add_number);
12086 }
12087 INSERT_OPERAND (0, OFFSET_B, *ip, imm_expr.X_add_number);
12088 imm_expr.X_op = O_absent;
12089 s = expr_end;
12090 continue;
12091
12092 case 'c': /* 9-bit signed offset in bit 6 */
12093 gas_assert (!mips_opts.micromips);
12094 my_getExpression (&imm_expr, s);
12095 check_absolute_expr (ip, &imm_expr);
12096 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
12097 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
12098 /* We check the offset range before adjusted. */
12099 min_range <<= 4;
12100 max_range <<= 4;
12101 if (imm_expr.X_add_number < min_range
12102 || imm_expr.X_add_number > max_range)
12103 {
12104 as_bad (_("Offset not in range %ld..%ld (%ld)"),
12105 (long) min_range, (long) max_range,
12106 (long) imm_expr.X_add_number);
12107 }
12108 if (imm_expr.X_add_number & 0xf)
12109 {
12110 as_bad (_("Offset not 16 bytes alignment (%ld)"),
12111 (long) imm_expr.X_add_number);
12112 }
12113 /* Right shift 4 bits to adjust the offset operand. */
12114 INSERT_OPERAND (0, OFFSET_C, *ip,
12115 imm_expr.X_add_number >> 4);
12116 imm_expr.X_op = O_absent;
12117 s = expr_end;
12118 continue;
12119
12120 case 'z':
12121 gas_assert (!mips_opts.micromips);
12122 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
12123 break;
12124 if (regno == AT && mips_opts.at)
12125 {
12126 if (mips_opts.at == ATREG)
12127 as_warn (_("used $at without \".set noat\""));
12128 else
12129 as_warn (_("used $%u with \".set at=$%u\""),
12130 regno, mips_opts.at);
12131 }
12132 INSERT_OPERAND (0, RZ, *ip, regno);
12133 continue;
12134
12135 case 'Z':
12136 gas_assert (!mips_opts.micromips);
12137 if (!reg_lookup (&s, RTYPE_FPU, &regno))
12138 break;
12139 INSERT_OPERAND (0, FZ, *ip, regno);
12140 continue;
12141
12142 case 'j':
12143 {
12144 int shift = 8;
12145 size_t i;
12146 /* Check whether there is only a single bracketed expression
12147 left. If so, it must be the base register and the
12148 constant must be zero. */
12149 if (*s == '(' && strchr (s + 1, '(') == 0)
12150 continue;
12151
12152 /* If this value won't fit into the offset, then go find
12153 a macro that will generate a 16- or 32-bit offset code
12154 pattern. */
12155 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
12156 if ((i == 0 && (imm_expr.X_op != O_constant
12157 || imm_expr.X_add_number >= 1 << shift
12158 || imm_expr.X_add_number < -1 << shift))
12159 || i > 0)
12160 {
12161 imm_expr.X_op = O_absent;
12162 break;
12163 }
12164 INSERT_OPERAND (mips_opts.micromips, EVAOFFSET, *ip,
12165 imm_expr.X_add_number);
12166 imm_expr.X_op = O_absent;
12167 s = expr_end;
12168 }
12169 continue;
12170
12171 default:
12172 as_bad (_("Internal error: bad %s opcode "
12173 "(unknown extension operand type `+%c'): %s %s"),
12174 mips_opts.micromips ? "microMIPS" : "MIPS",
12175 *args, insn->name, insn->args);
12176 /* Further processing is fruitless. */
12177 return;
12178 }
12179 break;
12180
12181 case '.': /* 10-bit offset. */
12182 gas_assert (mips_opts.micromips);
12183 case '~': /* 12-bit offset. */
12184 {
12185 int shift = *args == '.' ? 9 : 11;
12186 size_t i;
12187
12188 /* Check whether there is only a single bracketed expression
12189 left. If so, it must be the base register and the
12190 constant must be zero. */
12191 if (*s == '(' && strchr (s + 1, '(') == 0)
12192 continue;
12193
12194 /* If this value won't fit into the offset, then go find
12195 a macro that will generate a 16- or 32-bit offset code
12196 pattern. */
12197 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
12198 if ((i == 0 && (imm_expr.X_op != O_constant
12199 || imm_expr.X_add_number >= 1 << shift
12200 || imm_expr.X_add_number < -1 << shift))
12201 || i > 0)
12202 {
12203 imm_expr.X_op = O_absent;
12204 break;
12205 }
12206 if (shift == 9)
12207 INSERT_OPERAND (1, OFFSET10, *ip, imm_expr.X_add_number);
12208 else
12209 INSERT_OPERAND (mips_opts.micromips,
12210 OFFSET12, *ip, imm_expr.X_add_number);
12211 imm_expr.X_op = O_absent;
12212 s = expr_end;
12213 }
12214 continue;
12215
12216 case '<': /* must be at least one digit */
12217 /*
12218 * According to the manual, if the shift amount is greater
12219 * than 31 or less than 0, then the shift amount should be
12220 * mod 32. In reality the mips assembler issues an error.
12221 * We issue a warning and mask out all but the low 5 bits.
12222 */
12223 my_getExpression (&imm_expr, s);
12224 check_absolute_expr (ip, &imm_expr);
12225 if ((unsigned long) imm_expr.X_add_number > 31)
12226 as_warn (_("Improper shift amount (%lu)"),
12227 (unsigned long) imm_expr.X_add_number);
12228 INSERT_OPERAND (mips_opts.micromips,
12229 SHAMT, *ip, imm_expr.X_add_number);
12230 imm_expr.X_op = O_absent;
12231 s = expr_end;
12232 continue;
12233
12234 case '>': /* shift amount minus 32 */
12235 my_getExpression (&imm_expr, s);
12236 check_absolute_expr (ip, &imm_expr);
12237 if ((unsigned long) imm_expr.X_add_number < 32
12238 || (unsigned long) imm_expr.X_add_number > 63)
12239 break;
12240 INSERT_OPERAND (mips_opts.micromips,
12241 SHAMT, *ip, imm_expr.X_add_number - 32);
12242 imm_expr.X_op = O_absent;
12243 s = expr_end;
12244 continue;
12245
12246 case 'k': /* CACHE code. */
12247 case 'h': /* PREFX code. */
12248 case '1': /* SYNC type. */
12249 my_getExpression (&imm_expr, s);
12250 check_absolute_expr (ip, &imm_expr);
12251 if ((unsigned long) imm_expr.X_add_number > 31)
12252 as_warn (_("Invalid value for `%s' (%lu)"),
12253 ip->insn_mo->name,
12254 (unsigned long) imm_expr.X_add_number);
12255 switch (*args)
12256 {
12257 case 'k':
12258 if (mips_fix_cn63xxp1
12259 && !mips_opts.micromips
12260 && strcmp ("pref", insn->name) == 0)
12261 switch (imm_expr.X_add_number)
12262 {
12263 case 5:
12264 case 25:
12265 case 26:
12266 case 27:
12267 case 28:
12268 case 29:
12269 case 30:
12270 case 31: /* These are ok. */
12271 break;
12272
12273 default: /* The rest must be changed to 28. */
12274 imm_expr.X_add_number = 28;
12275 break;
12276 }
12277 INSERT_OPERAND (mips_opts.micromips,
12278 CACHE, *ip, imm_expr.X_add_number);
12279 break;
12280 case 'h':
12281 INSERT_OPERAND (mips_opts.micromips,
12282 PREFX, *ip, imm_expr.X_add_number);
12283 break;
12284 case '1':
12285 INSERT_OPERAND (mips_opts.micromips,
12286 STYPE, *ip, imm_expr.X_add_number);
12287 break;
12288 }
12289 imm_expr.X_op = O_absent;
12290 s = expr_end;
12291 continue;
12292
12293 case 'c': /* BREAK code. */
12294 {
12295 unsigned long mask = (mips_opts.micromips
12296 ? MICROMIPSOP_MASK_CODE
12297 : OP_MASK_CODE);
12298
12299 my_getExpression (&imm_expr, s);
12300 check_absolute_expr (ip, &imm_expr);
12301 if ((unsigned long) imm_expr.X_add_number > mask)
12302 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
12303 ip->insn_mo->name,
12304 mask, (unsigned long) imm_expr.X_add_number);
12305 INSERT_OPERAND (mips_opts.micromips,
12306 CODE, *ip, imm_expr.X_add_number);
12307 imm_expr.X_op = O_absent;
12308 s = expr_end;
12309 }
12310 continue;
12311
12312 case 'q': /* Lower BREAK code. */
12313 {
12314 unsigned long mask = (mips_opts.micromips
12315 ? MICROMIPSOP_MASK_CODE2
12316 : OP_MASK_CODE2);
12317
12318 my_getExpression (&imm_expr, s);
12319 check_absolute_expr (ip, &imm_expr);
12320 if ((unsigned long) imm_expr.X_add_number > mask)
12321 as_warn (_("Lower code for %s not in range 0..%lu (%lu)"),
12322 ip->insn_mo->name,
12323 mask, (unsigned long) imm_expr.X_add_number);
12324 INSERT_OPERAND (mips_opts.micromips,
12325 CODE2, *ip, imm_expr.X_add_number);
12326 imm_expr.X_op = O_absent;
12327 s = expr_end;
12328 }
12329 continue;
12330
12331 case 'B': /* 20- or 10-bit syscall/break/wait code. */
12332 {
12333 unsigned long mask = (mips_opts.micromips
12334 ? MICROMIPSOP_MASK_CODE10
12335 : OP_MASK_CODE20);
12336
12337 my_getExpression (&imm_expr, s);
12338 check_absolute_expr (ip, &imm_expr);
12339 if ((unsigned long) imm_expr.X_add_number > mask)
12340 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
12341 ip->insn_mo->name,
12342 mask, (unsigned long) imm_expr.X_add_number);
12343 if (mips_opts.micromips)
12344 INSERT_OPERAND (1, CODE10, *ip, imm_expr.X_add_number);
12345 else
12346 INSERT_OPERAND (0, CODE20, *ip, imm_expr.X_add_number);
12347 imm_expr.X_op = O_absent;
12348 s = expr_end;
12349 }
12350 continue;
12351
12352 case 'C': /* 25- or 23-bit coprocessor code. */
12353 {
12354 unsigned long mask = (mips_opts.micromips
12355 ? MICROMIPSOP_MASK_COPZ
12356 : OP_MASK_COPZ);
12357
12358 my_getExpression (&imm_expr, s);
12359 check_absolute_expr (ip, &imm_expr);
12360 if ((unsigned long) imm_expr.X_add_number > mask)
12361 as_warn (_("Coproccesor code > %u bits (%lu)"),
12362 mips_opts.micromips ? 23U : 25U,
12363 (unsigned long) imm_expr.X_add_number);
12364 INSERT_OPERAND (mips_opts.micromips,
12365 COPZ, *ip, imm_expr.X_add_number);
12366 imm_expr.X_op = O_absent;
12367 s = expr_end;
12368 }
12369 continue;
12370
12371 case 'J': /* 19-bit WAIT code. */
12372 gas_assert (!mips_opts.micromips);
12373 my_getExpression (&imm_expr, s);
12374 check_absolute_expr (ip, &imm_expr);
12375 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
12376 {
12377 as_warn (_("Illegal 19-bit code (%lu)"),
12378 (unsigned long) imm_expr.X_add_number);
12379 imm_expr.X_add_number &= OP_MASK_CODE19;
12380 }
12381 INSERT_OPERAND (0, CODE19, *ip, imm_expr.X_add_number);
12382 imm_expr.X_op = O_absent;
12383 s = expr_end;
12384 continue;
12385
12386 case 'P': /* Performance register. */
12387 gas_assert (!mips_opts.micromips);
12388 my_getExpression (&imm_expr, s);
12389 check_absolute_expr (ip, &imm_expr);
12390 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
12391 as_warn (_("Invalid performance register (%lu)"),
12392 (unsigned long) imm_expr.X_add_number);
12393 if (imm_expr.X_add_number != 0 && mips_opts.arch == CPU_R5900
12394 && (!strcmp(insn->name,"mfps") || !strcmp(insn->name,"mtps")))
12395 as_warn (_("Invalid performance register (%lu)"),
12396 (unsigned long) imm_expr.X_add_number);
12397 INSERT_OPERAND (0, PERFREG, *ip, imm_expr.X_add_number);
12398 imm_expr.X_op = O_absent;
12399 s = expr_end;
12400 continue;
12401
12402 case 'G': /* Coprocessor destination register. */
12403 {
12404 unsigned long opcode = ip->insn_opcode;
12405 unsigned long mask;
12406 unsigned int types;
12407 int cop0;
12408
12409 if (mips_opts.micromips)
12410 {
12411 mask = ~((MICROMIPSOP_MASK_RT << MICROMIPSOP_SH_RT)
12412 | (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS)
12413 | (MICROMIPSOP_MASK_SEL << MICROMIPSOP_SH_SEL));
12414 opcode &= mask;
12415 switch (opcode)
12416 {
12417 case 0x000000fc: /* mfc0 */
12418 case 0x000002fc: /* mtc0 */
12419 case 0x580000fc: /* dmfc0 */
12420 case 0x580002fc: /* dmtc0 */
12421 cop0 = 1;
12422 break;
12423 default:
12424 cop0 = 0;
12425 break;
12426 }
12427 }
12428 else
12429 {
12430 opcode = (opcode >> OP_SH_OP) & OP_MASK_OP;
12431 cop0 = opcode == OP_OP_COP0;
12432 }
12433 types = RTYPE_NUM | (cop0 ? RTYPE_CP0 : RTYPE_GP);
12434 ok = reg_lookup (&s, types, &regno);
12435 if (mips_opts.micromips)
12436 INSERT_OPERAND (1, RS, *ip, regno);
12437 else
12438 INSERT_OPERAND (0, RD, *ip, regno);
12439 if (ok)
12440 {
12441 lastregno = regno;
12442 continue;
12443 }
12444 }
12445 break;
12446
12447 case 'y': /* ALNV.PS source register. */
12448 gas_assert (mips_opts.micromips);
12449 goto do_reg;
12450 case 'x': /* Ignore register name. */
12451 case 'U': /* Destination register (CLO/CLZ). */
12452 case 'g': /* Coprocessor destination register. */
12453 gas_assert (!mips_opts.micromips);
12454 case 'b': /* Base register. */
12455 case 'd': /* Destination register. */
12456 case 's': /* Source register. */
12457 case 't': /* Target register. */
12458 case 'r': /* Both target and source. */
12459 case 'v': /* Both dest and source. */
12460 case 'w': /* Both dest and target. */
12461 case 'E': /* Coprocessor target register. */
12462 case 'K': /* RDHWR destination register. */
12463 case 'z': /* Must be zero register. */
12464 do_reg:
12465 s_reset = s;
12466 if (*args == 'E' || *args == 'K')
12467 ok = reg_lookup (&s, RTYPE_NUM, &regno);
12468 else
12469 {
12470 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
12471 if (regno == AT && mips_opts.at)
12472 {
12473 if (mips_opts.at == ATREG)
12474 as_warn (_("Used $at without \".set noat\""));
12475 else
12476 as_warn (_("Used $%u with \".set at=$%u\""),
12477 regno, mips_opts.at);
12478 }
12479 }
12480 if (ok)
12481 {
12482 c = *args;
12483 if (*s == ' ')
12484 ++s;
12485 if (args[1] != *s)
12486 {
12487 if (c == 'r' || c == 'v' || c == 'w')
12488 {
12489 regno = lastregno;
12490 s = s_reset;
12491 ++args;
12492 }
12493 }
12494 /* 'z' only matches $0. */
12495 if (c == 'z' && regno != 0)
12496 break;
12497
12498 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
12499 {
12500 if (regno == lastregno)
12501 {
12502 insn_error
12503 = _("Source and destination must be different");
12504 continue;
12505 }
12506 if (regno == 31 && lastregno == 0xffffffff)
12507 {
12508 insn_error
12509 = _("A destination register must be supplied");
12510 continue;
12511 }
12512 }
12513 /* Now that we have assembled one operand, we use the args
12514 string to figure out where it goes in the instruction. */
12515 switch (c)
12516 {
12517 case 'r':
12518 case 's':
12519 case 'v':
12520 case 'b':
12521 INSERT_OPERAND (mips_opts.micromips, RS, *ip, regno);
12522 break;
12523
12524 case 'K':
12525 if (mips_opts.micromips)
12526 INSERT_OPERAND (1, RS, *ip, regno);
12527 else
12528 INSERT_OPERAND (0, RD, *ip, regno);
12529 break;
12530
12531 case 'd':
12532 case 'g':
12533 INSERT_OPERAND (mips_opts.micromips, RD, *ip, regno);
12534 break;
12535
12536 case 'U':
12537 gas_assert (!mips_opts.micromips);
12538 INSERT_OPERAND (0, RD, *ip, regno);
12539 INSERT_OPERAND (0, RT, *ip, regno);
12540 break;
12541
12542 case 'w':
12543 case 't':
12544 case 'E':
12545 INSERT_OPERAND (mips_opts.micromips, RT, *ip, regno);
12546 break;
12547
12548 case 'y':
12549 gas_assert (mips_opts.micromips);
12550 INSERT_OPERAND (1, RS3, *ip, regno);
12551 break;
12552
12553 case 'x':
12554 /* This case exists because on the r3000 trunc
12555 expands into a macro which requires a gp
12556 register. On the r6000 or r4000 it is
12557 assembled into a single instruction which
12558 ignores the register. Thus the insn version
12559 is MIPS_ISA2 and uses 'x', and the macro
12560 version is MIPS_ISA1 and uses 't'. */
12561 break;
12562
12563 case 'z':
12564 /* This case is for the div instruction, which
12565 acts differently if the destination argument
12566 is $0. This only matches $0, and is checked
12567 outside the switch. */
12568 break;
12569 }
12570 lastregno = regno;
12571 continue;
12572 }
12573 switch (*args++)
12574 {
12575 case 'r':
12576 case 'v':
12577 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
12578 continue;
12579
12580 case 'w':
12581 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
12582 continue;
12583 }
12584 break;
12585
12586 case 'O': /* MDMX alignment immediate constant. */
12587 gas_assert (!mips_opts.micromips);
12588 my_getExpression (&imm_expr, s);
12589 check_absolute_expr (ip, &imm_expr);
12590 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
12591 as_warn (_("Improper align amount (%ld), using low bits"),
12592 (long) imm_expr.X_add_number);
12593 INSERT_OPERAND (0, ALN, *ip, imm_expr.X_add_number);
12594 imm_expr.X_op = O_absent;
12595 s = expr_end;
12596 continue;
12597
12598 case 'Q': /* MDMX vector, element sel, or const. */
12599 if (s[0] != '$')
12600 {
12601 /* MDMX Immediate. */
12602 gas_assert (!mips_opts.micromips);
12603 my_getExpression (&imm_expr, s);
12604 check_absolute_expr (ip, &imm_expr);
12605 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
12606 as_warn (_("Invalid MDMX Immediate (%ld)"),
12607 (long) imm_expr.X_add_number);
12608 INSERT_OPERAND (0, FT, *ip, imm_expr.X_add_number);
12609 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12610 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
12611 else
12612 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
12613 imm_expr.X_op = O_absent;
12614 s = expr_end;
12615 continue;
12616 }
12617 /* Not MDMX Immediate. Fall through. */
12618 case 'X': /* MDMX destination register. */
12619 case 'Y': /* MDMX source register. */
12620 case 'Z': /* MDMX target register. */
12621 is_mdmx = 1;
12622 case 'W':
12623 gas_assert (!mips_opts.micromips);
12624 case 'D': /* Floating point destination register. */
12625 case 'S': /* Floating point source register. */
12626 case 'T': /* Floating point target register. */
12627 case 'R': /* Floating point source register. */
12628 case 'V':
12629 rtype = RTYPE_FPU;
12630 if (is_mdmx
12631 || ((mips_opts.ase & ASE_MDMX)
12632 && (ip->insn_mo->pinfo & FP_D)
12633 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
12634 | INSN_COPROC_MEMORY_DELAY
12635 | INSN_LOAD_COPROC_DELAY
12636 | INSN_LOAD_MEMORY_DELAY
12637 | INSN_STORE_MEMORY))))
12638 rtype |= RTYPE_VEC;
12639 s_reset = s;
12640 if (reg_lookup (&s, rtype, &regno))
12641 {
12642 if ((regno & 1) != 0
12643 && HAVE_32BIT_FPRS
12644 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
12645 as_warn (_("Float register should be even, was %d"),
12646 regno);
12647
12648 c = *args;
12649 if (*s == ' ')
12650 ++s;
12651 if (args[1] != *s)
12652 {
12653 if (c == 'V' || c == 'W')
12654 {
12655 regno = lastregno;
12656 s = s_reset;
12657 ++args;
12658 }
12659 }
12660 switch (c)
12661 {
12662 case 'D':
12663 case 'X':
12664 INSERT_OPERAND (mips_opts.micromips, FD, *ip, regno);
12665 break;
12666
12667 case 'V':
12668 case 'S':
12669 case 'Y':
12670 INSERT_OPERAND (mips_opts.micromips, FS, *ip, regno);
12671 break;
12672
12673 case 'Q':
12674 /* This is like 'Z', but also needs to fix the MDMX
12675 vector/scalar select bits. Note that the
12676 scalar immediate case is handled above. */
12677 if (*s == '[')
12678 {
12679 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
12680 int max_el = (is_qh ? 3 : 7);
12681 s++;
12682 my_getExpression(&imm_expr, s);
12683 check_absolute_expr (ip, &imm_expr);
12684 s = expr_end;
12685 if (imm_expr.X_add_number > max_el)
12686 as_bad (_("Bad element selector %ld"),
12687 (long) imm_expr.X_add_number);
12688 imm_expr.X_add_number &= max_el;
12689 ip->insn_opcode |= (imm_expr.X_add_number
12690 << (OP_SH_VSEL +
12691 (is_qh ? 2 : 1)));
12692 imm_expr.X_op = O_absent;
12693 if (*s != ']')
12694 as_warn (_("Expecting ']' found '%s'"), s);
12695 else
12696 s++;
12697 }
12698 else
12699 {
12700 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12701 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
12702 << OP_SH_VSEL);
12703 else
12704 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
12705 OP_SH_VSEL);
12706 }
12707 /* Fall through. */
12708 case 'W':
12709 case 'T':
12710 case 'Z':
12711 INSERT_OPERAND (mips_opts.micromips, FT, *ip, regno);
12712 break;
12713
12714 case 'R':
12715 INSERT_OPERAND (mips_opts.micromips, FR, *ip, regno);
12716 break;
12717 }
12718 lastregno = regno;
12719 continue;
12720 }
12721
12722 switch (*args++)
12723 {
12724 case 'V':
12725 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
12726 continue;
12727
12728 case 'W':
12729 INSERT_OPERAND (mips_opts.micromips, FT, *ip, lastregno);
12730 continue;
12731 }
12732 break;
12733
12734 case 'I':
12735 my_getExpression (&imm_expr, s);
12736 if (imm_expr.X_op != O_big
12737 && imm_expr.X_op != O_constant)
12738 insn_error = _("absolute expression required");
12739 if (HAVE_32BIT_GPRS)
12740 normalize_constant_expr (&imm_expr);
12741 s = expr_end;
12742 continue;
12743
12744 case 'A':
12745 my_getExpression (&offset_expr, s);
12746 normalize_address_expr (&offset_expr);
12747 *imm_reloc = BFD_RELOC_32;
12748 s = expr_end;
12749 continue;
12750
12751 case 'F':
12752 case 'L':
12753 case 'f':
12754 case 'l':
12755 {
12756 int f64;
12757 int using_gprs;
12758 char *save_in;
12759 char *err;
12760 unsigned char temp[8];
12761 int len;
12762 unsigned int length;
12763 segT seg;
12764 subsegT subseg;
12765 char *p;
12766
12767 /* These only appear as the last operand in an
12768 instruction, and every instruction that accepts
12769 them in any variant accepts them in all variants.
12770 This means we don't have to worry about backing out
12771 any changes if the instruction does not match.
12772
12773 The difference between them is the size of the
12774 floating point constant and where it goes. For 'F'
12775 and 'L' the constant is 64 bits; for 'f' and 'l' it
12776 is 32 bits. Where the constant is placed is based
12777 on how the MIPS assembler does things:
12778 F -- .rdata
12779 L -- .lit8
12780 f -- immediate value
12781 l -- .lit4
12782
12783 The .lit4 and .lit8 sections are only used if
12784 permitted by the -G argument.
