2002-07-30 Chris Demetriou <cgd@broadcom.com>
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #ifdef USE_STDARG
32 #include <stdarg.h>
33 #endif
34 #ifdef USE_VARARGS
35 #include <varargs.h>
36 #endif
37
38 #include "opcode/mips.h"
39 #include "itbl-ops.h"
40 #include "dwarf2dbg.h"
41
42 #ifdef DEBUG
43 #define DBG(x) printf x
44 #else
45 #define DBG(x)
46 #endif
47
48 #ifdef OBJ_MAYBE_ELF
49 /* Clean up namespace so we can include obj-elf.h too. */
50 static int mips_output_flavor PARAMS ((void));
51 static int mips_output_flavor () { return OUTPUT_FLAVOR; }
52 #undef OBJ_PROCESS_STAB
53 #undef OUTPUT_FLAVOR
54 #undef S_GET_ALIGN
55 #undef S_GET_SIZE
56 #undef S_SET_ALIGN
57 #undef S_SET_SIZE
58 #undef obj_frob_file
59 #undef obj_frob_file_after_relocs
60 #undef obj_frob_symbol
61 #undef obj_pop_insert
62 #undef obj_sec_sym_ok_for_reloc
63 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
64
65 #include "obj-elf.h"
66 /* Fix any of them that we actually care about. */
67 #undef OUTPUT_FLAVOR
68 #define OUTPUT_FLAVOR mips_output_flavor()
69 #endif
70
71 #if defined (OBJ_ELF)
72 #include "elf/mips.h"
73 #endif
74
75 #ifndef ECOFF_DEBUGGING
76 #define NO_ECOFF_DEBUGGING
77 #define ECOFF_DEBUGGING 0
78 #endif
79
80 int mips_flag_mdebug = -1;
81
82 #include "ecoff.h"
83
84 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
85 static char *mips_regmask_frag;
86 #endif
87
88 #define ZERO 0
89 #define AT 1
90 #define TREG 24
91 #define PIC_CALL_REG 25
92 #define KT0 26
93 #define KT1 27
94 #define GP 28
95 #define SP 29
96 #define FP 30
97 #define RA 31
98
99 #define ILLEGAL_REG (32)
100
101 /* Allow override of standard little-endian ECOFF format. */
102
103 #ifndef ECOFF_LITTLE_FORMAT
104 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
105 #endif
106
107 extern int target_big_endian;
108
109 /* The name of the readonly data section. */
110 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_aout_flavour \
111 ? ".data" \
112 : OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
113 ? ".rdata" \
114 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
115 ? ".rdata" \
116 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
117 ? ".rodata" \
118 : (abort (), ""))
119
120 /* The ABI to use. */
121 enum mips_abi_level
122 {
123 NO_ABI = 0,
124 O32_ABI,
125 O64_ABI,
126 N32_ABI,
127 N64_ABI,
128 EABI_ABI
129 };
130
131 /* MIPS ABI we are using for this output file. */
132 static enum mips_abi_level mips_abi = NO_ABI;
133
134 /* This is the set of options which may be modified by the .set
135 pseudo-op. We use a struct so that .set push and .set pop are more
136 reliable. */
137
138 struct mips_set_options
139 {
140 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
141 if it has not been initialized. Changed by `.set mipsN', and the
142 -mipsN command line option, and the default CPU. */
143 int isa;
144 /* Enabled Application Specific Extensions (ASEs). These are set to -1
145 if they have not been initialized. Changed by `.set <asename>', by
146 command line options, and based on the default architecture. */
147 int ase_mips3d;
148 int ase_mdmx;
149 /* Whether we are assembling for the mips16 processor. 0 if we are
150 not, 1 if we are, and -1 if the value has not been initialized.
151 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
152 -nomips16 command line options, and the default CPU. */
153 int mips16;
154 /* Non-zero if we should not reorder instructions. Changed by `.set
155 reorder' and `.set noreorder'. */
156 int noreorder;
157 /* Non-zero if we should not permit the $at ($1) register to be used
158 in instructions. Changed by `.set at' and `.set noat'. */
159 int noat;
160 /* Non-zero if we should warn when a macro instruction expands into
161 more than one machine instruction. Changed by `.set nomacro' and
162 `.set macro'. */
163 int warn_about_macros;
164 /* Non-zero if we should not move instructions. Changed by `.set
165 move', `.set volatile', `.set nomove', and `.set novolatile'. */
166 int nomove;
167 /* Non-zero if we should not optimize branches by moving the target
168 of the branch into the delay slot. Actually, we don't perform
169 this optimization anyhow. Changed by `.set bopt' and `.set
170 nobopt'. */
171 int nobopt;
172 /* Non-zero if we should not autoextend mips16 instructions.
173 Changed by `.set autoextend' and `.set noautoextend'. */
174 int noautoextend;
175 /* Restrict general purpose registers and floating point registers
176 to 32 bit. This is initially determined when -mgp32 or -mfp32
177 is passed but can changed if the assembler code uses .set mipsN. */
178 int gp32;
179 int fp32;
180 };
181
182 /* True if -mgp32 was passed. */
183 static int file_mips_gp32 = -1;
184
185 /* True if -mfp32 was passed. */
186 static int file_mips_fp32 = -1;
187
188 /* This is the struct we use to hold the current set of options. Note
189 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
190 -1 to indicate that they have not been initialized. */
191
192 static struct mips_set_options mips_opts =
193 {
194 ISA_UNKNOWN, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0
195 };
196
197 /* These variables are filled in with the masks of registers used.
198 The object format code reads them and puts them in the appropriate
199 place. */
200 unsigned long mips_gprmask;
201 unsigned long mips_cprmask[4];
202
203 /* MIPS ISA we are using for this output file. */
204 static int file_mips_isa = ISA_UNKNOWN;
205
206 /* True if -mips16 was passed or implied by arguments passed on the
207 command line (e.g., by -march). */
208 static int file_ase_mips16;
209
210 /* True if -mips3d was passed or implied by arguments passed on the
211 command line (e.g., by -march). */
212 static int file_ase_mips3d;
213
214 /* True if -mdmx was passed or implied by arguments passed on the
215 command line (e.g., by -march). */
216 static int file_ase_mdmx;
217
218 /* The argument of the -march= flag. The architecture we are assembling. */
219 static int mips_arch = CPU_UNKNOWN;
220 static const char *mips_arch_string;
221 static const struct mips_cpu_info *mips_arch_info;
222
223 /* The argument of the -mtune= flag. The architecture for which we
224 are optimizing. */
225 static int mips_tune = CPU_UNKNOWN;
226 static const char *mips_tune_string;
227 static const struct mips_cpu_info *mips_tune_info;
228
229 /* True when generating 32-bit code for a 64-bit processor. */
230 static int mips_32bitmode = 0;
231
232 /* Some ISA's have delay slots for instructions which read or write
233 from a coprocessor (eg. mips1-mips3); some don't (eg mips4).
234 Return true if instructions marked INSN_LOAD_COPROC_DELAY,
235 INSN_COPROC_MOVE_DELAY, or INSN_WRITE_COND_CODE actually have a
236 delay slot in this ISA. The uses of this macro assume that any
237 ISA that has delay slots for one of these, has them for all. They
238 also assume that ISAs which don't have delays for these insns, don't
239 have delays for the INSN_LOAD_MEMORY_DELAY instructions either. */
240 #define ISA_HAS_COPROC_DELAYS(ISA) ( \
241 (ISA) == ISA_MIPS1 \
242 || (ISA) == ISA_MIPS2 \
243 || (ISA) == ISA_MIPS3 \
244 )
245
246 /* True if the given ABI requires 32-bit registers. */
247 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
248
249 /* Likewise 64-bit registers. */
250 #define ABI_NEEDS_64BIT_REGS(ABI) \
251 ((ABI) == N32_ABI \
252 || (ABI) == N64_ABI \
253 || (ABI) == O64_ABI)
254
255 /* Return true if ISA supports 64 bit gp register instructions. */
256 #define ISA_HAS_64BIT_REGS(ISA) ( \
257 (ISA) == ISA_MIPS3 \
258 || (ISA) == ISA_MIPS4 \
259 || (ISA) == ISA_MIPS5 \
260 || (ISA) == ISA_MIPS64 \
261 )
262
263 #define HAVE_32BIT_GPRS \
264 (mips_opts.gp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
265
266 #define HAVE_32BIT_FPRS \
267 (mips_opts.fp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
268
269 #define HAVE_64BIT_GPRS (! HAVE_32BIT_GPRS)
270 #define HAVE_64BIT_FPRS (! HAVE_32BIT_FPRS)
271
272 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
273
274 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
275
276 /* We can only have 64bit addresses if the object file format
277 supports it. */
278 #define HAVE_32BIT_ADDRESSES \
279 (HAVE_32BIT_GPRS \
280 || ((bfd_arch_bits_per_address (stdoutput) == 32 \
281 || ! HAVE_64BIT_OBJECTS) \
282 && mips_pic != EMBEDDED_PIC))
283
284 #define HAVE_64BIT_ADDRESSES (! HAVE_32BIT_ADDRESSES)
285
286 /* Return true if the given CPU supports the MIPS16 ASE. */
287 #define CPU_HAS_MIPS16(cpu) \
288 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0)
289
290 /* Return true if the given CPU supports the MIPS3D ASE. */
291 #define CPU_HAS_MIPS3D(cpu) ((cpu) == CPU_SB1 \
292 )
293
294 /* Return true if the given CPU supports the MDMX ASE. */
295 #define CPU_HAS_MDMX(cpu) (false \
296 )
297
298 /* Whether the processor uses hardware interlocks to protect
299 reads from the HI and LO registers, and thus does not
300 require nops to be inserted. */
301
302 #define hilo_interlocks (mips_arch == CPU_R4010 \
303 || mips_arch == CPU_SB1 \
304 )
305
306 /* Whether the processor uses hardware interlocks to protect reads
307 from the GPRs, and thus does not require nops to be inserted. */
308 #define gpr_interlocks \
309 (mips_opts.isa != ISA_MIPS1 \
310 || mips_arch == CPU_R3900)
311
312 /* As with other "interlocks" this is used by hardware that has FP
313 (co-processor) interlocks. */
314 /* Itbl support may require additional care here. */
315 #define cop_interlocks (mips_arch == CPU_R4300 \
316 || mips_arch == CPU_SB1 \
317 )
318
319 /* Is this a mfhi or mflo instruction? */
320 #define MF_HILO_INSN(PINFO) \
321 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
322
323 /* MIPS PIC level. */
324
325 enum mips_pic_level
326 {
327 /* Do not generate PIC code. */
328 NO_PIC,
329
330 /* Generate PIC code as in the SVR4 MIPS ABI. */
331 SVR4_PIC,
332
333 /* Generate PIC code without using a global offset table: the data
334 segment has a maximum size of 64K, all data references are off
335 the $gp register, and all text references are PC relative. This
336 is used on some embedded systems. */
337 EMBEDDED_PIC
338 };
339
340 static enum mips_pic_level mips_pic;
341
342 /* Warn about all NOPS that the assembler generates. */
343 static int warn_nops = 0;
344
345 /* 1 if we should generate 32 bit offsets from the $gp register in
346 SVR4_PIC mode. Currently has no meaning in other modes. */
347 static int mips_big_got = 0;
348
349 /* 1 if trap instructions should used for overflow rather than break
350 instructions. */
351 static int mips_trap = 0;
352
353 /* 1 if double width floating point constants should not be constructed
354 by assembling two single width halves into two single width floating
355 point registers which just happen to alias the double width destination
356 register. On some architectures this aliasing can be disabled by a bit
357 in the status register, and the setting of this bit cannot be determined
358 automatically at assemble time. */
359 static int mips_disable_float_construction;
360
361 /* Non-zero if any .set noreorder directives were used. */
362
363 static int mips_any_noreorder;
364
365 /* Non-zero if nops should be inserted when the register referenced in
366 an mfhi/mflo instruction is read in the next two instructions. */
367 static int mips_7000_hilo_fix;
368
369 /* The size of the small data section. */
370 static unsigned int g_switch_value = 8;
371 /* Whether the -G option was used. */
372 static int g_switch_seen = 0;
373
374 #define N_RMASK 0xc4
375 #define N_VFP 0xd4
376
377 /* If we can determine in advance that GP optimization won't be
378 possible, we can skip the relaxation stuff that tries to produce
379 GP-relative references. This makes delay slot optimization work
380 better.
381
382 This function can only provide a guess, but it seems to work for
383 gcc output. It needs to guess right for gcc, otherwise gcc
384 will put what it thinks is a GP-relative instruction in a branch
385 delay slot.
386
387 I don't know if a fix is needed for the SVR4_PIC mode. I've only
388 fixed it for the non-PIC mode. KR 95/04/07 */
389 static int nopic_need_relax PARAMS ((symbolS *, int));
390
391 /* handle of the OPCODE hash table */
392 static struct hash_control *op_hash = NULL;
393
394 /* The opcode hash table we use for the mips16. */
395 static struct hash_control *mips16_op_hash = NULL;
396
397 /* This array holds the chars that always start a comment. If the
398 pre-processor is disabled, these aren't very useful */
399 const char comment_chars[] = "#";
400
401 /* This array holds the chars that only start a comment at the beginning of
402 a line. If the line seems to have the form '# 123 filename'
403 .line and .file directives will appear in the pre-processed output */
404 /* Note that input_file.c hand checks for '#' at the beginning of the
405 first line of the input file. This is because the compiler outputs
406 #NO_APP at the beginning of its output. */
407 /* Also note that C style comments are always supported. */
408 const char line_comment_chars[] = "#";
409
410 /* This array holds machine specific line separator characters. */
411 const char line_separator_chars[] = ";";
412
413 /* Chars that can be used to separate mant from exp in floating point nums */
414 const char EXP_CHARS[] = "eE";
415
416 /* Chars that mean this number is a floating point constant */
417 /* As in 0f12.456 */
418 /* or 0d1.2345e12 */
419 const char FLT_CHARS[] = "rRsSfFdDxXpP";
420
421 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
422 changed in read.c . Ideally it shouldn't have to know about it at all,
423 but nothing is ideal around here.
424 */
425
426 static char *insn_error;
427
428 static int auto_align = 1;
429
430 /* When outputting SVR4 PIC code, the assembler needs to know the
431 offset in the stack frame from which to restore the $gp register.
432 This is set by the .cprestore pseudo-op, and saved in this
433 variable. */
434 static offsetT mips_cprestore_offset = -1;
435
436 /* Similiar for NewABI PIC code, where $gp is callee-saved. NewABI has some
437 more optimizations, it can use a register value instead of a memory-saved
438 offset and even an other register than $gp as global pointer. */
439 static offsetT mips_cpreturn_offset = -1;
440 static int mips_cpreturn_register = -1;
441 static int mips_gp_register = GP;
442 static int mips_gprel_offset = 0;
443
444 /* Whether mips_cprestore_offset has been set in the current function
445 (or whether it has already been warned about, if not). */
446 static int mips_cprestore_valid = 0;
447
448 /* This is the register which holds the stack frame, as set by the
449 .frame pseudo-op. This is needed to implement .cprestore. */
450 static int mips_frame_reg = SP;
451
452 /* Whether mips_frame_reg has been set in the current function
453 (or whether it has already been warned about, if not). */
454 static int mips_frame_reg_valid = 0;
455
456 /* To output NOP instructions correctly, we need to keep information
457 about the previous two instructions. */
458
459 /* Whether we are optimizing. The default value of 2 means to remove
460 unneeded NOPs and swap branch instructions when possible. A value
461 of 1 means to not swap branches. A value of 0 means to always
462 insert NOPs. */
463 static int mips_optimize = 2;
464
465 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
466 equivalent to seeing no -g option at all. */
467 static int mips_debug = 0;
468
469 /* The previous instruction. */
470 static struct mips_cl_insn prev_insn;
471
472 /* The instruction before prev_insn. */
473 static struct mips_cl_insn prev_prev_insn;
474
475 /* If we don't want information for prev_insn or prev_prev_insn, we
476 point the insn_mo field at this dummy integer. */
477 static const struct mips_opcode dummy_opcode = { NULL, NULL, 0, 0, 0, 0 };
478
479 /* Non-zero if prev_insn is valid. */
480 static int prev_insn_valid;
481
482 /* The frag for the previous instruction. */
483 static struct frag *prev_insn_frag;
484
485 /* The offset into prev_insn_frag for the previous instruction. */
486 static long prev_insn_where;
487
488 /* The reloc type for the previous instruction, if any. */
489 static bfd_reloc_code_real_type prev_insn_reloc_type[3];
490
491 /* The reloc for the previous instruction, if any. */
492 static fixS *prev_insn_fixp[3];
493
494 /* Non-zero if the previous instruction was in a delay slot. */
495 static int prev_insn_is_delay_slot;
496
497 /* Non-zero if the previous instruction was in a .set noreorder. */
498 static int prev_insn_unreordered;
499
500 /* Non-zero if the previous instruction uses an extend opcode (if
501 mips16). */
502 static int prev_insn_extended;
503
504 /* Non-zero if the previous previous instruction was in a .set
505 noreorder. */
506 static int prev_prev_insn_unreordered;
507
508 /* If this is set, it points to a frag holding nop instructions which
509 were inserted before the start of a noreorder section. If those
510 nops turn out to be unnecessary, the size of the frag can be
511 decreased. */
512 static fragS *prev_nop_frag;
513
514 /* The number of nop instructions we created in prev_nop_frag. */
515 static int prev_nop_frag_holds;
516
517 /* The number of nop instructions that we know we need in
518 prev_nop_frag. */
519 static int prev_nop_frag_required;
520
521 /* The number of instructions we've seen since prev_nop_frag. */
522 static int prev_nop_frag_since;
523
524 /* For ECOFF and ELF, relocations against symbols are done in two
525 parts, with a HI relocation and a LO relocation. Each relocation
526 has only 16 bits of space to store an addend. This means that in
527 order for the linker to handle carries correctly, it must be able
528 to locate both the HI and the LO relocation. This means that the
529 relocations must appear in order in the relocation table.
530
531 In order to implement this, we keep track of each unmatched HI
532 relocation. We then sort them so that they immediately precede the
533 corresponding LO relocation. */
534
535 struct mips_hi_fixup
536 {
537 /* Next HI fixup. */
538 struct mips_hi_fixup *next;
539 /* This fixup. */
540 fixS *fixp;
541 /* The section this fixup is in. */
542 segT seg;
543 };
544
545 /* The list of unmatched HI relocs. */
546
547 static struct mips_hi_fixup *mips_hi_fixup_list;
548
549 /* Map normal MIPS register numbers to mips16 register numbers. */
550
551 #define X ILLEGAL_REG
552 static const int mips32_to_16_reg_map[] =
553 {
554 X, X, 2, 3, 4, 5, 6, 7,
555 X, X, X, X, X, X, X, X,
556 0, 1, X, X, X, X, X, X,
557 X, X, X, X, X, X, X, X
558 };
559 #undef X
560
561 /* Map mips16 register numbers to normal MIPS register numbers. */
562
563 static const unsigned int mips16_to_32_reg_map[] =
564 {
565 16, 17, 2, 3, 4, 5, 6, 7
566 };
567 \f
568 /* Since the MIPS does not have multiple forms of PC relative
569 instructions, we do not have to do relaxing as is done on other
570 platforms. However, we do have to handle GP relative addressing
571 correctly, which turns out to be a similar problem.
572
573 Every macro that refers to a symbol can occur in (at least) two
574 forms, one with GP relative addressing and one without. For
575 example, loading a global variable into a register generally uses
576 a macro instruction like this:
577 lw $4,i
578 If i can be addressed off the GP register (this is true if it is in
579 the .sbss or .sdata section, or if it is known to be smaller than
580 the -G argument) this will generate the following instruction:
581 lw $4,i($gp)
582 This instruction will use a GPREL reloc. If i can not be addressed
583 off the GP register, the following instruction sequence will be used:
584 lui $at,i
585 lw $4,i($at)
586 In this case the first instruction will have a HI16 reloc, and the
587 second reloc will have a LO16 reloc. Both relocs will be against
588 the symbol i.
589
590 The issue here is that we may not know whether i is GP addressable
591 until after we see the instruction that uses it. Therefore, we
592 want to be able to choose the final instruction sequence only at
593 the end of the assembly. This is similar to the way other
594 platforms choose the size of a PC relative instruction only at the
595 end of assembly.
596
597 When generating position independent code we do not use GP
598 addressing in quite the same way, but the issue still arises as
599 external symbols and local symbols must be handled differently.
600
601 We handle these issues by actually generating both possible
602 instruction sequences. The longer one is put in a frag_var with
603 type rs_machine_dependent. We encode what to do with the frag in
604 the subtype field. We encode (1) the number of existing bytes to
605 replace, (2) the number of new bytes to use, (3) the offset from
606 the start of the existing bytes to the first reloc we must generate
607 (that is, the offset is applied from the start of the existing
608 bytes after they are replaced by the new bytes, if any), (4) the
609 offset from the start of the existing bytes to the second reloc,
610 (5) whether a third reloc is needed (the third reloc is always four
611 bytes after the second reloc), and (6) whether to warn if this
612 variant is used (this is sometimes needed if .set nomacro or .set
613 noat is in effect). All these numbers are reasonably small.
614
615 Generating two instruction sequences must be handled carefully to
616 ensure that delay slots are handled correctly. Fortunately, there
617 are a limited number of cases. When the second instruction
618 sequence is generated, append_insn is directed to maintain the
619 existing delay slot information, so it continues to apply to any
620 code after the second instruction sequence. This means that the
621 second instruction sequence must not impose any requirements not
622 required by the first instruction sequence.
623
624 These variant frags are then handled in functions called by the
625 machine independent code. md_estimate_size_before_relax returns
626 the final size of the frag. md_convert_frag sets up the final form
627 of the frag. tc_gen_reloc adjust the first reloc and adds a second
628 one if needed. */
629 #define RELAX_ENCODE(old, new, reloc1, reloc2, reloc3, warn) \
630 ((relax_substateT) \
631 (((old) << 23) \
632 | ((new) << 16) \
633 | (((reloc1) + 64) << 9) \
634 | (((reloc2) + 64) << 2) \
635 | ((reloc3) ? (1 << 1) : 0) \
636 | ((warn) ? 1 : 0)))
637 #define RELAX_OLD(i) (((i) >> 23) & 0x7f)
638 #define RELAX_NEW(i) (((i) >> 16) & 0x7f)
639 #define RELAX_RELOC1(i) ((valueT) (((i) >> 9) & 0x7f) - 64)
640 #define RELAX_RELOC2(i) ((valueT) (((i) >> 2) & 0x7f) - 64)
641 #define RELAX_RELOC3(i) (((i) >> 1) & 1)
642 #define RELAX_WARN(i) ((i) & 1)
643
644 /* For mips16 code, we use an entirely different form of relaxation.
645 mips16 supports two versions of most instructions which take
646 immediate values: a small one which takes some small value, and a
647 larger one which takes a 16 bit value. Since branches also follow
648 this pattern, relaxing these values is required.
649
650 We can assemble both mips16 and normal MIPS code in a single
651 object. Therefore, we need to support this type of relaxation at
652 the same time that we support the relaxation described above. We
653 use the high bit of the subtype field to distinguish these cases.
654
655 The information we store for this type of relaxation is the
656 argument code found in the opcode file for this relocation, whether
657 the user explicitly requested a small or extended form, and whether
658 the relocation is in a jump or jal delay slot. That tells us the
659 size of the value, and how it should be stored. We also store
660 whether the fragment is considered to be extended or not. We also
661 store whether this is known to be a branch to a different section,
662 whether we have tried to relax this frag yet, and whether we have
663 ever extended a PC relative fragment because of a shift count. */
664 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
665 (0x80000000 \
666 | ((type) & 0xff) \
667 | ((small) ? 0x100 : 0) \
668 | ((ext) ? 0x200 : 0) \
669 | ((dslot) ? 0x400 : 0) \
670 | ((jal_dslot) ? 0x800 : 0))
671 #define RELAX_MIPS16_P(i) (((i) & 0x80000000) != 0)
672 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
673 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
674 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
675 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
676 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
677 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
678 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
679 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
680 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
681 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
682 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
683 \f
684 /* Prototypes for static functions. */
685
686 #ifdef __STDC__
687 #define internalError() \
688 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
689 #else
690 #define internalError() as_fatal (_("MIPS internal Error"));
691 #endif
692
693 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
694
695 static int insn_uses_reg PARAMS ((struct mips_cl_insn *ip,
696 unsigned int reg, enum mips_regclass class));
697 static int reg_needs_delay PARAMS ((unsigned int));
698 static void mips16_mark_labels PARAMS ((void));
699 static void append_insn PARAMS ((char *place,
700 struct mips_cl_insn * ip,
701 expressionS * p,
702 bfd_reloc_code_real_type *r,
703 boolean));
704 static void mips_no_prev_insn PARAMS ((int));
705 static void mips_emit_delays PARAMS ((boolean));
706 #ifdef USE_STDARG
707 static void macro_build PARAMS ((char *place, int *counter, expressionS * ep,
708 const char *name, const char *fmt,
709 ...));
710 #else
711 static void macro_build ();
712 #endif
713 static void mips16_macro_build PARAMS ((char *, int *, expressionS *,
714 const char *, const char *,
715 va_list));
716 static void macro_build_jalr PARAMS ((int, expressionS *));
717 static void macro_build_lui PARAMS ((char *place, int *counter,
718 expressionS * ep, int regnum));
719 static void set_at PARAMS ((int *counter, int reg, int unsignedp));
720 static void check_absolute_expr PARAMS ((struct mips_cl_insn * ip,
721 expressionS *));
722 static void load_register PARAMS ((int *, int, expressionS *, int));
723 static void load_address PARAMS ((int *, int, expressionS *, int *));
724 static void move_register PARAMS ((int *, int, int));
725 static void macro PARAMS ((struct mips_cl_insn * ip));
726 static void mips16_macro PARAMS ((struct mips_cl_insn * ip));
727 #ifdef LOSING_COMPILER
728 static void macro2 PARAMS ((struct mips_cl_insn * ip));
729 #endif
730 static void mips_ip PARAMS ((char *str, struct mips_cl_insn * ip));
731 static void mips16_ip PARAMS ((char *str, struct mips_cl_insn * ip));
732 static void mips16_immed PARAMS ((char *, unsigned int, int, offsetT, boolean,
733 boolean, boolean, unsigned long *,
734 boolean *, unsigned short *));
735 static int my_getPercentOp PARAMS ((char **, unsigned int *, int *));
736 static int my_getSmallParser PARAMS ((char **, unsigned int *, int *));
737 static int my_getSmallExpression PARAMS ((expressionS *, char *));
738 static void my_getExpression PARAMS ((expressionS *, char *));
739 #ifdef OBJ_ELF
740 static int support_64bit_objects PARAMS((void));
741 #endif
742 static void mips_set_option_string PARAMS ((const char **, const char *));
743 static symbolS *get_symbol PARAMS ((void));
744 static void mips_align PARAMS ((int to, int fill, symbolS *label));
745 static void s_align PARAMS ((int));
746 static void s_change_sec PARAMS ((int));
747 static void s_cons PARAMS ((int));
748 static void s_float_cons PARAMS ((int));
749 static void s_mips_globl PARAMS ((int));
750 static void s_option PARAMS ((int));
751 static void s_mipsset PARAMS ((int));
752 static void s_abicalls PARAMS ((int));
753 static void s_cpload PARAMS ((int));
754 static void s_cpsetup PARAMS ((int));
755 static void s_cplocal PARAMS ((int));
756 static void s_cprestore PARAMS ((int));
757 static void s_cpreturn PARAMS ((int));
758 static void s_gpvalue PARAMS ((int));
759 static void s_gpword PARAMS ((int));
760 static void s_cpadd PARAMS ((int));
761 static void s_insn PARAMS ((int));
762 static void md_obj_begin PARAMS ((void));
763 static void md_obj_end PARAMS ((void));
764 static long get_number PARAMS ((void));
765 static void s_mips_ent PARAMS ((int));
766 static void s_mips_end PARAMS ((int));
767 static void s_mips_frame PARAMS ((int));
768 static void s_mips_mask PARAMS ((int));
769 static void s_mips_stab PARAMS ((int));
770 static void s_mips_weakext PARAMS ((int));
771 static void s_mips_file PARAMS ((int));
772 static void s_mips_loc PARAMS ((int));
773 static int mips16_extended_frag PARAMS ((fragS *, asection *, long));
774 static int validate_mips_insn PARAMS ((const struct mips_opcode *));
775 static void show PARAMS ((FILE *, const char *, int *, int *));
776 #ifdef OBJ_ELF
777 static int mips_need_elf_addend_fixup PARAMS ((fixS *));
778 #endif
779
780 /* Return values of my_getSmallExpression(). */
781
782 enum small_ex_type
783 {
784 S_EX_NONE = 0,
785 S_EX_REGISTER,
786
787 /* Direct relocation creation by %percent_op(). */
788 S_EX_HALF,
789 S_EX_HI,
790 S_EX_LO,
791 S_EX_GP_REL,
792 S_EX_GOT,
793 S_EX_CALL16,
794 S_EX_GOT_DISP,
795 S_EX_GOT_PAGE,
796 S_EX_GOT_OFST,
797 S_EX_GOT_HI,
798 S_EX_GOT_LO,
799 S_EX_NEG,
800 S_EX_HIGHER,
801 S_EX_HIGHEST,
802 S_EX_CALL_HI,
803 S_EX_CALL_LO
804 };
805
806 /* Table and functions used to map between CPU/ISA names, and
807 ISA levels, and CPU numbers. */
808
809 struct mips_cpu_info
810 {
811 const char *name; /* CPU or ISA name. */
812 int is_isa; /* Is this an ISA? (If 0, a CPU.) */
813 int isa; /* ISA level. */
814 int cpu; /* CPU number (default CPU if ISA). */
815 };
816
817 static void mips_set_architecture PARAMS ((const struct mips_cpu_info *));
818 static void mips_set_tune PARAMS ((const struct mips_cpu_info *));
819 static boolean mips_strict_matching_cpu_name_p PARAMS ((const char *,
820 const char *));
821 static boolean mips_matching_cpu_name_p PARAMS ((const char *, const char *));
822 static const struct mips_cpu_info *mips_parse_cpu PARAMS ((const char *,
823 const char *));
824 static const struct mips_cpu_info *mips_cpu_info_from_isa PARAMS ((int));
825 \f
826 /* Pseudo-op table.
827
828 The following pseudo-ops from the Kane and Heinrich MIPS book
829 should be defined here, but are currently unsupported: .alias,
830 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
831
832 The following pseudo-ops from the Kane and Heinrich MIPS book are
833 specific to the type of debugging information being generated, and
834 should be defined by the object format: .aent, .begin, .bend,
835 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
836 .vreg.
837
838 The following pseudo-ops from the Kane and Heinrich MIPS book are
839 not MIPS CPU specific, but are also not specific to the object file
840 format. This file is probably the best place to define them, but
841 they are not currently supported: .asm0, .endr, .lab, .repeat,
842 .struct. */
843
844 static const pseudo_typeS mips_pseudo_table[] =
845 {
846 /* MIPS specific pseudo-ops. */
847 {"option", s_option, 0},
848 {"set", s_mipsset, 0},
849 {"rdata", s_change_sec, 'r'},
850 {"sdata", s_change_sec, 's'},
851 {"livereg", s_ignore, 0},
852 {"abicalls", s_abicalls, 0},
853 {"cpload", s_cpload, 0},
854 {"cpsetup", s_cpsetup, 0},
855 {"cplocal", s_cplocal, 0},
856 {"cprestore", s_cprestore, 0},
857 {"cpreturn", s_cpreturn, 0},
858 {"gpvalue", s_gpvalue, 0},
859 {"gpword", s_gpword, 0},
860 {"cpadd", s_cpadd, 0},
861 {"insn", s_insn, 0},
862
863 /* Relatively generic pseudo-ops that happen to be used on MIPS
864 chips. */
865 {"asciiz", stringer, 1},
866 {"bss", s_change_sec, 'b'},
867 {"err", s_err, 0},
868 {"half", s_cons, 1},
869 {"dword", s_cons, 3},
870 {"weakext", s_mips_weakext, 0},
871
872 /* These pseudo-ops are defined in read.c, but must be overridden
873 here for one reason or another. */
874 {"align", s_align, 0},
875 {"byte", s_cons, 0},
876 {"data", s_change_sec, 'd'},
877 {"double", s_float_cons, 'd'},
878 {"float", s_float_cons, 'f'},
879 {"globl", s_mips_globl, 0},
880 {"global", s_mips_globl, 0},
881 {"hword", s_cons, 1},
882 {"int", s_cons, 2},
883 {"long", s_cons, 2},
884 {"octa", s_cons, 4},
885 {"quad", s_cons, 3},
886 {"short", s_cons, 1},
887 {"single", s_float_cons, 'f'},
888 {"stabn", s_mips_stab, 'n'},
889 {"text", s_change_sec, 't'},
890 {"word", s_cons, 2},
891
892 { "extern", ecoff_directive_extern, 0},
893
894 { NULL, NULL, 0 },
895 };
896
897 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
898 {
899 /* These pseudo-ops should be defined by the object file format.
900 However, a.out doesn't support them, so we have versions here. */
901 {"aent", s_mips_ent, 1},
902 {"bgnb", s_ignore, 0},
903 {"end", s_mips_end, 0},
904 {"endb", s_ignore, 0},
905 {"ent", s_mips_ent, 0},
906 {"file", s_mips_file, 0},
907 {"fmask", s_mips_mask, 'F'},
908 {"frame", s_mips_frame, 0},
909 {"loc", s_mips_loc, 0},
910 {"mask", s_mips_mask, 'R'},
911 {"verstamp", s_ignore, 0},
912 { NULL, NULL, 0 },
913 };
914
915 extern void pop_insert PARAMS ((const pseudo_typeS *));
916
917 void
918 mips_pop_insert ()
919 {
920 pop_insert (mips_pseudo_table);
921 if (! ECOFF_DEBUGGING)
922 pop_insert (mips_nonecoff_pseudo_table);
923 }
924 \f
925 /* Symbols labelling the current insn. */
926
927 struct insn_label_list
928 {
929 struct insn_label_list *next;
930 symbolS *label;
931 };
932
933 static struct insn_label_list *insn_labels;
934 static struct insn_label_list *free_insn_labels;
935
936 static void mips_clear_insn_labels PARAMS ((void));
937
938 static inline void
939 mips_clear_insn_labels ()
940 {
941 register struct insn_label_list **pl;
942
943 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
944 ;
945 *pl = insn_labels;
946 insn_labels = NULL;
947 }
948 \f
949 static char *expr_end;
950
951 /* Expressions which appear in instructions. These are set by
952 mips_ip. */
953
954 static expressionS imm_expr;
955 static expressionS offset_expr;
956
957 /* Relocs associated with imm_expr and offset_expr. */
958
959 static bfd_reloc_code_real_type imm_reloc[3]
960 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
961 static bfd_reloc_code_real_type offset_reloc[3]
962 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
963
964 /* This is set by mips_ip if imm_reloc is an unmatched HI16_S reloc. */
965
966 static boolean imm_unmatched_hi;
967
968 /* These are set by mips16_ip if an explicit extension is used. */
969
970 static boolean mips16_small, mips16_ext;
971
972 /* The pdr segment for per procedure frame/regmask info. Not used for
973 ECOFF debugging. */
974
975 static segT pdr_seg;
976
977 /* The default target format to use. */
978
979 const char *
980 mips_target_format ()
981 {
982 switch (OUTPUT_FLAVOR)
983 {
984 case bfd_target_aout_flavour:
985 return target_big_endian ? "a.out-mips-big" : "a.out-mips-little";
986 case bfd_target_ecoff_flavour:
987 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
988 case bfd_target_coff_flavour:
989 return "pe-mips";
990 case bfd_target_elf_flavour:
991 #ifdef TE_TMIPS
992 /* This is traditional mips. */
993 return (target_big_endian
994 ? (HAVE_64BIT_OBJECTS
995 ? "elf64-tradbigmips"
996 : (HAVE_NEWABI
997 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
998 : (HAVE_64BIT_OBJECTS
999 ? "elf64-tradlittlemips"
1000 : (HAVE_NEWABI
1001 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1002 #else
1003 return (target_big_endian
1004 ? (HAVE_64BIT_OBJECTS
1005 ? "elf64-bigmips"
1006 : (HAVE_NEWABI
1007 ? "elf32-nbigmips" : "elf32-bigmips"))
1008 : (HAVE_64BIT_OBJECTS
1009 ? "elf64-littlemips"
1010 : (HAVE_NEWABI
1011 ? "elf32-nlittlemips" : "elf32-littlemips")));
1012 #endif
1013 default:
1014 abort ();
1015 return NULL;
1016 }
1017 }
1018
1019 /* This function is called once, at assembler startup time. It should
1020 set up all the tables, etc. that the MD part of the assembler will need. */
1021
1022 void
1023 md_begin ()
1024 {
1025 register const char *retval = NULL;
1026 int i = 0;
1027 int broken = 0;
1028
1029 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, mips_arch))
1030 as_warn (_("Could not set architecture and machine"));
1031
1032 op_hash = hash_new ();
1033
1034 for (i = 0; i < NUMOPCODES;)
1035 {
1036 const char *name = mips_opcodes[i].name;
1037
1038 retval = hash_insert (op_hash, name, (PTR) &mips_opcodes[i]);
1039 if (retval != NULL)
1040 {
1041 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1042 mips_opcodes[i].name, retval);
1043 /* Probably a memory allocation problem? Give up now. */
1044 as_fatal (_("Broken assembler. No assembly attempted."));
1045 }
1046 do
1047 {
1048 if (mips_opcodes[i].pinfo != INSN_MACRO)
1049 {
1050 if (!validate_mips_insn (&mips_opcodes[i]))
1051 broken = 1;
1052 }
1053 ++i;
1054 }
1055 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1056 }
1057
1058 mips16_op_hash = hash_new ();
1059
1060 i = 0;
1061 while (i < bfd_mips16_num_opcodes)
1062 {
1063 const char *name = mips16_opcodes[i].name;
1064
1065 retval = hash_insert (mips16_op_hash, name, (PTR) &mips16_opcodes[i]);
1066 if (retval != NULL)
1067 as_fatal (_("internal: can't hash `%s': %s"),
1068 mips16_opcodes[i].name, retval);
1069 do
1070 {
1071 if (mips16_opcodes[i].pinfo != INSN_MACRO
1072 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1073 != mips16_opcodes[i].match))
1074 {
1075 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1076 mips16_opcodes[i].name, mips16_opcodes[i].args);
1077 broken = 1;
1078 }
1079 ++i;
1080 }
1081 while (i < bfd_mips16_num_opcodes
1082 && strcmp (mips16_opcodes[i].name, name) == 0);
1083 }
1084
1085 if (broken)
1086 as_fatal (_("Broken assembler. No assembly attempted."));
1087
1088 /* We add all the general register names to the symbol table. This
1089 helps us detect invalid uses of them. */
1090 for (i = 0; i < 32; i++)
1091 {
1092 char buf[5];
1093
1094 sprintf (buf, "$%d", i);
1095 symbol_table_insert (symbol_new (buf, reg_section, i,
1096 &zero_address_frag));
1097 }
1098 symbol_table_insert (symbol_new ("$ra", reg_section, RA,
1099 &zero_address_frag));
1100 symbol_table_insert (symbol_new ("$fp", reg_section, FP,
1101 &zero_address_frag));
1102 symbol_table_insert (symbol_new ("$sp", reg_section, SP,
1103 &zero_address_frag));
1104 symbol_table_insert (symbol_new ("$gp", reg_section, GP,
1105 &zero_address_frag));
1106 symbol_table_insert (symbol_new ("$at", reg_section, AT,
1107 &zero_address_frag));
1108 symbol_table_insert (symbol_new ("$kt0", reg_section, KT0,
1109 &zero_address_frag));
1110 symbol_table_insert (symbol_new ("$kt1", reg_section, KT1,
1111 &zero_address_frag));
1112 symbol_table_insert (symbol_new ("$zero", reg_section, ZERO,
1113 &zero_address_frag));
1114 symbol_table_insert (symbol_new ("$pc", reg_section, -1,
1115 &zero_address_frag));
1116
1117 mips_no_prev_insn (false);
1118
1119 mips_gprmask = 0;
1120 mips_cprmask[0] = 0;
1121 mips_cprmask[1] = 0;
1122 mips_cprmask[2] = 0;
1123 mips_cprmask[3] = 0;
1124
1125 /* set the default alignment for the text section (2**2) */
1126 record_alignment (text_section, 2);
1127
1128 if (USE_GLOBAL_POINTER_OPT)
1129 bfd_set_gp_size (stdoutput, g_switch_value);
1130
1131 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1132 {
1133 /* On a native system, sections must be aligned to 16 byte
1134 boundaries. When configured for an embedded ELF target, we
1135 don't bother. */
1136 if (strcmp (TARGET_OS, "elf") != 0)
1137 {
1138 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1139 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1140 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1141 }
1142
1143 /* Create a .reginfo section for register masks and a .mdebug
1144 section for debugging information. */
1145 {
1146 segT seg;
1147 subsegT subseg;
1148 flagword flags;
1149 segT sec;
1150
1151 seg = now_seg;
1152 subseg = now_subseg;
1153
1154 /* The ABI says this section should be loaded so that the
1155 running program can access it. However, we don't load it
1156 if we are configured for an embedded target */
1157 flags = SEC_READONLY | SEC_DATA;
1158 if (strcmp (TARGET_OS, "elf") != 0)
1159 flags |= SEC_ALLOC | SEC_LOAD;
1160
1161 if (mips_abi != N64_ABI)
1162 {
1163 sec = subseg_new (".reginfo", (subsegT) 0);
1164
1165 bfd_set_section_flags (stdoutput, sec, flags);
1166 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
1167
1168 #ifdef OBJ_ELF
1169 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
1170 #endif
1171 }
1172 else
1173 {
1174 /* The 64-bit ABI uses a .MIPS.options section rather than
1175 .reginfo section. */
1176 sec = subseg_new (".MIPS.options", (subsegT) 0);
1177 bfd_set_section_flags (stdoutput, sec, flags);
1178 bfd_set_section_alignment (stdoutput, sec, 3);
1179
1180 #ifdef OBJ_ELF
1181 /* Set up the option header. */
1182 {
1183 Elf_Internal_Options opthdr;
1184 char *f;
1185
1186 opthdr.kind = ODK_REGINFO;
1187 opthdr.size = (sizeof (Elf_External_Options)
1188 + sizeof (Elf64_External_RegInfo));
1189 opthdr.section = 0;
1190 opthdr.info = 0;
1191 f = frag_more (sizeof (Elf_External_Options));
1192 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
1193 (Elf_External_Options *) f);
1194
1195 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
1196 }
1197 #endif
1198 }
1199
1200 if (ECOFF_DEBUGGING)
1201 {
1202 sec = subseg_new (".mdebug", (subsegT) 0);
1203 (void) bfd_set_section_flags (stdoutput, sec,
1204 SEC_HAS_CONTENTS | SEC_READONLY);
1205 (void) bfd_set_section_alignment (stdoutput, sec, 2);
1206 }
1207 #ifdef OBJ_ELF
1208 else if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1209 {
1210 pdr_seg = subseg_new (".pdr", (subsegT) 0);
1211 (void) bfd_set_section_flags (stdoutput, pdr_seg,
1212 SEC_READONLY | SEC_RELOC
1213 | SEC_DEBUGGING);
1214 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
1215 }
1216 #endif
1217
1218 subseg_set (seg, subseg);
1219 }
1220 }
1221
1222 if (! ECOFF_DEBUGGING)
1223 md_obj_begin ();
1224 }
1225
1226 void
1227 md_mips_end ()
1228 {
1229 if (! ECOFF_DEBUGGING)
1230 md_obj_end ();
1231 }
1232
1233 void
1234 md_assemble (str)
1235 char *str;
1236 {
1237 struct mips_cl_insn insn;
1238 bfd_reloc_code_real_type unused_reloc[3]
1239 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1240
1241 imm_expr.X_op = O_absent;
1242 imm_unmatched_hi = false;
1243 offset_expr.X_op = O_absent;
1244 imm_reloc[0] = BFD_RELOC_UNUSED;
1245 imm_reloc[1] = BFD_RELOC_UNUSED;
1246 imm_reloc[2] = BFD_RELOC_UNUSED;
1247 offset_reloc[0] = BFD_RELOC_UNUSED;
1248 offset_reloc[1] = BFD_RELOC_UNUSED;
1249 offset_reloc[2] = BFD_RELOC_UNUSED;
1250
1251 if (mips_opts.mips16)
1252 mips16_ip (str, &insn);
1253 else
1254 {
1255 mips_ip (str, &insn);
1256 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
1257 str, insn.insn_opcode));
1258 }
1259
1260 if (insn_error)
1261 {
1262 as_bad ("%s `%s'", insn_error, str);
1263 return;
1264 }
1265
1266 if (insn.insn_mo->pinfo == INSN_MACRO)
1267 {
1268 if (mips_opts.mips16)
1269 mips16_macro (&insn);
1270 else
1271 macro (&insn);
1272 }
1273 else
1274 {
1275 if (imm_expr.X_op != O_absent)
1276 append_insn (NULL, &insn, &imm_expr, imm_reloc, imm_unmatched_hi);
1277 else if (offset_expr.X_op != O_absent)
1278 append_insn (NULL, &insn, &offset_expr, offset_reloc, false);
1279 else
1280 append_insn (NULL, &insn, NULL, unused_reloc, false);
1281 }
1282 }
1283
1284 /* See whether instruction IP reads register REG. CLASS is the type
1285 of register. */
1286
1287 static int
1288 insn_uses_reg (ip, reg, class)
1289 struct mips_cl_insn *ip;
1290 unsigned int reg;
1291 enum mips_regclass class;
1292 {
1293 if (class == MIPS16_REG)
1294 {
1295 assert (mips_opts.mips16);
1296 reg = mips16_to_32_reg_map[reg];
1297 class = MIPS_GR_REG;
1298 }
1299
1300 /* Don't report on general register ZERO, since it never changes. */
1301 if (class == MIPS_GR_REG && reg == ZERO)
1302 return 0;
1303
1304 if (class == MIPS_FP_REG)
1305 {
1306 assert (! mips_opts.mips16);
1307 /* If we are called with either $f0 or $f1, we must check $f0.
1308 This is not optimal, because it will introduce an unnecessary
1309 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
1310 need to distinguish reading both $f0 and $f1 or just one of
1311 them. Note that we don't have to check the other way,
1312 because there is no instruction that sets both $f0 and $f1
1313 and requires a delay. */
1314 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
1315 && ((((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS) &~(unsigned)1)
1316 == (reg &~ (unsigned) 1)))
1317 return 1;
1318 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
1319 && ((((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT) &~(unsigned)1)
1320 == (reg &~ (unsigned) 1)))
1321 return 1;
1322 }
1323 else if (! mips_opts.mips16)
1324 {
1325 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
1326 && ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == reg)
1327 return 1;
1328 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
1329 && ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT) == reg)
1330 return 1;
1331 }
1332 else
1333 {
1334 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
1335 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RX)
1336 & MIPS16OP_MASK_RX)]
1337 == reg))
1338 return 1;
1339 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
1340 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RY)
1341 & MIPS16OP_MASK_RY)]
1342 == reg))
1343 return 1;
1344 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
1345 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
1346 & MIPS16OP_MASK_MOVE32Z)]
1347 == reg))
1348 return 1;
1349 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
1350 return 1;
1351 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
1352 return 1;
1353 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
1354 return 1;
1355 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
1356 && ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
1357 & MIPS16OP_MASK_REGR32) == reg)
1358 return 1;
1359 }
1360
1361 return 0;
1362 }
1363
1364 /* This function returns true if modifying a register requires a
1365 delay. */
1366
1367 static int
1368 reg_needs_delay (reg)
1369 unsigned int reg;
1370 {
1371 unsigned long prev_pinfo;
1372
1373 prev_pinfo = prev_insn.insn_mo->pinfo;
1374 if (! mips_opts.noreorder
1375 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
1376 && ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1377 || (! gpr_interlocks
1378 && (prev_pinfo & INSN_LOAD_MEMORY_DELAY))))
1379 {
1380 /* A load from a coprocessor or from memory. All load
1381 delays delay the use of general register rt for one
1382 instruction on the r3000. The r6000 and r4000 use
1383 interlocks. */
1384 /* Itbl support may require additional care here. */
1385 know (prev_pinfo & INSN_WRITE_GPR_T);
1386 if (reg == ((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT))
1387 return 1;
1388 }
1389
1390 return 0;
1391 }
1392
1393 /* Mark instruction labels in mips16 mode. This permits the linker to
1394 handle them specially, such as generating jalx instructions when
1395 needed. We also make them odd for the duration of the assembly, in
1396 order to generate the right sort of code. We will make them even
1397 in the adjust_symtab routine, while leaving them marked. This is
1398 convenient for the debugger and the disassembler. The linker knows
1399 to make them odd again. */
1400
1401 static void
1402 mips16_mark_labels ()
1403 {
1404 if (mips_opts.mips16)
1405 {
1406 struct insn_label_list *l;
1407 valueT val;
1408
1409 for (l = insn_labels; l != NULL; l = l->next)
1410 {
1411 #ifdef OBJ_ELF
1412 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1413 S_SET_OTHER (l->label, STO_MIPS16);
1414 #endif
1415 val = S_GET_VALUE (l->label);
1416 if ((val & 1) == 0)
1417 S_SET_VALUE (l->label, val + 1);
1418 }
1419 }
1420 }
1421
1422 /* Output an instruction. PLACE is where to put the instruction; if
1423 it is NULL, this uses frag_more to get room. IP is the instruction
1424 information. ADDRESS_EXPR is an operand of the instruction to be
1425 used with RELOC_TYPE. */
1426
1427 static void
1428 append_insn (place, ip, address_expr, reloc_type, unmatched_hi)
1429 char *place;
1430 struct mips_cl_insn *ip;
1431 expressionS *address_expr;
1432 bfd_reloc_code_real_type *reloc_type;
1433 boolean unmatched_hi;
1434 {
1435 register unsigned long prev_pinfo, pinfo;
1436 char *f;
1437 fixS *fixp[3];
1438 int nops = 0;
1439
1440 /* Mark instruction labels in mips16 mode. */
1441 mips16_mark_labels ();
1442
1443 prev_pinfo = prev_insn.insn_mo->pinfo;
1444 pinfo = ip->insn_mo->pinfo;
1445
1446 if (place == NULL && (! mips_opts.noreorder || prev_nop_frag != NULL))
1447 {
1448 int prev_prev_nop;
1449
1450 /* If the previous insn required any delay slots, see if we need
1451 to insert a NOP or two. There are eight kinds of possible
1452 hazards, of which an instruction can have at most one type.
1453 (1) a load from memory delay
1454 (2) a load from a coprocessor delay
1455 (3) an unconditional branch delay
1456 (4) a conditional branch delay
1457 (5) a move to coprocessor register delay
1458 (6) a load coprocessor register from memory delay
1459 (7) a coprocessor condition code delay
1460 (8) a HI/LO special register delay
1461
1462 There are a lot of optimizations we could do that we don't.
1463 In particular, we do not, in general, reorder instructions.
1464 If you use gcc with optimization, it will reorder
1465 instructions and generally do much more optimization then we
1466 do here; repeating all that work in the assembler would only
1467 benefit hand written assembly code, and does not seem worth
1468 it. */
1469
1470 /* This is how a NOP is emitted. */
1471 #define emit_nop() \
1472 (mips_opts.mips16 \
1473 ? md_number_to_chars (frag_more (2), 0x6500, 2) \
1474 : md_number_to_chars (frag_more (4), 0, 4))
1475
1476 /* The previous insn might require a delay slot, depending upon
1477 the contents of the current insn. */
1478 if (! mips_opts.mips16
1479 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
1480 && (((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1481 && ! cop_interlocks)
1482 || (! gpr_interlocks
1483 && (prev_pinfo & INSN_LOAD_MEMORY_DELAY))))
1484 {
1485 /* A load from a coprocessor or from memory. All load
1486 delays delay the use of general register rt for one
1487 instruction on the r3000. The r6000 and r4000 use
1488 interlocks. */
1489 /* Itbl support may require additional care here. */
1490 know (prev_pinfo & INSN_WRITE_GPR_T);
1491 if (mips_optimize == 0
1492 || insn_uses_reg (ip,
1493 ((prev_insn.insn_opcode >> OP_SH_RT)
1494 & OP_MASK_RT),
1495 MIPS_GR_REG))
1496 ++nops;
1497 }
1498 else if (! mips_opts.mips16
1499 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
1500 && (((prev_pinfo & INSN_COPROC_MOVE_DELAY)
1501 && ! cop_interlocks)
1502 || (mips_opts.isa == ISA_MIPS1
1503 && (prev_pinfo & INSN_COPROC_MEMORY_DELAY))))
1504 {
1505 /* A generic coprocessor delay. The previous instruction
1506 modified a coprocessor general or control register. If
1507 it modified a control register, we need to avoid any
1508 coprocessor instruction (this is probably not always
1509 required, but it sometimes is). If it modified a general
1510 register, we avoid using that register.
1511
1512 On the r6000 and r4000 loading a coprocessor register
1513 from memory is interlocked, and does not require a delay.
1514
1515 This case is not handled very well. There is no special
1516 knowledge of CP0 handling, and the coprocessors other
1517 than the floating point unit are not distinguished at
1518 all. */
1519 /* Itbl support may require additional care here. FIXME!
1520 Need to modify this to include knowledge about
1521 user specified delays! */
1522 if (prev_pinfo & INSN_WRITE_FPR_T)
1523 {
1524 if (mips_optimize == 0
1525 || insn_uses_reg (ip,
1526 ((prev_insn.insn_opcode >> OP_SH_FT)
1527 & OP_MASK_FT),
1528 MIPS_FP_REG))
1529 ++nops;
1530 }
1531 else if (prev_pinfo & INSN_WRITE_FPR_S)
1532 {
1533 if (mips_optimize == 0
1534 || insn_uses_reg (ip,
1535 ((prev_insn.insn_opcode >> OP_SH_FS)
1536 & OP_MASK_FS),
1537 MIPS_FP_REG))
1538 ++nops;
1539 }
1540 else
1541 {
1542 /* We don't know exactly what the previous instruction
1543 does. If the current instruction uses a coprocessor
1544 register, we must insert a NOP. If previous
1545 instruction may set the condition codes, and the
1546 current instruction uses them, we must insert two
1547 NOPS. */
1548 /* Itbl support may require additional care here. */
1549 if (mips_optimize == 0
1550 || ((prev_pinfo & INSN_WRITE_COND_CODE)
1551 && (pinfo & INSN_READ_COND_CODE)))
1552 nops += 2;
1553 else if (pinfo & INSN_COP)
1554 ++nops;
1555 }
1556 }
1557 else if (! mips_opts.mips16
1558 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
1559 && (prev_pinfo & INSN_WRITE_COND_CODE)
1560 && ! cop_interlocks)
1561 {
1562 /* The previous instruction sets the coprocessor condition
1563 codes, but does not require a general coprocessor delay
1564 (this means it is a floating point comparison
1565 instruction). If this instruction uses the condition
1566 codes, we need to insert a single NOP. */
1567 /* Itbl support may require additional care here. */
1568 if (mips_optimize == 0
1569 || (pinfo & INSN_READ_COND_CODE))
1570 ++nops;
1571 }
1572
1573 /* If we're fixing up mfhi/mflo for the r7000 and the
1574 previous insn was an mfhi/mflo and the current insn
1575 reads the register that the mfhi/mflo wrote to, then
1576 insert two nops. */
1577
1578 else if (mips_7000_hilo_fix
1579 && MF_HILO_INSN (prev_pinfo)
1580 && insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_RD)
1581 & OP_MASK_RD),
1582 MIPS_GR_REG))
1583 {
1584 nops += 2;
1585 }
1586
1587 /* If we're fixing up mfhi/mflo for the r7000 and the
1588 2nd previous insn was an mfhi/mflo and the current insn
1589 reads the register that the mfhi/mflo wrote to, then
1590 insert one nop. */
1591
1592 else if (mips_7000_hilo_fix
1593 && MF_HILO_INSN (prev_prev_insn.insn_opcode)
1594 && insn_uses_reg (ip, ((prev_prev_insn.insn_opcode >> OP_SH_RD)
1595 & OP_MASK_RD),
1596 MIPS_GR_REG))
1597
1598 {
1599 ++nops;
1600 }
1601
1602 else if (prev_pinfo & INSN_READ_LO)
1603 {
1604 /* The previous instruction reads the LO register; if the
1605 current instruction writes to the LO register, we must
1606 insert two NOPS. Some newer processors have interlocks.
1607 Also the tx39's multiply instructions can be exectuted
1608 immediatly after a read from HI/LO (without the delay),
1609 though the tx39's divide insns still do require the
1610 delay. */
1611 if (! (hilo_interlocks
1612 || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT)))
1613 && (mips_optimize == 0
1614 || (pinfo & INSN_WRITE_LO)))
1615 nops += 2;
1616 /* Most mips16 branch insns don't have a delay slot.
