Fix references to file_mips_isa missed in previous patch.
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92
93 #define ZERO 0
94 #define ATREG 1
95 #define S0 16
96 #define S7 23
97 #define TREG 24
98 #define PIC_CALL_REG 25
99 #define KT0 26
100 #define KT1 27
101 #define GP 28
102 #define SP 29
103 #define FP 30
104 #define RA 31
105
106 #define ILLEGAL_REG (32)
107
108 #define AT mips_opts.at
109
110 extern int target_big_endian;
111
112 /* The name of the readonly data section. */
113 #define RDATA_SECTION_NAME ".rodata"
114
115 /* Ways in which an instruction can be "appended" to the output. */
116 enum append_method {
117 /* Just add it normally. */
118 APPEND_ADD,
119
120 /* Add it normally and then add a nop. */
121 APPEND_ADD_WITH_NOP,
122
123 /* Turn an instruction with a delay slot into a "compact" version. */
124 APPEND_ADD_COMPACT,
125
126 /* Insert the instruction before the last one. */
127 APPEND_SWAP
128 };
129
130 /* Information about an instruction, including its format, operands
131 and fixups. */
132 struct mips_cl_insn
133 {
134 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
135 const struct mips_opcode *insn_mo;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. If we have
139 decided to use an extended MIPS16 instruction, this includes the
140 extension. */
141 unsigned long insn_opcode;
142
143 /* The frag that contains the instruction. */
144 struct frag *frag;
145
146 /* The offset into FRAG of the first instruction byte. */
147 long where;
148
149 /* The relocs associated with the instruction, if any. */
150 fixS *fixp[3];
151
152 /* True if this entry cannot be moved from its current position. */
153 unsigned int fixed_p : 1;
154
155 /* True if this instruction occurred in a .set noreorder block. */
156 unsigned int noreorder_p : 1;
157
158 /* True for mips16 instructions that jump to an absolute address. */
159 unsigned int mips16_absolute_jump_p : 1;
160
161 /* True if this instruction is complete. */
162 unsigned int complete_p : 1;
163
164 /* True if this instruction is cleared from history by unconditional
165 branch. */
166 unsigned int cleared_p : 1;
167 };
168
169 /* The ABI to use. */
170 enum mips_abi_level
171 {
172 NO_ABI = 0,
173 O32_ABI,
174 O64_ABI,
175 N32_ABI,
176 N64_ABI,
177 EABI_ABI
178 };
179
180 /* MIPS ABI we are using for this output file. */
181 static enum mips_abi_level mips_abi = NO_ABI;
182
183 /* Whether or not we have code that can call pic code. */
184 int mips_abicalls = FALSE;
185
186 /* Whether or not we have code which can be put into a shared
187 library. */
188 static bfd_boolean mips_in_shared = TRUE;
189
190 /* This is the set of options which may be modified by the .set
191 pseudo-op. We use a struct so that .set push and .set pop are more
192 reliable. */
193
194 struct mips_set_options
195 {
196 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
197 if it has not been initialized. Changed by `.set mipsN', and the
198 -mipsN command line option, and the default CPU. */
199 int isa;
200 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
201 <asename>', by command line options, and based on the default
202 architecture. */
203 int ase;
204 /* Whether we are assembling for the mips16 processor. 0 if we are
205 not, 1 if we are, and -1 if the value has not been initialized.
206 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
207 -nomips16 command line options, and the default CPU. */
208 int mips16;
209 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
210 1 if we are, and -1 if the value has not been initialized. Changed
211 by `.set micromips' and `.set nomicromips', and the -mmicromips
212 and -mno-micromips command line options, and the default CPU. */
213 int micromips;
214 /* Non-zero if we should not reorder instructions. Changed by `.set
215 reorder' and `.set noreorder'. */
216 int noreorder;
217 /* Non-zero if we should not permit the register designated "assembler
218 temporary" to be used in instructions. The value is the register
219 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
220 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
221 unsigned int at;
222 /* Non-zero if we should warn when a macro instruction expands into
223 more than one machine instruction. Changed by `.set nomacro' and
224 `.set macro'. */
225 int warn_about_macros;
226 /* Non-zero if we should not move instructions. Changed by `.set
227 move', `.set volatile', `.set nomove', and `.set novolatile'. */
228 int nomove;
229 /* Non-zero if we should not optimize branches by moving the target
230 of the branch into the delay slot. Actually, we don't perform
231 this optimization anyhow. Changed by `.set bopt' and `.set
232 nobopt'. */
233 int nobopt;
234 /* Non-zero if we should not autoextend mips16 instructions.
235 Changed by `.set autoextend' and `.set noautoextend'. */
236 int noautoextend;
237 /* True if we should only emit 32-bit microMIPS instructions.
238 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
239 and -mno-insn32 command line options. */
240 bfd_boolean insn32;
241 /* Restrict general purpose registers and floating point registers
242 to 32 bit. This is initially determined when -mgp32 or -mfp32
243 is passed but can changed if the assembler code uses .set mipsN. */
244 int gp32;
245 int fp;
246 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
247 command line option, and the default CPU. */
248 int arch;
249 /* True if ".set sym32" is in effect. */
250 bfd_boolean sym32;
251 /* True if floating-point operations are not allowed. Changed by .set
252 softfloat or .set hardfloat, by command line options -msoft-float or
253 -mhard-float. The default is false. */
254 bfd_boolean soft_float;
255
256 /* True if only single-precision floating-point operations are allowed.
257 Changed by .set singlefloat or .set doublefloat, command-line options
258 -msingle-float or -mdouble-float. The default is false. */
259 bfd_boolean single_float;
260 };
261
262 /* True if -mnan=2008, false if -mnan=legacy. */
263 static bfd_boolean mips_flag_nan2008 = FALSE;
264
265 /* This is the struct we use to hold the module level set of options.
266 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp32 and
267 fp fields to -1 to indicate that they have not been initialized. */
268
269 static struct mips_set_options file_mips_opts =
270 {
271 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
272 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
273 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
274 /* gp32 */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
275 /* soft_float */ FALSE, /* single_float */ FALSE
276 };
277
278 /* This is similar to file_mips_opts, but for the current set of options. */
279
280 static struct mips_set_options mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp32 */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE
287 };
288
289 /* The set of ASEs that were selected on the command line, either
290 explicitly via ASE options or implicitly through things like -march. */
291 static unsigned int file_ase;
292
293 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
294 static unsigned int file_ase_explicit;
295
296 /* These variables are filled in with the masks of registers used.