12785
12786 The code below needs to know whether the target register
12787 is 32 or 64 bits wide. It relies on the fact 'f' and
12788 'F' are used with GPR-based instructions and 'l' and
12789 'L' are used with FPR-based instructions. */
12790
12791 f64 = *args == 'F' || *args == 'L';
12792 using_gprs = *args == 'F' || *args == 'f';
12793
12794 save_in = input_line_pointer;
12795 input_line_pointer = s;
12796 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
12797 length = len;
12798 s = input_line_pointer;
12799 input_line_pointer = save_in;
12800 if (err != NULL && *err != '\0')
12801 {
12802 as_bad (_("Bad floating point constant: %s"), err);
12803 memset (temp, '\0', sizeof temp);
12804 length = f64 ? 8 : 4;
12805 }
12806
12807 gas_assert (length == (unsigned) (f64 ? 8 : 4));
12808
12809 if (*args == 'f'
12810 || (*args == 'l'
12811 && (g_switch_value < 4
12812 || (temp[0] == 0 && temp[1] == 0)
12813 || (temp[2] == 0 && temp[3] == 0))))
12814 {
12815 imm_expr.X_op = O_constant;
12816 if (!target_big_endian)
12817 imm_expr.X_add_number = bfd_getl32 (temp);
12818 else
12819 imm_expr.X_add_number = bfd_getb32 (temp);
12820 }
12821 else if (length > 4
12822 && !mips_disable_float_construction
12823 /* Constants can only be constructed in GPRs and
12824 copied to FPRs if the GPRs are at least as wide
12825 as the FPRs. Force the constant into memory if
12826 we are using 64-bit FPRs but the GPRs are only
12827 32 bits wide. */
12828 && (using_gprs
12829 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
12830 && ((temp[0] == 0 && temp[1] == 0)
12831 || (temp[2] == 0 && temp[3] == 0))
12832 && ((temp[4] == 0 && temp[5] == 0)
12833 || (temp[6] == 0 && temp[7] == 0)))
12834 {
12835 /* The value is simple enough to load with a couple of
12836 instructions. If using 32-bit registers, set
12837 imm_expr to the high order 32 bits and offset_expr to
12838 the low order 32 bits. Otherwise, set imm_expr to
12839 the entire 64 bit constant. */
12840 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
12841 {
12842 imm_expr.X_op = O_constant;
12843 offset_expr.X_op = O_constant;
12844 if (!target_big_endian)
12845 {
12846 imm_expr.X_add_number = bfd_getl32 (temp + 4);
12847 offset_expr.X_add_number = bfd_getl32 (temp);
12848 }
12849 else
12850 {
12851 imm_expr.X_add_number = bfd_getb32 (temp);
12852 offset_expr.X_add_number = bfd_getb32 (temp + 4);
12853 }
12854 if (offset_expr.X_add_number == 0)
12855 offset_expr.X_op = O_absent;
12856 }
12857 else if (sizeof (imm_expr.X_add_number) > 4)
12858 {
12859 imm_expr.X_op = O_constant;
12860 if (!target_big_endian)
12861 imm_expr.X_add_number = bfd_getl64 (temp);
12862 else
12863 imm_expr.X_add_number = bfd_getb64 (temp);
12864 }
12865 else
12866 {
12867 imm_expr.X_op = O_big;
12868 imm_expr.X_add_number = 4;
12869 if (!target_big_endian)
12870 {
12871 generic_bignum[0] = bfd_getl16 (temp);
12872 generic_bignum[1] = bfd_getl16 (temp + 2);
12873 generic_bignum[2] = bfd_getl16 (temp + 4);
12874 generic_bignum[3] = bfd_getl16 (temp + 6);
12875 }
12876 else
12877 {
12878 generic_bignum[0] = bfd_getb16 (temp + 6);
12879 generic_bignum[1] = bfd_getb16 (temp + 4);
12880 generic_bignum[2] = bfd_getb16 (temp + 2);
12881 generic_bignum[3] = bfd_getb16 (temp);
12882 }
12883 }
12884 }
12885 else
12886 {
12887 const char *newname;
12888 segT new_seg;
12889
12890 /* Switch to the right section. */
12891 seg = now_seg;
12892 subseg = now_subseg;
12893 switch (*args)
12894 {
12895 default: /* unused default case avoids warnings. */
12896 case 'L':
12897 newname = RDATA_SECTION_NAME;
12898 if (g_switch_value >= 8)
12899 newname = ".lit8";
12900 break;
12901 case 'F':
12902 newname = RDATA_SECTION_NAME;
12903 break;
12904 case 'l':
12905 gas_assert (g_switch_value >= 4);
12906 newname = ".lit4";
12907 break;
12908 }
12909 new_seg = subseg_new (newname, (subsegT) 0);
12910 bfd_set_section_flags (stdoutput, new_seg,
12911 (SEC_ALLOC
12912 | SEC_LOAD
12913 | SEC_READONLY
12914 | SEC_DATA));
12915 frag_align (*args == 'l' ? 2 : 3, 0, 0);
12916 if (strncmp (TARGET_OS, "elf", 3) != 0)
12917 record_alignment (new_seg, 4);
12918 else
12919 record_alignment (new_seg, *args == 'l' ? 2 : 3);
12920 if (seg == now_seg)
12921 as_bad (_("Can't use floating point insn in this section"));
12922
12923 /* Set the argument to the current address in the
12924 section. */
12925 offset_expr.X_op = O_symbol;
12926 offset_expr.X_add_symbol = symbol_temp_new_now ();
12927 offset_expr.X_add_number = 0;
12928
12929 /* Put the floating point number into the section. */
12930 p = frag_more ((int) length);
12931 memcpy (p, temp, length);
12932
12933 /* Switch back to the original section. */
12934 subseg_set (seg, subseg);
12935 }
12936 }
12937 continue;
12938
12939 case 'i': /* 16-bit unsigned immediate. */
12940 case 'j': /* 16-bit signed immediate. */
12941 *imm_reloc = BFD_RELOC_LO16;
12942 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
12943 {
12944 int more;
12945 offsetT minval, maxval;
12946
12947 more = (insn + 1 < past
12948 && strcmp (insn->name, insn[1].name) == 0);
12949
12950 /* If the expression was written as an unsigned number,
12951 only treat it as signed if there are no more
12952 alternatives. */
12953 if (more
12954 && *args == 'j'
12955 && sizeof (imm_expr.X_add_number) <= 4
12956 && imm_expr.X_op == O_constant
12957 && imm_expr.X_add_number < 0
12958 && imm_expr.X_unsigned
12959 && HAVE_64BIT_GPRS)
12960 break;
12961
12962 /* For compatibility with older assemblers, we accept
12963 0x8000-0xffff as signed 16-bit numbers when only
12964 signed numbers are allowed. */
12965 if (*args == 'i')
12966 minval = 0, maxval = 0xffff;
12967 else if (more)
12968 minval = -0x8000, maxval = 0x7fff;
12969 else
12970 minval = -0x8000, maxval = 0xffff;
12971
12972 if (imm_expr.X_op != O_constant
12973 || imm_expr.X_add_number < minval
12974 || imm_expr.X_add_number > maxval)
12975 {
12976 if (more)
12977 break;
12978 if (imm_expr.X_op == O_constant
12979 || imm_expr.X_op == O_big)
12980 as_bad (_("Expression out of range"));
12981 }
12982 }
12983 s = expr_end;
12984 continue;
12985
12986 case 'o': /* 16-bit offset. */
12987 offset_reloc[0] = BFD_RELOC_LO16;
12988 offset_reloc[1] = BFD_RELOC_UNUSED;
12989 offset_reloc[2] = BFD_RELOC_UNUSED;
12990
12991 /* Check whether there is only a single bracketed expression
12992 left. If so, it must be the base register and the
12993 constant must be zero. */
12994 if (*s == '(' && strchr (s + 1, '(') == 0)
12995 {
12996 offset_expr.X_op = O_constant;
12997 offset_expr.X_add_number = 0;
12998 continue;
12999 }
13000
13001 /* If this value won't fit into a 16 bit offset, then go
13002 find a macro that will generate the 32 bit offset
13003 code pattern. */
13004 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
13005 && (offset_expr.X_op != O_constant
13006 || offset_expr.X_add_number >= 0x8000
13007 || offset_expr.X_add_number < -0x8000))
13008 break;
13009
13010 s = expr_end;
13011 continue;
13012
13013 case 'p': /* PC-relative offset. */
13014 *offset_reloc = BFD_RELOC_16_PCREL_S2;
13015 my_getExpression (&offset_expr, s);
13016 s = expr_end;
13017 continue;
13018
13019 case 'u': /* Upper 16 bits. */
13020 *imm_reloc = BFD_RELOC_LO16;
13021 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
13022 && imm_expr.X_op == O_constant
13023 && (imm_expr.X_add_number < 0
13024 || imm_expr.X_add_number >= 0x10000))
13025 as_bad (_("lui expression (%lu) not in range 0..65535"),
13026 (unsigned long) imm_expr.X_add_number);
13027 s = expr_end;
13028 continue;
13029
13030 case 'a': /* 26-bit address. */
13031 *offset_reloc = BFD_RELOC_MIPS_JMP;
13032 my_getExpression (&offset_expr, s);
13033 s = expr_end;
13034 continue;
13035
13036 case 'N': /* 3-bit branch condition code. */
13037 case 'M': /* 3-bit compare condition code. */
13038 rtype = RTYPE_CCC;
13039 if (ip->insn_mo->pinfo & (FP_D | FP_S))
13040 rtype |= RTYPE_FCC;
13041 if (!reg_lookup (&s, rtype, &regno))
13042 break;
13043 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
13044 || strcmp (str + strlen (str) - 5, "any2f") == 0
13045 || strcmp (str + strlen (str) - 5, "any2t") == 0)
13046 && (regno & 1) != 0)
13047 as_warn (_("Condition code register should be even for %s, "
13048 "was %d"),
13049 str, regno);
13050 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
13051 || strcmp (str + strlen (str) - 5, "any4t") == 0)
13052 && (regno & 3) != 0)
13053 as_warn (_("Condition code register should be 0 or 4 for %s, "
13054 "was %d"),
13055 str, regno);
13056 if (*args == 'N')
13057 INSERT_OPERAND (mips_opts.micromips, BCC, *ip, regno);
13058 else
13059 INSERT_OPERAND (mips_opts.micromips, CCC, *ip, regno);
13060 continue;
13061
13062 case 'H':
13063 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
13064 s += 2;
13065 if (ISDIGIT (*s))
13066 {
13067 c = 0;
13068 do
13069 {
13070 c *= 10;
13071 c += *s - '0';
13072 ++s;
13073 }
13074 while (ISDIGIT (*s));
13075 }
13076 else
13077 c = 8; /* Invalid sel value. */
13078
13079 if (c > 7)
13080 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
13081 INSERT_OPERAND (mips_opts.micromips, SEL, *ip, c);
13082 continue;
13083
13084 case 'e':
13085 gas_assert (!mips_opts.micromips);
13086 /* Must be at least one digit. */
13087 my_getExpression (&imm_expr, s);
13088 check_absolute_expr (ip, &imm_expr);
13089
13090 if ((unsigned long) imm_expr.X_add_number
13091 > (unsigned long) OP_MASK_VECBYTE)
13092 {
13093 as_bad (_("bad byte vector index (%ld)"),
13094 (long) imm_expr.X_add_number);
13095 imm_expr.X_add_number = 0;
13096 }
13097
13098 INSERT_OPERAND (0, VECBYTE, *ip, imm_expr.X_add_number);
13099 imm_expr.X_op = O_absent;
13100 s = expr_end;
13101 continue;
13102
13103 case '%':
13104 gas_assert (!mips_opts.micromips);
13105 my_getExpression (&imm_expr, s);
13106 check_absolute_expr (ip, &imm_expr);
13107
13108 if ((unsigned long) imm_expr.X_add_number
13109 > (unsigned long) OP_MASK_VECALIGN)
13110 {
13111 as_bad (_("bad byte vector index (%ld)"),
13112 (long) imm_expr.X_add_number);
13113 imm_expr.X_add_number = 0;
13114 }
13115
13116 INSERT_OPERAND (0, VECALIGN, *ip, imm_expr.X_add_number);
13117 imm_expr.X_op = O_absent;
13118 s = expr_end;
13119 continue;
13120
13121 case 'm': /* Opcode extension character. */
13122 gas_assert (mips_opts.micromips);
13123 c = *++args;
13124 switch (c)
13125 {
13126 case 'r':
13127 if (strncmp (s, "$pc", 3) == 0)
13128 {
13129 s += 3;
13130 continue;
13131 }
13132 break;
13133
13134 case 'a':
13135 case 'b':
13136 case 'c':
13137 case 'd':
13138 case 'e':
13139 case 'f':
13140 case 'g':
13141 case 'h':
13142 case 'i':
13143 case 'j':
13144 case 'l':
13145 case 'm':
13146 case 'n':
13147 case 'p':
13148 case 'q':
13149 case 's':
13150 case 't':
13151 case 'x':
13152 case 'y':
13153 case 'z':
13154 s_reset = s;
13155 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
13156 if (regno == AT && mips_opts.at)
13157 {
13158 if (mips_opts.at == ATREG)
13159 as_warn (_("Used $at without \".set noat\""));
13160 else
13161 as_warn (_("Used $%u with \".set at=$%u\""),
13162 regno, mips_opts.at);
13163 }
13164 if (!ok)
13165 {
13166 if (c == 'c')
13167 {
13168 gas_assert (args[1] == ',');
13169 regno = lastregno;
13170 ++args;
13171 }
13172 else if (c == 't')
13173 {
13174 gas_assert (args[1] == ',');
13175 ++args;
13176 continue; /* Nothing to do. */
13177 }
13178 else
13179 break;
13180 }
13181
13182 if (c == 'j' && !strncmp (ip->insn_mo->name, "jalr", 4))
13183 {
13184 if (regno == lastregno)
13185 {
13186 insn_error
13187 = _("Source and destination must be different");
13188 continue;
13189 }
13190 if (regno == 31 && lastregno == 0xffffffff)
13191 {
13192 insn_error
13193 = _("A destination register must be supplied");
13194 continue;
13195 }
13196 }
13197
13198 if (*s == ' ')
13199 ++s;
13200 if (args[1] != *s)
13201 {
13202 if (c == 'e')
13203 {
13204 gas_assert (args[1] == ',');
13205 regno = lastregno;
13206 s = s_reset;
13207 ++args;
13208 }
13209 else if (c == 't')
13210 {
13211 gas_assert (args[1] == ',');
13212 s = s_reset;
13213 ++args;
13214 continue; /* Nothing to do. */
13215 }
13216 }
13217
13218 /* Make sure regno is the same as lastregno. */
13219 if (c == 't' && regno != lastregno)
13220 break;
13221
13222 /* Make sure regno is the same as destregno. */
13223 if (c == 'x' && regno != destregno)
13224 break;
13225
13226 /* We need to save regno, before regno maps to the
13227 microMIPS register encoding. */
13228 lastregno = regno;
13229
13230 if (c == 'f')
13231 destregno = regno;
13232
13233 switch (c)
13234 {
13235 case 'a':
13236 if (regno != GP)
13237 regno = ILLEGAL_REG;
13238 break;
13239
13240 case 'b':
13241 regno = mips32_to_micromips_reg_b_map[regno];
13242 break;
13243
13244 case 'c':
13245 regno = mips32_to_micromips_reg_c_map[regno];
13246 break;
13247
13248 case 'd':
13249 regno = mips32_to_micromips_reg_d_map[regno];
13250 break;
13251
13252 case 'e':
13253 regno = mips32_to_micromips_reg_e_map[regno];
13254 break;
13255
13256 case 'f':
13257 regno = mips32_to_micromips_reg_f_map[regno];
13258 break;
13259
13260 case 'g':
13261 regno = mips32_to_micromips_reg_g_map[regno];
13262 break;
13263
13264 case 'h':
13265 regno = mips32_to_micromips_reg_h_map[regno];
13266 break;
13267
13268 case 'i':
13269 switch (EXTRACT_OPERAND (1, MI, *ip))
13270 {
13271 case 4:
13272 if (regno == 21)
13273 regno = 3;
13274 else if (regno == 22)
13275 regno = 4;
13276 else if (regno == 5)
13277 regno = 5;
13278 else if (regno == 6)
13279 regno = 6;
13280 else if (regno == 7)
13281 regno = 7;
13282 else
13283 regno = ILLEGAL_REG;
13284 break;
13285
13286 case 5:
13287 if (regno == 6)
13288 regno = 0;
13289 else if (regno == 7)
13290 regno = 1;
13291 else
13292 regno = ILLEGAL_REG;
13293 break;
13294
13295 case 6:
13296 if (regno == 7)
13297 regno = 2;
13298 else
13299 regno = ILLEGAL_REG;
13300 break;
13301
13302 default:
13303 regno = ILLEGAL_REG;
13304 break;
13305 }
13306 break;
13307
13308 case 'l':
13309 regno = mips32_to_micromips_reg_l_map[regno];
13310 break;
13311
13312 case 'm':
13313 regno = mips32_to_micromips_reg_m_map[regno];
13314 break;
13315
13316 case 'n':
13317 regno = mips32_to_micromips_reg_n_map[regno];
13318 break;
13319
13320 case 'q':
13321 regno = mips32_to_micromips_reg_q_map[regno];
13322 break;
13323
13324 case 's':
13325 if (regno != SP)
13326 regno = ILLEGAL_REG;
13327 break;
13328
13329 case 'y':
13330 if (regno != 31)
13331 regno = ILLEGAL_REG;
13332 break;
13333
13334 case 'z':
13335 if (regno != ZERO)
13336 regno = ILLEGAL_REG;
13337 break;
13338
13339 case 'j': /* Do nothing. */
13340 case 'p':
13341 case 't':
13342 case 'x':
13343 break;
13344
13345 default:
13346 abort ();
13347 }
13348
13349 if (regno == ILLEGAL_REG)
13350 break;
13351
13352 switch (c)
13353 {
13354 case 'b':
13355 INSERT_OPERAND (1, MB, *ip, regno);
13356 break;
13357
13358 case 'c':
13359 INSERT_OPERAND (1, MC, *ip, regno);
13360 break;
13361
13362 case 'd':
13363 INSERT_OPERAND (1, MD, *ip, regno);
13364 break;
13365
13366 case 'e':
13367 INSERT_OPERAND (1, ME, *ip, regno);
13368 break;
13369
13370 case 'f':
13371 INSERT_OPERAND (1, MF, *ip, regno);
13372 break;
13373
13374 case 'g':
13375 INSERT_OPERAND (1, MG, *ip, regno);
13376 break;
13377
13378 case 'h':
13379 INSERT_OPERAND (1, MH, *ip, regno);
13380 break;
13381
13382 case 'i':
13383 INSERT_OPERAND (1, MI, *ip, regno);
13384 break;
13385
13386 case 'j':
13387 INSERT_OPERAND (1, MJ, *ip, regno);
13388 break;
13389
13390 case 'l':
13391 INSERT_OPERAND (1, ML, *ip, regno);
13392 break;
13393
13394 case 'm':
13395 INSERT_OPERAND (1, MM, *ip, regno);
13396 break;
13397
13398 case 'n':
13399 INSERT_OPERAND (1, MN, *ip, regno);
13400 break;
13401
13402 case 'p':
13403 INSERT_OPERAND (1, MP, *ip, regno);
13404 break;
13405
13406 case 'q':
13407 INSERT_OPERAND (1, MQ, *ip, regno);
13408 break;
13409
13410 case 'a': /* Do nothing. */
13411 case 's': /* Do nothing. */
13412 case 't': /* Do nothing. */
13413 case 'x': /* Do nothing. */
13414 case 'y': /* Do nothing. */
13415 case 'z': /* Do nothing. */
13416 break;
13417
13418 default:
13419 abort ();
13420 }
13421 continue;
13422
13423 case 'A':
13424 {
13425 bfd_reloc_code_real_type r[3];
13426 expressionS ep;
13427 int imm;
13428
13429 /* Check whether there is only a single bracketed
13430 expression left. If so, it must be the base register
13431 and the constant must be zero. */
13432 if (*s == '(' && strchr (s + 1, '(') == 0)
13433 {
13434 INSERT_OPERAND (1, IMMA, *ip, 0);
13435 continue;
13436 }
13437
13438 if (my_getSmallExpression (&ep, r, s) > 0
13439 || !expr_const_in_range (&ep, -64, 64, 2))
13440 break;
13441
13442 imm = ep.X_add_number >> 2;
13443 INSERT_OPERAND (1, IMMA, *ip, imm);
13444 }
13445 s = expr_end;
13446 continue;
13447
13448 case 'B':
13449 {
13450 bfd_reloc_code_real_type r[3];
13451 expressionS ep;
13452 int imm;
13453
13454 if (my_getSmallExpression (&ep, r, s) > 0
13455 || ep.X_op != O_constant)
13456 break;
13457
13458 for (imm = 0; imm < 8; imm++)
13459 if (micromips_imm_b_map[imm] == ep.X_add_number)
13460 break;
13461 if (imm >= 8)
13462 break;
13463
13464 INSERT_OPERAND (1, IMMB, *ip, imm);
13465 }
13466 s = expr_end;
13467 continue;
13468
13469 case 'C':
13470 {
13471 bfd_reloc_code_real_type r[3];
13472 expressionS ep;
13473 int imm;
13474
13475 if (my_getSmallExpression (&ep, r, s) > 0
13476 || ep.X_op != O_constant)
13477 break;
13478
13479 for (imm = 0; imm < 16; imm++)
13480 if (micromips_imm_c_map[imm] == ep.X_add_number)
13481 break;
13482 if (imm >= 16)
13483 break;
13484
13485 INSERT_OPERAND (1, IMMC, *ip, imm);
13486 }
13487 s = expr_end;
13488 continue;
13489
13490 case 'D': /* pc relative offset */
13491 case 'E': /* pc relative offset */
13492 my_getExpression (&offset_expr, s);
13493 if (offset_expr.X_op == O_register)
13494 break;
13495
13496 if (!forced_insn_length)
13497 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
13498 else if (c == 'D')
13499 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
13500 else
13501 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
13502 s = expr_end;
13503 continue;
13504
13505 case 'F':
13506 {
13507 bfd_reloc_code_real_type r[3];
13508 expressionS ep;
13509 int imm;
13510
13511 if (my_getSmallExpression (&ep, r, s) > 0
13512 || !expr_const_in_range (&ep, 0, 16, 0))
13513 break;
13514
13515 imm = ep.X_add_number;
13516 INSERT_OPERAND (1, IMMF, *ip, imm);
13517 }
13518 s = expr_end;
13519 continue;
13520
13521 case 'G':
13522 {
13523 bfd_reloc_code_real_type r[3];
13524 expressionS ep;
13525 int imm;
13526
13527 /* Check whether there is only a single bracketed
13528 expression left. If so, it must be the base register
13529 and the constant must be zero. */
13530 if (*s == '(' && strchr (s + 1, '(') == 0)
13531 {
13532 INSERT_OPERAND (1, IMMG, *ip, 0);
13533 continue;
13534 }
13535
13536 if (my_getSmallExpression (&ep, r, s) > 0
13537 || !expr_const_in_range (&ep, -1, 15, 0))
13538 break;
13539
13540 imm = ep.X_add_number & 15;
13541 INSERT_OPERAND (1, IMMG, *ip, imm);
13542 }
13543 s = expr_end;
13544 continue;
13545
13546 case 'H':
13547 {
13548 bfd_reloc_code_real_type r[3];
13549 expressionS ep;
13550 int imm;
13551
13552 /* Check whether there is only a single bracketed
13553 expression left. If so, it must be the base register
13554 and the constant must be zero. */
13555 if (*s == '(' && strchr (s + 1, '(') == 0)
13556 {
13557 INSERT_OPERAND (1, IMMH, *ip, 0);
13558 continue;
13559 }
13560
13561 if (my_getSmallExpression (&ep, r, s) > 0
13562 || !expr_const_in_range (&ep, 0, 16, 1))
13563 break;
13564
13565 imm = ep.X_add_number >> 1;
13566 INSERT_OPERAND (1, IMMH, *ip, imm);
13567 }
13568 s = expr_end;
13569 continue;
13570
13571 case 'I':
13572 {
13573 bfd_reloc_code_real_type r[3];
13574 expressionS ep;
13575 int imm;
13576
13577 if (my_getSmallExpression (&ep, r, s) > 0
13578 || !expr_const_in_range (&ep, -1, 127, 0))
13579 break;
13580
13581 imm = ep.X_add_number & 127;
13582 INSERT_OPERAND (1, IMMI, *ip, imm);
13583 }
13584 s = expr_end;
13585 continue;
13586
13587 case 'J':
13588 {
13589 bfd_reloc_code_real_type r[3];
13590 expressionS ep;
13591 int imm;
13592
13593 /* Check whether there is only a single bracketed
13594 expression left. If so, it must be the base register
13595 and the constant must be zero. */
13596 if (*s == '(' && strchr (s + 1, '(') == 0)
13597 {
13598 INSERT_OPERAND (1, IMMJ, *ip, 0);
13599 continue;
13600 }
13601
13602 if (my_getSmallExpression (&ep, r, s) > 0
13603 || !expr_const_in_range (&ep, 0, 16, 2))
13604 break;
13605
13606 imm = ep.X_add_number >> 2;
13607 INSERT_OPERAND (1, IMMJ, *ip, imm);
13608 }
13609 s = expr_end;
13610 continue;
13611
13612 case 'L':
13613 {
13614 bfd_reloc_code_real_type r[3];
13615 expressionS ep;
13616 int imm;
13617
13618 /* Check whether there is only a single bracketed
13619 expression left. If so, it must be the base register
13620 and the constant must be zero. */
13621 if (*s == '(' && strchr (s + 1, '(') == 0)
13622 {
13623 INSERT_OPERAND (1, IMML, *ip, 0);
13624 continue;
13625 }
13626
13627 if (my_getSmallExpression (&ep, r, s) > 0
13628 || !expr_const_in_range (&ep, 0, 16, 0))
13629 break;
13630
13631 imm = ep.X_add_number;
13632 INSERT_OPERAND (1, IMML, *ip, imm);
13633 }
13634 s = expr_end;
13635 continue;
13636
13637 case 'M':
13638 {
13639 bfd_reloc_code_real_type r[3];
13640 expressionS ep;
13641 int imm;
13642
13643 if (my_getSmallExpression (&ep, r, s) > 0
13644 || !expr_const_in_range (&ep, 1, 9, 0))
13645 break;
13646
13647 imm = ep.X_add_number & 7;
13648 INSERT_OPERAND (1, IMMM, *ip, imm);
13649 }
13650 s = expr_end;
13651 continue;
13652
13653 case 'N': /* Register list for lwm and swm. */
13654 {
13655 /* A comma-separated list of registers and/or
13656 dash-separated contiguous ranges including
13657 both ra and a set of one or more registers
13658 starting at s0 up to s3 which have to be
13659 consecutive, e.g.:
13660
13661 s0, ra
13662 s0, s1, ra, s2, s3
13663 s0-s2, ra
13664
13665 and any permutations of these. */
13666 unsigned int reglist;
13667 int imm;
13668
13669 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13670 break;
13671
13672 if ((reglist & 0xfff1ffff) != 0x80010000)
13673 break;
13674
13675 reglist = (reglist >> 17) & 7;
13676 reglist += 1;
13677 if ((reglist & -reglist) != reglist)
13678 break;
13679
13680 imm = ffs (reglist) - 1;
13681 INSERT_OPERAND (1, IMMN, *ip, imm);
13682 }
13683 continue;
13684
13685 case 'O': /* sdbbp 4-bit code. */
13686 {
13687 bfd_reloc_code_real_type r[3];
13688 expressionS ep;
13689 int imm;
13690
13691 if (my_getSmallExpression (&ep, r, s) > 0
13692 || !expr_const_in_range (&ep, 0, 16, 0))
13693 break;
13694
13695 imm = ep.X_add_number;
13696 INSERT_OPERAND (1, IMMO, *ip, imm);
13697 }
13698 s = expr_end;
13699 continue;
13700
13701 case 'P':
13702 {
13703 bfd_reloc_code_real_type r[3];
13704 expressionS ep;
13705 int imm;
13706
13707 if (my_getSmallExpression (&ep, r, s) > 0
13708 || !expr_const_in_range (&ep, 0, 32, 2))
13709 break;
13710
13711 imm = ep.X_add_number >> 2;
13712 INSERT_OPERAND (1, IMMP, *ip, imm);
13713 }
13714 s = expr_end;
13715 continue;
13716
13717 case 'Q':
13718 {
13719 bfd_reloc_code_real_type r[3];
13720 expressionS ep;
13721 int imm;
13722
13723 if (my_getSmallExpression (&ep, r, s) > 0
13724 || !expr_const_in_range (&ep, -0x400000, 0x400000, 2))
13725 break;
13726
13727 imm = ep.X_add_number >> 2;
13728 INSERT_OPERAND (1, IMMQ, *ip, imm);
13729 }
13730 s = expr_end;
13731 continue;
13732
13733 case 'U':
13734 {
13735 bfd_reloc_code_real_type r[3];
13736 expressionS ep;
13737 int imm;
13738
13739 /* Check whether there is only a single bracketed
13740 expression left. If so, it must be the base register
13741 and the constant must be zero. */
13742 if (*s == '(' && strchr (s + 1, '(') == 0)
13743 {
13744 INSERT_OPERAND (1, IMMU, *ip, 0);
13745 continue;
13746 }
13747
13748 if (my_getSmallExpression (&ep, r, s) > 0
13749 || !expr_const_in_range (&ep, 0, 32, 2))
13750 break;
13751
13752 imm = ep.X_add_number >> 2;
13753 INSERT_OPERAND (1, IMMU, *ip, imm);
13754 }
13755 s = expr_end;
13756 continue;
13757
13758 case 'W':
13759 {
13760 bfd_reloc_code_real_type r[3];
13761 expressionS ep;
13762 int imm;
13763
13764 if (my_getSmallExpression (&ep, r, s) > 0
13765 || !expr_const_in_range (&ep, 0, 64, 2))
13766 break;
13767
13768 imm = ep.X_add_number >> 2;
13769 INSERT_OPERAND (1, IMMW, *ip, imm);
13770 }
13771 s = expr_end;
13772 continue;
13773
13774 case 'X':
13775 {
13776 bfd_reloc_code_real_type r[3];
13777 expressionS ep;
13778 int imm;
13779
13780 if (my_getSmallExpression (&ep, r, s) > 0
13781 || !expr_const_in_range (&ep, -8, 8, 0))
13782 break;
13783
13784 imm = ep.X_add_number;
13785 INSERT_OPERAND (1, IMMX, *ip, imm);
13786 }
13787 s = expr_end;
13788 continue;
13789
13790 case 'Y':
13791 {
13792 bfd_reloc_code_real_type r[3];
13793 expressionS ep;
13794 int imm;
13795
13796 if (my_getSmallExpression (&ep, r, s) > 0
13797 || expr_const_in_range (&ep, -2, 2, 2)
13798 || !expr_const_in_range (&ep, -258, 258, 2))
13799 break;
13800
13801 imm = ep.X_add_number >> 2;
13802 imm = ((imm >> 1) & ~0xff) | (imm & 0xff);
13803 INSERT_OPERAND (1, IMMY, *ip, imm);
13804 }
13805 s = expr_end;
13806 continue;
13807
13808 case 'Z':
13809 {
13810 bfd_reloc_code_real_type r[3];
13811 expressionS ep;
13812
13813 if (my_getSmallExpression (&ep, r, s) > 0
13814 || !expr_const_in_range (&ep, 0, 1, 0))
13815 break;
13816 }
13817 s = expr_end;
13818 continue;
13819
13820 default:
13821 as_bad (_("Internal error: bad microMIPS opcode "
13822 "(unknown extension operand type `m%c'): %s %s"),
13823 *args, insn->name, insn->args);
13824 /* Further processing is fruitless. */
13825 return;
13826 }
13827 break;
13828
13829 case 'n': /* Register list for 32-bit lwm and swm. */
13830 gas_assert (mips_opts.micromips);
13831 {
13832 /* A comma-separated list of registers and/or
13833 dash-separated contiguous ranges including
13834 at least one of ra and a set of one or more
13835 registers starting at s0 up to s7 and then
13836 s8 which have to be consecutive, e.g.:
13837
13838 ra
13839 s0
13840 ra, s0, s1, s2
13841 s0-s8
13842 s0-s5, ra
13843
13844 and any permutations of these. */
13845 unsigned int reglist;
13846 int imm;
13847 int ra;
13848
13849 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13850 break;
13851
13852 if ((reglist & 0x3f00ffff) != 0)
13853 break;
13854
13855 ra = (reglist >> 27) & 0x10;
13856 reglist = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