1617 If a read from LO is immediately followed by a branch
1618 to a write to LO we have a read followed by a write
1619 less than 2 insns away. We assume the target of
1620 a branch might be a write to LO, and insert a nop
1621 between a read and an immediately following branch. */
1622 else if (mips_opts.mips16
1623 && (mips_optimize == 0
1624 || (pinfo & MIPS16_INSN_BRANCH)))
1625 ++nops;
1626 }
1627 else if (prev_insn.insn_mo->pinfo & INSN_READ_HI)
1628 {
1629 /* The previous instruction reads the HI register; if the
1630 current instruction writes to the HI register, we must
1631 insert a NOP. Some newer processors have interlocks.
1632 Also the note tx39's multiply above. */
1633 if (! (hilo_interlocks
1634 || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT)))
1635 && (mips_optimize == 0
1636 || (pinfo & INSN_WRITE_HI)))
1637 nops += 2;
1638 /* Most mips16 branch insns don't have a delay slot.
1639 If a read from HI is immediately followed by a branch
1640 to a write to HI we have a read followed by a write
1641 less than 2 insns away. We assume the target of
1642 a branch might be a write to HI, and insert a nop
1643 between a read and an immediately following branch. */
1644 else if (mips_opts.mips16
1645 && (mips_optimize == 0
1646 || (pinfo & MIPS16_INSN_BRANCH)))
1647 ++nops;
1648 }
1649
1650 /* If the previous instruction was in a noreorder section, then
1651 we don't want to insert the nop after all. */
1652 /* Itbl support may require additional care here. */
1653 if (prev_insn_unreordered)
1654 nops = 0;
1655
1656 /* There are two cases which require two intervening
1657 instructions: 1) setting the condition codes using a move to
1658 coprocessor instruction which requires a general coprocessor
1659 delay and then reading the condition codes 2) reading the HI
1660 or LO register and then writing to it (except on processors
1661 which have interlocks). If we are not already emitting a NOP
1662 instruction, we must check for these cases compared to the
1663 instruction previous to the previous instruction. */
1664 if ((! mips_opts.mips16
1665 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
1666 && (prev_prev_insn.insn_mo->pinfo & INSN_COPROC_MOVE_DELAY)
1667 && (prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
1668 && (pinfo & INSN_READ_COND_CODE)
1669 && ! cop_interlocks)
1670 || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_LO)
1671 && (pinfo & INSN_WRITE_LO)
1672 && ! (hilo_interlocks
1673 || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT))))
1674 || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
1675 && (pinfo & INSN_WRITE_HI)
1676 && ! (hilo_interlocks
1677 || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT)))))
1678 prev_prev_nop = 1;
1679 else
1680 prev_prev_nop = 0;
1681
1682 if (prev_prev_insn_unreordered)
1683 prev_prev_nop = 0;
1684
1685 if (prev_prev_nop && nops == 0)
1686 ++nops;
1687
1688 /* If we are being given a nop instruction, don't bother with
1689 one of the nops we would otherwise output. This will only
1690 happen when a nop instruction is used with mips_optimize set
1691 to 0. */
1692 if (nops > 0
1693 && ! mips_opts.noreorder
1694 && ip->insn_opcode == (unsigned) (mips_opts.mips16 ? 0x6500 : 0))
1695 --nops;
1696
1697 /* Now emit the right number of NOP instructions. */
1698 if (nops > 0 && ! mips_opts.noreorder)
1699 {
1700 fragS *old_frag;
1701 unsigned long old_frag_offset;
1702 int i;
1703 struct insn_label_list *l;
1704
1705 old_frag = frag_now;
1706 old_frag_offset = frag_now_fix ();
1707
1708 for (i = 0; i < nops; i++)
1709 emit_nop ();
1710
1711 if (listing)
1712 {
1713 listing_prev_line ();
1714 /* We may be at the start of a variant frag. In case we
1715 are, make sure there is enough space for the frag
1716 after the frags created by listing_prev_line. The
1717 argument to frag_grow here must be at least as large
1718 as the argument to all other calls to frag_grow in
1719 this file. We don't have to worry about being in the
1720 middle of a variant frag, because the variants insert
1721 all needed nop instructions themselves. */
1722 frag_grow (40);
1723 }
1724
1725 for (l = insn_labels; l != NULL; l = l->next)
1726 {
1727 valueT val;
1728
1729 assert (S_GET_SEGMENT (l->label) == now_seg);
1730 symbol_set_frag (l->label, frag_now);
1731 val = (valueT) frag_now_fix ();
1732 /* mips16 text labels are stored as odd. */
1733 if (mips_opts.mips16)
1734 ++val;
1735 S_SET_VALUE (l->label, val);
1736 }
1737
1738 #ifndef NO_ECOFF_DEBUGGING
1739 if (ECOFF_DEBUGGING)
1740 ecoff_fix_loc (old_frag, old_frag_offset);
1741 #endif
1742 }
1743 else if (prev_nop_frag != NULL)
1744 {
1745 /* We have a frag holding nops we may be able to remove. If
1746 we don't need any nops, we can decrease the size of
1747 prev_nop_frag by the size of one instruction. If we do
1748 need some nops, we count them in prev_nops_required. */
1749 if (prev_nop_frag_since == 0)
1750 {
1751 if (nops == 0)
1752 {
1753 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
1754 --prev_nop_frag_holds;
1755 }
1756 else
1757 prev_nop_frag_required += nops;
1758 }
1759 else
1760 {
1761 if (prev_prev_nop == 0)
1762 {
1763 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
1764 --prev_nop_frag_holds;
1765 }
1766 else
1767 ++prev_nop_frag_required;
1768 }
1769
1770 if (prev_nop_frag_holds <= prev_nop_frag_required)
1771 prev_nop_frag = NULL;
1772
1773 ++prev_nop_frag_since;
1774
1775 /* Sanity check: by the time we reach the second instruction
1776 after prev_nop_frag, we should have used up all the nops
1777 one way or another. */
1778 assert (prev_nop_frag_since <= 1 || prev_nop_frag == NULL);
1779 }
1780 }
1781
1782 if (*reloc_type > BFD_RELOC_UNUSED)
1783 {
1784 /* We need to set up a variant frag. */
1785 assert (mips_opts.mips16 && address_expr != NULL);
1786 f = frag_var (rs_machine_dependent, 4, 0,
1787 RELAX_MIPS16_ENCODE (*reloc_type - BFD_RELOC_UNUSED,
1788 mips16_small, mips16_ext,
1789 (prev_pinfo
1790 & INSN_UNCOND_BRANCH_DELAY),
1791 (*prev_insn_reloc_type
1792 == BFD_RELOC_MIPS16_JMP)),
1793 make_expr_symbol (address_expr), 0, NULL);
1794 }
1795 else if (place != NULL)
1796 f = place;
1797 else if (mips_opts.mips16
1798 && ! ip->use_extend
1799 && *reloc_type != BFD_RELOC_MIPS16_JMP)
1800 {
1801 /* Make sure there is enough room to swap this instruction with
1802 a following jump instruction. */
1803 frag_grow (6);
1804 f = frag_more (2);
1805 }
1806 else
1807 {
1808 if (mips_opts.mips16
1809 && mips_opts.noreorder
1810 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
1811 as_warn (_("extended instruction in delay slot"));
1812
1813 f = frag_more (4);
1814 }
1815
1816 fixp[0] = fixp[1] = fixp[2] = NULL;
1817 if (address_expr != NULL && *reloc_type < BFD_RELOC_UNUSED)
1818 {
1819 if (address_expr->X_op == O_constant)
1820 {
1821 valueT tmp;
1822
1823 switch (*reloc_type)
1824 {
1825 case BFD_RELOC_32:
1826 ip->insn_opcode |= address_expr->X_add_number;
1827 break;
1828
1829 case BFD_RELOC_MIPS_HIGHEST:
1830 tmp = (address_expr->X_add_number + 0x800080008000) >> 16;
1831 tmp >>= 16;
1832 ip->insn_opcode |= (tmp >> 16) & 0xffff;
1833 break;
1834
1835 case BFD_RELOC_MIPS_HIGHER:
1836 tmp = (address_expr->X_add_number + 0x80008000) >> 16;
1837 ip->insn_opcode |= (tmp >> 16) & 0xffff;
1838 break;
1839
1840 case BFD_RELOC_HI16_S:
1841 ip->insn_opcode |= ((address_expr->X_add_number + 0x8000)
1842 >> 16) & 0xffff;
1843 break;
1844
1845 case BFD_RELOC_HI16:
1846 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
1847 break;
1848
1849 case BFD_RELOC_LO16:
1850 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
1851 break;
1852
1853 case BFD_RELOC_MIPS_JMP:
1854 if ((address_expr->X_add_number & 3) != 0)
1855 as_bad (_("jump to misaligned address (0x%lx)"),
1856 (unsigned long) address_expr->X_add_number);
1857 if (address_expr->X_add_number & ~0xfffffff
1858 || address_expr->X_add_number > 0x7fffffc)
1859 as_bad (_("jump address range overflow (0x%lx)"),
1860 (unsigned long) address_expr->X_add_number);
1861 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
1862 break;
1863
1864 case BFD_RELOC_MIPS16_JMP:
1865 if ((address_expr->X_add_number & 3) != 0)
1866 as_bad (_("jump to misaligned address (0x%lx)"),
1867 (unsigned long) address_expr->X_add_number);
1868 if (address_expr->X_add_number & ~0xfffffff
1869 || address_expr->X_add_number > 0x7fffffc)
1870 as_bad (_("jump address range overflow (0x%lx)"),
1871 (unsigned long) address_expr->X_add_number);
1872 ip->insn_opcode |=
1873 (((address_expr->X_add_number & 0x7c0000) << 3)
1874 | ((address_expr->X_add_number & 0xf800000) >> 7)
1875 | ((address_expr->X_add_number & 0x3fffc) >> 2));
1876 break;
1877
1878 case BFD_RELOC_16_PCREL:
1879 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
1880 break;
1881
1882 case BFD_RELOC_16_PCREL_S2:
1883 goto need_reloc;
1884
1885 default:
1886 internalError ();
1887 }
1888 }
1889 else
1890 {
1891 need_reloc:
1892 /* Don't generate a reloc if we are writing into a variant frag. */
1893 if (place == NULL)
1894 {
1895 fixp[0] = fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
1896 address_expr,
1897 (*reloc_type == BFD_RELOC_16_PCREL
1898 || *reloc_type == BFD_RELOC_16_PCREL_S2),
1899 reloc_type[0]);
1900
1901 /* These relocations can have an addend that won't fit in
1902 4 octets for 64bit assembly. */
1903 if (HAVE_64BIT_GPRS &&
1904 (*reloc_type == BFD_RELOC_16
1905 || *reloc_type == BFD_RELOC_32
1906 || *reloc_type == BFD_RELOC_MIPS_JMP
1907 || *reloc_type == BFD_RELOC_HI16_S
1908 || *reloc_type == BFD_RELOC_LO16
1909 || *reloc_type == BFD_RELOC_GPREL16
1910 || *reloc_type == BFD_RELOC_MIPS_LITERAL
1911 || *reloc_type == BFD_RELOC_GPREL32
1912 || *reloc_type == BFD_RELOC_64
1913 || *reloc_type == BFD_RELOC_CTOR
1914 || *reloc_type == BFD_RELOC_MIPS_SUB
1915 || *reloc_type == BFD_RELOC_MIPS_HIGHEST
1916 || *reloc_type == BFD_RELOC_MIPS_HIGHER
1917 || *reloc_type == BFD_RELOC_MIPS_SCN_DISP
1918 || *reloc_type == BFD_RELOC_MIPS_REL16
1919 || *reloc_type == BFD_RELOC_MIPS_RELGOT))
1920 fixp[0]->fx_no_overflow = 1;
1921
1922 if (unmatched_hi)
1923 {
1924 struct mips_hi_fixup *hi_fixup;
1925
1926 assert (*reloc_type == BFD_RELOC_HI16_S);
1927 hi_fixup = ((struct mips_hi_fixup *)
1928 xmalloc (sizeof (struct mips_hi_fixup)));
1929 hi_fixup->fixp = fixp[0];
1930 hi_fixup->seg = now_seg;
1931 hi_fixup->next = mips_hi_fixup_list;
1932 mips_hi_fixup_list = hi_fixup;
1933 }
1934
1935 if (reloc_type[1] != BFD_RELOC_UNUSED)
1936 {
1937 /* FIXME: This symbol can be one of
1938 RSS_UNDEF, RSS_GP, RSS_GP0, RSS_LOC. */
1939 address_expr->X_op = O_absent;
1940 address_expr->X_add_symbol = 0;
1941 address_expr->X_add_number = 0;
1942
1943 fixp[1] = fix_new_exp (frag_now, f - frag_now->fr_literal,
1944 4, address_expr, false,
1945 reloc_type[1]);
1946
1947 /* These relocations can have an addend that won't fit in
1948 4 octets for 64bit assembly. */
1949 if (HAVE_64BIT_GPRS &&
1950 (*reloc_type == BFD_RELOC_16
1951 || *reloc_type == BFD_RELOC_32
1952 || *reloc_type == BFD_RELOC_MIPS_JMP
1953 || *reloc_type == BFD_RELOC_HI16_S
1954 || *reloc_type == BFD_RELOC_LO16
1955 || *reloc_type == BFD_RELOC_GPREL16
1956 || *reloc_type == BFD_RELOC_MIPS_LITERAL
1957 || *reloc_type == BFD_RELOC_GPREL32
1958 || *reloc_type == BFD_RELOC_64
1959 || *reloc_type == BFD_RELOC_CTOR
1960 || *reloc_type == BFD_RELOC_MIPS_SUB
1961 || *reloc_type == BFD_RELOC_MIPS_HIGHEST
1962 || *reloc_type == BFD_RELOC_MIPS_HIGHER
1963 || *reloc_type == BFD_RELOC_MIPS_SCN_DISP
1964 || *reloc_type == BFD_RELOC_MIPS_REL16
1965 || *reloc_type == BFD_RELOC_MIPS_RELGOT))
1966 fixp[1]->fx_no_overflow = 1;
1967
1968 if (reloc_type[2] != BFD_RELOC_UNUSED)
1969 {
1970 address_expr->X_op = O_absent;
1971 address_expr->X_add_symbol = 0;
1972 address_expr->X_add_number = 0;
1973
1974 fixp[2] = fix_new_exp (frag_now,
1975 f - frag_now->fr_literal, 4,
1976 address_expr, false,
1977 reloc_type[2]);
1978
1979 /* These relocations can have an addend that won't fit in
1980 4 octets for 64bit assembly. */
1981 if (HAVE_64BIT_GPRS &&
1982 (*reloc_type == BFD_RELOC_16
1983 || *reloc_type == BFD_RELOC_32
1984 || *reloc_type == BFD_RELOC_MIPS_JMP
1985 || *reloc_type == BFD_RELOC_HI16_S
1986 || *reloc_type == BFD_RELOC_LO16
1987 || *reloc_type == BFD_RELOC_GPREL16
1988 || *reloc_type == BFD_RELOC_MIPS_LITERAL
1989 || *reloc_type == BFD_RELOC_GPREL32
1990 || *reloc_type == BFD_RELOC_64
1991 || *reloc_type == BFD_RELOC_CTOR
1992 || *reloc_type == BFD_RELOC_MIPS_SUB
1993 || *reloc_type == BFD_RELOC_MIPS_HIGHEST
1994 || *reloc_type == BFD_RELOC_MIPS_HIGHER
1995 || *reloc_type == BFD_RELOC_MIPS_SCN_DISP
1996 || *reloc_type == BFD_RELOC_MIPS_REL16
1997 || *reloc_type == BFD_RELOC_MIPS_RELGOT))
1998 fixp[2]->fx_no_overflow = 1;
1999 }
2000 }
2001 }
2002 }
2003 }
2004
2005 if (! mips_opts.mips16)
2006 {
2007 md_number_to_chars (f, ip->insn_opcode, 4);
2008 #ifdef OBJ_ELF
2009 dwarf2_emit_insn (4);
2010 #endif
2011 }
2012 else if (*reloc_type == BFD_RELOC_MIPS16_JMP)
2013 {
2014 md_number_to_chars (f, ip->insn_opcode >> 16, 2);
2015 md_number_to_chars (f + 2, ip->insn_opcode & 0xffff, 2);
2016 #ifdef OBJ_ELF
2017 dwarf2_emit_insn (4);
2018 #endif
2019 }
2020 else
2021 {
2022 if (ip->use_extend)
2023 {
2024 md_number_to_chars (f, 0xf000 | ip->extend, 2);
2025 f += 2;
2026 }
2027 md_number_to_chars (f, ip->insn_opcode, 2);
2028 #ifdef OBJ_ELF
2029 dwarf2_emit_insn (ip->use_extend ? 4 : 2);
2030 #endif
2031 }
2032
2033 /* Update the register mask information. */
2034 if (! mips_opts.mips16)
2035 {
2036 if (pinfo & INSN_WRITE_GPR_D)
2037 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD);
2038 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
2039 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT);
2040 if (pinfo & INSN_READ_GPR_S)
2041 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS);
2042 if (pinfo & INSN_WRITE_GPR_31)
2043 mips_gprmask |= 1 << RA;
2044 if (pinfo & INSN_WRITE_FPR_D)
2045 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FD) & OP_MASK_FD);
2046 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
2047 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS);
2048 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
2049 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT);
2050 if ((pinfo & INSN_READ_FPR_R) != 0)
2051 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FR) & OP_MASK_FR);
2052 if (pinfo & INSN_COP)
2053 {
2054 /* We don't keep enough information to sort these cases out.
2055 The itbl support does keep this information however, although
2056 we currently don't support itbl fprmats as part of the cop
2057 instruction. May want to add this support in the future. */
2058 }
2059 /* Never set the bit for $0, which is always zero. */
2060 mips_gprmask &= ~1 << 0;
2061 }
2062 else
2063 {
2064 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
2065 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RX)
2066 & MIPS16OP_MASK_RX);
2067 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
2068 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RY)
2069 & MIPS16OP_MASK_RY);
2070 if (pinfo & MIPS16_INSN_WRITE_Z)
2071 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RZ)
2072 & MIPS16OP_MASK_RZ);
2073 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
2074 mips_gprmask |= 1 << TREG;
2075 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
2076 mips_gprmask |= 1 << SP;
2077 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
2078 mips_gprmask |= 1 << RA;
2079 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
2080 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
2081 if (pinfo & MIPS16_INSN_READ_Z)
2082 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
2083 & MIPS16OP_MASK_MOVE32Z);
2084 if (pinfo & MIPS16_INSN_READ_GPR_X)
2085 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
2086 & MIPS16OP_MASK_REGR32);
2087 }
2088
2089 if (place == NULL && ! mips_opts.noreorder)
2090 {
2091 /* Filling the branch delay slot is more complex. We try to
2092 switch the branch with the previous instruction, which we can
2093 do if the previous instruction does not set up a condition
2094 that the branch tests and if the branch is not itself the
2095 target of any branch. */
2096 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
2097 || (pinfo & INSN_COND_BRANCH_DELAY))
2098 {
2099 if (mips_optimize < 2
2100 /* If we have seen .set volatile or .set nomove, don't
2101 optimize. */
2102 || mips_opts.nomove != 0
2103 /* If we had to emit any NOP instructions, then we
2104 already know we can not swap. */
2105 || nops != 0
2106 /* If we don't even know the previous insn, we can not
2107 swap. */
2108 || ! prev_insn_valid
2109 /* If the previous insn is already in a branch delay
2110 slot, then we can not swap. */
2111 || prev_insn_is_delay_slot
2112 /* If the previous previous insn was in a .set
2113 noreorder, we can't swap. Actually, the MIPS
2114 assembler will swap in this situation. However, gcc
2115 configured -with-gnu-as will generate code like
2116 .set noreorder
2117 lw $4,XXX
2118 .set reorder
2119 INSN
2120 bne $4,$0,foo
2121 in which we can not swap the bne and INSN. If gcc is
2122 not configured -with-gnu-as, it does not output the
2123 .set pseudo-ops. We don't have to check
2124 prev_insn_unreordered, because prev_insn_valid will
2125 be 0 in that case. We don't want to use
2126 prev_prev_insn_valid, because we do want to be able
2127 to swap at the start of a function. */
2128 || prev_prev_insn_unreordered
2129 /* If the branch is itself the target of a branch, we
2130 can not swap. We cheat on this; all we check for is
2131 whether there is a label on this instruction. If
2132 there are any branches to anything other than a
2133 label, users must use .set noreorder. */
2134 || insn_labels != NULL
2135 /* If the previous instruction is in a variant frag, we
2136 can not do the swap. This does not apply to the
2137 mips16, which uses variant frags for different
2138 purposes. */
2139 || (! mips_opts.mips16
2140 && prev_insn_frag->fr_type == rs_machine_dependent)
2141 /* If the branch reads the condition codes, we don't
2142 even try to swap, because in the sequence
2143 ctc1 $X,$31
2144 INSN
2145 INSN
2146 bc1t LABEL
2147 we can not swap, and I don't feel like handling that
2148 case. */
2149 || (! mips_opts.mips16
2150 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
2151 && (pinfo & INSN_READ_COND_CODE))
2152 /* We can not swap with an instruction that requires a
2153 delay slot, becase the target of the branch might
2154 interfere with that instruction. */
2155 || (! mips_opts.mips16
2156 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
2157 && (prev_pinfo
2158 /* Itbl support may require additional care here. */
2159 & (INSN_LOAD_COPROC_DELAY
2160 | INSN_COPROC_MOVE_DELAY
2161 | INSN_WRITE_COND_CODE)))
2162 || (! (hilo_interlocks
2163 || (mips_tune == CPU_R3900 && (pinfo & INSN_MULT)))
2164 && (prev_pinfo
2165 & (INSN_READ_LO
2166 | INSN_READ_HI)))
2167 || (! mips_opts.mips16
2168 && ! gpr_interlocks
2169 && (prev_pinfo & INSN_LOAD_MEMORY_DELAY))
2170 || (! mips_opts.mips16
2171 && mips_opts.isa == ISA_MIPS1
2172 /* Itbl support may require additional care here. */
2173 && (prev_pinfo & INSN_COPROC_MEMORY_DELAY))
2174 /* We can not swap with a branch instruction. */
2175 || (prev_pinfo
2176 & (INSN_UNCOND_BRANCH_DELAY
2177 | INSN_COND_BRANCH_DELAY
2178 | INSN_COND_BRANCH_LIKELY))
2179 /* We do not swap with a trap instruction, since it
2180 complicates trap handlers to have the trap
2181 instruction be in a delay slot. */
2182 || (prev_pinfo & INSN_TRAP)
2183 /* If the branch reads a register that the previous
2184 instruction sets, we can not swap. */
2185 || (! mips_opts.mips16
2186 && (prev_pinfo & INSN_WRITE_GPR_T)
2187 && insn_uses_reg (ip,
2188 ((prev_insn.insn_opcode >> OP_SH_RT)
2189 & OP_MASK_RT),
2190 MIPS_GR_REG))
2191 || (! mips_opts.mips16
2192 && (prev_pinfo & INSN_WRITE_GPR_D)
2193 && insn_uses_reg (ip,
2194 ((prev_insn.insn_opcode >> OP_SH_RD)
2195 & OP_MASK_RD),
2196 MIPS_GR_REG))
2197 || (mips_opts.mips16
2198 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
2199 && insn_uses_reg (ip,
2200 ((prev_insn.insn_opcode
2201 >> MIPS16OP_SH_RX)
2202 & MIPS16OP_MASK_RX),
2203 MIPS16_REG))
2204 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
2205 && insn_uses_reg (ip,
2206 ((prev_insn.insn_opcode
2207 >> MIPS16OP_SH_RY)
2208 & MIPS16OP_MASK_RY),
2209 MIPS16_REG))
2210 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
2211 && insn_uses_reg (ip,
2212 ((prev_insn.insn_opcode
2213 >> MIPS16OP_SH_RZ)
2214 & MIPS16OP_MASK_RZ),
2215 MIPS16_REG))
2216 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
2217 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
2218 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
2219 && insn_uses_reg (ip, RA, MIPS_GR_REG))
2220 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2221 && insn_uses_reg (ip,
2222 MIPS16OP_EXTRACT_REG32R (prev_insn.
2223 insn_opcode),
2224 MIPS_GR_REG))))
2225 /* If the branch writes a register that the previous
2226 instruction sets, we can not swap (we know that
2227 branches write only to RD or to $31). */
2228 || (! mips_opts.mips16
2229 && (prev_pinfo & INSN_WRITE_GPR_T)
2230 && (((pinfo & INSN_WRITE_GPR_D)
2231 && (((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT)
2232 == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
2233 || ((pinfo & INSN_WRITE_GPR_31)
2234 && (((prev_insn.insn_opcode >> OP_SH_RT)
2235 & OP_MASK_RT)
2236 == RA))))
2237 || (! mips_opts.mips16
2238 && (prev_pinfo & INSN_WRITE_GPR_D)
2239 && (((pinfo & INSN_WRITE_GPR_D)
2240 && (((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD)
2241 == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
2242 || ((pinfo & INSN_WRITE_GPR_31)
2243 && (((prev_insn.insn_opcode >> OP_SH_RD)
2244 & OP_MASK_RD)
2245 == RA))))
2246 || (mips_opts.mips16
2247 && (pinfo & MIPS16_INSN_WRITE_31)
2248 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
2249 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2250 && (MIPS16OP_EXTRACT_REG32R (prev_insn.insn_opcode)
2251 == RA))))
2252 /* If the branch writes a register that the previous
2253 instruction reads, we can not swap (we know that
2254 branches only write to RD or to $31). */
2255 || (! mips_opts.mips16
2256 && (pinfo & INSN_WRITE_GPR_D)
2257 && insn_uses_reg (&prev_insn,
2258 ((ip->insn_opcode >> OP_SH_RD)
2259 & OP_MASK_RD),
2260 MIPS_GR_REG))
2261 || (! mips_opts.mips16
2262 && (pinfo & INSN_WRITE_GPR_31)
2263 && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
2264 || (mips_opts.mips16
2265 && (pinfo & MIPS16_INSN_WRITE_31)
2266 && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
2267 /* If we are generating embedded PIC code, the branch
2268 might be expanded into a sequence which uses $at, so
2269 we can't swap with an instruction which reads it. */
2270 || (mips_pic == EMBEDDED_PIC
2271 && insn_uses_reg (&prev_insn, AT, MIPS_GR_REG))
2272 /* If the previous previous instruction has a load
2273 delay, and sets a register that the branch reads, we
2274 can not swap. */
2275 || (! mips_opts.mips16
2276 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
2277 /* Itbl support may require additional care here. */
2278 && ((prev_prev_insn.insn_mo->pinfo & INSN_LOAD_COPROC_DELAY)
2279 || (! gpr_interlocks
2280 && (prev_prev_insn.insn_mo->pinfo
2281 & INSN_LOAD_MEMORY_DELAY)))
2282 && insn_uses_reg (ip,
2283 ((prev_prev_insn.insn_opcode >> OP_SH_RT)
2284 & OP_MASK_RT),
2285 MIPS_GR_REG))
2286 /* If one instruction sets a condition code and the
2287 other one uses a condition code, we can not swap. */
2288 || ((pinfo & INSN_READ_COND_CODE)
2289 && (prev_pinfo & INSN_WRITE_COND_CODE))
2290 || ((pinfo & INSN_WRITE_COND_CODE)
2291 && (prev_pinfo & INSN_READ_COND_CODE))
2292 /* If the previous instruction uses the PC, we can not
2293 swap. */
2294 || (mips_opts.mips16
2295 && (prev_pinfo & MIPS16_INSN_READ_PC))
2296 /* If the previous instruction was extended, we can not
2297 swap. */
2298 || (mips_opts.mips16 && prev_insn_extended)
2299 /* If the previous instruction had a fixup in mips16
2300 mode, we can not swap. This normally means that the
2301 previous instruction was a 4 byte branch anyhow. */
2302 || (mips_opts.mips16 && prev_insn_fixp[0])
2303 /* If the previous instruction is a sync, sync.l, or
2304 sync.p, we can not swap. */
2305 || (prev_pinfo & INSN_SYNC))
2306 {
2307 /* We could do even better for unconditional branches to
2308 portions of this object file; we could pick up the
2309 instruction at the destination, put it in the delay
2310 slot, and bump the destination address. */
2311 emit_nop ();
2312 /* Update the previous insn information. */
2313 prev_prev_insn = *ip;
2314 prev_insn.insn_mo = &dummy_opcode;
2315 }
2316 else
2317 {
2318 /* It looks like we can actually do the swap. */
2319 if (! mips_opts.mips16)
2320 {
2321 char *prev_f;
2322 char temp[4];
2323
2324 prev_f = prev_insn_frag->fr_literal + prev_insn_where;
2325 memcpy (temp, prev_f, 4);
2326 memcpy (prev_f, f, 4);
2327 memcpy (f, temp, 4);
2328 if (prev_insn_fixp[0])
2329 {
2330 prev_insn_fixp[0]->fx_frag = frag_now;
2331 prev_insn_fixp[0]->fx_where = f - frag_now->fr_literal;
2332 }
2333 if (prev_insn_fixp[1])
2334 {
2335 prev_insn_fixp[1]->fx_frag = frag_now;
2336 prev_insn_fixp[1]->fx_where = f - frag_now->fr_literal;
2337 }
2338 if (prev_insn_fixp[2])
2339 {
2340 prev_insn_fixp[2]->fx_frag = frag_now;
2341 prev_insn_fixp[2]->fx_where = f - frag_now->fr_literal;
2342 }
2343 if (fixp[0])
2344 {
2345 fixp[0]->fx_frag = prev_insn_frag;
2346 fixp[0]->fx_where = prev_insn_where;
2347 }
2348 if (fixp[1])
2349 {
2350 fixp[1]->fx_frag = prev_insn_frag;
2351 fixp[1]->fx_where = prev_insn_where;
2352 }
2353 if (fixp[2])
2354 {
2355 fixp[2]->fx_frag = prev_insn_frag;
2356 fixp[2]->fx_where = prev_insn_where;
2357 }
2358 }
2359 else
2360 {
2361 char *prev_f;
2362 char temp[2];
2363
2364 assert (prev_insn_fixp[0] == NULL);
2365 assert (prev_insn_fixp[1] == NULL);
2366 assert (prev_insn_fixp[2] == NULL);
2367 prev_f = prev_insn_frag->fr_literal + prev_insn_where;
2368 memcpy (temp, prev_f, 2);
2369 memcpy (prev_f, f, 2);
2370 if (*reloc_type != BFD_RELOC_MIPS16_JMP)
2371 {
2372 assert (*reloc_type == BFD_RELOC_UNUSED);
2373 memcpy (f, temp, 2);
2374 }
2375 else
2376 {
2377 memcpy (f, f + 2, 2);
2378 memcpy (f + 2, temp, 2);
2379 }
2380 if (fixp[0])
2381 {
2382 fixp[0]->fx_frag = prev_insn_frag;
2383 fixp[0]->fx_where = prev_insn_where;
2384 }
2385 if (fixp[1])
2386 {
2387 fixp[1]->fx_frag = prev_insn_frag;
2388 fixp[1]->fx_where = prev_insn_where;
2389 }
2390 if (fixp[2])
2391 {
2392 fixp[2]->fx_frag = prev_insn_frag;
2393 fixp[2]->fx_where = prev_insn_where;
2394 }
2395 }
2396
2397 /* Update the previous insn information; leave prev_insn
2398 unchanged. */
2399 prev_prev_insn = *ip;
2400 }
2401 prev_insn_is_delay_slot = 1;
2402
2403 /* If that was an unconditional branch, forget the previous
2404 insn information. */
2405 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
2406 {
2407 prev_prev_insn.insn_mo = &dummy_opcode;
2408 prev_insn.insn_mo = &dummy_opcode;
2409 }
2410
2411 prev_insn_fixp[0] = NULL;
2412 prev_insn_fixp[1] = NULL;
2413 prev_insn_fixp[2] = NULL;
2414 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2415 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2416 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2417 prev_insn_extended = 0;
2418 }
2419 else if (pinfo & INSN_COND_BRANCH_LIKELY)
2420 {
2421 /* We don't yet optimize a branch likely. What we should do
2422 is look at the target, copy the instruction found there
2423 into the delay slot, and increment the branch to jump to
2424 the next instruction. */
2425 emit_nop ();
2426 /* Update the previous insn information. */
2427 prev_prev_insn = *ip;
2428 prev_insn.insn_mo = &dummy_opcode;
2429 prev_insn_fixp[0] = NULL;
2430 prev_insn_fixp[1] = NULL;
2431 prev_insn_fixp[2] = NULL;
2432 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2433 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2434 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2435 prev_insn_extended = 0;
2436 }
2437 else
2438 {
2439 /* Update the previous insn information. */
2440 if (nops > 0)
2441 prev_prev_insn.insn_mo = &dummy_opcode;
2442 else
2443 prev_prev_insn = prev_insn;
2444 prev_insn = *ip;
2445
2446 /* Any time we see a branch, we always fill the delay slot
2447 immediately; since this insn is not a branch, we know it
2448 is not in a delay slot. */
2449 prev_insn_is_delay_slot = 0;
2450
2451 prev_insn_fixp[0] = fixp[0];
2452 prev_insn_fixp[1] = fixp[1];
2453 prev_insn_fixp[2] = fixp[2];
2454 prev_insn_reloc_type[0] = reloc_type[0];
2455 prev_insn_reloc_type[1] = reloc_type[1];
2456 prev_insn_reloc_type[2] = reloc_type[2];
2457 if (mips_opts.mips16)
2458 prev_insn_extended = (ip->use_extend
2459 || *reloc_type > BFD_RELOC_UNUSED);
2460 }
2461
2462 prev_prev_insn_unreordered = prev_insn_unreordered;
2463 prev_insn_unreordered = 0;
2464 prev_insn_frag = frag_now;
2465 prev_insn_where = f - frag_now->fr_literal;
2466 prev_insn_valid = 1;
2467 }
2468 else if (place == NULL)
2469 {
2470 /* We need to record a bit of information even when we are not
2471 reordering, in order to determine the base address for mips16
2472 PC relative relocs. */
2473 prev_prev_insn = prev_insn;
2474 prev_insn = *ip;
2475 prev_insn_reloc_type[0] = reloc_type[0];
2476 prev_insn_reloc_type[1] = reloc_type[1];
2477 prev_insn_reloc_type[2] = reloc_type[2];
2478 prev_prev_insn_unreordered = prev_insn_unreordered;
2479 prev_insn_unreordered = 1;
2480 }
2481
2482 /* We just output an insn, so the next one doesn't have a label. */
2483 mips_clear_insn_labels ();
2484
2485 /* We must ensure that a fixup associated with an unmatched %hi
2486 reloc does not become a variant frag. Otherwise, the
2487 rearrangement of %hi relocs in frob_file may confuse
2488 tc_gen_reloc. */
2489 if (unmatched_hi)
2490 {
2491 frag_wane (frag_now);
2492 frag_new (0);
2493 }
2494 }
2495
2496 /* This function forgets that there was any previous instruction or
2497 label. If PRESERVE is non-zero, it remembers enough information to
2498 know whether nops are needed before a noreorder section. */
2499
2500 static void
2501 mips_no_prev_insn (preserve)
2502 int preserve;
2503 {
2504 if (! preserve)
2505 {
2506 prev_insn.insn_mo = &dummy_opcode;
2507 prev_prev_insn.insn_mo = &dummy_opcode;
2508 prev_nop_frag = NULL;
2509 prev_nop_frag_holds = 0;
2510 prev_nop_frag_required = 0;
2511 prev_nop_frag_since = 0;
2512 }
2513 prev_insn_valid = 0;
2514 prev_insn_is_delay_slot = 0;
2515 prev_insn_unreordered = 0;
2516 prev_insn_extended = 0;
2517 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2518 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2519 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2520 prev_prev_insn_unreordered = 0;
2521 mips_clear_insn_labels ();
2522 }
2523
2524 /* This function must be called whenever we turn on noreorder or emit
2525 something other than instructions. It inserts any NOPS which might
2526 be needed by the previous instruction, and clears the information
2527 kept for the previous instructions. The INSNS parameter is true if
2528 instructions are to follow. */
2529
2530 static void
2531 mips_emit_delays (insns)
2532 boolean insns;
2533 {
2534 if (! mips_opts.noreorder)
2535 {
2536 int nops;
2537
2538 nops = 0;
2539 if ((! mips_opts.mips16
2540 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
2541 && (! cop_interlocks
2542 && (prev_insn.insn_mo->pinfo
2543 & (INSN_LOAD_COPROC_DELAY
2544 | INSN_COPROC_MOVE_DELAY
2545 | INSN_WRITE_COND_CODE))))
2546 || (! hilo_interlocks
2547 && (prev_insn.insn_mo->pinfo
2548 & (INSN_READ_LO
2549 | INSN_READ_HI)))
2550 || (! mips_opts.mips16
2551 && ! gpr_interlocks
2552 && (prev_insn.insn_mo->pinfo
2553 & INSN_LOAD_MEMORY_DELAY))
2554 || (! mips_opts.mips16
2555 && mips_opts.isa == ISA_MIPS1
2556 && (prev_insn.insn_mo->pinfo
2557 & INSN_COPROC_MEMORY_DELAY)))
2558 {
2559 /* Itbl support may require additional care here. */
2560 ++nops;
2561 if ((! mips_opts.mips16
2562 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
2563 && (! cop_interlocks
2564 && prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE))
2565 || (! hilo_interlocks
2566 && ((prev_insn.insn_mo->pinfo & INSN_READ_HI)
2567 || (prev_insn.insn_mo->pinfo & INSN_READ_LO))))
2568 ++nops;
2569
2570 if (prev_insn_unreordered)
2571 nops = 0;
2572 }
2573 else if ((! mips_opts.mips16
2574 && ISA_HAS_COPROC_DELAYS (mips_opts.isa)
2575 && (! cop_interlocks
2576 && prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE))
2577 || (! hilo_interlocks
2578 && ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
2579 || (prev_prev_insn.insn_mo->pinfo & INSN_READ_LO))))
2580 {
2581 /* Itbl support may require additional care here. */
2582 if (! prev_prev_insn_unreordered)
2583 ++nops;
2584 }
2585
2586 if (nops > 0)
2587 {
2588 struct insn_label_list *l;
2589
2590 if (insns)
2591 {
2592 /* Record the frag which holds the nop instructions, so
2593 that we can remove them if we don't need them. */
2594 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
2595 prev_nop_frag = frag_now;
2596 prev_nop_frag_holds = nops;
2597 prev_nop_frag_required = 0;
2598 prev_nop_frag_since = 0;
2599 }
2600
2601 for (; nops > 0; --nops)
2602 emit_nop ();
2603
2604 if (insns)
2605 {
2606 /* Move on to a new frag, so that it is safe to simply
2607 decrease the size of prev_nop_frag. */
2608 frag_wane (frag_now);
2609 frag_new (0);
2610 }
2611
2612 for (l = insn_labels; l != NULL; l = l->next)
2613 {
2614 valueT val;
2615
2616 assert (S_GET_SEGMENT (l->label) == now_seg);
2617 symbol_set_frag (l->label, frag_now);
2618 val = (valueT) frag_now_fix ();
2619 /* mips16 text labels are stored as odd. */
2620 if (mips_opts.mips16)
2621 ++val;
2622 S_SET_VALUE (l->label, val);
2623 }
2624 }
2625 }
2626
2627 /* Mark instruction labels in mips16 mode. */
2628 if (insns)
2629 mips16_mark_labels ();
2630
2631 mips_no_prev_insn (insns);
2632 }
2633
2634 /* Build an instruction created by a macro expansion. This is passed
2635 a pointer to the count of instructions created so far, an
2636 expression, the name of the instruction to build, an operand format
2637 string, and corresponding arguments. */
2638
2639 #ifdef USE_STDARG
2640 static void
2641 macro_build (char *place,
2642 int *counter,
2643 expressionS * ep,
2644 const char *name,
2645 const char *fmt,
2646 ...)
2647 #else
2648 static void
2649 macro_build (place, counter, ep, name, fmt, va_alist)
2650 char *place;
2651 int *counter;
2652 expressionS *ep;
2653 const char *name;
2654 const char *fmt;
2655 va_dcl
2656 #endif
2657 {
2658 struct mips_cl_insn insn;
2659 bfd_reloc_code_real_type r[3];
2660 va_list args;
2661
2662 #ifdef USE_STDARG
2663 va_start (args, fmt);
2664 #else
2665 va_start (args);
2666 #endif
2667
2668 /*
2669 * If the macro is about to expand into a second instruction,
2670 * print a warning if needed. We need to pass ip as a parameter
2671 * to generate a better warning message here...
2672 */
2673 if (mips_opts.warn_about_macros && place == NULL && *counter == 1)
2674 as_warn (_("Macro instruction expanded into multiple instructions"));
2675
2676 /*
2677 * If the macro is about to expand into a second instruction,
2678 * and it is in a delay slot, print a warning.
2679 */
2680 if (place == NULL
2681 && *counter == 1
2682 && mips_opts.noreorder
2683 && (prev_prev_insn.insn_mo->pinfo
2684 & (INSN_UNCOND_BRANCH_DELAY | INSN_COND_BRANCH_DELAY
2685 | INSN_COND_BRANCH_LIKELY)) != 0)
2686 as_warn (_("Macro instruction expanded into multiple instructions in a branch delay slot"));
2687
2688 if (place == NULL)
2689 ++*counter; /* bump instruction counter */
2690
2691 if (mips_opts.mips16)
2692 {
2693 mips16_macro_build (place, counter, ep, name, fmt, args);
2694 va_end (args);
2695 return;
2696 }
2697
2698 r[0] = BFD_RELOC_UNUSED;
2699 r[1] = BFD_RELOC_UNUSED;
2700 r[2] = BFD_RELOC_UNUSED;
2701 insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
2702 assert (insn.insn_mo);
2703 assert (strcmp (name, insn.insn_mo->name) == 0);
2704
2705 /* Search until we get a match for NAME. */
2706 while (1)
2707 {
2708 /* It is assumed here that macros will never generate
2709 MDMX or MIPS-3D instructions. */
2710 if (strcmp (fmt, insn.insn_mo->args) == 0
2711 && insn.insn_mo->pinfo != INSN_MACRO
2712 && OPCODE_IS_MEMBER (insn.insn_mo,
2713 (mips_opts.isa
2714 | (mips_opts.mips16 ? INSN_MIPS16 : 0)),
2715 mips_arch)
2716 && (mips_arch != CPU_R4650 || (insn.insn_mo->pinfo & FP_D) == 0))
2717 break;
2718
2719 ++insn.insn_mo;
2720 assert (insn.insn_mo->name);
2721 assert (strcmp (name, insn.insn_mo->name) == 0);
2722 }
2723
2724 insn.insn_opcode = insn.insn_mo->match;
2725 for (;;)
2726 {
2727 switch (*fmt++)
2728 {
2729 case '\0':
2730 break;
2731
2732 case ',':
2733 case '(':
2734 case ')':
2735 continue;
2736
2737 case 't':
2738 case 'w':
2739 case 'E':
2740 insn.insn_opcode |= va_arg (args, int) << OP_SH_RT;
2741 continue;
2742
2743 case 'c':
2744 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE;
2745 continue;
2746
2747 case 'T':
2748 case 'W':
2749 insn.insn_opcode |= va_arg (args, int) << OP_SH_FT;
2750 continue;
2751
2752 case 'd':
2753 case 'G':
2754 insn.insn_opcode |= va_arg (args, int) << OP_SH_RD;
2755 continue;
2756
2757 case 'U':
2758 {
2759 int tmp = va_arg (args, int);
2760
2761 insn.insn_opcode |= tmp << OP_SH_RT;
2762 insn.insn_opcode |= tmp << OP_SH_RD;
2763 continue;
2764 }
2765
2766 case 'V':
2767 case 'S':
2768 insn.insn_opcode |= va_arg (args, int) << OP_SH_FS;
2769 continue;
2770
2771 case 'z':
2772 continue;
2773
2774 case '<':
2775 insn.insn_opcode |= va_arg (args, int) << OP_SH_SHAMT;
2776 continue;
2777
2778 case 'D':
2779 insn.insn_opcode |= va_arg (args, int) << OP_SH_FD;
2780 continue;
2781
2782 case 'B':
2783 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE20;
2784 continue;
2785
2786 case 'J':
2787 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE19;
2788 continue;
2789
2790 case 'q':
2791 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE2;
2792 continue;
2793
2794 case 'b':
2795 case 's':
2796 case 'r':
2797 case 'v':
2798 insn.insn_opcode |= va_arg (args, int) << OP_SH_RS;
2799 continue;
2800
2801 case 'i':
2802 case 'j':
2803 case 'o':
2804 *r = (bfd_reloc_code_real_type) va_arg (args, int);
2805 assert (*r == BFD_RELOC_GPREL16
2806 || *r == BFD_RELOC_MIPS_LITERAL
2807 || *r == BFD_RELOC_MIPS_HIGHER
2808 || *r == BFD_RELOC_HI16_S
2809 || *r == BFD_RELOC_LO16
2810 || *r == BFD_RELOC_MIPS_GOT16
2811 || *r == BFD_RELOC_MIPS_CALL16
2812 || *r == BFD_RELOC_MIPS_GOT_DISP
2813 || *r == BFD_RELOC_MIPS_GOT_PAGE
2814 || *r == BFD_RELOC_MIPS_GOT_OFST
2815 || *r == BFD_RELOC_MIPS_GOT_LO16
2816 || *r == BFD_RELOC_MIPS_CALL_LO16
2817 || (ep->X_op == O_subtract
2818 && *r == BFD_RELOC_PCREL_LO16));
2819 continue;
2820
2821 case 'u':
2822 *r = (bfd_reloc_code_real_type) va_arg (args, int);
2823 assert (ep != NULL
2824 && (ep->X_op == O_constant
2825 || (ep->X_op == O_symbol
2826 && (*r == BFD_RELOC_MIPS_HIGHEST
2827 || *r == BFD_RELOC_HI16_S
2828 || *r == BFD_RELOC_HI16
2829 || *r == BFD_RELOC_GPREL16
2830 || *r == BFD_RELOC_MIPS_GOT_HI16
2831 || *r == BFD_RELOC_MIPS_CALL_HI16))
2832 || (ep->X_op == O_subtract
2833 && *r == BFD_RELOC_PCREL_HI16_S)));
2834 continue;
2835
2836 case 'p':
2837 assert (ep != NULL);
2838 /*
2839 * This allows macro() to pass an immediate expression for
2840 * creating short branches without creating a symbol.
2841 * Note that the expression still might come from the assembly
2842 * input, in which case the value is not checked for range nor
2843 * is a relocation entry generated (yuck).
2844 */
2845 if (ep->X_op == O_constant)
2846 {
2847 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
2848 ep = NULL;
2849 }
2850 else
2851 if (mips_pic == EMBEDDED_PIC)
2852 *r = BFD_RELOC_16_PCREL_S2;
2853 else
2854 *r = BFD_RELOC_16_PCREL;
2855 continue;
2856
2857 case 'a':
2858 assert (ep != NULL);
2859 *r = BFD_RELOC_MIPS_JMP;
2860 continue;
2861
2862 case 'C':
2863 insn.insn_opcode |= va_arg (args, unsigned long);
2864 continue;
2865
2866 default:
2867 internalError ();
2868 }
2869 break;
2870 }
2871 va_end (args);
2872 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
2873
2874 append_insn (place, &insn, ep, r, false);
2875 }
2876
2877 static void
2878 mips16_macro_build (place, counter, ep, name, fmt, args)
2879 char *place;
2880 int *counter ATTRIBUTE_UNUSED;
2881 expressionS *ep;
2882 const char *name;
2883 const char *fmt;
2884 va_list args;
2885 {
2886 struct mips_cl_insn insn;
2887 bfd_reloc_code_real_type r[3]
2888 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2889
2890 insn.insn_mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
2891 assert (insn.insn_mo);
2892 assert (strcmp (name, insn.insn_mo->name) == 0);
2893
2894 while (strcmp (fmt, insn.insn_mo->args) != 0
2895 || insn.insn_mo->pinfo == INSN_MACRO)
2896 {
2897 ++insn.insn_mo;
2898 assert (insn.insn_mo->name);
2899 assert (strcmp (name, insn.insn_mo->name) == 0);
2900 }
2901
2902 insn.insn_opcode = insn.insn_mo->match;
2903 insn.use_extend = false;
2904
2905 for (;;)
2906 {
2907 int c;
2908
2909 c = *fmt++;
2910 switch (c)
2911 {
2912 case '\0':
2913 break;
2914
2915 case ',':
2916 case '(':
2917 case ')':
2918 continue;
2919
2920 case 'y':
2921 case 'w':
2922 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RY;
2923 continue;
2924
2925 case 'x':
2926 case 'v':
2927 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RX;
2928 continue;
2929
2930 case 'z':
2931 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RZ;
2932 continue;
2933
2934 case 'Z':
2935 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_MOVE32Z;
2936 continue;
2937
2938 case '0':
2939 case 'S':
2940 case 'P':
2941 case 'R':
2942 continue;
2943
2944 case 'X':
2945 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_REGR32;
2946 continue;
2947
2948 case 'Y':
2949 {
2950 int regno;
2951
2952 regno = va_arg (args, int);
2953 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
2954 insn.insn_opcode |= regno << MIPS16OP_SH_REG32R;
2955 }
2956 continue;
2957
2958 case '<':
2959 case '>':
2960 case '4':
2961 case '5':
2962 case 'H':
2963 case 'W':
2964 case 'D':
2965 case 'j':
2966 case '8':
2967 case 'V':
2968 case 'C':
2969 case 'U':
2970 case 'k':
2971 case 'K':
2972 case 'p':
2973 case 'q':
2974 {
2975 assert (ep != NULL);
2976
2977 if (ep->X_op != O_constant)
2978 *r = (int) BFD_RELOC_UNUSED + c;
2979 else
2980 {
2981 mips16_immed (NULL, 0, c, ep->X_add_number, false, false,
2982 false, &insn.insn_opcode, &insn.use_extend,
2983 &insn.extend);
2984 ep = NULL;
2985 *r = BFD_RELOC_UNUSED;
2986 }
2987 }
2988 continue;
2989
2990 case '6':
2991 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_IMM6;
2992 continue;
2993 }
2994
2995 break;
2996 }
2997
2998 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
2999
3000 append_insn (place, &insn, ep, r, false);
3001 }
3002
3003 /*
3004 * Generate a "jalr" instruction with a relocation hint to the called
3005 * function. This occurs in NewABI PIC code.
3006 */
3007 static void
3008 macro_build_jalr (icnt, ep)
3009 int icnt;
3010 expressionS *ep;
3011 {
3012 if (HAVE_NEWABI)
3013 frag_more (0);
3014 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "jalr", "d,s",
3015 RA, PIC_CALL_REG);
3016 if (HAVE_NEWABI)
3017 fix_new_exp (frag_now, 0, 0, ep, false, BFD_RELOC_MIPS_JALR);
3018 }
3019
3020 /*
3021 * Generate a "lui" instruction.
3022 */
3023 static void
3024 macro_build_lui (place, counter, ep, regnum)
3025 char *place;
3026 int *counter;
3027 expressionS *ep;
3028 int regnum;
3029 {
3030 expressionS high_expr;
3031 struct mips_cl_insn insn;
3032 bfd_reloc_code_real_type r[3]
3033 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3034 const char *name = "lui";
3035 const char *fmt = "t,u";
3036
3037 assert (! mips_opts.mips16);
3038
3039 if (place == NULL)
3040 high_expr = *ep;
3041 else
3042 {
3043 high_expr.X_op = O_constant;
3044 high_expr.X_add_number = ep->X_add_number;
3045 }
3046
3047 if (high_expr.X_op == O_constant)
3048 {
3049 /* we can compute the instruction now without a relocation entry */
3050 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3051 >> 16) & 0xffff;
3052 *r = BFD_RELOC_UNUSED;
3053 }
3054 else if (! HAVE_NEWABI)
3055 {
3056 assert (ep->X_op == O_symbol);
3057 /* _gp_disp is a special case, used from s_cpload. */
3058 assert (mips_pic == NO_PIC
3059 || strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0);
3060 *r = BFD_RELOC_HI16_S;
3061 }
3062
3063 /*
3064 * If the macro is about to expand into a second instruction,
3065 * print a warning if needed. We need to pass ip as a parameter
3066 * to generate a better warning message here...
3067 */
3068 if (mips_opts.warn_about_macros && place == NULL && *counter == 1)
3069 as_warn (_("Macro instruction expanded into multiple instructions"));
3070
3071 if (place == NULL)
3072 ++*counter; /* bump instruction counter */
3073
3074 insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
3075 assert (insn.insn_mo);
3076 assert (strcmp (name, insn.insn_mo->name) == 0);
3077 assert (strcmp (fmt, insn.insn_mo->args) == 0);
3078
3079 insn.insn_opcode = insn.insn_mo->match | (regnum << OP_SH_RT);
3080 if (*r == BFD_RELOC_UNUSED)
3081 {
3082 insn.insn_opcode |= high_expr.X_add_number;
3083 append_insn (place, &insn, NULL, r, false);
3084 }
3085 else
3086 append_insn (place, &insn, &high_expr, r, false);
3087 }
3088
3089 /* set_at()
3090 * Generates code to set the $at register to true (one)
3091 * if reg is less than the immediate expression.
3092 */
3093 static void
3094 set_at (counter, reg, unsignedp)
3095 int *counter;
3096 int reg;
3097 int unsignedp;
3098 {
3099 if (imm_expr.X_op == O_constant
3100 && imm_expr.X_add_number >= -0x8000
3101 && imm_expr.X_add_number < 0x8000)
3102 macro_build ((char *) NULL, counter, &imm_expr,
3103 unsignedp ? "sltiu" : "slti",
3104 "t,r,j", AT, reg, (int) BFD_RELOC_LO16);
3105 else
3106 {
3107 load_register (counter, AT, &imm_expr, HAVE_64BIT_GPRS);
3108 macro_build ((char *) NULL, counter, (expressionS *) NULL,
3109 unsignedp ? "sltu" : "slt",
3110 "d,v,t", AT, reg, AT);
3111 }
3112 }
3113
3114 /* Warn if an expression is not a constant. */
3115
3116 static void
3117 check_absolute_expr (ip, ex)
3118 struct mips_cl_insn *ip;
3119 expressionS *ex;
3120 {
3121 if (ex->X_op == O_big)
3122 as_bad (_("unsupported large constant"));
3123 else if (ex->X_op != O_constant)
3124 as_bad (_("Instruction %s requires absolute expression"), ip->insn_mo->name);
3125 }
3126
3127 /* Count the leading zeroes by performing a binary chop. This is a
3128 bulky bit of source, but performance is a LOT better for the
3129 majority of values than a simple loop to count the bits:
3130 for (lcnt = 0; (lcnt < 32); lcnt++)
3131 if ((v) & (1 << (31 - lcnt)))
3132 break;
3133 However it is not code size friendly, and the gain will drop a bit
3134 on certain cached systems.
3135 */
3136 #define COUNT_TOP_ZEROES(v) \
3137 (((v) & ~0xffff) == 0 \
3138 ? ((v) & ~0xff) == 0 \
3139 ? ((v) & ~0xf) == 0 \
3140 ? ((v) & ~0x3) == 0 \
3141 ? ((v) & ~0x1) == 0 \
3142 ? !(v) \
3143 ? 32 \
3144 : 31 \
3145 : 30 \
3146 : ((v) & ~0x7) == 0 \
3147 ? 29 \
3148 : 28 \
3149 : ((v) & ~0x3f) == 0 \
3150 ? ((v) & ~0x1f) == 0 \
3151 ? 27 \
3152 : 26 \
3153 : ((v) & ~0x7f) == 0 \
3154 ? 25 \
3155 : 24 \
3156 : ((v) & ~0xfff) == 0 \
3157 ? ((v) & ~0x3ff) == 0 \
3158 ? ((v) & ~0x1ff) == 0 \
3159 ? 23 \
3160 : 22 \
3161 : ((v) & ~0x7ff) == 0 \
3162 ? 21 \
3163 : 20 \
3164 : ((v) & ~0x3fff) == 0 \
3165 ? ((v) & ~0x1fff) == 0 \
3166 ? 19 \
3167 : 18 \
3168 : ((v) & ~0x7fff) == 0 \
3169 ? 17 \
3170 : 16 \
3171 : ((v) & ~0xffffff) == 0 \
3172 ? ((v) & ~0xfffff) == 0 \
3173 ? ((v) & ~0x3ffff) == 0 \
3174 ? ((v) & ~0x1ffff) == 0 \
3175 ? 15 \
3176 : 14 \
3177 : ((v) & ~0x7ffff) == 0 \
3178 ? 13 \
3179 : 12 \
3180 : ((v) & ~0x3fffff) == 0 \
3181 ? ((v) & ~0x1fffff) == 0 \
3182 ? 11 \
3183 : 10 \
3184 : ((v) & ~0x7fffff) == 0 \
3185 ? 9 \
3186 : 8 \
3187 : ((v) & ~0xfffffff) == 0 \
3188 ? ((v) & ~0x3ffffff) == 0 \
3189 ? ((v) & ~0x1ffffff) == 0 \
3190 ? 7 \
3191 : 6 \
3192 : ((v) & ~0x7ffffff) == 0 \
3193 ? 5 \
3194 : 4 \
3195 : ((v) & ~0x3fffffff) == 0 \
3196 ? ((v) & ~0x1fffffff) == 0 \
3197 ? 3 \
3198 : 2 \
3199 : ((v) & ~0x7fffffff) == 0 \
3200 ? 1 \
3201 : 0)
3202
3203 /* Is the given value a sign-extended 32-bit value? */
3204 #define IS_SEXT_32BIT_NUM(x) \
3205 (((x) &~ (offsetT) 0x7fffffff) == 0 \
3206 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
3207
3208 /* load_register()
3209 * This routine generates the least number of instructions neccessary to load
3210 * an absolute expression value into a register.