297 The object format code reads them and puts them in the appropriate
298 place. */
299 unsigned long mips_gprmask;
300 unsigned long mips_cprmask[4];
301
302 /* True if any MIPS16 code was produced. */
303 static int file_ase_mips16;
304
305 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
306 || mips_opts.isa == ISA_MIPS32R2 \
307 || mips_opts.isa == ISA_MIPS32R3 \
308 || mips_opts.isa == ISA_MIPS32R5 \
309 || mips_opts.isa == ISA_MIPS64 \
310 || mips_opts.isa == ISA_MIPS64R2 \
311 || mips_opts.isa == ISA_MIPS64R3 \
312 || mips_opts.isa == ISA_MIPS64R5)
313
314 /* True if any microMIPS code was produced. */
315 static int file_ase_micromips;
316
317 /* True if we want to create R_MIPS_JALR for jalr $25. */
318 #ifdef TE_IRIX
319 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
320 #else
321 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
322 because there's no place for any addend, the only acceptable
323 expression is a bare symbol. */
324 #define MIPS_JALR_HINT_P(EXPR) \
325 (!HAVE_IN_PLACE_ADDENDS \
326 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
327 #endif
328
329 /* The argument of the -march= flag. The architecture we are assembling. */
330 static const char *mips_arch_string;
331
332 /* The argument of the -mtune= flag. The architecture for which we
333 are optimizing. */
334 static int mips_tune = CPU_UNKNOWN;
335 static const char *mips_tune_string;
336
337 /* True when generating 32-bit code for a 64-bit processor. */
338 static int mips_32bitmode = 0;
339
340 /* True if the given ABI requires 32-bit registers. */
341 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
342
343 /* Likewise 64-bit registers. */
344 #define ABI_NEEDS_64BIT_REGS(ABI) \
345 ((ABI) == N32_ABI \
346 || (ABI) == N64_ABI \
347 || (ABI) == O64_ABI)
348
349 /* Return true if ISA supports 64 bit wide gp registers. */
350 #define ISA_HAS_64BIT_REGS(ISA) \
351 ((ISA) == ISA_MIPS3 \
352 || (ISA) == ISA_MIPS4 \
353 || (ISA) == ISA_MIPS5 \
354 || (ISA) == ISA_MIPS64 \
355 || (ISA) == ISA_MIPS64R2 \
356 || (ISA) == ISA_MIPS64R3 \
357 || (ISA) == ISA_MIPS64R5)
358
359 /* Return true if ISA supports 64 bit wide float registers. */
360 #define ISA_HAS_64BIT_FPRS(ISA) \
361 ((ISA) == ISA_MIPS3 \
362 || (ISA) == ISA_MIPS4 \
363 || (ISA) == ISA_MIPS5 \
364 || (ISA) == ISA_MIPS32R2 \
365 || (ISA) == ISA_MIPS32R3 \
366 || (ISA) == ISA_MIPS32R5 \
367 || (ISA) == ISA_MIPS64 \
368 || (ISA) == ISA_MIPS64R2 \
369 || (ISA) == ISA_MIPS64R3 \
370 || (ISA) == ISA_MIPS64R5 )
371
372 /* Return true if ISA supports 64-bit right rotate (dror et al.)
373 instructions. */
374 #define ISA_HAS_DROR(ISA) \
375 ((ISA) == ISA_MIPS64R2 \
376 || (ISA) == ISA_MIPS64R3 \
377 || (ISA) == ISA_MIPS64R5 \
378 || (mips_opts.micromips \
379 && ISA_HAS_64BIT_REGS (ISA)) \
380 )
381
382 /* Return true if ISA supports 32-bit right rotate (ror et al.)
383 instructions. */
384 #define ISA_HAS_ROR(ISA) \
385 ((ISA) == ISA_MIPS32R2 \
386 || (ISA) == ISA_MIPS32R3 \
387 || (ISA) == ISA_MIPS32R5 \
388 || (ISA) == ISA_MIPS64R2 \
389 || (ISA) == ISA_MIPS64R3 \
390 || (ISA) == ISA_MIPS64R5 \
391 || (mips_opts.ase & ASE_SMARTMIPS) \
392 || mips_opts.micromips \
393 )
394
395 /* Return true if ISA supports single-precision floats in odd registers. */
396 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
397 ((ISA) == ISA_MIPS32 \
398 || (ISA) == ISA_MIPS32R2 \
399 || (ISA) == ISA_MIPS32R3 \
400 || (ISA) == ISA_MIPS32R5 \
401 || (ISA) == ISA_MIPS64 \
402 || (ISA) == ISA_MIPS64R2 \
403 || (ISA) == ISA_MIPS64R3 \
404 || (ISA) == ISA_MIPS64R5)
405
406 /* Return true if ISA supports move to/from high part of a 64-bit
407 floating-point register. */
408 #define ISA_HAS_MXHC1(ISA) \
409 ((ISA) == ISA_MIPS32R2 \
410 || (ISA) == ISA_MIPS32R3 \
411 || (ISA) == ISA_MIPS32R5 \
412 || (ISA) == ISA_MIPS64R2 \
413 || (ISA) == ISA_MIPS64R3 \
414 || (ISA) == ISA_MIPS64R5)
415
416 #define HAVE_32BIT_GPRS \
417 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
418
419 #define HAVE_32BIT_FPRS \
420 (mips_opts.fp != 64 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
421
422 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
423 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
424
425 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
426
427 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
428
429 /* True if relocations are stored in-place. */
430 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
431
432 /* The ABI-derived address size. */
433 #define HAVE_64BIT_ADDRESSES \
434 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
435 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
436
437 /* The size of symbolic constants (i.e., expressions of the form
438 "SYMBOL" or "SYMBOL + OFFSET"). */
439 #define HAVE_32BIT_SYMBOLS \
440 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
441 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
442
443 /* Addresses are loaded in different ways, depending on the address size
444 in use. The n32 ABI Documentation also mandates the use of additions
445 with overflow checking, but existing implementations don't follow it. */
446 #define ADDRESS_ADD_INSN \
447 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
448
449 #define ADDRESS_ADDI_INSN \
450 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
451
452 #define ADDRESS_LOAD_INSN \
453 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
454
455 #define ADDRESS_STORE_INSN \
456 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
457
458 /* Return true if the given CPU supports the MIPS16 ASE. */
459 #define CPU_HAS_MIPS16(cpu) \
460 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
461 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
462
463 /* Return true if the given CPU supports the microMIPS ASE. */
464 #define CPU_HAS_MICROMIPS(cpu) 0
465
466 /* True if CPU has a dror instruction. */
467 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
468
469 /* True if CPU has a ror instruction. */
470 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
471
472 /* True if CPU is in the Octeon family */
473 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
474
475 /* True if CPU has seq/sne and seqi/snei instructions. */
476 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
477
478 /* True, if CPU has support for ldc1 and sdc1. */
479 #define CPU_HAS_LDC1_SDC1(CPU) \
480 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
481
482 /* True if mflo and mfhi can be immediately followed by instructions
483 which write to the HI and LO registers.
484
485 According to MIPS specifications, MIPS ISAs I, II, and III need
486 (at least) two instructions between the reads of HI/LO and
487 instructions which write them, and later ISAs do not. Contradicting
488 the MIPS specifications, some MIPS IV processor user manuals (e.g.