13857 reglist += 1;
13858 if ((reglist & -reglist) != reglist)
13859 break;
13860
13861 imm = (ffs (reglist) - 1) | ra;
13862 INSERT_OPERAND (1, RT, *ip, imm);
13863 imm_expr.X_op = O_absent;
13864 }
13865 continue;
13866
13867 case '|': /* 4-bit trap code. */
13868 gas_assert (mips_opts.micromips);
13869 my_getExpression (&imm_expr, s);
13870 check_absolute_expr (ip, &imm_expr);
13871 if ((unsigned long) imm_expr.X_add_number
13872 > MICROMIPSOP_MASK_TRAP)
13873 as_bad (_("Trap code (%lu) for %s not in 0..15 range"),
13874 (unsigned long) imm_expr.X_add_number,
13875 ip->insn_mo->name);
13876 INSERT_OPERAND (1, TRAP, *ip, imm_expr.X_add_number);
13877 imm_expr.X_op = O_absent;
13878 s = expr_end;
13879 continue;
13880
13881 default:
13882 as_bad (_("Bad char = '%c'\n"), *args);
13883 abort ();
13884 }
13885 break;
13886 }
13887 /* Args don't match. */
13888 s = argsStart;
13889 insn_error = _("Illegal operands");
13890 if (insn + 1 < past && !strcmp (insn->name, insn[1].name))
13891 {
13892 ++insn;
13893 continue;
13894 }
13895 else if (wrong_delay_slot_insns && need_delay_slot_ok)
13896 {
13897 gas_assert (firstinsn);
13898 need_delay_slot_ok = FALSE;
13899 past = insn + 1;
13900 insn = firstinsn;
13901 continue;
13902 }
13903 return;
13904 }
13905 }
13906
13907 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
13908
13909 /* This routine assembles an instruction into its binary format when
13910 assembling for the mips16. As a side effect, it sets one of the
13911 global variables imm_reloc or offset_reloc to the type of relocation
13912 to do if one of the operands is an address expression. It also sets
13913 forced_insn_length to the resulting instruction size in bytes if the
13914 user explicitly requested a small or extended instruction. */
13915
13916 static void
13917 mips16_ip (char *str, struct mips_cl_insn *ip)
13918 {
13919 char *s;
13920 const char *args;
13921 struct mips_opcode *insn;
13922 char *argsstart;
13923 unsigned int regno;
13924 unsigned int lastregno = 0;
13925 char *s_reset;
13926 size_t i;
13927
13928 insn_error = NULL;
13929
13930 forced_insn_length = 0;
13931
13932 for (s = str; ISLOWER (*s); ++s)
13933 ;
13934 switch (*s)
13935 {
13936 case '\0':
13937 break;
13938
13939 case ' ':
13940 *s++ = '\0';
13941 break;
13942
13943 case '.':
13944 if (s[1] == 't' && s[2] == ' ')
13945 {
13946 *s = '\0';
13947 forced_insn_length = 2;
13948 s += 3;
13949 break;
13950 }
13951 else if (s[1] == 'e' && s[2] == ' ')
13952 {
13953 *s = '\0';
13954 forced_insn_length = 4;
13955 s += 3;
13956 break;
13957 }
13958 /* Fall through. */
13959 default:
13960 insn_error = _("unknown opcode");
13961 return;
13962 }
13963
13964 if (mips_opts.noautoextend && !forced_insn_length)
13965 forced_insn_length = 2;
13966
13967 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
13968 {
13969 insn_error = _("unrecognized opcode");
13970 return;
13971 }
13972
13973 argsstart = s;
13974 for (;;)
13975 {
13976 bfd_boolean ok;
13977
13978 gas_assert (strcmp (insn->name, str) == 0);
13979
13980 ok = is_opcode_valid_16 (insn);
13981 if (! ok)
13982 {
13983 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
13984 && strcmp (insn->name, insn[1].name) == 0)
13985 {
13986 ++insn;
13987 continue;
13988 }
13989 else
13990 {
13991 if (!insn_error)
13992 {
13993 static char buf[100];
13994 sprintf (buf,
13995 _("Opcode not supported on this processor: %s (%s)"),
13996 mips_cpu_info_from_arch (mips_opts.arch)->name,
13997 mips_cpu_info_from_isa (mips_opts.isa)->name);
13998 insn_error = buf;
13999 }
14000 return;
14001 }
14002 }
14003
14004 create_insn (ip, insn);
14005 imm_expr.X_op = O_absent;
14006 imm_reloc[0] = BFD_RELOC_UNUSED;
14007 imm_reloc[1] = BFD_RELOC_UNUSED;
14008 imm_reloc[2] = BFD_RELOC_UNUSED;
14009 imm2_expr.X_op = O_absent;
14010 offset_expr.X_op = O_absent;
14011 offset_reloc[0] = BFD_RELOC_UNUSED;
14012 offset_reloc[1] = BFD_RELOC_UNUSED;
14013 offset_reloc[2] = BFD_RELOC_UNUSED;
14014 for (args = insn->args; 1; ++args)
14015 {
14016 int c;
14017
14018 if (*s == ' ')
14019 ++s;
14020
14021 /* In this switch statement we call break if we did not find
14022 a match, continue if we did find a match, or return if we
14023 are done. */
14024
14025 c = *args;
14026 switch (c)
14027 {
14028 case '\0':
14029 if (*s == '\0')
14030 {
14031 offsetT value;
14032
14033 /* Stuff the immediate value in now, if we can. */
14034 if (imm_expr.X_op == O_constant
14035 && *imm_reloc > BFD_RELOC_UNUSED
14036 && insn->pinfo != INSN_MACRO
14037 && calculate_reloc (*offset_reloc,
14038 imm_expr.X_add_number, &value))
14039 {
14040 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
14041 *offset_reloc, value, forced_insn_length,
14042 &ip->insn_opcode);
14043 imm_expr.X_op = O_absent;
14044 *imm_reloc = BFD_RELOC_UNUSED;
14045 *offset_reloc = BFD_RELOC_UNUSED;
14046 }
14047
14048 return;
14049 }
14050 break;
14051
14052 case ',':
14053 if (*s++ == c)
14054 continue;
14055 s--;
14056 switch (*++args)
14057 {
14058 case 'v':
14059 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
14060 continue;
14061 case 'w':
14062 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
14063 continue;
14064 }
14065 break;
14066
14067 case '(':
14068 case ')':
14069 if (*s++ == c)
14070 continue;
14071 break;
14072
14073 case 'v':
14074 case 'w':
14075 if (s[0] != '$')
14076 {
14077 if (c == 'v')
14078 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
14079 else
14080 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
14081 ++args;
14082 continue;
14083 }
14084 /* Fall through. */
14085 case 'x':
14086 case 'y':
14087 case 'z':
14088 case 'Z':
14089 case '0':
14090 case 'S':
14091 case 'R':
14092 case 'X':
14093 case 'Y':
14094 s_reset = s;
14095 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
14096 {
14097 if (c == 'v' || c == 'w')
14098 {
14099 if (c == 'v')
14100 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
14101 else
14102 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
14103 ++args;
14104 continue;
14105 }
14106 break;
14107 }
14108
14109 if (*s == ' ')
14110 ++s;
14111 if (args[1] != *s)
14112 {
14113 if (c == 'v' || c == 'w')
14114 {
14115 regno = mips16_to_32_reg_map[lastregno];
14116 s = s_reset;
14117 ++args;
14118 }
14119 }
14120
14121 switch (c)
14122 {
14123 case 'x':
14124 case 'y':
14125 case 'z':
14126 case 'v':
14127 case 'w':
14128 case 'Z':
14129 regno = mips32_to_16_reg_map[regno];
14130 break;
14131
14132 case '0':
14133 if (regno != 0)
14134 regno = ILLEGAL_REG;
14135 break;
14136
14137 case 'S':
14138 if (regno != SP)
14139 regno = ILLEGAL_REG;
14140 break;
14141
14142 case 'R':
14143 if (regno != RA)
14144 regno = ILLEGAL_REG;
14145 break;
14146
14147 case 'X':
14148 case 'Y':
14149 if (regno == AT && mips_opts.at)
14150 {
14151 if (mips_opts.at == ATREG)
14152 as_warn (_("used $at without \".set noat\""));
14153 else
14154 as_warn (_("used $%u with \".set at=$%u\""),
14155 regno, mips_opts.at);
14156 }
14157 break;
14158
14159 default:
14160 abort ();
14161 }
14162
14163 if (regno == ILLEGAL_REG)
14164 break;
14165
14166 switch (c)
14167 {
14168 case 'x':
14169 case 'v':
14170 MIPS16_INSERT_OPERAND (RX, *ip, regno);
14171 break;
14172 case 'y':
14173 case 'w':
14174 MIPS16_INSERT_OPERAND (RY, *ip, regno);
14175 break;
14176 case 'z':
14177 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
14178 break;
14179 case 'Z':
14180 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
14181 case '0':
14182 case 'S':
14183 case 'R':
14184 break;
14185 case 'X':
14186 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
14187 break;
14188 case 'Y':
14189 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
14190 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
14191 break;
14192 default:
14193 abort ();
14194 }
14195
14196 lastregno = regno;
14197 continue;
14198
14199 case 'P':
14200 if (strncmp (s, "$pc", 3) == 0)
14201 {
14202 s += 3;
14203 continue;
14204 }
14205 break;
14206
14207 case '5':
14208 case 'H':
14209 case 'W':
14210 case 'D':
14211 case 'j':
14212 case 'V':
14213 case 'C':
14214 case 'U':
14215 case 'k':
14216 case 'K':
14217 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
14218 if (i > 0)
14219 {
14220 if (imm_expr.X_op != O_constant)
14221 {
14222 forced_insn_length = 4;
14223 ip->insn_opcode |= MIPS16_EXTEND;
14224 }
14225 else
14226 {
14227 /* We need to relax this instruction. */
14228 *offset_reloc = *imm_reloc;
14229 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
14230 }
14231 s = expr_end;
14232 continue;
14233 }
14234 *imm_reloc = BFD_RELOC_UNUSED;
14235 /* Fall through. */
14236 case '<':
14237 case '>':
14238 case '[':
14239 case ']':
14240 case '4':
14241 case '8':
14242 my_getExpression (&imm_expr, s);
14243 if (imm_expr.X_op == O_register)
14244 {
14245 /* What we thought was an expression turned out to
14246 be a register. */
14247
14248 if (s[0] == '(' && args[1] == '(')
14249 {
14250 /* It looks like the expression was omitted
14251 before a register indirection, which means
14252 that the expression is implicitly zero. We
14253 still set up imm_expr, so that we handle
14254 explicit extensions correctly. */
14255 imm_expr.X_op = O_constant;
14256 imm_expr.X_add_number = 0;
14257 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
14258 continue;
14259 }
14260
14261 break;
14262 }
14263
14264 /* We need to relax this instruction. */
14265 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
14266 s = expr_end;
14267 continue;
14268
14269 case 'p':
14270 case 'q':
14271 case 'A':
14272 case 'B':
14273 case 'E':
14274 /* We use offset_reloc rather than imm_reloc for the PC
14275 relative operands. This lets macros with both
14276 immediate and address operands work correctly. */
14277 my_getExpression (&offset_expr, s);
14278
14279 if (offset_expr.X_op == O_register)
14280 break;
14281
14282 /* We need to relax this instruction. */
14283 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
14284 s = expr_end;
14285 continue;
14286
14287 case '6': /* break code */
14288 my_getExpression (&imm_expr, s);
14289 check_absolute_expr (ip, &imm_expr);
14290 if ((unsigned long) imm_expr.X_add_number > 63)
14291 as_warn (_("Invalid value for `%s' (%lu)"),
14292 ip->insn_mo->name,
14293 (unsigned long) imm_expr.X_add_number);
14294 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
14295 imm_expr.X_op = O_absent;
14296 s = expr_end;
14297 continue;
14298
14299 case 'a': /* 26 bit address */
14300 my_getExpression (&offset_expr, s);
14301 s = expr_end;
14302 *offset_reloc = BFD_RELOC_MIPS16_JMP;
14303 ip->insn_opcode <<= 16;
14304 continue;
14305
14306 case 'l': /* register list for entry macro */
14307 case 'L': /* register list for exit macro */
14308 {
14309 int mask;
14310
14311 if (c == 'l')
14312 mask = 0;
14313 else
14314 mask = 7 << 3;
14315 while (*s != '\0')
14316 {
14317 unsigned int freg, reg1, reg2;
14318
14319 while (*s == ' ' || *s == ',')
14320 ++s;
14321 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
14322 freg = 0;
14323 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
14324 freg = 1;
14325 else
14326 {
14327 as_bad (_("can't parse register list"));
14328 break;
14329 }
14330 if (*s == ' ')
14331 ++s;
14332 if (*s != '-')
14333 reg2 = reg1;
14334 else
14335 {
14336 ++s;
14337 if (!reg_lookup (&s, freg ? RTYPE_FPU
14338 : (RTYPE_GP | RTYPE_NUM), &reg2))
14339 {
14340 as_bad (_("invalid register list"));
14341 break;
14342 }
14343 }
14344 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
14345 {
14346 mask &= ~ (7 << 3);
14347 mask |= 5 << 3;
14348 }
14349 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
14350 {
14351 mask &= ~ (7 << 3);
14352 mask |= 6 << 3;
14353 }
14354 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
14355 mask |= (reg2 - 3) << 3;
14356 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
14357 mask |= (reg2 - 15) << 1;
14358 else if (reg1 == RA && reg2 == RA)
14359 mask |= 1;
14360 else
14361 {
14362 as_bad (_("invalid register list"));
14363 break;
14364 }
14365 }
14366 /* The mask is filled in in the opcode table for the
14367 benefit of the disassembler. We remove it before
14368 applying the actual mask. */
14369 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
14370 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
14371 }
14372 continue;
14373
14374 case 'm': /* Register list for save insn. */
14375 case 'M': /* Register list for restore insn. */
14376 {
14377 int opcode = ip->insn_opcode;
14378 int framesz = 0, seen_framesz = 0;
14379 int nargs = 0, statics = 0, sregs = 0;
14380
14381 while (*s != '\0')
14382 {
14383 unsigned int reg1, reg2;
14384
14385 SKIP_SPACE_TABS (s);
14386 while (*s == ',')
14387 ++s;
14388 SKIP_SPACE_TABS (s);
14389
14390 my_getExpression (&imm_expr, s);
14391 if (imm_expr.X_op == O_constant)
14392 {
14393 /* Handle the frame size. */
14394 if (seen_framesz)
14395 {
14396 as_bad (_("more than one frame size in list"));
14397 break;
14398 }
14399 seen_framesz = 1;
14400 framesz = imm_expr.X_add_number;
14401 imm_expr.X_op = O_absent;
14402 s = expr_end;
14403 continue;
14404 }
14405
14406 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
14407 {
14408 as_bad (_("can't parse register list"));
14409 break;
14410 }
14411
14412 while (*s == ' ')
14413 ++s;
14414
14415 if (*s != '-')
14416 reg2 = reg1;
14417 else
14418 {
14419 ++s;
14420 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
14421 || reg2 < reg1)
14422 {
14423 as_bad (_("can't parse register list"));
14424 break;
14425 }
14426 }
14427
14428 while (reg1 <= reg2)
14429 {
14430 if (reg1 >= 4 && reg1 <= 7)
14431 {
14432 if (!seen_framesz)
14433 /* args $a0-$a3 */
14434 nargs |= 1 << (reg1 - 4);
14435 else
14436 /* statics $a0-$a3 */
14437 statics |= 1 << (reg1 - 4);
14438 }
14439 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
14440 {
14441 /* $s0-$s8 */
14442 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
14443 }
14444 else if (reg1 == 31)
14445 {
14446 /* Add $ra to insn. */
14447 opcode |= 0x40;
14448 }
14449 else
14450 {
14451 as_bad (_("unexpected register in list"));
14452 break;
14453 }
14454 if (++reg1 == 24)
14455 reg1 = 30;
14456 }
14457 }
14458
14459 /* Encode args/statics combination. */
14460 if (nargs & statics)
14461 as_bad (_("arg/static registers overlap"));
14462 else if (nargs == 0xf)
14463 /* All $a0-$a3 are args. */
14464 opcode |= MIPS16_ALL_ARGS << 16;
14465 else if (statics == 0xf)
14466 /* All $a0-$a3 are statics. */
14467 opcode |= MIPS16_ALL_STATICS << 16;
14468 else
14469 {
14470 int narg = 0, nstat = 0;
14471
14472 /* Count arg registers. */
14473 while (nargs & 0x1)
14474 {
14475 nargs >>= 1;
14476 narg++;
14477 }
14478 if (nargs != 0)
14479 as_bad (_("invalid arg register list"));
14480
14481 /* Count static registers. */
14482 while (statics & 0x8)
14483 {
14484 statics = (statics << 1) & 0xf;
14485 nstat++;
14486 }
14487 if (statics != 0)
14488 as_bad (_("invalid static register list"));
14489
14490 /* Encode args/statics. */
14491 opcode |= ((narg << 2) | nstat) << 16;
14492 }
14493
14494 /* Encode $s0/$s1. */
14495 if (sregs & (1 << 0)) /* $s0 */
14496 opcode |= 0x20;
14497 if (sregs & (1 << 1)) /* $s1 */
14498 opcode |= 0x10;
14499 sregs >>= 2;
14500
14501 if (sregs != 0)
14502 {
14503 /* Count regs $s2-$s8. */
14504 int nsreg = 0;
14505 while (sregs & 1)
14506 {
14507 sregs >>= 1;
14508 nsreg++;
14509 }
14510 if (sregs != 0)
14511 as_bad (_("invalid static register list"));
14512 /* Encode $s2-$s8. */
14513 opcode |= nsreg << 24;
14514 }
14515
14516 /* Encode frame size. */
14517 if (!seen_framesz)
14518 as_bad (_("missing frame size"));
14519 else if ((framesz & 7) != 0 || framesz < 0
14520 || framesz > 0xff * 8)
14521 as_bad (_("invalid frame size"));
14522 else if (framesz != 128 || (opcode >> 16) != 0)
14523 {
14524 framesz /= 8;
14525 opcode |= (((framesz & 0xf0) << 16)
14526 | (framesz & 0x0f));
14527 }
14528
14529 /* Finally build the instruction. */
14530 if ((opcode >> 16) != 0 || framesz == 0)
14531 opcode |= MIPS16_EXTEND;
14532 ip->insn_opcode = opcode;
14533 }
14534 continue;
14535
14536 case 'e': /* extend code */
14537 my_getExpression (&imm_expr, s);
14538 check_absolute_expr (ip, &imm_expr);
14539 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
14540 {
14541 as_warn (_("Invalid value for `%s' (%lu)"),
14542 ip->insn_mo->name,
14543 (unsigned long) imm_expr.X_add_number);
14544 imm_expr.X_add_number &= 0x7ff;
14545 }
14546 ip->insn_opcode |= imm_expr.X_add_number;
14547 imm_expr.X_op = O_absent;
14548 s = expr_end;
14549 continue;
14550
14551 default:
14552 abort ();
14553 }
14554 break;
14555 }
14556
14557 /* Args don't match. */
14558 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
14559 strcmp (insn->name, insn[1].name) == 0)
14560 {
14561 ++insn;
14562 s = argsstart;
14563 continue;
14564 }
14565
14566 insn_error = _("illegal operands");
14567
14568 return;
14569 }
14570 }
14571
14572 /* This structure holds information we know about a mips16 immediate
14573 argument type. */
14574
14575 struct mips16_immed_operand
14576 {
14577 /* The type code used in the argument string in the opcode table. */
14578 int type;
14579 /* The number of bits in the short form of the opcode. */
14580 int nbits;
14581 /* The number of bits in the extended form of the opcode. */
14582 int extbits;
14583 /* The amount by which the short form is shifted when it is used;
14584 for example, the sw instruction has a shift count of 2. */
14585 int shift;
14586 /* The amount by which the short form is shifted when it is stored
14587 into the instruction code. */
14588 int op_shift;
14589 /* Non-zero if the short form is unsigned. */
14590 int unsp;
14591 /* Non-zero if the extended form is unsigned. */
14592 int extu;
14593 /* Non-zero if the value is PC relative. */
14594 int pcrel;
14595 };
14596
14597 /* The mips16 immediate operand types. */
14598
14599 static const struct mips16_immed_operand mips16_immed_operands[] =
14600 {
14601 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14602 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14603 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14604 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14605 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
14606 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
14607 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
14608 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
14609 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
14610 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
14611 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
14612 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
14613 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
14614 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
14615 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
14616 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
14617 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14618 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14619 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
14620 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
14621 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
14622 };
14623
14624 #define MIPS16_NUM_IMMED \
14625 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
14626
14627 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14628 NBITS is the number of significant bits in VAL. */
14629
14630 static unsigned long
14631 mips16_immed_extend (offsetT val, unsigned int nbits)
14632 {
14633 int extval;
14634 if (nbits == 16)
14635 {
14636 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14637 val &= 0x1f;
14638 }
14639 else if (nbits == 15)
14640 {
14641 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14642 val &= 0xf;
14643 }
14644 else
14645 {
14646 extval = ((val & 0x1f) << 6) | (val & 0x20);
14647 val = 0;
14648 }
14649 return (extval << 16) | val;
14650 }
14651
14652 /* Install immediate value VAL into MIPS16 instruction *INSN,
14653 extending it if necessary. The instruction in *INSN may
14654 already be extended.
14655
14656 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14657 if none. In the former case, VAL is a 16-bit number with no
14658 defined signedness.
14659
14660 TYPE is the type of the immediate field. USER_INSN_LENGTH
14661 is the length that the user requested, or 0 if none. */
14662
14663 static void
14664 mips16_immed (char *file, unsigned int line, int type,
14665 bfd_reloc_code_real_type reloc, offsetT val,
14666 unsigned int user_insn_length, unsigned long *insn)
14667 {
14668 const struct mips16_immed_operand *op;
14669 int mintiny, maxtiny;
14670
14671 op = mips16_immed_operands;
14672 while (op->type != type)
14673 {
14674 ++op;
14675 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
14676 }
14677
14678 if (op->unsp)
14679 {
14680 if (type == '<' || type == '>' || type == '[' || type == ']')
14681 {
14682 mintiny = 1;
14683 maxtiny = 1 << op->nbits;
14684 }
14685 else
14686 {
14687 mintiny = 0;
14688 maxtiny = (1 << op->nbits) - 1;
14689 }
14690 if (reloc != BFD_RELOC_UNUSED)
14691 val &= 0xffff;
14692 }
14693 else
14694 {
14695 mintiny = - (1 << (op->nbits - 1));
14696 maxtiny = (1 << (op->nbits - 1)) - 1;
14697 if (reloc != BFD_RELOC_UNUSED)
14698 val = SEXT_16BIT (val);
14699 }
14700
14701 /* Branch offsets have an implicit 0 in the lowest bit. */
14702 if (type == 'p' || type == 'q')
14703 val /= 2;
14704
14705 if ((val & ((1 << op->shift) - 1)) != 0
14706 || val < (mintiny << op->shift)
14707 || val > (maxtiny << op->shift))
14708 {
14709 /* We need an extended instruction. */
14710 if (user_insn_length == 2)
14711 as_bad_where (file, line, _("invalid unextended operand value"));
14712 else
14713 *insn |= MIPS16_EXTEND;
14714 }
14715 else if (user_insn_length == 4)
14716 {
14717 /* The operand doesn't force an unextended instruction to be extended.
14718 Warn if the user wanted an extended instruction anyway. */
14719 *insn |= MIPS16_EXTEND;
14720 as_warn_where (file, line,
14721 _("extended operand requested but not required"));
14722 }
14723
14724 if (mips16_opcode_length (*insn) == 2)
14725 {
14726 int insnval;
14727
14728 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
14729 insnval <<= op->op_shift;
14730 *insn |= insnval;
14731 }
14732 else
14733 {
14734 long minext, maxext;
14735
14736 if (reloc == BFD_RELOC_UNUSED)
14737 {
14738 if (op->extu)
14739 {
14740 minext = 0;
14741 maxext = (1 << op->extbits) - 1;
14742 }
14743 else
14744 {
14745 minext = - (1 << (op->extbits - 1));
14746 maxext = (1 << (op->extbits - 1)) - 1;
14747 }
14748 if (val < minext || val > maxext)
14749 as_bad_where (file, line,
14750 _("operand value out of range for instruction"));
14751 }
14752
14753 *insn |= mips16_immed_extend (val, op->extbits);
14754 }
14755 }
14756 \f
14757 struct percent_op_match
14758 {
14759 const char *str;
14760 bfd_reloc_code_real_type reloc;
14761 };
14762
14763 static const struct percent_op_match mips_percent_op[] =
14764 {
14765 {"%lo", BFD_RELOC_LO16},
14766 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14767 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14768 {"%call16", BFD_RELOC_MIPS_CALL16},
14769 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14770 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14771 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14772 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14773 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14774 {"%got", BFD_RELOC_MIPS_GOT16},
14775 {"%gp_rel", BFD_RELOC_GPREL16},
14776 {"%half", BFD_RELOC_16},
14777 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14778 {"%higher", BFD_RELOC_MIPS_HIGHER},
14779 {"%neg", BFD_RELOC_MIPS_SUB},
14780 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14781 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14782 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14783 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14784 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14785 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14786 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14787 {"%hi", BFD_RELOC_HI16_S}
14788 };
14789
14790 static const struct percent_op_match mips16_percent_op[] =
14791 {
14792 {"%lo", BFD_RELOC_MIPS16_LO16},
14793 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14794 {"%got", BFD_RELOC_MIPS16_GOT16},
14795 {"%call16", BFD_RELOC_MIPS16_CALL16},
14796 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14797 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14798 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14799 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14800 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14801 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14802 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14803 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14804 };
14805
14806
14807 /* Return true if *STR points to a relocation operator. When returning true,
14808 move *STR over the operator and store its relocation code in *RELOC.
14809 Leave both *STR and *RELOC alone when returning false. */
14810
14811 static bfd_boolean
14812 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14813 {
14814 const struct percent_op_match *percent_op;
14815 size_t limit, i;
14816
14817 if (mips_opts.mips16)
14818 {
14819 percent_op = mips16_percent_op;
14820 limit = ARRAY_SIZE (mips16_percent_op);
14821 }
14822 else
14823 {
14824 percent_op = mips_percent_op;
14825 limit = ARRAY_SIZE (mips_percent_op);
14826 }
14827
14828 for (i = 0; i < limit; i++)
14829 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14830 {
14831 int len = strlen (percent_op[i].str);
14832
14833 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14834 continue;
14835
14836 *str += strlen (percent_op[i].str);
14837 *reloc = percent_op[i].reloc;
14838
14839 /* Check whether the output BFD supports this relocation.
14840 If not, issue an error and fall back on something safe. */
14841 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14842 {
14843 as_bad (_("relocation %s isn't supported by the current ABI"),
14844 percent_op[i].str);
14845 *reloc = BFD_RELOC_UNUSED;
14846 }
14847 return TRUE;
14848 }
14849 return FALSE;
14850 }
14851
14852
14853 /* Parse string STR as a 16-bit relocatable operand. Store the
14854 expression in *EP and the relocations in the array starting
14855 at RELOC. Return the number of relocation operators used.