3211 */
3212 static void
3213 load_register (counter, reg, ep, dbl)
3214 int *counter;
3215 int reg;
3216 expressionS *ep;
3217 int dbl;
3218 {
3219 int freg;
3220 expressionS hi32, lo32;
3221
3222 if (ep->X_op != O_big)
3223 {
3224 assert (ep->X_op == O_constant);
3225 if (ep->X_add_number < 0x8000
3226 && (ep->X_add_number >= 0
3227 || (ep->X_add_number >= -0x8000
3228 && (! dbl
3229 || ! ep->X_unsigned
3230 || sizeof (ep->X_add_number) > 4))))
3231 {
3232 /* We can handle 16 bit signed values with an addiu to
3233 $zero. No need to ever use daddiu here, since $zero and
3234 the result are always correct in 32 bit mode. */
3235 macro_build ((char *) NULL, counter, ep, "addiu", "t,r,j", reg, 0,
3236 (int) BFD_RELOC_LO16);
3237 return;
3238 }
3239 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
3240 {
3241 /* We can handle 16 bit unsigned values with an ori to
3242 $zero. */
3243 macro_build ((char *) NULL, counter, ep, "ori", "t,r,i", reg, 0,
3244 (int) BFD_RELOC_LO16);
3245 return;
3246 }
3247 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)
3248 && (! dbl
3249 || ! ep->X_unsigned
3250 || sizeof (ep->X_add_number) > 4
3251 || (ep->X_add_number & 0x80000000) == 0))
3252 || ((HAVE_32BIT_GPRS || ! dbl)
3253 && (ep->X_add_number &~ (offsetT) 0xffffffff) == 0)
3254 || (HAVE_32BIT_GPRS
3255 && ! dbl
3256 && ((ep->X_add_number &~ (offsetT) 0xffffffff)
3257 == ~ (offsetT) 0xffffffff)))
3258 {
3259 /* 32 bit values require an lui. */
3260 macro_build ((char *) NULL, counter, ep, "lui", "t,u", reg,
3261 (int) BFD_RELOC_HI16);
3262 if ((ep->X_add_number & 0xffff) != 0)
3263 macro_build ((char *) NULL, counter, ep, "ori", "t,r,i", reg, reg,
3264 (int) BFD_RELOC_LO16);
3265 return;
3266 }
3267 }
3268
3269 /* The value is larger than 32 bits. */
3270
3271 if (HAVE_32BIT_GPRS)
3272 {
3273 as_bad (_("Number (0x%lx) larger than 32 bits"),
3274 (unsigned long) ep->X_add_number);
3275 macro_build ((char *) NULL, counter, ep, "addiu", "t,r,j", reg, 0,
3276 (int) BFD_RELOC_LO16);
3277 return;
3278 }
3279
3280 if (ep->X_op != O_big)
3281 {
3282 hi32 = *ep;
3283 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3284 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3285 hi32.X_add_number &= 0xffffffff;
3286 lo32 = *ep;
3287 lo32.X_add_number &= 0xffffffff;
3288 }
3289 else
3290 {
3291 assert (ep->X_add_number > 2);
3292 if (ep->X_add_number == 3)
3293 generic_bignum[3] = 0;
3294 else if (ep->X_add_number > 4)
3295 as_bad (_("Number larger than 64 bits"));
3296 lo32.X_op = O_constant;
3297 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
3298 hi32.X_op = O_constant;
3299 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
3300 }
3301
3302 if (hi32.X_add_number == 0)
3303 freg = 0;
3304 else
3305 {
3306 int shift, bit;
3307 unsigned long hi, lo;
3308
3309 if (hi32.X_add_number == (offsetT) 0xffffffff)
3310 {
3311 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
3312 {
3313 macro_build ((char *) NULL, counter, &lo32, "addiu", "t,r,j",
3314 reg, 0, (int) BFD_RELOC_LO16);
3315 return;
3316 }
3317 if (lo32.X_add_number & 0x80000000)
3318 {
3319 macro_build ((char *) NULL, counter, &lo32, "lui", "t,u", reg,
3320 (int) BFD_RELOC_HI16);
3321 if (lo32.X_add_number & 0xffff)
3322 macro_build ((char *) NULL, counter, &lo32, "ori", "t,r,i",
3323 reg, reg, (int) BFD_RELOC_LO16);
3324 return;
3325 }
3326 }
3327
3328 /* Check for 16bit shifted constant. We know that hi32 is
3329 non-zero, so start the mask on the first bit of the hi32
3330 value. */
3331 shift = 17;
3332 do
3333 {
3334 unsigned long himask, lomask;
3335
3336 if (shift < 32)
3337 {
3338 himask = 0xffff >> (32 - shift);
3339 lomask = (0xffff << shift) & 0xffffffff;
3340 }
3341 else
3342 {
3343 himask = 0xffff << (shift - 32);
3344 lomask = 0;
3345 }
3346 if ((hi32.X_add_number & ~(offsetT) himask) == 0
3347 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
3348 {
3349 expressionS tmp;
3350
3351 tmp.X_op = O_constant;
3352 if (shift < 32)
3353 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
3354 | (lo32.X_add_number >> shift));
3355 else
3356 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
3357 macro_build ((char *) NULL, counter, &tmp,
3358 "ori", "t,r,i", reg, 0,
3359 (int) BFD_RELOC_LO16);
3360 macro_build ((char *) NULL, counter, (expressionS *) NULL,
3361 (shift >= 32) ? "dsll32" : "dsll",
3362 "d,w,<", reg, reg,
3363 (shift >= 32) ? shift - 32 : shift);
3364 return;
3365 }
3366 ++shift;
3367 }
3368 while (shift <= (64 - 16));
3369
3370 /* Find the bit number of the lowest one bit, and store the
3371 shifted value in hi/lo. */
3372 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
3373 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
3374 if (lo != 0)
3375 {
3376 bit = 0;
3377 while ((lo & 1) == 0)
3378 {
3379 lo >>= 1;
3380 ++bit;
3381 }
3382 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
3383 hi >>= bit;
3384 }
3385 else
3386 {
3387 bit = 32;
3388 while ((hi & 1) == 0)
3389 {
3390 hi >>= 1;
3391 ++bit;
3392 }
3393 lo = hi;
3394 hi = 0;
3395 }
3396
3397 /* Optimize if the shifted value is a (power of 2) - 1. */
3398 if ((hi == 0 && ((lo + 1) & lo) == 0)
3399 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
3400 {
3401 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
3402 if (shift != 0)
3403 {
3404 expressionS tmp;
3405
3406 /* This instruction will set the register to be all
3407 ones. */
3408 tmp.X_op = O_constant;
3409 tmp.X_add_number = (offsetT) -1;
3410 macro_build ((char *) NULL, counter, &tmp, "addiu", "t,r,j",
3411 reg, 0, (int) BFD_RELOC_LO16);
3412 if (bit != 0)
3413 {
3414 bit += shift;
3415 macro_build ((char *) NULL, counter, (expressionS *) NULL,
3416 (bit >= 32) ? "dsll32" : "dsll",
3417 "d,w,<", reg, reg,
3418 (bit >= 32) ? bit - 32 : bit);
3419 }
3420 macro_build ((char *) NULL, counter, (expressionS *) NULL,
3421 (shift >= 32) ? "dsrl32" : "dsrl",
3422 "d,w,<", reg, reg,
3423 (shift >= 32) ? shift - 32 : shift);
3424 return;
3425 }
3426 }
3427
3428 /* Sign extend hi32 before calling load_register, because we can
3429 generally get better code when we load a sign extended value. */
3430 if ((hi32.X_add_number & 0x80000000) != 0)
3431 hi32.X_add_number |= ~(offsetT) 0xffffffff;
3432 load_register (counter, reg, &hi32, 0);
3433 freg = reg;
3434 }
3435 if ((lo32.X_add_number & 0xffff0000) == 0)
3436 {
3437 if (freg != 0)
3438 {
3439 macro_build ((char *) NULL, counter, (expressionS *) NULL,
3440 "dsll32", "d,w,<", reg, freg, 0);
3441 freg = reg;
3442 }
3443 }
3444 else
3445 {
3446 expressionS mid16;
3447
3448 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
3449 {
3450 macro_build ((char *) NULL, counter, &lo32, "lui", "t,u", reg,
3451 (int) BFD_RELOC_HI16);
3452 macro_build ((char *) NULL, counter, (expressionS *) NULL,
3453 "dsrl32", "d,w,<", reg, reg, 0);
3454 return;
3455 }
3456
3457 if (freg != 0)
3458 {
3459 macro_build ((char *) NULL, counter, (expressionS *) NULL, "dsll",
3460 "d,w,<", reg, freg, 16);
3461 freg = reg;
3462 }
3463 mid16 = lo32;
3464 mid16.X_add_number >>= 16;
3465 macro_build ((char *) NULL, counter, &mid16, "ori", "t,r,i", reg,
3466 freg, (int) BFD_RELOC_LO16);
3467 macro_build ((char *) NULL, counter, (expressionS *) NULL, "dsll",
3468 "d,w,<", reg, reg, 16);
3469 freg = reg;
3470 }
3471 if ((lo32.X_add_number & 0xffff) != 0)
3472 macro_build ((char *) NULL, counter, &lo32, "ori", "t,r,i", reg, freg,
3473 (int) BFD_RELOC_LO16);
3474 }
3475
3476 /* Load an address into a register. */
3477
3478 static void
3479 load_address (counter, reg, ep, used_at)
3480 int *counter;
3481 int reg;
3482 expressionS *ep;
3483 int *used_at;
3484 {
3485 char *p = NULL;
3486
3487 if (ep->X_op != O_constant
3488 && ep->X_op != O_symbol)
3489 {
3490 as_bad (_("expression too complex"));
3491 ep->X_op = O_constant;
3492 }
3493
3494 if (ep->X_op == O_constant)
3495 {
3496 load_register (counter, reg, ep, HAVE_64BIT_ADDRESSES);
3497 return;
3498 }
3499
3500 if (mips_pic == NO_PIC)
3501 {
3502 /* If this is a reference to a GP relative symbol, we want
3503 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
3504 Otherwise we want
3505 lui $reg,<sym> (BFD_RELOC_HI16_S)
3506 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3507 If we have an addend, we always use the latter form.
3508
3509 With 64bit address space and a usable $at we want
3510 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3511 lui $at,<sym> (BFD_RELOC_HI16_S)
3512 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3513 daddiu $at,<sym> (BFD_RELOC_LO16)
3514 dsll32 $reg,0
3515 daddu $reg,$reg,$at
3516
3517 If $at is already in use, we use an path which is suboptimal
3518 on superscalar processors.
3519 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3520 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3521 dsll $reg,16
3522 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
3523 dsll $reg,16
3524 daddiu $reg,<sym> (BFD_RELOC_LO16)
3525 */
3526 if (HAVE_64BIT_ADDRESSES)
3527 {
3528 /* We don't do GP optimization for now because RELAX_ENCODE can't
3529 hold the data for such large chunks. */
3530
3531 if (*used_at == 0 && ! mips_opts.noat)
3532 {
3533 macro_build (p, counter, ep, "lui", "t,u",
3534 reg, (int) BFD_RELOC_MIPS_HIGHEST);
3535 macro_build (p, counter, ep, "lui", "t,u",
3536 AT, (int) BFD_RELOC_HI16_S);
3537 macro_build (p, counter, ep, "daddiu", "t,r,j",
3538 reg, reg, (int) BFD_RELOC_MIPS_HIGHER);
3539 macro_build (p, counter, ep, "daddiu", "t,r,j",
3540 AT, AT, (int) BFD_RELOC_LO16);
3541 macro_build (p, counter, (expressionS *) NULL, "dsll32",
3542 "d,w,<", reg, reg, 0);
3543 macro_build (p, counter, (expressionS *) NULL, "daddu",
3544 "d,v,t", reg, reg, AT);
3545 *used_at = 1;
3546 }
3547 else
3548 {
3549 macro_build (p, counter, ep, "lui", "t,u",
3550 reg, (int) BFD_RELOC_MIPS_HIGHEST);
3551 macro_build (p, counter, ep, "daddiu", "t,r,j",
3552 reg, reg, (int) BFD_RELOC_MIPS_HIGHER);
3553 macro_build (p, counter, (expressionS *) NULL, "dsll",
3554 "d,w,<", reg, reg, 16);
3555 macro_build (p, counter, ep, "daddiu", "t,r,j",
3556 reg, reg, (int) BFD_RELOC_HI16_S);
3557 macro_build (p, counter, (expressionS *) NULL, "dsll",
3558 "d,w,<", reg, reg, 16);
3559 macro_build (p, counter, ep, "daddiu", "t,r,j",
3560 reg, reg, (int) BFD_RELOC_LO16);
3561 }
3562 }
3563 else
3564 {
3565 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
3566 && ! nopic_need_relax (ep->X_add_symbol, 1))
3567 {
3568 frag_grow (20);
3569 macro_build ((char *) NULL, counter, ep,
3570 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j",
3571 reg, mips_gp_register, (int) BFD_RELOC_GPREL16);
3572 p = frag_var (rs_machine_dependent, 8, 0,
3573 RELAX_ENCODE (4, 8, 0, 4, 0,
3574 mips_opts.warn_about_macros),
3575 ep->X_add_symbol, 0, NULL);
3576 }
3577 macro_build_lui (p, counter, ep, reg);
3578 if (p != NULL)
3579 p += 4;
3580 macro_build (p, counter, ep,
3581 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
3582 "t,r,j", reg, reg, (int) BFD_RELOC_LO16);
3583 }
3584 }
3585 else if (mips_pic == SVR4_PIC && ! mips_big_got)
3586 {
3587 expressionS ex;
3588
3589 /* If this is a reference to an external symbol, we want
3590 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3591 Otherwise we want
3592 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3593 nop
3594 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3595 If there is a constant, it must be added in after. */
3596 ex.X_add_number = ep->X_add_number;
3597 ep->X_add_number = 0;
3598 frag_grow (20);
3599 macro_build ((char *) NULL, counter, ep,
3600 HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)",
3601 reg, (int) BFD_RELOC_MIPS_GOT16, mips_gp_register);
3602 macro_build ((char *) NULL, counter, (expressionS *) NULL, "nop", "");
3603 p = frag_var (rs_machine_dependent, 4, 0,
3604 RELAX_ENCODE (0, 4, -8, 0, 0, mips_opts.warn_about_macros),
3605 ep->X_add_symbol, (offsetT) 0, (char *) NULL);
3606 macro_build (p, counter, ep,
3607 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
3608 "t,r,j", reg, reg, (int) BFD_RELOC_LO16);
3609 if (ex.X_add_number != 0)
3610 {
3611 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3612 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3613 ex.X_op = O_constant;
3614 macro_build ((char *) NULL, counter, &ex,
3615 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
3616 "t,r,j", reg, reg, (int) BFD_RELOC_LO16);
3617 }
3618 }
3619 else if (mips_pic == SVR4_PIC)
3620 {
3621 expressionS ex;
3622 int off;
3623
3624 /* This is the large GOT case. If this is a reference to an
3625 external symbol, we want
3626 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
3627 addu $reg,$reg,$gp
3628 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
3629 Otherwise, for a reference to a local symbol, we want
3630 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3631 nop
3632 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3633 If we have NewABI, we want
3634 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
3635 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
3636 If there is a constant, it must be added in after. */
3637 ex.X_add_number = ep->X_add_number;
3638 ep->X_add_number = 0;
3639 if (HAVE_NEWABI)
3640 {
3641 macro_build ((char *) NULL, counter, ep,
3642 HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", reg,
3643 (int) BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
3644 macro_build (p, counter, ep,
3645 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j",
3646 reg, reg, (int) BFD_RELOC_MIPS_GOT_OFST);
3647 }
3648 else
3649 {
3650 if (reg_needs_delay (mips_gp_register))
3651 off = 4;
3652 else
3653 off = 0;
3654 frag_grow (32);
3655 macro_build ((char *) NULL, counter, ep, "lui", "t,u", reg,
3656 (int) BFD_RELOC_MIPS_GOT_HI16);
3657 macro_build ((char *) NULL, counter, (expressionS *) NULL,
3658 HAVE_32BIT_ADDRESSES ? "addu" : "daddu", "d,v,t", reg,
3659 reg, mips_gp_register);
3660 macro_build ((char *) NULL, counter, ep,
3661 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
3662 "t,o(b)", reg, (int) BFD_RELOC_MIPS_GOT_LO16, reg);
3663 p = frag_var (rs_machine_dependent, 12 + off, 0,
3664 RELAX_ENCODE (12, 12 + off, off, 8 + off, 0,
3665 mips_opts.warn_about_macros),
3666 ep->X_add_symbol, 0, NULL);
3667 if (off > 0)
3668 {
3669 /* We need a nop before loading from $gp. This special
3670 check is required because the lui which starts the main
3671 instruction stream does not refer to $gp, and so will not
3672 insert the nop which may be required. */
3673 macro_build (p, counter, (expressionS *) NULL, "nop", "");
3674 p += 4;
3675 }
3676 macro_build (p, counter, ep,
3677 HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", reg,
3678 (int) BFD_RELOC_MIPS_GOT16, mips_gp_register);
3679 p += 4;
3680 macro_build (p, counter, (expressionS *) NULL, "nop", "");
3681 p += 4;
3682 macro_build (p, counter, ep,
3683 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
3684 "t,r,j", reg, reg, (int) BFD_RELOC_LO16);
3685 }
3686
3687 if (ex.X_add_number != 0)
3688 {
3689 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3690 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3691 ex.X_op = O_constant;
3692 macro_build ((char *) NULL, counter, &ex,
3693 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
3694 "t,r,j", reg, reg, (int) BFD_RELOC_LO16);
3695 }
3696 }
3697 else if (mips_pic == EMBEDDED_PIC)
3698 {
3699 /* We always do
3700 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
3701 */
3702 macro_build ((char *) NULL, counter, ep,
3703 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
3704 "t,r,j", reg, mips_gp_register, (int) BFD_RELOC_GPREL16);
3705 }
3706 else
3707 abort ();
3708 }
3709
3710 /* Move the contents of register SOURCE into register DEST. */
3711
3712 static void
3713 move_register (counter, dest, source)
3714 int *counter;
3715 int dest;
3716 int source;
3717 {
3718 macro_build ((char *) NULL, counter, (expressionS *) NULL,
3719 HAVE_32BIT_GPRS ? "addu" : "daddu",
3720 "d,v,t", dest, source, 0);
3721 }
3722
3723 /*
3724 * Build macros
3725 * This routine implements the seemingly endless macro or synthesized
3726 * instructions and addressing modes in the mips assembly language. Many
3727 * of these macros are simple and are similar to each other. These could
3728 * probably be handled by some kind of table or grammer aproach instead of
3729 * this verbose method. Others are not simple macros but are more like
3730 * optimizing code generation.
3731 * One interesting optimization is when several store macros appear
3732 * consecutivly that would load AT with the upper half of the same address.
3733 * The ensuing load upper instructions are ommited. This implies some kind
3734 * of global optimization. We currently only optimize within a single macro.
3735 * For many of the load and store macros if the address is specified as a
3736 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
3737 * first load register 'at' with zero and use it as the base register. The
3738 * mips assembler simply uses register $zero. Just one tiny optimization
3739 * we're missing.
3740 */
3741 static void
3742 macro (ip)
3743 struct mips_cl_insn *ip;
3744 {
3745 register int treg, sreg, dreg, breg;
3746 int tempreg;
3747 int mask;
3748 int icnt = 0;
3749 int used_at = 0;
3750 expressionS expr1;
3751 const char *s;
3752 const char *s2;
3753 const char *fmt;
3754 int likely = 0;
3755 int dbl = 0;
3756 int coproc = 0;
3757 int lr = 0;
3758 int imm = 0;
3759 offsetT maxnum;
3760 int off;
3761 bfd_reloc_code_real_type r;
3762 int hold_mips_optimize;
3763
3764 assert (! mips_opts.mips16);
3765
3766 treg = (ip->insn_opcode >> 16) & 0x1f;
3767 dreg = (ip->insn_opcode >> 11) & 0x1f;
3768 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
3769 mask = ip->insn_mo->mask;
3770
3771 expr1.X_op = O_constant;
3772 expr1.X_op_symbol = NULL;
3773 expr1.X_add_symbol = NULL;
3774 expr1.X_add_number = 1;
3775
3776 switch (mask)
3777 {
3778 case M_DABS:
3779 dbl = 1;
3780 case M_ABS:
3781 /* bgez $a0,.+12
3782 move v0,$a0
3783 sub v0,$zero,$a0
3784 */
3785
3786 mips_emit_delays (true);
3787 ++mips_opts.noreorder;
3788 mips_any_noreorder = 1;
3789
3790 expr1.X_add_number = 8;
3791 macro_build ((char *) NULL, &icnt, &expr1, "bgez", "s,p", sreg);
3792 if (dreg == sreg)
3793 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "",
3794 0);
3795 else
3796 move_register (&icnt, dreg, sreg);
3797 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
3798 dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
3799
3800 --mips_opts.noreorder;
3801 return;
3802
3803 case M_ADD_I:
3804 s = "addi";
3805 s2 = "add";
3806 goto do_addi;
3807 case M_ADDU_I:
3808 s = "addiu";
3809 s2 = "addu";
3810 goto do_addi;
3811 case M_DADD_I:
3812 dbl = 1;
3813 s = "daddi";
3814 s2 = "dadd";
3815 goto do_addi;
3816 case M_DADDU_I:
3817 dbl = 1;
3818 s = "daddiu";
3819 s2 = "daddu";
3820 do_addi:
3821 if (imm_expr.X_op == O_constant
3822 && imm_expr.X_add_number >= -0x8000
3823 && imm_expr.X_add_number < 0x8000)
3824 {
3825 macro_build ((char *) NULL, &icnt, &imm_expr, s, "t,r,j", treg, sreg,
3826 (int) BFD_RELOC_LO16);
3827 return;
3828 }
3829 load_register (&icnt, AT, &imm_expr, dbl);
3830 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s2, "d,v,t",
3831 treg, sreg, AT);
3832 break;
3833
3834 case M_AND_I:
3835 s = "andi";
3836 s2 = "and";
3837 goto do_bit;
3838 case M_OR_I:
3839 s = "ori";
3840 s2 = "or";
3841 goto do_bit;
3842 case M_NOR_I:
3843 s = "";
3844 s2 = "nor";
3845 goto do_bit;
3846 case M_XOR_I:
3847 s = "xori";
3848 s2 = "xor";
3849 do_bit:
3850 if (imm_expr.X_op == O_constant
3851 && imm_expr.X_add_number >= 0
3852 && imm_expr.X_add_number < 0x10000)
3853 {
3854 if (mask != M_NOR_I)
3855 macro_build ((char *) NULL, &icnt, &imm_expr, s, "t,r,i", treg,
3856 sreg, (int) BFD_RELOC_LO16);
3857 else
3858 {
3859 macro_build ((char *) NULL, &icnt, &imm_expr, "ori", "t,r,i",
3860 treg, sreg, (int) BFD_RELOC_LO16);
3861 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nor",
3862 "d,v,t", treg, treg, 0);
3863 }
3864 return;
3865 }
3866
3867 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
3868 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s2, "d,v,t",
3869 treg, sreg, AT);
3870 break;
3871
3872 case M_BEQ_I:
3873 s = "beq";
3874 goto beq_i;
3875 case M_BEQL_I:
3876 s = "beql";
3877 likely = 1;
3878 goto beq_i;
3879 case M_BNE_I:
3880 s = "bne";
3881 goto beq_i;
3882 case M_BNEL_I:
3883 s = "bnel";
3884 likely = 1;
3885 beq_i:
3886 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
3887 {
3888 macro_build ((char *) NULL, &icnt, &offset_expr, s, "s,t,p", sreg,
3889 0);
3890 return;
3891 }
3892 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
3893 macro_build ((char *) NULL, &icnt, &offset_expr, s, "s,t,p", sreg, AT);
3894 break;
3895
3896 case M_BGEL:
3897 likely = 1;
3898 case M_BGE:
3899 if (treg == 0)
3900 {
3901 macro_build ((char *) NULL, &icnt, &offset_expr,
3902 likely ? "bgezl" : "bgez", "s,p", sreg);
3903 return;
3904 }
3905 if (sreg == 0)
3906 {
3907 macro_build ((char *) NULL, &icnt, &offset_expr,
3908 likely ? "blezl" : "blez", "s,p", treg);
3909 return;
3910 }
3911 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "slt", "d,v,t",
3912 AT, sreg, treg);
3913 macro_build ((char *) NULL, &icnt, &offset_expr,
3914 likely ? "beql" : "beq", "s,t,p", AT, 0);
3915 break;
3916
3917 case M_BGTL_I:
3918 likely = 1;
3919 case M_BGT_I:
3920 /* check for > max integer */
3921 maxnum = 0x7fffffff;
3922 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
3923 {
3924 maxnum <<= 16;
3925 maxnum |= 0xffff;
3926 maxnum <<= 16;
3927 maxnum |= 0xffff;
3928 }
3929 if (imm_expr.X_op == O_constant
3930 && imm_expr.X_add_number >= maxnum
3931 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
3932 {
3933 do_false:
3934 /* result is always false */
3935 if (! likely)
3936 {
3937 if (warn_nops)
3938 as_warn (_("Branch %s is always false (nop)"),
3939 ip->insn_mo->name);
3940 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop",
3941 "", 0);
3942 }
3943 else
3944 {
3945 if (warn_nops)
3946 as_warn (_("Branch likely %s is always false"),
3947 ip->insn_mo->name);
3948 macro_build ((char *) NULL, &icnt, &offset_expr, "bnel",
3949 "s,t,p", 0, 0);
3950 }
3951 return;
3952 }
3953 if (imm_expr.X_op != O_constant)
3954 as_bad (_("Unsupported large constant"));
3955 ++imm_expr.X_add_number;
3956 /* FALLTHROUGH */
3957 case M_BGE_I:
3958 case M_BGEL_I:
3959 if (mask == M_BGEL_I)
3960 likely = 1;
3961 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
3962 {
3963 macro_build ((char *) NULL, &icnt, &offset_expr,
3964 likely ? "bgezl" : "bgez", "s,p", sreg);
3965 return;
3966 }
3967 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
3968 {
3969 macro_build ((char *) NULL, &icnt, &offset_expr,
3970 likely ? "bgtzl" : "bgtz", "s,p", sreg);
3971 return;
3972 }
3973 maxnum = 0x7fffffff;
3974 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
3975 {
3976 maxnum <<= 16;
3977 maxnum |= 0xffff;
3978 maxnum <<= 16;
3979 maxnum |= 0xffff;
3980 }
3981 maxnum = - maxnum - 1;
3982 if (imm_expr.X_op == O_constant
3983 && imm_expr.X_add_number <= maxnum
3984 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
3985 {
3986 do_true:
3987 /* result is always true */
3988 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
3989 macro_build ((char *) NULL, &icnt, &offset_expr, "b", "p");
3990 return;
3991 }
3992 set_at (&icnt, sreg, 0);
3993 macro_build ((char *) NULL, &icnt, &offset_expr,
3994 likely ? "beql" : "beq", "s,t,p", AT, 0);
3995 break;
3996
3997 case M_BGEUL:
3998 likely = 1;
3999 case M_BGEU:
4000 if (treg == 0)
4001 goto do_true;
4002 if (sreg == 0)
4003 {
4004 macro_build ((char *) NULL, &icnt, &offset_expr,
4005 likely ? "beql" : "beq", "s,t,p", 0, treg);
4006 return;
4007 }
4008 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
4009 "d,v,t", AT, sreg, treg);
4010 macro_build ((char *) NULL, &icnt, &offset_expr,
4011 likely ? "beql" : "beq", "s,t,p", AT, 0);
4012 break;
4013
4014 case M_BGTUL_I:
4015 likely = 1;
4016 case M_BGTU_I:
4017 if (sreg == 0
4018 || (HAVE_32BIT_GPRS
4019 && imm_expr.X_op == O_constant
4020 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4021 goto do_false;
4022 if (imm_expr.X_op != O_constant)
4023 as_bad (_("Unsupported large constant"));
4024 ++imm_expr.X_add_number;
4025 /* FALLTHROUGH */
4026 case M_BGEU_I:
4027 case M_BGEUL_I:
4028 if (mask == M_BGEUL_I)
4029 likely = 1;
4030 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4031 goto do_true;
4032 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4033 {
4034 macro_build ((char *) NULL, &icnt, &offset_expr,
4035 likely ? "bnel" : "bne", "s,t,p", sreg, 0);
4036 return;
4037 }
4038 set_at (&icnt, sreg, 1);
4039 macro_build ((char *) NULL, &icnt, &offset_expr,
4040 likely ? "beql" : "beq", "s,t,p", AT, 0);
4041 break;
4042
4043 case M_BGTL:
4044 likely = 1;
4045 case M_BGT:
4046 if (treg == 0)
4047 {
4048 macro_build ((char *) NULL, &icnt, &offset_expr,
4049 likely ? "bgtzl" : "bgtz", "s,p", sreg);
4050 return;
4051 }
4052 if (sreg == 0)
4053 {
4054 macro_build ((char *) NULL, &icnt, &offset_expr,
4055 likely ? "bltzl" : "bltz", "s,p", treg);
4056 return;
4057 }
4058 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "slt", "d,v,t",
4059 AT, treg, sreg);
4060 macro_build ((char *) NULL, &icnt, &offset_expr,
4061 likely ? "bnel" : "bne", "s,t,p", AT, 0);
4062 break;
4063
4064 case M_BGTUL:
4065 likely = 1;
4066 case M_BGTU:
4067 if (treg == 0)
4068 {
4069 macro_build ((char *) NULL, &icnt, &offset_expr,
4070 likely ? "bnel" : "bne", "s,t,p", sreg, 0);
4071 return;
4072 }
4073 if (sreg == 0)
4074 goto do_false;
4075 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
4076 "d,v,t", AT, treg, sreg);
4077 macro_build ((char *) NULL, &icnt, &offset_expr,
4078 likely ? "bnel" : "bne", "s,t,p", AT, 0);
4079 break;
4080
4081 case M_BLEL:
4082 likely = 1;
4083 case M_BLE:
4084 if (treg == 0)
4085 {
4086 macro_build ((char *) NULL, &icnt, &offset_expr,
4087 likely ? "blezl" : "blez", "s,p", sreg);
4088 return;
4089 }
4090 if (sreg == 0)
4091 {
4092 macro_build ((char *) NULL, &icnt, &offset_expr,
4093 likely ? "bgezl" : "bgez", "s,p", treg);
4094 return;
4095 }
4096 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "slt", "d,v,t",
4097 AT, treg, sreg);
4098 macro_build ((char *) NULL, &icnt, &offset_expr,
4099 likely ? "beql" : "beq", "s,t,p", AT, 0);
4100 break;
4101
4102 case M_BLEL_I:
4103 likely = 1;
4104 case M_BLE_I:
4105 maxnum = 0x7fffffff;
4106 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4107 {
4108 maxnum <<= 16;
4109 maxnum |= 0xffff;
4110 maxnum <<= 16;
4111 maxnum |= 0xffff;
4112 }
4113 if (imm_expr.X_op == O_constant
4114 && imm_expr.X_add_number >= maxnum
4115 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4116 goto do_true;
4117 if (imm_expr.X_op != O_constant)
4118 as_bad (_("Unsupported large constant"));
4119 ++imm_expr.X_add_number;
4120 /* FALLTHROUGH */
4121 case M_BLT_I:
4122 case M_BLTL_I:
4123 if (mask == M_BLTL_I)
4124 likely = 1;
4125 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4126 {
4127 macro_build ((char *) NULL, &icnt, &offset_expr,
4128 likely ? "bltzl" : "bltz", "s,p", sreg);
4129 return;
4130 }
4131 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4132 {
4133 macro_build ((char *) NULL, &icnt, &offset_expr,
4134 likely ? "blezl" : "blez", "s,p", sreg);
4135 return;
4136 }
4137 set_at (&icnt, sreg, 0);
4138 macro_build ((char *) NULL, &icnt, &offset_expr,
4139 likely ? "bnel" : "bne", "s,t,p", AT, 0);
4140 break;
4141
4142 case M_BLEUL:
4143 likely = 1;
4144 case M_BLEU:
4145 if (treg == 0)
4146 {
4147 macro_build ((char *) NULL, &icnt, &offset_expr,
4148 likely ? "beql" : "beq", "s,t,p", sreg, 0);
4149 return;
4150 }
4151 if (sreg == 0)
4152 goto do_true;
4153 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
4154 "d,v,t", AT, treg, sreg);
4155 macro_build ((char *) NULL, &icnt, &offset_expr,
4156 likely ? "beql" : "beq", "s,t,p", AT, 0);
4157 break;
4158
4159 case M_BLEUL_I:
4160 likely = 1;
4161 case M_BLEU_I:
4162 if (sreg == 0
4163 || (HAVE_32BIT_GPRS
4164 && imm_expr.X_op == O_constant
4165 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4166 goto do_true;
4167 if (imm_expr.X_op != O_constant)
4168 as_bad (_("Unsupported large constant"));
4169 ++imm_expr.X_add_number;
4170 /* FALLTHROUGH */
4171 case M_BLTU_I:
4172 case M_BLTUL_I:
4173 if (mask == M_BLTUL_I)
4174 likely = 1;
4175 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4176 goto do_false;
4177 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4178 {
4179 macro_build ((char *) NULL, &icnt, &offset_expr,
4180 likely ? "beql" : "beq",
4181 "s,t,p", sreg, 0);
4182 return;
4183 }
4184 set_at (&icnt, sreg, 1);
4185 macro_build ((char *) NULL, &icnt, &offset_expr,
4186 likely ? "bnel" : "bne", "s,t,p", AT, 0);
4187 break;
4188
4189 case M_BLTL:
4190 likely = 1;
4191 case M_BLT:
4192 if (treg == 0)
4193 {
4194 macro_build ((char *) NULL, &icnt, &offset_expr,
4195 likely ? "bltzl" : "bltz", "s,p", sreg);
4196 return;
4197 }
4198 if (sreg == 0)
4199 {
4200 macro_build ((char *) NULL, &icnt, &offset_expr,
4201 likely ? "bgtzl" : "bgtz", "s,p", treg);
4202 return;
4203 }
4204 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "slt", "d,v,t",
4205 AT, sreg, treg);
4206 macro_build ((char *) NULL, &icnt, &offset_expr,
4207 likely ? "bnel" : "bne", "s,t,p", AT, 0);
4208 break;
4209
4210 case M_BLTUL:
4211 likely = 1;
4212 case M_BLTU:
4213 if (treg == 0)
4214 goto do_false;
4215 if (sreg == 0)
4216 {
4217 macro_build ((char *) NULL, &icnt, &offset_expr,
4218 likely ? "bnel" : "bne", "s,t,p", 0, treg);
4219 return;
4220 }
4221 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
4222 "d,v,t", AT, sreg,
4223 treg);
4224 macro_build ((char *) NULL, &icnt, &offset_expr,
4225 likely ? "bnel" : "bne", "s,t,p", AT, 0);
4226 break;
4227
4228 case M_DDIV_3:
4229 dbl = 1;
4230 case M_DIV_3:
4231 s = "mflo";
4232 goto do_div3;
4233 case M_DREM_3:
4234 dbl = 1;
4235 case M_REM_3:
4236 s = "mfhi";
4237 do_div3:
4238 if (treg == 0)
4239 {
4240 as_warn (_("Divide by zero."));
4241 if (mips_trap)
4242 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "teq",
4243 "s,t,q", 0, 0, 7);
4244 else
4245 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break",
4246 "c", 7);
4247 return;
4248 }
4249
4250 mips_emit_delays (true);
4251 ++mips_opts.noreorder;
4252 mips_any_noreorder = 1;
4253 if (mips_trap)
4254 {
4255 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "teq",
4256 "s,t,q", treg, 0, 7);
4257 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4258 dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4259 }
4260 else
4261 {
4262 expr1.X_add_number = 8;
4263 macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, 0);
4264 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4265 dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4266 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break",
4267 "c", 7);
4268 }
4269 expr1.X_add_number = -1;
4270 macro_build ((char *) NULL, &icnt, &expr1,
4271 dbl ? "daddiu" : "addiu",
4272 "t,r,j", AT, 0, (int) BFD_RELOC_LO16);
4273 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
4274 macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, AT);
4275 if (dbl)
4276 {
4277 expr1.X_add_number = 1;
4278 macro_build ((char *) NULL, &icnt, &expr1, "daddiu", "t,r,j", AT, 0,
4279 (int) BFD_RELOC_LO16);
4280 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "dsll32",
4281 "d,w,<", AT, AT, 31);
4282 }
4283 else
4284 {
4285 expr1.X_add_number = 0x80000000;
4286 macro_build ((char *) NULL, &icnt, &expr1, "lui", "t,u", AT,
4287 (int) BFD_RELOC_HI16);
4288 }
4289 if (mips_trap)
4290 {
4291 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "teq",
4292 "s,t,q", sreg, AT, 6);
4293 /* We want to close the noreorder block as soon as possible, so
4294 that later insns are available for delay slot filling. */
4295 --mips_opts.noreorder;
4296 }
4297 else
4298 {
4299 expr1.X_add_number = 8;
4300 macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", sreg, AT);
4301 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "",
4302 0);
4303
4304 /* We want to close the noreorder block as soon as possible, so
4305 that later insns are available for delay slot filling. */
4306 --mips_opts.noreorder;
4307
4308 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break",
4309 "c", 6);
4310 }
4311 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "d", dreg);
4312 break;
4313
4314 case M_DIV_3I:
4315 s = "div";
4316 s2 = "mflo";
4317 goto do_divi;
4318 case M_DIVU_3I:
4319 s = "divu";
4320 s2 = "mflo";
4321 goto do_divi;
4322 case M_REM_3I:
4323 s = "div";
4324 s2 = "mfhi";
4325 goto do_divi;
4326 case M_REMU_3I:
4327 s = "divu";
4328 s2 = "mfhi";
4329 goto do_divi;
4330 case M_DDIV_3I:
4331 dbl = 1;
4332 s = "ddiv";
4333 s2 = "mflo";
4334 goto do_divi;
4335 case M_DDIVU_3I:
4336 dbl = 1;
4337 s = "ddivu";
4338 s2 = "mflo";
4339 goto do_divi;
4340 case M_DREM_3I:
4341 dbl = 1;
4342 s = "ddiv";
4343 s2 = "mfhi";
4344 goto do_divi;
4345 case M_DREMU_3I:
4346 dbl = 1;
4347 s = "ddivu";
4348 s2 = "mfhi";
4349 do_divi:
4350 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4351 {
4352 as_warn (_("Divide by zero."));
4353 if (mips_trap)
4354 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "teq",
4355 "s,t,q", 0, 0, 7);
4356 else
4357 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break",
4358 "c", 7);
4359 return;
4360 }
4361 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4362 {
4363 if (strcmp (s2, "mflo") == 0)
4364 move_register (&icnt, dreg, sreg);
4365 else
4366 move_register (&icnt, dreg, 0);
4367 return;
4368 }
4369 if (imm_expr.X_op == O_constant
4370 && imm_expr.X_add_number == -1
4371 && s[strlen (s) - 1] != 'u')
4372 {
4373 if (strcmp (s2, "mflo") == 0)
4374 {
4375 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4376 dbl ? "dneg" : "neg", "d,w", dreg, sreg);
4377 }
4378 else
4379 move_register (&icnt, dreg, 0);
4380 return;
4381 }
4382
4383 load_register (&icnt, AT, &imm_expr, dbl);
4384 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "z,s,t",
4385 sreg, AT);
4386 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s2, "d", dreg);
4387 break;
4388
4389 case M_DIVU_3:
4390 s = "divu";
4391 s2 = "mflo";
4392 goto do_divu3;
4393 case M_REMU_3:
4394 s = "divu";
4395 s2 = "mfhi";
4396 goto do_divu3;
4397 case M_DDIVU_3:
4398 s = "ddivu";
4399 s2 = "mflo";
4400 goto do_divu3;
4401 case M_DREMU_3:
4402 s = "ddivu";
4403 s2 = "mfhi";
4404 do_divu3:
4405 mips_emit_delays (true);
4406 ++mips_opts.noreorder;
4407 mips_any_noreorder = 1;
4408 if (mips_trap)
4409 {
4410 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "teq",
4411 "s,t,q", treg, 0, 7);
4412 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "z,s,t",
4413 sreg, treg);
4414 /* We want to close the noreorder block as soon as possible, so
4415 that later insns are available for delay slot filling. */
4416 --mips_opts.noreorder;
4417 }
4418 else
4419 {
4420 expr1.X_add_number = 8;
4421 macro_build ((char *) NULL, &icnt, &expr1, "bne", "s,t,p", treg, 0);
4422 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "z,s,t",
4423 sreg, treg);
4424
4425 /* We want to close the noreorder block as soon as possible, so
4426 that later insns are available for delay slot filling. */
4427 --mips_opts.noreorder;
4428 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break",
4429 "c", 7);
4430 }
4431 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s2, "d", dreg);
4432 return;
4433
4434 case M_DLA_AB:
4435 dbl = 1;
4436 case M_LA_AB:
4437 /* Load the address of a symbol into a register. If breg is not
4438 zero, we then add a base register to it. */
4439
4440 if (dbl && HAVE_32BIT_GPRS)
4441 as_warn (_("dla used to load 32-bit register"));
4442
4443 if (! dbl && HAVE_64BIT_OBJECTS)
4444 as_warn (_("la used to load 64-bit address"));
4445
4446 if (treg == breg)
4447 {
4448 tempreg = AT;
4449 used_at = 1;
4450 }
4451 else
4452 {
4453 tempreg = treg;
4454 used_at = 0;
4455 }
4456
4457 /* When generating embedded PIC code, we permit expressions of
4458 the form
4459 la $treg,foo-bar
4460 la $treg,foo-bar($breg)
4461 where bar is an address in the current section. These are used
4462 when getting the addresses of functions. We don't permit
4463 X_add_number to be non-zero, because if the symbol is
4464 external the relaxing code needs to know that any addend is
4465 purely the offset to X_op_symbol. */
4466 if (mips_pic == EMBEDDED_PIC
4467 && offset_expr.X_op == O_subtract
4468 && (symbol_constant_p (offset_expr.X_op_symbol)
4469 ? S_GET_SEGMENT (offset_expr.X_op_symbol) == now_seg
4470 : (symbol_equated_p (offset_expr.X_op_symbol)
4471 && (S_GET_SEGMENT
4472 (symbol_get_value_expression (offset_expr.X_op_symbol)
4473 ->X_add_symbol)
4474 == now_seg)))
4475 && (offset_expr.X_add_number == 0
4476 || OUTPUT_FLAVOR == bfd_target_elf_flavour))
4477 {
4478 if (breg == 0)
4479 {
4480 tempreg = treg;
4481 used_at = 0;
4482 macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
4483 tempreg, (int) BFD_RELOC_PCREL_HI16_S);
4484 }
4485 else
4486 {
4487 macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
4488 tempreg, (int) BFD_RELOC_PCREL_HI16_S);
4489 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4490 (dbl || HAVE_64BIT_ADDRESSES) ? "daddu" : "addu",
4491 "d,v,t", tempreg, tempreg, breg);
4492 }
4493 macro_build ((char *) NULL, &icnt, &offset_expr,
4494 (dbl || HAVE_64BIT_ADDRESSES) ? "daddiu" : "addiu",
4495 "t,r,j", treg, tempreg, (int) BFD_RELOC_PCREL_LO16);
4496 if (! used_at)
4497 return;
4498 break;
4499 }
4500
4501 if (offset_expr.X_op != O_symbol
4502 && offset_expr.X_op != O_constant)
4503 {
4504 as_bad (_("expression too complex"));
4505 offset_expr.X_op = O_constant;
4506 }
4507
4508 if (offset_expr.X_op == O_constant)
4509 load_register (&icnt, tempreg, &offset_expr,
4510 ((mips_pic == EMBEDDED_PIC || mips_pic == NO_PIC)
4511 ? (dbl || HAVE_64BIT_ADDRESSES)
4512 : HAVE_64BIT_ADDRESSES));
4513 else if (mips_pic == NO_PIC)
4514 {
4515 /* If this is a reference to a GP relative symbol, we want
4516 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
4517 Otherwise we want
4518 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
4519 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
4520 If we have a constant, we need two instructions anyhow,
4521 so we may as well always use the latter form.
4522
4523 With 64bit address space and a usable $at we want
4524 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4525 lui $at,<sym> (BFD_RELOC_HI16_S)
4526 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4527 daddiu $at,<sym> (BFD_RELOC_LO16)
4528 dsll32 $tempreg,0
4529 daddu $tempreg,$tempreg,$at
4530
4531 If $at is already in use, we use an path which is suboptimal
4532 on superscalar processors.
4533 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4534 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4535 dsll $tempreg,16
4536 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
4537 dsll $tempreg,16
4538 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
4539 */
4540 char *p = NULL;
4541 if (HAVE_64BIT_ADDRESSES)
4542 {
4543 /* We don't do GP optimization for now because RELAX_ENCODE can't
4544 hold the data for such large chunks. */
4545
4546 if (used_at == 0 && ! mips_opts.noat)
4547 {
4548 macro_build (p, &icnt, &offset_expr, "lui", "t,u",
4549 tempreg, (int) BFD_RELOC_MIPS_HIGHEST);
4550 macro_build (p, &icnt, &offset_expr, "lui", "t,u",
4551 AT, (int) BFD_RELOC_HI16_S);
4552 macro_build (p, &icnt, &offset_expr, "daddiu", "t,r,j",
4553 tempreg, tempreg, (int) BFD_RELOC_MIPS_HIGHER);
4554 macro_build (p, &icnt, &offset_expr, "daddiu", "t,r,j",
4555 AT, AT, (int) BFD_RELOC_LO16);
4556 macro_build (p, &icnt, (expressionS *) NULL, "dsll32",
4557 "d,w,<", tempreg, tempreg, 0);
4558 macro_build (p, &icnt, (expressionS *) NULL, "daddu",
4559 "d,v,t", tempreg, tempreg, AT);
4560 used_at = 1;
4561 }
4562 else
4563 {
4564 macro_build (p, &icnt, &offset_expr, "lui", "t,u",
4565 tempreg, (int) BFD_RELOC_MIPS_HIGHEST);
4566 macro_build (p, &icnt, &offset_expr, "daddiu", "t,r,j",
4567 tempreg, tempreg, (int) BFD_RELOC_MIPS_HIGHER);
4568 macro_build (p, &icnt, (expressionS *) NULL, "dsll", "d,w,<",
4569 tempreg, tempreg, 16);
4570 macro_build (p, &icnt, &offset_expr, "daddiu", "t,r,j",
4571 tempreg, tempreg, (int) BFD_RELOC_HI16_S);
4572 macro_build (p, &icnt, (expressionS *) NULL, "dsll", "d,w,<",
4573 tempreg, tempreg, 16);
4574 macro_build (p, &icnt, &offset_expr, "daddiu", "t,r,j",
4575 tempreg, tempreg, (int) BFD_RELOC_LO16);
4576 }
4577 }
4578 else
4579 {
4580 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
4581 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
4582 {
4583 frag_grow (20);
4584 macro_build ((char *) NULL, &icnt, &offset_expr, "addiu",
4585 "t,r,j", tempreg, mips_gp_register,
4586 (int) BFD_RELOC_GPREL16);
4587 p = frag_var (rs_machine_dependent, 8, 0,
4588 RELAX_ENCODE (4, 8, 0, 4, 0,
4589 mips_opts.warn_about_macros),
4590 offset_expr.X_add_symbol, 0, NULL);
4591 }
4592 macro_build_lui (p, &icnt, &offset_expr, tempreg);
4593 if (p != NULL)
4594 p += 4;
4595 macro_build (p, &icnt, &offset_expr, "addiu",
4596 "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
4597 }
4598 }
4599 else if (mips_pic == SVR4_PIC && ! mips_big_got)
4600 {
4601 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
4602
4603 /* If this is a reference to an external symbol, and there
4604 is no constant, we want
4605 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4606 or if tempreg is PIC_CALL_REG
4607 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
4608 For a local symbol, we want
4609 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4610 nop
4611 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
4612
4613 If we have a small constant, and this is a reference to
4614 an external symbol, we want
4615 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4616 nop
4617 addiu $tempreg,$tempreg,<constant>
4618 For a local symbol, we want the same instruction
4619 sequence, but we output a BFD_RELOC_LO16 reloc on the
4620 addiu instruction.