489 the UM for the NEC Vr5000) document needing the instructions between
490 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
491 MIPS64 and later ISAs to have the interlocks, plus any specific
492 earlier-ISA CPUs for which CPU documentation declares that the
493 instructions are really interlocked. */
494 #define hilo_interlocks \
495 (mips_opts.isa == ISA_MIPS32 \
496 || mips_opts.isa == ISA_MIPS32R2 \
497 || mips_opts.isa == ISA_MIPS32R3 \
498 || mips_opts.isa == ISA_MIPS32R5 \
499 || mips_opts.isa == ISA_MIPS64 \
500 || mips_opts.isa == ISA_MIPS64R2 \
501 || mips_opts.isa == ISA_MIPS64R3 \
502 || mips_opts.isa == ISA_MIPS64R5 \
503 || mips_opts.arch == CPU_R4010 \
504 || mips_opts.arch == CPU_R5900 \
505 || mips_opts.arch == CPU_R10000 \
506 || mips_opts.arch == CPU_R12000 \
507 || mips_opts.arch == CPU_R14000 \
508 || mips_opts.arch == CPU_R16000 \
509 || mips_opts.arch == CPU_RM7000 \
510 || mips_opts.arch == CPU_VR5500 \
511 || mips_opts.micromips \
512 )
513
514 /* Whether the processor uses hardware interlocks to protect reads
515 from the GPRs after they are loaded from memory, and thus does not
516 require nops to be inserted. This applies to instructions marked
517 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
518 level I and microMIPS mode instructions are always interlocked. */
519 #define gpr_interlocks \
520 (mips_opts.isa != ISA_MIPS1 \
521 || mips_opts.arch == CPU_R3900 \
522 || mips_opts.arch == CPU_R5900 \
523 || mips_opts.micromips \
524 )
525
526 /* Whether the processor uses hardware interlocks to avoid delays
527 required by coprocessor instructions, and thus does not require
528 nops to be inserted. This applies to instructions marked
529 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
530 between instructions marked INSN_WRITE_COND_CODE and ones marked
531 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
532 levels I, II, and III and microMIPS mode instructions are always
533 interlocked. */
534 /* Itbl support may require additional care here. */
535 #define cop_interlocks \
536 ((mips_opts.isa != ISA_MIPS1 \
537 && mips_opts.isa != ISA_MIPS2 \
538 && mips_opts.isa != ISA_MIPS3) \
539 || mips_opts.arch == CPU_R4300 \
540 || mips_opts.micromips \
541 )
542
543 /* Whether the processor uses hardware interlocks to protect reads
544 from coprocessor registers after they are loaded from memory, and
545 thus does not require nops to be inserted. This applies to
546 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
547 requires at MIPS ISA level I and microMIPS mode instructions are
548 always interlocked. */
549 #define cop_mem_interlocks \
550 (mips_opts.isa != ISA_MIPS1 \
551 || mips_opts.micromips \
552 )
553
554 /* Is this a mfhi or mflo instruction? */
555 #define MF_HILO_INSN(PINFO) \
556 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
557
558 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
559 has been selected. This implies, in particular, that addresses of text
560 labels have their LSB set. */
561 #define HAVE_CODE_COMPRESSION \
562 ((mips_opts.mips16 | mips_opts.micromips) != 0)
563
564 /* The minimum and maximum signed values that can be stored in a GPR. */
565 #define GPR_SMAX ((offsetT) (((valueT) 1 << (HAVE_64BIT_GPRS ? 63 : 31)) - 1))
566 #define GPR_SMIN (-GPR_SMAX - 1)
567
568 /* MIPS PIC level. */
569
570 enum mips_pic_level mips_pic;
571
572 /* 1 if we should generate 32 bit offsets from the $gp register in
573 SVR4_PIC mode. Currently has no meaning in other modes. */
574 static int mips_big_got = 0;
575
576 /* 1 if trap instructions should used for overflow rather than break
577 instructions. */
578 static int mips_trap = 0;
579
580 /* 1 if double width floating point constants should not be constructed
581 by assembling two single width halves into two single width floating
582 point registers which just happen to alias the double width destination
583 register. On some architectures this aliasing can be disabled by a bit
584 in the status register, and the setting of this bit cannot be determined
585 automatically at assemble time. */
586 static int mips_disable_float_construction;
587
588 /* Non-zero if any .set noreorder directives were used. */
589
590 static int mips_any_noreorder;
591
592 /* Non-zero if nops should be inserted when the register referenced in
593 an mfhi/mflo instruction is read in the next two instructions. */
594 static int mips_7000_hilo_fix;
595
596 /* The size of objects in the small data section. */
597 static unsigned int g_switch_value = 8;
598 /* Whether the -G option was used. */
599 static int g_switch_seen = 0;
600
601 #define N_RMASK 0xc4
602 #define N_VFP 0xd4
603
604 /* If we can determine in advance that GP optimization won't be
605 possible, we can skip the relaxation stuff that tries to produce
606 GP-relative references. This makes delay slot optimization work
607 better.
608
609 This function can only provide a guess, but it seems to work for
610 gcc output. It needs to guess right for gcc, otherwise gcc
611 will put what it thinks is a GP-relative instruction in a branch
612 delay slot.
613
614 I don't know if a fix is needed for the SVR4_PIC mode. I've only
615 fixed it for the non-PIC mode. KR 95/04/07 */
616 static int nopic_need_relax (symbolS *, int);
617
618 /* handle of the OPCODE hash table */
619 static struct hash_control *op_hash = NULL;
620
621 /* The opcode hash table we use for the mips16. */
622 static struct hash_control *mips16_op_hash = NULL;
623
624 /* The opcode hash table we use for the microMIPS ASE. */
625 static struct hash_control *micromips_op_hash = NULL;
626
627 /* This array holds the chars that always start a comment. If the
628 pre-processor is disabled, these aren't very useful */
629 const char comment_chars[] = "#";
630
631 /* This array holds the chars that only start a comment at the beginning of
632 a line. If the line seems to have the form '# 123 filename'
633 .line and .file directives will appear in the pre-processed output */
634 /* Note that input_file.c hand checks for '#' at the beginning of the
635 first line of the input file. This is because the compiler outputs
636 #NO_APP at the beginning of its output. */
637 /* Also note that C style comments are always supported. */
638 const char line_comment_chars[] = "#";
639
640 /* This array holds machine specific line separator characters. */
641 const char line_separator_chars[] = ";";
642
643 /* Chars that can be used to separate mant from exp in floating point nums */
644 const char EXP_CHARS[] = "eE";
645
646 /* Chars that mean this number is a floating point constant */
647 /* As in 0f12.456 */
648 /* or 0d1.2345e12 */
649 const char FLT_CHARS[] = "rRsSfFdDxXpP";
650
651 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
652 changed in read.c . Ideally it shouldn't have to know about it at all,
653 but nothing is ideal around here.
654 */
655
656 /* Types of printf format used for instruction-related error messages.
657 "I" means int ("%d") and "S" means string ("%s"). */
658 enum mips_insn_error_format {
659 ERR_FMT_PLAIN,
660 ERR_FMT_I,
661 ERR_FMT_SS,
662 };
663
664 /* Information about an error that was found while assembling the current
665 instruction. */
666 struct mips_insn_error {
667 /* We sometimes need to match an instruction against more than one
668 opcode table entry. Errors found during this matching are reported
669 against a particular syntactic argument rather than against the
670 instruction as a whole. We grade these messages so that errors
671 against argument N have a greater priority than an error against
672 any argument < N, since the former implies that arguments up to N
673 were acceptable and that the opcode entry was therefore a closer match.
674 If several matches report an error against the same argument,
675 we only use that error if it is the same in all cases.
676
677 min_argnum is the minimum argument number for which an error message
678 should be accepted. It is 0 if MSG is against the instruction as
679 a whole. */
680 int min_argnum;
681
682 /* The printf()-style message, including its format and arguments. */
683 enum mips_insn_error_format format;
684 const char *msg;
685 union {
686 int i;
687 const char *ss[2];
688 } u;
689 };
690
691 /* The error that should be reported for the current instruction. */
692 static struct mips_insn_error insn_error;
693
694 static int auto_align = 1;
695
696 /* When outputting SVR4 PIC code, the assembler needs to know the
697 offset in the stack frame from which to restore the $gp register.