14856
14857 On exit, EXPR_END points to the first character after the expression. */
14858
14859 static size_t
14860 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14861 char *str)
14862 {
14863 bfd_reloc_code_real_type reversed_reloc[3];
14864 size_t reloc_index, i;
14865 int crux_depth, str_depth;
14866 char *crux;
14867
14868 /* Search for the start of the main expression, recoding relocations
14869 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14870 of the main expression and with CRUX_DEPTH containing the number
14871 of open brackets at that point. */
14872 reloc_index = -1;
14873 str_depth = 0;
14874 do
14875 {
14876 reloc_index++;
14877 crux = str;
14878 crux_depth = str_depth;
14879
14880 /* Skip over whitespace and brackets, keeping count of the number
14881 of brackets. */
14882 while (*str == ' ' || *str == '\t' || *str == '(')
14883 if (*str++ == '(')
14884 str_depth++;
14885 }
14886 while (*str == '%'
14887 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14888 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14889
14890 my_getExpression (ep, crux);
14891 str = expr_end;
14892
14893 /* Match every open bracket. */
14894 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14895 if (*str++ == ')')
14896 crux_depth--;
14897
14898 if (crux_depth > 0)
14899 as_bad (_("unclosed '('"));
14900
14901 expr_end = str;
14902
14903 if (reloc_index != 0)
14904 {
14905 prev_reloc_op_frag = frag_now;
14906 for (i = 0; i < reloc_index; i++)
14907 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14908 }
14909
14910 return reloc_index;
14911 }
14912
14913 static void
14914 my_getExpression (expressionS *ep, char *str)
14915 {
14916 char *save_in;
14917
14918 save_in = input_line_pointer;
14919 input_line_pointer = str;
14920 expression (ep);
14921 expr_end = input_line_pointer;
14922 input_line_pointer = save_in;
14923 }
14924
14925 char *
14926 md_atof (int type, char *litP, int *sizeP)
14927 {
14928 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14929 }
14930
14931 void
14932 md_number_to_chars (char *buf, valueT val, int n)
14933 {
14934 if (target_big_endian)
14935 number_to_chars_bigendian (buf, val, n);
14936 else
14937 number_to_chars_littleendian (buf, val, n);
14938 }
14939 \f
14940 static int support_64bit_objects(void)
14941 {
14942 const char **list, **l;
14943 int yes;
14944
14945 list = bfd_target_list ();
14946 for (l = list; *l != NULL; l++)
14947 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14948 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14949 break;
14950 yes = (*l != NULL);
14951 free (list);
14952 return yes;
14953 }
14954
14955 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14956 NEW_VALUE. Warn if another value was already specified. Note:
14957 we have to defer parsing the -march and -mtune arguments in order
14958 to handle 'from-abi' correctly, since the ABI might be specified
14959 in a later argument. */
14960
14961 static void
14962 mips_set_option_string (const char **string_ptr, const char *new_value)
14963 {
14964 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14965 as_warn (_("A different %s was already specified, is now %s"),
14966 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14967 new_value);
14968
14969 *string_ptr = new_value;
14970 }
14971
14972 int
14973 md_parse_option (int c, char *arg)
14974 {
14975 unsigned int i;
14976
14977 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14978 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14979 {
14980 file_ase_explicit |= mips_set_ase (&mips_ases[i],
14981 c == mips_ases[i].option_on);
14982 return 1;
14983 }
14984
14985 switch (c)
14986 {
14987 case OPTION_CONSTRUCT_FLOATS:
14988 mips_disable_float_construction = 0;
14989 break;
14990
14991 case OPTION_NO_CONSTRUCT_FLOATS:
14992 mips_disable_float_construction = 1;
14993 break;
14994
14995 case OPTION_TRAP:
14996 mips_trap = 1;
14997 break;
14998
14999 case OPTION_BREAK:
15000 mips_trap = 0;
15001 break;
15002
15003 case OPTION_EB:
15004 target_big_endian = 1;
15005 break;
15006
15007 case OPTION_EL:
15008 target_big_endian = 0;
15009 break;
15010
15011 case 'O':
15012 if (arg == NULL)
15013 mips_optimize = 1;
15014 else if (arg[0] == '0')
15015 mips_optimize = 0;
15016 else if (arg[0] == '1')
15017 mips_optimize = 1;
15018 else
15019 mips_optimize = 2;
15020 break;
15021
15022 case 'g':
15023 if (arg == NULL)
15024 mips_debug = 2;
15025 else
15026 mips_debug = atoi (arg);
15027 break;
15028
15029 case OPTION_MIPS1:
15030 file_mips_isa = ISA_MIPS1;
15031 break;
15032
15033 case OPTION_MIPS2:
15034 file_mips_isa = ISA_MIPS2;
15035 break;
15036
15037 case OPTION_MIPS3:
15038 file_mips_isa = ISA_MIPS3;
15039 break;
15040
15041 case OPTION_MIPS4:
15042 file_mips_isa = ISA_MIPS4;
15043 break;
15044
15045 case OPTION_MIPS5:
15046 file_mips_isa = ISA_MIPS5;
15047 break;
15048
15049 case OPTION_MIPS32:
15050 file_mips_isa = ISA_MIPS32;
15051 break;
15052
15053 case OPTION_MIPS32R2:
15054 file_mips_isa = ISA_MIPS32R2;
15055 break;
15056
15057 case OPTION_MIPS64R2:
15058 file_mips_isa = ISA_MIPS64R2;
15059 break;
15060
15061 case OPTION_MIPS64:
15062 file_mips_isa = ISA_MIPS64;
15063 break;
15064
15065 case OPTION_MTUNE:
15066 mips_set_option_string (&mips_tune_string, arg);
15067 break;
15068
15069 case OPTION_MARCH:
15070 mips_set_option_string (&mips_arch_string, arg);
15071 break;
15072
15073 case OPTION_M4650:
15074 mips_set_option_string (&mips_arch_string, "4650");
15075 mips_set_option_string (&mips_tune_string, "4650");
15076 break;
15077
15078 case OPTION_NO_M4650:
15079 break;
15080
15081 case OPTION_M4010:
15082 mips_set_option_string (&mips_arch_string, "4010");
15083 mips_set_option_string (&mips_tune_string, "4010");
15084 break;
15085
15086 case OPTION_NO_M4010:
15087 break;
15088
15089 case OPTION_M4100:
15090 mips_set_option_string (&mips_arch_string, "4100");
15091 mips_set_option_string (&mips_tune_string, "4100");
15092 break;
15093
15094 case OPTION_NO_M4100:
15095 break;
15096
15097 case OPTION_M3900:
15098 mips_set_option_string (&mips_arch_string, "3900");
15099 mips_set_option_string (&mips_tune_string, "3900");
15100 break;
15101
15102 case OPTION_NO_M3900:
15103 break;
15104
15105 case OPTION_MICROMIPS:
15106 if (mips_opts.mips16 == 1)
15107 {
15108 as_bad (_("-mmicromips cannot be used with -mips16"));
15109 return 0;
15110 }
15111 mips_opts.micromips = 1;
15112 mips_no_prev_insn ();
15113 break;
15114
15115 case OPTION_NO_MICROMIPS:
15116 mips_opts.micromips = 0;
15117 mips_no_prev_insn ();
15118 break;
15119
15120 case OPTION_MIPS16:
15121 if (mips_opts.micromips == 1)
15122 {
15123 as_bad (_("-mips16 cannot be used with -micromips"));
15124 return 0;
15125 }
15126 mips_opts.mips16 = 1;
15127 mips_no_prev_insn ();
15128 break;
15129
15130 case OPTION_NO_MIPS16:
15131 mips_opts.mips16 = 0;
15132 mips_no_prev_insn ();
15133 break;
15134
15135 case OPTION_FIX_24K:
15136 mips_fix_24k = 1;
15137 break;
15138
15139 case OPTION_NO_FIX_24K:
15140 mips_fix_24k = 0;
15141 break;
15142
15143 case OPTION_FIX_LOONGSON2F_JUMP:
15144 mips_fix_loongson2f_jump = TRUE;
15145 break;
15146
15147 case OPTION_NO_FIX_LOONGSON2F_JUMP:
15148 mips_fix_loongson2f_jump = FALSE;
15149 break;
15150
15151 case OPTION_FIX_LOONGSON2F_NOP:
15152 mips_fix_loongson2f_nop = TRUE;
15153 break;
15154
15155 case OPTION_NO_FIX_LOONGSON2F_NOP:
15156 mips_fix_loongson2f_nop = FALSE;
15157 break;
15158
15159 case OPTION_FIX_VR4120:
15160 mips_fix_vr4120 = 1;
15161 break;
15162
15163 case OPTION_NO_FIX_VR4120:
15164 mips_fix_vr4120 = 0;
15165 break;
15166
15167 case OPTION_FIX_VR4130:
15168 mips_fix_vr4130 = 1;
15169 break;
15170
15171 case OPTION_NO_FIX_VR4130:
15172 mips_fix_vr4130 = 0;
15173 break;
15174
15175 case OPTION_FIX_CN63XXP1:
15176 mips_fix_cn63xxp1 = TRUE;
15177 break;
15178
15179 case OPTION_NO_FIX_CN63XXP1:
15180 mips_fix_cn63xxp1 = FALSE;
15181 break;
15182
15183 case OPTION_RELAX_BRANCH:
15184 mips_relax_branch = 1;
15185 break;
15186
15187 case OPTION_NO_RELAX_BRANCH:
15188 mips_relax_branch = 0;
15189 break;
15190
15191 case OPTION_MSHARED:
15192 mips_in_shared = TRUE;
15193 break;
15194
15195 case OPTION_MNO_SHARED:
15196 mips_in_shared = FALSE;
15197 break;
15198
15199 case OPTION_MSYM32:
15200 mips_opts.sym32 = TRUE;
15201 break;
15202
15203 case OPTION_MNO_SYM32:
15204 mips_opts.sym32 = FALSE;
15205 break;
15206
15207 /* When generating ELF code, we permit -KPIC and -call_shared to
15208 select SVR4_PIC, and -non_shared to select no PIC. This is
15209 intended to be compatible with Irix 5. */
15210 case OPTION_CALL_SHARED:
15211 mips_pic = SVR4_PIC;
15212 mips_abicalls = TRUE;
15213 break;
15214
15215 case OPTION_CALL_NONPIC:
15216 mips_pic = NO_PIC;
15217 mips_abicalls = TRUE;
15218 break;
15219
15220 case OPTION_NON_SHARED:
15221 mips_pic = NO_PIC;
15222 mips_abicalls = FALSE;
15223 break;
15224
15225 /* The -xgot option tells the assembler to use 32 bit offsets
15226 when accessing the got in SVR4_PIC mode. It is for Irix
15227 compatibility. */
15228 case OPTION_XGOT:
15229 mips_big_got = 1;
15230 break;
15231
15232 case 'G':
15233 g_switch_value = atoi (arg);
15234 g_switch_seen = 1;
15235 break;
15236
15237 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15238 and -mabi=64. */
15239 case OPTION_32:
15240 mips_abi = O32_ABI;
15241 break;
15242
15243 case OPTION_N32:
15244 mips_abi = N32_ABI;
15245 break;
15246
15247 case OPTION_64:
15248 mips_abi = N64_ABI;
15249 if (!support_64bit_objects())
15250 as_fatal (_("No compiled in support for 64 bit object file format"));
15251 break;
15252
15253 case OPTION_GP32:
15254 file_mips_gp32 = 1;
15255 break;
15256
15257 case OPTION_GP64:
15258 file_mips_gp32 = 0;
15259 break;
15260
15261 case OPTION_FP32:
15262 file_mips_fp32 = 1;
15263 break;
15264
15265 case OPTION_FP64:
15266 file_mips_fp32 = 0;
15267 break;
15268
15269 case OPTION_SINGLE_FLOAT:
15270 file_mips_single_float = 1;
15271 break;
15272
15273 case OPTION_DOUBLE_FLOAT:
15274 file_mips_single_float = 0;
15275 break;
15276
15277 case OPTION_SOFT_FLOAT:
15278 file_mips_soft_float = 1;
15279 break;
15280
15281 case OPTION_HARD_FLOAT:
15282 file_mips_soft_float = 0;
15283 break;
15284
15285 case OPTION_MABI:
15286 if (strcmp (arg, "32") == 0)
15287 mips_abi = O32_ABI;
15288 else if (strcmp (arg, "o64") == 0)
15289 mips_abi = O64_ABI;
15290 else if (strcmp (arg, "n32") == 0)
15291 mips_abi = N32_ABI;
15292 else if (strcmp (arg, "64") == 0)
15293 {
15294 mips_abi = N64_ABI;
15295 if (! support_64bit_objects())
15296 as_fatal (_("No compiled in support for 64 bit object file "
15297 "format"));
15298 }
15299 else if (strcmp (arg, "eabi") == 0)
15300 mips_abi = EABI_ABI;
15301 else
15302 {
15303 as_fatal (_("invalid abi -mabi=%s"), arg);
15304 return 0;
15305 }
15306 break;
15307
15308 case OPTION_M7000_HILO_FIX:
15309 mips_7000_hilo_fix = TRUE;
15310 break;
15311
15312 case OPTION_MNO_7000_HILO_FIX:
15313 mips_7000_hilo_fix = FALSE;
15314 break;
15315
15316 case OPTION_MDEBUG:
15317 mips_flag_mdebug = TRUE;
15318 break;
15319
15320 case OPTION_NO_MDEBUG:
15321 mips_flag_mdebug = FALSE;
15322 break;
15323
15324 case OPTION_PDR:
15325 mips_flag_pdr = TRUE;
15326 break;
15327
15328 case OPTION_NO_PDR:
15329 mips_flag_pdr = FALSE;
15330 break;
15331
15332 case OPTION_MVXWORKS_PIC:
15333 mips_pic = VXWORKS_PIC;
15334 break;
15335
15336 default:
15337 return 0;
15338 }
15339
15340 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15341
15342 return 1;
15343 }
15344 \f
15345 /* Set up globals to generate code for the ISA or processor
15346 described by INFO. */
15347
15348 static void
15349 mips_set_architecture (const struct mips_cpu_info *info)
15350 {
15351 if (info != 0)
15352 {
15353 file_mips_arch = info->cpu;
15354 mips_opts.arch = info->cpu;
15355 mips_opts.isa = info->isa;
15356 }
15357 }
15358
15359
15360 /* Likewise for tuning. */
15361
15362 static void
15363 mips_set_tune (const struct mips_cpu_info *info)
15364 {
15365 if (info != 0)
15366 mips_tune = info->cpu;
15367 }
15368
15369
15370 void
15371 mips_after_parse_args (void)
15372 {
15373 const struct mips_cpu_info *arch_info = 0;
15374 const struct mips_cpu_info *tune_info = 0;
15375
15376 /* GP relative stuff not working for PE */
15377 if (strncmp (TARGET_OS, "pe", 2) == 0)
15378 {
15379 if (g_switch_seen && g_switch_value != 0)
15380 as_bad (_("-G not supported in this configuration."));
15381 g_switch_value = 0;
15382 }
15383
15384 if (mips_abi == NO_ABI)
15385 mips_abi = MIPS_DEFAULT_ABI;
15386
15387 /* The following code determines the architecture and register size.
15388 Similar code was added to GCC 3.3 (see override_options() in
15389 config/mips/mips.c). The GAS and GCC code should be kept in sync
15390 as much as possible. */
15391
15392 if (mips_arch_string != 0)
15393 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15394
15395 if (file_mips_isa != ISA_UNKNOWN)
15396 {
15397 /* Handle -mipsN. At this point, file_mips_isa contains the
15398 ISA level specified by -mipsN, while arch_info->isa contains
15399 the -march selection (if any). */
15400 if (arch_info != 0)
15401 {
15402 /* -march takes precedence over -mipsN, since it is more descriptive.
15403 There's no harm in specifying both as long as the ISA levels
15404 are the same. */
15405 if (file_mips_isa != arch_info->isa)
15406 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
15407 mips_cpu_info_from_isa (file_mips_isa)->name,
15408 mips_cpu_info_from_isa (arch_info->isa)->name);
15409 }
15410 else
15411 arch_info = mips_cpu_info_from_isa (file_mips_isa);
15412 }
15413
15414 if (arch_info == 0)
15415 {
15416 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15417 gas_assert (arch_info);
15418 }
15419
15420 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15421 as_bad (_("-march=%s is not compatible with the selected ABI"),
15422 arch_info->name);
15423
15424 mips_set_architecture (arch_info);
15425
15426 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
15427 if (mips_tune_string != 0)
15428 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15429
15430 if (tune_info == 0)
15431 mips_set_tune (arch_info);
15432 else
15433 mips_set_tune (tune_info);
15434
15435 if (file_mips_gp32 >= 0)
15436 {
15437 /* The user specified the size of the integer registers. Make sure
15438 it agrees with the ABI and ISA. */
15439 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
15440 as_bad (_("-mgp64 used with a 32-bit processor"));
15441 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
15442 as_bad (_("-mgp32 used with a 64-bit ABI"));
15443 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
15444 as_bad (_("-mgp64 used with a 32-bit ABI"));
15445 }
15446 else
15447 {
15448 /* Infer the integer register size from the ABI and processor.
15449 Restrict ourselves to 32-bit registers if that's all the
15450 processor has, or if the ABI cannot handle 64-bit registers. */
15451 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
15452 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
15453 }
15454
15455 switch (file_mips_fp32)
15456 {
15457 default:
15458 case -1:
15459 /* No user specified float register size.
15460 ??? GAS treats single-float processors as though they had 64-bit
15461 float registers (although it complains when double-precision
15462 instructions are used). As things stand, saying they have 32-bit
15463 registers would lead to spurious "register must be even" messages.
15464 So here we assume float registers are never smaller than the
15465 integer ones. */
15466 if (file_mips_gp32 == 0)
15467 /* 64-bit integer registers implies 64-bit float registers. */
15468 file_mips_fp32 = 0;
15469 else if ((mips_opts.ase & FP64_ASES)
15470 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
15471 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
15472 file_mips_fp32 = 0;
15473 else
15474 /* 32-bit float registers. */
15475 file_mips_fp32 = 1;
15476 break;
15477
15478 /* The user specified the size of the float registers. Check if it
15479 agrees with the ABI and ISA. */
15480 case 0:
15481 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15482 as_bad (_("-mfp64 used with a 32-bit fpu"));
15483 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
15484 && !ISA_HAS_MXHC1 (mips_opts.isa))
15485 as_warn (_("-mfp64 used with a 32-bit ABI"));
15486 break;
15487 case 1:
15488 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15489 as_warn (_("-mfp32 used with a 64-bit ABI"));
15490 break;
15491 }
15492
15493 /* End of GCC-shared inference code. */
15494
15495 /* This flag is set when we have a 64-bit capable CPU but use only
15496 32-bit wide registers. Note that EABI does not use it. */
15497 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
15498 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
15499 || mips_abi == O32_ABI))
15500 mips_32bitmode = 1;
15501
15502 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
15503 as_bad (_("trap exception not supported at ISA 1"));
15504
15505 /* If the selected architecture includes support for ASEs, enable
15506 generation of code for them. */
15507 if (mips_opts.mips16 == -1)
15508 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
15509 if (mips_opts.micromips == -1)
15510 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
15511
15512 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
15513 ASEs from being selected implicitly. */
15514 if (file_mips_fp32 == 1)
15515 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
15516
15517 /* If the user didn't explicitly select or deselect a particular ASE,
15518 use the default setting for the CPU. */
15519 mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
15520
15521 file_mips_isa = mips_opts.isa;
15522 file_ase = mips_opts.ase;
15523 mips_opts.gp32 = file_mips_gp32;
15524 mips_opts.fp32 = file_mips_fp32;
15525 mips_opts.soft_float = file_mips_soft_float;
15526 mips_opts.single_float = file_mips_single_float;
15527
15528 mips_check_isa_supports_ases ();
15529
15530 if (mips_flag_mdebug < 0)
15531 mips_flag_mdebug = 0;
15532 }
15533 \f
15534 void
15535 mips_init_after_args (void)
15536 {
15537 /* initialize opcodes */
15538 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15539 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15540 }
15541
15542 long
15543 md_pcrel_from (fixS *fixP)
15544 {
15545 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15546 switch (fixP->fx_r_type)
15547 {
15548 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15549 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15550 /* Return the address of the delay slot. */
15551 return addr + 2;
15552
15553 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15554 case BFD_RELOC_MICROMIPS_JMP:
15555 case BFD_RELOC_16_PCREL_S2:
15556 case BFD_RELOC_MIPS_JMP:
15557 /* Return the address of the delay slot. */
15558 return addr + 4;
15559
15560 case BFD_RELOC_32_PCREL:
15561 return addr;
15562
15563 default:
15564 /* We have no relocation type for PC relative MIPS16 instructions. */
15565 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
15566 as_bad_where (fixP->fx_file, fixP->fx_line,
15567 _("PC relative MIPS16 instruction references a different section"));
15568 return addr;
15569 }
15570 }
15571
15572 /* This is called before the symbol table is processed. In order to
15573 work with gcc when using mips-tfile, we must keep all local labels.
15574 However, in other cases, we want to discard them. If we were
15575 called with -g, but we didn't see any debugging information, it may
15576 mean that gcc is smuggling debugging information through to
15577 mips-tfile, in which case we must generate all local labels. */
15578
15579 void
15580 mips_frob_file_before_adjust (void)
15581 {
15582 #ifndef NO_ECOFF_DEBUGGING
15583 if (ECOFF_DEBUGGING
15584 && mips_debug != 0
15585 && ! ecoff_debugging_seen)
15586 flag_keep_locals = 1;
15587 #endif
15588 }
15589
15590 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15591 the corresponding LO16 reloc. This is called before md_apply_fix and
15592 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15593 relocation operators.
15594
15595 For our purposes, a %lo() expression matches a %got() or %hi()
15596 expression if:
15597
15598 (a) it refers to the same symbol; and
15599 (b) the offset applied in the %lo() expression is no lower than
15600 the offset applied in the %got() or %hi().
15601
15602 (b) allows us to cope with code like:
15603
15604 lui $4,%hi(foo)
15605 lh $4,%lo(foo+2)($4)
15606
15607 ...which is legal on RELA targets, and has a well-defined behaviour
15608 if the user knows that adding 2 to "foo" will not induce a carry to
15609 the high 16 bits.
15610
15611 When several %lo()s match a particular %got() or %hi(), we use the
15612 following rules to distinguish them:
15613
15614 (1) %lo()s with smaller offsets are a better match than %lo()s with
15615 higher offsets.
15616
15617 (2) %lo()s with no matching %got() or %hi() are better than those
15618 that already have a matching %got() or %hi().
15619
15620 (3) later %lo()s are better than earlier %lo()s.
15621
15622 These rules are applied in order.
15623
15624 (1) means, among other things, that %lo()s with identical offsets are
15625 chosen if they exist.
15626
15627 (2) means that we won't associate several high-part relocations with
15628 the same low-part relocation unless there's no alternative. Having
15629 several high parts for the same low part is a GNU extension; this rule
15630 allows careful users to avoid it.
15631
15632 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15633 with the last high-part relocation being at the front of the list.
15634 It therefore makes sense to choose the last matching low-part
15635 relocation, all other things being equal. It's also easier
15636 to code that way. */
15637
15638 void
15639 mips_frob_file (void)
15640 {
15641 struct mips_hi_fixup *l;
15642 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15643
15644 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15645 {
15646 segment_info_type *seginfo;
15647 bfd_boolean matched_lo_p;
15648 fixS **hi_pos, **lo_pos, **pos;
15649
15650 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15651
15652 /* If a GOT16 relocation turns out to be against a global symbol,
15653 there isn't supposed to be a matching LO. Ignore %gots against
15654 constants; we'll report an error for those later. */
15655 if (got16_reloc_p (l->fixp->fx_r_type)
15656 && !(l->fixp->fx_addsy
15657 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
15658 continue;
15659
15660 /* Check quickly whether the next fixup happens to be a matching %lo. */
15661 if (fixup_has_matching_lo_p (l->fixp))
15662 continue;
15663
15664 seginfo = seg_info (l->seg);
15665
15666 /* Set HI_POS to the position of this relocation in the chain.
15667 Set LO_POS to the position of the chosen low-part relocation.
15668 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15669 relocation that matches an immediately-preceding high-part
15670 relocation. */
15671 hi_pos = NULL;
15672 lo_pos = NULL;
15673 matched_lo_p = FALSE;
15674 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15675
15676 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15677 {
15678 if (*pos == l->fixp)
15679 hi_pos = pos;
15680
15681 if ((*pos)->fx_r_type == looking_for_rtype
15682 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15683 && (*pos)->fx_offset >= l->fixp->fx_offset
15684 && (lo_pos == NULL
15685 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15686 || (!matched_lo_p
15687 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15688 lo_pos = pos;
15689
15690 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15691 && fixup_has_matching_lo_p (*pos));
15692 }
15693
15694 /* If we found a match, remove the high-part relocation from its
15695 current position and insert it before the low-part relocation.
15696 Make the offsets match so that fixup_has_matching_lo_p()
15697 will return true.
15698
15699 We don't warn about unmatched high-part relocations since some
15700 versions of gcc have been known to emit dead "lui ...%hi(...)"
15701 instructions. */
15702 if (lo_pos != NULL)
15703 {
15704 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15705 if (l->fixp->fx_next != *lo_pos)
15706 {
15707 *hi_pos = l->fixp->fx_next;
15708 l->fixp->fx_next = *lo_pos;
15709 *lo_pos = l->fixp;
15710 }
15711 }
15712 }
15713 }
15714
15715 int
15716 mips_force_relocation (fixS *fixp)
15717 {
15718 if (generic_force_reloc (fixp))
15719 return 1;
15720
15721 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15722 so that the linker relaxation can update targets. */
15723 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15724 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15725 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15726 return 1;
15727
15728 return 0;
15729 }
15730
15731 /* Read the instruction associated with RELOC from BUF. */
15732
15733 static unsigned int
15734 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15735 {
15736 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15737 return read_compressed_insn (buf, 4);
15738 else
15739 return read_insn (buf);
15740 }
15741
15742 /* Write instruction INSN to BUF, given that it has been relocated
15743 by RELOC. */
15744
15745 static void
15746 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15747 unsigned long insn)
15748 {
15749 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15750 write_compressed_insn (buf, insn, 4);
15751 else
15752 write_insn (buf, insn);
15753 }
15754
15755 /* Apply a fixup to the object file. */
15756
15757 void
15758 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15759 {
15760 char *buf;
15761 unsigned long insn;
15762 reloc_howto_type *howto;
15763
15764 /* We ignore generic BFD relocations we don't know about. */
15765 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15766 if (! howto)
15767 return;
15768
15769 gas_assert (fixP->fx_size == 2
15770 || fixP->fx_size == 4
15771 || fixP->fx_r_type == BFD_RELOC_16
15772 || fixP->fx_r_type == BFD_RELOC_64
15773 || fixP->fx_r_type == BFD_RELOC_CTOR
15774 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15775 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15776 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15777 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15778 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
15779
15780 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15781
15782 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
15783 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15784 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15785 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
15786 || fixP->fx_r_type == BFD_RELOC_32_PCREL);
15787
15788 /* Don't treat parts of a composite relocation as done. There are two
15789 reasons for this:
15790
15791 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15792 should nevertheless be emitted if the first part is.