4621
4622 If we have a large constant, and this is a reference to
4623 an external symbol, we want
4624 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4625 lui $at,<hiconstant>
4626 addiu $at,$at,<loconstant>
4627 addu $tempreg,$tempreg,$at
4628 For a local symbol, we want the same instruction
4629 sequence, but we output a BFD_RELOC_LO16 reloc on the
4630 addiu instruction. */
4631 expr1.X_add_number = offset_expr.X_add_number;
4632 offset_expr.X_add_number = 0;
4633 frag_grow (32);
4634 if (expr1.X_add_number == 0 && tempreg == PIC_CALL_REG)
4635 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
4636 macro_build ((char *) NULL, &icnt, &offset_expr,
4637 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
4638 "t,o(b)", tempreg, lw_reloc_type, mips_gp_register);
4639 if (expr1.X_add_number == 0)
4640 {
4641 int off;
4642 char *p;
4643
4644 if (breg == 0)
4645 off = 0;
4646 else
4647 {
4648 /* We're going to put in an addu instruction using
4649 tempreg, so we may as well insert the nop right
4650 now. */
4651 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4652 "nop", "");
4653 off = 4;
4654 }
4655 p = frag_var (rs_machine_dependent, 8 - off, 0,
4656 RELAX_ENCODE (0, 8 - off, -4 - off, 4 - off, 0,
4657 (breg == 0
4658 ? mips_opts.warn_about_macros
4659 : 0)),
4660 offset_expr.X_add_symbol, 0, NULL);
4661 if (breg == 0)
4662 {
4663 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
4664 p += 4;
4665 }
4666 macro_build (p, &icnt, &expr1,
4667 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
4668 "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
4669 /* FIXME: If breg == 0, and the next instruction uses
4670 $tempreg, then if this variant case is used an extra
4671 nop will be generated. */
4672 }
4673 else if (expr1.X_add_number >= -0x8000
4674 && expr1.X_add_number < 0x8000)
4675 {
4676 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4677 "nop", "");
4678 macro_build ((char *) NULL, &icnt, &expr1,
4679 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
4680 "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
4681 frag_var (rs_machine_dependent, 0, 0,
4682 RELAX_ENCODE (0, 0, -12, -4, 0, 0),
4683 offset_expr.X_add_symbol, 0, NULL);
4684 }
4685 else
4686 {
4687 int off1;
4688
4689 /* If we are going to add in a base register, and the
4690 target register and the base register are the same,
4691 then we are using AT as a temporary register. Since
4692 we want to load the constant into AT, we add our
4693 current AT (from the global offset table) and the
4694 register into the register now, and pretend we were
4695 not using a base register. */
4696 if (breg != treg)
4697 off1 = 0;
4698 else
4699 {
4700 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4701 "nop", "");
4702 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4703 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
4704 "d,v,t", treg, AT, breg);
4705 breg = 0;
4706 tempreg = treg;
4707 off1 = -8;
4708 }
4709
4710 /* Set mips_optimize around the lui instruction to avoid
4711 inserting an unnecessary nop after the lw. */
4712 hold_mips_optimize = mips_optimize;
4713 mips_optimize = 2;
4714 macro_build_lui (NULL, &icnt, &expr1, AT);
4715 mips_optimize = hold_mips_optimize;
4716
4717 macro_build ((char *) NULL, &icnt, &expr1,
4718 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
4719 "t,r,j", AT, AT, (int) BFD_RELOC_LO16);
4720 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4721 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
4722 "d,v,t", tempreg, tempreg, AT);
4723 frag_var (rs_machine_dependent, 0, 0,
4724 RELAX_ENCODE (0, 0, -16 + off1, -8, 0, 0),
4725 offset_expr.X_add_symbol, 0, NULL);
4726 used_at = 1;
4727 }
4728 }
4729 else if (mips_pic == SVR4_PIC)
4730 {
4731 int gpdel;
4732 char *p;
4733 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
4734 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
4735
4736 /* This is the large GOT case. If this is a reference to an
4737 external symbol, and there is no constant, we want
4738 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4739 addu $tempreg,$tempreg,$gp
4740 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
4741 or if tempreg is PIC_CALL_REG
4742 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
4743 addu $tempreg,$tempreg,$gp
4744 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
4745 For a local symbol, we want
4746 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4747 nop
4748 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
4749
4750 If we have a small constant, and this is a reference to
4751 an external symbol, we want
4752 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4753 addu $tempreg,$tempreg,$gp
4754 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
4755 nop
4756 addiu $tempreg,$tempreg,<constant>
4757 For a local symbol, we want
4758 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4759 nop
4760 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
4761
4762 If we have a large constant, and this is a reference to
4763 an external symbol, we want
4764 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4765 addu $tempreg,$tempreg,$gp
4766 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
4767 lui $at,<hiconstant>
4768 addiu $at,$at,<loconstant>
4769 addu $tempreg,$tempreg,$at
4770 For a local symbol, we want
4771 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4772 lui $at,<hiconstant>
4773 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
4774 addu $tempreg,$tempreg,$at
4775
4776 For NewABI, we want for data addresses
4777 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4778 If tempreg is PIC_CALL_REG pointing to a external symbol, we want
4779 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
4780 */
4781 if (HAVE_NEWABI)
4782 {
4783 int reloc_type = (tempreg == PIC_CALL_REG
4784 ? BFD_RELOC_MIPS_CALL16
4785 : BFD_RELOC_MIPS_GOT_DISP);
4786
4787 macro_build ((char *) NULL, &icnt, &offset_expr,
4788 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
4789 "t,o(b)", tempreg, reloc_type, mips_gp_register);
4790
4791 if (breg != 0)
4792 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4793 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
4794 "d,v,t", treg, tempreg, breg);
4795
4796 if (! used_at)
4797 return;
4798
4799 break;
4800 }
4801 expr1.X_add_number = offset_expr.X_add_number;
4802 offset_expr.X_add_number = 0;
4803 frag_grow (52);
4804 if (reg_needs_delay (mips_gp_register))
4805 gpdel = 4;
4806 else
4807 gpdel = 0;
4808 if (expr1.X_add_number == 0 && tempreg == PIC_CALL_REG)
4809 {
4810 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
4811 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
4812 }
4813 macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
4814 tempreg, lui_reloc_type);
4815 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4816 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
4817 "d,v,t", tempreg, tempreg, mips_gp_register);
4818 macro_build ((char *) NULL, &icnt, &offset_expr,
4819 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
4820 "t,o(b)", tempreg, lw_reloc_type, tempreg);
4821 if (expr1.X_add_number == 0)
4822 {
4823 int off;
4824
4825 if (breg == 0)
4826 off = 0;
4827 else
4828 {
4829 /* We're going to put in an addu instruction using
4830 tempreg, so we may as well insert the nop right
4831 now. */
4832 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4833 "nop", "");
4834 off = 4;
4835 }
4836
4837 p = frag_var (rs_machine_dependent, 12 + gpdel, 0,
4838 RELAX_ENCODE (12 + off, 12 + gpdel, gpdel,
4839 8 + gpdel, 0,
4840 (breg == 0
4841 ? mips_opts.warn_about_macros
4842 : 0)),
4843 offset_expr.X_add_symbol, 0, NULL);
4844 }
4845 else if (expr1.X_add_number >= -0x8000
4846 && expr1.X_add_number < 0x8000)
4847 {
4848 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4849 "nop", "");
4850 macro_build ((char *) NULL, &icnt, &expr1,
4851 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
4852 "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
4853
4854 p = frag_var (rs_machine_dependent, 12 + gpdel, 0,
4855 RELAX_ENCODE (20, 12 + gpdel, gpdel, 8 + gpdel, 0,
4856 (breg == 0
4857 ? mips_opts.warn_about_macros
4858 : 0)),
4859 offset_expr.X_add_symbol, 0, NULL);
4860 }
4861 else
4862 {
4863 int adj, dreg;
4864
4865 /* If we are going to add in a base register, and the
4866 target register and the base register are the same,
4867 then we are using AT as a temporary register. Since
4868 we want to load the constant into AT, we add our
4869 current AT (from the global offset table) and the
4870 register into the register now, and pretend we were
4871 not using a base register. */
4872 if (breg != treg)
4873 {
4874 adj = 0;
4875 dreg = tempreg;
4876 }
4877 else
4878 {
4879 assert (tempreg == AT);
4880 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4881 "nop", "");
4882 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4883 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
4884 "d,v,t", treg, AT, breg);
4885 dreg = treg;
4886 adj = 8;
4887 }
4888
4889 /* Set mips_optimize around the lui instruction to avoid
4890 inserting an unnecessary nop after the lw. */
4891 hold_mips_optimize = mips_optimize;
4892 mips_optimize = 2;
4893 macro_build_lui (NULL, &icnt, &expr1, AT);
4894 mips_optimize = hold_mips_optimize;
4895
4896 macro_build ((char *) NULL, &icnt, &expr1,
4897 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
4898 "t,r,j", AT, AT, (int) BFD_RELOC_LO16);
4899 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
4900 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
4901 "d,v,t", dreg, dreg, AT);
4902
4903 p = frag_var (rs_machine_dependent, 16 + gpdel + adj, 0,
4904 RELAX_ENCODE (24 + adj, 16 + gpdel + adj, gpdel,
4905 8 + gpdel, 0,
4906 (breg == 0
4907 ? mips_opts.warn_about_macros
4908 : 0)),
4909 offset_expr.X_add_symbol, 0, NULL);
4910
4911 used_at = 1;
4912 }
4913
4914 if (gpdel > 0)
4915 {
4916 /* This is needed because this instruction uses $gp, but
4917 the first instruction on the main stream does not. */
4918 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
4919 p += 4;
4920 }
4921 macro_build (p, &icnt, &offset_expr,
4922 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
4923 "t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16,
4924 mips_gp_register);
4925 p += 4;
4926 if (expr1.X_add_number >= -0x8000
4927 && expr1.X_add_number < 0x8000)
4928 {
4929 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
4930 p += 4;
4931 macro_build (p, &icnt, &expr1,
4932 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
4933 "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
4934 /* FIXME: If add_number is 0, and there was no base
4935 register, the external symbol case ended with a load,
4936 so if the symbol turns out to not be external, and
4937 the next instruction uses tempreg, an unnecessary nop
4938 will be inserted. */
4939 }
4940 else
4941 {
4942 if (breg == treg)
4943 {
4944 /* We must add in the base register now, as in the
4945 external symbol case. */
4946 assert (tempreg == AT);
4947 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
4948 p += 4;
4949 macro_build (p, &icnt, (expressionS *) NULL,
4950 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
4951 "d,v,t", treg, AT, breg);
4952 p += 4;
4953 tempreg = treg;
4954 /* We set breg to 0 because we have arranged to add
4955 it in in both cases. */
4956 breg = 0;
4957 }
4958
4959 macro_build_lui (p, &icnt, &expr1, AT);
4960 p += 4;
4961 macro_build (p, &icnt, &expr1,
4962 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
4963 "t,r,j", AT, AT, (int) BFD_RELOC_LO16);
4964 p += 4;
4965 macro_build (p, &icnt, (expressionS *) NULL,
4966 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
4967 "d,v,t", tempreg, tempreg, AT);
4968 p += 4;
4969 }
4970 }
4971 else if (mips_pic == EMBEDDED_PIC)
4972 {
4973 /* We use
4974 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
4975 */
4976 macro_build ((char *) NULL, &icnt, &offset_expr,
4977 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j",
4978 tempreg, mips_gp_register, (int) BFD_RELOC_GPREL16);
4979 }
4980 else
4981 abort ();
4982
4983 if (breg != 0)
4984 {
4985 char *s;
4986
4987 if (mips_pic == EMBEDDED_PIC || mips_pic == NO_PIC)
4988 s = (dbl || HAVE_64BIT_ADDRESSES) ? "daddu" : "addu";
4989 else
4990 s = HAVE_64BIT_ADDRESSES ? "daddu" : "addu";
4991
4992 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s,
4993 "d,v,t", treg, tempreg, breg);
4994 }
4995
4996 if (! used_at)
4997 return;
4998
4999 break;
5000
5001 case M_J_A:
5002 /* The j instruction may not be used in PIC code, since it
5003 requires an absolute address. We convert it to a b
5004 instruction. */
5005 if (mips_pic == NO_PIC)
5006 macro_build ((char *) NULL, &icnt, &offset_expr, "j", "a");
5007 else
5008 macro_build ((char *) NULL, &icnt, &offset_expr, "b", "p");
5009 return;
5010
5011 /* The jal instructions must be handled as macros because when
5012 generating PIC code they expand to multi-instruction
5013 sequences. Normally they are simple instructions. */
5014 case M_JAL_1:
5015 dreg = RA;
5016 /* Fall through. */
5017 case M_JAL_2:
5018 if (mips_pic == NO_PIC
5019 || mips_pic == EMBEDDED_PIC)
5020 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "jalr",
5021 "d,s", dreg, sreg);
5022 else if (mips_pic == SVR4_PIC)
5023 {
5024 if (sreg != PIC_CALL_REG)
5025 as_warn (_("MIPS PIC call to register other than $25"));
5026
5027 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "jalr",
5028 "d,s", dreg, sreg);
5029 if (! HAVE_NEWABI)
5030 {
5031 if (mips_cprestore_offset < 0)
5032 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5033 else
5034 {
5035 if (! mips_frame_reg_valid)
5036 {
5037 as_warn (_("No .frame pseudo-op used in PIC code"));
5038 /* Quiet this warning. */
5039 mips_frame_reg_valid = 1;
5040 }
5041 if (! mips_cprestore_valid)
5042 {
5043 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5044 /* Quiet this warning. */
5045 mips_cprestore_valid = 1;
5046 }
5047 expr1.X_add_number = mips_cprestore_offset;
5048 macro_build ((char *) NULL, &icnt, &expr1,
5049 HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)",
5050 mips_gp_register, (int) BFD_RELOC_LO16,
5051 mips_frame_reg);
5052 }
5053 }
5054 }
5055 else
5056 abort ();
5057
5058 return;
5059
5060 case M_JAL_A:
5061 if (mips_pic == NO_PIC)
5062 macro_build ((char *) NULL, &icnt, &offset_expr, "jal", "a");
5063 else if (mips_pic == SVR4_PIC)
5064 {
5065 char *p;
5066
5067 /* If this is a reference to an external symbol, and we are
5068 using a small GOT, we want
5069 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5070 nop
5071 jalr $ra,$25
5072 nop
5073 lw $gp,cprestore($sp)
5074 The cprestore value is set using the .cprestore
5075 pseudo-op. If we are using a big GOT, we want
5076 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5077 addu $25,$25,$gp
5078 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
5079 nop
5080 jalr $ra,$25
5081 nop
5082 lw $gp,cprestore($sp)
5083 If the symbol is not external, we want
5084 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5085 nop
5086 addiu $25,$25,<sym> (BFD_RELOC_LO16)
5087 jalr $ra,$25
5088 nop
5089 lw $gp,cprestore($sp)
5090 For NewABI, we want
5091 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5092 jalr $ra,$25 (BFD_RELOC_MIPS_JALR)
5093 */
5094 if (HAVE_NEWABI)
5095 {
5096 macro_build ((char *) NULL, &icnt, &offset_expr,
5097 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5098 "t,o(b)", PIC_CALL_REG,
5099 (int) BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5100 macro_build_jalr (icnt, &offset_expr);
5101 }
5102 else
5103 {
5104 frag_grow (40);
5105 if (! mips_big_got)
5106 {
5107 macro_build ((char *) NULL, &icnt, &offset_expr,
5108 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5109 "t,o(b)", PIC_CALL_REG,
5110 (int) BFD_RELOC_MIPS_CALL16, mips_gp_register);
5111 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5112 "nop", "");
5113 p = frag_var (rs_machine_dependent, 4, 0,
5114 RELAX_ENCODE (0, 4, -8, 0, 0, 0),
5115 offset_expr.X_add_symbol, 0, NULL);
5116 }
5117 else
5118 {
5119 int gpdel;
5120
5121 if (reg_needs_delay (mips_gp_register))
5122 gpdel = 4;
5123 else
5124 gpdel = 0;
5125 macro_build ((char *) NULL, &icnt, &offset_expr, "lui",
5126 "t,u", PIC_CALL_REG,
5127 (int) BFD_RELOC_MIPS_CALL_HI16);
5128 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5129 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
5130 "d,v,t", PIC_CALL_REG, PIC_CALL_REG,
5131 mips_gp_register);
5132 macro_build ((char *) NULL, &icnt, &offset_expr,
5133 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5134 "t,o(b)", PIC_CALL_REG,
5135 (int) BFD_RELOC_MIPS_CALL_LO16, PIC_CALL_REG);
5136 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5137 "nop", "");
5138 p = frag_var (rs_machine_dependent, 12 + gpdel, 0,
5139 RELAX_ENCODE (16, 12 + gpdel, gpdel,
5140 8 + gpdel, 0, 0),
5141 offset_expr.X_add_symbol, 0, NULL);
5142 if (gpdel > 0)
5143 {
5144 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
5145 p += 4;
5146 }
5147 macro_build (p, &icnt, &offset_expr,
5148 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5149 "t,o(b)", PIC_CALL_REG,
5150 (int) BFD_RELOC_MIPS_GOT16, mips_gp_register);
5151 p += 4;
5152 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
5153 p += 4;
5154 }
5155 macro_build (p, &icnt, &offset_expr,
5156 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
5157 "t,r,j", PIC_CALL_REG, PIC_CALL_REG,
5158 (int) BFD_RELOC_LO16);
5159 macro_build_jalr (icnt, &offset_expr);
5160
5161 if (mips_cprestore_offset < 0)
5162 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5163 else
5164 {
5165 if (! mips_frame_reg_valid)
5166 {
5167 as_warn (_("No .frame pseudo-op used in PIC code"));
5168 /* Quiet this warning. */
5169 mips_frame_reg_valid = 1;
5170 }
5171 if (! mips_cprestore_valid)
5172 {
5173 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5174 /* Quiet this warning. */
5175 mips_cprestore_valid = 1;
5176 }
5177 if (mips_opts.noreorder)
5178 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5179 "nop", "");
5180 expr1.X_add_number = mips_cprestore_offset;
5181 macro_build ((char *) NULL, &icnt, &expr1,
5182 HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)",
5183 mips_gp_register, (int) BFD_RELOC_LO16,
5184 mips_frame_reg);
5185 }
5186 }
5187 }
5188 else if (mips_pic == EMBEDDED_PIC)
5189 {
5190 macro_build ((char *) NULL, &icnt, &offset_expr, "bal", "p");
5191 /* The linker may expand the call to a longer sequence which
5192 uses $at, so we must break rather than return. */
5193 break;
5194 }
5195 else
5196 abort ();
5197
5198 return;
5199
5200 case M_LB_AB:
5201 s = "lb";
5202 goto ld;
5203 case M_LBU_AB:
5204 s = "lbu";
5205 goto ld;
5206 case M_LH_AB:
5207 s = "lh";
5208 goto ld;
5209 case M_LHU_AB:
5210 s = "lhu";
5211 goto ld;
5212 case M_LW_AB:
5213 s = "lw";
5214 goto ld;
5215 case M_LWC0_AB:
5216 s = "lwc0";
5217 /* Itbl support may require additional care here. */
5218 coproc = 1;
5219 goto ld;
5220 case M_LWC1_AB:
5221 s = "lwc1";
5222 /* Itbl support may require additional care here. */
5223 coproc = 1;
5224 goto ld;
5225 case M_LWC2_AB:
5226 s = "lwc2";
5227 /* Itbl support may require additional care here. */
5228 coproc = 1;
5229 goto ld;
5230 case M_LWC3_AB:
5231 s = "lwc3";
5232 /* Itbl support may require additional care here. */
5233 coproc = 1;
5234 goto ld;
5235 case M_LWL_AB:
5236 s = "lwl";
5237 lr = 1;
5238 goto ld;
5239 case M_LWR_AB:
5240 s = "lwr";
5241 lr = 1;
5242 goto ld;
5243 case M_LDC1_AB:
5244 if (mips_arch == CPU_R4650)
5245 {
5246 as_bad (_("opcode not supported on this processor"));
5247 return;
5248 }
5249 s = "ldc1";
5250 /* Itbl support may require additional care here. */
5251 coproc = 1;
5252 goto ld;
5253 case M_LDC2_AB:
5254 s = "ldc2";
5255 /* Itbl support may require additional care here. */
5256 coproc = 1;
5257 goto ld;
5258 case M_LDC3_AB:
5259 s = "ldc3";
5260 /* Itbl support may require additional care here. */
5261 coproc = 1;
5262 goto ld;
5263 case M_LDL_AB:
5264 s = "ldl";
5265 lr = 1;
5266 goto ld;
5267 case M_LDR_AB:
5268 s = "ldr";
5269 lr = 1;
5270 goto ld;
5271 case M_LL_AB:
5272 s = "ll";
5273 goto ld;
5274 case M_LLD_AB:
5275 s = "lld";
5276 goto ld;
5277 case M_LWU_AB:
5278 s = "lwu";
5279 ld:
5280 if (breg == treg || coproc || lr)
5281 {
5282 tempreg = AT;
5283 used_at = 1;
5284 }
5285 else
5286 {
5287 tempreg = treg;
5288 used_at = 0;
5289 }
5290 goto ld_st;
5291 case M_SB_AB:
5292 s = "sb";
5293 goto st;
5294 case M_SH_AB:
5295 s = "sh";
5296 goto st;
5297 case M_SW_AB:
5298 s = "sw";
5299 goto st;
5300 case M_SWC0_AB:
5301 s = "swc0";
5302 /* Itbl support may require additional care here. */
5303 coproc = 1;
5304 goto st;
5305 case M_SWC1_AB:
5306 s = "swc1";
5307 /* Itbl support may require additional care here. */
5308 coproc = 1;
5309 goto st;
5310 case M_SWC2_AB:
5311 s = "swc2";
5312 /* Itbl support may require additional care here. */
5313 coproc = 1;
5314 goto st;
5315 case M_SWC3_AB:
5316 s = "swc3";
5317 /* Itbl support may require additional care here. */
5318 coproc = 1;
5319 goto st;
5320 case M_SWL_AB:
5321 s = "swl";
5322 goto st;
5323 case M_SWR_AB:
5324 s = "swr";
5325 goto st;
5326 case M_SC_AB:
5327 s = "sc";
5328 goto st;
5329 case M_SCD_AB:
5330 s = "scd";
5331 goto st;
5332 case M_SDC1_AB:
5333 if (mips_arch == CPU_R4650)
5334 {
5335 as_bad (_("opcode not supported on this processor"));
5336 return;
5337 }
5338 s = "sdc1";
5339 coproc = 1;
5340 /* Itbl support may require additional care here. */
5341 goto st;
5342 case M_SDC2_AB:
5343 s = "sdc2";
5344 /* Itbl support may require additional care here. */
5345 coproc = 1;
5346 goto st;
5347 case M_SDC3_AB:
5348 s = "sdc3";
5349 /* Itbl support may require additional care here. */
5350 coproc = 1;
5351 goto st;
5352 case M_SDL_AB:
5353 s = "sdl";
5354 goto st;
5355 case M_SDR_AB:
5356 s = "sdr";
5357 st:
5358 tempreg = AT;
5359 used_at = 1;
5360 ld_st:
5361 /* Itbl support may require additional care here. */
5362 if (mask == M_LWC1_AB
5363 || mask == M_SWC1_AB
5364 || mask == M_LDC1_AB
5365 || mask == M_SDC1_AB
5366 || mask == M_L_DAB
5367 || mask == M_S_DAB)
5368 fmt = "T,o(b)";
5369 else if (coproc)
5370 fmt = "E,o(b)";
5371 else
5372 fmt = "t,o(b)";
5373
5374 /* For embedded PIC, we allow loads where the offset is calculated
5375 by subtracting a symbol in the current segment from an unknown
5376 symbol, relative to a base register, e.g.:
5377 <op> $treg, <sym>-<localsym>($breg)
5378 This is used by the compiler for switch statements. */
5379 if (mips_pic == EMBEDDED_PIC
5380 && offset_expr.X_op == O_subtract
5381 && (symbol_constant_p (offset_expr.X_op_symbol)
5382 ? S_GET_SEGMENT (offset_expr.X_op_symbol) == now_seg
5383 : (symbol_equated_p (offset_expr.X_op_symbol)
5384 && (S_GET_SEGMENT
5385 (symbol_get_value_expression (offset_expr.X_op_symbol)
5386 ->X_add_symbol)
5387 == now_seg)))
5388 && breg != 0
5389 && (offset_expr.X_add_number == 0
5390 || OUTPUT_FLAVOR == bfd_target_elf_flavour))
5391 {
5392 /* For this case, we output the instructions:
5393 lui $tempreg,<sym> (BFD_RELOC_PCREL_HI16_S)
5394 addiu $tempreg,$tempreg,$breg
5395 <op> $treg,<sym>($tempreg) (BFD_RELOC_PCREL_LO16)
5396 If the relocation would fit entirely in 16 bits, it would be
5397 nice to emit:
5398 <op> $treg,<sym>($breg) (BFD_RELOC_PCREL_LO16)
5399 instead, but that seems quite difficult. */
5400 macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
5401 tempreg, (int) BFD_RELOC_PCREL_HI16_S);
5402 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5403 ((bfd_arch_bits_per_address (stdoutput) == 32
5404 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
5405 ? "addu" : "daddu"),
5406 "d,v,t", tempreg, tempreg, breg);
5407 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt, treg,
5408 (int) BFD_RELOC_PCREL_LO16, tempreg);
5409 if (! used_at)
5410 return;
5411 break;
5412 }
5413
5414 if (offset_expr.X_op != O_constant
5415 && offset_expr.X_op != O_symbol)
5416 {
5417 as_bad (_("expression too complex"));
5418 offset_expr.X_op = O_constant;
5419 }
5420
5421 /* A constant expression in PIC code can be handled just as it
5422 is in non PIC code. */
5423 if (mips_pic == NO_PIC
5424 || offset_expr.X_op == O_constant)
5425 {
5426 char *p;
5427
5428 /* If this is a reference to a GP relative symbol, and there
5429 is no base register, we want
5430 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
5431 Otherwise, if there is no base register, we want
5432 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5433 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5434 If we have a constant, we need two instructions anyhow,
5435 so we always use the latter form.
5436
5437 If we have a base register, and this is a reference to a
5438 GP relative symbol, we want
5439 addu $tempreg,$breg,$gp
5440 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
5441 Otherwise we want
5442 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5443 addu $tempreg,$tempreg,$breg
5444 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5445 With a constant we always use the latter case.
5446
5447 With 64bit address space and no base register and $at usable,
5448 we want
5449 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5450 lui $at,<sym> (BFD_RELOC_HI16_S)
5451 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5452 dsll32 $tempreg,0
5453 daddu $tempreg,$at
5454 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5455 If we have a base register, we want
5456 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5457 lui $at,<sym> (BFD_RELOC_HI16_S)
5458 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5459 daddu $at,$breg
5460 dsll32 $tempreg,0
5461 daddu $tempreg,$at
5462 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5463
5464 Without $at we can't generate the optimal path for superscalar
5465 processors here since this would require two temporary registers.
5466 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5467 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5468 dsll $tempreg,16
5469 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5470 dsll $tempreg,16
5471 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5472 If we have a base register, we want
5473 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5474 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5475 dsll $tempreg,16
5476 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5477 dsll $tempreg,16
5478 daddu $tempreg,$tempreg,$breg
5479 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5480
5481 If we have 64-bit addresses, as an optimization, for
5482 addresses which are 32-bit constants (e.g. kseg0/kseg1
5483 addresses) we fall back to the 32-bit address generation
5484 mechanism since it is more efficient. Note that due to
5485 the signed offset used by memory operations, the 32-bit
5486 range is shifted down by 32768 here. This code should
5487 probably attempt to generate 64-bit constants more
5488 efficiently in general.
5489 */
5490 if (HAVE_64BIT_ADDRESSES
5491 && !(offset_expr.X_op == O_constant
5492 && IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000)))
5493 {
5494 p = NULL;
5495
5496 /* We don't do GP optimization for now because RELAX_ENCODE can't
5497 hold the data for such large chunks. */
5498
5499 if (used_at == 0 && ! mips_opts.noat)
5500 {
5501 macro_build (p, &icnt, &offset_expr, "lui", "t,u",
5502 tempreg, (int) BFD_RELOC_MIPS_HIGHEST);
5503 macro_build (p, &icnt, &offset_expr, "lui", "t,u",
5504 AT, (int) BFD_RELOC_HI16_S);
5505 macro_build (p, &icnt, &offset_expr, "daddiu", "t,r,j",
5506 tempreg, tempreg, (int) BFD_RELOC_MIPS_HIGHER);
5507 if (breg != 0)
5508 macro_build (p, &icnt, (expressionS *) NULL, "daddu",
5509 "d,v,t", AT, AT, breg);
5510 macro_build (p, &icnt, (expressionS *) NULL, "dsll32",
5511 "d,w,<", tempreg, tempreg, 0);
5512 macro_build (p, &icnt, (expressionS *) NULL, "daddu",
5513 "d,v,t", tempreg, tempreg, AT);
5514 macro_build (p, &icnt, &offset_expr, s,
5515 fmt, treg, (int) BFD_RELOC_LO16, tempreg);
5516 used_at = 1;
5517 }
5518 else
5519 {
5520 macro_build (p, &icnt, &offset_expr, "lui", "t,u",
5521 tempreg, (int) BFD_RELOC_MIPS_HIGHEST);
5522 macro_build (p, &icnt, &offset_expr, "daddiu", "t,r,j",
5523 tempreg, tempreg, (int) BFD_RELOC_MIPS_HIGHER);
5524 macro_build (p, &icnt, (expressionS *) NULL, "dsll",
5525 "d,w,<", tempreg, tempreg, 16);
5526 macro_build (p, &icnt, &offset_expr, "daddiu", "t,r,j",
5527 tempreg, tempreg, (int) BFD_RELOC_HI16_S);
5528 macro_build (p, &icnt, (expressionS *) NULL, "dsll",
5529 "d,w,<", tempreg, tempreg, 16);
5530 if (breg != 0)
5531 macro_build (p, &icnt, (expressionS *) NULL, "daddu",
5532 "d,v,t", tempreg, tempreg, breg);
5533 macro_build (p, &icnt, &offset_expr, s,
5534 fmt, treg, (int) BFD_RELOC_LO16, tempreg);
5535 }
5536
5537 return;
5538 }
5539
5540 if (breg == 0)
5541 {
5542 if ((valueT) offset_expr.X_add_number > MAX_GPREL_OFFSET
5543 || nopic_need_relax (offset_expr.X_add_symbol, 1))
5544 p = NULL;
5545 else
5546 {
5547 frag_grow (20);
5548 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
5549 treg, (int) BFD_RELOC_GPREL16,
5550 mips_gp_register);
5551 p = frag_var (rs_machine_dependent, 8, 0,
5552 RELAX_ENCODE (4, 8, 0, 4, 0,
5553 (mips_opts.warn_about_macros
5554 || (used_at
5555 && mips_opts.noat))),
5556 offset_expr.X_add_symbol, 0, NULL);
5557 used_at = 0;
5558 }
5559 macro_build_lui (p, &icnt, &offset_expr, tempreg);
5560 if (p != NULL)
5561 p += 4;
5562 macro_build (p, &icnt, &offset_expr, s, fmt, treg,
5563 (int) BFD_RELOC_LO16, tempreg);
5564 }
5565 else
5566 {
5567 if ((valueT) offset_expr.X_add_number > MAX_GPREL_OFFSET
5568 || nopic_need_relax (offset_expr.X_add_symbol, 1))
5569 p = NULL;
5570 else
5571 {
5572 frag_grow (28);
5573 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5574 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
5575 "d,v,t", tempreg, breg, mips_gp_register);
5576 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
5577 treg, (int) BFD_RELOC_GPREL16, tempreg);
5578 p = frag_var (rs_machine_dependent, 12, 0,
5579 RELAX_ENCODE (8, 12, 0, 8, 0, 0),
5580 offset_expr.X_add_symbol, 0, NULL);
5581 }
5582 macro_build_lui (p, &icnt, &offset_expr, tempreg);
5583 if (p != NULL)
5584 p += 4;
5585 macro_build (p, &icnt, (expressionS *) NULL,
5586 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
5587 "d,v,t", tempreg, tempreg, breg);
5588 if (p != NULL)
5589 p += 4;
5590 macro_build (p, &icnt, &offset_expr, s, fmt, treg,
5591 (int) BFD_RELOC_LO16, tempreg);
5592 }
5593 }
5594 else if (mips_pic == SVR4_PIC && ! mips_big_got)
5595 {
5596 char *p;
5597
5598 /* If this is a reference to an external symbol, we want
5599 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5600 nop
5601 <op> $treg,0($tempreg)
5602 Otherwise we want
5603 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5604 nop
5605 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5606 <op> $treg,0($tempreg)
5607 If there is a base register, we add it to $tempreg before
5608 the <op>. If there is a constant, we stick it in the
5609 <op> instruction. We don't handle constants larger than
5610 16 bits, because we have no way to load the upper 16 bits
5611 (actually, we could handle them for the subset of cases
5612 in which we are not using $at). */
5613 assert (offset_expr.X_op == O_symbol);
5614 expr1.X_add_number = offset_expr.X_add_number;
5615 offset_expr.X_add_number = 0;
5616 if (expr1.X_add_number < -0x8000
5617 || expr1.X_add_number >= 0x8000)
5618 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5619 frag_grow (20);
5620 macro_build ((char *) NULL, &icnt, &offset_expr,
5621 HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", tempreg,
5622 (int) BFD_RELOC_MIPS_GOT16, mips_gp_register);
5623 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
5624 p = frag_var (rs_machine_dependent, 4, 0,
5625 RELAX_ENCODE (0, 4, -8, 0, 0, 0),
5626 offset_expr.X_add_symbol, 0, NULL);
5627 macro_build (p, &icnt, &offset_expr,
5628 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
5629 "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
5630 if (breg != 0)
5631 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5632 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
5633 "d,v,t", tempreg, tempreg, breg);
5634 macro_build ((char *) NULL, &icnt, &expr1, s, fmt, treg,
5635 (int) BFD_RELOC_LO16, tempreg);
5636 }
5637 else if (mips_pic == SVR4_PIC)
5638 {
5639 int gpdel;
5640 char *p;
5641
5642 /* If this is a reference to an external symbol, we want
5643 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5644 addu $tempreg,$tempreg,$gp
5645 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5646 <op> $treg,0($tempreg)
5647 Otherwise we want
5648 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5649 nop
5650 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5651 <op> $treg,0($tempreg)
5652 If there is a base register, we add it to $tempreg before
5653 the <op>. If there is a constant, we stick it in the
5654 <op> instruction. We don't handle constants larger than
5655 16 bits, because we have no way to load the upper 16 bits
5656 (actually, we could handle them for the subset of cases
5657 in which we are not using $at).
5658
5659 For NewABI, we want
5660 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5661 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5662 <op> $treg,0($tempreg)
5663 */
5664 assert (offset_expr.X_op == O_symbol);
5665 expr1.X_add_number = offset_expr.X_add_number;
5666 offset_expr.X_add_number = 0;
5667 if (expr1.X_add_number < -0x8000
5668 || expr1.X_add_number >= 0x8000)
5669 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
5670 if (HAVE_NEWABI)
5671 {
5672 macro_build ((char *) NULL, &icnt, &offset_expr,
5673 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5674 "t,o(b)", tempreg, BFD_RELOC_MIPS_GOT_PAGE,
5675 mips_gp_register);
5676 macro_build ((char *) NULL, &icnt, &offset_expr,
5677 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
5678 "t,r,j", tempreg, tempreg,
5679 BFD_RELOC_MIPS_GOT_OFST);
5680 if (breg != 0)
5681 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5682 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
5683 "d,v,t", tempreg, tempreg, breg);
5684 macro_build ((char *) NULL, &icnt, &expr1, s, fmt, treg,
5685 (int) BFD_RELOC_LO16, tempreg);
5686
5687 if (! used_at)
5688 return;
5689
5690 break;
5691 }
5692 if (reg_needs_delay (mips_gp_register))
5693 gpdel = 4;
5694 else
5695 gpdel = 0;
5696 frag_grow (36);
5697 macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
5698 tempreg, (int) BFD_RELOC_MIPS_GOT_HI16);
5699 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5700 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
5701 "d,v,t", tempreg, tempreg, mips_gp_register);
5702 macro_build ((char *) NULL, &icnt, &offset_expr,
5703 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5704 "t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT_LO16,
5705 tempreg);
5706 p = frag_var (rs_machine_dependent, 12 + gpdel, 0,
5707 RELAX_ENCODE (12, 12 + gpdel, gpdel, 8 + gpdel, 0, 0),
5708 offset_expr.X_add_symbol, 0, NULL);
5709 if (gpdel > 0)
5710 {
5711 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
5712 p += 4;
5713 }
5714 macro_build (p, &icnt, &offset_expr,
5715 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5716 "t,o(b)", tempreg, (int) BFD_RELOC_MIPS_GOT16,
5717 mips_gp_register);
5718 p += 4;
5719 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
5720 p += 4;
5721 macro_build (p, &icnt, &offset_expr,
5722 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu",
5723 "t,r,j", tempreg, tempreg, (int) BFD_RELOC_LO16);
5724 if (breg != 0)
5725 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5726 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
5727 "d,v,t", tempreg, tempreg, breg);
5728 macro_build ((char *) NULL, &icnt, &expr1, s, fmt, treg,
5729 (int) BFD_RELOC_LO16, tempreg);
5730 }
5731 else if (mips_pic == EMBEDDED_PIC)
5732 {
5733 /* If there is no base register, we want
5734 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
5735 If there is a base register, we want
5736 addu $tempreg,$breg,$gp
5737 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
5738 */
5739 assert (offset_expr.X_op == O_symbol);
5740 if (breg == 0)
5741 {
5742 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
5743 treg, (int) BFD_RELOC_GPREL16, mips_gp_register);
5744 used_at = 0;
5745 }
5746 else
5747 {
5748 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5749 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
5750 "d,v,t", tempreg, breg, mips_gp_register);
5751 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
5752 treg, (int) BFD_RELOC_GPREL16, tempreg);
5753 }
5754 }
5755 else
5756 abort ();
5757
5758 if (! used_at)
5759 return;
5760
5761 break;
5762
5763 case M_LI:
5764 case M_LI_S:
5765 load_register (&icnt, treg, &imm_expr, 0);
5766 return;
5767
5768 case M_DLI:
5769 load_register (&icnt, treg, &imm_expr, 1);
5770 return;
5771
5772 case M_LI_SS:
5773 if (imm_expr.X_op == O_constant)
5774 {
5775 load_register (&icnt, AT, &imm_expr, 0);
5776 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5777 "mtc1", "t,G", AT, treg);
5778 break;
5779 }
5780 else
5781 {
5782 assert (offset_expr.X_op == O_symbol
5783 && strcmp (segment_name (S_GET_SEGMENT
5784 (offset_expr.X_add_symbol)),
5785 ".lit4") == 0
5786 && offset_expr.X_add_number == 0);
5787 macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)",
5788 treg, (int) BFD_RELOC_MIPS_LITERAL, mips_gp_register);
5789 return;
5790 }
5791
5792 case M_LI_D:
5793 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
5794 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
5795 order 32 bits of the value and the low order 32 bits are either
5796 zero or in OFFSET_EXPR. */
5797 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
5798 {
5799 if (HAVE_64BIT_GPRS)
5800 load_register (&icnt, treg, &imm_expr, 1);
5801 else
5802 {
5803 int hreg, lreg;
5804
5805 if (target_big_endian)
5806 {
5807 hreg = treg;
5808 lreg = treg + 1;
5809 }
5810 else
5811 {
5812 hreg = treg + 1;
5813 lreg = treg;
5814 }
5815
5816 if (hreg <= 31)
5817 load_register (&icnt, hreg, &imm_expr, 0);
5818 if (lreg <= 31)
5819 {
5820 if (offset_expr.X_op == O_absent)
5821 move_register (&icnt, lreg, 0);
5822 else
5823 {
5824 assert (offset_expr.X_op == O_constant);
5825 load_register (&icnt, lreg, &offset_expr, 0);
5826 }
5827 }
5828 }
5829 return;
5830 }
5831
5832 /* We know that sym is in the .rdata section. First we get the
5833 upper 16 bits of the address. */
5834 if (mips_pic == NO_PIC)
5835 {
5836 macro_build_lui (NULL, &icnt, &offset_expr, AT);
5837 }
5838 else if (mips_pic == SVR4_PIC)
5839 {
5840 macro_build ((char *) NULL, &icnt, &offset_expr,
5841 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5842 "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16,
5843 mips_gp_register);
5844 }
5845 else if (mips_pic == EMBEDDED_PIC)
5846 {
5847 /* For embedded PIC we pick up the entire address off $gp in
5848 a single instruction. */
5849 macro_build ((char *) NULL, &icnt, &offset_expr,
5850 HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu", "t,r,j", AT,
5851 mips_gp_register, (int) BFD_RELOC_GPREL16);
5852 offset_expr.X_op = O_constant;
5853 offset_expr.X_add_number = 0;
5854 }
5855 else
5856 abort ();
5857
5858 /* Now we load the register(s). */
5859 if (HAVE_64BIT_GPRS)
5860 macro_build ((char *) NULL, &icnt, &offset_expr, "ld", "t,o(b)",
5861 treg, (int) BFD_RELOC_LO16, AT);
5862 else
5863 {
5864 macro_build ((char *) NULL, &icnt, &offset_expr, "lw", "t,o(b)",
5865 treg, (int) BFD_RELOC_LO16, AT);
5866 if (treg != RA)
5867 {
5868 /* FIXME: How in the world do we deal with the possible
5869 overflow here? */
5870 offset_expr.X_add_number += 4;
5871 macro_build ((char *) NULL, &icnt, &offset_expr, "lw", "t,o(b)",
5872 treg + 1, (int) BFD_RELOC_LO16, AT);
5873 }
5874 }
5875
5876 /* To avoid confusion in tc_gen_reloc, we must ensure that this
5877 does not become a variant frag. */
5878 frag_wane (frag_now);
5879 frag_new (0);
5880
5881 break;
5882
5883 case M_LI_DD:
5884 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
5885 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
5886 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
5887 the value and the low order 32 bits are either zero or in
5888 OFFSET_EXPR. */
5889 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
5890 {
5891 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_FPRS);
5892 if (HAVE_64BIT_FPRS)
5893 {
5894 assert (HAVE_64BIT_GPRS);
5895 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5896 "dmtc1", "t,S", AT, treg);
5897 }
5898 else
5899 {
5900 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5901 "mtc1", "t,G", AT, treg + 1);
5902 if (offset_expr.X_op == O_absent)
5903 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5904 "mtc1", "t,G", 0, treg);
5905 else
5906 {
5907 assert (offset_expr.X_op == O_constant);
5908 load_register (&icnt, AT, &offset_expr, 0);
5909 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
5910 "mtc1", "t,G", AT, treg);
5911 }
5912 }
5913 break;
5914 }
5915
5916 assert (offset_expr.X_op == O_symbol
5917 && offset_expr.X_add_number == 0);
5918 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
5919 if (strcmp (s, ".lit8") == 0)
5920 {
5921 if (mips_opts.isa != ISA_MIPS1)
5922 {
5923 macro_build ((char *) NULL, &icnt, &offset_expr, "ldc1",
5924 "T,o(b)", treg, (int) BFD_RELOC_MIPS_LITERAL,
5925 mips_gp_register);
5926 return;
5927 }
5928 breg = mips_gp_register;
5929 r = BFD_RELOC_MIPS_LITERAL;
5930 goto dob;
5931 }
5932 else
5933 {
5934 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
5935 if (mips_pic == SVR4_PIC)
5936 macro_build ((char *) NULL, &icnt, &offset_expr,
5937 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
5938 "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16,
5939 mips_gp_register);
5940 else
5941 {
5942 /* FIXME: This won't work for a 64 bit address. */
5943 macro_build_lui (NULL, &icnt, &offset_expr, AT);
5944 }
5945
5946 if (mips_opts.isa != ISA_MIPS1)
5947 {
5948 macro_build ((char *) NULL, &icnt, &offset_expr, "ldc1",
5949 "T,o(b)", treg, (int) BFD_RELOC_LO16, AT);
5950
5951 /* To avoid confusion in tc_gen_reloc, we must ensure
5952 that this does not become a variant frag. */
5953 frag_wane (frag_now);
5954 frag_new (0);
5955
5956 break;
5957 }
5958 breg = AT;
5959 r = BFD_RELOC_LO16;
5960 goto dob;
5961 }
5962
5963 case M_L_DOB:
5964 if (mips_arch == CPU_R4650)
5965 {
5966 as_bad (_("opcode not supported on this processor"));
5967 return;
5968 }
5969 /* Even on a big endian machine $fn comes before $fn+1. We have
5970 to adjust when loading from memory. */
5971 r = BFD_RELOC_LO16;
5972 dob:
5973 assert (mips_opts.isa == ISA_MIPS1);
5974 macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)",
5975 target_big_endian ? treg + 1 : treg,
5976 (int) r, breg);
5977 /* FIXME: A possible overflow which I don't know how to deal
5978 with. */
5979 offset_expr.X_add_number += 4;
5980 macro_build ((char *) NULL, &icnt, &offset_expr, "lwc1", "T,o(b)",
5981 target_big_endian ? treg : treg + 1,
5982 (int) r, breg);
5983
5984 /* To avoid confusion in tc_gen_reloc, we must ensure that this
5985 does not become a variant frag. */
5986 frag_wane (frag_now);
5987 frag_new (0);
5988
5989 if (breg != AT)
5990 return;
5991 break;
5992
5993 case M_L_DAB:
5994 /*
5995 * The MIPS assembler seems to check for X_add_number not
5996 * being double aligned and generating:
5997 * lui at,%hi(foo+1)
5998 * addu at,at,v1
5999 * addiu at,at,%lo(foo+1)
6000 * lwc1 f2,0(at)
6001 * lwc1 f3,4(at)
6002 * But, the resulting address is the same after relocation so why
6003 * generate the extra instruction?
6004 */
6005 if (mips_arch == CPU_R4650)
6006 {
6007 as_bad (_("opcode not supported on this processor"));
6008 return;
6009 }
6010 /* Itbl support may require additional care here. */
6011 coproc = 1;
6012 if (mips_opts.isa != ISA_MIPS1)
6013 {
6014 s = "ldc1";
6015 goto ld;
6016 }
6017
6018 s = "lwc1";
6019 fmt = "T,o(b)";
6020 goto ldd_std;
6021
6022 case M_S_DAB:
6023 if (mips_arch == CPU_R4650)
6024 {
6025 as_bad (_("opcode not supported on this processor"));
6026 return;
6027 }
6028
6029 if (mips_opts.isa != ISA_MIPS1)
6030 {
6031 s = "sdc1";
6032 goto st;
6033 }
6034
6035 s = "swc1";
6036 fmt = "T,o(b)";
6037 /* Itbl support may require additional care here. */
6038 coproc = 1;
6039 goto ldd_std;
6040
6041 case M_LD_AB:
6042 if (HAVE_64BIT_GPRS)
6043 {
6044 s = "ld";
6045 goto ld;
6046 }
6047
6048 s = "lw";
6049 fmt = "t,o(b)";
6050 goto ldd_std;
6051
6052 case M_SD_AB:
6053 if (HAVE_64BIT_GPRS)
6054 {
6055 s = "sd";
6056 goto st;
6057 }
6058
6059 s = "sw";
6060 fmt = "t,o(b)";
6061
6062 ldd_std:
6063 /* We do _not_ bother to allow embedded PIC (symbol-local_symbol)
6064 loads for the case of doing a pair of loads to simulate an 'ld'.
6065 This is not currently done by the compiler, and assembly coders
6066 writing embedded-pic code can cope. */
6067
6068 if (offset_expr.X_op != O_symbol
6069 && offset_expr.X_op != O_constant)
6070 {
6071 as_bad (_("expression too complex"));
6072 offset_expr.X_op = O_constant;
6073 }
6074
6075 /* Even on a big endian machine $fn comes before $fn+1. We have
6076 to adjust when loading from memory. We set coproc if we must
6077 load $fn+1 first. */
6078 /* Itbl support may require additional care here. */
6079 if (! target_big_endian)
6080 coproc = 0;
6081
6082 if (mips_pic == NO_PIC
6083 || offset_expr.X_op == O_constant)
6084 {
6085 char *p;
6086
6087 /* If this is a reference to a GP relative symbol, we want
6088 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6089 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6090 If we have a base register, we use this
6091 addu $at,$breg,$gp
6092 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6093 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6094 If this is not a GP relative symbol, we want
6095 lui $at,<sym> (BFD_RELOC_HI16_S)
6096 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6097 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6098 If there is a base register, we add it to $at after the
6099 lui instruction. If there is a constant, we always use
6100 the last case. */
6101 if ((valueT) offset_expr.X_add_number > MAX_GPREL_OFFSET
6102 || nopic_need_relax (offset_expr.X_add_symbol, 1))
6103 {
6104 p = NULL;
6105 used_at = 1;
6106 }
6107 else
6108 {
6109 int off;
6110
6111 if (breg == 0)
6112 {
6113 frag_grow (28);
6114 tempreg = mips_gp_register;
6115 off = 0;
6116 used_at = 0;
6117 }
6118 else
6119 {
6120 frag_grow (36);
6121 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6122 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
6123 "d,v,t", AT, breg, mips_gp_register);
6124 tempreg = AT;
6125 off = 4;
6126 used_at = 1;
6127 }
6128
6129 /* Itbl support may require additional care here. */
6130 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
6131 coproc ? treg + 1 : treg,
6132 (int) BFD_RELOC_GPREL16, tempreg);
6133 offset_expr.X_add_number += 4;
6134
6135 /* Set mips_optimize to 2 to avoid inserting an
6136 undesired nop. */
6137 hold_mips_optimize = mips_optimize;
6138 mips_optimize = 2;
6139 /* Itbl support may require additional care here. */
6140 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
6141 coproc ? treg : treg + 1,
6142 (int) BFD_RELOC_GPREL16, tempreg);
6143 mips_optimize = hold_mips_optimize;
6144
6145 p = frag_var (rs_machine_dependent, 12 + off, 0,
6146 RELAX_ENCODE (8 + off, 12 + off, 0, 4 + off, 1,
6147 used_at && mips_opts.noat),
6148 offset_expr.X_add_symbol, 0, NULL);
6149
6150 /* We just generated two relocs. When tc_gen_reloc
6151 handles this case, it will skip the first reloc and
6152 handle the second. The second reloc already has an
6153 extra addend of 4, which we added above. We must
6154 subtract it out, and then subtract another 4 to make
6155 the first reloc come out right. The second reloc
6156 will come out right because we are going to add 4 to
6157 offset_expr when we build its instruction below.
6158
6159 If we have a symbol, then we don't want to include
6160 the offset, because it will wind up being included
6161 when we generate the reloc. */
6162
6163 if (offset_expr.X_op == O_constant)
6164 offset_expr.X_add_number -= 8;
6165 else
6166 {
6167 offset_expr.X_add_number = -4;
6168 offset_expr.X_op = O_constant;
6169 }
6170 }
6171 macro_build_lui (p, &icnt, &offset_expr, AT);
6172 if (p != NULL)
6173 p += 4;
6174 if (breg != 0)
6175 {
6176 macro_build (p, &icnt, (expressionS *) NULL,
6177 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
6178 "d,v,t", AT, breg, AT);
6179 if (p != NULL)
6180 p += 4;
6181 }
6182 /* Itbl support may require additional care here. */
6183 macro_build (p, &icnt, &offset_expr, s, fmt,
6184 coproc ? treg + 1 : treg,
6185 (int) BFD_RELOC_LO16, AT);
6186 if (p != NULL)
6187 p += 4;
6188 /* FIXME: How do we handle overflow here? */
6189 offset_expr.X_add_number += 4;
6190 /* Itbl support may require additional care here. */
6191 macro_build (p, &icnt, &offset_expr, s, fmt,
6192 coproc ? treg : treg + 1,
6193 (int) BFD_RELOC_LO16, AT);
6194 }
6195 else if (mips_pic == SVR4_PIC && ! mips_big_got)
6196 {
6197 int off;
6198
6199 /* If this is a reference to an external symbol, we want
6200 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6201 nop
6202 <op> $treg,0($at)
6203 <op> $treg+1,4($at)
6204 Otherwise we want
6205 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6206 nop
6207 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6208 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6209 If there is a base register we add it to $at before the
6210 lwc1 instructions. If there is a constant we include it
6211 in the lwc1 instructions. */
6212 used_at = 1;
6213 expr1.X_add_number = offset_expr.X_add_number;
6214 offset_expr.X_add_number = 0;
6215 if (expr1.X_add_number < -0x8000
6216 || expr1.X_add_number >= 0x8000 - 4)
6217 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6218 if (breg == 0)
6219 off = 0;
6220 else
6221 off = 4;
6222 frag_grow (24 + off);
6223 macro_build ((char *) NULL, &icnt, &offset_expr,
6224 HAVE_32BIT_ADDRESSES ? "lw" : "ld", "t,o(b)", AT,
6225 (int) BFD_RELOC_MIPS_GOT16, mips_gp_register);
6226 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
6227 if (breg != 0)
6228 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6229 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
6230 "d,v,t", AT, breg, AT);
6231 /* Itbl support may require additional care here. */
6232 macro_build ((char *) NULL, &icnt, &expr1, s, fmt,
6233 coproc ? treg + 1 : treg,
6234 (int) BFD_RELOC_LO16, AT);
6235 expr1.X_add_number += 4;
6236
6237 /* Set mips_optimize to 2 to avoid inserting an undesired
6238 nop. */
6239 hold_mips_optimize = mips_optimize;
6240 mips_optimize = 2;
6241 /* Itbl support may require additional care here. */
6242 macro_build ((char *) NULL, &icnt, &expr1, s, fmt,
6243 coproc ? treg : treg + 1,
6244 (int) BFD_RELOC_LO16, AT);
6245 mips_optimize = hold_mips_optimize;
6246
6247 (void) frag_var (rs_machine_dependent, 0, 0,
6248 RELAX_ENCODE (0, 0, -16 - off, -8, 1, 0),
6249 offset_expr.X_add_symbol, 0, NULL);
6250 }
6251 else if (mips_pic == SVR4_PIC)
6252 {
6253 int gpdel, off;
6254 char *p;
6255
6256 /* If this is a reference to an external symbol, we want
6257 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6258 addu $at,$at,$gp
6259 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
6260 nop
6261 <op> $treg,0($at)
6262 <op> $treg+1,4($at)
6263 Otherwise we want
6264 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6265 nop
6266 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6267 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6268 If there is a base register we add it to $at before the
6269 lwc1 instructions. If there is a constant we include it
6270 in the lwc1 instructions. */
6271 used_at = 1;
6272 expr1.X_add_number = offset_expr.X_add_number;
6273 offset_expr.X_add_number = 0;
6274 if (expr1.X_add_number < -0x8000
6275 || expr1.X_add_number >= 0x8000 - 4)
6276 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6277 if (reg_needs_delay (mips_gp_register))
6278 gpdel = 4;
6279 else
6280 gpdel = 0;
6281 if (breg == 0)
6282 off = 0;
6283 else
6284 off = 4;
6285 frag_grow (56);
6286 macro_build ((char *) NULL, &icnt, &offset_expr, "lui", "t,u",
6287 AT, (int) BFD_RELOC_MIPS_GOT_HI16);
6288 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6289 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
6290 "d,v,t", AT, AT, mips_gp_register);
6291 macro_build ((char *) NULL, &icnt, &offset_expr,
6292 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
6293 "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT_LO16, AT);
6294 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
6295 if (breg != 0)
6296 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6297 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
6298 "d,v,t", AT, breg, AT);
6299 /* Itbl support may require additional care here. */
6300 macro_build ((char *) NULL, &icnt, &expr1, s, fmt,
6301 coproc ? treg + 1 : treg,
6302 (int) BFD_RELOC_LO16, AT);
6303 expr1.X_add_number += 4;
6304
6305 /* Set mips_optimize to 2 to avoid inserting an undesired
6306 nop. */
6307 hold_mips_optimize = mips_optimize;
6308 mips_optimize = 2;
6309 /* Itbl support may require additional care here. */
6310 macro_build ((char *) NULL, &icnt, &expr1, s, fmt,
6311 coproc ? treg : treg + 1,
6312 (int) BFD_RELOC_LO16, AT);
6313 mips_optimize = hold_mips_optimize;
6314 expr1.X_add_number -= 4;
6315
6316 p = frag_var (rs_machine_dependent, 16 + gpdel + off, 0,
6317 RELAX_ENCODE (24 + off, 16 + gpdel + off, gpdel,
6318 8 + gpdel + off, 1, 0),
6319 offset_expr.X_add_symbol, 0, NULL);
6320 if (gpdel > 0)
6321 {
6322 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
6323 p += 4;
6324 }
6325 macro_build (p, &icnt, &offset_expr,
6326 HAVE_32BIT_ADDRESSES ? "lw" : "ld",
6327 "t,o(b)", AT, (int) BFD_RELOC_MIPS_GOT16,
6328 mips_gp_register);
6329 p += 4;
6330 macro_build (p, &icnt, (expressionS *) NULL, "nop", "");
6331 p += 4;
6332 if (breg != 0)
6333 {
6334 macro_build (p, &icnt, (expressionS *) NULL,
6335 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
6336 "d,v,t", AT, breg, AT);
6337 p += 4;
6338 }
6339 /* Itbl support may require additional care here. */
6340 macro_build (p, &icnt, &expr1, s, fmt,
6341 coproc ? treg + 1 : treg,
6342 (int) BFD_RELOC_LO16, AT);
6343 p += 4;
6344 expr1.X_add_number += 4;
6345
6346 /* Set mips_optimize to 2 to avoid inserting an undesired
6347 nop. */
6348 hold_mips_optimize = mips_optimize;
6349 mips_optimize = 2;
6350 /* Itbl support may require additional care here. */
6351 macro_build (p, &icnt, &expr1, s, fmt,
6352 coproc ? treg : treg + 1,
6353 (int) BFD_RELOC_LO16, AT);
6354 mips_optimize = hold_mips_optimize;
6355 }
6356 else if (mips_pic == EMBEDDED_PIC)
6357 {
6358 /* If there is no base register, we use
6359 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6360 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6361 If we have a base register, we use
6362 addu $at,$breg,$gp
6363 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6364 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6365 */
6366 if (breg == 0)
6367 {
6368 tempreg = mips_gp_register;
6369 used_at = 0;
6370 }
6371 else
6372 {
6373 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6374 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
6375 "d,v,t", AT, breg, mips_gp_register);
6376 tempreg = AT;
6377 used_at = 1;
6378 }
6379
6380 /* Itbl support may require additional care here. */
6381 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
6382 coproc ? treg + 1 : treg,
6383 (int) BFD_RELOC_GPREL16, tempreg);
6384 offset_expr.X_add_number += 4;
6385 /* Itbl support may require additional care here. */
6386 macro_build ((char *) NULL, &icnt, &offset_expr, s, fmt,
6387 coproc ? treg : treg + 1,
6388 (int) BFD_RELOC_GPREL16, tempreg);
6389 }
6390 else
6391 abort ();
6392
6393 if (! used_at)
6394 return;
6395
6396 break;
6397
6398 case M_LD_OB:
6399 s = "lw";
6400 goto sd_ob;
6401 case M_SD_OB:
6402 s = "sw";
6403 sd_ob:
6404 assert (HAVE_32BIT_ADDRESSES);
6405 macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg,
6406 (int) BFD_RELOC_LO16, breg);
6407 offset_expr.X_add_number += 4;
6408 macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg + 1,
6409 (int) BFD_RELOC_LO16, breg);
6410 return;
6411
6412 /* New code added to support COPZ instructions.
6413 This code builds table entries out of the macros in mip_opcodes.
6414 R4000 uses interlocks to handle coproc delays.
6415 Other chips (like the R3000) require nops to be inserted for delays.
6416
6417 FIXME: Currently, we require that the user handle delays.
6418 In order to fill delay slots for non-interlocked chips,
6419 we must have a way to specify delays based on the coprocessor.
6420 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
6421 What are the side-effects of the cop instruction?
6422 What cache support might we have and what are its effects?
6423 Both coprocessor & memory require delays. how long???
6424 What registers are read/set/modified?
6425
6426 If an itbl is provided to interpret cop instructions,
6427 this knowledge can be encoded in the itbl spec. */
6428
6429 case M_COP0:
6430 s = "c0";
6431 goto copz;
6432 case M_COP1:
6433 s = "c1";
6434 goto copz;
6435 case M_COP2:
6436 s = "c2";
6437 goto copz;
6438 case M_COP3:
6439 s = "c3";
6440 copz:
6441 /* For now we just do C (same as Cz). The parameter will be
6442 stored in insn_opcode by mips_ip. */
6443 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "C",
6444 ip->insn_opcode);
6445 return;
6446
6447 case M_MOVE:
6448 move_register (&icnt, dreg, sreg);
6449 return;
6450
6451 #ifdef LOSING_COMPILER
6452 default:
6453 /* Try and see if this is a new itbl instruction.
6454 This code builds table entries out of the macros in mip_opcodes.
6455 FIXME: For now we just assemble the expression and pass it's
6456 value along as a 32-bit immediate.
6457 We may want to have the assembler assemble this value,
6458 so that we gain the assembler's knowledge of delay slots,
6459 symbols, etc.