698 This is set by the .cprestore pseudo-op, and saved in this
699 variable. */
700 static offsetT mips_cprestore_offset = -1;
701
702 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
703 more optimizations, it can use a register value instead of a memory-saved
704 offset and even an other register than $gp as global pointer. */
705 static offsetT mips_cpreturn_offset = -1;
706 static int mips_cpreturn_register = -1;
707 static int mips_gp_register = GP;
708 static int mips_gprel_offset = 0;
709
710 /* Whether mips_cprestore_offset has been set in the current function
711 (or whether it has already been warned about, if not). */
712 static int mips_cprestore_valid = 0;
713
714 /* This is the register which holds the stack frame, as set by the
715 .frame pseudo-op. This is needed to implement .cprestore. */
716 static int mips_frame_reg = SP;
717
718 /* Whether mips_frame_reg has been set in the current function
719 (or whether it has already been warned about, if not). */
720 static int mips_frame_reg_valid = 0;
721
722 /* To output NOP instructions correctly, we need to keep information
723 about the previous two instructions. */
724
725 /* Whether we are optimizing. The default value of 2 means to remove
726 unneeded NOPs and swap branch instructions when possible. A value
727 of 1 means to not swap branches. A value of 0 means to always
728 insert NOPs. */
729 static int mips_optimize = 2;
730
731 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
732 equivalent to seeing no -g option at all. */
733 static int mips_debug = 0;
734
735 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
736 #define MAX_VR4130_NOPS 4
737
738 /* The maximum number of NOPs needed to fill delay slots. */
739 #define MAX_DELAY_NOPS 2
740
741 /* The maximum number of NOPs needed for any purpose. */
742 #define MAX_NOPS 4
743
744 /* A list of previous instructions, with index 0 being the most recent.
745 We need to look back MAX_NOPS instructions when filling delay slots
746 or working around processor errata. We need to look back one
747 instruction further if we're thinking about using history[0] to
748 fill a branch delay slot. */
749 static struct mips_cl_insn history[1 + MAX_NOPS];
750
751 /* Arrays of operands for each instruction. */
752 #define MAX_OPERANDS 6
753 struct mips_operand_array {
754 const struct mips_operand *operand[MAX_OPERANDS];
755 };
756 static struct mips_operand_array *mips_operands;
757 static struct mips_operand_array *mips16_operands;
758 static struct mips_operand_array *micromips_operands;
759
760 /* Nop instructions used by emit_nop. */
761 static struct mips_cl_insn nop_insn;
762 static struct mips_cl_insn mips16_nop_insn;
763 static struct mips_cl_insn micromips_nop16_insn;
764 static struct mips_cl_insn micromips_nop32_insn;
765
766 /* The appropriate nop for the current mode. */
767 #define NOP_INSN (mips_opts.mips16 \
768 ? &mips16_nop_insn \
769 : (mips_opts.micromips \
770 ? (mips_opts.insn32 \
771 ? &micromips_nop32_insn \
772 : &micromips_nop16_insn) \
773 : &nop_insn))
774
775 /* The size of NOP_INSN in bytes. */
776 #define NOP_INSN_SIZE ((mips_opts.mips16 \
777 || (mips_opts.micromips && !mips_opts.insn32)) \
778 ? 2 : 4)
779
780 /* If this is set, it points to a frag holding nop instructions which
781 were inserted before the start of a noreorder section. If those
782 nops turn out to be unnecessary, the size of the frag can be
783 decreased. */
784 static fragS *prev_nop_frag;
785
786 /* The number of nop instructions we created in prev_nop_frag. */
787 static int prev_nop_frag_holds;
788
789 /* The number of nop instructions that we know we need in
790 prev_nop_frag. */
791 static int prev_nop_frag_required;
792
793 /* The number of instructions we've seen since prev_nop_frag. */
794 static int prev_nop_frag_since;
795
796 /* Relocations against symbols are sometimes done in two parts, with a HI
797 relocation and a LO relocation. Each relocation has only 16 bits of
798 space to store an addend. This means that in order for the linker to
799 handle carries correctly, it must be able to locate both the HI and
800 the LO relocation. This means that the relocations must appear in
801 order in the relocation table.
802
803 In order to implement this, we keep track of each unmatched HI
804 relocation. We then sort them so that they immediately precede the
805 corresponding LO relocation. */
806
807 struct mips_hi_fixup
808 {
809 /* Next HI fixup. */
810 struct mips_hi_fixup *next;
811 /* This fixup. */
812 fixS *fixp;
813 /* The section this fixup is in. */
814 segT seg;
815 };
816
817 /* The list of unmatched HI relocs. */
818
819 static struct mips_hi_fixup *mips_hi_fixup_list;
820
821 /* The frag containing the last explicit relocation operator.
822 Null if explicit relocations have not been used. */
823
824 static fragS *prev_reloc_op_frag;
825
826 /* Map mips16 register numbers to normal MIPS register numbers. */
827
828 static const unsigned int mips16_to_32_reg_map[] =
829 {
830 16, 17, 2, 3, 4, 5, 6, 7
831 };
832
833 /* Map microMIPS register numbers to normal MIPS register numbers. */
834
835 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
836
837 /* The microMIPS registers with type h. */
838 static const unsigned int micromips_to_32_reg_h_map1[] =
839 {
840 5, 5, 6, 4, 4, 4, 4, 4
841 };
842 static const unsigned int micromips_to_32_reg_h_map2[] =
843 {
844 6, 7, 7, 21, 22, 5, 6, 7
845 };
846
847 /* The microMIPS registers with type m. */
848 static const unsigned int micromips_to_32_reg_m_map[] =
849 {
850 0, 17, 2, 3, 16, 18, 19, 20
851 };
852
853 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
854
855 /* Classifies the kind of instructions we're interested in when
856 implementing -mfix-vr4120. */
857 enum fix_vr4120_class
858 {
859 FIX_VR4120_MACC,
860 FIX_VR4120_DMACC,
861 FIX_VR4120_MULT,
862 FIX_VR4120_DMULT,
863 FIX_VR4120_DIV,
864 FIX_VR4120_MTHILO,
865 NUM_FIX_VR4120_CLASSES
866 };
867
868 /* ...likewise -mfix-loongson2f-jump. */
869 static bfd_boolean mips_fix_loongson2f_jump;
870
871 /* ...likewise -mfix-loongson2f-nop. */
872 static bfd_boolean mips_fix_loongson2f_nop;
873
874 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
875 static bfd_boolean mips_fix_loongson2f;
876
877 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
878 there must be at least one other instruction between an instruction
879 of type X and an instruction of type Y. */
880 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
881
882 /* True if -mfix-vr4120 is in force. */
883 static int mips_fix_vr4120;
884
885 /* ...likewise -mfix-vr4130. */
886 static int mips_fix_vr4130;
887
888 /* ...likewise -mfix-24k. */
889 static int mips_fix_24k;
890
891 /* ...likewise -mfix-rm7000 */
892 static int mips_fix_rm7000;
893
894 /* ...likewise -mfix-cn63xxp1 */
895 static bfd_boolean mips_fix_cn63xxp1;
896
897 /* We don't relax branches by default, since this causes us to expand
898 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
899 fail to compute the offset before expanding the macro to the most
900 efficient expansion. */
901
902 static int mips_relax_branch;
903 \f
904 /* The expansion of many macros depends on the type of symbol that
905 they refer to. For example, when generating position-dependent code,
906 a macro that refers to a symbol may have two different expansions,
907 one which uses GP-relative addresses and one which uses absolute
908 addresses. When generating SVR4-style PIC, a macro may have
909 different expansions for local and global symbols.