15793
15794 (2) In normal usage, composite relocations are never assembly-time
15795 constants. The easiest way of dealing with the pathological
15796 exceptions is to generate a relocation against STN_UNDEF and
15797 leave everything up to the linker. */
15798 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15799 fixP->fx_done = 1;
15800
15801 switch (fixP->fx_r_type)
15802 {
15803 case BFD_RELOC_MIPS_TLS_GD:
15804 case BFD_RELOC_MIPS_TLS_LDM:
15805 case BFD_RELOC_MIPS_TLS_DTPREL32:
15806 case BFD_RELOC_MIPS_TLS_DTPREL64:
15807 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15808 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15809 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15810 case BFD_RELOC_MIPS_TLS_TPREL32:
15811 case BFD_RELOC_MIPS_TLS_TPREL64:
15812 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15813 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15814 case BFD_RELOC_MICROMIPS_TLS_GD:
15815 case BFD_RELOC_MICROMIPS_TLS_LDM:
15816 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15817 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15818 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15819 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15820 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15821 case BFD_RELOC_MIPS16_TLS_GD:
15822 case BFD_RELOC_MIPS16_TLS_LDM:
15823 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15824 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15825 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15826 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15827 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15828 if (!fixP->fx_addsy)
15829 {
15830 as_bad_where (fixP->fx_file, fixP->fx_line,
15831 _("TLS relocation against a constant"));
15832 break;
15833 }
15834 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15835 /* fall through */
15836
15837 case BFD_RELOC_MIPS_JMP:
15838 case BFD_RELOC_MIPS_SHIFT5:
15839 case BFD_RELOC_MIPS_SHIFT6:
15840 case BFD_RELOC_MIPS_GOT_DISP:
15841 case BFD_RELOC_MIPS_GOT_PAGE:
15842 case BFD_RELOC_MIPS_GOT_OFST:
15843 case BFD_RELOC_MIPS_SUB:
15844 case BFD_RELOC_MIPS_INSERT_A:
15845 case BFD_RELOC_MIPS_INSERT_B:
15846 case BFD_RELOC_MIPS_DELETE:
15847 case BFD_RELOC_MIPS_HIGHEST:
15848 case BFD_RELOC_MIPS_HIGHER:
15849 case BFD_RELOC_MIPS_SCN_DISP:
15850 case BFD_RELOC_MIPS_REL16:
15851 case BFD_RELOC_MIPS_RELGOT:
15852 case BFD_RELOC_MIPS_JALR:
15853 case BFD_RELOC_HI16:
15854 case BFD_RELOC_HI16_S:
15855 case BFD_RELOC_LO16:
15856 case BFD_RELOC_GPREL16:
15857 case BFD_RELOC_MIPS_LITERAL:
15858 case BFD_RELOC_MIPS_CALL16:
15859 case BFD_RELOC_MIPS_GOT16:
15860 case BFD_RELOC_GPREL32:
15861 case BFD_RELOC_MIPS_GOT_HI16:
15862 case BFD_RELOC_MIPS_GOT_LO16:
15863 case BFD_RELOC_MIPS_CALL_HI16:
15864 case BFD_RELOC_MIPS_CALL_LO16:
15865 case BFD_RELOC_MIPS16_GPREL:
15866 case BFD_RELOC_MIPS16_GOT16:
15867 case BFD_RELOC_MIPS16_CALL16:
15868 case BFD_RELOC_MIPS16_HI16:
15869 case BFD_RELOC_MIPS16_HI16_S:
15870 case BFD_RELOC_MIPS16_LO16:
15871 case BFD_RELOC_MIPS16_JMP:
15872 case BFD_RELOC_MICROMIPS_JMP:
15873 case BFD_RELOC_MICROMIPS_GOT_DISP:
15874 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15875 case BFD_RELOC_MICROMIPS_GOT_OFST:
15876 case BFD_RELOC_MICROMIPS_SUB:
15877 case BFD_RELOC_MICROMIPS_HIGHEST:
15878 case BFD_RELOC_MICROMIPS_HIGHER:
15879 case BFD_RELOC_MICROMIPS_SCN_DISP:
15880 case BFD_RELOC_MICROMIPS_JALR:
15881 case BFD_RELOC_MICROMIPS_HI16:
15882 case BFD_RELOC_MICROMIPS_HI16_S:
15883 case BFD_RELOC_MICROMIPS_LO16:
15884 case BFD_RELOC_MICROMIPS_GPREL16:
15885 case BFD_RELOC_MICROMIPS_LITERAL:
15886 case BFD_RELOC_MICROMIPS_CALL16:
15887 case BFD_RELOC_MICROMIPS_GOT16:
15888 case BFD_RELOC_MICROMIPS_GOT_HI16:
15889 case BFD_RELOC_MICROMIPS_GOT_LO16:
15890 case BFD_RELOC_MICROMIPS_CALL_HI16:
15891 case BFD_RELOC_MICROMIPS_CALL_LO16:
15892 case BFD_RELOC_MIPS_EH:
15893 if (fixP->fx_done)
15894 {
15895 offsetT value;
15896
15897 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15898 {
15899 insn = read_reloc_insn (buf, fixP->fx_r_type);
15900 if (mips16_reloc_p (fixP->fx_r_type))
15901 insn |= mips16_immed_extend (value, 16);
15902 else
15903 insn |= (value & 0xffff);
15904 write_reloc_insn (buf, fixP->fx_r_type, insn);
15905 }
15906 else
15907 as_bad_where (fixP->fx_file, fixP->fx_line,
15908 _("Unsupported constant in relocation"));
15909 }
15910 break;
15911
15912 case BFD_RELOC_64:
15913 /* This is handled like BFD_RELOC_32, but we output a sign
15914 extended value if we are only 32 bits. */
15915 if (fixP->fx_done)
15916 {
15917 if (8 <= sizeof (valueT))
15918 md_number_to_chars (buf, *valP, 8);
15919 else
15920 {
15921 valueT hiv;
15922
15923 if ((*valP & 0x80000000) != 0)
15924 hiv = 0xffffffff;
15925 else
15926 hiv = 0;
15927 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15928 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15929 }
15930 }
15931 break;
15932
15933 case BFD_RELOC_RVA:
15934 case BFD_RELOC_32:
15935 case BFD_RELOC_32_PCREL:
15936 case BFD_RELOC_16:
15937 /* If we are deleting this reloc entry, we must fill in the
15938 value now. This can happen if we have a .word which is not
15939 resolved when it appears but is later defined. */
15940 if (fixP->fx_done)
15941 md_number_to_chars (buf, *valP, fixP->fx_size);
15942 break;
15943
15944 case BFD_RELOC_16_PCREL_S2:
15945 if ((*valP & 0x3) != 0)
15946 as_bad_where (fixP->fx_file, fixP->fx_line,
15947 _("Branch to misaligned address (%lx)"), (long) *valP);
15948
15949 /* We need to save the bits in the instruction since fixup_segment()
15950 might be deleting the relocation entry (i.e., a branch within
15951 the current segment). */
15952 if (! fixP->fx_done)
15953 break;
15954
15955 /* Update old instruction data. */
15956 insn = read_insn (buf);
15957
15958 if (*valP + 0x20000 <= 0x3ffff)
15959 {
15960 insn |= (*valP >> 2) & 0xffff;
15961 write_insn (buf, insn);
15962 }
15963 else if (mips_pic == NO_PIC
15964 && fixP->fx_done
15965 && fixP->fx_frag->fr_address >= text_section->vma
15966 && (fixP->fx_frag->fr_address
15967 < text_section->vma + bfd_get_section_size (text_section))
15968 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15969 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15970 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15971 {
15972 /* The branch offset is too large. If this is an
15973 unconditional branch, and we are not generating PIC code,
15974 we can convert it to an absolute jump instruction. */
15975 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15976 insn = 0x0c000000; /* jal */
15977 else
15978 insn = 0x08000000; /* j */
15979 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15980 fixP->fx_done = 0;
15981 fixP->fx_addsy = section_symbol (text_section);
15982 *valP += md_pcrel_from (fixP);
15983 write_insn (buf, insn);
15984 }
15985 else
15986 {
15987 /* If we got here, we have branch-relaxation disabled,
15988 and there's nothing we can do to fix this instruction
15989 without turning it into a longer sequence. */
15990 as_bad_where (fixP->fx_file, fixP->fx_line,
15991 _("Branch out of range"));
15992 }
15993 break;
15994
15995 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15996 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15997 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15998 /* We adjust the offset back to even. */
15999 if ((*valP & 0x1) != 0)
16000 --(*valP);
16001
16002 if (! fixP->fx_done)
16003 break;
16004
16005 /* Should never visit here, because we keep the relocation. */
16006 abort ();
16007 break;
16008
16009 case BFD_RELOC_VTABLE_INHERIT:
16010 fixP->fx_done = 0;
16011 if (fixP->fx_addsy
16012 && !S_IS_DEFINED (fixP->fx_addsy)
16013 && !S_IS_WEAK (fixP->fx_addsy))
16014 S_SET_WEAK (fixP->fx_addsy);
16015 break;
16016
16017 case BFD_RELOC_VTABLE_ENTRY:
16018 fixP->fx_done = 0;
16019 break;
16020
16021 default:
16022 abort ();
16023 }
16024
16025 /* Remember value for tc_gen_reloc. */
16026 fixP->fx_addnumber = *valP;
16027 }
16028
16029 static symbolS *
16030 get_symbol (void)
16031 {
16032 int c;
16033 char *name;
16034 symbolS *p;
16035
16036 name = input_line_pointer;
16037 c = get_symbol_end ();
16038 p = (symbolS *) symbol_find_or_make (name);
16039 *input_line_pointer = c;
16040 return p;
16041 }
16042
16043 /* Align the current frag to a given power of two. If a particular
16044 fill byte should be used, FILL points to an integer that contains
16045 that byte, otherwise FILL is null.
16046
16047 This function used to have the comment:
16048
16049 The MIPS assembler also automatically adjusts any preceding label.
16050
16051 The implementation therefore applied the adjustment to a maximum of
16052 one label. However, other label adjustments are applied to batches
16053 of labels, and adjusting just one caused problems when new labels
16054 were added for the sake of debugging or unwind information.
16055 We therefore adjust all preceding labels (given as LABELS) instead. */
16056
16057 static void
16058 mips_align (int to, int *fill, struct insn_label_list *labels)
16059 {
16060 mips_emit_delays ();
16061 mips_record_compressed_mode ();
16062 if (fill == NULL && subseg_text_p (now_seg))
16063 frag_align_code (to, 0);
16064 else
16065 frag_align (to, fill ? *fill : 0, 0);
16066 record_alignment (now_seg, to);
16067 mips_move_labels (labels, FALSE);
16068 }
16069
16070 /* Align to a given power of two. .align 0 turns off the automatic
16071 alignment used by the data creating pseudo-ops. */
16072
16073 static void
16074 s_align (int x ATTRIBUTE_UNUSED)
16075 {
16076 int temp, fill_value, *fill_ptr;
16077 long max_alignment = 28;
16078
16079 /* o Note that the assembler pulls down any immediately preceding label
16080 to the aligned address.
16081 o It's not documented but auto alignment is reinstated by
16082 a .align pseudo instruction.
16083 o Note also that after auto alignment is turned off the mips assembler
16084 issues an error on attempt to assemble an improperly aligned data item.
16085 We don't. */
16086
16087 temp = get_absolute_expression ();
16088 if (temp > max_alignment)
16089 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
16090 else if (temp < 0)
16091 {
16092 as_warn (_("Alignment negative: 0 assumed."));
16093 temp = 0;
16094 }
16095 if (*input_line_pointer == ',')
16096 {
16097 ++input_line_pointer;
16098 fill_value = get_absolute_expression ();
16099 fill_ptr = &fill_value;
16100 }
16101 else
16102 fill_ptr = 0;
16103 if (temp)
16104 {
16105 segment_info_type *si = seg_info (now_seg);
16106 struct insn_label_list *l = si->label_list;
16107 /* Auto alignment should be switched on by next section change. */
16108 auto_align = 1;
16109 mips_align (temp, fill_ptr, l);
16110 }
16111 else
16112 {
16113 auto_align = 0;
16114 }
16115
16116 demand_empty_rest_of_line ();
16117 }
16118
16119 static void
16120 s_change_sec (int sec)
16121 {
16122 segT seg;
16123
16124 /* The ELF backend needs to know that we are changing sections, so
16125 that .previous works correctly. We could do something like check
16126 for an obj_section_change_hook macro, but that might be confusing
16127 as it would not be appropriate to use it in the section changing
16128 functions in read.c, since obj-elf.c intercepts those. FIXME:
16129 This should be cleaner, somehow. */
16130 obj_elf_section_change_hook ();
16131
16132 mips_emit_delays ();
16133
16134 switch (sec)
16135 {
16136 case 't':
16137 s_text (0);
16138 break;
16139 case 'd':
16140 s_data (0);
16141 break;
16142 case 'b':
16143 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16144 demand_empty_rest_of_line ();
16145 break;
16146
16147 case 'r':
16148 seg = subseg_new (RDATA_SECTION_NAME,
16149 (subsegT) get_absolute_expression ());
16150 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16151 | SEC_READONLY | SEC_RELOC
16152 | SEC_DATA));
16153 if (strncmp (TARGET_OS, "elf", 3) != 0)
16154 record_alignment (seg, 4);
16155 demand_empty_rest_of_line ();
16156 break;
16157
16158 case 's':
16159 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16160 bfd_set_section_flags (stdoutput, seg,
16161 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16162 if (strncmp (TARGET_OS, "elf", 3) != 0)
16163 record_alignment (seg, 4);
16164 demand_empty_rest_of_line ();
16165 break;
16166
16167 case 'B':
16168 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16169 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16170 if (strncmp (TARGET_OS, "elf", 3) != 0)
16171 record_alignment (seg, 4);
16172 demand_empty_rest_of_line ();
16173 break;
16174 }
16175
16176 auto_align = 1;
16177 }
16178
16179 void
16180 s_change_section (int ignore ATTRIBUTE_UNUSED)
16181 {
16182 char *section_name;
16183 char c;
16184 char next_c = 0;
16185 int section_type;
16186 int section_flag;
16187 int section_entry_size;
16188 int section_alignment;
16189
16190 section_name = input_line_pointer;
16191 c = get_symbol_end ();
16192 if (c)
16193 next_c = *(input_line_pointer + 1);
16194
16195 /* Do we have .section Name<,"flags">? */
16196 if (c != ',' || (c == ',' && next_c == '"'))
16197 {
16198 /* just after name is now '\0'. */
16199 *input_line_pointer = c;
16200 input_line_pointer = section_name;
16201 obj_elf_section (ignore);
16202 return;
16203 }
16204 input_line_pointer++;
16205
16206 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16207 if (c == ',')
16208 section_type = get_absolute_expression ();
16209 else
16210 section_type = 0;
16211 if (*input_line_pointer++ == ',')
16212 section_flag = get_absolute_expression ();
16213 else
16214 section_flag = 0;
16215 if (*input_line_pointer++ == ',')
16216 section_entry_size = get_absolute_expression ();
16217 else
16218 section_entry_size = 0;
16219 if (*input_line_pointer++ == ',')
16220 section_alignment = get_absolute_expression ();
16221 else
16222 section_alignment = 0;
16223 /* FIXME: really ignore? */
16224 (void) section_alignment;
16225
16226 section_name = xstrdup (section_name);
16227
16228 /* When using the generic form of .section (as implemented by obj-elf.c),
16229 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16230 traditionally had to fall back on the more common @progbits instead.
16231
16232 There's nothing really harmful in this, since bfd will correct
16233 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16234 means that, for backwards compatibility, the special_section entries
16235 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16236
16237 Even so, we shouldn't force users of the MIPS .section syntax to
16238 incorrectly label the sections as SHT_PROGBITS. The best compromise
16239 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16240 generic type-checking code. */
16241 if (section_type == SHT_MIPS_DWARF)
16242 section_type = SHT_PROGBITS;
16243
16244 obj_elf_change_section (section_name, section_type, section_flag,
16245 section_entry_size, 0, 0, 0);
16246
16247 if (now_seg->name != section_name)
16248 free (section_name);
16249 }
16250
16251 void
16252 mips_enable_auto_align (void)
16253 {
16254 auto_align = 1;
16255 }
16256
16257 static void
16258 s_cons (int log_size)
16259 {
16260 segment_info_type *si = seg_info (now_seg);
16261 struct insn_label_list *l = si->label_list;
16262
16263 mips_emit_delays ();
16264 if (log_size > 0 && auto_align)
16265 mips_align (log_size, 0, l);
16266 cons (1 << log_size);
16267 mips_clear_insn_labels ();
16268 }
16269
16270 static void
16271 s_float_cons (int type)
16272 {
16273 segment_info_type *si = seg_info (now_seg);
16274 struct insn_label_list *l = si->label_list;
16275
16276 mips_emit_delays ();
16277
16278 if (auto_align)
16279 {
16280 if (type == 'd')
16281 mips_align (3, 0, l);
16282 else
16283 mips_align (2, 0, l);
16284 }
16285
16286 float_cons (type);
16287 mips_clear_insn_labels ();
16288 }
16289
16290 /* Handle .globl. We need to override it because on Irix 5 you are
16291 permitted to say
16292 .globl foo .text
16293 where foo is an undefined symbol, to mean that foo should be
16294 considered to be the address of a function. */
16295
16296 static void
16297 s_mips_globl (int x ATTRIBUTE_UNUSED)
16298 {
16299 char *name;
16300 int c;
16301 symbolS *symbolP;
16302 flagword flag;
16303
16304 do
16305 {
16306 name = input_line_pointer;
16307 c = get_symbol_end ();
16308 symbolP = symbol_find_or_make (name);
16309 S_SET_EXTERNAL (symbolP);
16310
16311 *input_line_pointer = c;
16312 SKIP_WHITESPACE ();
16313
16314 /* On Irix 5, every global symbol that is not explicitly labelled as
16315 being a function is apparently labelled as being an object. */
16316 flag = BSF_OBJECT;
16317
16318 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16319 && (*input_line_pointer != ','))
16320 {
16321 char *secname;
16322 asection *sec;
16323
16324 secname = input_line_pointer;
16325 c = get_symbol_end ();
16326 sec = bfd_get_section_by_name (stdoutput, secname);
16327 if (sec == NULL)
16328 as_bad (_("%s: no such section"), secname);
16329 *input_line_pointer = c;
16330
16331 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16332 flag = BSF_FUNCTION;
16333 }
16334
16335 symbol_get_bfdsym (symbolP)->flags |= flag;
16336
16337 c = *input_line_pointer;
16338 if (c == ',')
16339 {
16340 input_line_pointer++;
16341 SKIP_WHITESPACE ();
16342 if (is_end_of_line[(unsigned char) *input_line_pointer])
16343 c = '\n';
16344 }
16345 }
16346 while (c == ',');
16347
16348 demand_empty_rest_of_line ();
16349 }
16350
16351 static void
16352 s_option (int x ATTRIBUTE_UNUSED)
16353 {
16354 char *opt;
16355 char c;
16356
16357 opt = input_line_pointer;
16358 c = get_symbol_end ();
16359
16360 if (*opt == 'O')
16361 {
16362 /* FIXME: What does this mean? */
16363 }
16364 else if (strncmp (opt, "pic", 3) == 0)
16365 {
16366 int i;
16367
16368 i = atoi (opt + 3);
16369 if (i == 0)
16370 mips_pic = NO_PIC;
16371 else if (i == 2)
16372 {
16373 mips_pic = SVR4_PIC;
16374 mips_abicalls = TRUE;
16375 }
16376 else
16377 as_bad (_(".option pic%d not supported"), i);
16378
16379 if (mips_pic == SVR4_PIC)
16380 {
16381 if (g_switch_seen && g_switch_value != 0)
16382 as_warn (_("-G may not be used with SVR4 PIC code"));
16383 g_switch_value = 0;
16384 bfd_set_gp_size (stdoutput, 0);
16385 }
16386 }
16387 else
16388 as_warn (_("Unrecognized option \"%s\""), opt);
16389
16390 *input_line_pointer = c;
16391 demand_empty_rest_of_line ();
16392 }
16393
16394 /* This structure is used to hold a stack of .set values. */
16395
16396 struct mips_option_stack
16397 {
16398 struct mips_option_stack *next;
16399 struct mips_set_options options;
16400 };
16401
16402 static struct mips_option_stack *mips_opts_stack;
16403
16404 /* Handle the .set pseudo-op. */
16405
16406 static void
16407 s_mipsset (int x ATTRIBUTE_UNUSED)
16408 {
16409 char *name = input_line_pointer, ch;
16410 const struct mips_ase *ase;
16411
16412 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16413 ++input_line_pointer;
16414 ch = *input_line_pointer;
16415 *input_line_pointer = '\0';
16416
16417 if (strcmp (name, "reorder") == 0)
16418 {
16419 if (mips_opts.noreorder)
16420 end_noreorder ();
16421 }
16422 else if (strcmp (name, "noreorder") == 0)
16423 {
16424 if (!mips_opts.noreorder)
16425 start_noreorder ();
16426 }
16427 else if (strncmp (name, "at=", 3) == 0)
16428 {
16429 char *s = name + 3;
16430
16431 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16432 as_bad (_("Unrecognized register name `%s'"), s);
16433 }
16434 else if (strcmp (name, "at") == 0)
16435 {
16436 mips_opts.at = ATREG;
16437 }
16438 else if (strcmp (name, "noat") == 0)
16439 {
16440 mips_opts.at = ZERO;
16441 }
16442 else if (strcmp (name, "macro") == 0)
16443 {
16444 mips_opts.warn_about_macros = 0;
16445 }
16446 else if (strcmp (name, "nomacro") == 0)
16447 {
16448 if (mips_opts.noreorder == 0)
16449 as_bad (_("`noreorder' must be set before `nomacro'"));
16450 mips_opts.warn_about_macros = 1;
16451 }
16452 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16453 {
16454 mips_opts.nomove = 0;
16455 }
16456 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16457 {
16458 mips_opts.nomove = 1;
16459 }
16460 else if (strcmp (name, "bopt") == 0)
16461 {
16462 mips_opts.nobopt = 0;
16463 }
16464 else if (strcmp (name, "nobopt") == 0)
16465 {
16466 mips_opts.nobopt = 1;
16467 }
16468 else if (strcmp (name, "gp=default") == 0)
16469 mips_opts.gp32 = file_mips_gp32;
16470 else if (strcmp (name, "gp=32") == 0)
16471 mips_opts.gp32 = 1;
16472 else if (strcmp (name, "gp=64") == 0)
16473 {
16474 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
16475 as_warn (_("%s isa does not support 64-bit registers"),
16476 mips_cpu_info_from_isa (mips_opts.isa)->name);
16477 mips_opts.gp32 = 0;
16478 }
16479 else if (strcmp (name, "fp=default") == 0)
16480 mips_opts.fp32 = file_mips_fp32;
16481 else if (strcmp (name, "fp=32") == 0)
16482 mips_opts.fp32 = 1;
16483 else if (strcmp (name, "fp=64") == 0)
16484 {
16485 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
16486 as_warn (_("%s isa does not support 64-bit floating point registers"),
16487 mips_cpu_info_from_isa (mips_opts.isa)->name);
16488 mips_opts.fp32 = 0;
16489 }
16490 else if (strcmp (name, "softfloat") == 0)
16491 mips_opts.soft_float = 1;
16492 else if (strcmp (name, "hardfloat") == 0)
16493 mips_opts.soft_float = 0;
16494 else if (strcmp (name, "singlefloat") == 0)
16495 mips_opts.single_float = 1;
16496 else if (strcmp (name, "doublefloat") == 0)
16497 mips_opts.single_float = 0;
16498 else if (strcmp (name, "mips16") == 0
16499 || strcmp (name, "MIPS-16") == 0)
16500 {
16501 if (mips_opts.micromips == 1)
16502 as_fatal (_("`mips16' cannot be used with `micromips'"));
16503 mips_opts.mips16 = 1;
16504 }
16505 else if (strcmp (name, "nomips16") == 0
16506 || strcmp (name, "noMIPS-16") == 0)
16507 mips_opts.mips16 = 0;
16508 else if (strcmp (name, "micromips") == 0)
16509 {
16510 if (mips_opts.mips16 == 1)
16511 as_fatal (_("`micromips' cannot be used with `mips16'"));
16512 mips_opts.micromips = 1;
16513 }
16514 else if (strcmp (name, "nomicromips") == 0)
16515 mips_opts.micromips = 0;
16516 else if (name[0] == 'n'
16517 && name[1] == 'o'
16518 && (ase = mips_lookup_ase (name + 2)))
16519 mips_set_ase (ase, FALSE);
16520 else if ((ase = mips_lookup_ase (name)))
16521 mips_set_ase (ase, TRUE);
16522 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16523 {
16524 int reset = 0;
16525
16526 /* Permit the user to change the ISA and architecture on the fly.
16527 Needless to say, misuse can cause serious problems. */
16528 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16529 {
16530 reset = 1;
16531 mips_opts.isa = file_mips_isa;
16532 mips_opts.arch = file_mips_arch;
16533 }
16534 else if (strncmp (name, "arch=", 5) == 0)
16535 {
16536 const struct mips_cpu_info *p;
16537
16538 p = mips_parse_cpu("internal use", name + 5);
16539 if (!p)
16540 as_bad (_("unknown architecture %s"), name + 5);
16541 else
16542 {
16543 mips_opts.arch = p->cpu;
16544 mips_opts.isa = p->isa;
16545 }
16546 }
16547 else if (strncmp (name, "mips", 4) == 0)
16548 {
16549 const struct mips_cpu_info *p;
16550
16551 p = mips_parse_cpu("internal use", name);
16552 if (!p)
16553 as_bad (_("unknown ISA level %s"), name + 4);
16554 else
16555 {
16556 mips_opts.arch = p->cpu;
16557 mips_opts.isa = p->isa;
16558 }
16559 }
16560 else
16561 as_bad (_("unknown ISA or architecture %s"), name);
16562
16563 switch (mips_opts.isa)
16564 {
16565 case 0:
16566 break;
16567 case ISA_MIPS1:
16568 case ISA_MIPS2:
16569 case ISA_MIPS32:
16570 case ISA_MIPS32R2:
16571 mips_opts.gp32 = 1;
16572 mips_opts.fp32 = 1;
16573 break;
16574 case ISA_MIPS3:
16575 case ISA_MIPS4:
16576 case ISA_MIPS5:
16577 case ISA_MIPS64:
16578 case ISA_MIPS64R2:
16579 mips_opts.gp32 = 0;
16580 if (mips_opts.arch == CPU_R5900)
16581 {
16582 mips_opts.fp32 = 1;
16583 }
16584 else
16585 {
16586 mips_opts.fp32 = 0;
16587 }
16588 break;
16589 default:
16590 as_bad (_("unknown ISA level %s"), name + 4);
16591 break;
16592 }
16593 if (reset)
16594 {
16595 mips_opts.gp32 = file_mips_gp32;
16596 mips_opts.fp32 = file_mips_fp32;
16597 }
16598 }
16599 else if (strcmp (name, "autoextend") == 0)
16600 mips_opts.noautoextend = 0;
16601 else if (strcmp (name, "noautoextend") == 0)
16602 mips_opts.noautoextend = 1;
16603 else if (strcmp (name, "push") == 0)
16604 {
16605 struct mips_option_stack *s;
16606
16607 s = (struct mips_option_stack *) xmalloc (sizeof *s);
16608 s->next = mips_opts_stack;
16609 s->options = mips_opts;
16610 mips_opts_stack = s;
16611 }
16612 else if (strcmp (name, "pop") == 0)
16613 {
16614 struct mips_option_stack *s;
16615
16616 s = mips_opts_stack;
16617 if (s == NULL)
16618 as_bad (_(".set pop with no .set push"));
16619 else
16620 {
16621 /* If we're changing the reorder mode we need to handle
16622 delay slots correctly. */
16623 if (s->options.noreorder && ! mips_opts.noreorder)
16624 start_noreorder ();
16625 else if (! s->options.noreorder && mips_opts.noreorder)
16626 end_noreorder ();
16627
16628 mips_opts = s->options;
16629 mips_opts_stack = s->next;
16630 free (s);
16631 }
16632 }
16633 else if (strcmp (name, "sym32") == 0)
16634 mips_opts.sym32 = TRUE;
16635 else if (strcmp (name, "nosym32") == 0)
16636 mips_opts.sym32 = FALSE;
16637 else if (strchr (name, ','))
16638 {
16639 /* Generic ".set" directive; use the generic handler. */
16640 *input_line_pointer = ch;
16641 input_line_pointer = name;
16642 s_set (0);
16643 return;
16644 }
16645 else
16646 {
16647 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
16648 }
16649 mips_check_isa_supports_ases ();
16650 *input_line_pointer = ch;
16651 demand_empty_rest_of_line ();
16652 }
16653
16654 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16655 .option pic2. It means to generate SVR4 PIC calls. */
16656
16657 static void
16658 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16659 {
16660 mips_pic = SVR4_PIC;
16661 mips_abicalls = TRUE;
16662
16663 if (g_switch_seen && g_switch_value != 0)
16664 as_warn (_("-G may not be used with SVR4 PIC code"));
16665 g_switch_value = 0;
16666
16667 bfd_set_gp_size (stdoutput, 0);
16668 demand_empty_rest_of_line ();
16669 }
16670
16671 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16672 PIC code. It sets the $gp register for the function based on the
16673 function address, which is in the register named in the argument.