6460 Would it be more efficient to use mask (id) here? */
6461 if (itbl_have_entries
6462 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
6463 {
6464 s = ip->insn_mo->name;
6465 s2 = "cop3";
6466 coproc = ITBL_DECODE_PNUM (immed_expr);;
6467 macro_build ((char *) NULL, &icnt, &immed_expr, s, "C");
6468 return;
6469 }
6470 macro2 (ip);
6471 return;
6472 }
6473 if (mips_opts.noat)
6474 as_warn (_("Macro used $at after \".set noat\""));
6475 }
6476
6477 static void
6478 macro2 (ip)
6479 struct mips_cl_insn *ip;
6480 {
6481 register int treg, sreg, dreg, breg;
6482 int tempreg;
6483 int mask;
6484 int icnt = 0;
6485 int used_at;
6486 expressionS expr1;
6487 const char *s;
6488 const char *s2;
6489 const char *fmt;
6490 int likely = 0;
6491 int dbl = 0;
6492 int coproc = 0;
6493 int lr = 0;
6494 int imm = 0;
6495 int off;
6496 offsetT maxnum;
6497 bfd_reloc_code_real_type r;
6498 char *p;
6499
6500 treg = (ip->insn_opcode >> 16) & 0x1f;
6501 dreg = (ip->insn_opcode >> 11) & 0x1f;
6502 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
6503 mask = ip->insn_mo->mask;
6504
6505 expr1.X_op = O_constant;
6506 expr1.X_op_symbol = NULL;
6507 expr1.X_add_symbol = NULL;
6508 expr1.X_add_number = 1;
6509
6510 switch (mask)
6511 {
6512 #endif /* LOSING_COMPILER */
6513
6514 case M_DMUL:
6515 dbl = 1;
6516 case M_MUL:
6517 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6518 dbl ? "dmultu" : "multu", "s,t", sreg, treg);
6519 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mflo", "d",
6520 dreg);
6521 return;
6522
6523 case M_DMUL_I:
6524 dbl = 1;
6525 case M_MUL_I:
6526 /* The MIPS assembler some times generates shifts and adds. I'm
6527 not trying to be that fancy. GCC should do this for us
6528 anyway. */
6529 load_register (&icnt, AT, &imm_expr, dbl);
6530 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6531 dbl ? "dmult" : "mult", "s,t", sreg, AT);
6532 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mflo", "d",
6533 dreg);
6534 break;
6535
6536 case M_DMULO_I:
6537 dbl = 1;
6538 case M_MULO_I:
6539 imm = 1;
6540 goto do_mulo;
6541
6542 case M_DMULO:
6543 dbl = 1;
6544 case M_MULO:
6545 do_mulo:
6546 mips_emit_delays (true);
6547 ++mips_opts.noreorder;
6548 mips_any_noreorder = 1;
6549 if (imm)
6550 load_register (&icnt, AT, &imm_expr, dbl);
6551 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6552 dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
6553 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mflo", "d",
6554 dreg);
6555 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6556 dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
6557 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mfhi", "d",
6558 AT);
6559 if (mips_trap)
6560 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "tne",
6561 "s,t,q", dreg, AT, 6);
6562 else
6563 {
6564 expr1.X_add_number = 8;
6565 macro_build ((char *) NULL, &icnt, &expr1, "beq", "s,t,p", dreg,
6566 AT);
6567 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "",
6568 0);
6569 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break",
6570 "c", 6);
6571 }
6572 --mips_opts.noreorder;
6573 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mflo", "d", dreg);
6574 break;
6575
6576 case M_DMULOU_I:
6577 dbl = 1;
6578 case M_MULOU_I:
6579 imm = 1;
6580 goto do_mulou;
6581
6582 case M_DMULOU:
6583 dbl = 1;
6584 case M_MULOU:
6585 do_mulou:
6586 mips_emit_delays (true);
6587 ++mips_opts.noreorder;
6588 mips_any_noreorder = 1;
6589 if (imm)
6590 load_register (&icnt, AT, &imm_expr, dbl);
6591 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6592 dbl ? "dmultu" : "multu",
6593 "s,t", sreg, imm ? AT : treg);
6594 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mfhi", "d",
6595 AT);
6596 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mflo", "d",
6597 dreg);
6598 if (mips_trap)
6599 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "tne",
6600 "s,t,q", AT, 0, 6);
6601 else
6602 {
6603 expr1.X_add_number = 8;
6604 macro_build ((char *) NULL, &icnt, &expr1, "beq", "s,t,p", AT, 0);
6605 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "",
6606 0);
6607 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break",
6608 "c", 6);
6609 }
6610 --mips_opts.noreorder;
6611 break;
6612
6613 case M_DROL:
6614 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "dsubu",
6615 "d,v,t", AT, 0, treg);
6616 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "dsrlv",
6617 "d,t,s", AT, sreg, AT);
6618 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "dsllv",
6619 "d,t,s", dreg, sreg, treg);
6620 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or",
6621 "d,v,t", dreg, dreg, AT);
6622 break;
6623
6624 case M_ROL:
6625 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "subu",
6626 "d,v,t", AT, 0, treg);
6627 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "srlv",
6628 "d,t,s", AT, sreg, AT);
6629 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sllv",
6630 "d,t,s", dreg, sreg, treg);
6631 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or",
6632 "d,v,t", dreg, dreg, AT);
6633 break;
6634
6635 case M_DROL_I:
6636 {
6637 unsigned int rot;
6638 char *l, *r;
6639
6640 if (imm_expr.X_op != O_constant)
6641 as_bad (_("rotate count too large"));
6642 rot = imm_expr.X_add_number & 0x3f;
6643 if (! rot)
6644 break;
6645 l = (rot < 0x20) ? "dsll" : "dsll32";
6646 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
6647 rot &= 0x1f;
6648 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, l,
6649 "d,w,<", AT, sreg, rot);
6650 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, r,
6651 "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6652 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or",
6653 "d,v,t", dreg, dreg, AT);
6654 }
6655 break;
6656
6657 case M_ROL_I:
6658 {
6659 unsigned int rot;
6660
6661 if (imm_expr.X_op != O_constant)
6662 as_bad (_("rotate count too large"));
6663 rot = imm_expr.X_add_number & 0x1f;
6664 if (! rot)
6665 break;
6666 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sll",
6667 "d,w,<", AT, sreg, rot);
6668 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "srl",
6669 "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6670 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or",
6671 "d,v,t", dreg, dreg, AT);
6672 }
6673 break;
6674
6675 case M_DROR:
6676 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "dsubu",
6677 "d,v,t", AT, 0, treg);
6678 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "dsllv",
6679 "d,t,s", AT, sreg, AT);
6680 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "dsrlv",
6681 "d,t,s", dreg, sreg, treg);
6682 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or",
6683 "d,v,t", dreg, dreg, AT);
6684 break;
6685
6686 case M_ROR:
6687 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "subu",
6688 "d,v,t", AT, 0, treg);
6689 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sllv",
6690 "d,t,s", AT, sreg, AT);
6691 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "srlv",
6692 "d,t,s", dreg, sreg, treg);
6693 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or",
6694 "d,v,t", dreg, dreg, AT);
6695 break;
6696
6697 case M_DROR_I:
6698 {
6699 unsigned int rot;
6700 char *l, *r;
6701
6702 if (imm_expr.X_op != O_constant)
6703 as_bad (_("rotate count too large"));
6704 rot = imm_expr.X_add_number & 0x3f;
6705 if (! rot)
6706 break;
6707 r = (rot < 0x20) ? "dsrl" : "dsrl32";
6708 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
6709 rot &= 0x1f;
6710 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, r,
6711 "d,w,<", AT, sreg, rot);
6712 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, l,
6713 "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6714 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or",
6715 "d,v,t", dreg, dreg, AT);
6716 }
6717 break;
6718
6719 case M_ROR_I:
6720 {
6721 unsigned int rot;
6722
6723 if (imm_expr.X_op != O_constant)
6724 as_bad (_("rotate count too large"));
6725 rot = imm_expr.X_add_number & 0x1f;
6726 if (! rot)
6727 break;
6728 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "srl",
6729 "d,w,<", AT, sreg, rot);
6730 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sll",
6731 "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6732 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or",
6733 "d,v,t", dreg, dreg, AT);
6734 }
6735 break;
6736
6737 case M_S_DOB:
6738 if (mips_arch == CPU_R4650)
6739 {
6740 as_bad (_("opcode not supported on this processor"));
6741 return;
6742 }
6743 assert (mips_opts.isa == ISA_MIPS1);
6744 /* Even on a big endian machine $fn comes before $fn+1. We have
6745 to adjust when storing to memory. */
6746 macro_build ((char *) NULL, &icnt, &offset_expr, "swc1", "T,o(b)",
6747 target_big_endian ? treg + 1 : treg,
6748 (int) BFD_RELOC_LO16, breg);
6749 offset_expr.X_add_number += 4;
6750 macro_build ((char *) NULL, &icnt, &offset_expr, "swc1", "T,o(b)",
6751 target_big_endian ? treg : treg + 1,
6752 (int) BFD_RELOC_LO16, breg);
6753 return;
6754
6755 case M_SEQ:
6756 if (sreg == 0)
6757 macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg,
6758 treg, (int) BFD_RELOC_LO16);
6759 else if (treg == 0)
6760 macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg,
6761 sreg, (int) BFD_RELOC_LO16);
6762 else
6763 {
6764 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "xor",
6765 "d,v,t", dreg, sreg, treg);
6766 macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg,
6767 dreg, (int) BFD_RELOC_LO16);
6768 }
6769 return;
6770
6771 case M_SEQ_I:
6772 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6773 {
6774 macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg,
6775 sreg, (int) BFD_RELOC_LO16);
6776 return;
6777 }
6778 if (sreg == 0)
6779 {
6780 as_warn (_("Instruction %s: result is always false"),
6781 ip->insn_mo->name);
6782 move_register (&icnt, dreg, 0);
6783 return;
6784 }
6785 if (imm_expr.X_op == O_constant
6786 && imm_expr.X_add_number >= 0
6787 && imm_expr.X_add_number < 0x10000)
6788 {
6789 macro_build ((char *) NULL, &icnt, &imm_expr, "xori", "t,r,i", dreg,
6790 sreg, (int) BFD_RELOC_LO16);
6791 used_at = 0;
6792 }
6793 else if (imm_expr.X_op == O_constant
6794 && imm_expr.X_add_number > -0x8000
6795 && imm_expr.X_add_number < 0)
6796 {
6797 imm_expr.X_add_number = -imm_expr.X_add_number;
6798 macro_build ((char *) NULL, &icnt, &imm_expr,
6799 HAVE_32BIT_GPRS ? "addiu" : "daddiu",
6800 "t,r,j", dreg, sreg,
6801 (int) BFD_RELOC_LO16);
6802 used_at = 0;
6803 }
6804 else
6805 {
6806 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
6807 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "xor",
6808 "d,v,t", dreg, sreg, AT);
6809 used_at = 1;
6810 }
6811 macro_build ((char *) NULL, &icnt, &expr1, "sltiu", "t,r,j", dreg, dreg,
6812 (int) BFD_RELOC_LO16);
6813 if (used_at)
6814 break;
6815 return;
6816
6817 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
6818 s = "slt";
6819 goto sge;
6820 case M_SGEU:
6821 s = "sltu";
6822 sge:
6823 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "d,v,t",
6824 dreg, sreg, treg);
6825 macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg,
6826 (int) BFD_RELOC_LO16);
6827 return;
6828
6829 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
6830 case M_SGEU_I:
6831 if (imm_expr.X_op == O_constant
6832 && imm_expr.X_add_number >= -0x8000
6833 && imm_expr.X_add_number < 0x8000)
6834 {
6835 macro_build ((char *) NULL, &icnt, &imm_expr,
6836 mask == M_SGE_I ? "slti" : "sltiu",
6837 "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
6838 used_at = 0;
6839 }
6840 else
6841 {
6842 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
6843 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
6844 mask == M_SGE_I ? "slt" : "sltu", "d,v,t", dreg, sreg,
6845 AT);
6846 used_at = 1;
6847 }
6848 macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg,
6849 (int) BFD_RELOC_LO16);
6850 if (used_at)
6851 break;
6852 return;
6853
6854 case M_SGT: /* sreg > treg <==> treg < sreg */
6855 s = "slt";
6856 goto sgt;
6857 case M_SGTU:
6858 s = "sltu";
6859 sgt:
6860 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "d,v,t",
6861 dreg, treg, sreg);
6862 return;
6863
6864 case M_SGT_I: /* sreg > I <==> I < sreg */
6865 s = "slt";
6866 goto sgti;
6867 case M_SGTU_I:
6868 s = "sltu";
6869 sgti:
6870 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
6871 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "d,v,t",
6872 dreg, AT, sreg);
6873 break;
6874
6875 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
6876 s = "slt";
6877 goto sle;
6878 case M_SLEU:
6879 s = "sltu";
6880 sle:
6881 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "d,v,t",
6882 dreg, treg, sreg);
6883 macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg,
6884 (int) BFD_RELOC_LO16);
6885 return;
6886
6887 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
6888 s = "slt";
6889 goto slei;
6890 case M_SLEU_I:
6891 s = "sltu";
6892 slei:
6893 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
6894 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "d,v,t",
6895 dreg, AT, sreg);
6896 macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", dreg, dreg,
6897 (int) BFD_RELOC_LO16);
6898 break;
6899
6900 case M_SLT_I:
6901 if (imm_expr.X_op == O_constant
6902 && imm_expr.X_add_number >= -0x8000
6903 && imm_expr.X_add_number < 0x8000)
6904 {
6905 macro_build ((char *) NULL, &icnt, &imm_expr, "slti", "t,r,j",
6906 dreg, sreg, (int) BFD_RELOC_LO16);
6907 return;
6908 }
6909 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
6910 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "slt", "d,v,t",
6911 dreg, sreg, AT);
6912 break;
6913
6914 case M_SLTU_I:
6915 if (imm_expr.X_op == O_constant
6916 && imm_expr.X_add_number >= -0x8000
6917 && imm_expr.X_add_number < 0x8000)
6918 {
6919 macro_build ((char *) NULL, &icnt, &imm_expr, "sltiu", "t,r,j",
6920 dreg, sreg, (int) BFD_RELOC_LO16);
6921 return;
6922 }
6923 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
6924 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
6925 "d,v,t", dreg, sreg, AT);
6926 break;
6927
6928 case M_SNE:
6929 if (sreg == 0)
6930 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
6931 "d,v,t", dreg, 0, treg);
6932 else if (treg == 0)
6933 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
6934 "d,v,t", dreg, 0, sreg);
6935 else
6936 {
6937 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "xor",
6938 "d,v,t", dreg, sreg, treg);
6939 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
6940 "d,v,t", dreg, 0, dreg);
6941 }
6942 return;
6943
6944 case M_SNE_I:
6945 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6946 {
6947 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
6948 "d,v,t", dreg, 0, sreg);
6949 return;
6950 }
6951 if (sreg == 0)
6952 {
6953 as_warn (_("Instruction %s: result is always true"),
6954 ip->insn_mo->name);
6955 macro_build ((char *) NULL, &icnt, &expr1,
6956 HAVE_32BIT_GPRS ? "addiu" : "daddiu",
6957 "t,r,j", dreg, 0, (int) BFD_RELOC_LO16);
6958 return;
6959 }
6960 if (imm_expr.X_op == O_constant
6961 && imm_expr.X_add_number >= 0
6962 && imm_expr.X_add_number < 0x10000)
6963 {
6964 macro_build ((char *) NULL, &icnt, &imm_expr, "xori", "t,r,i",
6965 dreg, sreg, (int) BFD_RELOC_LO16);
6966 used_at = 0;
6967 }
6968 else if (imm_expr.X_op == O_constant
6969 && imm_expr.X_add_number > -0x8000
6970 && imm_expr.X_add_number < 0)
6971 {
6972 imm_expr.X_add_number = -imm_expr.X_add_number;
6973 macro_build ((char *) NULL, &icnt, &imm_expr,
6974 HAVE_32BIT_GPRS ? "addiu" : "daddiu",
6975 "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
6976 used_at = 0;
6977 }
6978 else
6979 {
6980 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
6981 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "xor",
6982 "d,v,t", dreg, sreg, AT);
6983 used_at = 1;
6984 }
6985 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sltu",
6986 "d,v,t", dreg, 0, dreg);
6987 if (used_at)
6988 break;
6989 return;
6990
6991 case M_DSUB_I:
6992 dbl = 1;
6993 case M_SUB_I:
6994 if (imm_expr.X_op == O_constant
6995 && imm_expr.X_add_number > -0x8000
6996 && imm_expr.X_add_number <= 0x8000)
6997 {
6998 imm_expr.X_add_number = -imm_expr.X_add_number;
6999 macro_build ((char *) NULL, &icnt, &imm_expr,
7000 dbl ? "daddi" : "addi",
7001 "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
7002 return;
7003 }
7004 load_register (&icnt, AT, &imm_expr, dbl);
7005 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7006 dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7007 break;
7008
7009 case M_DSUBU_I:
7010 dbl = 1;
7011 case M_SUBU_I:
7012 if (imm_expr.X_op == O_constant
7013 && imm_expr.X_add_number > -0x8000
7014 && imm_expr.X_add_number <= 0x8000)
7015 {
7016 imm_expr.X_add_number = -imm_expr.X_add_number;
7017 macro_build ((char *) NULL, &icnt, &imm_expr,
7018 dbl ? "daddiu" : "addiu",
7019 "t,r,j", dreg, sreg, (int) BFD_RELOC_LO16);
7020 return;
7021 }
7022 load_register (&icnt, AT, &imm_expr, dbl);
7023 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7024 dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7025 break;
7026
7027 case M_TEQ_I:
7028 s = "teq";
7029 goto trap;
7030 case M_TGE_I:
7031 s = "tge";
7032 goto trap;
7033 case M_TGEU_I:
7034 s = "tgeu";
7035 goto trap;
7036 case M_TLT_I:
7037 s = "tlt";
7038 goto trap;
7039 case M_TLTU_I:
7040 s = "tltu";
7041 goto trap;
7042 case M_TNE_I:
7043 s = "tne";
7044 trap:
7045 load_register (&icnt, AT, &imm_expr, HAVE_64BIT_GPRS);
7046 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "s,t", sreg,
7047 AT);
7048 break;
7049
7050 case M_TRUNCWS:
7051 case M_TRUNCWD:
7052 assert (mips_opts.isa == ISA_MIPS1);
7053 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7054 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7055
7056 /*
7057 * Is the double cfc1 instruction a bug in the mips assembler;
7058 * or is there a reason for it?
7059 */
7060 mips_emit_delays (true);
7061 ++mips_opts.noreorder;
7062 mips_any_noreorder = 1;
7063 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "cfc1", "t,G",
7064 treg, RA);
7065 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "cfc1", "t,G",
7066 treg, RA);
7067 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
7068 expr1.X_add_number = 3;
7069 macro_build ((char *) NULL, &icnt, &expr1, "ori", "t,r,i", AT, treg,
7070 (int) BFD_RELOC_LO16);
7071 expr1.X_add_number = 2;
7072 macro_build ((char *) NULL, &icnt, &expr1, "xori", "t,r,i", AT, AT,
7073 (int) BFD_RELOC_LO16);
7074 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "ctc1", "t,G",
7075 AT, RA);
7076 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
7077 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7078 mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S", dreg, sreg);
7079 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "ctc1", "t,G",
7080 treg, RA);
7081 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "nop", "");
7082 --mips_opts.noreorder;
7083 break;
7084
7085 case M_ULH:
7086 s = "lb";
7087 goto ulh;
7088 case M_ULHU:
7089 s = "lbu";
7090 ulh:
7091 if (offset_expr.X_add_number >= 0x7fff)
7092 as_bad (_("operand overflow"));
7093 /* avoid load delay */
7094 if (! target_big_endian)
7095 ++offset_expr.X_add_number;
7096 macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg,
7097 (int) BFD_RELOC_LO16, breg);
7098 if (! target_big_endian)
7099 --offset_expr.X_add_number;
7100 else
7101 ++offset_expr.X_add_number;
7102 macro_build ((char *) NULL, &icnt, &offset_expr, "lbu", "t,o(b)", AT,
7103 (int) BFD_RELOC_LO16, breg);
7104 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sll", "d,w,<",
7105 treg, treg, 8);
7106 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or", "d,v,t",
7107 treg, treg, AT);
7108 break;
7109
7110 case M_ULD:
7111 s = "ldl";
7112 s2 = "ldr";
7113 off = 7;
7114 goto ulw;
7115 case M_ULW:
7116 s = "lwl";
7117 s2 = "lwr";
7118 off = 3;
7119 ulw:
7120 if (offset_expr.X_add_number >= 0x8000 - off)
7121 as_bad (_("operand overflow"));
7122 if (! target_big_endian)
7123 offset_expr.X_add_number += off;
7124 macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg,
7125 (int) BFD_RELOC_LO16, breg);
7126 if (! target_big_endian)
7127 offset_expr.X_add_number -= off;
7128 else
7129 offset_expr.X_add_number += off;
7130 macro_build ((char *) NULL, &icnt, &offset_expr, s2, "t,o(b)", treg,
7131 (int) BFD_RELOC_LO16, breg);
7132 return;
7133
7134 case M_ULD_A:
7135 s = "ldl";
7136 s2 = "ldr";
7137 off = 7;
7138 goto ulwa;
7139 case M_ULW_A:
7140 s = "lwl";
7141 s2 = "lwr";
7142 off = 3;
7143 ulwa:
7144 used_at = 1;
7145 load_address (&icnt, AT, &offset_expr, &used_at);
7146 if (breg != 0)
7147 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7148 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
7149 "d,v,t", AT, AT, breg);
7150 if (! target_big_endian)
7151 expr1.X_add_number = off;
7152 else
7153 expr1.X_add_number = 0;
7154 macro_build ((char *) NULL, &icnt, &expr1, s, "t,o(b)", treg,
7155 (int) BFD_RELOC_LO16, AT);
7156 if (! target_big_endian)
7157 expr1.X_add_number = 0;
7158 else
7159 expr1.X_add_number = off;
7160 macro_build ((char *) NULL, &icnt, &expr1, s2, "t,o(b)", treg,
7161 (int) BFD_RELOC_LO16, AT);
7162 break;
7163
7164 case M_ULH_A:
7165 case M_ULHU_A:
7166 used_at = 1;
7167 load_address (&icnt, AT, &offset_expr, &used_at);
7168 if (breg != 0)
7169 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7170 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
7171 "d,v,t", AT, AT, breg);
7172 if (target_big_endian)
7173 expr1.X_add_number = 0;
7174 macro_build ((char *) NULL, &icnt, &expr1,
7175 mask == M_ULH_A ? "lb" : "lbu", "t,o(b)", treg,
7176 (int) BFD_RELOC_LO16, AT);
7177 if (target_big_endian)
7178 expr1.X_add_number = 1;
7179 else
7180 expr1.X_add_number = 0;
7181 macro_build ((char *) NULL, &icnt, &expr1, "lbu", "t,o(b)", AT,
7182 (int) BFD_RELOC_LO16, AT);
7183 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sll", "d,w,<",
7184 treg, treg, 8);
7185 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or", "d,v,t",
7186 treg, treg, AT);
7187 break;
7188
7189 case M_USH:
7190 if (offset_expr.X_add_number >= 0x7fff)
7191 as_bad (_("operand overflow"));
7192 if (target_big_endian)
7193 ++offset_expr.X_add_number;
7194 macro_build ((char *) NULL, &icnt, &offset_expr, "sb", "t,o(b)", treg,
7195 (int) BFD_RELOC_LO16, breg);
7196 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "srl", "d,w,<",
7197 AT, treg, 8);
7198 if (target_big_endian)
7199 --offset_expr.X_add_number;
7200 else
7201 ++offset_expr.X_add_number;
7202 macro_build ((char *) NULL, &icnt, &offset_expr, "sb", "t,o(b)", AT,
7203 (int) BFD_RELOC_LO16, breg);
7204 break;
7205
7206 case M_USD:
7207 s = "sdl";
7208 s2 = "sdr";
7209 off = 7;
7210 goto usw;
7211 case M_USW:
7212 s = "swl";
7213 s2 = "swr";
7214 off = 3;
7215 usw:
7216 if (offset_expr.X_add_number >= 0x8000 - off)
7217 as_bad (_("operand overflow"));
7218 if (! target_big_endian)
7219 offset_expr.X_add_number += off;
7220 macro_build ((char *) NULL, &icnt, &offset_expr, s, "t,o(b)", treg,
7221 (int) BFD_RELOC_LO16, breg);
7222 if (! target_big_endian)
7223 offset_expr.X_add_number -= off;
7224 else
7225 offset_expr.X_add_number += off;
7226 macro_build ((char *) NULL, &icnt, &offset_expr, s2, "t,o(b)", treg,
7227 (int) BFD_RELOC_LO16, breg);
7228 return;
7229
7230 case M_USD_A:
7231 s = "sdl";
7232 s2 = "sdr";
7233 off = 7;
7234 goto uswa;
7235 case M_USW_A:
7236 s = "swl";
7237 s2 = "swr";
7238 off = 3;
7239 uswa:
7240 used_at = 1;
7241 load_address (&icnt, AT, &offset_expr, &used_at);
7242 if (breg != 0)
7243 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7244 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
7245 "d,v,t", AT, AT, breg);
7246 if (! target_big_endian)
7247 expr1.X_add_number = off;
7248 else
7249 expr1.X_add_number = 0;
7250 macro_build ((char *) NULL, &icnt, &expr1, s, "t,o(b)", treg,
7251 (int) BFD_RELOC_LO16, AT);
7252 if (! target_big_endian)
7253 expr1.X_add_number = 0;
7254 else
7255 expr1.X_add_number = off;
7256 macro_build ((char *) NULL, &icnt, &expr1, s2, "t,o(b)", treg,
7257 (int) BFD_RELOC_LO16, AT);
7258 break;
7259
7260 case M_USH_A:
7261 used_at = 1;
7262 load_address (&icnt, AT, &offset_expr, &used_at);
7263 if (breg != 0)
7264 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7265 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
7266 "d,v,t", AT, AT, breg);
7267 if (! target_big_endian)
7268 expr1.X_add_number = 0;
7269 macro_build ((char *) NULL, &icnt, &expr1, "sb", "t,o(b)", treg,
7270 (int) BFD_RELOC_LO16, AT);
7271 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "srl", "d,w,<",
7272 treg, treg, 8);
7273 if (! target_big_endian)
7274 expr1.X_add_number = 1;
7275 else
7276 expr1.X_add_number = 0;
7277 macro_build ((char *) NULL, &icnt, &expr1, "sb", "t,o(b)", treg,
7278 (int) BFD_RELOC_LO16, AT);
7279 if (! target_big_endian)
7280 expr1.X_add_number = 0;
7281 else
7282 expr1.X_add_number = 1;
7283 macro_build ((char *) NULL, &icnt, &expr1, "lbu", "t,o(b)", AT,
7284 (int) BFD_RELOC_LO16, AT);
7285 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "sll", "d,w,<",
7286 treg, treg, 8);
7287 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "or", "d,v,t",
7288 treg, treg, AT);
7289 break;
7290
7291 default:
7292 /* FIXME: Check if this is one of the itbl macros, since they
7293 are added dynamically. */
7294 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
7295 break;
7296 }
7297 if (mips_opts.noat)
7298 as_warn (_("Macro used $at after \".set noat\""));
7299 }
7300
7301 /* Implement macros in mips16 mode. */
7302
7303 static void
7304 mips16_macro (ip)
7305 struct mips_cl_insn *ip;
7306 {
7307 int mask;
7308 int xreg, yreg, zreg, tmp;
7309 int icnt;
7310 expressionS expr1;
7311 int dbl;
7312 const char *s, *s2, *s3;
7313
7314 mask = ip->insn_mo->mask;
7315
7316 xreg = (ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX;
7317 yreg = (ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY;
7318 zreg = (ip->insn_opcode >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ;
7319
7320 icnt = 0;
7321
7322 expr1.X_op = O_constant;
7323 expr1.X_op_symbol = NULL;
7324 expr1.X_add_symbol = NULL;
7325 expr1.X_add_number = 1;
7326
7327 dbl = 0;
7328
7329 switch (mask)
7330 {
7331 default:
7332 internalError ();
7333
7334 case M_DDIV_3:
7335 dbl = 1;
7336 case M_DIV_3:
7337 s = "mflo";
7338 goto do_div3;
7339 case M_DREM_3:
7340 dbl = 1;
7341 case M_REM_3:
7342 s = "mfhi";
7343 do_div3:
7344 mips_emit_delays (true);
7345 ++mips_opts.noreorder;
7346 mips_any_noreorder = 1;
7347 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7348 dbl ? "ddiv" : "div",
7349 "0,x,y", xreg, yreg);
7350 expr1.X_add_number = 2;
7351 macro_build ((char *) NULL, &icnt, &expr1, "bnez", "x,p", yreg);
7352 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break", "6",
7353 7);
7354
7355 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
7356 since that causes an overflow. We should do that as well,
7357 but I don't see how to do the comparisons without a temporary
7358 register. */
7359 --mips_opts.noreorder;
7360 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "x", zreg);
7361 break;
7362
7363 case M_DIVU_3:
7364 s = "divu";
7365 s2 = "mflo";
7366 goto do_divu3;
7367 case M_REMU_3:
7368 s = "divu";
7369 s2 = "mfhi";
7370 goto do_divu3;
7371 case M_DDIVU_3:
7372 s = "ddivu";
7373 s2 = "mflo";
7374 goto do_divu3;
7375 case M_DREMU_3:
7376 s = "ddivu";
7377 s2 = "mfhi";
7378 do_divu3:
7379 mips_emit_delays (true);
7380 ++mips_opts.noreorder;
7381 mips_any_noreorder = 1;
7382 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "0,x,y",
7383 xreg, yreg);
7384 expr1.X_add_number = 2;
7385 macro_build ((char *) NULL, &icnt, &expr1, "bnez", "x,p", yreg);
7386 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "break",
7387 "6", 7);
7388 --mips_opts.noreorder;
7389 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s2, "x", zreg);
7390 break;
7391
7392 case M_DMUL:
7393 dbl = 1;
7394 case M_MUL:
7395 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7396 dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
7397 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "mflo", "x",
7398 zreg);
7399 return;
7400
7401 case M_DSUBU_I:
7402 dbl = 1;
7403 goto do_subu;
7404 case M_SUBU_I:
7405 do_subu:
7406 if (imm_expr.X_op != O_constant)
7407 as_bad (_("Unsupported large constant"));
7408 imm_expr.X_add_number = -imm_expr.X_add_number;
7409 macro_build ((char *) NULL, &icnt, &imm_expr,
7410 dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
7411 break;
7412
7413 case M_SUBU_I_2:
7414 if (imm_expr.X_op != O_constant)
7415 as_bad (_("Unsupported large constant"));
7416 imm_expr.X_add_number = -imm_expr.X_add_number;
7417 macro_build ((char *) NULL, &icnt, &imm_expr, "addiu",
7418 "x,k", xreg);
7419 break;
7420
7421 case M_DSUBU_I_2:
7422 if (imm_expr.X_op != O_constant)
7423 as_bad (_("Unsupported large constant"));
7424 imm_expr.X_add_number = -imm_expr.X_add_number;
7425 macro_build ((char *) NULL, &icnt, &imm_expr, "daddiu",
7426 "y,j", yreg);
7427 break;
7428
7429 case M_BEQ:
7430 s = "cmp";
7431 s2 = "bteqz";
7432 goto do_branch;
7433 case M_BNE:
7434 s = "cmp";
7435 s2 = "btnez";
7436 goto do_branch;
7437 case M_BLT:
7438 s = "slt";
7439 s2 = "btnez";
7440 goto do_branch;
7441 case M_BLTU:
7442 s = "sltu";
7443 s2 = "btnez";
7444 goto do_branch;
7445 case M_BLE:
7446 s = "slt";
7447 s2 = "bteqz";
7448 goto do_reverse_branch;
7449 case M_BLEU:
7450 s = "sltu";
7451 s2 = "bteqz";
7452 goto do_reverse_branch;
7453 case M_BGE:
7454 s = "slt";
7455 s2 = "bteqz";
7456 goto do_branch;
7457 case M_BGEU:
7458 s = "sltu";
7459 s2 = "bteqz";
7460 goto do_branch;
7461 case M_BGT:
7462 s = "slt";
7463 s2 = "btnez";
7464 goto do_reverse_branch;
7465 case M_BGTU:
7466 s = "sltu";
7467 s2 = "btnez";
7468
7469 do_reverse_branch:
7470 tmp = xreg;
7471 xreg = yreg;
7472 yreg = tmp;
7473
7474 do_branch:
7475 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, s, "x,y",
7476 xreg, yreg);
7477 macro_build ((char *) NULL, &icnt, &offset_expr, s2, "p");
7478 break;
7479
7480 case M_BEQ_I:
7481 s = "cmpi";
7482 s2 = "bteqz";
7483 s3 = "x,U";
7484 goto do_branch_i;
7485 case M_BNE_I:
7486 s = "cmpi";
7487 s2 = "btnez";
7488 s3 = "x,U";
7489 goto do_branch_i;
7490 case M_BLT_I:
7491 s = "slti";
7492 s2 = "btnez";
7493 s3 = "x,8";
7494 goto do_branch_i;
7495 case M_BLTU_I:
7496 s = "sltiu";
7497 s2 = "btnez";
7498 s3 = "x,8";
7499 goto do_branch_i;
7500 case M_BLE_I:
7501 s = "slti";
7502 s2 = "btnez";
7503 s3 = "x,8";
7504 goto do_addone_branch_i;
7505 case M_BLEU_I:
7506 s = "sltiu";
7507 s2 = "btnez";
7508 s3 = "x,8";
7509 goto do_addone_branch_i;
7510 case M_BGE_I:
7511 s = "slti";
7512 s2 = "bteqz";
7513 s3 = "x,8";
7514 goto do_branch_i;
7515 case M_BGEU_I:
7516 s = "sltiu";
7517 s2 = "bteqz";
7518 s3 = "x,8";
7519 goto do_branch_i;
7520 case M_BGT_I:
7521 s = "slti";
7522 s2 = "bteqz";
7523 s3 = "x,8";
7524 goto do_addone_branch_i;
7525 case M_BGTU_I:
7526 s = "sltiu";
7527 s2 = "bteqz";
7528 s3 = "x,8";
7529
7530 do_addone_branch_i:
7531 if (imm_expr.X_op != O_constant)
7532 as_bad (_("Unsupported large constant"));
7533 ++imm_expr.X_add_number;
7534
7535 do_branch_i:
7536 macro_build ((char *) NULL, &icnt, &imm_expr, s, s3, xreg);
7537 macro_build ((char *) NULL, &icnt, &offset_expr, s2, "p");
7538 break;
7539
7540 case M_ABS:
7541 expr1.X_add_number = 0;
7542 macro_build ((char *) NULL, &icnt, &expr1, "slti", "x,8", yreg);
7543 if (xreg != yreg)
7544 move_register (&icnt, xreg, yreg);
7545 expr1.X_add_number = 2;
7546 macro_build ((char *) NULL, &icnt, &expr1, "bteqz", "p");
7547 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
7548 "neg", "x,w", xreg, xreg);
7549 }
7550 }
7551
7552 /* For consistency checking, verify that all bits are specified either
7553 by the match/mask part of the instruction definition, or by the
7554 operand list. */
7555 static int
7556 validate_mips_insn (opc)
7557 const struct mips_opcode *opc;
7558 {
7559 const char *p = opc->args;
7560 char c;
7561 unsigned long used_bits = opc->mask;
7562
7563 if ((used_bits & opc->match) != opc->match)
7564 {
7565 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
7566 opc->name, opc->args);
7567 return 0;
7568 }
7569 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
7570 while (*p)
7571 switch (c = *p++)
7572 {
7573 case ',': break;
7574 case '(': break;
7575 case ')': break;
7576 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7577 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7578 case 'A': break;
7579 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
7580 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
7581 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7582 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7583 case 'F': break;
7584 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7585 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7586 case 'I': break;
7587 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
7588 case 'L': break;
7589 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
7590 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
7591 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
7592 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
7593 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7594 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
7595 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7596 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7597 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7598 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7599 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7600 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7601 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7602 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
7603 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7604 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
7605 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7606 case 'f': break;
7607 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
7608 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
7609 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7610 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
7611 case 'l': break;
7612 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7613 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7614 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
7615 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7616 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7617 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7618 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
7619 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7620 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7621 case 'x': break;
7622 case 'z': break;
7623 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
7624 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
7625 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7626 default:
7627 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
7628 c, opc->name, opc->args);
7629 return 0;
7630 }
7631 #undef USE_BITS
7632 if (used_bits != 0xffffffff)
7633 {
7634 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
7635 ~used_bits & 0xffffffff, opc->name, opc->args);
7636 return 0;
7637 }
7638 return 1;
7639 }
7640
7641 /* This routine assembles an instruction into its binary format. As a
7642 side effect, it sets one of the global variables imm_reloc or
7643 offset_reloc to the type of relocation to do if one of the operands
7644 is an address expression. */
7645
7646 static void
7647 mips_ip (str, ip)
7648 char *str;
7649 struct mips_cl_insn *ip;
7650 {
7651 char *s;
7652 const char *args;
7653 char c = 0;
7654 struct mips_opcode *insn;
7655 char *argsStart;
7656 unsigned int regno;
7657 unsigned int lastregno = 0;
7658 char *s_reset;
7659 char save_c = 0;
7660
7661 insn_error = NULL;
7662
7663 /* If the instruction contains a '.', we first try to match an instruction
7664 including the '.'. Then we try again without the '.'. */
7665 insn = NULL;
7666 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
7667 continue;
7668
7669 /* If we stopped on whitespace, then replace the whitespace with null for
7670 the call to hash_find. Save the character we replaced just in case we
7671 have to re-parse the instruction. */
7672 if (ISSPACE (*s))
7673 {
7674 save_c = *s;
7675 *s++ = '\0';
7676 }
7677
7678 insn = (struct mips_opcode *) hash_find (op_hash, str);
7679
7680 /* If we didn't find the instruction in the opcode table, try again, but
7681 this time with just the instruction up to, but not including the
7682 first '.'. */
7683 if (insn == NULL)
7684 {
7685 /* Restore the character we overwrite above (if any). */
7686 if (save_c)
7687 *(--s) = save_c;
7688
7689 /* Scan up to the first '.' or whitespace. */
7690 for (s = str;
7691 *s != '\0' && *s != '.' && !ISSPACE (*s);
7692 ++s)
7693 continue;
7694
7695 /* If we did not find a '.', then we can quit now. */
7696 if (*s != '.')
7697 {
7698 insn_error = "unrecognized opcode";
7699 return;
7700 }
7701
7702 /* Lookup the instruction in the hash table. */
7703 *s++ = '\0';
7704 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
7705 {
7706 insn_error = "unrecognized opcode";
7707 return;
7708 }
7709 }
7710
7711 argsStart = s;
7712 for (;;)
7713 {
7714 boolean ok;
7715
7716 assert (strcmp (insn->name, str) == 0);
7717
7718 if (OPCODE_IS_MEMBER (insn,
7719 (mips_opts.isa
7720 | (mips_opts.mips16 ? INSN_MIPS16 : 0)
7721 | (mips_opts.ase_mdmx ? INSN_MDMX : 0)
7722 | (mips_opts.ase_mips3d ? INSN_MIPS3D : 0)),
7723 mips_arch))
7724 ok = true;
7725 else
7726 ok = false;
7727
7728 if (insn->pinfo != INSN_MACRO)
7729 {
7730 if (mips_arch == CPU_R4650 && (insn->pinfo & FP_D) != 0)
7731 ok = false;
7732 }
7733
7734 if (! ok)
7735 {
7736 if (insn + 1 < &mips_opcodes[NUMOPCODES]
7737 && strcmp (insn->name, insn[1].name) == 0)
7738 {
7739 ++insn;
7740 continue;
7741 }
7742 else
7743 {
7744 if (!insn_error)
7745 {
7746 static char buf[100];
7747 if (mips_arch_info->is_isa)
7748 sprintf (buf,
7749 _("opcode not supported at this ISA level (%s)"),
7750 mips_cpu_info_from_isa (mips_opts.isa)->name);
7751 else
7752 sprintf (buf,
7753 _("opcode not supported on this processor: %s (%s)"),
7754 mips_arch_info->name,
7755 mips_cpu_info_from_isa (mips_opts.isa)->name);
7756 insn_error = buf;
7757 }
7758 if (save_c)
7759 *(--s) = save_c;
7760 return;
7761 }
7762 }
7763
7764 ip->insn_mo = insn;
7765 ip->insn_opcode = insn->match;
7766 insn_error = NULL;
7767 for (args = insn->args;; ++args)
7768 {
7769 int is_mdmx;
7770
7771 s += strspn (s, " \t");
7772 is_mdmx = 0;
7773 switch (*args)
7774 {
7775 case '\0': /* end of args */
7776 if (*s == '\0')
7777 return;
7778 break;
7779
7780 case ',':
7781 if (*s++ == *args)
7782 continue;
7783 s--;
7784 switch (*++args)
7785 {
7786 case 'r':
7787 case 'v':
7788 ip->insn_opcode |= lastregno << OP_SH_RS;
7789 continue;
7790
7791 case 'w':
7792 ip->insn_opcode |= lastregno << OP_SH_RT;
7793 continue;
7794
7795 case 'W':
7796 ip->insn_opcode |= lastregno << OP_SH_FT;
7797 continue;
7798
7799 case 'V':
7800 ip->insn_opcode |= lastregno << OP_SH_FS;
7801 continue;
7802 }
7803 break;
7804
7805 case '(':
7806 /* Handle optional base register.
7807 Either the base register is omitted or
7808 we must have a left paren. */
7809 /* This is dependent on the next operand specifier
7810 is a base register specification. */
7811 assert (args[1] == 'b' || args[1] == '5'
7812 || args[1] == '-' || args[1] == '4');
7813 if (*s == '\0')
7814 return;
7815
7816 case ')': /* these must match exactly */
7817 if (*s++ == *args)
7818 continue;
7819 break;
7820
7821 case '<': /* must be at least one digit */
7822 /*
7823 * According to the manual, if the shift amount is greater
7824 * than 31 or less than 0, then the shift amount should be
7825 * mod 32. In reality the mips assembler issues an error.
7826 * We issue a warning and mask out all but the low 5 bits.
7827 */
7828 my_getExpression (&imm_expr, s);
7829 check_absolute_expr (ip, &imm_expr);
7830 if ((unsigned long) imm_expr.X_add_number > 31)
7831 {
7832 as_warn (_("Improper shift amount (%lu)"),
7833 (unsigned long) imm_expr.X_add_number);
7834 imm_expr.X_add_number &= OP_MASK_SHAMT;
7835 }
7836 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_SHAMT;
7837 imm_expr.X_op = O_absent;
7838 s = expr_end;
7839 continue;
7840
7841 case '>': /* shift amount minus 32 */
7842 my_getExpression (&imm_expr, s);
7843 check_absolute_expr (ip, &imm_expr);
7844 if ((unsigned long) imm_expr.X_add_number < 32
7845 || (unsigned long) imm_expr.X_add_number > 63)
7846 break;
7847 ip->insn_opcode |= (imm_expr.X_add_number - 32) << OP_SH_SHAMT;
7848 imm_expr.X_op = O_absent;
7849 s = expr_end;
7850 continue;
7851
7852 case 'k': /* cache code */
7853 case 'h': /* prefx code */
7854 my_getExpression (&imm_expr, s);
7855 check_absolute_expr (ip, &imm_expr);
7856 if ((unsigned long) imm_expr.X_add_number > 31)
7857 {
7858 as_warn (_("Invalid value for `%s' (%lu)"),
7859 ip->insn_mo->name,
7860 (unsigned long) imm_expr.X_add_number);
7861 imm_expr.X_add_number &= 0x1f;
7862 }
7863 if (*args == 'k')
7864 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CACHE;
7865 else
7866 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_PREFX;
7867 imm_expr.X_op = O_absent;
7868 s = expr_end;
7869 continue;
7870
7871 case 'c': /* break code */
7872 my_getExpression (&imm_expr, s);
7873 check_absolute_expr (ip, &imm_expr);
7874 if ((unsigned long) imm_expr.X_add_number > 1023)
7875 {
7876 as_warn (_("Illegal break code (%lu)"),
7877 (unsigned long) imm_expr.X_add_number);
7878 imm_expr.X_add_number &= OP_MASK_CODE;
7879 }
7880 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE;
7881 imm_expr.X_op = O_absent;
7882 s = expr_end;
7883 continue;
7884
7885 case 'q': /* lower break code */
7886 my_getExpression (&imm_expr, s);
7887 check_absolute_expr (ip, &imm_expr);
7888 if ((unsigned long) imm_expr.X_add_number > 1023)
7889 {
7890 as_warn (_("Illegal lower break code (%lu)"),
7891 (unsigned long) imm_expr.X_add_number);
7892 imm_expr.X_add_number &= OP_MASK_CODE2;
7893 }
7894 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE2;
7895 imm_expr.X_op = O_absent;
7896 s = expr_end;
7897 continue;
7898
7899 case 'B': /* 20-bit syscall/break code. */
7900 my_getExpression (&imm_expr, s);
7901 check_absolute_expr (ip, &imm_expr);
7902 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
7903 as_warn (_("Illegal 20-bit code (%lu)"),
7904 (unsigned long) imm_expr.X_add_number);
7905 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE20;
7906 imm_expr.X_op = O_absent;
7907 s = expr_end;
7908 continue;
7909
7910 case 'C': /* Coprocessor code */
7911 my_getExpression (&imm_expr, s);
7912 check_absolute_expr (ip, &imm_expr);
7913 if ((unsigned long) imm_expr.X_add_number >= (1 << 25))
7914 {
7915 as_warn (_("Coproccesor code > 25 bits (%lu)"),
7916 (unsigned long) imm_expr.X_add_number);
7917 imm_expr.X_add_number &= ((1 << 25) - 1);
7918 }
7919 ip->insn_opcode |= imm_expr.X_add_number;
7920 imm_expr.X_op = O_absent;
7921 s = expr_end;
7922 continue;
7923
7924 case 'J': /* 19-bit wait code. */
7925 my_getExpression (&imm_expr, s);
7926 check_absolute_expr (ip, &imm_expr);
7927 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
7928 as_warn (_("Illegal 19-bit code (%lu)"),
7929 (unsigned long) imm_expr.X_add_number);
7930 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE19;
7931 imm_expr.X_op = O_absent;
7932 s = expr_end;
7933 continue;
7934
7935 case 'P': /* Performance register */
7936 my_getExpression (&imm_expr, s);
7937 check_absolute_expr (ip, &imm_expr);
7938 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
7939 {
7940 as_warn (_("Invalid performance register (%lu)"),
7941 (unsigned long) imm_expr.X_add_number);
7942 imm_expr.X_add_number &= OP_MASK_PERFREG;
7943 }
7944 ip->insn_opcode |= (imm_expr.X_add_number << OP_SH_PERFREG);
7945 imm_expr.X_op = O_absent;
7946 s = expr_end;
7947 continue;
7948
7949 case 'b': /* base register */
7950 case 'd': /* destination register */
7951 case 's': /* source register */
7952 case 't': /* target register */
7953 case 'r': /* both target and source */
7954 case 'v': /* both dest and source */
7955 case 'w': /* both dest and target */
7956 case 'E': /* coprocessor target register */
7957 case 'G': /* coprocessor destination register */
7958 case 'x': /* ignore register name */
7959 case 'z': /* must be zero register */
7960 case 'U': /* destination register (clo/clz). */
7961 s_reset = s;
7962 if (s[0] == '$')
7963 {
7964
7965 if (ISDIGIT (s[1]))
7966 {
7967 ++s;
7968 regno = 0;
7969 do
7970 {
7971 regno *= 10;
7972 regno += *s - '0';
7973 ++s;
7974 }
7975 while (ISDIGIT (*s));
7976 if (regno > 31)
7977 as_bad (_("Invalid register number (%d)"), regno);
7978 }
7979 else if (*args == 'E' || *args == 'G')
7980 goto notreg;
7981 else
7982 {
7983 if (s[1] == 'r' && s[2] == 'a')
7984 {
7985 s += 3;
7986 regno = RA;
7987 }
7988 else if (s[1] == 'f' && s[2] == 'p')
7989 {
7990 s += 3;
7991 regno = FP;
7992 }
7993 else if (s[1] == 's' && s[2] == 'p')
7994 {
7995 s += 3;
7996 regno = SP;
7997 }
7998 else if (s[1] == 'g' && s[2] == 'p')
7999 {
8000 s += 3;
8001 regno = GP;
8002 }
8003 else if (s[1] == 'a' && s[2] == 't')
8004 {
8005 s += 3;
8006 regno = AT;
8007 }
8008 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
8009 {
8010 s += 4;
8011 regno = KT0;
8012 }
8013 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
8014 {
8015 s += 4;
8016 regno = KT1;
8017 }
8018 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
8019 {
8020 s += 5;
8021 regno = ZERO;
8022 }
8023 else if (itbl_have_entries)
8024 {
8025 char *p, *n;
8026 unsigned long r;
8027
8028 p = s + 1; /* advance past '$' */
8029 n = itbl_get_field (&p); /* n is name */
8030
8031 /* See if this is a register defined in an
8032 itbl entry. */
8033 if (itbl_get_reg_val (n, &r))
8034 {
8035 /* Get_field advances to the start of
8036 the next field, so we need to back
8037 rack to the end of the last field. */
8038 if (p)
8039 s = p - 1;
8040 else
8041 s = strchr (s, '\0');
8042 regno = r;
8043 }
8044 else
8045 goto notreg;
8046 }
8047 else
8048 goto notreg;
8049 }
8050 if (regno == AT
8051 && ! mips_opts.noat
8052 && *args != 'E'
8053 && *args != 'G')
8054 as_warn (_("Used $at without \".set noat\""));
8055 c = *args;
8056 if (*s == ' ')
8057 ++s;
8058 if (args[1] != *s)
8059 {
8060 if (c == 'r' || c == 'v' || c == 'w')
8061 {
8062 regno = lastregno;
8063 s = s_reset;
8064 ++args;
8065 }
8066 }
8067 /* 'z' only matches $0. */
8068 if (c == 'z' && regno != 0)
8069 break;
8070
8071 /* Now that we have assembled one operand, we use the args string
8072 * to figure out where it goes in the instruction. */
8073 switch (c)
8074 {
8075 case 'r':
8076 case 's':
8077 case 'v':
8078 case 'b':
8079 ip->insn_opcode |= regno << OP_SH_RS;
8080 break;
8081 case 'd':
8082 case 'G':
8083 ip->insn_opcode |= regno << OP_SH_RD;
8084 break;
8085 case 'U':
8086 ip->insn_opcode |= regno << OP_SH_RD;
8087 ip->insn_opcode |= regno << OP_SH_RT;
8088 break;
8089 case 'w':
8090 case 't':
8091 case 'E':
8092 ip->insn_opcode |= regno << OP_SH_RT;
8093 break;
8094 case 'x':
8095 /* This case exists because on the r3000 trunc
8096 expands into a macro which requires a gp
8097 register. On the r6000 or r4000 it is
8098 assembled into a single instruction which
8099 ignores the register. Thus the insn version
8100 is MIPS_ISA2 and uses 'x', and the macro
8101 version is MIPS_ISA1 and uses 't'. */
8102 break;
8103 case 'z':
8104 /* This case is for the div instruction, which
8105 acts differently if the destination argument
8106 is $0. This only matches $0, and is checked
8107 outside the switch. */
8108 break;
8109 case 'D':
8110 /* Itbl operand; not yet implemented. FIXME ?? */
8111 break;
8112 /* What about all other operands like 'i', which
8113 can be specified in the opcode table? */
8114 }
8115 lastregno = regno;
8116 continue;
8117 }
8118 notreg:
8119 switch (*args++)
8120 {
8121 case 'r':
8122 case 'v':
8123 ip->insn_opcode |= lastregno << OP_SH_RS;
8124 continue;
8125 case 'w':
8126 ip->insn_opcode |= lastregno << OP_SH_RT;
8127 continue;
8128 }
8129 break;
8130
8131 case 'O': /* MDMX alignment immediate constant. */
8132 my_getExpression (&imm_expr, s);
8133 check_absolute_expr (ip, &imm_expr);
8134 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
8135 {
8136 as_warn ("Improper align amount (%ld), using low bits",
8137 (long) imm_expr.X_add_number);
8138 imm_expr.X_add_number &= OP_MASK_ALN;
8139 }
8140 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_ALN;
8141 imm_expr.X_op = O_absent;
8142 s = expr_end;
8143 continue;
8144
8145 case 'Q': /* MDMX vector, element sel, or const. */
8146 if (s[0] != '$')
8147 {
8148 /* MDMX Immediate. */
8149 my_getExpression (&imm_expr, s);
8150 check_absolute_expr (ip, &imm_expr);
8151 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
8152 {
8153 as_warn (_("Invalid MDMX Immediate (%ld)"),
8154 (long) imm_expr.X_add_number);
8155 imm_expr.X_add_number &= OP_MASK_FT;
8156 }
8157 imm_expr.X_add_number &= OP_MASK_FT;
8158 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8159 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
8160 else
8161 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
8162 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_FT;
8163 imm_expr.X_op = O_absent;
8164 s = expr_end;
8165 continue;
8166 }
8167 /* Not MDMX Immediate. Fall through. */
8168 case 'X': /* MDMX destination register. */
8169 case 'Y': /* MDMX source register. */
8170 case 'Z': /* MDMX target register. */
8171 is_mdmx = 1;
8172 case 'D': /* floating point destination register */
8173 case 'S': /* floating point source register */
8174 case 'T': /* floating point target register */
8175 case 'R': /* floating point source register */
8176 case 'V':
8177 case 'W':
8178 s_reset = s;
8179 /* Accept $fN for FP and MDMX register numbers, and in
8180 addition accept $vN for MDMX register numbers. */
8181 if ((s[0] == '$' && s[1] == 'f' && ISDIGIT (s[2]))
8182 || (is_mdmx != 0 && s[0] == '$' && s[1] == 'v'
8183 && ISDIGIT (s[2])))
8184 {
8185 s += 2;
8186 regno = 0;
8187 do
8188 {
8189 regno *= 10;
8190 regno += *s - '0';
8191 ++s;
8192 }
8193 while (ISDIGIT (*s));
8194
8195 if (regno > 31)
8196 as_bad (_("Invalid float register number (%d)"), regno);
8197
8198 if ((regno & 1) != 0
8199 && HAVE_32BIT_FPRS
8200 && ! (strcmp (str, "mtc1") == 0
8201 || strcmp (str, "mfc1") == 0
8202 || strcmp (str, "lwc1") == 0
8203 || strcmp (str, "swc1") == 0
8204 || strcmp (str, "l.s") == 0
8205 || strcmp (str, "s.s") == 0))
8206 as_warn (_("Float register should be even, was %d"),
8207 regno);
8208
8209 c = *args;
8210 if (*s == ' ')
8211 ++s;
8212 if (args[1] != *s)
8213 {
8214 if (c == 'V' || c == 'W')
8215 {
8216 regno = lastregno;
8217 s = s_reset;
8218 ++args;
8219 }
8220 }
8221 switch (c)
8222 {
8223 case 'D':
8224 case 'X':
8225 ip->insn_opcode |= regno << OP_SH_FD;
8226 break;
8227 case 'V':
8228 case 'S':
8229 case 'Y':
8230 ip->insn_opcode |= regno << OP_SH_FS;
8231 break;
8232 case 'Q':
8233 /* This is like 'Z', but also needs to fix the MDMX
8234 vector/scalar select bits. Note that the
8235 scalar immediate case is handled above. */
8236 if (*s == '[')
8237 {
8238 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
8239 int max_el = (is_qh ? 3 : 7);
8240 s++;
8241 my_getExpression(&imm_expr, s);
8242 check_absolute_expr (ip, &imm_expr);
8243 s = expr_end;
8244 if (imm_expr.X_add_number > max_el)
8245 as_bad(_("Bad element selector %ld"),
8246 (long) imm_expr.X_add_number);
8247 imm_expr.X_add_number &= max_el;
8248 ip->insn_opcode |= (imm_expr.X_add_number
8249 << (OP_SH_VSEL +
8250 (is_qh ? 2 : 1)));
8251 if (*s != ']')
8252 as_warn(_("Expecting ']' found '%s'"), s);
8253 else
8254 s++;
8255 }
8256 else
8257 {
8258 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8259 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
8260 << OP_SH_VSEL);
8261 else
8262 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
8263 OP_SH_VSEL);
8264 }
8265 /* Fall through */
8266 case 'W':
8267 case 'T':
8268 case 'Z':
8269 ip->insn_opcode |= regno << OP_SH_FT;
8270 break;
8271 case 'R':
8272 ip->insn_opcode |= regno << OP_SH_FR;
8273 break;
8274 }
8275 lastregno = regno;
8276 continue;
8277 }
8278
8279 switch (*args++)
8280 {
8281 case 'V':
8282 ip->insn_opcode |= lastregno << OP_SH_FS;
8283 continue;
8284 case 'W':
8285 ip->insn_opcode |= lastregno << OP_SH_FT;
8286 continue;
8287 }
8288 break;
8289
8290 case 'I':
8291 my_getExpression (&imm_expr, s);
8292 if (imm_expr.X_op != O_big
8293 && imm_expr.X_op != O_constant)
8294 insn_error = _("absolute expression required");
8295 s = expr_end;
8296 continue;
8297
8298 case 'A':
8299 my_getExpression (&offset_expr, s);
8300 *imm_reloc = BFD_RELOC_32;
8301 s = expr_end;
8302 continue;
8303
8304 case 'F':
8305 case 'L':
8306 case 'f':
8307 case 'l':
8308 {
8309 int f64;
8310 int using_gprs;
8311 char *save_in;
8312 char *err;
8313 unsigned char temp[8];
8314 int len;
8315 unsigned int length;
8316 segT seg;
8317 subsegT subseg;
8318 char *p;
8319
8320 /* These only appear as the last operand in an
8321 instruction, and every instruction that accepts
8322 them in any variant accepts them in all variants.
8323 This means we don't have to worry about backing out
8324 any changes if the instruction does not match.
8325
8326 The difference between them is the size of the
8327 floating point constant and where it goes. For 'F'
8328 and 'L' the constant is 64 bits; for 'f' and 'l' it
8329 is 32 bits. Where the constant is placed is based
8330 on how the MIPS assembler does things:
8331 F -- .rdata
8332 L -- .lit8
8333 f -- immediate value
8334 l -- .lit4
8335
8336 The .lit4 and .lit8 sections are only used if
8337 permitted by the -G argument.
8338
8339 When generating embedded PIC code, we use the
8340 .lit8 section but not the .lit4 section (we can do
8341 .lit4 inline easily; we need to put .lit8
8342 somewhere in the data segment, and using .lit8
8343 permits the linker to eventually combine identical
8344 .lit8 entries).