910
911 We handle these situations by generating both sequences and putting
912 them in variant frags. In position-dependent code, the first sequence
913 will be the GP-relative one and the second sequence will be the
914 absolute one. In SVR4 PIC, the first sequence will be for global
915 symbols and the second will be for local symbols.
916
917 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
918 SECOND are the lengths of the two sequences in bytes. These fields
919 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
920 the subtype has the following flags:
921
922 RELAX_USE_SECOND
923 Set if it has been decided that we should use the second
924 sequence instead of the first.
925
926 RELAX_SECOND_LONGER
927 Set in the first variant frag if the macro's second implementation
928 is longer than its first. This refers to the macro as a whole,
929 not an individual relaxation.
930
931 RELAX_NOMACRO
932 Set in the first variant frag if the macro appeared in a .set nomacro
933 block and if one alternative requires a warning but the other does not.
934
935 RELAX_DELAY_SLOT
936 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
937 delay slot.
938
939 RELAX_DELAY_SLOT_16BIT
940 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
941 16-bit instruction.
942
943 RELAX_DELAY_SLOT_SIZE_FIRST
944 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
945 the macro is of the wrong size for the branch delay slot.
946
947 RELAX_DELAY_SLOT_SIZE_SECOND
948 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
949 the macro is of the wrong size for the branch delay slot.
950
951 The frag's "opcode" points to the first fixup for relaxable code.
952
953 Relaxable macros are generated using a sequence such as:
954
955 relax_start (SYMBOL);
956 ... generate first expansion ...
957 relax_switch ();
958 ... generate second expansion ...
959 relax_end ();
960
961 The code and fixups for the unwanted alternative are discarded
962 by md_convert_frag. */
963 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
964
965 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
966 #define RELAX_SECOND(X) ((X) & 0xff)
967 #define RELAX_USE_SECOND 0x10000
968 #define RELAX_SECOND_LONGER 0x20000
969 #define RELAX_NOMACRO 0x40000
970 #define RELAX_DELAY_SLOT 0x80000
971 #define RELAX_DELAY_SLOT_16BIT 0x100000
972 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
973 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
974
975 /* Branch without likely bit. If label is out of range, we turn:
976
977 beq reg1, reg2, label
978 delay slot
979
980 into
981
982 bne reg1, reg2, 0f
983 nop
984 j label
985 0: delay slot
986
987 with the following opcode replacements:
988
989 beq <-> bne
990 blez <-> bgtz
991 bltz <-> bgez
992 bc1f <-> bc1t
993
994 bltzal <-> bgezal (with jal label instead of j label)
995
996 Even though keeping the delay slot instruction in the delay slot of
997 the branch would be more efficient, it would be very tricky to do
998 correctly, because we'd have to introduce a variable frag *after*
999 the delay slot instruction, and expand that instead. Let's do it
1000 the easy way for now, even if the branch-not-taken case now costs
1001 one additional instruction. Out-of-range branches are not supposed
1002 to be common, anyway.
1003
1004 Branch likely. If label is out of range, we turn:
1005
1006 beql reg1, reg2, label
1007 delay slot (annulled if branch not taken)
1008
1009 into
1010
1011 beql reg1, reg2, 1f
1012 nop
1013 beql $0, $0, 2f
1014 nop
1015 1: j[al] label
1016 delay slot (executed only if branch taken)
1017 2:
1018
1019 It would be possible to generate a shorter sequence by losing the
1020 likely bit, generating something like:
1021
1022 bne reg1, reg2, 0f
1023 nop
1024 j[al] label
1025 delay slot (executed only if branch taken)
1026 0:
1027
1028 beql -> bne
1029 bnel -> beq
1030 blezl -> bgtz
1031 bgtzl -> blez
1032 bltzl -> bgez
1033 bgezl -> bltz
1034 bc1fl -> bc1t
1035 bc1tl -> bc1f
1036
1037 bltzall -> bgezal (with jal label instead of j label)
1038 bgezall -> bltzal (ditto)
1039
1040
1041 but it's not clear that it would actually improve performance. */
1042 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1043 ((relax_substateT) \
1044 (0xc0000000 \
1045 | ((at) & 0x1f) \
1046 | ((toofar) ? 0x20 : 0) \
1047 | ((link) ? 0x40 : 0) \
1048 | ((likely) ? 0x80 : 0) \
1049 | ((uncond) ? 0x100 : 0)))
1050 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1051 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1052 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1053 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1054 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1055 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1056
1057 /* For mips16 code, we use an entirely different form of relaxation.
1058 mips16 supports two versions of most instructions which take
1059 immediate values: a small one which takes some small value, and a
1060 larger one which takes a 16 bit value. Since branches also follow
1061 this pattern, relaxing these values is required.
1062
1063 We can assemble both mips16 and normal MIPS code in a single
1064 object. Therefore, we need to support this type of relaxation at
1065 the same time that we support the relaxation described above. We
1066 use the high bit of the subtype field to distinguish these cases.
1067
1068 The information we store for this type of relaxation is the
1069 argument code found in the opcode file for this relocation, whether
1070 the user explicitly requested a small or extended form, and whether
1071 the relocation is in a jump or jal delay slot. That tells us the
1072 size of the value, and how it should be stored. We also store
1073 whether the fragment is considered to be extended or not. We also
1074 store whether this is known to be a branch to a different section,
1075 whether we have tried to relax this frag yet, and whether we have
1076 ever extended a PC relative fragment because of a shift count. */
1077 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1078 (0x80000000 \
1079 | ((type) & 0xff) \
1080 | ((small) ? 0x100 : 0) \
1081 | ((ext) ? 0x200 : 0) \
1082 | ((dslot) ? 0x400 : 0) \
1083 | ((jal_dslot) ? 0x800 : 0))
1084 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1085 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1086 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1087 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1088 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1089 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1090 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1091 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1092 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1093 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1094 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1095 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1096
1097 /* For microMIPS code, we use relaxation similar to one we use for
1098 MIPS16 code. Some instructions that take immediate values support
1099 two encodings: a small one which takes some small value, and a
1100 larger one which takes a 16 bit value. As some branches also follow
1101 this pattern, relaxing these values is required.
1102
1103 We can assemble both microMIPS and normal MIPS code in a single
1104 object. Therefore, we need to support this type of relaxation at
1105 the same time that we support the relaxation described above. We
1106 use one of the high bits of the subtype field to distinguish these
1107 cases.