16674 This uses a relocation against _gp_disp, which is handled specially
16675 by the linker. The result is:
16676 lui $gp,%hi(_gp_disp)
16677 addiu $gp,$gp,%lo(_gp_disp)
16678 addu $gp,$gp,.cpload argument
16679 The .cpload argument is normally $25 == $t9.
16680
16681 The -mno-shared option changes this to:
16682 lui $gp,%hi(__gnu_local_gp)
16683 addiu $gp,$gp,%lo(__gnu_local_gp)
16684 and the argument is ignored. This saves an instruction, but the
16685 resulting code is not position independent; it uses an absolute
16686 address for __gnu_local_gp. Thus code assembled with -mno-shared
16687 can go into an ordinary executable, but not into a shared library. */
16688
16689 static void
16690 s_cpload (int ignore ATTRIBUTE_UNUSED)
16691 {
16692 expressionS ex;
16693 int reg;
16694 int in_shared;
16695
16696 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16697 .cpload is ignored. */
16698 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16699 {
16700 s_ignore (0);
16701 return;
16702 }
16703
16704 if (mips_opts.mips16)
16705 {
16706 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16707 ignore_rest_of_line ();
16708 return;
16709 }
16710
16711 /* .cpload should be in a .set noreorder section. */
16712 if (mips_opts.noreorder == 0)
16713 as_warn (_(".cpload not in noreorder section"));
16714
16715 reg = tc_get_register (0);
16716
16717 /* If we need to produce a 64-bit address, we are better off using
16718 the default instruction sequence. */
16719 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16720
16721 ex.X_op = O_symbol;
16722 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16723 "__gnu_local_gp");
16724 ex.X_op_symbol = NULL;
16725 ex.X_add_number = 0;
16726
16727 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16728 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16729
16730 mips_mark_labels ();
16731 mips_assembling_insn = TRUE;
16732
16733 macro_start ();
16734 macro_build_lui (&ex, mips_gp_register);
16735 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16736 mips_gp_register, BFD_RELOC_LO16);
16737 if (in_shared)
16738 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16739 mips_gp_register, reg);
16740 macro_end ();
16741
16742 mips_assembling_insn = FALSE;
16743 demand_empty_rest_of_line ();
16744 }
16745
16746 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16747 .cpsetup $reg1, offset|$reg2, label
16748
16749 If offset is given, this results in:
16750 sd $gp, offset($sp)
16751 lui $gp, %hi(%neg(%gp_rel(label)))
16752 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16753 daddu $gp, $gp, $reg1
16754
16755 If $reg2 is given, this results in:
16756 daddu $reg2, $gp, $0
16757 lui $gp, %hi(%neg(%gp_rel(label)))
16758 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16759 daddu $gp, $gp, $reg1
16760 $reg1 is normally $25 == $t9.
16761
16762 The -mno-shared option replaces the last three instructions with
16763 lui $gp,%hi(_gp)
16764 addiu $gp,$gp,%lo(_gp) */
16765
16766 static void
16767 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16768 {
16769 expressionS ex_off;
16770 expressionS ex_sym;
16771 int reg1;
16772
16773 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16774 We also need NewABI support. */
16775 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16776 {
16777 s_ignore (0);
16778 return;
16779 }
16780
16781 if (mips_opts.mips16)
16782 {
16783 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16784 ignore_rest_of_line ();
16785 return;
16786 }
16787
16788 reg1 = tc_get_register (0);
16789 SKIP_WHITESPACE ();
16790 if (*input_line_pointer != ',')
16791 {
16792 as_bad (_("missing argument separator ',' for .cpsetup"));
16793 return;
16794 }
16795 else
16796 ++input_line_pointer;
16797 SKIP_WHITESPACE ();
16798 if (*input_line_pointer == '$')
16799 {
16800 mips_cpreturn_register = tc_get_register (0);
16801 mips_cpreturn_offset = -1;
16802 }
16803 else
16804 {
16805 mips_cpreturn_offset = get_absolute_expression ();
16806 mips_cpreturn_register = -1;
16807 }
16808 SKIP_WHITESPACE ();
16809 if (*input_line_pointer != ',')
16810 {
16811 as_bad (_("missing argument separator ',' for .cpsetup"));
16812 return;
16813 }
16814 else
16815 ++input_line_pointer;
16816 SKIP_WHITESPACE ();
16817 expression (&ex_sym);
16818
16819 mips_mark_labels ();
16820 mips_assembling_insn = TRUE;
16821
16822 macro_start ();
16823 if (mips_cpreturn_register == -1)
16824 {
16825 ex_off.X_op = O_constant;
16826 ex_off.X_add_symbol = NULL;
16827 ex_off.X_op_symbol = NULL;
16828 ex_off.X_add_number = mips_cpreturn_offset;
16829
16830 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16831 BFD_RELOC_LO16, SP);
16832 }
16833 else
16834 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
16835 mips_gp_register, 0);
16836
16837 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16838 {
16839 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16840 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16841 BFD_RELOC_HI16_S);
16842
16843 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16844 mips_gp_register, -1, BFD_RELOC_GPREL16,
16845 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16846
16847 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16848 mips_gp_register, reg1);
16849 }
16850 else
16851 {
16852 expressionS ex;
16853
16854 ex.X_op = O_symbol;
16855 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16856 ex.X_op_symbol = NULL;
16857 ex.X_add_number = 0;
16858
16859 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16860 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16861
16862 macro_build_lui (&ex, mips_gp_register);
16863 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16864 mips_gp_register, BFD_RELOC_LO16);
16865 }
16866
16867 macro_end ();
16868
16869 mips_assembling_insn = FALSE;
16870 demand_empty_rest_of_line ();
16871 }
16872
16873 static void
16874 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16875 {
16876 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16877 .cplocal is ignored. */
16878 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16879 {
16880 s_ignore (0);
16881 return;
16882 }
16883
16884 if (mips_opts.mips16)
16885 {
16886 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16887 ignore_rest_of_line ();
16888 return;
16889 }
16890
16891 mips_gp_register = tc_get_register (0);
16892 demand_empty_rest_of_line ();
16893 }
16894
16895 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16896 offset from $sp. The offset is remembered, and after making a PIC
16897 call $gp is restored from that location. */
16898
16899 static void
16900 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16901 {
16902 expressionS ex;
16903
16904 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16905 .cprestore is ignored. */
16906 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16907 {
16908 s_ignore (0);
16909 return;
16910 }
16911
16912 if (mips_opts.mips16)
16913 {
16914 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16915 ignore_rest_of_line ();
16916 return;
16917 }
16918
16919 mips_cprestore_offset = get_absolute_expression ();
16920 mips_cprestore_valid = 1;
16921
16922 ex.X_op = O_constant;
16923 ex.X_add_symbol = NULL;
16924 ex.X_op_symbol = NULL;
16925 ex.X_add_number = mips_cprestore_offset;
16926
16927 mips_mark_labels ();
16928 mips_assembling_insn = TRUE;
16929
16930 macro_start ();
16931 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16932 SP, HAVE_64BIT_ADDRESSES);
16933 macro_end ();
16934
16935 mips_assembling_insn = FALSE;
16936 demand_empty_rest_of_line ();
16937 }
16938
16939 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16940 was given in the preceding .cpsetup, it results in:
16941 ld $gp, offset($sp)
16942
16943 If a register $reg2 was given there, it results in:
16944 daddu $gp, $reg2, $0 */
16945
16946 static void
16947 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16948 {
16949 expressionS ex;
16950
16951 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16952 We also need NewABI support. */
16953 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16954 {
16955 s_ignore (0);
16956 return;
16957 }
16958
16959 if (mips_opts.mips16)
16960 {
16961 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16962 ignore_rest_of_line ();
16963 return;
16964 }
16965
16966 mips_mark_labels ();
16967 mips_assembling_insn = TRUE;
16968
16969 macro_start ();
16970 if (mips_cpreturn_register == -1)
16971 {
16972 ex.X_op = O_constant;
16973 ex.X_add_symbol = NULL;
16974 ex.X_op_symbol = NULL;
16975 ex.X_add_number = mips_cpreturn_offset;
16976
16977 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16978 }
16979 else
16980 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
16981 mips_cpreturn_register, 0);
16982 macro_end ();
16983
16984 mips_assembling_insn = FALSE;
16985 demand_empty_rest_of_line ();
16986 }
16987
16988 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16989 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16990 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16991 debug information or MIPS16 TLS. */
16992
16993 static void
16994 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16995 bfd_reloc_code_real_type rtype)
16996 {
16997 expressionS ex;
16998 char *p;
16999
17000 expression (&ex);
17001
17002 if (ex.X_op != O_symbol)
17003 {
17004 as_bad (_("Unsupported use of %s"), dirstr);
17005 ignore_rest_of_line ();
17006 }
17007
17008 p = frag_more (bytes);
17009 md_number_to_chars (p, 0, bytes);
17010 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
17011 demand_empty_rest_of_line ();
17012 mips_clear_insn_labels ();
17013 }
17014
17015 /* Handle .dtprelword. */
17016
17017 static void
17018 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17019 {
17020 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
17021 }
17022
17023 /* Handle .dtpreldword. */
17024
17025 static void
17026 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17027 {
17028 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17029 }
17030
17031 /* Handle .tprelword. */
17032
17033 static void
17034 s_tprelword (int ignore ATTRIBUTE_UNUSED)
17035 {
17036 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17037 }
17038
17039 /* Handle .tpreldword. */
17040
17041 static void
17042 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17043 {
17044 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
17045 }
17046
17047 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17048 code. It sets the offset to use in gp_rel relocations. */
17049
17050 static void
17051 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17052 {
17053 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17054 We also need NewABI support. */
17055 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17056 {
17057 s_ignore (0);
17058 return;
17059 }
17060
17061 mips_gprel_offset = get_absolute_expression ();
17062
17063 demand_empty_rest_of_line ();
17064 }
17065
17066 /* Handle the .gpword pseudo-op. This is used when generating PIC
17067 code. It generates a 32 bit GP relative reloc. */
17068
17069 static void
17070 s_gpword (int ignore ATTRIBUTE_UNUSED)
17071 {
17072 segment_info_type *si;
17073 struct insn_label_list *l;
17074 expressionS ex;
17075 char *p;
17076
17077 /* When not generating PIC code, this is treated as .word. */
17078 if (mips_pic != SVR4_PIC)
17079 {
17080 s_cons (2);
17081 return;
17082 }
17083
17084 si = seg_info (now_seg);
17085 l = si->label_list;
17086 mips_emit_delays ();
17087 if (auto_align)
17088 mips_align (2, 0, l);
17089
17090 expression (&ex);
17091 mips_clear_insn_labels ();
17092
17093 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17094 {
17095 as_bad (_("Unsupported use of .gpword"));
17096 ignore_rest_of_line ();
17097 }
17098
17099 p = frag_more (4);
17100 md_number_to_chars (p, 0, 4);
17101 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17102 BFD_RELOC_GPREL32);
17103
17104 demand_empty_rest_of_line ();
17105 }
17106
17107 static void
17108 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17109 {
17110 segment_info_type *si;
17111 struct insn_label_list *l;
17112 expressionS ex;
17113 char *p;
17114
17115 /* When not generating PIC code, this is treated as .dword. */
17116 if (mips_pic != SVR4_PIC)
17117 {
17118 s_cons (3);
17119 return;
17120 }
17121
17122 si = seg_info (now_seg);
17123 l = si->label_list;
17124 mips_emit_delays ();
17125 if (auto_align)
17126 mips_align (3, 0, l);
17127
17128 expression (&ex);
17129 mips_clear_insn_labels ();
17130
17131 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17132 {
17133 as_bad (_("Unsupported use of .gpdword"));
17134 ignore_rest_of_line ();
17135 }
17136
17137 p = frag_more (8);
17138 md_number_to_chars (p, 0, 8);
17139 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17140 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17141
17142 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17143 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17144 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17145
17146 demand_empty_rest_of_line ();
17147 }
17148
17149 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17150 tables. It generates a R_MIPS_EH reloc. */
17151
17152 static void
17153 s_ehword (int ignore ATTRIBUTE_UNUSED)
17154 {
17155 expressionS ex;
17156 char *p;
17157
17158 mips_emit_delays ();
17159
17160 expression (&ex);
17161 mips_clear_insn_labels ();
17162
17163 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17164 {
17165 as_bad (_("Unsupported use of .ehword"));
17166 ignore_rest_of_line ();
17167 }
17168
17169 p = frag_more (4);
17170 md_number_to_chars (p, 0, 4);
17171 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17172 BFD_RELOC_MIPS_EH);
17173
17174 demand_empty_rest_of_line ();
17175 }
17176
17177 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17178 tables in SVR4 PIC code. */
17179
17180 static void
17181 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17182 {
17183 int reg;
17184
17185 /* This is ignored when not generating SVR4 PIC code. */
17186 if (mips_pic != SVR4_PIC)
17187 {
17188 s_ignore (0);
17189 return;
17190 }
17191
17192 mips_mark_labels ();
17193 mips_assembling_insn = TRUE;
17194
17195 /* Add $gp to the register named as an argument. */
17196 macro_start ();
17197 reg = tc_get_register (0);
17198 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17199 macro_end ();
17200
17201 mips_assembling_insn = FALSE;
17202 demand_empty_rest_of_line ();
17203 }
17204
17205 /* Handle the .insn pseudo-op. This marks instruction labels in
17206 mips16/micromips mode. This permits the linker to handle them specially,
17207 such as generating jalx instructions when needed. We also make
17208 them odd for the duration of the assembly, in order to generate the
17209 right sort of code. We will make them even in the adjust_symtab
17210 routine, while leaving them marked. This is convenient for the
17211 debugger and the disassembler. The linker knows to make them odd
17212 again. */
17213
17214 static void
17215 s_insn (int ignore ATTRIBUTE_UNUSED)
17216 {
17217 mips_mark_labels ();
17218
17219 demand_empty_rest_of_line ();
17220 }
17221
17222 /* Handle a .stab[snd] directive. Ideally these directives would be
17223 implemented in a transparent way, so that removing them would not
17224 have any effect on the generated instructions. However, s_stab
17225 internally changes the section, so in practice we need to decide
17226 now whether the preceding label marks compressed code. We do not
17227 support changing the compression mode of a label after a .stab*
17228 directive, such as in:
17229
17230 foo:
17231 .stabs ...
17232 .set mips16
17233
17234 so the current mode wins. */
17235
17236 static void
17237 s_mips_stab (int type)
17238 {
17239 mips_mark_labels ();
17240 s_stab (type);
17241 }
17242
17243 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17244
17245 static void
17246 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17247 {
17248 char *name;
17249 int c;
17250 symbolS *symbolP;
17251 expressionS exp;
17252
17253 name = input_line_pointer;
17254 c = get_symbol_end ();
17255 symbolP = symbol_find_or_make (name);
17256 S_SET_WEAK (symbolP);
17257 *input_line_pointer = c;
17258
17259 SKIP_WHITESPACE ();
17260
17261 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17262 {
17263 if (S_IS_DEFINED (symbolP))
17264 {
17265 as_bad (_("ignoring attempt to redefine symbol %s"),
17266 S_GET_NAME (symbolP));
17267 ignore_rest_of_line ();
17268 return;
17269 }
17270
17271 if (*input_line_pointer == ',')
17272 {
17273 ++input_line_pointer;
17274 SKIP_WHITESPACE ();
17275 }
17276
17277 expression (&exp);
17278 if (exp.X_op != O_symbol)
17279 {
17280 as_bad (_("bad .weakext directive"));
17281 ignore_rest_of_line ();
17282 return;
17283 }
17284 symbol_set_value_expression (symbolP, &exp);
17285 }
17286
17287 demand_empty_rest_of_line ();
17288 }
17289
17290 /* Parse a register string into a number. Called from the ECOFF code
17291 to parse .frame. The argument is non-zero if this is the frame
17292 register, so that we can record it in mips_frame_reg. */
17293
17294 int
17295 tc_get_register (int frame)
17296 {
17297 unsigned int reg;
17298
17299 SKIP_WHITESPACE ();
17300 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17301 reg = 0;
17302 if (frame)
17303 {
17304 mips_frame_reg = reg != 0 ? reg : SP;
17305 mips_frame_reg_valid = 1;
17306 mips_cprestore_valid = 0;
17307 }
17308 return reg;
17309 }
17310
17311 valueT
17312 md_section_align (asection *seg, valueT addr)
17313 {
17314 int align = bfd_get_section_alignment (stdoutput, seg);
17315
17316 /* We don't need to align ELF sections to the full alignment.
17317 However, Irix 5 may prefer that we align them at least to a 16
17318 byte boundary. We don't bother to align the sections if we
17319 are targeted for an embedded system. */
17320 if (strncmp (TARGET_OS, "elf", 3) == 0)
17321 return addr;
17322 if (align > 4)
17323 align = 4;
17324
17325 return ((addr + (1 << align) - 1) & (-1 << align));
17326 }
17327
17328 /* Utility routine, called from above as well. If called while the
17329 input file is still being read, it's only an approximation. (For
17330 example, a symbol may later become defined which appeared to be
17331 undefined earlier.) */
17332
17333 static int
17334 nopic_need_relax (symbolS *sym, int before_relaxing)
17335 {
17336 if (sym == 0)
17337 return 0;
17338
17339 if (g_switch_value > 0)
17340 {
17341 const char *symname;
17342 int change;
17343
17344 /* Find out whether this symbol can be referenced off the $gp
17345 register. It can be if it is smaller than the -G size or if
17346 it is in the .sdata or .sbss section. Certain symbols can
17347 not be referenced off the $gp, although it appears as though
17348 they can. */
17349 symname = S_GET_NAME (sym);
17350 if (symname != (const char *) NULL
17351 && (strcmp (symname, "eprol") == 0
17352 || strcmp (symname, "etext") == 0
17353 || strcmp (symname, "_gp") == 0
17354 || strcmp (symname, "edata") == 0
17355 || strcmp (symname, "_fbss") == 0
17356 || strcmp (symname, "_fdata") == 0
17357 || strcmp (symname, "_ftext") == 0
17358 || strcmp (symname, "end") == 0
17359 || strcmp (symname, "_gp_disp") == 0))
17360 change = 1;
17361 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17362 && (0
17363 #ifndef NO_ECOFF_DEBUGGING
17364 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17365 && (symbol_get_obj (sym)->ecoff_extern_size
17366 <= g_switch_value))
17367 #endif
17368 /* We must defer this decision until after the whole
17369 file has been read, since there might be a .extern
17370 after the first use of this symbol. */
17371 || (before_relaxing
17372 #ifndef NO_ECOFF_DEBUGGING
17373 && symbol_get_obj (sym)->ecoff_extern_size == 0
17374 #endif
17375 && S_GET_VALUE (sym) == 0)
17376 || (S_GET_VALUE (sym) != 0
17377 && S_GET_VALUE (sym) <= g_switch_value)))
17378 change = 0;
17379 else
17380 {
17381 const char *segname;
17382
17383 segname = segment_name (S_GET_SEGMENT (sym));
17384 gas_assert (strcmp (segname, ".lit8") != 0
17385 && strcmp (segname, ".lit4") != 0);
17386 change = (strcmp (segname, ".sdata") != 0
17387 && strcmp (segname, ".sbss") != 0
17388 && strncmp (segname, ".sdata.", 7) != 0
17389 && strncmp (segname, ".sbss.", 6) != 0
17390 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17391 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17392 }
17393 return change;
17394 }
17395 else
17396 /* We are not optimizing for the $gp register. */
17397 return 1;
17398 }
17399
17400
17401 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17402
17403 static bfd_boolean
17404 pic_need_relax (symbolS *sym, asection *segtype)
17405 {
17406 asection *symsec;
17407
17408 /* Handle the case of a symbol equated to another symbol. */
17409 while (symbol_equated_reloc_p (sym))
17410 {
17411 symbolS *n;
17412
17413 /* It's possible to get a loop here in a badly written program. */
17414 n = symbol_get_value_expression (sym)->X_add_symbol;
17415 if (n == sym)
17416 break;
17417 sym = n;
17418 }
17419
17420 if (symbol_section_p (sym))
17421 return TRUE;
17422
17423 symsec = S_GET_SEGMENT (sym);
17424
17425 /* This must duplicate the test in adjust_reloc_syms. */
17426 return (!bfd_is_und_section (symsec)
17427 && !bfd_is_abs_section (symsec)
17428 && !bfd_is_com_section (symsec)
17429 && !s_is_linkonce (sym, segtype)
17430 /* A global or weak symbol is treated as external. */
17431 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17432 }
17433
17434
17435 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17436 extended opcode. SEC is the section the frag is in. */
17437
17438 static int
17439 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17440 {
17441 int type;
17442 const struct mips16_immed_operand *op;
17443 offsetT val;
17444 int mintiny, maxtiny;
17445 segT symsec;
17446 fragS *sym_frag;
17447
17448 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17449 return 0;
17450 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17451 return 1;
17452
17453 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17454 op = mips16_immed_operands;
17455 while (op->type != type)
17456 {
17457 ++op;
17458 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
17459 }
17460
17461 if (op->unsp)
17462 {
17463 if (type == '<' || type == '>' || type == '[' || type == ']')
17464 {
17465 mintiny = 1;
17466 maxtiny = 1 << op->nbits;
17467 }
17468 else
17469 {
17470 mintiny = 0;
17471 maxtiny = (1 << op->nbits) - 1;
17472 }
17473 }
17474 else
17475 {
17476 mintiny = - (1 << (op->nbits - 1));
17477 maxtiny = (1 << (op->nbits - 1)) - 1;
17478 }
17479
17480 sym_frag = symbol_get_frag (fragp->fr_symbol);
17481 val = S_GET_VALUE (fragp->fr_symbol);
17482 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17483
17484 if (op->pcrel)
17485 {
17486 addressT addr;
17487
17488 /* We won't have the section when we are called from
17489 mips_relax_frag. However, we will always have been called
17490 from md_estimate_size_before_relax first. If this is a
17491 branch to a different section, we mark it as such. If SEC is
17492 NULL, and the frag is not marked, then it must be a branch to
17493 the same section. */
17494 if (sec == NULL)
17495 {
17496 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17497 return 1;
17498 }
17499 else
17500 {
17501 /* Must have been called from md_estimate_size_before_relax. */
17502 if (symsec != sec)
17503 {
17504 fragp->fr_subtype =
17505 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17506
17507 /* FIXME: We should support this, and let the linker
17508 catch branches and loads that are out of range. */
17509 as_bad_where (fragp->fr_file, fragp->fr_line,
17510 _("unsupported PC relative reference to different section"));
17511
17512 return 1;
17513 }
17514 if (fragp != sym_frag && sym_frag->fr_address == 0)
17515 /* Assume non-extended on the first relaxation pass.
17516 The address we have calculated will be bogus if this is
17517 a forward branch to another frag, as the forward frag
17518 will have fr_address == 0. */
17519 return 0;
17520 }
17521
17522 /* In this case, we know for sure that the symbol fragment is in
17523 the same section. If the relax_marker of the symbol fragment
17524 differs from the relax_marker of this fragment, we have not
17525 yet adjusted the symbol fragment fr_address. We want to add
17526 in STRETCH in order to get a better estimate of the address.