8345
8346 The code below needs to know whether the target register
8347 is 32 or 64 bits wide. It relies on the fact 'f' and
8348 'F' are used with GPR-based instructions and 'l' and
8349 'L' are used with FPR-based instructions. */
8350
8351 f64 = *args == 'F' || *args == 'L';
8352 using_gprs = *args == 'F' || *args == 'f';
8353
8354 save_in = input_line_pointer;
8355 input_line_pointer = s;
8356 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
8357 length = len;
8358 s = input_line_pointer;
8359 input_line_pointer = save_in;
8360 if (err != NULL && *err != '\0')
8361 {
8362 as_bad (_("Bad floating point constant: %s"), err);
8363 memset (temp, '\0', sizeof temp);
8364 length = f64 ? 8 : 4;
8365 }
8366
8367 assert (length == (unsigned) (f64 ? 8 : 4));
8368
8369 if (*args == 'f'
8370 || (*args == 'l'
8371 && (! USE_GLOBAL_POINTER_OPT
8372 || mips_pic == EMBEDDED_PIC
8373 || g_switch_value < 4
8374 || (temp[0] == 0 && temp[1] == 0)
8375 || (temp[2] == 0 && temp[3] == 0))))
8376 {
8377 imm_expr.X_op = O_constant;
8378 if (! target_big_endian)
8379 imm_expr.X_add_number = bfd_getl32 (temp);
8380 else
8381 imm_expr.X_add_number = bfd_getb32 (temp);
8382 }
8383 else if (length > 4
8384 && ! mips_disable_float_construction
8385 /* Constants can only be constructed in GPRs and
8386 copied to FPRs if the GPRs are at least as wide
8387 as the FPRs. Force the constant into memory if
8388 we are using 64-bit FPRs but the GPRs are only
8389 32 bits wide. */
8390 && (using_gprs
8391 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
8392 && ((temp[0] == 0 && temp[1] == 0)
8393 || (temp[2] == 0 && temp[3] == 0))
8394 && ((temp[4] == 0 && temp[5] == 0)
8395 || (temp[6] == 0 && temp[7] == 0)))
8396 {
8397 /* The value is simple enough to load with a couple of
8398 instructions. If using 32-bit registers, set
8399 imm_expr to the high order 32 bits and offset_expr to
8400 the low order 32 bits. Otherwise, set imm_expr to
8401 the entire 64 bit constant. */
8402 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
8403 {
8404 imm_expr.X_op = O_constant;
8405 offset_expr.X_op = O_constant;
8406 if (! target_big_endian)
8407 {
8408 imm_expr.X_add_number = bfd_getl32 (temp + 4);
8409 offset_expr.X_add_number = bfd_getl32 (temp);
8410 }
8411 else
8412 {
8413 imm_expr.X_add_number = bfd_getb32 (temp);
8414 offset_expr.X_add_number = bfd_getb32 (temp + 4);
8415 }
8416 if (offset_expr.X_add_number == 0)
8417 offset_expr.X_op = O_absent;
8418 }
8419 else if (sizeof (imm_expr.X_add_number) > 4)
8420 {
8421 imm_expr.X_op = O_constant;
8422 if (! target_big_endian)
8423 imm_expr.X_add_number = bfd_getl64 (temp);
8424 else
8425 imm_expr.X_add_number = bfd_getb64 (temp);
8426 }
8427 else
8428 {
8429 imm_expr.X_op = O_big;
8430 imm_expr.X_add_number = 4;
8431 if (! target_big_endian)
8432 {
8433 generic_bignum[0] = bfd_getl16 (temp);
8434 generic_bignum[1] = bfd_getl16 (temp + 2);
8435 generic_bignum[2] = bfd_getl16 (temp + 4);
8436 generic_bignum[3] = bfd_getl16 (temp + 6);
8437 }
8438 else
8439 {
8440 generic_bignum[0] = bfd_getb16 (temp + 6);
8441 generic_bignum[1] = bfd_getb16 (temp + 4);
8442 generic_bignum[2] = bfd_getb16 (temp + 2);
8443 generic_bignum[3] = bfd_getb16 (temp);
8444 }
8445 }
8446 }
8447 else
8448 {
8449 const char *newname;
8450 segT new_seg;
8451
8452 /* Switch to the right section. */
8453 seg = now_seg;
8454 subseg = now_subseg;
8455 switch (*args)
8456 {
8457 default: /* unused default case avoids warnings. */
8458 case 'L':
8459 newname = RDATA_SECTION_NAME;
8460 if ((USE_GLOBAL_POINTER_OPT && g_switch_value >= 8)
8461 || mips_pic == EMBEDDED_PIC)
8462 newname = ".lit8";
8463 break;
8464 case 'F':
8465 if (mips_pic == EMBEDDED_PIC)
8466 newname = ".lit8";
8467 else
8468 newname = RDATA_SECTION_NAME;
8469 break;
8470 case 'l':
8471 assert (!USE_GLOBAL_POINTER_OPT
8472 || g_switch_value >= 4);
8473 newname = ".lit4";
8474 break;
8475 }
8476 new_seg = subseg_new (newname, (subsegT) 0);
8477 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
8478 bfd_set_section_flags (stdoutput, new_seg,
8479 (SEC_ALLOC
8480 | SEC_LOAD
8481 | SEC_READONLY
8482 | SEC_DATA));
8483 frag_align (*args == 'l' ? 2 : 3, 0, 0);
8484 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
8485 && strcmp (TARGET_OS, "elf") != 0)
8486 record_alignment (new_seg, 4);
8487 else
8488 record_alignment (new_seg, *args == 'l' ? 2 : 3);
8489 if (seg == now_seg)
8490 as_bad (_("Can't use floating point insn in this section"));
8491
8492 /* Set the argument to the current address in the
8493 section. */
8494 offset_expr.X_op = O_symbol;
8495 offset_expr.X_add_symbol =
8496 symbol_new ("L0\001", now_seg,
8497 (valueT) frag_now_fix (), frag_now);
8498 offset_expr.X_add_number = 0;
8499
8500 /* Put the floating point number into the section. */
8501 p = frag_more ((int) length);
8502 memcpy (p, temp, length);
8503
8504 /* Switch back to the original section. */
8505 subseg_set (seg, subseg);
8506 }
8507 }
8508 continue;
8509
8510 case 'i': /* 16 bit unsigned immediate */
8511 case 'j': /* 16 bit signed immediate */
8512 *imm_reloc = BFD_RELOC_LO16;
8513 c = my_getSmallExpression (&imm_expr, s);
8514 if (c != S_EX_NONE)
8515 {
8516 if (c != S_EX_LO)
8517 {
8518 if (imm_expr.X_op == O_constant)
8519 imm_expr.X_add_number =
8520 (imm_expr.X_add_number >> 16) & 0xffff;
8521 #ifdef OBJ_ELF
8522 else if (c == S_EX_HIGHEST)
8523 *imm_reloc = BFD_RELOC_MIPS_HIGHEST;
8524 else if (c == S_EX_HIGHER)
8525 *imm_reloc = BFD_RELOC_MIPS_HIGHER;
8526 else if (c == S_EX_GP_REL)
8527 {
8528 /* This occurs in NewABI only. */
8529 c = my_getSmallExpression (&imm_expr, s);
8530 if (c != S_EX_NEG)
8531 as_bad (_("bad composition of relocations"));
8532 else
8533 {
8534 c = my_getSmallExpression (&imm_expr, s);
8535 if (c != S_EX_LO)
8536 as_bad (_("bad composition of relocations"));
8537 else
8538 {
8539 imm_reloc[0] = BFD_RELOC_GPREL16;
8540 imm_reloc[1] = BFD_RELOC_MIPS_SUB;
8541 imm_reloc[2] = BFD_RELOC_LO16;
8542 }
8543 }
8544 }
8545 #endif
8546 else if (c == S_EX_HI)
8547 {
8548 *imm_reloc = BFD_RELOC_HI16_S;
8549 imm_unmatched_hi = true;
8550 }
8551 else
8552 *imm_reloc = BFD_RELOC_HI16;
8553 }
8554 else if (imm_expr.X_op == O_constant)
8555 imm_expr.X_add_number &= 0xffff;
8556 }
8557 if (*args == 'i')
8558 {
8559 if ((c == S_EX_NONE && imm_expr.X_op != O_constant)
8560 || ((imm_expr.X_add_number < 0
8561 || imm_expr.X_add_number >= 0x10000)
8562 && imm_expr.X_op == O_constant))
8563 {
8564 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
8565 !strcmp (insn->name, insn[1].name))
8566 break;
8567 if (imm_expr.X_op == O_constant
8568 || imm_expr.X_op == O_big)
8569 as_bad (_("16 bit expression not in range 0..65535"));
8570 }
8571 }
8572 else
8573 {
8574 int more;
8575 offsetT max;
8576
8577 /* The upper bound should be 0x8000, but
8578 unfortunately the MIPS assembler accepts numbers
8579 from 0x8000 to 0xffff and sign extends them, and
8580 we want to be compatible. We only permit this
8581 extended range for an instruction which does not
8582 provide any further alternates, since those
8583 alternates may handle other cases. People should
8584 use the numbers they mean, rather than relying on
8585 a mysterious sign extension. */
8586 more = (insn + 1 < &mips_opcodes[NUMOPCODES] &&
8587 strcmp (insn->name, insn[1].name) == 0);
8588 if (more)
8589 max = 0x8000;
8590 else
8591 max = 0x10000;
8592 if ((c == S_EX_NONE && imm_expr.X_op != O_constant)
8593 || ((imm_expr.X_add_number < -0x8000
8594 || imm_expr.X_add_number >= max)
8595 && imm_expr.X_op == O_constant)
8596 || (more
8597 && imm_expr.X_add_number < 0
8598 && HAVE_64BIT_GPRS
8599 && imm_expr.X_unsigned
8600 && sizeof (imm_expr.X_add_number) <= 4))
8601 {
8602 if (more)
8603 break;
8604 if (imm_expr.X_op == O_constant
8605 || imm_expr.X_op == O_big)
8606 as_bad (_("16 bit expression not in range -32768..32767"));
8607 }
8608 }
8609 s = expr_end;
8610 continue;
8611
8612 case 'o': /* 16 bit offset */
8613 c = my_getSmallExpression (&offset_expr, s);
8614
8615 /* If this value won't fit into a 16 bit offset, then go
8616 find a macro that will generate the 32 bit offset
8617 code pattern. */
8618 if (c == S_EX_NONE
8619 && (offset_expr.X_op != O_constant
8620 || offset_expr.X_add_number >= 0x8000
8621 || offset_expr.X_add_number < -0x8000))
8622 break;
8623
8624 if (c == S_EX_HI)
8625 {
8626 if (offset_expr.X_op != O_constant)
8627 break;
8628 offset_expr.X_add_number =
8629 (offset_expr.X_add_number >> 16) & 0xffff;
8630 }
8631 *offset_reloc = BFD_RELOC_LO16;
8632 s = expr_end;
8633 continue;
8634
8635 case 'p': /* pc relative offset */
8636 if (mips_pic == EMBEDDED_PIC)
8637 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8638 else
8639 *offset_reloc = BFD_RELOC_16_PCREL;
8640 my_getExpression (&offset_expr, s);
8641 s = expr_end;
8642 continue;
8643
8644 case 'u': /* upper 16 bits */
8645 c = my_getSmallExpression (&imm_expr, s);
8646 *imm_reloc = BFD_RELOC_LO16;
8647 if (c != S_EX_NONE)
8648 {
8649 if (c != S_EX_LO)
8650 {
8651 if (imm_expr.X_op == O_constant)
8652 imm_expr.X_add_number =
8653 (imm_expr.X_add_number >> 16) & 0xffff;
8654 else if (c == S_EX_HI)
8655 {
8656 *imm_reloc = BFD_RELOC_HI16_S;
8657 imm_unmatched_hi = true;
8658 }
8659 #ifdef OBJ_ELF
8660 else if (c == S_EX_HIGHEST)
8661 *imm_reloc = BFD_RELOC_MIPS_HIGHEST;
8662 else if (c == S_EX_GP_REL)
8663 {
8664 /* This occurs in NewABI only. */
8665 c = my_getSmallExpression (&imm_expr, s);
8666 if (c != S_EX_NEG)
8667 as_bad (_("bad composition of relocations"));
8668 else
8669 {
8670 c = my_getSmallExpression (&imm_expr, s);
8671 if (c != S_EX_HI)
8672 as_bad (_("bad composition of relocations"));
8673 else
8674 {
8675 imm_reloc[0] = BFD_RELOC_GPREL16;
8676 imm_reloc[1] = BFD_RELOC_MIPS_SUB;
8677 imm_reloc[2] = BFD_RELOC_HI16_S;
8678 }
8679 }
8680 }
8681 #endif
8682 else
8683 *imm_reloc = BFD_RELOC_HI16;
8684 }
8685 else if (imm_expr.X_op == O_constant)
8686 imm_expr.X_add_number &= 0xffff;
8687 }
8688 if (imm_expr.X_op == O_constant
8689 && (imm_expr.X_add_number < 0
8690 || imm_expr.X_add_number >= 0x10000))
8691 as_bad (_("lui expression not in range 0..65535"));
8692 s = expr_end;
8693 continue;
8694
8695 case 'a': /* 26 bit address */
8696 my_getExpression (&offset_expr, s);
8697 s = expr_end;
8698 *offset_reloc = BFD_RELOC_MIPS_JMP;
8699 continue;
8700
8701 case 'N': /* 3 bit branch condition code */
8702 case 'M': /* 3 bit compare condition code */
8703 if (strncmp (s, "$fcc", 4) != 0)
8704 break;
8705 s += 4;
8706 regno = 0;
8707 do
8708 {
8709 regno *= 10;
8710 regno += *s - '0';
8711 ++s;
8712 }
8713 while (ISDIGIT (*s));
8714 if (regno > 7)
8715 as_bad (_("invalid condition code register $fcc%d"), regno);
8716 if (*args == 'N')
8717 ip->insn_opcode |= regno << OP_SH_BCC;
8718 else
8719 ip->insn_opcode |= regno << OP_SH_CCC;
8720 continue;
8721
8722 case 'H':
8723 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
8724 s += 2;
8725 if (ISDIGIT (*s))
8726 {
8727 c = 0;
8728 do
8729 {
8730 c *= 10;
8731 c += *s - '0';
8732 ++s;
8733 }
8734 while (ISDIGIT (*s));
8735 }
8736 else
8737 c = 8; /* Invalid sel value. */
8738
8739 if (c > 7)
8740 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
8741 ip->insn_opcode |= c;
8742 continue;
8743
8744 default:
8745 as_bad (_("bad char = '%c'\n"), *args);
8746 internalError ();
8747 }
8748 break;
8749 }
8750 /* Args don't match. */
8751 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
8752 !strcmp (insn->name, insn[1].name))
8753 {
8754 ++insn;
8755 s = argsStart;
8756 insn_error = _("illegal operands");
8757 continue;
8758 }
8759 if (save_c)
8760 *(--s) = save_c;
8761 insn_error = _("illegal operands");
8762 return;
8763 }
8764 }
8765
8766 /* This routine assembles an instruction into its binary format when
8767 assembling for the mips16. As a side effect, it sets one of the
8768 global variables imm_reloc or offset_reloc to the type of
8769 relocation to do if one of the operands is an address expression.
8770 It also sets mips16_small and mips16_ext if the user explicitly
8771 requested a small or extended instruction. */
8772
8773 static void
8774 mips16_ip (str, ip)
8775 char *str;
8776 struct mips_cl_insn *ip;
8777 {
8778 char *s;
8779 const char *args;
8780 struct mips_opcode *insn;
8781 char *argsstart;
8782 unsigned int regno;
8783 unsigned int lastregno = 0;
8784 char *s_reset;
8785
8786 insn_error = NULL;
8787
8788 mips16_small = false;
8789 mips16_ext = false;
8790
8791 for (s = str; ISLOWER (*s); ++s)
8792 ;
8793 switch (*s)
8794 {
8795 case '\0':
8796 break;
8797
8798 case ' ':
8799 *s++ = '\0';
8800 break;
8801
8802 case '.':
8803 if (s[1] == 't' && s[2] == ' ')
8804 {
8805 *s = '\0';
8806 mips16_small = true;
8807 s += 3;
8808 break;
8809 }
8810 else if (s[1] == 'e' && s[2] == ' ')
8811 {
8812 *s = '\0';
8813 mips16_ext = true;
8814 s += 3;
8815 break;
8816 }
8817 /* Fall through. */
8818 default:
8819 insn_error = _("unknown opcode");
8820 return;
8821 }
8822
8823 if (mips_opts.noautoextend && ! mips16_ext)
8824 mips16_small = true;
8825
8826 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
8827 {
8828 insn_error = _("unrecognized opcode");
8829 return;
8830 }
8831
8832 argsstart = s;
8833 for (;;)
8834 {
8835 assert (strcmp (insn->name, str) == 0);
8836
8837 ip->insn_mo = insn;
8838 ip->insn_opcode = insn->match;
8839 ip->use_extend = false;
8840 imm_expr.X_op = O_absent;
8841 imm_reloc[0] = BFD_RELOC_UNUSED;
8842 imm_reloc[1] = BFD_RELOC_UNUSED;
8843 imm_reloc[2] = BFD_RELOC_UNUSED;
8844 offset_expr.X_op = O_absent;
8845 offset_reloc[0] = BFD_RELOC_UNUSED;
8846 offset_reloc[1] = BFD_RELOC_UNUSED;
8847 offset_reloc[2] = BFD_RELOC_UNUSED;
8848 for (args = insn->args; 1; ++args)
8849 {
8850 int c;
8851
8852 if (*s == ' ')
8853 ++s;
8854
8855 /* In this switch statement we call break if we did not find
8856 a match, continue if we did find a match, or return if we
8857 are done. */
8858
8859 c = *args;
8860 switch (c)
8861 {
8862 case '\0':
8863 if (*s == '\0')
8864 {
8865 /* Stuff the immediate value in now, if we can. */
8866 if (imm_expr.X_op == O_constant
8867 && *imm_reloc > BFD_RELOC_UNUSED
8868 && insn->pinfo != INSN_MACRO)
8869 {
8870 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
8871 imm_expr.X_add_number, true, mips16_small,
8872 mips16_ext, &ip->insn_opcode,
8873 &ip->use_extend, &ip->extend);
8874 imm_expr.X_op = O_absent;
8875 *imm_reloc = BFD_RELOC_UNUSED;
8876 }
8877
8878 return;
8879 }
8880 break;
8881
8882 case ',':
8883 if (*s++ == c)
8884 continue;
8885 s--;
8886 switch (*++args)
8887 {
8888 case 'v':
8889 ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
8890 continue;
8891 case 'w':
8892 ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
8893 continue;
8894 }
8895 break;
8896
8897 case '(':
8898 case ')':
8899 if (*s++ == c)
8900 continue;
8901 break;
8902
8903 case 'v':
8904 case 'w':
8905 if (s[0] != '$')
8906 {
8907 if (c == 'v')
8908 ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
8909 else
8910 ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
8911 ++args;
8912 continue;
8913 }
8914 /* Fall through. */
8915 case 'x':
8916 case 'y':
8917 case 'z':
8918 case 'Z':
8919 case '0':
8920 case 'S':
8921 case 'R':
8922 case 'X':
8923 case 'Y':
8924 if (s[0] != '$')
8925 break;
8926 s_reset = s;
8927 if (ISDIGIT (s[1]))
8928 {
8929 ++s;
8930 regno = 0;
8931 do
8932 {
8933 regno *= 10;
8934 regno += *s - '0';
8935 ++s;
8936 }
8937 while (ISDIGIT (*s));
8938 if (regno > 31)
8939 {
8940 as_bad (_("invalid register number (%d)"), regno);
8941 regno = 2;
8942 }
8943 }
8944 else
8945 {
8946 if (s[1] == 'r' && s[2] == 'a')
8947 {
8948 s += 3;
8949 regno = RA;
8950 }
8951 else if (s[1] == 'f' && s[2] == 'p')
8952 {
8953 s += 3;
8954 regno = FP;
8955 }
8956 else if (s[1] == 's' && s[2] == 'p')
8957 {
8958 s += 3;
8959 regno = SP;
8960 }
8961 else if (s[1] == 'g' && s[2] == 'p')
8962 {
8963 s += 3;
8964 regno = GP;
8965 }
8966 else if (s[1] == 'a' && s[2] == 't')
8967 {
8968 s += 3;
8969 regno = AT;
8970 }
8971 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
8972 {
8973 s += 4;
8974 regno = KT0;
8975 }
8976 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
8977 {
8978 s += 4;
8979 regno = KT1;
8980 }
8981 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
8982 {
8983 s += 5;
8984 regno = ZERO;
8985 }
8986 else
8987 break;
8988 }
8989
8990 if (*s == ' ')
8991 ++s;
8992 if (args[1] != *s)
8993 {
8994 if (c == 'v' || c == 'w')
8995 {
8996 regno = mips16_to_32_reg_map[lastregno];
8997 s = s_reset;
8998 ++args;
8999 }
9000 }
9001
9002 switch (c)
9003 {
9004 case 'x':
9005 case 'y':
9006 case 'z':
9007 case 'v':
9008 case 'w':
9009 case 'Z':
9010 regno = mips32_to_16_reg_map[regno];
9011 break;
9012
9013 case '0':
9014 if (regno != 0)
9015 regno = ILLEGAL_REG;
9016 break;
9017
9018 case 'S':
9019 if (regno != SP)
9020 regno = ILLEGAL_REG;
9021 break;
9022
9023 case 'R':
9024 if (regno != RA)
9025 regno = ILLEGAL_REG;
9026 break;
9027
9028 case 'X':
9029 case 'Y':
9030 if (regno == AT && ! mips_opts.noat)
9031 as_warn (_("used $at without \".set noat\""));
9032 break;
9033
9034 default:
9035 internalError ();
9036 }
9037
9038 if (regno == ILLEGAL_REG)
9039 break;
9040
9041 switch (c)
9042 {
9043 case 'x':
9044 case 'v':
9045 ip->insn_opcode |= regno << MIPS16OP_SH_RX;
9046 break;
9047 case 'y':
9048 case 'w':
9049 ip->insn_opcode |= regno << MIPS16OP_SH_RY;
9050 break;
9051 case 'z':
9052 ip->insn_opcode |= regno << MIPS16OP_SH_RZ;
9053 break;
9054 case 'Z':
9055 ip->insn_opcode |= regno << MIPS16OP_SH_MOVE32Z;
9056 case '0':
9057 case 'S':
9058 case 'R':
9059 break;
9060 case 'X':
9061 ip->insn_opcode |= regno << MIPS16OP_SH_REGR32;
9062 break;
9063 case 'Y':
9064 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
9065 ip->insn_opcode |= regno << MIPS16OP_SH_REG32R;
9066 break;
9067 default:
9068 internalError ();
9069 }
9070
9071 lastregno = regno;
9072 continue;
9073
9074 case 'P':
9075 if (strncmp (s, "$pc", 3) == 0)
9076 {
9077 s += 3;
9078 continue;
9079 }
9080 break;
9081
9082 case '<':
9083 case '>':
9084 case '[':
9085 case ']':
9086 case '4':
9087 case '5':
9088 case 'H':
9089 case 'W':
9090 case 'D':
9091 case 'j':
9092 case '8':
9093 case 'V':
9094 case 'C':
9095 case 'U':
9096 case 'k':
9097 case 'K':
9098 if (s[0] == '%'
9099 && strncmp (s + 1, "gprel(", sizeof "gprel(" - 1) == 0)
9100 {
9101 /* This is %gprel(SYMBOL). We need to read SYMBOL,
9102 and generate the appropriate reloc. If the text
9103 inside %gprel is not a symbol name with an
9104 optional offset, then we generate a normal reloc
9105 and will probably fail later. */
9106 my_getExpression (&imm_expr, s + sizeof "%gprel" - 1);
9107 if (imm_expr.X_op == O_symbol)
9108 {
9109 mips16_ext = true;
9110 *imm_reloc = BFD_RELOC_MIPS16_GPREL;
9111 s = expr_end;
9112 ip->use_extend = true;
9113 ip->extend = 0;
9114 continue;
9115 }
9116 }
9117 else
9118 {
9119 /* Just pick up a normal expression. */
9120 my_getExpression (&imm_expr, s);
9121 }
9122
9123 if (imm_expr.X_op == O_register)
9124 {
9125 /* What we thought was an expression turned out to
9126 be a register. */
9127
9128 if (s[0] == '(' && args[1] == '(')
9129 {
9130 /* It looks like the expression was omitted
9131 before a register indirection, which means
9132 that the expression is implicitly zero. We
9133 still set up imm_expr, so that we handle
9134 explicit extensions correctly. */
9135 imm_expr.X_op = O_constant;
9136 imm_expr.X_add_number = 0;
9137 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9138 continue;
9139 }
9140
9141 break;
9142 }
9143
9144 /* We need to relax this instruction. */
9145 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9146 s = expr_end;
9147 continue;
9148
9149 case 'p':
9150 case 'q':
9151 case 'A':
9152 case 'B':
9153 case 'E':
9154 /* We use offset_reloc rather than imm_reloc for the PC
9155 relative operands. This lets macros with both
9156 immediate and address operands work correctly. */
9157 my_getExpression (&offset_expr, s);
9158
9159 if (offset_expr.X_op == O_register)
9160 break;
9161
9162 /* We need to relax this instruction. */
9163 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
9164 s = expr_end;
9165 continue;
9166
9167 case '6': /* break code */
9168 my_getExpression (&imm_expr, s);
9169 check_absolute_expr (ip, &imm_expr);
9170 if ((unsigned long) imm_expr.X_add_number > 63)
9171 {
9172 as_warn (_("Invalid value for `%s' (%lu)"),
9173 ip->insn_mo->name,
9174 (unsigned long) imm_expr.X_add_number);
9175 imm_expr.X_add_number &= 0x3f;
9176 }
9177 ip->insn_opcode |= imm_expr.X_add_number << MIPS16OP_SH_IMM6;
9178 imm_expr.X_op = O_absent;
9179 s = expr_end;
9180 continue;
9181
9182 case 'a': /* 26 bit address */
9183 my_getExpression (&offset_expr, s);
9184 s = expr_end;
9185 *offset_reloc = BFD_RELOC_MIPS16_JMP;
9186 ip->insn_opcode <<= 16;
9187 continue;
9188
9189 case 'l': /* register list for entry macro */
9190 case 'L': /* register list for exit macro */
9191 {
9192 int mask;
9193
9194 if (c == 'l')
9195 mask = 0;
9196 else
9197 mask = 7 << 3;
9198 while (*s != '\0')
9199 {
9200 int freg, reg1, reg2;
9201
9202 while (*s == ' ' || *s == ',')
9203 ++s;
9204 if (*s != '$')
9205 {
9206 as_bad (_("can't parse register list"));
9207 break;
9208 }
9209 ++s;
9210 if (*s != 'f')
9211 freg = 0;
9212 else
9213 {
9214 freg = 1;
9215 ++s;
9216 }
9217 reg1 = 0;
9218 while (ISDIGIT (*s))
9219 {
9220 reg1 *= 10;
9221 reg1 += *s - '0';
9222 ++s;
9223 }
9224 if (*s == ' ')
9225 ++s;
9226 if (*s != '-')
9227 reg2 = reg1;
9228 else
9229 {
9230 ++s;
9231 if (*s != '$')
9232 break;
9233 ++s;
9234 if (freg)
9235 {
9236 if (*s == 'f')
9237 ++s;
9238 else
9239 {
9240 as_bad (_("invalid register list"));
9241 break;
9242 }
9243 }
9244 reg2 = 0;
9245 while (ISDIGIT (*s))
9246 {
9247 reg2 *= 10;
9248 reg2 += *s - '0';
9249 ++s;
9250 }
9251 }
9252 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
9253 {
9254 mask &= ~ (7 << 3);
9255 mask |= 5 << 3;
9256 }
9257 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
9258 {
9259 mask &= ~ (7 << 3);
9260 mask |= 6 << 3;
9261 }
9262 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
9263 mask |= (reg2 - 3) << 3;
9264 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
9265 mask |= (reg2 - 15) << 1;
9266 else if (reg1 == RA && reg2 == RA)
9267 mask |= 1;
9268 else
9269 {
9270 as_bad (_("invalid register list"));
9271 break;
9272 }
9273 }
9274 /* The mask is filled in in the opcode table for the
9275 benefit of the disassembler. We remove it before
9276 applying the actual mask. */
9277 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
9278 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
9279 }
9280 continue;
9281
9282 case 'e': /* extend code */
9283 my_getExpression (&imm_expr, s);
9284 check_absolute_expr (ip, &imm_expr);
9285 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
9286 {
9287 as_warn (_("Invalid value for `%s' (%lu)"),
9288 ip->insn_mo->name,
9289 (unsigned long) imm_expr.X_add_number);
9290 imm_expr.X_add_number &= 0x7ff;
9291 }
9292 ip->insn_opcode |= imm_expr.X_add_number;
9293 imm_expr.X_op = O_absent;
9294 s = expr_end;
9295 continue;
9296
9297 default:
9298 internalError ();
9299 }
9300 break;
9301 }
9302
9303 /* Args don't match. */
9304 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
9305 strcmp (insn->name, insn[1].name) == 0)
9306 {
9307 ++insn;
9308 s = argsstart;
9309 continue;
9310 }
9311
9312 insn_error = _("illegal operands");
9313
9314 return;
9315 }
9316 }
9317
9318 /* This structure holds information we know about a mips16 immediate
9319 argument type. */
9320
9321 struct mips16_immed_operand
9322 {
9323 /* The type code used in the argument string in the opcode table. */
9324 int type;
9325 /* The number of bits in the short form of the opcode. */
9326 int nbits;
9327 /* The number of bits in the extended form of the opcode. */
9328 int extbits;
9329 /* The amount by which the short form is shifted when it is used;
9330 for example, the sw instruction has a shift count of 2. */
9331 int shift;
9332 /* The amount by which the short form is shifted when it is stored
9333 into the instruction code. */
9334 int op_shift;
9335 /* Non-zero if the short form is unsigned. */
9336 int unsp;
9337 /* Non-zero if the extended form is unsigned. */
9338 int extu;
9339 /* Non-zero if the value is PC relative. */
9340 int pcrel;
9341 };
9342
9343 /* The mips16 immediate operand types. */
9344
9345 static const struct mips16_immed_operand mips16_immed_operands[] =
9346 {
9347 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
9348 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
9349 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
9350 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
9351 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
9352 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
9353 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
9354 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
9355 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
9356 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
9357 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
9358 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
9359 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
9360 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
9361 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
9362 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
9363 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
9364 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
9365 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
9366 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
9367 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
9368 };
9369
9370 #define MIPS16_NUM_IMMED \
9371 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
9372
9373 /* Handle a mips16 instruction with an immediate value. This or's the
9374 small immediate value into *INSN. It sets *USE_EXTEND to indicate
9375 whether an extended value is needed; if one is needed, it sets
9376 *EXTEND to the value. The argument type is TYPE. The value is VAL.
9377 If SMALL is true, an unextended opcode was explicitly requested.
9378 If EXT is true, an extended opcode was explicitly requested. If
9379 WARN is true, warn if EXT does not match reality. */
9380
9381 static void
9382 mips16_immed (file, line, type, val, warn, small, ext, insn, use_extend,
9383 extend)
9384 char *file;
9385 unsigned int line;
9386 int type;
9387 offsetT val;
9388 boolean warn;
9389 boolean small;
9390 boolean ext;
9391 unsigned long *insn;
9392 boolean *use_extend;
9393 unsigned short *extend;
9394 {
9395 register const struct mips16_immed_operand *op;
9396 int mintiny, maxtiny;
9397 boolean needext;
9398
9399 op = mips16_immed_operands;
9400 while (op->type != type)
9401 {
9402 ++op;
9403 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
9404 }
9405
9406 if (op->unsp)
9407 {
9408 if (type == '<' || type == '>' || type == '[' || type == ']')
9409 {
9410 mintiny = 1;
9411 maxtiny = 1 << op->nbits;
9412 }
9413 else
9414 {
9415 mintiny = 0;
9416 maxtiny = (1 << op->nbits) - 1;
9417 }
9418 }
9419 else
9420 {
9421 mintiny = - (1 << (op->nbits - 1));
9422 maxtiny = (1 << (op->nbits - 1)) - 1;
9423 }
9424
9425 /* Branch offsets have an implicit 0 in the lowest bit. */
9426 if (type == 'p' || type == 'q')
9427 val /= 2;
9428
9429 if ((val & ((1 << op->shift) - 1)) != 0
9430 || val < (mintiny << op->shift)
9431 || val > (maxtiny << op->shift))
9432 needext = true;
9433 else
9434 needext = false;
9435
9436 if (warn && ext && ! needext)
9437 as_warn_where (file, line,
9438 _("extended operand requested but not required"));
9439 if (small && needext)
9440 as_bad_where (file, line, _("invalid unextended operand value"));
9441
9442 if (small || (! ext && ! needext))
9443 {
9444 int insnval;
9445
9446 *use_extend = false;
9447 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
9448 insnval <<= op->op_shift;
9449 *insn |= insnval;
9450 }
9451 else
9452 {
9453 long minext, maxext;
9454 int extval;
9455
9456 if (op->extu)
9457 {
9458 minext = 0;
9459 maxext = (1 << op->extbits) - 1;
9460 }
9461 else
9462 {
9463 minext = - (1 << (op->extbits - 1));
9464 maxext = (1 << (op->extbits - 1)) - 1;
9465 }
9466 if (val < minext || val > maxext)
9467 as_bad_where (file, line,
9468 _("operand value out of range for instruction"));
9469
9470 *use_extend = true;
9471 if (op->extbits == 16)
9472 {
9473 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
9474 val &= 0x1f;
9475 }
9476 else if (op->extbits == 15)
9477 {
9478 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
9479 val &= 0xf;
9480 }
9481 else
9482 {
9483 extval = ((val & 0x1f) << 6) | (val & 0x20);
9484 val = 0;
9485 }
9486
9487 *extend = (unsigned short) extval;
9488 *insn |= val;
9489 }
9490 }
9491 \f
9492 static struct percent_op_match
9493 {
9494 const char *str;
9495 const enum small_ex_type type;
9496 } percent_op[] =
9497 {
9498 {"%lo", S_EX_LO},
9499 #ifdef OBJ_ELF
9500 {"%call_hi", S_EX_CALL_HI},
9501 {"%call_lo", S_EX_CALL_LO},
9502 {"%call16", S_EX_CALL16},
9503 {"%got_disp", S_EX_GOT_DISP},
9504 {"%got_page", S_EX_GOT_PAGE},
9505 {"%got_ofst", S_EX_GOT_OFST},
9506 {"%got_hi", S_EX_GOT_HI},
9507 {"%got_lo", S_EX_GOT_LO},
9508 {"%got", S_EX_GOT},
9509 {"%gp_rel", S_EX_GP_REL},
9510 {"%half", S_EX_HALF},
9511 {"%highest", S_EX_HIGHEST},
9512 {"%higher", S_EX_HIGHER},
9513 {"%neg", S_EX_NEG},
9514 #endif
9515 {"%hi", S_EX_HI}
9516 };
9517
9518 /* Parse small expression input. STR gets adjusted to eat up whitespace.
9519 It detects valid "%percent_op(...)" and "($reg)" strings. Percent_op's
9520 can be nested, this is handled by blanking the innermost, parsing the
9521 rest by subsequent calls. */
9522
9523 static int
9524 my_getSmallParser (str, len, nestlevel)
9525 char **str;
9526 unsigned int *len;
9527 int *nestlevel;
9528 {
9529 *len = 0;
9530 *str += strspn (*str, " \t");
9531 /* Check for expression in parentheses. */
9532 if (**str == '(')
9533 {
9534 char *b = *str + 1 + strspn (*str + 1, " \t");
9535 char *e;
9536
9537 /* Check for base register. */
9538 if (b[0] == '$')
9539 {
9540 if (strchr (b, ')')
9541 && (e = b + strcspn (b, ") \t"))
9542 && e - b > 1 && e - b < 4)
9543 {
9544 if ((e - b == 3
9545 && ((b[1] == 'f' && b[2] == 'p')
9546 || (b[1] == 's' && b[2] == 'p')
9547 || (b[1] == 'g' && b[2] == 'p')
9548 || (b[1] == 'a' && b[2] == 't')
9549 || (ISDIGIT (b[1])
9550 && ISDIGIT (b[2]))))
9551 || (ISDIGIT (b[1])))
9552 {
9553 *len = strcspn (*str, ")") + 1;
9554 return S_EX_REGISTER;
9555 }
9556 }
9557 }
9558 /* Check for percent_op (in parentheses). */
9559 else if (b[0] == '%')
9560 {
9561 *str = b;
9562 return my_getPercentOp (str, len, nestlevel);
9563 }
9564
9565 /* Some other expression in the parentheses, which can contain
9566 parentheses itself. Attempt to find the matching one. */
9567 {
9568 int pcnt = 1;
9569 char *s;
9570
9571 *len = 1;
9572 for (s = *str + 1; *s && pcnt; s++, (*len)++)
9573 {
9574 if (*s == '(')
9575 ++pcnt;
9576 else if (*s == ')')
9577 --pcnt;
9578 }
9579 }
9580 }
9581 /* Check for percent_op (outside of parentheses). */
9582 else if (*str[0] == '%')
9583 return my_getPercentOp (str, len, nestlevel);
9584
9585 /* Any other expression. */
9586 return S_EX_NONE;
9587 }
9588
9589 static int
9590 my_getPercentOp (str, len, nestlevel)
9591 char **str;
9592 unsigned int *len;
9593 int *nestlevel;
9594 {
9595 char *tmp = *str + 1;
9596 unsigned int i = 0;
9597
9598 while (ISALPHA (*tmp) || *tmp == '_')
9599 {
9600 *tmp = TOLOWER (*tmp);
9601 tmp++;
9602 }
9603 while (i < (sizeof (percent_op) / sizeof (struct percent_op_match)))
9604 {
9605 if (strncmp (*str, percent_op[i].str, strlen (percent_op[i].str)))
9606 i++;
9607 else
9608 {
9609 int type = percent_op[i].type;
9610
9611 /* Only %hi and %lo are allowed for OldABI. */
9612 if (! HAVE_NEWABI && type != S_EX_HI && type != S_EX_LO)
9613 return S_EX_NONE;
9614
9615 *len = strlen (percent_op[i].str);
9616 ++(*nestlevel);
9617 return type;
9618 }
9619 }
9620 return S_EX_NONE;
9621 }
9622
9623 static int
9624 my_getSmallExpression (ep, str)
9625 expressionS *ep;
9626 char *str;
9627 {
9628 static char *oldstr = NULL;
9629 int c = S_EX_NONE;
9630 int oldc;
9631 int nestlevel = -1;
9632 unsigned int len;
9633
9634 /* Don't update oldstr if the last call had nested percent_op's. We need
9635 it to parse the outer ones later. */
9636 if (! oldstr)
9637 oldstr = str;
9638
9639 do
9640 {
9641 oldc = c;
9642 c = my_getSmallParser (&str, &len, &nestlevel);
9643 if (c != S_EX_NONE && c != S_EX_REGISTER)
9644 str += len;
9645 }
9646 while (c != S_EX_NONE && c != S_EX_REGISTER);
9647
9648 if (nestlevel >= 0)
9649 {
9650 /* A percent_op was encountered. Don't try to get an expression if
9651 it is already blanked out. */
9652 if (*(str + strspn (str + 1, " )")) != ')')
9653 {
9654 char save;
9655
9656 /* Let my_getExpression() stop at the closing parenthesis. */
9657 save = *(str + len);
9658 *(str + len) = '\0';
9659 my_getExpression (ep, str);
9660 *(str + len) = save;
9661 }
9662 if (nestlevel > 0)
9663 {
9664 /* Blank out including the % sign and the proper matching
9665 parenthesis. */
9666 int pcnt = 1;
9667 char *s = strrchr (oldstr, '%');
9668 char *end;
9669
9670 for (end = strchr (s, '(') + 1; *end && pcnt; end++)
9671 {
9672 if (*end == '(')
9673 ++pcnt;
9674 else if (*end == ')')
9675 --pcnt;
9676 }
9677
9678 memset (s, ' ', end - s);
9679 str = oldstr;
9680 }
9681 else
9682 expr_end = str + len;
9683
9684 c = oldc;
9685 }
9686 else if (c == S_EX_NONE)
9687 {
9688 my_getExpression (ep, str);
9689 }
9690 else if (c == S_EX_REGISTER)
9691 {
9692 ep->X_op = O_constant;
9693 expr_end = str;
9694 ep->X_add_symbol = NULL;
9695 ep->X_op_symbol = NULL;
9696 ep->X_add_number = 0;
9697 }
9698 else
9699 {
9700 as_fatal (_("internal error"));
9701 }
9702
9703 if (nestlevel <= 0)
9704 /* All percent_op's have been handled. */
9705 oldstr = NULL;
9706
9707 return c;
9708 }
9709
9710 static void
9711 my_getExpression (ep, str)
9712 expressionS *ep;
9713 char *str;
9714 {
9715 char *save_in;
9716 valueT val;
9717
9718 save_in = input_line_pointer;
9719 input_line_pointer = str;
9720 expression (ep);
9721 expr_end = input_line_pointer;
9722 input_line_pointer = save_in;
9723
9724 /* If we are in mips16 mode, and this is an expression based on `.',
9725 then we bump the value of the symbol by 1 since that is how other
9726 text symbols are handled. We don't bother to handle complex
9727 expressions, just `.' plus or minus a constant. */
9728 if (mips_opts.mips16
9729 && ep->X_op == O_symbol
9730 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
9731 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
9732 && symbol_get_frag (ep->X_add_symbol) == frag_now
9733 && symbol_constant_p (ep->X_add_symbol)
9734 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
9735 S_SET_VALUE (ep->X_add_symbol, val + 1);
9736 }
9737
9738 /* Turn a string in input_line_pointer into a floating point constant
9739 of type TYPE, and store the appropriate bytes in *LITP. The number
9740 of LITTLENUMS emitted is stored in *SIZEP. An error message is
9741 returned, or NULL on OK. */
9742
9743 char *
9744 md_atof (type, litP, sizeP)
9745 int type;
9746 char *litP;
9747 int *sizeP;
9748 {
9749 int prec;
9750 LITTLENUM_TYPE words[4];
9751 char *t;
9752 int i;
9753
9754 switch (type)
9755 {
9756 case 'f':
9757 prec = 2;
9758 break;
9759
9760 case 'd':
9761 prec = 4;
9762 break;
9763
9764 default:
9765 *sizeP = 0;
9766 return _("bad call to md_atof");
9767 }
9768
9769 t = atof_ieee (input_line_pointer, type, words);
9770 if (t)
9771 input_line_pointer = t;
9772
9773 *sizeP = prec * 2;
9774
9775 if (! target_big_endian)
9776 {
9777 for (i = prec - 1; i >= 0; i--)
9778 {
9779 md_number_to_chars (litP, (valueT) words[i], 2);
9780 litP += 2;
9781 }
9782 }
9783 else
9784 {
9785 for (i = 0; i < prec; i++)
9786 {
9787 md_number_to_chars (litP, (valueT) words[i], 2);
9788 litP += 2;
9789 }
9790 }
9791
9792 return NULL;
9793 }
9794
9795 void
9796 md_number_to_chars (buf, val, n)
9797 char *buf;
9798 valueT val;
9799 int n;
9800 {
9801 if (target_big_endian)
9802 number_to_chars_bigendian (buf, val, n);
9803 else
9804 number_to_chars_littleendian (buf, val, n);
9805 }
9806 \f
9807 #ifdef OBJ_ELF
9808 static int support_64bit_objects(void)
9809 {
9810 const char **list, **l;
9811
9812 list = bfd_target_list ();
9813 for (l = list; *l != NULL; l++)
9814 #ifdef TE_TMIPS
9815 /* This is traditional mips */
9816 if (strcmp (*l, "elf64-tradbigmips") == 0
9817 || strcmp (*l, "elf64-tradlittlemips") == 0)
9818 #else
9819 if (strcmp (*l, "elf64-bigmips") == 0
9820 || strcmp (*l, "elf64-littlemips") == 0)
9821 #endif
9822 break;
9823 free (list);
9824 return (*l != NULL);
9825 }
9826 #endif /* OBJ_ELF */
9827
9828 const char *md_shortopts = "nO::g::G:";
9829
9830 struct option md_longopts[] =
9831 {
9832 #define OPTION_MIPS1 (OPTION_MD_BASE + 1)
9833 {"mips0", no_argument, NULL, OPTION_MIPS1},
9834 {"mips1", no_argument, NULL, OPTION_MIPS1},
9835 #define OPTION_MIPS2 (OPTION_MD_BASE + 2)
9836 {"mips2", no_argument, NULL, OPTION_MIPS2},
9837 #define OPTION_MIPS3 (OPTION_MD_BASE + 3)
9838 {"mips3", no_argument, NULL, OPTION_MIPS3},
9839 #define OPTION_MIPS4 (OPTION_MD_BASE + 4)
9840 {"mips4", no_argument, NULL, OPTION_MIPS4},
9841 #define OPTION_MIPS5 (OPTION_MD_BASE + 5)
9842 {"mips5", no_argument, NULL, OPTION_MIPS5},
9843 #define OPTION_MIPS32 (OPTION_MD_BASE + 6)
9844 {"mips32", no_argument, NULL, OPTION_MIPS32},
9845 #define OPTION_MIPS64 (OPTION_MD_BASE + 7)
9846 {"mips64", no_argument, NULL, OPTION_MIPS64},
9847 #define OPTION_MEMBEDDED_PIC (OPTION_MD_BASE + 8)
9848 {"membedded-pic", no_argument, NULL, OPTION_MEMBEDDED_PIC},
9849 #define OPTION_TRAP (OPTION_MD_BASE + 9)
9850 {"trap", no_argument, NULL, OPTION_TRAP},
9851 {"no-break", no_argument, NULL, OPTION_TRAP},
9852 #define OPTION_BREAK (OPTION_MD_BASE + 10)
9853 {"break", no_argument, NULL, OPTION_BREAK},
9854 {"no-trap", no_argument, NULL, OPTION_BREAK},
9855 #define OPTION_EB (OPTION_MD_BASE + 11)
9856 {"EB", no_argument, NULL, OPTION_EB},
9857 #define OPTION_EL (OPTION_MD_BASE + 12)
9858 {"EL", no_argument, NULL, OPTION_EL},
9859 #define OPTION_MIPS16 (OPTION_MD_BASE + 13)
9860 {"mips16", no_argument, NULL, OPTION_MIPS16},
9861 #define OPTION_NO_MIPS16 (OPTION_MD_BASE + 14)
9862 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
9863 #define OPTION_M7000_HILO_FIX (OPTION_MD_BASE + 15)
9864 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
9865 #define OPTION_MNO_7000_HILO_FIX (OPTION_MD_BASE + 16)
9866 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
9867 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
9868 #define OPTION_FP32 (OPTION_MD_BASE + 17)
9869 {"mfp32", no_argument, NULL, OPTION_FP32},
9870 #define OPTION_GP32 (OPTION_MD_BASE + 18)
9871 {"mgp32", no_argument, NULL, OPTION_GP32},
9872 #define OPTION_CONSTRUCT_FLOATS (OPTION_MD_BASE + 19)
9873 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
9874 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MD_BASE + 20)
9875 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
9876 #define OPTION_MARCH (OPTION_MD_BASE + 21)
9877 {"march", required_argument, NULL, OPTION_MARCH},
9878 #define OPTION_MTUNE (OPTION_MD_BASE + 22)
9879 {"mtune", required_argument, NULL, OPTION_MTUNE},
9880 #define OPTION_FP64 (OPTION_MD_BASE + 23)
9881 {"mfp64", no_argument, NULL, OPTION_FP64},
9882 #define OPTION_M4650 (OPTION_MD_BASE + 24)
9883 {"m4650", no_argument, NULL, OPTION_M4650},
9884 #define OPTION_NO_M4650 (OPTION_MD_BASE + 25)
9885 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
9886 #define OPTION_M4010 (OPTION_MD_BASE + 26)
9887 {"m4010", no_argument, NULL, OPTION_M4010},
9888 #define OPTION_NO_M4010 (OPTION_MD_BASE + 27)
9889 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
9890 #define OPTION_M4100 (OPTION_MD_BASE + 28)
9891 {"m4100", no_argument, NULL, OPTION_M4100},
9892 #define OPTION_NO_M4100 (OPTION_MD_BASE + 29)
9893 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
9894 #define OPTION_M3900 (OPTION_MD_BASE + 30)
9895 {"m3900", no_argument, NULL, OPTION_M3900},
9896 #define OPTION_NO_M3900 (OPTION_MD_BASE + 31)
9897 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
9898 #define OPTION_GP64 (OPTION_MD_BASE + 32)
9899 {"mgp64", no_argument, NULL, OPTION_GP64},
9900 #define OPTION_MIPS3D (OPTION_MD_BASE + 33)
9901 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
9902 #define OPTION_NO_MIPS3D (OPTION_MD_BASE + 34)
9903 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
9904 #define OPTION_MDMX (OPTION_MD_BASE + 35)
9905 {"mdmx", no_argument, NULL, OPTION_MDMX},
9906 #define OPTION_NO_MDMX (OPTION_MD_BASE + 36)
9907 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
9908 #ifdef OBJ_ELF
9909 #define OPTION_ELF_BASE (OPTION_MD_BASE + 37)
9910 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
9911 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
9912 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
9913 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 1)
9914 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
9915 #define OPTION_XGOT (OPTION_ELF_BASE + 2)
9916 {"xgot", no_argument, NULL, OPTION_XGOT},
9917 #define OPTION_MABI (OPTION_ELF_BASE + 3)
9918 {"mabi", required_argument, NULL, OPTION_MABI},
9919 #define OPTION_32 (OPTION_ELF_BASE + 4)
9920 {"32", no_argument, NULL, OPTION_32},
9921 #define OPTION_N32 (OPTION_ELF_BASE + 5)
9922 {"n32", no_argument, NULL, OPTION_N32},
9923 #define OPTION_64 (OPTION_ELF_BASE + 6)
9924 {"64", no_argument, NULL, OPTION_64},
9925 #define OPTION_MDEBUG (OPTION_ELF_BASE + 7)
9926 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
9927 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 8)
9928 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
9929 #endif /* OBJ_ELF */
9930 {NULL, no_argument, NULL, 0}
9931 };
9932 size_t md_longopts_size = sizeof (md_longopts);
9933
9934 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
9935 NEW_VALUE. Warn if another value was already specified. Note:
9936 we have to defer parsing the -march and -mtune arguments in order
9937 to handle 'from-abi' correctly, since the ABI might be specified
9938 in a later argument. */
9939
9940 static void
9941 mips_set_option_string (string_ptr, new_value)
9942 const char **string_ptr, *new_value;
9943 {
9944 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
9945 as_warn (_("A different %s was already specified, is now %s"),
9946 string_ptr == &mips_arch_string ? "-march" : "-mtune",
9947 new_value);
9948
9949 *string_ptr = new_value;
9950 }
9951
9952 int
9953 md_parse_option (c, arg)
9954 int c;
9955 char *arg;
9956 {
9957 switch (c)
9958 {
9959 case OPTION_CONSTRUCT_FLOATS:
9960 mips_disable_float_construction = 0;
9961 break;
9962
9963 case OPTION_NO_CONSTRUCT_FLOATS:
9964 mips_disable_float_construction = 1;
9965 break;
9966
9967 case OPTION_TRAP:
9968 mips_trap = 1;
9969 break;
9970
9971 case OPTION_BREAK:
9972 mips_trap = 0;
9973 break;
9974
9975 case OPTION_EB:
9976 target_big_endian = 1;
9977 break;
9978
9979 case OPTION_EL:
9980 target_big_endian = 0;
9981 break;
9982
9983 case 'n':
9984 warn_nops = 1;
9985 break;
9986
9987 case 'O':
9988 if (arg && arg[1] == '0')
9989 mips_optimize = 1;
9990 else
9991 mips_optimize = 2;
9992 break;
9993
9994 case 'g':
9995 if (arg == NULL)
9996 mips_debug = 2;
9997 else
9998 mips_debug = atoi (arg);
9999 /* When the MIPS assembler sees -g or -g2, it does not do
10000 optimizations which limit full symbolic debugging. We take
10001 that to be equivalent to -O0. */
10002 if (mips_debug == 2)
10003 mips_optimize = 1;
10004 break;
10005
10006 case OPTION_MIPS1:
10007 file_mips_isa = ISA_MIPS1;
10008 break;
10009
10010 case OPTION_MIPS2:
10011 file_mips_isa = ISA_MIPS2;
10012 break;
10013
10014 case OPTION_MIPS3:
10015 file_mips_isa = ISA_MIPS3;
10016 break;
10017
10018 case OPTION_MIPS4:
10019 file_mips_isa = ISA_MIPS4;
10020 break;
10021
10022 case OPTION_MIPS5:
10023 file_mips_isa = ISA_MIPS5;
10024 break;
10025
10026 case OPTION_MIPS32:
10027 file_mips_isa = ISA_MIPS32;
10028 break;
10029
10030 case OPTION_MIPS64:
10031 file_mips_isa = ISA_MIPS64;
10032 break;
10033
10034 case OPTION_MTUNE:
10035 mips_set_option_string (&mips_tune_string, arg);
10036 break;
10037
10038 case OPTION_MARCH:
10039 mips_set_option_string (&mips_arch_string, arg);
10040 break;
10041
10042 case OPTION_M4650:
10043 mips_set_option_string (&mips_arch_string, "4650");
10044 mips_set_option_string (&mips_tune_string, "4650");
10045 break;
10046
10047 case OPTION_NO_M4650:
10048 break;
10049
10050 case OPTION_M4010:
10051 mips_set_option_string (&mips_arch_string, "4010");
10052 mips_set_option_string (&mips_tune_string, "4010");
10053 break;
10054
10055 case OPTION_NO_M4010:
10056 break;
10057
10058 case OPTION_M4100:
10059 mips_set_option_string (&mips_arch_string, "4100");
10060 mips_set_option_string (&mips_tune_string, "4100");
10061 break;
10062
10063 case OPTION_NO_M4100:
10064 break;
10065
10066 case OPTION_M3900:
10067 mips_set_option_string (&mips_arch_string, "3900");
10068 mips_set_option_string (&mips_tune_string, "3900");
10069 break;
10070
10071 case OPTION_NO_M3900:
10072 break;
10073
10074 case OPTION_MDMX:
10075 mips_opts.ase_mdmx = 1;
10076 break;
10077
10078 case OPTION_NO_MDMX:
10079 mips_opts.ase_mdmx = 0;
10080 break;
10081
10082 case OPTION_MIPS16:
10083 mips_opts.mips16 = 1;
10084 mips_no_prev_insn (false);
10085 break;
10086
10087 case OPTION_NO_MIPS16:
10088 mips_opts.mips16 = 0;
10089 mips_no_prev_insn (false);
10090 break;
10091
10092 case OPTION_MIPS3D:
10093 mips_opts.ase_mips3d = 1;
10094 break;
10095
10096 case OPTION_NO_MIPS3D:
10097 mips_opts.ase_mips3d = 0;
10098 break;
10099
10100 case OPTION_MEMBEDDED_PIC:
10101 mips_pic = EMBEDDED_PIC;
10102 if (USE_GLOBAL_POINTER_OPT && g_switch_seen)
10103 {
10104 as_bad (_("-G may not be used with embedded PIC code"));
10105 return 0;
10106 }
10107 g_switch_value = 0x7fffffff;
10108 break;
10109
10110 #ifdef OBJ_ELF
10111 /* When generating ELF code, we permit -KPIC and -call_shared to
10112 select SVR4_PIC, and -non_shared to select no PIC. This is
10113 intended to be compatible with Irix 5. */
10114 case OPTION_CALL_SHARED:
10115 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10116 {
10117 as_bad (_("-call_shared is supported only for ELF format"));
10118 return 0;
10119 }
10120 mips_pic = SVR4_PIC;
10121 if (g_switch_seen && g_switch_value != 0)
10122 {
10123 as_bad (_("-G may not be used with SVR4 PIC code"));
10124 return 0;
10125 }
10126 g_switch_value = 0;
10127 break;
10128
10129 case OPTION_NON_SHARED:
10130 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10131 {
10132 as_bad (_("-non_shared is supported only for ELF format"));
10133 return 0;
10134 }
10135 mips_pic = NO_PIC;
10136 break;
10137
10138 /* The -xgot option tells the assembler to use 32 offsets when
10139 accessing the got in SVR4_PIC mode. It is for Irix
10140 compatibility. */
10141 case OPTION_XGOT:
10142 mips_big_got = 1;
10143 break;
10144 #endif /* OBJ_ELF */
10145
10146 case 'G':
10147 if (! USE_GLOBAL_POINTER_OPT)
10148 {
10149 as_bad (_("-G is not supported for this configuration"));
10150 return 0;
10151 }
10152 else if (mips_pic == SVR4_PIC || mips_pic == EMBEDDED_PIC)
10153 {
10154 as_bad (_("-G may not be used with SVR4 or embedded PIC code"));
10155 return 0;
10156 }
10157 else
10158 g_switch_value = atoi (arg);
10159 g_switch_seen = 1;
10160 break;
10161
10162 #ifdef OBJ_ELF
10163 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
10164 and -mabi=64. */
10165 case OPTION_32:
10166 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10167 {
10168 as_bad (_("-32 is supported for ELF format only"));
10169 return 0;
10170 }
10171 mips_abi = O32_ABI;
10172 break;
10173
10174 case OPTION_N32:
10175 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10176 {
10177 as_bad (_("-n32 is supported for ELF format only"));
10178 return 0;
10179 }
10180 mips_abi = N32_ABI;
10181 break;
10182
10183 case OPTION_64:
10184 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10185 {
10186 as_bad (_("-64 is supported for ELF format only"));
10187 return 0;
10188 }
10189 mips_abi = N64_ABI;
10190 if (! support_64bit_objects())
10191 as_fatal (_("No compiled in support for 64 bit object file format"));
10192 break;
10193 #endif /* OBJ_ELF */
10194
10195 case OPTION_GP32:
10196 file_mips_gp32 = 1;
10197 break;
10198
10199 case OPTION_GP64:
10200 file_mips_gp32 = 0;
10201 break;
10202
10203 case OPTION_FP32:
10204 file_mips_fp32 = 1;
10205 break;
10206
10207 case OPTION_FP64:
10208 file_mips_fp32 = 0;
10209 break;
10210
10211 #ifdef OBJ_ELF
10212 case OPTION_MABI:
10213 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10214 {
10215 as_bad (_("-mabi is supported for ELF format only"));
10216 return 0;
10217 }
10218 if (strcmp (arg, "32") == 0)
10219 mips_abi = O32_ABI;
10220 else if (strcmp (arg, "o64") == 0)
10221 mips_abi = O64_ABI;
10222 else if (strcmp (arg, "n32") == 0)
10223 mips_abi = N32_ABI;
10224 else if (strcmp (arg, "64") == 0)
10225 {
10226 mips_abi = N64_ABI;
10227 if (! support_64bit_objects())
10228 as_fatal (_("No compiled in support for 64 bit object file "
10229 "format"));
10230 }
10231 else if (strcmp (arg, "eabi") == 0)
10232 mips_abi = EABI_ABI;
10233 else
10234 {
10235 as_fatal (_("invalid abi -mabi=%s"), arg);
10236 return 0;
10237 }
10238 break;
10239 #endif /* OBJ_ELF */
10240
10241 case OPTION_M7000_HILO_FIX:
10242 mips_7000_hilo_fix = true;
10243 break;
10244
10245 case OPTION_MNO_7000_HILO_FIX:
10246 mips_7000_hilo_fix = false;
10247 break;
10248
10249 #ifdef OBJ_ELF
10250 case OPTION_MDEBUG:
10251 mips_flag_mdebug = true;
10252 break;
10253
10254 case OPTION_NO_MDEBUG:
10255 mips_flag_mdebug = false;
10256 break;
10257 #endif /* OBJ_ELF */
10258
10259 default:
10260 return 0;
10261 }
10262
10263 return 1;
10264 }
10265 \f
10266 /* Set up globals to generate code for the ISA or processor
10267 described by INFO. */
10268
10269 static void
10270 mips_set_architecture (info)
10271 const struct mips_cpu_info *info;
10272 {
10273 if (info != 0)
10274 {
10275 mips_arch_info = info;
10276 mips_arch = info->cpu;
10277 mips_opts.isa = info->isa;
10278 }
10279 }
10280
10281
10282 /* Likewise for tuning. */
10283
10284 static void
10285 mips_set_tune (info)
10286 const struct mips_cpu_info *info;
10287 {
10288 if (info != 0)
10289 {
10290 mips_tune_info = info;
10291 mips_tune = info->cpu;
10292 }
10293 }
10294
10295
10296 void
10297 mips_after_parse_args ()
10298 {
10299 /* GP relative stuff not working for PE */
10300 if (strncmp (TARGET_OS, "pe", 2) == 0
10301 && g_switch_value != 0)
10302 {
10303 if (g_switch_seen)
10304 as_bad (_("-G not supported in this configuration."));
10305 g_switch_value = 0;
10306 }
10307
10308 /* The following code determines the architecture and register size.