1108
1109 The information we store for this type of relaxation is the argument
1110 code found in the opcode file for this relocation, the register
1111 selected as the assembler temporary, whether the branch is
1112 unconditional, whether it is compact, whether it stores the link
1113 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1114 branches to a sequence of instructions is enabled, and whether the
1115 displacement of a branch is too large to fit as an immediate argument
1116 of a 16-bit and a 32-bit branch, respectively. */
1117 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1118 relax32, toofar16, toofar32) \
1119 (0x40000000 \
1120 | ((type) & 0xff) \
1121 | (((at) & 0x1f) << 8) \
1122 | ((uncond) ? 0x2000 : 0) \
1123 | ((compact) ? 0x4000 : 0) \
1124 | ((link) ? 0x8000 : 0) \
1125 | ((relax32) ? 0x10000 : 0) \
1126 | ((toofar16) ? 0x20000 : 0) \
1127 | ((toofar32) ? 0x40000 : 0))
1128 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1129 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1130 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1131 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1132 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1133 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1134 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1135
1136 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1137 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1138 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1139 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1140 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1141 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1142
1143 /* Sign-extend 16-bit value X. */
1144 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1145
1146 /* Is the given value a sign-extended 32-bit value? */
1147 #define IS_SEXT_32BIT_NUM(x) \
1148 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1149 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1150
1151 /* Is the given value a sign-extended 16-bit value? */
1152 #define IS_SEXT_16BIT_NUM(x) \
1153 (((x) &~ (offsetT) 0x7fff) == 0 \
1154 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1155
1156 /* Is the given value a sign-extended 12-bit value? */
1157 #define IS_SEXT_12BIT_NUM(x) \
1158 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1159
1160 /* Is the given value a sign-extended 9-bit value? */
1161 #define IS_SEXT_9BIT_NUM(x) \
1162 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1163
1164 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1165 #define IS_ZEXT_32BIT_NUM(x) \
1166 (((x) &~ (offsetT) 0xffffffff) == 0 \
1167 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1168
1169 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1170 SHIFT places. */
1171 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1172 (((STRUCT) >> (SHIFT)) & (MASK))
1173
1174 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1175 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1176 (!(MICROMIPS) \
1177 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1178 : EXTRACT_BITS ((INSN).insn_opcode, \
1179 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1180 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1181 EXTRACT_BITS ((INSN).insn_opcode, \
1182 MIPS16OP_MASK_##FIELD, \
1183 MIPS16OP_SH_##FIELD)
1184
1185 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1186 #define MIPS16_EXTEND (0xf000U << 16)
1187 \f
1188 /* Whether or not we are emitting a branch-likely macro. */
1189 static bfd_boolean emit_branch_likely_macro = FALSE;
1190
1191 /* Global variables used when generating relaxable macros. See the
1192 comment above RELAX_ENCODE for more details about how relaxation
1193 is used. */
1194 static struct {
1195 /* 0 if we're not emitting a relaxable macro.
1196 1 if we're emitting the first of the two relaxation alternatives.
1197 2 if we're emitting the second alternative. */
1198 int sequence;
1199
1200 /* The first relaxable fixup in the current frag. (In other words,
1201 the first fixup that refers to relaxable code.) */
1202 fixS *first_fixup;
1203
1204 /* sizes[0] says how many bytes of the first alternative are stored in
1205 the current frag. Likewise sizes[1] for the second alternative. */
1206 unsigned int sizes[2];
1207
1208 /* The symbol on which the choice of sequence depends. */
1209 symbolS *symbol;
1210 } mips_relax;
1211 \f
1212 /* Global variables used to decide whether a macro needs a warning. */
1213 static struct {
1214 /* True if the macro is in a branch delay slot. */
1215 bfd_boolean delay_slot_p;
1216
1217 /* Set to the length in bytes required if the macro is in a delay slot
1218 that requires a specific length of instruction, otherwise zero. */
1219 unsigned int delay_slot_length;
1220
1221 /* For relaxable macros, sizes[0] is the length of the first alternative
1222 in bytes and sizes[1] is the length of the second alternative.
1223 For non-relaxable macros, both elements give the length of the
1224 macro in bytes. */
1225 unsigned int sizes[2];
1226
1227 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1228 instruction of the first alternative in bytes and first_insn_sizes[1]
1229 is the length of the first instruction of the second alternative.
1230 For non-relaxable macros, both elements give the length of the first
1231 instruction in bytes.
1232
1233 Set to zero if we haven't yet seen the first instruction. */
1234 unsigned int first_insn_sizes[2];
1235
1236 /* For relaxable macros, insns[0] is the number of instructions for the
1237 first alternative and insns[1] is the number of instructions for the
1238 second alternative.
1239
1240 For non-relaxable macros, both elements give the number of
1241 instructions for the macro. */
1242 unsigned int insns[2];
1243
1244 /* The first variant frag for this macro. */
1245 fragS *first_frag;
1246 } mips_macro_warning;
1247 \f
1248 /* Prototypes for static functions. */
1249
1250 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1251
1252 static void append_insn
1253 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1254 bfd_boolean expansionp);
1255 static void mips_no_prev_insn (void);
1256 static void macro_build (expressionS *, const char *, const char *, ...);
1257 static void mips16_macro_build
1258 (expressionS *, const char *, const char *, va_list *);
1259 static void load_register (int, expressionS *, int);
1260 static void macro_start (void);
1261 static void macro_end (void);
1262 static void macro (struct mips_cl_insn *ip, char *str);
1263 static void mips16_macro (struct mips_cl_insn * ip);
1264 static void mips_ip (char *str, struct mips_cl_insn * ip);
1265 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1266 static void mips16_immed
1267 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1268 unsigned int, unsigned long *);
1269 static size_t my_getSmallExpression
1270 (expressionS *, bfd_reloc_code_real_type *, char *);
1271 static void my_getExpression (expressionS *, char *);
1272 static void s_align (int);
1273 static void s_change_sec (int);
1274 static void s_change_section (int);
1275 static void s_cons (int);
1276 static void s_float_cons (int);
1277 static void s_mips_globl (int);
1278 static void s_option (int);
1279 static void s_mipsset (int);
1280 static void s_abicalls (int);
1281 static void s_cpload (int);
1282 static void s_cpsetup (int);
1283 static void s_cplocal (int);
1284 static void s_cprestore (int);
1285 static void s_cpreturn (int);
1286 static void s_dtprelword (int);
1287 static void s_dtpreldword (int);
1288 static void s_tprelword (int);
1289 static void s_tpreldword (int);
1290 static void s_gpvalue (int);
1291 static void s_gpword (int);
1292 static void s_gpdword (int);
1293 static void s_ehword (int);
1294 static void s_cpadd (int);