17527 This particularly matters because of the shift bits. */
17528 if (stretch != 0
17529 && sym_frag->relax_marker != fragp->relax_marker)
17530 {
17531 fragS *f;
17532
17533 /* Adjust stretch for any alignment frag. Note that if have
17534 been expanding the earlier code, the symbol may be
17535 defined in what appears to be an earlier frag. FIXME:
17536 This doesn't handle the fr_subtype field, which specifies
17537 a maximum number of bytes to skip when doing an
17538 alignment. */
17539 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17540 {
17541 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17542 {
17543 if (stretch < 0)
17544 stretch = - ((- stretch)
17545 & ~ ((1 << (int) f->fr_offset) - 1));
17546 else
17547 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17548 if (stretch == 0)
17549 break;
17550 }
17551 }
17552 if (f != NULL)
17553 val += stretch;
17554 }
17555
17556 addr = fragp->fr_address + fragp->fr_fix;
17557
17558 /* The base address rules are complicated. The base address of
17559 a branch is the following instruction. The base address of a
17560 PC relative load or add is the instruction itself, but if it
17561 is in a delay slot (in which case it can not be extended) use
17562 the address of the instruction whose delay slot it is in. */
17563 if (type == 'p' || type == 'q')
17564 {
17565 addr += 2;
17566
17567 /* If we are currently assuming that this frag should be
17568 extended, then, the current address is two bytes
17569 higher. */
17570 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17571 addr += 2;
17572
17573 /* Ignore the low bit in the target, since it will be set
17574 for a text label. */
17575 if ((val & 1) != 0)
17576 --val;
17577 }
17578 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17579 addr -= 4;
17580 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17581 addr -= 2;
17582
17583 val -= addr & ~ ((1 << op->shift) - 1);
17584
17585 /* Branch offsets have an implicit 0 in the lowest bit. */
17586 if (type == 'p' || type == 'q')
17587 val /= 2;
17588
17589 /* If any of the shifted bits are set, we must use an extended
17590 opcode. If the address depends on the size of this
17591 instruction, this can lead to a loop, so we arrange to always
17592 use an extended opcode. We only check this when we are in
17593 the main relaxation loop, when SEC is NULL. */
17594 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
17595 {
17596 fragp->fr_subtype =
17597 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17598 return 1;
17599 }
17600
17601 /* If we are about to mark a frag as extended because the value
17602 is precisely maxtiny + 1, then there is a chance of an
17603 infinite loop as in the following code:
17604 la $4,foo
17605 .skip 1020
17606 .align 2
17607 foo:
17608 In this case when the la is extended, foo is 0x3fc bytes
17609 away, so the la can be shrunk, but then foo is 0x400 away, so
17610 the la must be extended. To avoid this loop, we mark the
17611 frag as extended if it was small, and is about to become
17612 extended with a value of maxtiny + 1. */
17613 if (val == ((maxtiny + 1) << op->shift)
17614 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
17615 && sec == NULL)
17616 {
17617 fragp->fr_subtype =
17618 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17619 return 1;
17620 }
17621 }
17622 else if (symsec != absolute_section && sec != NULL)
17623 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
17624
17625 if ((val & ((1 << op->shift) - 1)) != 0
17626 || val < (mintiny << op->shift)
17627 || val > (maxtiny << op->shift))
17628 return 1;
17629 else
17630 return 0;
17631 }
17632
17633 /* Compute the length of a branch sequence, and adjust the
17634 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17635 worst-case length is computed, with UPDATE being used to indicate
17636 whether an unconditional (-1), branch-likely (+1) or regular (0)
17637 branch is to be computed. */
17638 static int
17639 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17640 {
17641 bfd_boolean toofar;
17642 int length;
17643
17644 if (fragp
17645 && S_IS_DEFINED (fragp->fr_symbol)
17646 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17647 {
17648 addressT addr;
17649 offsetT val;
17650
17651 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17652
17653 addr = fragp->fr_address + fragp->fr_fix + 4;
17654
17655 val -= addr;
17656
17657 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17658 }
17659 else if (fragp)
17660 /* If the symbol is not defined or it's in a different segment,
17661 assume the user knows what's going on and emit a short
17662 branch. */
17663 toofar = FALSE;
17664 else
17665 toofar = TRUE;
17666
17667 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17668 fragp->fr_subtype
17669 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17670 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17671 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17672 RELAX_BRANCH_LINK (fragp->fr_subtype),
17673 toofar);
17674
17675 length = 4;
17676 if (toofar)
17677 {
17678 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17679 length += 8;
17680
17681 if (mips_pic != NO_PIC)
17682 {
17683 /* Additional space for PIC loading of target address. */
17684 length += 8;
17685 if (mips_opts.isa == ISA_MIPS1)
17686 /* Additional space for $at-stabilizing nop. */
17687 length += 4;
17688 }
17689
17690 /* If branch is conditional. */
17691 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17692 length += 8;
17693 }
17694
17695 return length;
17696 }
17697
17698 /* Compute the length of a branch sequence, and adjust the
17699 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17700 worst-case length is computed, with UPDATE being used to indicate
17701 whether an unconditional (-1), or regular (0) branch is to be
17702 computed. */
17703
17704 static int
17705 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17706 {
17707 bfd_boolean toofar;
17708 int length;
17709
17710 if (fragp
17711 && S_IS_DEFINED (fragp->fr_symbol)
17712 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17713 {
17714 addressT addr;
17715 offsetT val;
17716
17717 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17718 /* Ignore the low bit in the target, since it will be set
17719 for a text label. */
17720 if ((val & 1) != 0)
17721 --val;
17722
17723 addr = fragp->fr_address + fragp->fr_fix + 4;
17724
17725 val -= addr;
17726
17727 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17728 }
17729 else if (fragp)
17730 /* If the symbol is not defined or it's in a different segment,
17731 assume the user knows what's going on and emit a short
17732 branch. */
17733 toofar = FALSE;
17734 else
17735 toofar = TRUE;
17736
17737 if (fragp && update
17738 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17739 fragp->fr_subtype = (toofar
17740 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17741 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17742
17743 length = 4;
17744 if (toofar)
17745 {
17746 bfd_boolean compact_known = fragp != NULL;
17747 bfd_boolean compact = FALSE;
17748 bfd_boolean uncond;
17749
17750 if (compact_known)
17751 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17752 if (fragp)
17753 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17754 else
17755 uncond = update < 0;
17756
17757 /* If label is out of range, we turn branch <br>:
17758
17759 <br> label # 4 bytes
17760 0:
17761
17762 into:
17763
17764 j label # 4 bytes
17765 nop # 2 bytes if compact && !PIC
17766 0:
17767 */
17768 if (mips_pic == NO_PIC && (!compact_known || compact))
17769 length += 2;
17770
17771 /* If assembling PIC code, we further turn:
17772
17773 j label # 4 bytes
17774
17775 into:
17776
17777 lw/ld at, %got(label)(gp) # 4 bytes
17778 d/addiu at, %lo(label) # 4 bytes
17779 jr/c at # 2 bytes
17780 */
17781 if (mips_pic != NO_PIC)
17782 length += 6;
17783
17784 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17785
17786 <brneg> 0f # 4 bytes
17787 nop # 2 bytes if !compact
17788 */
17789 if (!uncond)
17790 length += (compact_known && compact) ? 4 : 6;
17791 }
17792
17793 return length;
17794 }
17795
17796 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17797 bit accordingly. */
17798
17799 static int
17800 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17801 {
17802 bfd_boolean toofar;
17803
17804 if (fragp
17805 && S_IS_DEFINED (fragp->fr_symbol)
17806 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17807 {
17808 addressT addr;
17809 offsetT val;
17810 int type;
17811
17812 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17813 /* Ignore the low bit in the target, since it will be set
17814 for a text label. */
17815 if ((val & 1) != 0)
17816 --val;
17817
17818 /* Assume this is a 2-byte branch. */
17819 addr = fragp->fr_address + fragp->fr_fix + 2;
17820
17821 /* We try to avoid the infinite loop by not adding 2 more bytes for
17822 long branches. */
17823
17824 val -= addr;
17825
17826 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17827 if (type == 'D')
17828 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17829 else if (type == 'E')
17830 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17831 else
17832 abort ();
17833 }
17834 else
17835 /* If the symbol is not defined or it's in a different segment,
17836 we emit a normal 32-bit branch. */
17837 toofar = TRUE;
17838
17839 if (fragp && update
17840 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17841 fragp->fr_subtype
17842 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17843 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17844
17845 if (toofar)
17846 return 4;
17847
17848 return 2;
17849 }
17850
17851 /* Estimate the size of a frag before relaxing. Unless this is the
17852 mips16, we are not really relaxing here, and the final size is
17853 encoded in the subtype information. For the mips16, we have to
17854 decide whether we are using an extended opcode or not. */
17855
17856 int
17857 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17858 {
17859 int change;
17860
17861 if (RELAX_BRANCH_P (fragp->fr_subtype))
17862 {
17863
17864 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17865
17866 return fragp->fr_var;
17867 }
17868
17869 if (RELAX_MIPS16_P (fragp->fr_subtype))
17870 /* We don't want to modify the EXTENDED bit here; it might get us
17871 into infinite loops. We change it only in mips_relax_frag(). */
17872 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17873
17874 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17875 {
17876 int length = 4;
17877
17878 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17879 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17880 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17881 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17882 fragp->fr_var = length;
17883
17884 return length;
17885 }
17886
17887 if (mips_pic == NO_PIC)
17888 change = nopic_need_relax (fragp->fr_symbol, 0);
17889 else if (mips_pic == SVR4_PIC)
17890 change = pic_need_relax (fragp->fr_symbol, segtype);
17891 else if (mips_pic == VXWORKS_PIC)
17892 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17893 change = 0;
17894 else
17895 abort ();
17896
17897 if (change)
17898 {
17899 fragp->fr_subtype |= RELAX_USE_SECOND;
17900 return -RELAX_FIRST (fragp->fr_subtype);
17901 }
17902 else
17903 return -RELAX_SECOND (fragp->fr_subtype);
17904 }
17905
17906 /* This is called to see whether a reloc against a defined symbol
17907 should be converted into a reloc against a section. */
17908
17909 int
17910 mips_fix_adjustable (fixS *fixp)
17911 {
17912 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17913 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17914 return 0;
17915
17916 if (fixp->fx_addsy == NULL)
17917 return 1;
17918
17919 /* If symbol SYM is in a mergeable section, relocations of the form
17920 SYM + 0 can usually be made section-relative. The mergeable data
17921 is then identified by the section offset rather than by the symbol.
17922
17923 However, if we're generating REL LO16 relocations, the offset is split
17924 between the LO16 and parterning high part relocation. The linker will
17925 need to recalculate the complete offset in order to correctly identify
17926 the merge data.
17927
17928 The linker has traditionally not looked for the parterning high part
17929 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17930 placed anywhere. Rather than break backwards compatibility by changing
17931 this, it seems better not to force the issue, and instead keep the
17932 original symbol. This will work with either linker behavior. */
17933 if ((lo16_reloc_p (fixp->fx_r_type)
17934 || reloc_needs_lo_p (fixp->fx_r_type))
17935 && HAVE_IN_PLACE_ADDENDS
17936 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17937 return 0;
17938
17939 /* There is no place to store an in-place offset for JALR relocations.
17940 Likewise an in-range offset of limited PC-relative relocations may
17941 overflow the in-place relocatable field if recalculated against the
17942 start address of the symbol's containing section. */
17943 if (HAVE_IN_PLACE_ADDENDS
17944 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17945 || jalr_reloc_p (fixp->fx_r_type)))
17946 return 0;
17947
17948 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17949 to a floating-point stub. The same is true for non-R_MIPS16_26
17950 relocations against MIPS16 functions; in this case, the stub becomes
17951 the function's canonical address.
17952
17953 Floating-point stubs are stored in unique .mips16.call.* or
17954 .mips16.fn.* sections. If a stub T for function F is in section S,
17955 the first relocation in section S must be against F; this is how the
17956 linker determines the target function. All relocations that might
17957 resolve to T must also be against F. We therefore have the following
17958 restrictions, which are given in an intentionally-redundant way:
17959
17960 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17961 symbols.
17962
17963 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17964 if that stub might be used.
17965
17966 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17967 symbols.
17968
17969 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17970 that stub might be used.
17971
17972 There is a further restriction:
17973
17974 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17975 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17976 targets with in-place addends; the relocation field cannot
17977 encode the low bit.
17978
17979 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17980 against a MIPS16 symbol. We deal with (5) by by not reducing any
17981 such relocations on REL targets.
17982
17983 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17984 relocation against some symbol R, no relocation against R may be
17985 reduced. (Note that this deals with (2) as well as (1) because
17986 relocations against global symbols will never be reduced on ELF
17987 targets.) This approach is a little simpler than trying to detect
17988 stub sections, and gives the "all or nothing" per-symbol consistency
17989 that we have for MIPS16 symbols. */
17990 if (fixp->fx_subsy == NULL
17991 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17992 || *symbol_get_tc (fixp->fx_addsy)
17993 || (HAVE_IN_PLACE_ADDENDS
17994 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17995 && jmp_reloc_p (fixp->fx_r_type))))
17996 return 0;
17997
17998 return 1;
17999 }
18000
18001 /* Translate internal representation of relocation info to BFD target
18002 format. */
18003
18004 arelent **
18005 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18006 {
18007 static arelent *retval[4];
18008 arelent *reloc;
18009 bfd_reloc_code_real_type code;
18010
18011 memset (retval, 0, sizeof(retval));
18012 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
18013 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
18014 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18015 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18016
18017 if (fixp->fx_pcrel)
18018 {
18019 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18020 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18021 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18022 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18023 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
18024
18025 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18026 Relocations want only the symbol offset. */
18027 reloc->addend = fixp->fx_addnumber + reloc->address;
18028 }
18029 else
18030 reloc->addend = fixp->fx_addnumber;
18031
18032 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18033 entry to be used in the relocation's section offset. */
18034 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18035 {
18036 reloc->address = reloc->addend;
18037 reloc->addend = 0;
18038 }
18039
18040 code = fixp->fx_r_type;
18041
18042 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18043 if (reloc->howto == NULL)
18044 {
18045 as_bad_where (fixp->fx_file, fixp->fx_line,
18046 _("Can not represent %s relocation in this object file format"),
18047 bfd_get_reloc_code_name (code));
18048 retval[0] = NULL;
18049 }
18050
18051 return retval;
18052 }
18053
18054 /* Relax a machine dependent frag. This returns the amount by which
18055 the current size of the frag should change. */
18056
18057 int
18058 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18059 {
18060 if (RELAX_BRANCH_P (fragp->fr_subtype))
18061 {
18062 offsetT old_var = fragp->fr_var;
18063
18064 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18065
18066 return fragp->fr_var - old_var;
18067 }
18068
18069 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18070 {
18071 offsetT old_var = fragp->fr_var;
18072 offsetT new_var = 4;
18073
18074 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18075 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18076 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18077 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18078 fragp->fr_var = new_var;
18079
18080 return new_var - old_var;
18081 }
18082
18083 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18084 return 0;
18085
18086 if (mips16_extended_frag (fragp, NULL, stretch))
18087 {
18088 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18089 return 0;
18090 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18091 return 2;
18092 }
18093 else
18094 {
18095 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18096 return 0;
18097 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18098 return -2;
18099 }
18100
18101 return 0;
18102 }
18103
18104 /* Convert a machine dependent frag. */
18105
18106 void
18107 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18108 {
18109 if (RELAX_BRANCH_P (fragp->fr_subtype))
18110 {
18111 char *buf;
18112 unsigned long insn;
18113 expressionS exp;
18114 fixS *fixp;
18115
18116 buf = fragp->fr_literal + fragp->fr_fix;
18117 insn = read_insn (buf);
18118
18119 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18120 {
18121 /* We generate a fixup instead of applying it right now
18122 because, if there are linker relaxations, we're going to
18123 need the relocations. */
18124 exp.X_op = O_symbol;
18125 exp.X_add_symbol = fragp->fr_symbol;
18126 exp.X_add_number = fragp->fr_offset;
18127
18128 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18129 BFD_RELOC_16_PCREL_S2);
18130 fixp->fx_file = fragp->fr_file;
18131 fixp->fx_line = fragp->fr_line;
18132
18133 buf = write_insn (buf, insn);
18134 }
18135 else
18136 {
18137 int i;
18138
18139 as_warn_where (fragp->fr_file, fragp->fr_line,
18140 _("Relaxed out-of-range branch into a jump"));
18141
18142 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18143 goto uncond;
18144
18145 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18146 {
18147 /* Reverse the branch. */
18148 switch ((insn >> 28) & 0xf)
18149 {
18150 case 4:
18151 /* bc[0-3][tf]l? instructions can have the condition
18152 reversed by tweaking a single TF bit, and their
18153 opcodes all have 0x4???????. */
18154 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18155 insn ^= 0x00010000;
18156 break;
18157
18158 case 0:
18159 /* bltz 0x04000000 bgez 0x04010000
18160 bltzal 0x04100000 bgezal 0x04110000 */
18161 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18162 insn ^= 0x00010000;
18163 break;
18164
18165 case 1:
18166 /* beq 0x10000000 bne 0x14000000
18167 blez 0x18000000 bgtz 0x1c000000 */
18168 insn ^= 0x04000000;
18169 break;
18170
18171 default:
18172 abort ();
18173 }
18174 }
18175
18176 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18177 {
18178 /* Clear the and-link bit. */
18179 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18180
18181 /* bltzal 0x04100000 bgezal 0x04110000
18182 bltzall 0x04120000 bgezall 0x04130000 */
18183 insn &= ~0x00100000;
18184 }
18185
18186 /* Branch over the branch (if the branch was likely) or the
18187 full jump (not likely case). Compute the offset from the
18188 current instruction to branch to. */
18189 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18190 i = 16;
18191 else
18192 {
18193 /* How many bytes in instructions we've already emitted? */
18194 i = buf - fragp->fr_literal - fragp->fr_fix;
18195 /* How many bytes in instructions from here to the end? */
18196 i = fragp->fr_var - i;
18197 }
18198 /* Convert to instruction count. */
18199 i >>= 2;
18200 /* Branch counts from the next instruction. */
18201 i--;
18202 insn |= i;
18203 /* Branch over the jump. */
18204 buf = write_insn (buf, insn);
18205
18206 /* nop */
18207 buf = write_insn (buf, 0);
18208
18209 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18210 {
18211 /* beql $0, $0, 2f */
18212 insn = 0x50000000;
18213 /* Compute the PC offset from the current instruction to
18214 the end of the variable frag. */
18215 /* How many bytes in instructions we've already emitted? */
18216 i = buf - fragp->fr_literal - fragp->fr_fix;
18217 /* How many bytes in instructions from here to the end? */
18218 i = fragp->fr_var - i;
18219 /* Convert to instruction count. */
18220 i >>= 2;
18221 /* Don't decrement i, because we want to branch over the
18222 delay slot. */
18223 insn |= i;
18224
18225 buf = write_insn (buf, insn);
18226 buf = write_insn (buf, 0);
18227 }
18228
18229 uncond:
18230 if (mips_pic == NO_PIC)
18231 {
18232 /* j or jal. */
18233 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18234 ? 0x0c000000 : 0x08000000);
18235 exp.X_op = O_symbol;
18236 exp.X_add_symbol = fragp->fr_symbol;
18237 exp.X_add_number = fragp->fr_offset;
18238
18239 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18240 FALSE, BFD_RELOC_MIPS_JMP);
18241 fixp->fx_file = fragp->fr_file;
18242 fixp->fx_line = fragp->fr_line;
18243
18244 buf = write_insn (buf, insn);
18245 }
18246 else
18247 {
18248 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18249
18250 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18251 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18252 insn |= at << OP_SH_RT;
18253 exp.X_op = O_symbol;
18254 exp.X_add_symbol = fragp->fr_symbol;
18255 exp.X_add_number = fragp->fr_offset;
18256
18257 if (fragp->fr_offset)
18258 {
18259 exp.X_add_symbol = make_expr_symbol (&exp);
18260 exp.X_add_number = 0;
18261 }
18262
18263 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18264 FALSE, BFD_RELOC_MIPS_GOT16);
18265 fixp->fx_file = fragp->fr_file;
18266 fixp->fx_line = fragp->fr_line;
18267
18268 buf = write_insn (buf, insn);
18269
18270 if (mips_opts.isa == ISA_MIPS1)
18271 /* nop */
18272 buf = write_insn (buf, 0);
18273
18274 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18275 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18276 insn |= at << OP_SH_RS | at << OP_SH_RT;
18277
18278 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18279 FALSE, BFD_RELOC_LO16);
18280 fixp->fx_file = fragp->fr_file;
18281 fixp->fx_line = fragp->fr_line;
18282
18283 buf = write_insn (buf, insn);
18284
18285 /* j(al)r $at. */
18286 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18287 insn = 0x0000f809;
18288 else
18289 insn = 0x00000008;
18290 insn |= at << OP_SH_RS;
18291
18292 buf = write_insn (buf, insn);
18293 }
18294 }
18295
18296 fragp->fr_fix += fragp->fr_var;
18297 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18298 return;
18299 }
18300
18301 /* Relax microMIPS branches. */
18302 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18303 {
18304 char *buf = fragp->fr_literal + fragp->fr_fix;
18305 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18306 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18307 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18308 bfd_boolean short_ds;
18309 unsigned long insn;
18310 expressionS exp;
18311 fixS *fixp;
18312
18313 exp.X_op = O_symbol;
18314 exp.X_add_symbol = fragp->fr_symbol;
18315 exp.X_add_number = fragp->fr_offset;
18316
18317 fragp->fr_fix += fragp->fr_var;
18318
18319 /* Handle 16-bit branches that fit or are forced to fit. */
18320 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18321 {
18322 /* We generate a fixup instead of applying it right now,
18323 because if there is linker relaxation, we're going to
18324 need the relocations. */
18325 if (type == 'D')
18326 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18327 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18328 else if (type == 'E')
18329 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18330 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18331 else
18332 abort ();
18333
18334 fixp->fx_file = fragp->fr_file;
18335 fixp->fx_line = fragp->fr_line;
18336
18337 /* These relocations can have an addend that won't fit in
18338 2 octets. */
18339 fixp->fx_no_overflow = 1;
18340
18341 return;
18342 }
18343
18344 /* Handle 32-bit branches that fit or are forced to fit. */
18345 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18346 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18347 {
18348 /* We generate a fixup instead of applying it right now,
18349 because if there is linker relaxation, we're going to
18350 need the relocations. */
18351 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18352 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18353 fixp->fx_file = fragp->fr_file;
18354 fixp->fx_line = fragp->fr_line;
18355
18356 if (type == 0)
18357 return;
18358 }
18359
18360 /* Relax 16-bit branches to 32-bit branches. */
18361 if (type != 0)
18362 {
18363 insn = read_compressed_insn (buf, 2);
18364
18365 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18366 insn = 0x94000000; /* beq */
18367 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18368 {
18369 unsigned long regno;
18370
18371 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18372 regno = micromips_to_32_reg_d_map [regno];
18373 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18374 insn |= regno << MICROMIPSOP_SH_RS;
18375 }
18376 else
18377 abort ();
18378
18379 /* Nothing else to do, just write it out. */
18380 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18381 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18382 {
18383 buf = write_compressed_insn (buf, insn, 4);
18384 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18385 return;
18386 }
18387 }
18388 else
18389 insn = read_compressed_insn (buf, 4);
18390
18391 /* Relax 32-bit branches to a sequence of instructions. */
18392 as_warn_where (fragp->fr_file, fragp->fr_line,
18393 _("Relaxed out-of-range branch into a jump"));
18394
18395 /* Set the short-delay-slot bit. */
18396 short_ds = al && (insn & 0x02000000) != 0;
18397
18398 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18399 {
18400 symbolS *l;
18401
18402 /* Reverse the branch. */
18403 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18404 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18405 insn ^= 0x20000000;
18406 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18407 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18408 || (insn & 0xffe00000) == 0x40800000 /* blez */
18409 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18410 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18411 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18412 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18413 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18414 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18415 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18416 insn ^= 0x00400000;
18417 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18418 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18419 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18420 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18421 insn ^= 0x00200000;
18422 else
18423 abort ();
18424
18425 if (al)
18426 {
18427 /* Clear the and-link and short-delay-slot bits. */
18428 gas_assert ((insn & 0xfda00000) == 0x40200000);
18429
18430 /* bltzal 0x40200000 bgezal 0x40600000 */
18431 /* bltzals 0x42200000 bgezals 0x42600000 */
18432 insn &= ~0x02200000;
18433 }
18434
18435 /* Make a label at the end for use with the branch. */
18436 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18437 micromips_label_inc ();
18438 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18439
18440 /* Refer to it. */
18441 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18442 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18443 fixp->fx_file = fragp->fr_file;
18444 fixp->fx_line = fragp->fr_line;
18445
18446 /* Branch over the jump. */
18447 buf = write_compressed_insn (buf, insn, 4);
18448 if (!compact)
18449 /* nop */
18450 buf = write_compressed_insn (buf, 0x0c00, 2);
18451 }
18452
18453 if (mips_pic == NO_PIC)
18454 {
18455 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
18456
18457 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18458 insn = al ? jal : 0xd4000000;
18459
18460 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18461 BFD_RELOC_MICROMIPS_JMP);
18462 fixp->fx_file = fragp->fr_file;
18463 fixp->fx_line = fragp->fr_line;
18464
18465 buf = write_compressed_insn (buf, insn, 4);
18466 if (compact)
18467 /* nop */
18468 buf = write_compressed_insn (buf, 0x0c00, 2);
18469 }
18470 else
18471 {
18472 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18473 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18474 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
18475
18476 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18477 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18478 insn |= at << MICROMIPSOP_SH_RT;
18479
18480 if (exp.X_add_number)
18481 {
18482 exp.X_add_symbol = make_expr_symbol (&exp);
18483 exp.X_add_number = 0;
18484 }
18485
18486 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18487 BFD_RELOC_MICROMIPS_GOT16);
18488 fixp->fx_file = fragp->fr_file;
18489 fixp->fx_line = fragp->fr_line;
18490
18491 buf = write_compressed_insn (buf, insn, 4);
18492
18493 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18494 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18495 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18496
18497 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18498 BFD_RELOC_MICROMIPS_LO16);
18499 fixp->fx_file = fragp->fr_file;
18500 fixp->fx_line = fragp->fr_line;
18501
18502 buf = write_compressed_insn (buf, insn, 4);
18503
18504 /* jr/jrc/jalr/jalrs $at */
18505 insn = al ? jalr : jr;
18506 insn |= at << MICROMIPSOP_SH_MJ;
18507
18508 buf = write_compressed_insn (buf, insn, 2);
18509 }
18510
18511 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18512 return;
18513 }
18514
18515 if (RELAX_MIPS16_P (fragp->fr_subtype))
18516 {
18517 int type;
18518 const struct mips16_immed_operand *op;
18519 offsetT val;
18520 char *buf;
18521 unsigned int user_length, length;
18522 unsigned long insn;
18523 bfd_boolean ext;
18524
18525 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18526 op = mips16_immed_operands;
18527 while (op->type != type)
18528 ++op;
18529
18530 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18531 val = resolve_symbol_value (fragp->fr_symbol);
18532 if (op->pcrel)
18533 {
18534 addressT addr;
18535
18536 addr = fragp->fr_address + fragp->fr_fix;
18537
18538 /* The rules for the base address of a PC relative reloc are
18539 complicated; see mips16_extended_frag. */
18540 if (type == 'p' || type == 'q')
18541 {
18542 addr += 2;
18543 if (ext)
18544 addr += 2;
18545 /* Ignore the low bit in the target, since it will be
18546 set for a text label. */
18547 if ((val & 1) != 0)
18548 --val;
18549 }
18550 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18551 addr -= 4;
18552 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18553 addr -= 2;
18554
18555 addr &= ~ (addressT) ((1 << op->shift) - 1);
18556 val -= addr;
18557
18558 /* Make sure the section winds up with the alignment we have
18559 assumed. */
18560 if (op->shift > 0)
18561 record_alignment (asec, op->shift);
18562 }
18563
18564 if (ext
18565 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18566 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18567 as_warn_where (fragp->fr_file, fragp->fr_line,
18568 _("extended instruction in delay slot"));
18569
18570 buf = fragp->fr_literal + fragp->fr_fix;
18571
18572 insn = read_compressed_insn (buf, 2);
18573 if (ext)
18574 insn |= MIPS16_EXTEND;
18575
18576 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18577 user_length = 4;
18578 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18579 user_length = 2;
18580 else
18581 user_length = 0;
18582
18583 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18584 BFD_RELOC_UNUSED, val, user_length, &insn);
18585
18586 length = (ext ? 4 : 2);
18587 gas_assert (mips16_opcode_length (insn) == length);
18588 write_compressed_insn (buf, insn, length);
18589 fragp->fr_fix += length;
18590 }
18591 else
18592 {
18593 relax_substateT subtype = fragp->fr_subtype;
18594 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18595 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18596 int first, second;
18597 fixS *fixp;
18598
18599 first = RELAX_FIRST (subtype);
18600 second = RELAX_SECOND (subtype);
18601 fixp = (fixS *) fragp->fr_opcode;
18602
18603 /* If the delay slot chosen does not match the size of the instruction,
18604 then emit a warning. */
18605 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18606 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18607 {
18608 relax_substateT s;
18609 const char *msg;
18610
18611 s = subtype & (RELAX_DELAY_SLOT_16BIT
18612 | RELAX_DELAY_SLOT_SIZE_FIRST
18613 | RELAX_DELAY_SLOT_SIZE_SECOND);
18614 msg = macro_warning (s);
18615 if (msg != NULL)
18616 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18617 subtype &= ~s;
18618 }
18619
18620 /* Possibly emit a warning if we've chosen the longer option. */
18621 if (use_second == second_longer)
18622 {
18623 relax_substateT s;
18624 const char *msg;
18625
18626 s = (subtype
18627 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18628 msg = macro_warning (s);
18629 if (msg != NULL)
18630 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18631 subtype &= ~s;
18632 }
18633
18634 /* Go through all the fixups for the first sequence. Disable them
18635 (by marking them as done) if we're going to use the second
18636 sequence instead. */
18637 while (fixp
18638 && fixp->fx_frag == fragp
18639 && fixp->fx_where < fragp->fr_fix - second)
18640 {
18641 if (subtype & RELAX_USE_SECOND)
18642 fixp->fx_done = 1;
18643 fixp = fixp->fx_next;
18644 }
18645
18646 /* Go through the fixups for the second sequence. Disable them if
18647 we're going to use the first sequence, otherwise adjust their
18648 addresses to account for the relaxation. */
18649 while (fixp && fixp->fx_frag == fragp)
18650 {
18651 if (subtype & RELAX_USE_SECOND)
18652 fixp->fx_where -= first;
18653 else
18654 fixp->fx_done = 1;
18655 fixp = fixp->fx_next;
18656 }
18657
18658 /* Now modify the frag contents. */
18659 if (subtype & RELAX_USE_SECOND)
18660 {
18661 char *start;
18662
18663 start = fragp->fr_literal + fragp->fr_fix - first - second;
18664 memmove (start, start + first, second);
18665 fragp->fr_fix -= first;
18666 }
18667 else
18668 fragp->fr_fix -= second;
18669 }
18670 }
18671
18672 /* This function is called after the relocs have been generated.