10309 Similar code was added to GCC 3.3 (see override_options() in
10310 config/mips/mips.c). The GAS and GCC code should be kept in sync
10311 as much as possible. */
10312
10313 if (mips_arch_string != 0)
10314 mips_set_architecture (mips_parse_cpu ("-march", mips_arch_string));
10315
10316 if (mips_tune_string != 0)
10317 mips_set_tune (mips_parse_cpu ("-mtune", mips_tune_string));
10318
10319 if (file_mips_isa != ISA_UNKNOWN)
10320 {
10321 /* Handle -mipsN. At this point, file_mips_isa contains the
10322 ISA level specified by -mipsN, while mips_opts.isa contains
10323 the -march selection (if any). */
10324 if (mips_arch_info != 0)
10325 {
10326 /* -march takes precedence over -mipsN, since it is more descriptive.
10327 There's no harm in specifying both as long as the ISA levels
10328 are the same. */
10329 if (file_mips_isa != mips_opts.isa)
10330 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
10331 mips_cpu_info_from_isa (file_mips_isa)->name,
10332 mips_cpu_info_from_isa (mips_opts.isa)->name);
10333 }
10334 else
10335 mips_set_architecture (mips_cpu_info_from_isa (file_mips_isa));
10336 }
10337
10338 if (mips_arch_info == 0)
10339 mips_set_architecture (mips_parse_cpu ("default CPU",
10340 MIPS_CPU_STRING_DEFAULT));
10341
10342 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (mips_opts.isa))
10343 as_bad ("-march=%s is not compatible with the selected ABI",
10344 mips_arch_info->name);
10345
10346 /* Optimize for mips_arch, unless -mtune selects a different processor. */
10347 if (mips_tune_info == 0)
10348 mips_set_tune (mips_arch_info);
10349
10350 if (file_mips_gp32 >= 0)
10351 {
10352 /* The user specified the size of the integer registers. Make sure
10353 it agrees with the ABI and ISA. */
10354 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
10355 as_bad (_("-mgp64 used with a 32-bit processor"));
10356 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
10357 as_bad (_("-mgp32 used with a 64-bit ABI"));
10358 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
10359 as_bad (_("-mgp64 used with a 32-bit ABI"));
10360 }
10361 else
10362 {
10363 /* Infer the integer register size from the ABI and processor.
10364 Restrict ourselves to 32-bit registers if that's all the
10365 processor has, or if the ABI cannot handle 64-bit registers. */
10366 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
10367 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
10368 }
10369
10370 /* ??? GAS treats single-float processors as though they had 64-bit
10371 float registers (although it complains when double-precision
10372 instructions are used). As things stand, saying they have 32-bit
10373 registers would lead to spurious "register must be even" messages.
10374 So here we assume float registers are always the same size as
10375 integer ones, unless the user says otherwise. */
10376 if (file_mips_fp32 < 0)
10377 file_mips_fp32 = file_mips_gp32;
10378
10379 /* End of GCC-shared inference code. */
10380
10381 /* ??? When do we want this flag to be set? Who uses it? */
10382 if (file_mips_gp32 == 1
10383 && mips_abi == NO_ABI
10384 && ISA_HAS_64BIT_REGS (mips_opts.isa))
10385 mips_32bitmode = 1;
10386
10387 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
10388 as_bad (_("trap exception not supported at ISA 1"));
10389
10390 /* If the selected architecture includes support for ASEs, enable
10391 generation of code for them. */
10392 if (mips_opts.mips16 == -1)
10393 mips_opts.mips16 = (CPU_HAS_MIPS16 (mips_arch)) ? 1 : 0;
10394 if (mips_opts.ase_mips3d == -1)
10395 mips_opts.ase_mips3d = (CPU_HAS_MIPS3D (mips_arch)) ? 1 : 0;
10396 if (mips_opts.ase_mdmx == -1)
10397 mips_opts.ase_mdmx = (CPU_HAS_MDMX (mips_arch)) ? 1 : 0;
10398
10399 file_mips_isa = mips_opts.isa;
10400 file_ase_mips16 = mips_opts.mips16;
10401 file_ase_mips3d = mips_opts.ase_mips3d;
10402 file_ase_mdmx = mips_opts.ase_mdmx;
10403 mips_opts.gp32 = file_mips_gp32;
10404 mips_opts.fp32 = file_mips_fp32;
10405
10406 if (HAVE_NEWABI)
10407 mips_big_got = 1;
10408
10409 if (mips_flag_mdebug < 0)
10410 {
10411 #ifdef OBJ_MAYBE_ECOFF
10412 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
10413 mips_flag_mdebug = 1;
10414 else
10415 #endif /* OBJ_MAYBE_ECOFF */
10416 mips_flag_mdebug = 0;
10417 }
10418 }
10419 \f
10420 void
10421 mips_init_after_args ()
10422 {
10423 /* initialize opcodes */
10424 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
10425 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
10426 }
10427
10428 long
10429 md_pcrel_from (fixP)
10430 fixS *fixP;
10431 {
10432 if (OUTPUT_FLAVOR != bfd_target_aout_flavour
10433 && fixP->fx_addsy != (symbolS *) NULL
10434 && ! S_IS_DEFINED (fixP->fx_addsy))
10435 {
10436 /* This makes a branch to an undefined symbol be a branch to the
10437 current location. */
10438 if (mips_pic == EMBEDDED_PIC)
10439 return 4;
10440 else
10441 return 1;
10442 }
10443
10444 /* Return the address of the delay slot. */
10445 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10446 }
10447
10448 /* This is called before the symbol table is processed. In order to
10449 work with gcc when using mips-tfile, we must keep all local labels.
10450 However, in other cases, we want to discard them. If we were
10451 called with -g, but we didn't see any debugging information, it may
10452 mean that gcc is smuggling debugging information through to
10453 mips-tfile, in which case we must generate all local labels. */
10454
10455 void
10456 mips_frob_file_before_adjust ()
10457 {
10458 #ifndef NO_ECOFF_DEBUGGING
10459 if (ECOFF_DEBUGGING
10460 && mips_debug != 0
10461 && ! ecoff_debugging_seen)
10462 flag_keep_locals = 1;
10463 #endif
10464 }
10465
10466 /* Sort any unmatched HI16_S relocs so that they immediately precede
10467 the corresponding LO reloc. This is called before md_apply_fix3 and
10468 tc_gen_reloc. Unmatched HI16_S relocs can only be generated by
10469 explicit use of the %hi modifier. */
10470
10471 void
10472 mips_frob_file ()
10473 {
10474 struct mips_hi_fixup *l;
10475
10476 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
10477 {
10478 segment_info_type *seginfo;
10479 int pass;
10480
10481 assert (l->fixp->fx_r_type == BFD_RELOC_HI16_S);
10482
10483 /* Check quickly whether the next fixup happens to be a matching
10484 %lo. */
10485 if (l->fixp->fx_next != NULL
10486 && l->fixp->fx_next->fx_r_type == BFD_RELOC_LO16
10487 && l->fixp->fx_addsy == l->fixp->fx_next->fx_addsy
10488 && l->fixp->fx_offset == l->fixp->fx_next->fx_offset)
10489 continue;
10490
10491 /* Look through the fixups for this segment for a matching %lo.
10492 When we find one, move the %hi just in front of it. We do
10493 this in two passes. In the first pass, we try to find a
10494 unique %lo. In the second pass, we permit multiple %hi
10495 relocs for a single %lo (this is a GNU extension). */
10496 seginfo = seg_info (l->seg);
10497 for (pass = 0; pass < 2; pass++)
10498 {
10499 fixS *f, *prev;
10500
10501 prev = NULL;
10502 for (f = seginfo->fix_root; f != NULL; f = f->fx_next)
10503 {
10504 /* Check whether this is a %lo fixup which matches l->fixp. */
10505 if (f->fx_r_type == BFD_RELOC_LO16
10506 && f->fx_addsy == l->fixp->fx_addsy
10507 && f->fx_offset == l->fixp->fx_offset
10508 && (pass == 1
10509 || prev == NULL
10510 || prev->fx_r_type != BFD_RELOC_HI16_S
10511 || prev->fx_addsy != f->fx_addsy
10512 || prev->fx_offset != f->fx_offset))
10513 {
10514 fixS **pf;
10515
10516 /* Move l->fixp before f. */
10517 for (pf = &seginfo->fix_root;
10518 *pf != l->fixp;
10519 pf = &(*pf)->fx_next)
10520 assert (*pf != NULL);
10521
10522 *pf = l->fixp->fx_next;
10523
10524 l->fixp->fx_next = f;
10525 if (prev == NULL)
10526 seginfo->fix_root = l->fixp;
10527 else
10528 prev->fx_next = l->fixp;
10529
10530 break;
10531 }
10532
10533 prev = f;
10534 }
10535
10536 if (f != NULL)
10537 break;
10538
10539 #if 0 /* GCC code motion plus incomplete dead code elimination
10540 can leave a %hi without a %lo. */
10541 if (pass == 1)
10542 as_warn_where (l->fixp->fx_file, l->fixp->fx_line,
10543 _("Unmatched %%hi reloc"));
10544 #endif
10545 }
10546 }
10547 }
10548
10549 /* When generating embedded PIC code we need to use a special
10550 relocation to represent the difference of two symbols in the .text
10551 section (switch tables use a difference of this sort). See
10552 include/coff/mips.h for details. This macro checks whether this
10553 fixup requires the special reloc. */
10554 #define SWITCH_TABLE(fixp) \
10555 ((fixp)->fx_r_type == BFD_RELOC_32 \
10556 && OUTPUT_FLAVOR != bfd_target_elf_flavour \
10557 && (fixp)->fx_addsy != NULL \
10558 && (fixp)->fx_subsy != NULL \
10559 && S_GET_SEGMENT ((fixp)->fx_addsy) == text_section \
10560 && S_GET_SEGMENT ((fixp)->fx_subsy) == text_section)
10561
10562 /* When generating embedded PIC code we must keep all PC relative
10563 relocations, in case the linker has to relax a call. We also need
10564 to keep relocations for switch table entries.
10565
10566 We may have combined relocations without symbols in the N32/N64 ABI.
10567 We have to prevent gas from dropping them. */
10568
10569 int
10570 mips_force_relocation (fixp)
10571 fixS *fixp;
10572 {
10573 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
10574 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10575 return 1;
10576
10577 if (HAVE_NEWABI
10578 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
10579 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
10580 || fixp->fx_r_type == BFD_RELOC_HI16_S
10581 || fixp->fx_r_type == BFD_RELOC_LO16))
10582 return 1;
10583
10584 return (mips_pic == EMBEDDED_PIC
10585 && (fixp->fx_pcrel
10586 || SWITCH_TABLE (fixp)
10587 || fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S
10588 || fixp->fx_r_type == BFD_RELOC_PCREL_LO16));
10589 }
10590
10591 #ifdef OBJ_ELF
10592 static int
10593 mips_need_elf_addend_fixup (fixP)
10594 fixS *fixP;
10595 {
10596 if (S_GET_OTHER (fixP->fx_addsy) == STO_MIPS16)
10597 return 1;
10598 if (mips_pic == EMBEDDED_PIC
10599 && S_IS_WEAK (fixP->fx_addsy))
10600 return 1;
10601 if (mips_pic != EMBEDDED_PIC
10602 && (S_IS_WEAK (fixP->fx_addsy)
10603 || S_IS_EXTERNAL (fixP->fx_addsy))
10604 && !S_IS_COMMON (fixP->fx_addsy))
10605 return 1;
10606 if (symbol_used_in_reloc_p (fixP->fx_addsy)
10607 && (((bfd_get_section_flags (stdoutput,
10608 S_GET_SEGMENT (fixP->fx_addsy))
10609 & SEC_LINK_ONCE) != 0)
10610 || !strncmp (segment_name (S_GET_SEGMENT (fixP->fx_addsy)),
10611 ".gnu.linkonce",
10612 sizeof (".gnu.linkonce") - 1)))
10613 return 1;
10614 return 0;
10615 }
10616 #endif
10617
10618 /* Apply a fixup to the object file. */
10619
10620 void
10621 md_apply_fix3 (fixP, valP, seg)
10622 fixS *fixP;
10623 valueT *valP;
10624 segT seg ATTRIBUTE_UNUSED;
10625 {
10626 bfd_byte *buf;
10627 long insn;
10628 valueT value;
10629
10630 assert (fixP->fx_size == 4
10631 || fixP->fx_r_type == BFD_RELOC_16
10632 || fixP->fx_r_type == BFD_RELOC_32
10633 || fixP->fx_r_type == BFD_RELOC_MIPS_JMP
10634 || fixP->fx_r_type == BFD_RELOC_HI16_S
10635 || fixP->fx_r_type == BFD_RELOC_LO16
10636 || fixP->fx_r_type == BFD_RELOC_GPREL16
10637 || fixP->fx_r_type == BFD_RELOC_MIPS_LITERAL
10638 || fixP->fx_r_type == BFD_RELOC_GPREL32
10639 || fixP->fx_r_type == BFD_RELOC_64
10640 || fixP->fx_r_type == BFD_RELOC_CTOR
10641 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
10642 || fixP->fx_r_type == BFD_RELOC_MIPS_HIGHEST
10643 || fixP->fx_r_type == BFD_RELOC_MIPS_HIGHER
10644 || fixP->fx_r_type == BFD_RELOC_MIPS_SCN_DISP
10645 || fixP->fx_r_type == BFD_RELOC_MIPS_REL16
10646 || fixP->fx_r_type == BFD_RELOC_MIPS_RELGOT
10647 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
10648 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
10649 || fixP->fx_r_type == BFD_RELOC_MIPS_JALR);
10650
10651 value = *valP;
10652
10653 /* If we aren't adjusting this fixup to be against the section
10654 symbol, we need to adjust the value. */
10655 #ifdef OBJ_ELF
10656 if (fixP->fx_addsy != NULL && OUTPUT_FLAVOR == bfd_target_elf_flavour)
10657 {
10658 if (mips_need_elf_addend_fixup (fixP))
10659 {
10660 reloc_howto_type *howto;
10661 valueT symval = S_GET_VALUE (fixP->fx_addsy);
10662
10663 value -= symval;
10664
10665 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
10666 if (value != 0 && howto->partial_inplace && ! fixP->fx_pcrel)
10667 {
10668 /* In this case, the bfd_install_relocation routine will
10669 incorrectly add the symbol value back in. We just want
10670 the addend to appear in the object file. */
10671 value -= symval;
10672
10673 /* Make sure the addend is still non-zero. If it became zero
10674 after the last operation, set it to a spurious value and
10675 subtract the same value from the object file's contents. */
10676 if (value == 0)
10677 {
10678 value = 8;
10679
10680 /* The in-place addends for LO16 relocations are signed;
10681 leave the matching HI16 in-place addends as zero. */
10682 if (fixP->fx_r_type != BFD_RELOC_HI16_S)
10683 {
10684 bfd_vma contents, mask, field;
10685
10686 contents = bfd_get_bits (fixP->fx_frag->fr_literal
10687 + fixP->fx_where,
10688 fixP->fx_size * 8,
10689 target_big_endian);
10690
10691 /* MASK has bits set where the relocation should go.
10692 FIELD is -value, shifted into the appropriate place
10693 for this relocation. */
10694 mask = 1 << (howto->bitsize - 1);
10695 mask = (((mask - 1) << 1) | 1) << howto->bitpos;
10696 field = (-value >> howto->rightshift) << howto->bitpos;
10697
10698 bfd_put_bits ((field & mask) | (contents & ~mask),
10699 fixP->fx_frag->fr_literal + fixP->fx_where,
10700 fixP->fx_size * 8,
10701 target_big_endian);
10702 }
10703 }
10704 }
10705 }
10706
10707 /* This code was generated using trial and error and so is
10708 fragile and not trustworthy. If you change it, you should
10709 rerun the elf-rel, elf-rel2, and empic testcases and ensure
10710 they still pass. */
10711 if (fixP->fx_pcrel || fixP->fx_subsy != NULL)
10712 {
10713 value += fixP->fx_frag->fr_address + fixP->fx_where;
10714
10715 /* BFD's REL handling, for MIPS, is _very_ weird.
10716 This gives the right results, but it can't possibly
10717 be the way things are supposed to work. */
10718 if ((fixP->fx_r_type != BFD_RELOC_16_PCREL
10719 && fixP->fx_r_type != BFD_RELOC_16_PCREL_S2)
10720 || S_GET_SEGMENT (fixP->fx_addsy) != undefined_section)
10721 value += fixP->fx_frag->fr_address + fixP->fx_where;
10722 }
10723 }
10724 #endif
10725
10726 fixP->fx_addnumber = value; /* Remember value for tc_gen_reloc. */
10727
10728 if (fixP->fx_addsy == NULL && ! fixP->fx_pcrel)
10729 fixP->fx_done = 1;
10730
10731 switch (fixP->fx_r_type)
10732 {
10733 case BFD_RELOC_MIPS_JMP:
10734 case BFD_RELOC_MIPS_SHIFT5:
10735 case BFD_RELOC_MIPS_SHIFT6:
10736 case BFD_RELOC_MIPS_GOT_DISP:
10737 case BFD_RELOC_MIPS_GOT_PAGE:
10738 case BFD_RELOC_MIPS_GOT_OFST:
10739 case BFD_RELOC_MIPS_SUB:
10740 case BFD_RELOC_MIPS_INSERT_A:
10741 case BFD_RELOC_MIPS_INSERT_B:
10742 case BFD_RELOC_MIPS_DELETE:
10743 case BFD_RELOC_MIPS_HIGHEST:
10744 case BFD_RELOC_MIPS_HIGHER:
10745 case BFD_RELOC_MIPS_SCN_DISP:
10746 case BFD_RELOC_MIPS_REL16:
10747 case BFD_RELOC_MIPS_RELGOT:
10748 case BFD_RELOC_MIPS_JALR:
10749 case BFD_RELOC_HI16:
10750 case BFD_RELOC_HI16_S:
10751 case BFD_RELOC_GPREL16:
10752 case BFD_RELOC_MIPS_LITERAL:
10753 case BFD_RELOC_MIPS_CALL16:
10754 case BFD_RELOC_MIPS_GOT16:
10755 case BFD_RELOC_GPREL32:
10756 case BFD_RELOC_MIPS_GOT_HI16:
10757 case BFD_RELOC_MIPS_GOT_LO16:
10758 case BFD_RELOC_MIPS_CALL_HI16:
10759 case BFD_RELOC_MIPS_CALL_LO16:
10760 case BFD_RELOC_MIPS16_GPREL:
10761 if (fixP->fx_pcrel)
10762 as_bad_where (fixP->fx_file, fixP->fx_line,
10763 _("Invalid PC relative reloc"));
10764 /* Nothing needed to do. The value comes from the reloc entry */
10765 break;
10766
10767 case BFD_RELOC_MIPS16_JMP:
10768 /* We currently always generate a reloc against a symbol, which
10769 means that we don't want an addend even if the symbol is
10770 defined. */
10771 fixP->fx_addnumber = 0;
10772 break;
10773
10774 case BFD_RELOC_PCREL_HI16_S:
10775 /* The addend for this is tricky if it is internal, so we just
10776 do everything here rather than in bfd_install_relocation. */
10777 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
10778 && !fixP->fx_done
10779 && value != 0)
10780 break;
10781 if (fixP->fx_addsy
10782 && (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_SECTION_SYM) == 0)
10783 {
10784 /* For an external symbol adjust by the address to make it
10785 pcrel_offset. We use the address of the RELLO reloc
10786 which follows this one. */
10787 value += (fixP->fx_next->fx_frag->fr_address
10788 + fixP->fx_next->fx_where);
10789 }
10790 value = ((value + 0x8000) >> 16) & 0xffff;
10791 buf = (bfd_byte *) fixP->fx_frag->fr_literal + fixP->fx_where;
10792 if (target_big_endian)
10793 buf += 2;
10794 md_number_to_chars ((char *) buf, value, 2);
10795 break;
10796
10797 case BFD_RELOC_PCREL_LO16:
10798 /* The addend for this is tricky if it is internal, so we just
10799 do everything here rather than in bfd_install_relocation. */
10800 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
10801 && !fixP->fx_done
10802 && value != 0)
10803 break;
10804 if (fixP->fx_addsy
10805 && (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_SECTION_SYM) == 0)
10806 value += fixP->fx_frag->fr_address + fixP->fx_where;
10807 buf = (bfd_byte *) fixP->fx_frag->fr_literal + fixP->fx_where;
10808 if (target_big_endian)
10809 buf += 2;
10810 md_number_to_chars ((char *) buf, value, 2);
10811 break;
10812
10813 case BFD_RELOC_64:
10814 /* This is handled like BFD_RELOC_32, but we output a sign
10815 extended value if we are only 32 bits. */
10816 if (fixP->fx_done
10817 || (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP)))
10818 {
10819 if (8 <= sizeof (valueT))
10820 md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
10821 value, 8);
10822 else
10823 {
10824 long w1, w2;
10825 long hiv;
10826
10827 w1 = w2 = fixP->fx_where;
10828 if (target_big_endian)
10829 w1 += 4;
10830 else
10831 w2 += 4;
10832 md_number_to_chars (fixP->fx_frag->fr_literal + w1, value, 4);
10833 if ((value & 0x80000000) != 0)
10834 hiv = 0xffffffff;
10835 else
10836 hiv = 0;
10837 md_number_to_chars (fixP->fx_frag->fr_literal + w2, hiv, 4);
10838 }
10839 }
10840 break;
10841
10842 case BFD_RELOC_RVA:
10843 case BFD_RELOC_32:
10844 /* If we are deleting this reloc entry, we must fill in the
10845 value now. This can happen if we have a .word which is not
10846 resolved when it appears but is later defined. We also need
10847 to fill in the value if this is an embedded PIC switch table
10848 entry. */
10849 if (fixP->fx_done
10850 || (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP)))
10851 md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
10852 value, 4);
10853 break;
10854
10855 case BFD_RELOC_16:
10856 /* If we are deleting this reloc entry, we must fill in the
10857 value now. */
10858 assert (fixP->fx_size == 2);
10859 if (fixP->fx_done)
10860 md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
10861 value, 2);
10862 break;
10863
10864 case BFD_RELOC_LO16:
10865 /* When handling an embedded PIC switch statement, we can wind
10866 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
10867 if (fixP->fx_done)
10868 {
10869 if (value + 0x8000 > 0xffff)
10870 as_bad_where (fixP->fx_file, fixP->fx_line,
10871 _("relocation overflow"));
10872 buf = (bfd_byte *) fixP->fx_frag->fr_literal + fixP->fx_where;
10873 if (target_big_endian)
10874 buf += 2;
10875 md_number_to_chars ((char *) buf, value, 2);
10876 }
10877 break;
10878
10879 case BFD_RELOC_16_PCREL_S2:
10880 if ((value & 0x3) != 0)
10881 as_bad_where (fixP->fx_file, fixP->fx_line,
10882 _("Branch to odd address (%lx)"), (long) value);
10883
10884 /* Fall through. */
10885
10886 case BFD_RELOC_16_PCREL:
10887 /*
10888 * We need to save the bits in the instruction since fixup_segment()
10889 * might be deleting the relocation entry (i.e., a branch within
10890 * the current segment).
10891 */
10892 if (!fixP->fx_done && value != 0)
10893 break;
10894 /* If 'value' is zero, the remaining reloc code won't actually
10895 do the store, so it must be done here. This is probably
10896 a bug somewhere. */
10897 if (!fixP->fx_done
10898 && (fixP->fx_r_type != BFD_RELOC_16_PCREL_S2
10899 || fixP->fx_addsy == NULL /* ??? */
10900 || ! S_IS_DEFINED (fixP->fx_addsy)))
10901 value -= fixP->fx_frag->fr_address + fixP->fx_where;
10902
10903 value = (offsetT) value >> 2;
10904
10905 /* update old instruction data */
10906 buf = (bfd_byte *) (fixP->fx_where + fixP->fx_frag->fr_literal);
10907 if (target_big_endian)
10908 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
10909 else
10910 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
10911
10912 if (value + 0x8000 <= 0xffff)
10913 insn |= value & 0xffff;
10914 else
10915 {
10916 /* The branch offset is too large. If this is an
10917 unconditional branch, and we are not generating PIC code,
10918 we can convert it to an absolute jump instruction. */
10919 if (mips_pic == NO_PIC
10920 && fixP->fx_done
10921 && fixP->fx_frag->fr_address >= text_section->vma
10922 && (fixP->fx_frag->fr_address
10923 < text_section->vma + text_section->_raw_size)
10924 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
10925 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
10926 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
10927 {
10928 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
10929 insn = 0x0c000000; /* jal */
10930 else
10931 insn = 0x08000000; /* j */
10932 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
10933 fixP->fx_done = 0;
10934 fixP->fx_addsy = section_symbol (text_section);
10935 fixP->fx_addnumber = (value << 2) + md_pcrel_from (fixP);
10936 }
10937 else
10938 {
10939 /* FIXME. It would be possible in principle to handle
10940 conditional branches which overflow. They could be
10941 transformed into a branch around a jump. This would
10942 require setting up variant frags for each different
10943 branch type. The native MIPS assembler attempts to
10944 handle these cases, but it appears to do it
10945 incorrectly. */
10946 as_bad_where (fixP->fx_file, fixP->fx_line,
10947 _("Branch out of range"));
10948 }
10949 }
10950
10951 md_number_to_chars ((char *) buf, (valueT) insn, 4);
10952 break;
10953
10954 case BFD_RELOC_VTABLE_INHERIT:
10955 fixP->fx_done = 0;
10956 if (fixP->fx_addsy
10957 && !S_IS_DEFINED (fixP->fx_addsy)
10958 && !S_IS_WEAK (fixP->fx_addsy))
10959 S_SET_WEAK (fixP->fx_addsy);
10960 break;
10961
10962 case BFD_RELOC_VTABLE_ENTRY:
10963 fixP->fx_done = 0;
10964 break;
10965
10966 default:
10967 internalError ();
10968 }
10969 }
10970
10971 #if 0
10972 void
10973 printInsn (oc)
10974 unsigned long oc;
10975 {
10976 const struct mips_opcode *p;
10977 int treg, sreg, dreg, shamt;
10978 short imm;
10979 const char *args;
10980 int i;
10981
10982 for (i = 0; i < NUMOPCODES; ++i)
10983 {
10984 p = &mips_opcodes[i];
10985 if (((oc & p->mask) == p->match) && (p->pinfo != INSN_MACRO))
10986 {
10987 printf ("%08lx %s\t", oc, p->name);
10988 treg = (oc >> 16) & 0x1f;
10989 sreg = (oc >> 21) & 0x1f;
10990 dreg = (oc >> 11) & 0x1f;
10991 shamt = (oc >> 6) & 0x1f;
10992 imm = oc;
10993 for (args = p->args;; ++args)
10994 {
10995 switch (*args)
10996 {
10997 case '\0':
10998 printf ("\n");
10999 break;
11000
11001 case ',':
11002 case '(':
11003 case ')':
11004 printf ("%c", *args);
11005 continue;
11006
11007 case 'r':
11008 assert (treg == sreg);
11009 printf ("$%d,$%d", treg, sreg);
11010 continue;
11011
11012 case 'd':
11013 case 'G':
11014 printf ("$%d", dreg);
11015 continue;
11016
11017 case 't':
11018 case 'E':
11019 printf ("$%d", treg);
11020 continue;
11021
11022 case 'k':
11023 printf ("0x%x", treg);
11024 continue;
11025
11026 case 'b':
11027 case 's':
11028 printf ("$%d", sreg);
11029 continue;
11030
11031 case 'a':
11032 printf ("0x%08lx", oc & 0x1ffffff);
11033 continue;
11034
11035 case 'i':
11036 case 'j':
11037 case 'o':
11038 case 'u':
11039 printf ("%d", imm);
11040 continue;
11041
11042 case '<':
11043 case '>':
11044 printf ("$%d", shamt);
11045 continue;
11046
11047 default:
11048 internalError ();
11049 }
11050 break;
11051 }
11052 return;
11053 }
11054 }
11055 printf (_("%08lx UNDEFINED\n"), oc);
11056 }
11057 #endif
11058
11059 static symbolS *
11060 get_symbol ()
11061 {
11062 int c;
11063 char *name;
11064 symbolS *p;
11065
11066 name = input_line_pointer;
11067 c = get_symbol_end ();
11068 p = (symbolS *) symbol_find_or_make (name);
11069 *input_line_pointer = c;
11070 return p;
11071 }
11072
11073 /* Align the current frag to a given power of two. The MIPS assembler
11074 also automatically adjusts any preceding label. */
11075
11076 static void
11077 mips_align (to, fill, label)
11078 int to;
11079 int fill;
11080 symbolS *label;
11081 {
11082 mips_emit_delays (false);
11083 frag_align (to, fill, 0);
11084 record_alignment (now_seg, to);
11085 if (label != NULL)
11086 {
11087 assert (S_GET_SEGMENT (label) == now_seg);
11088 symbol_set_frag (label, frag_now);
11089 S_SET_VALUE (label, (valueT) frag_now_fix ());
11090 }
11091 }
11092
11093 /* Align to a given power of two. .align 0 turns off the automatic
11094 alignment used by the data creating pseudo-ops. */
11095
11096 static void
11097 s_align (x)
11098 int x ATTRIBUTE_UNUSED;
11099 {
11100 register int temp;
11101 register long temp_fill;
11102 long max_alignment = 15;
11103
11104 /*
11105
11106 o Note that the assembler pulls down any immediately preceeding label
11107 to the aligned address.
11108 o It's not documented but auto alignment is reinstated by
11109 a .align pseudo instruction.
11110 o Note also that after auto alignment is turned off the mips assembler
11111 issues an error on attempt to assemble an improperly aligned data item.
11112 We don't.
11113
11114 */
11115
11116 temp = get_absolute_expression ();
11117 if (temp > max_alignment)
11118 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
11119 else if (temp < 0)
11120 {
11121 as_warn (_("Alignment negative: 0 assumed."));
11122 temp = 0;
11123 }
11124 if (*input_line_pointer == ',')
11125 {
11126 ++input_line_pointer;
11127 temp_fill = get_absolute_expression ();
11128 }
11129 else
11130 temp_fill = 0;
11131 if (temp)
11132 {
11133 auto_align = 1;
11134 mips_align (temp, (int) temp_fill,
11135 insn_labels != NULL ? insn_labels->label : NULL);
11136 }
11137 else
11138 {
11139 auto_align = 0;
11140 }
11141
11142 demand_empty_rest_of_line ();
11143 }
11144
11145 void
11146 mips_flush_pending_output ()
11147 {
11148 mips_emit_delays (false);
11149 mips_clear_insn_labels ();
11150 }
11151
11152 static void
11153 s_change_sec (sec)
11154 int sec;
11155 {
11156 segT seg;
11157
11158 /* When generating embedded PIC code, we only use the .text, .lit8,
11159 .sdata and .sbss sections. We change the .data and .rdata
11160 pseudo-ops to use .sdata. */
11161 if (mips_pic == EMBEDDED_PIC
11162 && (sec == 'd' || sec == 'r'))
11163 sec = 's';
11164
11165 #ifdef OBJ_ELF
11166 /* The ELF backend needs to know that we are changing sections, so
11167 that .previous works correctly. We could do something like check
11168 for an obj_section_change_hook macro, but that might be confusing
11169 as it would not be appropriate to use it in the section changing
11170 functions in read.c, since obj-elf.c intercepts those. FIXME:
11171 This should be cleaner, somehow. */
11172 obj_elf_section_change_hook ();
11173 #endif
11174
11175 mips_emit_delays (false);
11176 switch (sec)
11177 {
11178 case 't':
11179 s_text (0);
11180 break;
11181 case 'd':
11182 s_data (0);
11183 break;
11184 case 'b':
11185 subseg_set (bss_section, (subsegT) get_absolute_expression ());
11186 demand_empty_rest_of_line ();
11187 break;
11188
11189 case 'r':
11190 if (USE_GLOBAL_POINTER_OPT)
11191 {
11192 seg = subseg_new (RDATA_SECTION_NAME,
11193 (subsegT) get_absolute_expression ());
11194 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11195 {
11196 bfd_set_section_flags (stdoutput, seg,
11197 (SEC_ALLOC
11198 | SEC_LOAD
11199 | SEC_READONLY
11200 | SEC_RELOC
11201 | SEC_DATA));
11202 if (strcmp (TARGET_OS, "elf") != 0)
11203 record_alignment (seg, 4);
11204 }
11205 demand_empty_rest_of_line ();
11206 }
11207 else
11208 {
11209 as_bad (_("No read only data section in this object file format"));
11210 demand_empty_rest_of_line ();
11211 return;
11212 }
11213 break;
11214
11215 case 's':
11216 if (USE_GLOBAL_POINTER_OPT)
11217 {
11218 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
11219 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11220 {
11221 bfd_set_section_flags (stdoutput, seg,
11222 SEC_ALLOC | SEC_LOAD | SEC_RELOC
11223 | SEC_DATA);
11224 if (strcmp (TARGET_OS, "elf") != 0)
11225 record_alignment (seg, 4);
11226 }
11227 demand_empty_rest_of_line ();
11228 break;
11229 }
11230 else
11231 {
11232 as_bad (_("Global pointers not supported; recompile -G 0"));
11233 demand_empty_rest_of_line ();
11234 return;
11235 }
11236 }
11237
11238 auto_align = 1;
11239 }
11240
11241 void
11242 mips_enable_auto_align ()
11243 {
11244 auto_align = 1;
11245 }
11246
11247 static void
11248 s_cons (log_size)
11249 int log_size;
11250 {
11251 symbolS *label;
11252
11253 label = insn_labels != NULL ? insn_labels->label : NULL;
11254 mips_emit_delays (false);
11255 if (log_size > 0 && auto_align)
11256 mips_align (log_size, 0, label);
11257 mips_clear_insn_labels ();
11258 cons (1 << log_size);
11259 }
11260
11261 static void
11262 s_float_cons (type)
11263 int type;
11264 {
11265 symbolS *label;
11266
11267 label = insn_labels != NULL ? insn_labels->label : NULL;
11268
11269 mips_emit_delays (false);
11270
11271 if (auto_align)
11272 {
11273 if (type == 'd')
11274 mips_align (3, 0, label);
11275 else
11276 mips_align (2, 0, label);
11277 }
11278
11279 mips_clear_insn_labels ();
11280
11281 float_cons (type);
11282 }
11283
11284 /* Handle .globl. We need to override it because on Irix 5 you are
11285 permitted to say
11286 .globl foo .text
11287 where foo is an undefined symbol, to mean that foo should be
11288 considered to be the address of a function. */
11289
11290 static void
11291 s_mips_globl (x)
11292 int x ATTRIBUTE_UNUSED;
11293 {
11294 char *name;
11295 int c;
11296 symbolS *symbolP;
11297 flagword flag;
11298
11299 name = input_line_pointer;
11300 c = get_symbol_end ();
11301 symbolP = symbol_find_or_make (name);
11302 *input_line_pointer = c;
11303 SKIP_WHITESPACE ();
11304
11305 /* On Irix 5, every global symbol that is not explicitly labelled as
11306 being a function is apparently labelled as being an object. */
11307 flag = BSF_OBJECT;
11308
11309 if (! is_end_of_line[(unsigned char) *input_line_pointer])
11310 {
11311 char *secname;
11312 asection *sec;
11313
11314 secname = input_line_pointer;
11315 c = get_symbol_end ();
11316 sec = bfd_get_section_by_name (stdoutput, secname);
11317 if (sec == NULL)
11318 as_bad (_("%s: no such section"), secname);
11319 *input_line_pointer = c;
11320
11321 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
11322 flag = BSF_FUNCTION;
11323 }
11324
11325 symbol_get_bfdsym (symbolP)->flags |= flag;
11326
11327 S_SET_EXTERNAL (symbolP);
11328 demand_empty_rest_of_line ();
11329 }
11330
11331 static void
11332 s_option (x)
11333 int x ATTRIBUTE_UNUSED;
11334 {
11335 char *opt;
11336 char c;
11337
11338 opt = input_line_pointer;
11339 c = get_symbol_end ();
11340
11341 if (*opt == 'O')
11342 {
11343 /* FIXME: What does this mean? */
11344 }
11345 else if (strncmp (opt, "pic", 3) == 0)
11346 {
11347 int i;
11348
11349 i = atoi (opt + 3);
11350 if (i == 0)
11351 mips_pic = NO_PIC;
11352 else if (i == 2)
11353 mips_pic = SVR4_PIC;
11354 else
11355 as_bad (_(".option pic%d not supported"), i);
11356
11357 if (USE_GLOBAL_POINTER_OPT && mips_pic == SVR4_PIC)
11358 {
11359 if (g_switch_seen && g_switch_value != 0)
11360 as_warn (_("-G may not be used with SVR4 PIC code"));
11361 g_switch_value = 0;
11362 bfd_set_gp_size (stdoutput, 0);
11363 }
11364 }
11365 else
11366 as_warn (_("Unrecognized option \"%s\""), opt);
11367
11368 *input_line_pointer = c;
11369 demand_empty_rest_of_line ();
11370 }
11371
11372 /* This structure is used to hold a stack of .set values. */
11373
11374 struct mips_option_stack
11375 {
11376 struct mips_option_stack *next;
11377 struct mips_set_options options;
11378 };
11379
11380 static struct mips_option_stack *mips_opts_stack;
11381
11382 /* Handle the .set pseudo-op. */
11383
11384 static void
11385 s_mipsset (x)
11386 int x ATTRIBUTE_UNUSED;
11387 {
11388 char *name = input_line_pointer, ch;
11389
11390 while (!is_end_of_line[(unsigned char) *input_line_pointer])
11391 ++input_line_pointer;
11392 ch = *input_line_pointer;
11393 *input_line_pointer = '\0';
11394
11395 if (strcmp (name, "reorder") == 0)
11396 {
11397 if (mips_opts.noreorder && prev_nop_frag != NULL)
11398 {
11399 /* If we still have pending nops, we can discard them. The
11400 usual nop handling will insert any that are still
11401 needed. */
11402 prev_nop_frag->fr_fix -= (prev_nop_frag_holds
11403 * (mips_opts.mips16 ? 2 : 4));
11404 prev_nop_frag = NULL;
11405 }
11406 mips_opts.noreorder = 0;
11407 }
11408 else if (strcmp (name, "noreorder") == 0)
11409 {
11410 mips_emit_delays (true);
11411 mips_opts.noreorder = 1;
11412 mips_any_noreorder = 1;
11413 }
11414 else if (strcmp (name, "at") == 0)
11415 {
11416 mips_opts.noat = 0;
11417 }
11418 else if (strcmp (name, "noat") == 0)
11419 {
11420 mips_opts.noat = 1;
11421 }
11422 else if (strcmp (name, "macro") == 0)
11423 {
11424 mips_opts.warn_about_macros = 0;
11425 }
11426 else if (strcmp (name, "nomacro") == 0)
11427 {
11428 if (mips_opts.noreorder == 0)
11429 as_bad (_("`noreorder' must be set before `nomacro'"));
11430 mips_opts.warn_about_macros = 1;
11431 }
11432 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
11433 {
11434 mips_opts.nomove = 0;
11435 }
11436 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
11437 {
11438 mips_opts.nomove = 1;
11439 }
11440 else if (strcmp (name, "bopt") == 0)
11441 {
11442 mips_opts.nobopt = 0;
11443 }
11444 else if (strcmp (name, "nobopt") == 0)
11445 {
11446 mips_opts.nobopt = 1;
11447 }
11448 else if (strcmp (name, "mips16") == 0
11449 || strcmp (name, "MIPS-16") == 0)
11450 mips_opts.mips16 = 1;
11451 else if (strcmp (name, "nomips16") == 0
11452 || strcmp (name, "noMIPS-16") == 0)
11453 mips_opts.mips16 = 0;
11454 else if (strcmp (name, "mips3d") == 0)
11455 mips_opts.ase_mips3d = 1;
11456 else if (strcmp (name, "nomips3d") == 0)
11457 mips_opts.ase_mips3d = 0;
11458 else if (strcmp (name, "mdmx") == 0)
11459 mips_opts.ase_mdmx = 1;
11460 else if (strcmp (name, "nomdmx") == 0)
11461 mips_opts.ase_mdmx = 0;
11462 else if (strncmp (name, "mips", 4) == 0)
11463 {
11464 int isa;
11465
11466 /* Permit the user to change the ISA on the fly. Needless to
11467 say, misuse can cause serious problems. */
11468 isa = atoi (name + 4);
11469 switch (isa)
11470 {
11471 case 0:
11472 mips_opts.gp32 = file_mips_gp32;
11473 mips_opts.fp32 = file_mips_fp32;
11474 break;
11475 case 1:
11476 case 2:
11477 case 32:
11478 mips_opts.gp32 = 1;
11479 mips_opts.fp32 = 1;
11480 break;
11481 case 3:
11482 case 4:
11483 case 5:
11484 case 64:
11485 mips_opts.gp32 = 0;
11486 mips_opts.fp32 = 0;
11487 break;
11488 default:
11489 as_bad (_("unknown ISA level %s"), name + 4);
11490 break;
11491 }
11492
11493 switch (isa)
11494 {
11495 case 0: mips_opts.isa = file_mips_isa; break;
11496 case 1: mips_opts.isa = ISA_MIPS1; break;
11497 case 2: mips_opts.isa = ISA_MIPS2; break;
11498 case 3: mips_opts.isa = ISA_MIPS3; break;
11499 case 4: mips_opts.isa = ISA_MIPS4; break;
11500 case 5: mips_opts.isa = ISA_MIPS5; break;
11501 case 32: mips_opts.isa = ISA_MIPS32; break;
11502 case 64: mips_opts.isa = ISA_MIPS64; break;
11503 default: as_bad (_("unknown ISA level %s"), name + 4); break;
11504 }
11505 }
11506 else if (strcmp (name, "autoextend") == 0)
11507 mips_opts.noautoextend = 0;
11508 else if (strcmp (name, "noautoextend") == 0)
11509 mips_opts.noautoextend = 1;
11510 else if (strcmp (name, "push") == 0)
11511 {
11512 struct mips_option_stack *s;
11513
11514 s = (struct mips_option_stack *) xmalloc (sizeof *s);
11515 s->next = mips_opts_stack;
11516 s->options = mips_opts;
11517 mips_opts_stack = s;
11518 }
11519 else if (strcmp (name, "pop") == 0)
11520 {
11521 struct mips_option_stack *s;
11522
11523 s = mips_opts_stack;
11524 if (s == NULL)
11525 as_bad (_(".set pop with no .set push"));
11526 else
11527 {
11528 /* If we're changing the reorder mode we need to handle
11529 delay slots correctly. */
11530 if (s->options.noreorder && ! mips_opts.noreorder)
11531 mips_emit_delays (true);
11532 else if (! s->options.noreorder && mips_opts.noreorder)
11533 {
11534 if (prev_nop_frag != NULL)
11535 {
11536 prev_nop_frag->fr_fix -= (prev_nop_frag_holds
11537 * (mips_opts.mips16 ? 2 : 4));
11538 prev_nop_frag = NULL;
11539 }
11540 }
11541
11542 mips_opts = s->options;
11543 mips_opts_stack = s->next;
11544 free (s);
11545 }
11546 }
11547 else
11548 {
11549 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
11550 }
11551 *input_line_pointer = ch;
11552 demand_empty_rest_of_line ();
11553 }
11554
11555 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
11556 .option pic2. It means to generate SVR4 PIC calls. */
11557
11558 static void
11559 s_abicalls (ignore)
11560 int ignore ATTRIBUTE_UNUSED;
11561 {
11562 mips_pic = SVR4_PIC;
11563 if (USE_GLOBAL_POINTER_OPT)
11564 {
11565 if (g_switch_seen && g_switch_value != 0)
11566 as_warn (_("-G may not be used with SVR4 PIC code"));
11567 g_switch_value = 0;
11568 }
11569 bfd_set_gp_size (stdoutput, 0);
11570 demand_empty_rest_of_line ();
11571 }
11572
11573 /* Handle the .cpload pseudo-op. This is used when generating SVR4
11574 PIC code. It sets the $gp register for the function based on the
11575 function address, which is in the register named in the argument.
11576 This uses a relocation against _gp_disp, which is handled specially
11577 by the linker. The result is:
11578 lui $gp,%hi(_gp_disp)
11579 addiu $gp,$gp,%lo(_gp_disp)
11580 addu $gp,$gp,.cpload argument
11581 The .cpload argument is normally $25 == $t9. */
11582
11583 static void
11584 s_cpload (ignore)
11585 int ignore ATTRIBUTE_UNUSED;
11586 {
11587 expressionS ex;
11588 int icnt = 0;
11589
11590 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
11591 .cpload is ignored. */
11592 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
11593 {
11594 s_ignore (0);
11595 return;
11596 }
11597
11598 /* .cpload should be in a .set noreorder section. */
11599 if (mips_opts.noreorder == 0)
11600 as_warn (_(".cpload not in noreorder section"));
11601
11602 ex.X_op = O_symbol;
11603 ex.X_add_symbol = symbol_find_or_make ("_gp_disp");
11604 ex.X_op_symbol = NULL;
11605 ex.X_add_number = 0;
11606
11607 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
11608 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
11609
11610 macro_build_lui (NULL, &icnt, &ex, mips_gp_register);
11611 macro_build ((char *) NULL, &icnt, &ex, "addiu", "t,r,j",
11612 mips_gp_register, mips_gp_register, (int) BFD_RELOC_LO16);
11613
11614 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "addu", "d,v,t",
11615 mips_gp_register, mips_gp_register, tc_get_register (0));
11616
11617 demand_empty_rest_of_line ();
11618 }
11619
11620 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
11621 .cpsetup $reg1, offset|$reg2, label
11622
11623 If offset is given, this results in:
11624 sd $gp, offset($sp)
11625 lui $gp, %hi(%neg(%gp_rel(label)))
11626 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
11627 daddu $gp, $gp, $reg1
11628
11629 If $reg2 is given, this results in:
11630 daddu $reg2, $gp, $0
11631 lui $gp, %hi(%neg(%gp_rel(label)))
11632 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
11633 daddu $gp, $gp, $reg1
11634 $reg1 is normally $25 == $t9. */
11635 static void
11636 s_cpsetup (ignore)
11637 int ignore ATTRIBUTE_UNUSED;
11638 {
11639 expressionS ex_off;
11640 expressionS ex_sym;
11641 int reg1;
11642 int icnt = 0;
11643 char *sym;
11644
11645 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
11646 We also need NewABI support. */
11647 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
11648 {
11649 s_ignore (0);
11650 return;
11651 }
11652
11653 reg1 = tc_get_register (0);
11654 SKIP_WHITESPACE ();
11655 if (*input_line_pointer != ',')
11656 {
11657 as_bad (_("missing argument separator ',' for .cpsetup"));
11658 return;
11659 }
11660 else
11661 ++input_line_pointer;
11662 SKIP_WHITESPACE ();
11663 if (*input_line_pointer == '$')
11664 {
11665 mips_cpreturn_register = tc_get_register (0);
11666 mips_cpreturn_offset = -1;
11667 }
11668 else
11669 {
11670 mips_cpreturn_offset = get_absolute_expression ();
11671 mips_cpreturn_register = -1;
11672 }
11673 SKIP_WHITESPACE ();
11674 if (*input_line_pointer != ',')
11675 {
11676 as_bad (_("missing argument separator ',' for .cpsetup"));
11677 return;
11678 }
11679 else
11680 ++input_line_pointer;
11681 SKIP_WHITESPACE ();
11682 sym = input_line_pointer;
11683 while (ISALNUM (*input_line_pointer))
11684 ++input_line_pointer;
11685 *input_line_pointer = 0;
11686
11687 ex_sym.X_op = O_symbol;
11688 ex_sym.X_add_symbol = symbol_find_or_make (sym);
11689 ex_sym.X_op_symbol = NULL;
11690 ex_sym.X_add_number = 0;
11691
11692 if (mips_cpreturn_register == -1)
11693 {
11694 ex_off.X_op = O_constant;
11695 ex_off.X_add_symbol = NULL;
11696 ex_off.X_op_symbol = NULL;
11697 ex_off.X_add_number = mips_cpreturn_offset;
11698
11699 macro_build ((char *) NULL, &icnt, &ex_off, "sd", "t,o(b)",
11700 mips_gp_register, (int) BFD_RELOC_LO16, SP);
11701 }
11702 else
11703 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "daddu",
11704 "d,v,t", mips_cpreturn_register, mips_gp_register, 0);
11705
11706 macro_build ((char *) NULL, &icnt, &ex_sym, "lui", "t,u", mips_gp_register,
11707 (int) BFD_RELOC_GPREL16);
11708 fix_new (frag_now, prev_insn_where, 0, NULL, 0, 0, BFD_RELOC_MIPS_SUB);
11709 fix_new (frag_now, prev_insn_where, 0, NULL, 0, 0, BFD_RELOC_HI16_S);
11710 macro_build ((char *) NULL, &icnt, &ex_sym, "addiu", "t,r,j",
11711 mips_gp_register, mips_gp_register, (int) BFD_RELOC_GPREL16);
11712 fix_new (frag_now, prev_insn_where, 0, NULL, 0, 0, BFD_RELOC_MIPS_SUB);
11713 fix_new (frag_now, prev_insn_where, 0, NULL, 0, 0, BFD_RELOC_LO16);
11714 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
11715 HAVE_64BIT_ADDRESSES ? "daddu" : "addu", "d,v,t",
11716 mips_gp_register, mips_gp_register, reg1);
11717
11718 demand_empty_rest_of_line ();
11719 }
11720
11721 static void
11722 s_cplocal (ignore)
11723 int ignore ATTRIBUTE_UNUSED;
11724 {
11725 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
11726 .cplocal is ignored. */
11727 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
11728 {
11729 s_ignore (0);
11730 return;
11731 }
11732
11733 mips_gp_register = tc_get_register (0);
11734 demand_empty_rest_of_line ();
11735 }
11736
11737 /* Handle the .cprestore pseudo-op. This stores $gp into a given
11738 offset from $sp. The offset is remembered, and after making a PIC
11739 call $gp is restored from that location. */
11740
11741 static void
11742 s_cprestore (ignore)
11743 int ignore ATTRIBUTE_UNUSED;
11744 {
11745 expressionS ex;
11746 int icnt = 0;
11747
11748 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
11749 .cprestore is ignored. */
11750 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
11751 {
11752 s_ignore (0);
11753 return;
11754 }
11755
11756 mips_cprestore_offset = get_absolute_expression ();
11757 mips_cprestore_valid = 1;
11758
11759 ex.X_op = O_constant;
11760 ex.X_add_symbol = NULL;
11761 ex.X_op_symbol = NULL;
11762 ex.X_add_number = mips_cprestore_offset;
11763
11764 macro_build ((char *) NULL, &icnt, &ex, HAVE_32BIT_ADDRESSES ? "sw" : "sd",
11765 "t,o(b)", mips_gp_register, (int) BFD_RELOC_LO16, SP);
11766
11767 demand_empty_rest_of_line ();
11768 }
11769
11770 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
11771 was given in the preceeding .gpsetup, it results in:
11772 ld $gp, offset($sp)
11773
11774 If a register $reg2 was given there, it results in:
11775 daddiu $gp, $gp, $reg2
11776 */
11777 static void
11778 s_cpreturn (ignore)
11779 int ignore ATTRIBUTE_UNUSED;
11780 {
11781 expressionS ex;
11782 int icnt = 0;
11783
11784 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
11785 We also need NewABI support. */
11786 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
11787 {
11788 s_ignore (0);
11789 return;
11790 }
11791
11792 if (mips_cpreturn_register == -1)
11793 {
11794 ex.X_op = O_constant;
11795 ex.X_add_symbol = NULL;
11796 ex.X_op_symbol = NULL;
11797 ex.X_add_number = mips_cpreturn_offset;
11798
11799 macro_build ((char *) NULL, &icnt, &ex, "ld", "t,o(b)",
11800 mips_gp_register, (int) BFD_RELOC_LO16, SP);
11801 }
11802 else
11803 macro_build ((char *) NULL, &icnt, (expressionS *) NULL, "daddu",
11804 "d,v,t", mips_gp_register, mips_cpreturn_register, 0);
11805
11806 demand_empty_rest_of_line ();
11807 }
11808
11809 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
11810 code. It sets the offset to use in gp_rel relocations. */
11811
11812 static void
11813 s_gpvalue (ignore)
11814 int ignore ATTRIBUTE_UNUSED;
11815 {
11816 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
11817 We also need NewABI support. */
11818 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
11819 {
11820 s_ignore (0);
11821 return;
11822 }
11823
11824 mips_gprel_offset = get_absolute_expression ();
11825
11826 demand_empty_rest_of_line ();
11827 }
11828
11829 /* Handle the .gpword pseudo-op. This is used when generating PIC
11830 code. It generates a 32 bit GP relative reloc. */
11831
11832 static void
11833 s_gpword (ignore)
11834 int ignore ATTRIBUTE_UNUSED;
11835 {
11836 symbolS *label;
11837 expressionS ex;
11838 char *p;
11839
11840 /* When not generating PIC code, this is treated as .word. */
11841 if (mips_pic != SVR4_PIC)
11842 {
11843 s_cons (2);
11844 return;
11845 }
11846
11847 label = insn_labels != NULL ? insn_labels->label : NULL;
11848 mips_emit_delays (true);
11849 if (auto_align)
11850 mips_align (2, 0, label);
11851 mips_clear_insn_labels ();
11852
11853 expression (&ex);
11854
11855 if (ex.X_op != O_symbol || ex.X_add_number != 0)
11856 {
11857 as_bad (_("Unsupported use of .gpword"));
11858 ignore_rest_of_line ();
11859 }
11860
11861 p = frag_more (4);
11862 md_number_to_chars (p, (valueT) 0, 4);
11863 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, false,
11864 BFD_RELOC_GPREL32);
11865
11866 demand_empty_rest_of_line ();
11867 }
11868
11869 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
11870 tables in SVR4 PIC code. */
11871
11872 static void
11873 s_cpadd (ignore)
11874 int ignore ATTRIBUTE_UNUSED;
11875 {
11876 int icnt = 0;
11877 int reg;
11878
11879 /* This is ignored when not generating SVR4 PIC code or if this is NewABI
11880 code. */
11881 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
11882 {
11883 s_ignore (0);
11884 return;
11885 }
11886
11887 /* Add $gp to the register named as an argument. */
11888 reg = tc_get_register (0);
11889 macro_build ((char *) NULL, &icnt, (expressionS *) NULL,
11890 HAVE_32BIT_ADDRESSES ? "addu" : "daddu",
11891 "d,v,t", reg, reg, mips_gp_register);
11892
11893 demand_empty_rest_of_line ();
11894 }
11895
11896 /* Handle the .insn pseudo-op. This marks instruction labels in
11897 mips16 mode. This permits the linker to handle them specially,
11898 such as generating jalx instructions when needed. We also make
11899 them odd for the duration of the assembly, in order to generate the
11900 right sort of code. We will make them even in the adjust_symtab
11901 routine, while leaving them marked. This is convenient for the
11902 debugger and the disassembler. The linker knows to make them odd
11903 again. */
11904
11905 static void
11906 s_insn (ignore)
11907 int ignore ATTRIBUTE_UNUSED;
11908 {
11909 mips16_mark_labels ();
11910
11911 demand_empty_rest_of_line ();
11912 }
11913
11914 /* Handle a .stabn directive. We need these in order to mark a label
11915 as being a mips16 text label correctly. Sometimes the compiler
11916 will emit a label, followed by a .stabn, and then switch sections.
11917 If the label and .stabn are in mips16 mode, then the label is
11918 really a mips16 text label. */
11919
11920 static void
11921 s_mips_stab (type)
11922 int type;
11923 {
11924 if (type == 'n')
11925 mips16_mark_labels ();
11926
11927 s_stab (type);
11928 }
11929
11930 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich.