1295 static void s_insn (int);
1296 static void s_nan (int);
1297 static void md_obj_begin (void);
1298 static void md_obj_end (void);
1299 static void s_mips_ent (int);
1300 static void s_mips_end (int);
1301 static void s_mips_frame (int);
1302 static void s_mips_mask (int reg_type);
1303 static void s_mips_stab (int);
1304 static void s_mips_weakext (int);
1305 static void s_mips_file (int);
1306 static void s_mips_loc (int);
1307 static bfd_boolean pic_need_relax (symbolS *, asection *);
1308 static int relaxed_branch_length (fragS *, asection *, int);
1309 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1310 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1311
1312 /* Table and functions used to map between CPU/ISA names, and
1313 ISA levels, and CPU numbers. */
1314
1315 struct mips_cpu_info
1316 {
1317 const char *name; /* CPU or ISA name. */
1318 int flags; /* MIPS_CPU_* flags. */
1319 int ase; /* Set of ASEs implemented by the CPU. */
1320 int isa; /* ISA level. */
1321 int cpu; /* CPU number (default CPU if ISA). */
1322 };
1323
1324 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1325
1326 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1327 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1328 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1329 \f
1330 /* Command-line options. */
1331 const char *md_shortopts = "O::g::G:";
1332
1333 enum options
1334 {
1335 OPTION_MARCH = OPTION_MD_BASE,
1336 OPTION_MTUNE,
1337 OPTION_MIPS1,
1338 OPTION_MIPS2,
1339 OPTION_MIPS3,
1340 OPTION_MIPS4,
1341 OPTION_MIPS5,
1342 OPTION_MIPS32,
1343 OPTION_MIPS64,
1344 OPTION_MIPS32R2,
1345 OPTION_MIPS32R3,
1346 OPTION_MIPS32R5,
1347 OPTION_MIPS64R2,
1348 OPTION_MIPS64R3,
1349 OPTION_MIPS64R5,
1350 OPTION_MIPS16,
1351 OPTION_NO_MIPS16,
1352 OPTION_MIPS3D,
1353 OPTION_NO_MIPS3D,
1354 OPTION_MDMX,
1355 OPTION_NO_MDMX,
1356 OPTION_DSP,
1357 OPTION_NO_DSP,
1358 OPTION_MT,
1359 OPTION_NO_MT,
1360 OPTION_VIRT,
1361 OPTION_NO_VIRT,
1362 OPTION_MSA,
1363 OPTION_NO_MSA,
1364 OPTION_SMARTMIPS,
1365 OPTION_NO_SMARTMIPS,
1366 OPTION_DSPR2,
1367 OPTION_NO_DSPR2,
1368 OPTION_EVA,
1369 OPTION_NO_EVA,
1370 OPTION_XPA,
1371 OPTION_NO_XPA,
1372 OPTION_MICROMIPS,
1373 OPTION_NO_MICROMIPS,
1374 OPTION_MCU,
1375 OPTION_NO_MCU,
1376 OPTION_COMPAT_ARCH_BASE,
1377 OPTION_M4650,
1378 OPTION_NO_M4650,
1379 OPTION_M4010,
1380 OPTION_NO_M4010,
1381 OPTION_M4100,
1382 OPTION_NO_M4100,
1383 OPTION_M3900,
1384 OPTION_NO_M3900,
1385 OPTION_M7000_HILO_FIX,
1386 OPTION_MNO_7000_HILO_FIX,
1387 OPTION_FIX_24K,
1388 OPTION_NO_FIX_24K,
1389 OPTION_FIX_RM7000,
1390 OPTION_NO_FIX_RM7000,
1391 OPTION_FIX_LOONGSON2F_JUMP,
1392 OPTION_NO_FIX_LOONGSON2F_JUMP,
1393 OPTION_FIX_LOONGSON2F_NOP,
1394 OPTION_NO_FIX_LOONGSON2F_NOP,
1395 OPTION_FIX_VR4120,
1396 OPTION_NO_FIX_VR4120,
1397 OPTION_FIX_VR4130,
1398 OPTION_NO_FIX_VR4130,
1399 OPTION_FIX_CN63XXP1,
1400 OPTION_NO_FIX_CN63XXP1,
1401 OPTION_TRAP,
1402 OPTION_BREAK,
1403 OPTION_EB,
1404 OPTION_EL,
1405 OPTION_FP32,
1406 OPTION_GP32,
1407 OPTION_CONSTRUCT_FLOATS,
1408 OPTION_NO_CONSTRUCT_FLOATS,
1409 OPTION_FP64,
1410 OPTION_GP64,
1411 OPTION_RELAX_BRANCH,
1412 OPTION_NO_RELAX_BRANCH,
1413 OPTION_INSN32,
1414 OPTION_NO_INSN32,
1415 OPTION_MSHARED,
1416 OPTION_MNO_SHARED,
1417 OPTION_MSYM32,
1418 OPTION_MNO_SYM32,
1419 OPTION_SOFT_FLOAT,
1420 OPTION_HARD_FLOAT,
1421 OPTION_SINGLE_FLOAT,
1422 OPTION_DOUBLE_FLOAT,
1423 OPTION_32,
1424 OPTION_CALL_SHARED,
1425 OPTION_CALL_NONPIC,
1426 OPTION_NON_SHARED,
1427 OPTION_XGOT,
1428 OPTION_MABI,
1429 OPTION_N32,
1430 OPTION_64,
1431 OPTION_MDEBUG,
1432 OPTION_NO_MDEBUG,
1433 OPTION_PDR,
1434 OPTION_NO_PDR,
1435 OPTION_MVXWORKS_PIC,
1436 OPTION_NAN,
1437 OPTION_END_OF_ENUM
1438 };
1439
1440 struct option md_longopts[] =
1441 {
1442 /* Options which specify architecture. */
1443 {"march", required_argument, NULL, OPTION_MARCH},
1444 {"mtune", required_argument, NULL, OPTION_MTUNE},
1445 {"mips0", no_argument, NULL, OPTION_MIPS1},
1446 {"mips1", no_argument, NULL, OPTION_MIPS1},
1447 {"mips2", no_argument, NULL, OPTION_MIPS2},
1448 {"mips3", no_argument, NULL, OPTION_MIPS3},
1449 {"mips4", no_argument, NULL, OPTION_MIPS4},
1450 {"mips5", no_argument, NULL, OPTION_MIPS5},
1451 {"mips32", no_argument, NULL, OPTION_MIPS32},
1452 {"mips64", no_argument, NULL, OPTION_MIPS64},
1453 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1454 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1455 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1456 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1457 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1458 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1459
1460 /* Options which specify Application Specific Extensions (ASEs). */
1461 {"mips16", no_argument, NULL, OPTION_MIPS16},
1462 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1463 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1464 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1465 {"mdmx", no_argument, NULL, OPTION_MDMX},
1466 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1467 {"mdsp", no_argument, NULL, OPTION_DSP},
1468 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1469 {"mmt", no_argument, NULL, OPTION_MT},
1470 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1471 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1472 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1473 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1474 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1475 {"meva", no_argument, NULL, OPTION_EVA},
1476 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1477 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1478 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1479 {"mmcu", no_argument, NULL, OPTION_MCU},
1480 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1481 {"mvirt", no_argument, NULL, OPTION_VIRT},
1482 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1483 {"mmsa", no_argument, NULL, OPTION_MSA},
1484 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1485 {"mxpa", no_argument, NULL, OPTION_XPA},
1486 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1487
1488 /* Old-style architecture options. Don't add more of these. */
1489 {"m4650", no_argument, NULL, OPTION_M4650},
1490 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1491 {"m4010", no_argument, NULL, OPTION_M4010},
1492 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1493 {"m4100", no_argument, NULL, OPTION_M4100},
1494 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1495 {"m3900", no_argument, NULL, OPTION_M3900},
1496 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1497
1498 /* Options which enable bug fixes. */
1499 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1500 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1501 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1502 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1503 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1504 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1505 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1506 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1507 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1508 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1509 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1510 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1511 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1512 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1513 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1514 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1515 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1516
1517 /* Miscellaneous options. */
1518 {"trap", no_argument, NULL, OPTION_TRAP},
1519 {"no-break", no_argument, NULL, OPTION_TRAP},