18673 We've been storing mips16 text labels as odd. Here we convert them
18674 back to even for the convenience of the debugger. */
18675
18676 void
18677 mips_frob_file_after_relocs (void)
18678 {
18679 asymbol **syms;
18680 unsigned int count, i;
18681
18682 syms = bfd_get_outsymbols (stdoutput);
18683 count = bfd_get_symcount (stdoutput);
18684 for (i = 0; i < count; i++, syms++)
18685 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18686 && ((*syms)->value & 1) != 0)
18687 {
18688 (*syms)->value &= ~1;
18689 /* If the symbol has an odd size, it was probably computed
18690 incorrectly, so adjust that as well. */
18691 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18692 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18693 }
18694 }
18695
18696 /* This function is called whenever a label is defined, including fake
18697 labels instantiated off the dot special symbol. It is used when
18698 handling branch delays; if a branch has a label, we assume we cannot
18699 move it. This also bumps the value of the symbol by 1 in compressed
18700 code. */
18701
18702 static void
18703 mips_record_label (symbolS *sym)
18704 {
18705 segment_info_type *si = seg_info (now_seg);
18706 struct insn_label_list *l;
18707
18708 if (free_insn_labels == NULL)
18709 l = (struct insn_label_list *) xmalloc (sizeof *l);
18710 else
18711 {
18712 l = free_insn_labels;
18713 free_insn_labels = l->next;
18714 }
18715
18716 l->label = sym;
18717 l->next = si->label_list;
18718 si->label_list = l;
18719 }
18720
18721 /* This function is called as tc_frob_label() whenever a label is defined
18722 and adds a DWARF-2 record we only want for true labels. */
18723
18724 void
18725 mips_define_label (symbolS *sym)
18726 {
18727 mips_record_label (sym);
18728 dwarf2_emit_label (sym);
18729 }
18730
18731 /* This function is called by tc_new_dot_label whenever a new dot symbol
18732 is defined. */
18733
18734 void
18735 mips_add_dot_label (symbolS *sym)
18736 {
18737 mips_record_label (sym);
18738 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18739 mips_compressed_mark_label (sym);
18740 }
18741 \f
18742 /* Some special processing for a MIPS ELF file. */
18743
18744 void
18745 mips_elf_final_processing (void)
18746 {
18747 /* Write out the register information. */
18748 if (mips_abi != N64_ABI)
18749 {
18750 Elf32_RegInfo s;
18751
18752 s.ri_gprmask = mips_gprmask;
18753 s.ri_cprmask[0] = mips_cprmask[0];
18754 s.ri_cprmask[1] = mips_cprmask[1];
18755 s.ri_cprmask[2] = mips_cprmask[2];
18756 s.ri_cprmask[3] = mips_cprmask[3];
18757 /* The gp_value field is set by the MIPS ELF backend. */
18758
18759 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18760 ((Elf32_External_RegInfo *)
18761 mips_regmask_frag));
18762 }
18763 else
18764 {
18765 Elf64_Internal_RegInfo s;
18766
18767 s.ri_gprmask = mips_gprmask;
18768 s.ri_pad = 0;
18769 s.ri_cprmask[0] = mips_cprmask[0];
18770 s.ri_cprmask[1] = mips_cprmask[1];
18771 s.ri_cprmask[2] = mips_cprmask[2];
18772 s.ri_cprmask[3] = mips_cprmask[3];
18773 /* The gp_value field is set by the MIPS ELF backend. */
18774
18775 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18776 ((Elf64_External_RegInfo *)
18777 mips_regmask_frag));
18778 }
18779
18780 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18781 sort of BFD interface for this. */
18782 if (mips_any_noreorder)
18783 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18784 if (mips_pic != NO_PIC)
18785 {
18786 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18787 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18788 }
18789 if (mips_abicalls)
18790 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18791
18792 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18793 defined at present; this might need to change in future. */
18794 if (file_ase_mips16)
18795 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18796 if (file_ase_micromips)
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18798 if (file_ase & ASE_MDMX)
18799 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18800
18801 /* Set the MIPS ELF ABI flags. */
18802 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18803 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18804 else if (mips_abi == O64_ABI)
18805 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18806 else if (mips_abi == EABI_ABI)
18807 {
18808 if (!file_mips_gp32)
18809 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18810 else
18811 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18812 }
18813 else if (mips_abi == N32_ABI)
18814 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18815
18816 /* Nothing to do for N64_ABI. */
18817
18818 if (mips_32bitmode)
18819 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18820
18821 #if 0 /* XXX FIXME */
18822 /* 32 bit code with 64 bit FP registers. */
18823 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
18824 elf_elfheader (stdoutput)->e_flags |= ???;
18825 #endif
18826 }
18827 \f
18828 typedef struct proc {
18829 symbolS *func_sym;
18830 symbolS *func_end_sym;
18831 unsigned long reg_mask;
18832 unsigned long reg_offset;
18833 unsigned long fpreg_mask;
18834 unsigned long fpreg_offset;
18835 unsigned long frame_offset;
18836 unsigned long frame_reg;
18837 unsigned long pc_reg;
18838 } procS;
18839
18840 static procS cur_proc;
18841 static procS *cur_proc_ptr;
18842 static int numprocs;
18843
18844 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18845 as "2", and a normal nop as "0". */
18846
18847 #define NOP_OPCODE_MIPS 0
18848 #define NOP_OPCODE_MIPS16 1
18849 #define NOP_OPCODE_MICROMIPS 2
18850
18851 char
18852 mips_nop_opcode (void)
18853 {
18854 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18855 return NOP_OPCODE_MICROMIPS;
18856 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18857 return NOP_OPCODE_MIPS16;
18858 else
18859 return NOP_OPCODE_MIPS;
18860 }
18861
18862 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18863 32-bit microMIPS NOPs here (if applicable). */
18864
18865 void
18866 mips_handle_align (fragS *fragp)
18867 {
18868 char nop_opcode;
18869 char *p;
18870 int bytes, size, excess;
18871 valueT opcode;
18872
18873 if (fragp->fr_type != rs_align_code)
18874 return;
18875
18876 p = fragp->fr_literal + fragp->fr_fix;
18877 nop_opcode = *p;
18878 switch (nop_opcode)
18879 {
18880 case NOP_OPCODE_MICROMIPS:
18881 opcode = micromips_nop32_insn.insn_opcode;
18882 size = 4;
18883 break;
18884 case NOP_OPCODE_MIPS16:
18885 opcode = mips16_nop_insn.insn_opcode;
18886 size = 2;
18887 break;
18888 case NOP_OPCODE_MIPS:
18889 default:
18890 opcode = nop_insn.insn_opcode;
18891 size = 4;
18892 break;
18893 }
18894
18895 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18896 excess = bytes % size;
18897
18898 /* Handle the leading part if we're not inserting a whole number of
18899 instructions, and make it the end of the fixed part of the frag.
18900 Try to fit in a short microMIPS NOP if applicable and possible,
18901 and use zeroes otherwise. */
18902 gas_assert (excess < 4);
18903 fragp->fr_fix += excess;
18904 switch (excess)
18905 {
18906 case 3:
18907 *p++ = '\0';
18908 /* Fall through. */
18909 case 2:
18910 if (nop_opcode == NOP_OPCODE_MICROMIPS)
18911 {
18912 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18913 break;
18914 }
18915 *p++ = '\0';
18916 /* Fall through. */
18917 case 1:
18918 *p++ = '\0';
18919 /* Fall through. */
18920 case 0:
18921 break;
18922 }
18923
18924 md_number_to_chars (p, opcode, size);
18925 fragp->fr_var = size;
18926 }
18927
18928 static void
18929 md_obj_begin (void)
18930 {
18931 }
18932
18933 static void
18934 md_obj_end (void)
18935 {
18936 /* Check for premature end, nesting errors, etc. */
18937 if (cur_proc_ptr)
18938 as_warn (_("missing .end at end of assembly"));
18939 }
18940
18941 static long
18942 get_number (void)
18943 {
18944 int negative = 0;
18945 long val = 0;
18946
18947 if (*input_line_pointer == '-')
18948 {
18949 ++input_line_pointer;
18950 negative = 1;
18951 }
18952 if (!ISDIGIT (*input_line_pointer))
18953 as_bad (_("expected simple number"));
18954 if (input_line_pointer[0] == '0')
18955 {
18956 if (input_line_pointer[1] == 'x')
18957 {
18958 input_line_pointer += 2;
18959 while (ISXDIGIT (*input_line_pointer))
18960 {
18961 val <<= 4;
18962 val |= hex_value (*input_line_pointer++);
18963 }
18964 return negative ? -val : val;
18965 }
18966 else
18967 {
18968 ++input_line_pointer;
18969 while (ISDIGIT (*input_line_pointer))
18970 {
18971 val <<= 3;
18972 val |= *input_line_pointer++ - '0';
18973 }
18974 return negative ? -val : val;
18975 }
18976 }
18977 if (!ISDIGIT (*input_line_pointer))
18978 {
18979 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18980 *input_line_pointer, *input_line_pointer);
18981 as_warn (_("invalid number"));
18982 return -1;
18983 }
18984 while (ISDIGIT (*input_line_pointer))
18985 {
18986 val *= 10;
18987 val += *input_line_pointer++ - '0';
18988 }
18989 return negative ? -val : val;
18990 }
18991
18992 /* The .file directive; just like the usual .file directive, but there
18993 is an initial number which is the ECOFF file index. In the non-ECOFF
18994 case .file implies DWARF-2. */
18995
18996 static void
18997 s_mips_file (int x ATTRIBUTE_UNUSED)
18998 {
18999 static int first_file_directive = 0;
19000
19001 if (ECOFF_DEBUGGING)
19002 {
19003 get_number ();
19004 s_app_file (0);
19005 }
19006 else
19007 {
19008 char *filename;
19009
19010 filename = dwarf2_directive_file (0);
19011
19012 /* Versions of GCC up to 3.1 start files with a ".file"
19013 directive even for stabs output. Make sure that this
19014 ".file" is handled. Note that you need a version of GCC
19015 after 3.1 in order to support DWARF-2 on MIPS. */
19016 if (filename != NULL && ! first_file_directive)
19017 {
19018 (void) new_logical_line (filename, -1);
19019 s_app_file_string (filename, 0);
19020 }
19021 first_file_directive = 1;
19022 }
19023 }
19024
19025 /* The .loc directive, implying DWARF-2. */
19026
19027 static void
19028 s_mips_loc (int x ATTRIBUTE_UNUSED)
19029 {
19030 if (!ECOFF_DEBUGGING)
19031 dwarf2_directive_loc (0);
19032 }
19033
19034 /* The .end directive. */
19035
19036 static void
19037 s_mips_end (int x ATTRIBUTE_UNUSED)
19038 {
19039 symbolS *p;
19040
19041 /* Following functions need their own .frame and .cprestore directives. */
19042 mips_frame_reg_valid = 0;
19043 mips_cprestore_valid = 0;
19044
19045 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19046 {
19047 p = get_symbol ();
19048 demand_empty_rest_of_line ();
19049 }
19050 else
19051 p = NULL;
19052
19053 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19054 as_warn (_(".end not in text section"));
19055
19056 if (!cur_proc_ptr)
19057 {
19058 as_warn (_(".end directive without a preceding .ent directive."));
19059 demand_empty_rest_of_line ();
19060 return;
19061 }
19062
19063 if (p != NULL)
19064 {
19065 gas_assert (S_GET_NAME (p));
19066 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19067 as_warn (_(".end symbol does not match .ent symbol."));
19068
19069 if (debug_type == DEBUG_STABS)
19070 stabs_generate_asm_endfunc (S_GET_NAME (p),
19071 S_GET_NAME (p));
19072 }
19073 else
19074 as_warn (_(".end directive missing or unknown symbol"));
19075
19076 /* Create an expression to calculate the size of the function. */
19077 if (p && cur_proc_ptr)
19078 {
19079 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19080 expressionS *exp = xmalloc (sizeof (expressionS));
19081
19082 obj->size = exp;
19083 exp->X_op = O_subtract;
19084 exp->X_add_symbol = symbol_temp_new_now ();
19085 exp->X_op_symbol = p;
19086 exp->X_add_number = 0;
19087
19088 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19089 }
19090
19091 /* Generate a .pdr section. */
19092 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19093 {
19094 segT saved_seg = now_seg;
19095 subsegT saved_subseg = now_subseg;
19096 expressionS exp;
19097 char *fragp;
19098
19099 #ifdef md_flush_pending_output
19100 md_flush_pending_output ();
19101 #endif
19102
19103 gas_assert (pdr_seg);
19104 subseg_set (pdr_seg, 0);
19105
19106 /* Write the symbol. */
19107 exp.X_op = O_symbol;
19108 exp.X_add_symbol = p;
19109 exp.X_add_number = 0;
19110 emit_expr (&exp, 4);
19111
19112 fragp = frag_more (7 * 4);
19113
19114 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19115 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19116 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19117 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19118 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19119 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19120 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19121
19122 subseg_set (saved_seg, saved_subseg);
19123 }
19124
19125 cur_proc_ptr = NULL;
19126 }
19127
19128 /* The .aent and .ent directives. */
19129
19130 static void
19131 s_mips_ent (int aent)
19132 {
19133 symbolS *symbolP;
19134
19135 symbolP = get_symbol ();
19136 if (*input_line_pointer == ',')
19137 ++input_line_pointer;
19138 SKIP_WHITESPACE ();
19139 if (ISDIGIT (*input_line_pointer)
19140 || *input_line_pointer == '-')
19141 get_number ();
19142
19143 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19144 as_warn (_(".ent or .aent not in text section."));
19145
19146 if (!aent && cur_proc_ptr)
19147 as_warn (_("missing .end"));
19148
19149 if (!aent)
19150 {
19151 /* This function needs its own .frame and .cprestore directives. */
19152 mips_frame_reg_valid = 0;
19153 mips_cprestore_valid = 0;
19154
19155 cur_proc_ptr = &cur_proc;
19156 memset (cur_proc_ptr, '\0', sizeof (procS));
19157
19158 cur_proc_ptr->func_sym = symbolP;
19159
19160 ++numprocs;
19161
19162 if (debug_type == DEBUG_STABS)
19163 stabs_generate_asm_func (S_GET_NAME (symbolP),
19164 S_GET_NAME (symbolP));
19165 }
19166
19167 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19168
19169 demand_empty_rest_of_line ();
19170 }
19171
19172 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19173 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19174 s_mips_frame is used so that we can set the PDR information correctly.
19175 We can't use the ecoff routines because they make reference to the ecoff
19176 symbol table (in the mdebug section). */
19177
19178 static void
19179 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19180 {
19181 if (ECOFF_DEBUGGING)
19182 s_ignore (ignore);
19183 else
19184 {
19185 long val;
19186
19187 if (cur_proc_ptr == (procS *) NULL)
19188 {
19189 as_warn (_(".frame outside of .ent"));
19190 demand_empty_rest_of_line ();
19191 return;
19192 }
19193
19194 cur_proc_ptr->frame_reg = tc_get_register (1);
19195
19196 SKIP_WHITESPACE ();
19197 if (*input_line_pointer++ != ','
19198 || get_absolute_expression_and_terminator (&val) != ',')
19199 {
19200 as_warn (_("Bad .frame directive"));
19201 --input_line_pointer;
19202 demand_empty_rest_of_line ();
19203 return;
19204 }
19205
19206 cur_proc_ptr->frame_offset = val;
19207 cur_proc_ptr->pc_reg = tc_get_register (0);
19208
19209 demand_empty_rest_of_line ();
19210 }
19211 }
19212
19213 /* The .fmask and .mask directives. If the mdebug section is present
19214 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19215 embedded targets, s_mips_mask is used so that we can set the PDR
19216 information correctly. We can't use the ecoff routines because they
19217 make reference to the ecoff symbol table (in the mdebug section). */
19218
19219 static void
19220 s_mips_mask (int reg_type)
19221 {
19222 if (ECOFF_DEBUGGING)
19223 s_ignore (reg_type);
19224 else
19225 {
19226 long mask, off;
19227
19228 if (cur_proc_ptr == (procS *) NULL)
19229 {
19230 as_warn (_(".mask/.fmask outside of .ent"));
19231 demand_empty_rest_of_line ();
19232 return;
19233 }
19234
19235 if (get_absolute_expression_and_terminator (&mask) != ',')
19236 {
19237 as_warn (_("Bad .mask/.fmask directive"));
19238 --input_line_pointer;
19239 demand_empty_rest_of_line ();
19240 return;
19241 }
19242
19243 off = get_absolute_expression ();
19244
19245 if (reg_type == 'F')
19246 {
19247 cur_proc_ptr->fpreg_mask = mask;
19248 cur_proc_ptr->fpreg_offset = off;
19249 }
19250 else
19251 {
19252 cur_proc_ptr->reg_mask = mask;
19253 cur_proc_ptr->reg_offset = off;
19254 }
19255
19256 demand_empty_rest_of_line ();
19257 }
19258 }
19259
19260 /* A table describing all the processors gas knows about. Names are
19261 matched in the order listed.
19262
19263 To ease comparison, please keep this table in the same order as
19264 gcc's mips_cpu_info_table[]. */
19265 static const struct mips_cpu_info mips_cpu_info_table[] =
19266 {
19267 /* Entries for generic ISAs */
19268 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19269 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19270 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19271 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19272 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19273 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19274 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19275 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19276 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19277
19278 /* MIPS I */
19279 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19280 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19281 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19282
19283 /* MIPS II */
19284 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19285
19286 /* MIPS III */
19287 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19288 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19289 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19290 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19291 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19292 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19293 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19294 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19295 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19296 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19297 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19298 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19299 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19300 /* ST Microelectronics Loongson 2E and 2F cores */
19301 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19302 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19303
19304 /* MIPS IV */
19305 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19306 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19307 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19308 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19309 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19310 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19311 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19312 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19313 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19314 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19315 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19316 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19317 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19318 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19319 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19320
19321 /* MIPS 32 */
19322 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19323 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19324 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19325 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19326
19327 /* MIPS 32 Release 2 */
19328 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19329 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19330 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19331 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19332 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19334 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19335 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19337 ISA_MIPS32R2, CPU_MIPS32R2 },
19338 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19339 ISA_MIPS32R2, CPU_MIPS32R2 },
19340 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19342 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19343 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19344 /* Deprecated forms of the above. */
19345 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19346 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19348 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19349 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19350 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19351 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 /* Deprecated forms of the above. */
19353 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19354 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19355 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19356 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19357 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19358 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19359 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19360 /* Deprecated forms of the above. */
19361 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19362 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19363 /* 34Kn is a 34kc without DSP. */
19364 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19365 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19366 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19367 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19368 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19369 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19370 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19371 /* Deprecated forms of the above. */
19372 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19373 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19374 /* 1004K cores are multiprocessor versions of the 34K. */
19375 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19376 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19377 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19378 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19379
19380 /* MIPS 64 */
19381 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19382 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19383 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19384 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19385
19386 /* Broadcom SB-1 CPU core */
19387 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19388 /* Broadcom SB-1A CPU core */
19389 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19390
19391 { "loongson3a", 0, 0, ISA_MIPS64, CPU_LOONGSON_3A },
19392
19393 /* MIPS 64 Release 2 */
19394
19395 /* Cavium Networks Octeon CPU core */
19396 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19397 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19398 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19399
19400 /* RMI Xlr */
19401 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19402
19403 /* Broadcom XLP.
19404 XLP is mostly like XLR, with the prominent exception that it is
19405 MIPS64R2 rather than MIPS64. */
19406 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19407
19408 /* End marker */
19409 { NULL, 0, 0, 0, 0 }
19410 };
19411
19412
19413 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19414 with a final "000" replaced by "k". Ignore case.
19415
19416 Note: this function is shared between GCC and GAS. */
19417
19418 static bfd_boolean
19419 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19420 {
19421 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19422 given++, canonical++;
19423
19424 return ((*given == 0 && *canonical == 0)
19425 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19426 }
19427
19428
19429 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19430 CPU name. We've traditionally allowed a lot of variation here.
19431
19432 Note: this function is shared between GCC and GAS. */
19433
19434 static bfd_boolean
19435 mips_matching_cpu_name_p (const char *canonical, const char *given)
19436 {
19437 /* First see if the name matches exactly, or with a final "000"
19438 turned into "k". */
19439 if (mips_strict_matching_cpu_name_p (canonical, given))
19440 return TRUE;
19441
19442 /* If not, try comparing based on numerical designation alone.
19443 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19444 if (TOLOWER (*given) == 'r')
19445 given++;
19446 if (!ISDIGIT (*given))
19447 return FALSE;
19448
19449 /* Skip over some well-known prefixes in the canonical name,
19450 hoping to find a number there too. */
19451 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19452 canonical += 2;
19453 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19454 canonical += 2;
19455 else if (TOLOWER (canonical[0]) == 'r')
19456 canonical += 1;
19457
19458 return mips_strict_matching_cpu_name_p (canonical, given);
19459 }
19460
19461
19462 /* Parse an option that takes the name of a processor as its argument.
19463 OPTION is the name of the option and CPU_STRING is the argument.
19464 Return the corresponding processor enumeration if the CPU_STRING is
19465 recognized, otherwise report an error and return null.
19466
19467 A similar function exists in GCC. */
19468
19469 static const struct mips_cpu_info *
19470 mips_parse_cpu (const char *option, const char *cpu_string)
19471 {
19472 const struct mips_cpu_info *p;
19473
19474 /* 'from-abi' selects the most compatible architecture for the given
19475 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19476 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19477 version. Look first at the -mgp options, if given, otherwise base
19478 the choice on MIPS_DEFAULT_64BIT.
19479
19480 Treat NO_ABI like the EABIs. One reason to do this is that the
19481 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19482 architecture. This code picks MIPS I for 'mips' and MIPS III for
19483 'mips64', just as we did in the days before 'from-abi'. */
19484 if (strcasecmp (cpu_string, "from-abi") == 0)
19485 {
19486 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19487 return mips_cpu_info_from_isa (ISA_MIPS1);
19488
19489 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19490 return mips_cpu_info_from_isa (ISA_MIPS3);
19491
19492 if (file_mips_gp32 >= 0)
19493 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
19494
19495 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19496 ? ISA_MIPS3
19497 : ISA_MIPS1);
19498 }
19499
19500 /* 'default' has traditionally been a no-op. Probably not very useful. */
19501 if (strcasecmp (cpu_string, "default") == 0)
19502 return 0;
19503
19504 for (p = mips_cpu_info_table; p->name != 0; p++)
19505 if (mips_matching_cpu_name_p (p->name, cpu_string))
19506 return p;
19507
19508 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
19509 return 0;
19510 }
19511
19512 /* Return the canonical processor information for ISA (a member of the
19513 ISA_MIPS* enumeration). */
19514
19515 static const struct mips_cpu_info *
19516 mips_cpu_info_from_isa (int isa)
19517 {
19518 int i;
19519
19520 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19521 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19522 && isa == mips_cpu_info_table[i].isa)
19523 return (&mips_cpu_info_table[i]);
19524
19525 return NULL;
19526 }
19527
19528 static const struct mips_cpu_info *
19529 mips_cpu_info_from_arch (int arch)
19530 {
19531 int i;
19532
19533 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19534 if (arch == mips_cpu_info_table[i].cpu)
19535 return (&mips_cpu_info_table[i]);
19536
19537 return NULL;
19538 }
19539 \f
19540 static void
19541 show (FILE *stream, const char *string, int *col_p, int *first_p)
19542 {
19543 if (*first_p)
19544 {
19545 fprintf (stream, "%24s", "");
19546 *col_p = 24;
19547 }
19548 else
19549 {
19550 fprintf (stream, ", ");
19551 *col_p += 2;
19552 }
19553
19554 if (*col_p + strlen (string) > 72)
19555 {
19556 fprintf (stream, "\n%24s", "");
19557 *col_p = 24;
19558 }
19559
19560 fprintf (stream, "%s", string);
19561 *col_p += strlen (string);
19562
19563 *first_p = 0;
19564 }
19565
19566 void
19567 md_show_usage (FILE *stream)
19568 {
19569 int column, first;
19570 size_t i;
19571
19572 fprintf (stream, _("\
19573 MIPS options:\n\
19574 -EB generate big endian output\n\
19575 -EL generate little endian output\n\
19576 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19577 -G NUM allow referencing objects up to NUM bytes\n\
19578 implicitly with the gp register [default 8]\n"));
19579 fprintf (stream, _("\
19580 -mips1 generate MIPS ISA I instructions\n\
19581 -mips2 generate MIPS ISA II instructions\n\
19582 -mips3 generate MIPS ISA III instructions\n\
19583 -mips4 generate MIPS ISA IV instructions\n\
19584 -mips5 generate MIPS ISA V instructions\n\
19585 -mips32 generate MIPS32 ISA instructions\n\
19586 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19587 -mips64 generate MIPS64 ISA instructions\n\
19588 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19589 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19590
19591 first = 1;
19592
19593 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19594 show (stream, mips_cpu_info_table[i].name, &column, &first);
19595 show (stream, "from-abi", &column, &first);
19596 fputc ('\n', stream);
19597
19598 fprintf (stream, _("\
19599 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19600 -no-mCPU don't generate code specific to CPU.\n\
19601 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19602
19603 first = 1;
19604
19605 show (stream, "3900", &column, &first);
19606 show (stream, "4010", &column, &first);
19607 show (stream, "4100", &column, &first);
19608 show (stream, "4650", &column, &first);
19609 fputc ('\n', stream);
19610
19611 fprintf (stream, _("\
19612 -mips16 generate mips16 instructions\n\
19613 -no-mips16 do not generate mips16 instructions\n"));
19614 fprintf (stream, _("\
19615 -mmicromips generate microMIPS instructions\n\
19616 -mno-micromips do not generate microMIPS instructions\n"));
19617 fprintf (stream, _("\
19618 -msmartmips generate smartmips instructions\n\
19619 -mno-smartmips do not generate smartmips instructions\n"));
19620 fprintf (stream, _("\
19621 -mdsp generate DSP instructions\n\
19622 -mno-dsp do not generate DSP instructions\n"));
19623 fprintf (stream, _("\
19624 -mdspr2 generate DSP R2 instructions\n\
19625 -mno-dspr2 do not generate DSP R2 instructions\n"));
19626 fprintf (stream, _("\
19627 -mmt generate MT instructions\n\
19628 -mno-mt do not generate MT instructions\n"));
19629 fprintf (stream, _("\
19630 -mmcu generate MCU instructions\n\
19631 -mno-mcu do not generate MCU instructions\n"));
19632 fprintf (stream, _("\
19633 -mvirt generate Virtualization instructions\n\
19634 -mno-virt do not generate Virtualization instructions\n"));
19635 fprintf (stream, _("\
19636 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19637 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19638 -mfix-vr4120 work around certain VR4120 errata\n\
19639 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19640 -mfix-24k insert a nop after ERET and DERET instructions\n\
19641 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19642 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19643 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19644 -msym32 assume all symbols have 32-bit values\n\
19645 -O0 remove unneeded NOPs, do not swap branches\n\
19646 -O remove unneeded NOPs and swap branches\n\
19647 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19648 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19649 fprintf (stream, _("\
19650 -mhard-float allow floating-point instructions\n\
19651 -msoft-float do not allow floating-point instructions\n\
19652 -msingle-float only allow 32-bit floating-point operations\n\
19653 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19654 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19655 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n"
19656 ));
19657 fprintf (stream, _("\
19658 -KPIC, -call_shared generate SVR4 position independent code\n\
19659 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19660 -mvxworks-pic generate VxWorks position independent code\n\
19661 -non_shared do not generate code that can operate with DSOs\n\
19662 -xgot assume a 32 bit GOT\n\
19663 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19664 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19665 position dependent (non shared) code\n\
19666 -mabi=ABI create ABI conformant object file for:\n"));
19667
19668 first = 1;
19669
19670 show (stream, "32", &column, &first);
19671 show (stream, "o64", &column, &first);
19672 show (stream, "n32", &column, &first);
19673 show (stream, "64", &column, &first);
19674 show (stream, "eabi", &column, &first);
19675
19676 fputc ('\n', stream);
19677
19678 fprintf (stream, _("\
19679 -32 create o32 ABI object file (default)\n\
19680 -n32 create n32 ABI object file\n\
19681 -64 create 64 ABI object file\n"));
19682 }
19683
19684 #ifdef TE_IRIX
19685 enum dwarf2_format
19686 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19687 {
19688 if (HAVE_64BIT_SYMBOLS)
19689 return dwarf2_format_64bit_irix;
19690 else
19691 return dwarf2_format_32bit;
19692 }
19693 #endif
19694
19695 int
19696 mips_dwarf2_addr_size (void)
19697 {
19698 if (HAVE_64BIT_OBJECTS)
19699 return 8;
19700 else
19701 return 4;
19702 }
19703
19704 /* Standard calling conventions leave the CFA at SP on entry. */
19705 void
19706 mips_cfi_frame_initial_instructions (void)
19707 {
19708 cfi_add_CFA_def_cfa_register (SP);
19709 }
19710
19711 int
19712 tc_mips_regname_to_dw2regnum (char *regname)
19713 {
19714 unsigned int regnum = -1;
19715 unsigned int reg;
19716
19717 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19718 regnum = reg;
19719
19720 return regnum;
19721 }
This page took 0.454967 seconds and 3 git commands to generate.