11931 */
11932
11933 static void
11934 s_mips_weakext (ignore)
11935 int ignore ATTRIBUTE_UNUSED;
11936 {
11937 char *name;
11938 int c;
11939 symbolS *symbolP;
11940 expressionS exp;
11941
11942 name = input_line_pointer;
11943 c = get_symbol_end ();
11944 symbolP = symbol_find_or_make (name);
11945 S_SET_WEAK (symbolP);
11946 *input_line_pointer = c;
11947
11948 SKIP_WHITESPACE ();
11949
11950 if (! is_end_of_line[(unsigned char) *input_line_pointer])
11951 {
11952 if (S_IS_DEFINED (symbolP))
11953 {
11954 as_bad ("ignoring attempt to redefine symbol %s",
11955 S_GET_NAME (symbolP));
11956 ignore_rest_of_line ();
11957 return;
11958 }
11959
11960 if (*input_line_pointer == ',')
11961 {
11962 ++input_line_pointer;
11963 SKIP_WHITESPACE ();
11964 }
11965
11966 expression (&exp);
11967 if (exp.X_op != O_symbol)
11968 {
11969 as_bad ("bad .weakext directive");
11970 ignore_rest_of_line ();
11971 return;
11972 }
11973 symbol_set_value_expression (symbolP, &exp);
11974 }
11975
11976 demand_empty_rest_of_line ();
11977 }
11978
11979 /* Parse a register string into a number. Called from the ECOFF code
11980 to parse .frame. The argument is non-zero if this is the frame
11981 register, so that we can record it in mips_frame_reg. */
11982
11983 int
11984 tc_get_register (frame)
11985 int frame;
11986 {
11987 int reg;
11988
11989 SKIP_WHITESPACE ();
11990 if (*input_line_pointer++ != '$')
11991 {
11992 as_warn (_("expected `$'"));
11993 reg = ZERO;
11994 }
11995 else if (ISDIGIT (*input_line_pointer))
11996 {
11997 reg = get_absolute_expression ();
11998 if (reg < 0 || reg >= 32)
11999 {
12000 as_warn (_("Bad register number"));
12001 reg = ZERO;
12002 }
12003 }
12004 else
12005 {
12006 if (strncmp (input_line_pointer, "ra", 2) == 0)
12007 {
12008 reg = RA;
12009 input_line_pointer += 2;
12010 }
12011 else if (strncmp (input_line_pointer, "fp", 2) == 0)
12012 {
12013 reg = FP;
12014 input_line_pointer += 2;
12015 }
12016 else if (strncmp (input_line_pointer, "sp", 2) == 0)
12017 {
12018 reg = SP;
12019 input_line_pointer += 2;
12020 }
12021 else if (strncmp (input_line_pointer, "gp", 2) == 0)
12022 {
12023 reg = GP;
12024 input_line_pointer += 2;
12025 }
12026 else if (strncmp (input_line_pointer, "at", 2) == 0)
12027 {
12028 reg = AT;
12029 input_line_pointer += 2;
12030 }
12031 else if (strncmp (input_line_pointer, "kt0", 3) == 0)
12032 {
12033 reg = KT0;
12034 input_line_pointer += 3;
12035 }
12036 else if (strncmp (input_line_pointer, "kt1", 3) == 0)
12037 {
12038 reg = KT1;
12039 input_line_pointer += 3;
12040 }
12041 else if (strncmp (input_line_pointer, "zero", 4) == 0)
12042 {
12043 reg = ZERO;
12044 input_line_pointer += 4;
12045 }
12046 else
12047 {
12048 as_warn (_("Unrecognized register name"));
12049 reg = ZERO;
12050 while (ISALNUM(*input_line_pointer))
12051 input_line_pointer++;
12052 }
12053 }
12054 if (frame)
12055 {
12056 mips_frame_reg = reg != 0 ? reg : SP;
12057 mips_frame_reg_valid = 1;
12058 mips_cprestore_valid = 0;
12059 }
12060 return reg;
12061 }
12062
12063 valueT
12064 md_section_align (seg, addr)
12065 asection *seg;
12066 valueT addr;
12067 {
12068 int align = bfd_get_section_alignment (stdoutput, seg);
12069
12070 #ifdef OBJ_ELF
12071 /* We don't need to align ELF sections to the full alignment.
12072 However, Irix 5 may prefer that we align them at least to a 16
12073 byte boundary. We don't bother to align the sections if we are
12074 targeted for an embedded system. */
12075 if (strcmp (TARGET_OS, "elf") == 0)
12076 return addr;
12077 if (align > 4)
12078 align = 4;
12079 #endif
12080
12081 return ((addr + (1 << align) - 1) & (-1 << align));
12082 }
12083
12084 /* Utility routine, called from above as well. If called while the
12085 input file is still being read, it's only an approximation. (For
12086 example, a symbol may later become defined which appeared to be
12087 undefined earlier.) */
12088
12089 static int
12090 nopic_need_relax (sym, before_relaxing)
12091 symbolS *sym;
12092 int before_relaxing;
12093 {
12094 if (sym == 0)
12095 return 0;
12096
12097 if (USE_GLOBAL_POINTER_OPT && g_switch_value > 0)
12098 {
12099 const char *symname;
12100 int change;
12101
12102 /* Find out whether this symbol can be referenced off the $gp
12103 register. It can be if it is smaller than the -G size or if
12104 it is in the .sdata or .sbss section. Certain symbols can
12105 not be referenced off the $gp, although it appears as though
12106 they can. */
12107 symname = S_GET_NAME (sym);
12108 if (symname != (const char *) NULL
12109 && (strcmp (symname, "eprol") == 0
12110 || strcmp (symname, "etext") == 0
12111 || strcmp (symname, "_gp") == 0
12112 || strcmp (symname, "edata") == 0
12113 || strcmp (symname, "_fbss") == 0
12114 || strcmp (symname, "_fdata") == 0
12115 || strcmp (symname, "_ftext") == 0
12116 || strcmp (symname, "end") == 0
12117 || strcmp (symname, "_gp_disp") == 0))
12118 change = 1;
12119 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
12120 && (0
12121 #ifndef NO_ECOFF_DEBUGGING
12122 || (symbol_get_obj (sym)->ecoff_extern_size != 0
12123 && (symbol_get_obj (sym)->ecoff_extern_size
12124 <= g_switch_value))
12125 #endif
12126 /* We must defer this decision until after the whole
12127 file has been read, since there might be a .extern
12128 after the first use of this symbol. */
12129 || (before_relaxing
12130 #ifndef NO_ECOFF_DEBUGGING
12131 && symbol_get_obj (sym)->ecoff_extern_size == 0
12132 #endif
12133 && S_GET_VALUE (sym) == 0)
12134 || (S_GET_VALUE (sym) != 0
12135 && S_GET_VALUE (sym) <= g_switch_value)))
12136 change = 0;
12137 else
12138 {
12139 const char *segname;
12140
12141 segname = segment_name (S_GET_SEGMENT (sym));
12142 assert (strcmp (segname, ".lit8") != 0
12143 && strcmp (segname, ".lit4") != 0);
12144 change = (strcmp (segname, ".sdata") != 0
12145 && strcmp (segname, ".sbss") != 0
12146 && strncmp (segname, ".sdata.", 7) != 0
12147 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
12148 }
12149 return change;
12150 }
12151 else
12152 /* We are not optimizing for the $gp register. */
12153 return 1;
12154 }
12155
12156 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
12157 extended opcode. SEC is the section the frag is in. */
12158
12159 static int
12160 mips16_extended_frag (fragp, sec, stretch)
12161 fragS *fragp;
12162 asection *sec;
12163 long stretch;
12164 {
12165 int type;
12166 register const struct mips16_immed_operand *op;
12167 offsetT val;
12168 int mintiny, maxtiny;
12169 segT symsec;
12170 fragS *sym_frag;
12171
12172 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
12173 return 0;
12174 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
12175 return 1;
12176
12177 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
12178 op = mips16_immed_operands;
12179 while (op->type != type)
12180 {
12181 ++op;
12182 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
12183 }
12184
12185 if (op->unsp)
12186 {
12187 if (type == '<' || type == '>' || type == '[' || type == ']')
12188 {
12189 mintiny = 1;
12190 maxtiny = 1 << op->nbits;
12191 }
12192 else
12193 {
12194 mintiny = 0;
12195 maxtiny = (1 << op->nbits) - 1;
12196 }
12197 }
12198 else
12199 {
12200 mintiny = - (1 << (op->nbits - 1));
12201 maxtiny = (1 << (op->nbits - 1)) - 1;
12202 }
12203
12204 sym_frag = symbol_get_frag (fragp->fr_symbol);
12205 val = S_GET_VALUE (fragp->fr_symbol);
12206 symsec = S_GET_SEGMENT (fragp->fr_symbol);
12207
12208 if (op->pcrel)
12209 {
12210 addressT addr;
12211
12212 /* We won't have the section when we are called from
12213 mips_relax_frag. However, we will always have been called
12214 from md_estimate_size_before_relax first. If this is a
12215 branch to a different section, we mark it as such. If SEC is
12216 NULL, and the frag is not marked, then it must be a branch to
12217 the same section. */
12218 if (sec == NULL)
12219 {
12220 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
12221 return 1;
12222 }
12223 else
12224 {
12225 /* Must have been called from md_estimate_size_before_relax. */
12226 if (symsec != sec)
12227 {
12228 fragp->fr_subtype =
12229 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12230
12231 /* FIXME: We should support this, and let the linker
12232 catch branches and loads that are out of range. */
12233 as_bad_where (fragp->fr_file, fragp->fr_line,
12234 _("unsupported PC relative reference to different section"));
12235
12236 return 1;
12237 }
12238 if (fragp != sym_frag && sym_frag->fr_address == 0)
12239 /* Assume non-extended on the first relaxation pass.
12240 The address we have calculated will be bogus if this is
12241 a forward branch to another frag, as the forward frag
12242 will have fr_address == 0. */
12243 return 0;
12244 }
12245
12246 /* In this case, we know for sure that the symbol fragment is in
12247 the same section. If the relax_marker of the symbol fragment
12248 differs from the relax_marker of this fragment, we have not
12249 yet adjusted the symbol fragment fr_address. We want to add
12250 in STRETCH in order to get a better estimate of the address.
12251 This particularly matters because of the shift bits. */
12252 if (stretch != 0
12253 && sym_frag->relax_marker != fragp->relax_marker)
12254 {
12255 fragS *f;
12256
12257 /* Adjust stretch for any alignment frag. Note that if have
12258 been expanding the earlier code, the symbol may be
12259 defined in what appears to be an earlier frag. FIXME:
12260 This doesn't handle the fr_subtype field, which specifies
12261 a maximum number of bytes to skip when doing an
12262 alignment. */
12263 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
12264 {
12265 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
12266 {
12267 if (stretch < 0)
12268 stretch = - ((- stretch)
12269 & ~ ((1 << (int) f->fr_offset) - 1));
12270 else
12271 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
12272 if (stretch == 0)
12273 break;
12274 }
12275 }
12276 if (f != NULL)
12277 val += stretch;
12278 }
12279
12280 addr = fragp->fr_address + fragp->fr_fix;
12281
12282 /* The base address rules are complicated. The base address of
12283 a branch is the following instruction. The base address of a
12284 PC relative load or add is the instruction itself, but if it
12285 is in a delay slot (in which case it can not be extended) use
12286 the address of the instruction whose delay slot it is in. */
12287 if (type == 'p' || type == 'q')
12288 {
12289 addr += 2;
12290
12291 /* If we are currently assuming that this frag should be
12292 extended, then, the current address is two bytes
12293 higher. */
12294 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12295 addr += 2;
12296
12297 /* Ignore the low bit in the target, since it will be set
12298 for a text label. */
12299 if ((val & 1) != 0)
12300 --val;
12301 }
12302 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
12303 addr -= 4;
12304 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
12305 addr -= 2;
12306
12307 val -= addr & ~ ((1 << op->shift) - 1);
12308
12309 /* Branch offsets have an implicit 0 in the lowest bit. */
12310 if (type == 'p' || type == 'q')
12311 val /= 2;
12312
12313 /* If any of the shifted bits are set, we must use an extended
12314 opcode. If the address depends on the size of this
12315 instruction, this can lead to a loop, so we arrange to always
12316 use an extended opcode. We only check this when we are in
12317 the main relaxation loop, when SEC is NULL. */
12318 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
12319 {
12320 fragp->fr_subtype =
12321 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12322 return 1;
12323 }
12324
12325 /* If we are about to mark a frag as extended because the value
12326 is precisely maxtiny + 1, then there is a chance of an
12327 infinite loop as in the following code:
12328 la $4,foo
12329 .skip 1020
12330 .align 2
12331 foo:
12332 In this case when the la is extended, foo is 0x3fc bytes
12333 away, so the la can be shrunk, but then foo is 0x400 away, so
12334 the la must be extended. To avoid this loop, we mark the
12335 frag as extended if it was small, and is about to become
12336 extended with a value of maxtiny + 1. */
12337 if (val == ((maxtiny + 1) << op->shift)
12338 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
12339 && sec == NULL)
12340 {
12341 fragp->fr_subtype =
12342 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12343 return 1;
12344 }
12345 }
12346 else if (symsec != absolute_section && sec != NULL)
12347 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
12348
12349 if ((val & ((1 << op->shift) - 1)) != 0
12350 || val < (mintiny << op->shift)
12351 || val > (maxtiny << op->shift))
12352 return 1;
12353 else
12354 return 0;
12355 }
12356
12357 /* Estimate the size of a frag before relaxing. Unless this is the
12358 mips16, we are not really relaxing here, and the final size is
12359 encoded in the subtype information. For the mips16, we have to
12360 decide whether we are using an extended opcode or not. */
12361
12362 int
12363 md_estimate_size_before_relax (fragp, segtype)
12364 fragS *fragp;
12365 asection *segtype;
12366 {
12367 int change = 0;
12368 boolean linkonce = false;
12369
12370 if (RELAX_MIPS16_P (fragp->fr_subtype))
12371 /* We don't want to modify the EXTENDED bit here; it might get us
12372 into infinite loops. We change it only in mips_relax_frag(). */
12373 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
12374
12375 if (mips_pic == NO_PIC)
12376 {
12377 change = nopic_need_relax (fragp->fr_symbol, 0);
12378 }
12379 else if (mips_pic == SVR4_PIC)
12380 {
12381 symbolS *sym;
12382 asection *symsec;
12383
12384 sym = fragp->fr_symbol;
12385
12386 /* Handle the case of a symbol equated to another symbol. */
12387 while (symbol_equated_reloc_p (sym))
12388 {
12389 symbolS *n;
12390
12391 /* It's possible to get a loop here in a badly written
12392 program. */
12393 n = symbol_get_value_expression (sym)->X_add_symbol;
12394 if (n == sym)
12395 break;
12396 sym = n;
12397 }
12398
12399 symsec = S_GET_SEGMENT (sym);
12400
12401 /* duplicate the test for LINK_ONCE sections as in adjust_reloc_syms */
12402 if (symsec != segtype && ! S_IS_LOCAL (sym))
12403 {
12404 if ((bfd_get_section_flags (stdoutput, symsec) & SEC_LINK_ONCE)
12405 != 0)
12406 linkonce = true;
12407
12408 /* The GNU toolchain uses an extension for ELF: a section
12409 beginning with the magic string .gnu.linkonce is a linkonce
12410 section. */
12411 if (strncmp (segment_name (symsec), ".gnu.linkonce",
12412 sizeof ".gnu.linkonce" - 1) == 0)
12413 linkonce = true;
12414 }
12415
12416 /* This must duplicate the test in adjust_reloc_syms. */
12417 change = (symsec != &bfd_und_section
12418 && symsec != &bfd_abs_section
12419 && ! bfd_is_com_section (symsec)
12420 && !linkonce
12421 #ifdef OBJ_ELF
12422 /* A global or weak symbol is treated as external. */
12423 && (OUTPUT_FLAVOR != bfd_target_elf_flavour
12424 || (! S_IS_WEAK (sym)
12425 && (! S_IS_EXTERNAL (sym)
12426 || mips_pic == EMBEDDED_PIC)))
12427 #endif
12428 );
12429 }
12430 else
12431 abort ();
12432
12433 if (change)
12434 {
12435 /* Record the offset to the first reloc in the fr_opcode field.
12436 This lets md_convert_frag and tc_gen_reloc know that the code
12437 must be expanded. */
12438 fragp->fr_opcode = (fragp->fr_literal
12439 + fragp->fr_fix
12440 - RELAX_OLD (fragp->fr_subtype)
12441 + RELAX_RELOC1 (fragp->fr_subtype));
12442 /* FIXME: This really needs as_warn_where. */
12443 if (RELAX_WARN (fragp->fr_subtype))
12444 as_warn (_("AT used after \".set noat\" or macro used after "
12445 "\".set nomacro\""));
12446
12447 return RELAX_NEW (fragp->fr_subtype) - RELAX_OLD (fragp->fr_subtype);
12448 }
12449
12450 return 0;
12451 }
12452
12453 /* This is called to see whether a reloc against a defined symbol
12454 should be converted into a reloc against a section. Don't adjust
12455 MIPS16 jump relocations, so we don't have to worry about the format
12456 of the offset in the .o file. Don't adjust relocations against
12457 mips16 symbols, so that the linker can find them if it needs to set
12458 up a stub. */
12459
12460 int
12461 mips_fix_adjustable (fixp)
12462 fixS *fixp;
12463 {
12464 #ifdef OBJ_ELF
12465 /* Prevent all adjustments to global symbols. */
12466 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
12467 && mips_pic != EMBEDDED_PIC
12468 && (S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)))
12469 return 0;
12470 #endif
12471 if (fixp->fx_r_type == BFD_RELOC_MIPS16_JMP)
12472 return 0;
12473 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12474 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12475 return 0;
12476 if (fixp->fx_addsy == NULL)
12477 return 1;
12478 #ifdef OBJ_ELF
12479 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
12480 && S_GET_OTHER (fixp->fx_addsy) == STO_MIPS16
12481 && fixp->fx_subsy == NULL)
12482 return 0;
12483 #endif
12484 return 1;
12485 }
12486
12487 /* Translate internal representation of relocation info to BFD target
12488 format. */
12489
12490 arelent **
12491 tc_gen_reloc (section, fixp)
12492 asection *section ATTRIBUTE_UNUSED;
12493 fixS *fixp;
12494 {
12495 static arelent *retval[4];
12496 arelent *reloc;
12497 bfd_reloc_code_real_type code;
12498
12499 reloc = retval[0] = (arelent *) xmalloc (sizeof (arelent));
12500 retval[1] = NULL;
12501
12502 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
12503 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12504 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
12505
12506 if (mips_pic == EMBEDDED_PIC
12507 && SWITCH_TABLE (fixp))
12508 {
12509 /* For a switch table entry we use a special reloc. The addend
12510 is actually the difference between the reloc address and the
12511 subtrahend. */
12512 reloc->addend = reloc->address - S_GET_VALUE (fixp->fx_subsy);
12513 if (OUTPUT_FLAVOR != bfd_target_ecoff_flavour)
12514 as_fatal (_("Double check fx_r_type in tc-mips.c:tc_gen_reloc"));
12515 fixp->fx_r_type = BFD_RELOC_GPREL32;
12516 }
12517 else if (fixp->fx_r_type == BFD_RELOC_PCREL_LO16)
12518 {
12519 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
12520 reloc->addend = fixp->fx_addnumber;
12521 else
12522 {
12523 /* We use a special addend for an internal RELLO reloc. */
12524 if (symbol_section_p (fixp->fx_addsy))
12525 reloc->addend = reloc->address - S_GET_VALUE (fixp->fx_subsy);
12526 else
12527 reloc->addend = fixp->fx_addnumber + reloc->address;
12528 }
12529 }
12530 else if (fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S)
12531 {
12532 assert (fixp->fx_next != NULL
12533 && fixp->fx_next->fx_r_type == BFD_RELOC_PCREL_LO16);
12534
12535 /* The reloc is relative to the RELLO; adjust the addend
12536 accordingly. */
12537 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
12538 reloc->addend = fixp->fx_next->fx_addnumber;
12539 else
12540 {
12541 /* We use a special addend for an internal RELHI reloc. */
12542 if (symbol_section_p (fixp->fx_addsy))
12543 reloc->addend = (fixp->fx_next->fx_frag->fr_address
12544 + fixp->fx_next->fx_where
12545 - S_GET_VALUE (fixp->fx_subsy));
12546 else
12547 reloc->addend = (fixp->fx_addnumber
12548 + fixp->fx_next->fx_frag->fr_address
12549 + fixp->fx_next->fx_where);
12550 }
12551 }
12552 else if (fixp->fx_pcrel == 0 || OUTPUT_FLAVOR == bfd_target_elf_flavour)
12553 reloc->addend = fixp->fx_addnumber;
12554 else
12555 {
12556 if (OUTPUT_FLAVOR != bfd_target_aout_flavour)
12557 /* A gruesome hack which is a result of the gruesome gas reloc
12558 handling. */
12559 reloc->addend = reloc->address;
12560 else
12561 reloc->addend = -reloc->address;
12562 }
12563
12564 /* If this is a variant frag, we may need to adjust the existing
12565 reloc and generate a new one. */
12566 if (fixp->fx_frag->fr_opcode != NULL
12567 && (fixp->fx_r_type == BFD_RELOC_GPREL16
12568 || fixp->fx_r_type == BFD_RELOC_MIPS_GOT16
12569 || fixp->fx_r_type == BFD_RELOC_MIPS_CALL16
12570 || fixp->fx_r_type == BFD_RELOC_MIPS_GOT_HI16
12571 || fixp->fx_r_type == BFD_RELOC_MIPS_GOT_LO16
12572 || fixp->fx_r_type == BFD_RELOC_MIPS_CALL_HI16
12573 || fixp->fx_r_type == BFD_RELOC_MIPS_CALL_LO16)
12574 && ! HAVE_NEWABI)
12575 {
12576 arelent *reloc2;
12577
12578 assert (! RELAX_MIPS16_P (fixp->fx_frag->fr_subtype));
12579
12580 /* If this is not the last reloc in this frag, then we have two
12581 GPREL relocs, or a GOT_HI16/GOT_LO16 pair, or a
12582 CALL_HI16/CALL_LO16, both of which are being replaced. Let
12583 the second one handle all of them. */
12584 if (fixp->fx_next != NULL
12585 && fixp->fx_frag == fixp->fx_next->fx_frag)
12586 {
12587 assert ((fixp->fx_r_type == BFD_RELOC_GPREL16
12588 && fixp->fx_next->fx_r_type == BFD_RELOC_GPREL16)
12589 || (fixp->fx_r_type == BFD_RELOC_MIPS_GOT_HI16
12590 && (fixp->fx_next->fx_r_type
12591 == BFD_RELOC_MIPS_GOT_LO16))
12592 || (fixp->fx_r_type == BFD_RELOC_MIPS_CALL_HI16
12593 && (fixp->fx_next->fx_r_type
12594 == BFD_RELOC_MIPS_CALL_LO16)));
12595 retval[0] = NULL;
12596 return retval;
12597 }
12598
12599 fixp->fx_where = fixp->fx_frag->fr_opcode - fixp->fx_frag->fr_literal;
12600 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
12601 reloc2 = retval[1] = (arelent *) xmalloc (sizeof (arelent));
12602 retval[2] = NULL;
12603 reloc2->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
12604 *reloc2->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12605 reloc2->address = (reloc->address
12606 + (RELAX_RELOC2 (fixp->fx_frag->fr_subtype)
12607 - RELAX_RELOC1 (fixp->fx_frag->fr_subtype)));
12608 reloc2->addend = fixp->fx_addnumber;
12609 reloc2->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_LO16);
12610 assert (reloc2->howto != NULL);
12611
12612 if (RELAX_RELOC3 (fixp->fx_frag->fr_subtype))
12613 {
12614 arelent *reloc3;
12615
12616 reloc3 = retval[2] = (arelent *) xmalloc (sizeof (arelent));
12617 retval[3] = NULL;
12618 *reloc3 = *reloc2;
12619 reloc3->address += 4;
12620 }
12621
12622 if (mips_pic == NO_PIC)
12623 {
12624 assert (fixp->fx_r_type == BFD_RELOC_GPREL16);
12625 fixp->fx_r_type = BFD_RELOC_HI16_S;
12626 }
12627 else if (mips_pic == SVR4_PIC)
12628 {
12629 switch (fixp->fx_r_type)
12630 {
12631 default:
12632 abort ();
12633 case BFD_RELOC_MIPS_GOT16:
12634 break;
12635 case BFD_RELOC_MIPS_CALL16:
12636 case BFD_RELOC_MIPS_GOT_LO16:
12637 case BFD_RELOC_MIPS_CALL_LO16:
12638 fixp->fx_r_type = BFD_RELOC_MIPS_GOT16;
12639 break;
12640 }
12641 }
12642 else
12643 abort ();
12644 }
12645
12646 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
12647 entry to be used in the relocation's section offset. */
12648 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12649 {
12650 reloc->address = reloc->addend;
12651 reloc->addend = 0;
12652 }
12653
12654 /* Since DIFF_EXPR_OK is defined in tc-mips.h, it is possible that
12655 fixup_segment converted a non-PC relative reloc into a PC
12656 relative reloc. In such a case, we need to convert the reloc
12657 code. */
12658 code = fixp->fx_r_type;
12659 if (fixp->fx_pcrel)
12660 {
12661 switch (code)
12662 {
12663 case BFD_RELOC_8:
12664 code = BFD_RELOC_8_PCREL;
12665 break;
12666 case BFD_RELOC_16:
12667 code = BFD_RELOC_16_PCREL;
12668 break;
12669 case BFD_RELOC_32:
12670 code = BFD_RELOC_32_PCREL;
12671 break;
12672 case BFD_RELOC_64:
12673 code = BFD_RELOC_64_PCREL;
12674 break;
12675 case BFD_RELOC_8_PCREL:
12676 case BFD_RELOC_16_PCREL:
12677 case BFD_RELOC_32_PCREL:
12678 case BFD_RELOC_64_PCREL:
12679 case BFD_RELOC_16_PCREL_S2:
12680 case BFD_RELOC_PCREL_HI16_S:
12681 case BFD_RELOC_PCREL_LO16:
12682 break;
12683 default:
12684 as_bad_where (fixp->fx_file, fixp->fx_line,
12685 _("Cannot make %s relocation PC relative"),
12686 bfd_get_reloc_code_name (code));
12687 }
12688 }
12689
12690 #ifdef OBJ_ELF
12691 /* md_apply_fix3 has a double-subtraction hack to get
12692 bfd_install_relocation to behave nicely. GPREL relocations are
12693 handled correctly without this hack, so undo it here. We can't
12694 stop md_apply_fix3 from subtracting twice in the first place since
12695 the fake addend is required for variant frags above. */
12696 if (fixp->fx_addsy != NULL && OUTPUT_FLAVOR == bfd_target_elf_flavour
12697 && code == BFD_RELOC_GPREL16
12698 && reloc->addend != 0
12699 && mips_need_elf_addend_fixup (fixp))
12700 reloc->addend += S_GET_VALUE (fixp->fx_addsy);
12701 #endif
12702
12703 /* To support a PC relative reloc when generating embedded PIC code
12704 for ECOFF, we use a Cygnus extension. We check for that here to
12705 make sure that we don't let such a reloc escape normally. */
12706 if ((OUTPUT_FLAVOR == bfd_target_ecoff_flavour
12707 || OUTPUT_FLAVOR == bfd_target_elf_flavour)
12708 && code == BFD_RELOC_16_PCREL_S2
12709 && mips_pic != EMBEDDED_PIC)
12710 reloc->howto = NULL;
12711 else
12712 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
12713
12714 if (reloc->howto == NULL)
12715 {
12716 as_bad_where (fixp->fx_file, fixp->fx_line,
12717 _("Can not represent %s relocation in this object file format"),
12718 bfd_get_reloc_code_name (code));
12719 retval[0] = NULL;
12720 }
12721
12722 return retval;
12723 }
12724
12725 /* Relax a machine dependent frag. This returns the amount by which
12726 the current size of the frag should change. */
12727
12728 int
12729 mips_relax_frag (fragp, stretch)
12730 fragS *fragp;
12731 long stretch;
12732 {
12733 if (! RELAX_MIPS16_P (fragp->fr_subtype))
12734 return 0;
12735
12736 if (mips16_extended_frag (fragp, NULL, stretch))
12737 {
12738 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12739 return 0;
12740 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
12741 return 2;
12742 }
12743 else
12744 {
12745 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12746 return 0;
12747 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
12748 return -2;
12749 }
12750
12751 return 0;
12752 }
12753
12754 /* Convert a machine dependent frag. */
12755
12756 void
12757 md_convert_frag (abfd, asec, fragp)
12758 bfd *abfd ATTRIBUTE_UNUSED;
12759 segT asec;
12760 fragS *fragp;
12761 {
12762 int old, new;
12763 char *fixptr;
12764
12765 if (RELAX_MIPS16_P (fragp->fr_subtype))
12766 {
12767 int type;
12768 register const struct mips16_immed_operand *op;
12769 boolean small, ext;
12770 offsetT val;
12771 bfd_byte *buf;
12772 unsigned long insn;
12773 boolean use_extend;
12774 unsigned short extend;
12775
12776 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
12777 op = mips16_immed_operands;
12778 while (op->type != type)
12779 ++op;
12780
12781 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12782 {
12783 small = false;
12784 ext = true;
12785 }
12786 else
12787 {
12788 small = true;
12789 ext = false;
12790 }
12791
12792 resolve_symbol_value (fragp->fr_symbol);
12793 val = S_GET_VALUE (fragp->fr_symbol);
12794 if (op->pcrel)
12795 {
12796 addressT addr;
12797
12798 addr = fragp->fr_address + fragp->fr_fix;
12799
12800 /* The rules for the base address of a PC relative reloc are
12801 complicated; see mips16_extended_frag. */
12802 if (type == 'p' || type == 'q')
12803 {
12804 addr += 2;
12805 if (ext)
12806 addr += 2;
12807 /* Ignore the low bit in the target, since it will be
12808 set for a text label. */
12809 if ((val & 1) != 0)
12810 --val;
12811 }
12812 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
12813 addr -= 4;
12814 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
12815 addr -= 2;
12816
12817 addr &= ~ (addressT) ((1 << op->shift) - 1);
12818 val -= addr;
12819
12820 /* Make sure the section winds up with the alignment we have
12821 assumed. */
12822 if (op->shift > 0)
12823 record_alignment (asec, op->shift);
12824 }
12825
12826 if (ext
12827 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
12828 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
12829 as_warn_where (fragp->fr_file, fragp->fr_line,
12830 _("extended instruction in delay slot"));
12831
12832 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
12833
12834 if (target_big_endian)
12835 insn = bfd_getb16 (buf);
12836 else
12837 insn = bfd_getl16 (buf);
12838
12839 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
12840 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
12841 small, ext, &insn, &use_extend, &extend);
12842
12843 if (use_extend)
12844 {
12845 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
12846 fragp->fr_fix += 2;
12847 buf += 2;
12848 }
12849
12850 md_number_to_chars ((char *) buf, insn, 2);
12851 fragp->fr_fix += 2;
12852 buf += 2;
12853 }
12854 else
12855 {
12856 if (fragp->fr_opcode == NULL)
12857 return;
12858
12859 old = RELAX_OLD (fragp->fr_subtype);
12860 new = RELAX_NEW (fragp->fr_subtype);
12861 fixptr = fragp->fr_literal + fragp->fr_fix;
12862
12863 if (new > 0)
12864 memcpy (fixptr - old, fixptr, new);
12865
12866 fragp->fr_fix += new - old;
12867 }
12868 }
12869
12870 #ifdef OBJ_ELF
12871
12872 /* This function is called after the relocs have been generated.
12873 We've been storing mips16 text labels as odd. Here we convert them
12874 back to even for the convenience of the debugger. */
12875
12876 void
12877 mips_frob_file_after_relocs ()
12878 {
12879 asymbol **syms;
12880 unsigned int count, i;
12881
12882 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
12883 return;
12884
12885 syms = bfd_get_outsymbols (stdoutput);
12886 count = bfd_get_symcount (stdoutput);
12887 for (i = 0; i < count; i++, syms++)
12888 {
12889 if (elf_symbol (*syms)->internal_elf_sym.st_other == STO_MIPS16
12890 && ((*syms)->value & 1) != 0)
12891 {
12892 (*syms)->value &= ~1;
12893 /* If the symbol has an odd size, it was probably computed
12894 incorrectly, so adjust that as well. */
12895 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
12896 ++elf_symbol (*syms)->internal_elf_sym.st_size;
12897 }
12898 }
12899 }
12900
12901 #endif
12902
12903 /* This function is called whenever a label is defined. It is used
12904 when handling branch delays; if a branch has a label, we assume we
12905 can not move it. */
12906
12907 void
12908 mips_define_label (sym)
12909 symbolS *sym;
12910 {
12911 struct insn_label_list *l;
12912
12913 if (free_insn_labels == NULL)
12914 l = (struct insn_label_list *) xmalloc (sizeof *l);
12915 else
12916 {
12917 l = free_insn_labels;
12918 free_insn_labels = l->next;
12919 }
12920
12921 l->label = sym;
12922 l->next = insn_labels;
12923 insn_labels = l;
12924 }
12925 \f
12926 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12927
12928 /* Some special processing for a MIPS ELF file. */
12929
12930 void
12931 mips_elf_final_processing ()
12932 {
12933 /* Write out the register information. */
12934 if (mips_abi != N64_ABI)
12935 {
12936 Elf32_RegInfo s;
12937
12938 s.ri_gprmask = mips_gprmask;
12939 s.ri_cprmask[0] = mips_cprmask[0];
12940 s.ri_cprmask[1] = mips_cprmask[1];
12941 s.ri_cprmask[2] = mips_cprmask[2];
12942 s.ri_cprmask[3] = mips_cprmask[3];
12943 /* The gp_value field is set by the MIPS ELF backend. */
12944
12945 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
12946 ((Elf32_External_RegInfo *)
12947 mips_regmask_frag));
12948 }
12949 else
12950 {
12951 Elf64_Internal_RegInfo s;
12952
12953 s.ri_gprmask = mips_gprmask;
12954 s.ri_pad = 0;
12955 s.ri_cprmask[0] = mips_cprmask[0];
12956 s.ri_cprmask[1] = mips_cprmask[1];
12957 s.ri_cprmask[2] = mips_cprmask[2];
12958 s.ri_cprmask[3] = mips_cprmask[3];
12959 /* The gp_value field is set by the MIPS ELF backend. */
12960
12961 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
12962 ((Elf64_External_RegInfo *)
12963 mips_regmask_frag));
12964 }
12965
12966 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
12967 sort of BFD interface for this. */
12968 if (mips_any_noreorder)
12969 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
12970 if (mips_pic != NO_PIC)
12971 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
12972
12973 /* Set MIPS ELF flags for ASEs. */
12974 if (file_ase_mips16)
12975 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
12976 #if 0 /* XXX FIXME */
12977 if (file_ase_mips3d)
12978 elf_elfheader (stdoutput)->e_flags |= ???;
12979 #endif
12980 if (file_ase_mdmx)
12981 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
12982
12983 /* Set the MIPS ELF ABI flags. */
12984 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
12985 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
12986 else if (mips_abi == O64_ABI)
12987 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
12988 else if (mips_abi == EABI_ABI)
12989 {
12990 if (!file_mips_gp32)
12991 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
12992 else
12993 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
12994 }
12995 else if (mips_abi == N32_ABI)
12996 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
12997
12998 /* Nothing to do for N64_ABI. */
12999
13000 if (mips_32bitmode)
13001 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
13002 }
13003
13004 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
13005 \f
13006 typedef struct proc {
13007 symbolS *isym;
13008 unsigned long reg_mask;
13009 unsigned long reg_offset;
13010 unsigned long fpreg_mask;
13011 unsigned long fpreg_offset;
13012 unsigned long frame_offset;
13013 unsigned long frame_reg;
13014 unsigned long pc_reg;
13015 } procS;
13016
13017 static procS cur_proc;
13018 static procS *cur_proc_ptr;
13019 static int numprocs;
13020
13021 /* Fill in an rs_align_code fragment. */
13022
13023 void
13024 mips_handle_align (fragp)
13025 fragS *fragp;
13026 {
13027 if (fragp->fr_type != rs_align_code)
13028 return;
13029
13030 if (mips_opts.mips16)
13031 {
13032 static const unsigned char be_nop[] = { 0x65, 0x00 };
13033 static const unsigned char le_nop[] = { 0x00, 0x65 };
13034
13035 int bytes;
13036 char *p;
13037
13038 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
13039 p = fragp->fr_literal + fragp->fr_fix;
13040
13041 if (bytes & 1)
13042 {
13043 *p++ = 0;
13044 fragp->fr_fix++;
13045 }
13046
13047 memcpy (p, (target_big_endian ? be_nop : le_nop), 2);
13048 fragp->fr_var = 2;
13049 }
13050
13051 /* For mips32, a nop is a zero, which we trivially get by doing nothing. */
13052 }
13053
13054 static void
13055 md_obj_begin ()
13056 {
13057 }
13058
13059 static void
13060 md_obj_end ()
13061 {
13062 /* check for premature end, nesting errors, etc */
13063 if (cur_proc_ptr)
13064 as_warn (_("missing .end at end of assembly"));
13065 }
13066
13067 static long
13068 get_number ()
13069 {
13070 int negative = 0;
13071 long val = 0;
13072
13073 if (*input_line_pointer == '-')
13074 {
13075 ++input_line_pointer;
13076 negative = 1;
13077 }
13078 if (!ISDIGIT (*input_line_pointer))
13079 as_bad (_("expected simple number"));
13080 if (input_line_pointer[0] == '0')
13081 {
13082 if (input_line_pointer[1] == 'x')
13083 {
13084 input_line_pointer += 2;
13085 while (ISXDIGIT (*input_line_pointer))
13086 {
13087 val <<= 4;
13088 val |= hex_value (*input_line_pointer++);
13089 }
13090 return negative ? -val : val;
13091 }
13092 else
13093 {
13094 ++input_line_pointer;
13095 while (ISDIGIT (*input_line_pointer))
13096 {
13097 val <<= 3;
13098 val |= *input_line_pointer++ - '0';
13099 }
13100 return negative ? -val : val;
13101 }
13102 }
13103 if (!ISDIGIT (*input_line_pointer))
13104 {
13105 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
13106 *input_line_pointer, *input_line_pointer);
13107 as_warn (_("invalid number"));
13108 return -1;
13109 }
13110 while (ISDIGIT (*input_line_pointer))
13111 {
13112 val *= 10;
13113 val += *input_line_pointer++ - '0';
13114 }
13115 return negative ? -val : val;
13116 }
13117
13118 /* The .file directive; just like the usual .file directive, but there
13119 is an initial number which is the ECOFF file index. In the non-ECOFF
13120 case .file implies DWARF-2. */
13121
13122 static void
13123 s_mips_file (x)
13124 int x ATTRIBUTE_UNUSED;
13125 {
13126 static int first_file_directive = 0;
13127
13128 if (ECOFF_DEBUGGING)
13129 {
13130 get_number ();
13131 s_app_file (0);
13132 }
13133 else
13134 {
13135 char *filename;
13136
13137 filename = dwarf2_directive_file (0);
13138
13139 /* Versions of GCC up to 3.1 start files with a ".file"
13140 directive even for stabs output. Make sure that this
13141 ".file" is handled. Note that you need a version of GCC
13142 after 3.1 in order to support DWARF-2 on MIPS. */
13143 if (filename != NULL && ! first_file_directive)
13144 {
13145 (void) new_logical_line (filename, -1);
13146 s_app_file_string (filename);
13147 }
13148 first_file_directive = 1;
13149 }
13150 }
13151
13152 /* The .loc directive, implying DWARF-2. */
13153
13154 static void
13155 s_mips_loc (x)
13156 int x ATTRIBUTE_UNUSED;
13157 {
13158 if (!ECOFF_DEBUGGING)
13159 dwarf2_directive_loc (0);
13160 }
13161
13162 /* The .end directive. */
13163
13164 static void
13165 s_mips_end (x)
13166 int x ATTRIBUTE_UNUSED;
13167 {
13168 symbolS *p;
13169 int maybe_text;
13170
13171 /* Following functions need their own .frame and .cprestore directives. */
13172 mips_frame_reg_valid = 0;
13173 mips_cprestore_valid = 0;
13174
13175 if (!is_end_of_line[(unsigned char) *input_line_pointer])
13176 {
13177 p = get_symbol ();
13178 demand_empty_rest_of_line ();
13179 }
13180 else
13181 p = NULL;
13182
13183 #ifdef BFD_ASSEMBLER
13184 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
13185 maybe_text = 1;
13186 else
13187 maybe_text = 0;
13188 #else
13189 if (now_seg != data_section && now_seg != bss_section)
13190 maybe_text = 1;
13191 else
13192 maybe_text = 0;
13193 #endif
13194
13195 if (!maybe_text)
13196 as_warn (_(".end not in text section"));
13197
13198 if (!cur_proc_ptr)
13199 {
13200 as_warn (_(".end directive without a preceding .ent directive."));
13201 demand_empty_rest_of_line ();
13202 return;
13203 }
13204
13205 if (p != NULL)
13206 {
13207 assert (S_GET_NAME (p));
13208 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->isym)))
13209 as_warn (_(".end symbol does not match .ent symbol."));
13210
13211 if (debug_type == DEBUG_STABS)
13212 stabs_generate_asm_endfunc (S_GET_NAME (p),
13213 S_GET_NAME (p));
13214 }
13215 else
13216 as_warn (_(".end directive missing or unknown symbol"));
13217
13218 #ifdef OBJ_ELF
13219 /* Generate a .pdr section. */
13220 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
13221 {
13222 segT saved_seg = now_seg;
13223 subsegT saved_subseg = now_subseg;
13224 valueT dot;
13225 expressionS exp;
13226 char *fragp;
13227
13228 dot = frag_now_fix ();
13229
13230 #ifdef md_flush_pending_output
13231 md_flush_pending_output ();
13232 #endif
13233
13234 assert (pdr_seg);
13235 subseg_set (pdr_seg, 0);
13236
13237 /* Write the symbol. */
13238 exp.X_op = O_symbol;
13239 exp.X_add_symbol = p;
13240 exp.X_add_number = 0;
13241 emit_expr (&exp, 4);
13242
13243 fragp = frag_more (7 * 4);
13244
13245 md_number_to_chars (fragp, (valueT) cur_proc_ptr->reg_mask, 4);
13246 md_number_to_chars (fragp + 4, (valueT) cur_proc_ptr->reg_offset, 4);
13247 md_number_to_chars (fragp + 8, (valueT) cur_proc_ptr->fpreg_mask, 4);
13248 md_number_to_chars (fragp + 12, (valueT) cur_proc_ptr->fpreg_offset, 4);
13249 md_number_to_chars (fragp + 16, (valueT) cur_proc_ptr->frame_offset, 4);
13250 md_number_to_chars (fragp + 20, (valueT) cur_proc_ptr->frame_reg, 4);
13251 md_number_to_chars (fragp + 24, (valueT) cur_proc_ptr->pc_reg, 4);
13252
13253 subseg_set (saved_seg, saved_subseg);
13254 }
13255 #endif /* OBJ_ELF */
13256
13257 cur_proc_ptr = NULL;
13258 }
13259
13260 /* The .aent and .ent directives. */
13261
13262 static void
13263 s_mips_ent (aent)
13264 int aent;
13265 {
13266 symbolS *symbolP;
13267 int maybe_text;
13268
13269 symbolP = get_symbol ();
13270 if (*input_line_pointer == ',')
13271 ++input_line_pointer;
13272 SKIP_WHITESPACE ();
13273 if (ISDIGIT (*input_line_pointer)
13274 || *input_line_pointer == '-')
13275 get_number ();
13276
13277 #ifdef BFD_ASSEMBLER
13278 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
13279 maybe_text = 1;
13280 else
13281 maybe_text = 0;
13282 #else
13283 if (now_seg != data_section && now_seg != bss_section)
13284 maybe_text = 1;
13285 else
13286 maybe_text = 0;
13287 #endif
13288
13289 if (!maybe_text)
13290 as_warn (_(".ent or .aent not in text section."));
13291
13292 if (!aent && cur_proc_ptr)
13293 as_warn (_("missing .end"));
13294
13295 if (!aent)
13296 {
13297 /* This function needs its own .frame and .cprestore directives. */
13298 mips_frame_reg_valid = 0;
13299 mips_cprestore_valid = 0;
13300
13301 cur_proc_ptr = &cur_proc;
13302 memset (cur_proc_ptr, '\0', sizeof (procS));
13303
13304 cur_proc_ptr->isym = symbolP;
13305
13306 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
13307
13308 ++numprocs;
13309
13310 if (debug_type == DEBUG_STABS)
13311 stabs_generate_asm_func (S_GET_NAME (symbolP),
13312 S_GET_NAME (symbolP));
13313 }
13314
13315 demand_empty_rest_of_line ();
13316 }
13317
13318 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
13319 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
13320 s_mips_frame is used so that we can set the PDR information correctly.
13321 We can't use the ecoff routines because they make reference to the ecoff
13322 symbol table (in the mdebug section). */
13323
13324 static void
13325 s_mips_frame (ignore)
13326 int ignore ATTRIBUTE_UNUSED;
13327 {
13328 #ifdef OBJ_ELF
13329 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
13330 {
13331 long val;
13332
13333 if (cur_proc_ptr == (procS *) NULL)
13334 {
13335 as_warn (_(".frame outside of .ent"));
13336 demand_empty_rest_of_line ();
13337 return;
13338 }
13339
13340 cur_proc_ptr->frame_reg = tc_get_register (1);
13341
13342 SKIP_WHITESPACE ();
13343 if (*input_line_pointer++ != ','
13344 || get_absolute_expression_and_terminator (&val) != ',')
13345 {
13346 as_warn (_("Bad .frame directive"));
13347 --input_line_pointer;
13348 demand_empty_rest_of_line ();
13349 return;
13350 }
13351
13352 cur_proc_ptr->frame_offset = val;
13353 cur_proc_ptr->pc_reg = tc_get_register (0);
13354
13355 demand_empty_rest_of_line ();
13356 }
13357 else
13358 #endif /* OBJ_ELF */
13359 s_ignore (ignore);
13360 }
13361
13362 /* The .fmask and .mask directives. If the mdebug section is present
13363 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
13364 embedded targets, s_mips_mask is used so that we can set the PDR
13365 information correctly. We can't use the ecoff routines because they
13366 make reference to the ecoff symbol table (in the mdebug section). */
13367
13368 static void
13369 s_mips_mask (reg_type)
13370 char reg_type;
13371 {
13372 #ifdef OBJ_ELF
13373 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
13374 {
13375 long mask, off;
13376
13377 if (cur_proc_ptr == (procS *) NULL)
13378 {
13379 as_warn (_(".mask/.fmask outside of .ent"));
13380 demand_empty_rest_of_line ();
13381 return;
13382 }
13383
13384 if (get_absolute_expression_and_terminator (&mask) != ',')
13385 {
13386 as_warn (_("Bad .mask/.fmask directive"));
13387 --input_line_pointer;
13388 demand_empty_rest_of_line ();
13389 return;
13390 }
13391
13392 off = get_absolute_expression ();
13393
13394 if (reg_type == 'F')
13395 {
13396 cur_proc_ptr->fpreg_mask = mask;
13397 cur_proc_ptr->fpreg_offset = off;
13398 }
13399 else
13400 {
13401 cur_proc_ptr->reg_mask = mask;
13402 cur_proc_ptr->reg_offset = off;
13403 }
13404
13405 demand_empty_rest_of_line ();
13406 }
13407 else
13408 #endif /* OBJ_ELF */
13409 s_ignore (reg_type);
13410 }
13411
13412 /* The .loc directive. */
13413
13414 #if 0
13415 static void
13416 s_loc (x)
13417 int x;
13418 {
13419 symbolS *symbolP;
13420 int lineno;
13421 int addroff;
13422
13423 assert (now_seg == text_section);
13424
13425 lineno = get_number ();
13426 addroff = frag_now_fix ();
13427
13428 symbolP = symbol_new ("", N_SLINE, addroff, frag_now);
13429 S_SET_TYPE (symbolP, N_SLINE);
13430 S_SET_OTHER (symbolP, 0);
13431 S_SET_DESC (symbolP, lineno);
13432 symbolP->sy_segment = now_seg;
13433 }
13434 #endif
13435
13436 /* A table describing all the processors gas knows about. Names are
13437 matched in the order listed.
13438
13439 To ease comparison, please keep this table in the same order as
13440 gcc's mips_cpu_info_table[]. */
13441 static const struct mips_cpu_info mips_cpu_info_table[] =
13442 {
13443 /* Entries for generic ISAs */
13444 { "mips1", 1, ISA_MIPS1, CPU_R3000 },
13445 { "mips2", 1, ISA_MIPS2, CPU_R6000 },
13446 { "mips3", 1, ISA_MIPS3, CPU_R4000 },
13447 { "mips4", 1, ISA_MIPS4, CPU_R8000 },
13448 { "mips5", 1, ISA_MIPS5, CPU_MIPS5 },
13449 { "mips32", 1, ISA_MIPS32, CPU_MIPS32 },
13450 { "mips64", 1, ISA_MIPS64, CPU_MIPS64 },
13451
13452 /* MIPS I */
13453 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
13454 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
13455 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
13456
13457 /* MIPS II */
13458 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
13459
13460 /* MIPS III */
13461 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
13462 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
13463 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
13464 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
13465 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
13466 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
13467 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
13468 { "orion", 0, ISA_MIPS3, CPU_R4600 },
13469 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
13470
13471 /* MIPS IV */
13472 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
13473 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
13474 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
13475 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
13476 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
13477 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
13478 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
13479 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
13480 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
13481 { "r7000", 0, ISA_MIPS4, CPU_R5000 },
13482
13483 /* MIPS 32 */
13484 { "4kc", 0, ISA_MIPS32, CPU_MIPS32, },
13485 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
13486 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
13487
13488 /* MIPS 64 */
13489 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
13490 { "20kc", 0, ISA_MIPS64, CPU_MIPS64 },
13491
13492 /* Broadcom SB-1 CPU */
13493 { "SB-1", 0, ISA_MIPS64, CPU_SB1 },
13494 { "sb-1250", 0, ISA_MIPS64, CPU_SB1 },
13495 { "sb1", 0, ISA_MIPS64, CPU_SB1 },
13496 { "sb1250", 0, ISA_MIPS64, CPU_SB1 },
13497
13498 /* End marker */
13499 { NULL, 0, 0, 0 }
13500 };
13501
13502
13503 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
13504 with a final "000" replaced by "k". Ignore case.
13505
13506 Note: this function is shared between GCC and GAS. */
13507
13508 static boolean
13509 mips_strict_matching_cpu_name_p (canonical, given)
13510 const char *canonical, *given;
13511 {
13512 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
13513 given++, canonical++;
13514
13515 return ((*given == 0 && *canonical == 0)
13516 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
13517 }
13518
13519
13520 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
13521 CPU name. We've traditionally allowed a lot of variation here.
13522
13523 Note: this function is shared between GCC and GAS. */
13524
13525 static boolean
13526 mips_matching_cpu_name_p (canonical, given)
13527 const char *canonical, *given;
13528 {
13529 /* First see if the name matches exactly, or with a final "000"
13530 turned into "k". */
13531 if (mips_strict_matching_cpu_name_p (canonical, given))
13532 return true;
13533
13534 /* If not, try comparing based on numerical designation alone.
13535 See if GIVEN is an unadorned number, or 'r' followed by a number. */
13536 if (TOLOWER (*given) == 'r')
13537 given++;
13538 if (!ISDIGIT (*given))
13539 return false;
13540
13541 /* Skip over some well-known prefixes in the canonical name,
13542 hoping to find a number there too. */
13543 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
13544 canonical += 2;
13545 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
13546 canonical += 2;
13547 else if (TOLOWER (canonical[0]) == 'r')
13548 canonical += 1;
13549
13550 return mips_strict_matching_cpu_name_p (canonical, given);
13551 }
13552
13553
13554 /* Parse an option that takes the name of a processor as its argument.
13555 OPTION is the name of the option and CPU_STRING is the argument.
13556 Return the corresponding processor enumeration if the CPU_STRING is
13557 recognized, otherwise report an error and return null.
13558
13559 A similar function exists in GCC. */
13560
13561 static const struct mips_cpu_info *
13562 mips_parse_cpu (option, cpu_string)
13563 const char *option, *cpu_string;
13564 {
13565 const struct mips_cpu_info *p;
13566
13567 /* 'from-abi' selects the most compatible architecture for the given
13568 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
13569 EABIs, we have to decide whether we're using the 32-bit or 64-bit
13570 version. Look first at the -mgp options, if given, otherwise base
13571 the choice on MIPS_DEFAULT_64BIT.
13572
13573 Treat NO_ABI like the EABIs. One reason to do this is that the
13574 plain 'mips' and 'mips64' configs have 'from-abi' as their default
13575 architecture. This code picks MIPS I for 'mips' and MIPS III for
13576 'mips64', just as we did in the days before 'from-abi'. */
13577 if (strcasecmp (cpu_string, "from-abi") == 0)
13578 {
13579 if (ABI_NEEDS_32BIT_REGS (mips_abi))
13580 return mips_cpu_info_from_isa (ISA_MIPS1);
13581
13582 if (ABI_NEEDS_64BIT_REGS (mips_abi))
13583 return mips_cpu_info_from_isa (ISA_MIPS3);
13584
13585 if (file_mips_gp32 >= 0)
13586 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
13587
13588 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
13589 ? ISA_MIPS3
13590 : ISA_MIPS1);
13591 }
13592
13593 /* 'default' has traditionally been a no-op. Probably not very useful. */
13594 if (strcasecmp (cpu_string, "default") == 0)
13595 return 0;
13596
13597 for (p = mips_cpu_info_table; p->name != 0; p++)
13598 if (mips_matching_cpu_name_p (p->name, cpu_string))
13599 return p;
13600
13601 as_bad ("Bad value (%s) for %s", cpu_string, option);
13602 return 0;
13603 }
13604
13605 /* Return the canonical processor information for ISA (a member of the
13606 ISA_MIPS* enumeration). */
13607
13608 static const struct mips_cpu_info *
13609 mips_cpu_info_from_isa (isa)
13610 int isa;
13611 {
13612 int i;
13613
13614 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
13615 if (mips_cpu_info_table[i].is_isa
13616 && isa == mips_cpu_info_table[i].isa)
13617 return (&mips_cpu_info_table[i]);
13618
13619 return NULL;
13620 }
13621 \f
13622 static void
13623 show (stream, string, col_p, first_p)
13624 FILE *stream;
13625 const char *string;
13626 int *col_p;
13627 int *first_p;
13628 {
13629 if (*first_p)
13630 {
13631 fprintf (stream, "%24s", "");
13632 *col_p = 24;
13633 }
13634 else
13635 {
13636 fprintf (stream, ", ");
13637 *col_p += 2;
13638 }
13639
13640 if (*col_p + strlen (string) > 72)
13641 {
13642 fprintf (stream, "\n%24s", "");
13643 *col_p = 24;
13644 }
13645
13646 fprintf (stream, "%s", string);
13647 *col_p += strlen (string);
13648
13649 *first_p = 0;
13650 }
13651
13652 void
13653 md_show_usage (stream)
13654 FILE *stream;
13655 {
13656 int column, first;
13657 size_t i;
13658
13659 fprintf (stream, _("\
13660 MIPS options:\n\
13661 -membedded-pic generate embedded position independent code\n\
13662 -EB generate big endian output\n\
13663 -EL generate little endian output\n\
13664 -g, -g2 do not remove unneeded NOPs or swap branches\n\
13665 -G NUM allow referencing objects up to NUM bytes\n\
13666 implicitly with the gp register [default 8]\n"));
13667 fprintf (stream, _("\
13668 -mips1 generate MIPS ISA I instructions\n\
13669 -mips2 generate MIPS ISA II instructions\n\
13670 -mips3 generate MIPS ISA III instructions\n\
13671 -mips4 generate MIPS ISA IV instructions\n\
13672 -mips5 generate MIPS ISA V instructions\n\
13673 -mips32 generate MIPS32 ISA instructions\n\
13674 -mips64 generate MIPS64 ISA instructions\n\
13675 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
13676
13677 first = 1;
13678
13679 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
13680 show (stream, mips_cpu_info_table[i].name, &column, &first);
13681 show (stream, "from-abi", &column, &first);
13682 fputc ('\n', stream);
13683
13684 fprintf (stream, _("\
13685 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
13686 -no-mCPU don't generate code specific to CPU.\n\
13687 For -mCPU and -no-mCPU, CPU must be one of:\n"));
13688
13689 first = 1;
13690
13691 show (stream, "3900", &column, &first);
13692 show (stream, "4010", &column, &first);
13693 show (stream, "4100", &column, &first);
13694 show (stream, "4650", &column, &first);
13695 fputc ('\n', stream);
13696
13697 fprintf (stream, _("\
13698 -mips16 generate mips16 instructions\n\
13699 -no-mips16 do not generate mips16 instructions\n"));
13700 fprintf (stream, _("\
13701 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
13702 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
13703 -O0 remove unneeded NOPs, do not swap branches\n\
13704 -O remove unneeded NOPs and swap branches\n\
13705 -n warn about NOPs generated from macros\n\
13706 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
13707 --trap, --no-break trap exception on div by 0 and mult overflow\n\
13708 --break, --no-trap break exception on div by 0 and mult overflow\n"));
13709 #ifdef OBJ_ELF
13710 fprintf (stream, _("\
13711 -KPIC, -call_shared generate SVR4 position independent code\n\
13712 -non_shared do not generate position independent code\n\
13713 -xgot assume a 32 bit GOT\n\
13714 -mabi=ABI create ABI conformant object file for:\n"));
13715
13716 first = 1;
13717
13718 show (stream, "32", &column, &first);
13719 show (stream, "o64", &column, &first);
13720 show (stream, "n32", &column, &first);
13721 show (stream, "64", &column, &first);
13722 show (stream, "eabi", &column, &first);
13723
13724 fputc ('\n', stream);
13725
13726 fprintf (stream, _("\
13727 -32 create o32 ABI object file (default)\n\
13728 -n32 create n32 ABI object file\n\
13729 -64 create 64 ABI object file\n"));
13730 #endif
13731 }
This page took 0.368617 seconds and 5 git commands to generate.