1520 {"break", no_argument, NULL, OPTION_BREAK},
1521 {"no-trap", no_argument, NULL, OPTION_BREAK},
1522 {"EB", no_argument, NULL, OPTION_EB},
1523 {"EL", no_argument, NULL, OPTION_EL},
1524 {"mfp32", no_argument, NULL, OPTION_FP32},
1525 {"mgp32", no_argument, NULL, OPTION_GP32},
1526 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1527 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1528 {"mfp64", no_argument, NULL, OPTION_FP64},
1529 {"mgp64", no_argument, NULL, OPTION_GP64},
1530 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1531 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1532 {"minsn32", no_argument, NULL, OPTION_INSN32},
1533 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1534 {"mshared", no_argument, NULL, OPTION_MSHARED},
1535 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1536 {"msym32", no_argument, NULL, OPTION_MSYM32},
1537 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1538 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1539 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1540 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1541 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1542
1543 /* Strictly speaking this next option is ELF specific,
1544 but we allow it for other ports as well in order to
1545 make testing easier. */
1546 {"32", no_argument, NULL, OPTION_32},
1547
1548 /* ELF-specific options. */
1549 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1550 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1551 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1552 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1553 {"xgot", no_argument, NULL, OPTION_XGOT},
1554 {"mabi", required_argument, NULL, OPTION_MABI},
1555 {"n32", no_argument, NULL, OPTION_N32},
1556 {"64", no_argument, NULL, OPTION_64},
1557 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1558 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1559 {"mpdr", no_argument, NULL, OPTION_PDR},
1560 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1561 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1562 {"mnan", required_argument, NULL, OPTION_NAN},
1563
1564 {NULL, no_argument, NULL, 0}
1565 };
1566 size_t md_longopts_size = sizeof (md_longopts);
1567 \f
1568 /* Information about either an Application Specific Extension or an
1569 optional architecture feature that, for simplicity, we treat in the
1570 same way as an ASE. */
1571 struct mips_ase
1572 {
1573 /* The name of the ASE, used in both the command-line and .set options. */
1574 const char *name;
1575
1576 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1577 and 64-bit architectures, the flags here refer to the subset that
1578 is available on both. */
1579 unsigned int flags;
1580
1581 /* The ASE_* flag used for instructions that are available on 64-bit
1582 architectures but that are not included in FLAGS. */
1583 unsigned int flags64;
1584
1585 /* The command-line options that turn the ASE on and off. */
1586 int option_on;
1587 int option_off;
1588
1589 /* The minimum required architecture revisions for MIPS32, MIPS64,
1590 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1591 int mips32_rev;
1592 int mips64_rev;
1593 int micromips32_rev;
1594 int micromips64_rev;
1595 };
1596
1597 /* A table of all supported ASEs. */
1598 static const struct mips_ase mips_ases[] = {
1599 { "dsp", ASE_DSP, ASE_DSP64,
1600 OPTION_DSP, OPTION_NO_DSP,
1601 2, 2, 2, 2 },
1602
1603 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1604 OPTION_DSPR2, OPTION_NO_DSPR2,
1605 2, 2, 2, 2 },
1606
1607 { "eva", ASE_EVA, 0,
1608 OPTION_EVA, OPTION_NO_EVA,
1609 2, 2, 2, 2 },
1610
1611 { "mcu", ASE_MCU, 0,
1612 OPTION_MCU, OPTION_NO_MCU,
1613 2, 2, 2, 2 },
1614
1615 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1616 { "mdmx", ASE_MDMX, 0,
1617 OPTION_MDMX, OPTION_NO_MDMX,
1618 -1, 1, -1, -1 },
1619
1620 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1621 { "mips3d", ASE_MIPS3D, 0,
1622 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1623 2, 1, -1, -1 },
1624
1625 { "mt", ASE_MT, 0,
1626 OPTION_MT, OPTION_NO_MT,
1627 2, 2, -1, -1 },
1628
1629 { "smartmips", ASE_SMARTMIPS, 0,
1630 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1631 1, -1, -1, -1 },
1632
1633 { "virt", ASE_VIRT, ASE_VIRT64,
1634 OPTION_VIRT, OPTION_NO_VIRT,
1635 2, 2, 2, 2 },
1636
1637 { "msa", ASE_MSA, ASE_MSA64,
1638 OPTION_MSA, OPTION_NO_MSA,
1639 2, 2, 2, 2 },
1640
1641 { "xpa", ASE_XPA, 0,
1642 OPTION_XPA, OPTION_NO_XPA,
1643 2, 2, -1, -1 }
1644 };
1645
1646 /* The set of ASEs that require -mfp64. */
1647 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
1648
1649 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1650 static const unsigned int mips_ase_groups[] = {
1651 ASE_DSP | ASE_DSPR2
1652 };
1653 \f
1654 /* Pseudo-op table.
1655
1656 The following pseudo-ops from the Kane and Heinrich MIPS book
1657 should be defined here, but are currently unsupported: .alias,
1658 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1659
1660 The following pseudo-ops from the Kane and Heinrich MIPS book are
1661 specific to the type of debugging information being generated, and
1662 should be defined by the object format: .aent, .begin, .bend,
1663 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1664 .vreg.
1665
1666 The following pseudo-ops from the Kane and Heinrich MIPS book are
1667 not MIPS CPU specific, but are also not specific to the object file
1668 format. This file is probably the best place to define them, but
1669 they are not currently supported: .asm0, .endr, .lab, .struct. */
1670
1671 static const pseudo_typeS mips_pseudo_table[] =
1672 {
1673 /* MIPS specific pseudo-ops. */
1674 {"option", s_option, 0},
1675 {"set", s_mipsset, 0},
1676 {"rdata", s_change_sec, 'r'},
1677 {"sdata", s_change_sec, 's'},
1678 {"livereg", s_ignore, 0},
1679 {"abicalls", s_abicalls, 0},
1680 {"cpload", s_cpload, 0},
1681 {"cpsetup", s_cpsetup, 0},
1682 {"cplocal", s_cplocal, 0},
1683 {"cprestore", s_cprestore, 0},
1684 {"cpreturn", s_cpreturn, 0},
1685 {"dtprelword", s_dtprelword, 0},
1686 {"dtpreldword", s_dtpreldword, 0},
1687 {"tprelword", s_tprelword, 0},
1688 {"tpreldword", s_tpreldword, 0},
1689 {"gpvalue", s_gpvalue, 0},
1690 {"gpword", s_gpword, 0},
1691 {"gpdword", s_gpdword, 0},
1692 {"ehword", s_ehword, 0},
1693 {"cpadd", s_cpadd, 0},
1694 {"insn", s_insn, 0},
1695 {"nan", s_nan, 0},
1696
1697 /* Relatively generic pseudo-ops that happen to be used on MIPS
1698 chips. */
1699 {"asciiz", stringer, 8 + 1},
1700 {"bss", s_change_sec, 'b'},
1701 {"err", s_err, 0},
1702 {"half", s_cons, 1},
1703 {"dword", s_cons, 3},
1704 {"weakext", s_mips_weakext, 0},
1705 {"origin", s_org, 0},
1706 {"repeat", s_rept, 0},
1707
1708 /* For MIPS this is non-standard, but we define it for consistency. */
1709 {"sbss", s_change_sec, 'B'},
1710
1711 /* These pseudo-ops are defined in read.c, but must be overridden
1712 here for one reason or another. */
1713 {"align", s_align, 0},
1714 {"byte", s_cons, 0},
1715 {"data", s_change_sec, 'd'},
1716 {"double", s_float_cons, 'd'},
1717 {"float", s_float_cons, 'f'},
1718 {"globl", s_mips_globl, 0},
1719 {"global", s_mips_globl, 0},
1720 {"hword", s_cons, 1},
1721 {"int", s_cons, 2},
1722 {"long", s_cons, 2},
1723 {"octa", s_cons, 4},
1724 {"quad", s_cons, 3},
1725 {"section", s_change_section, 0},
1726 {"short", s_cons, 1},
1727 {"single", s_float_cons, 'f'},
1728 {"stabd", s_mips_stab, 'd'},
1729 {"stabn", s_mips_stab, 'n'},
1730 {"stabs", s_mips_stab, 's'},
1731 {"text", s_change_sec, 't'},
1732 {"word", s_cons, 2},
1733
1734 { "extern", ecoff_directive_extern, 0},
1735
1736 { NULL, NULL, 0 },
1737 };
1738
1739 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1740 {
1741 /* These pseudo-ops should be defined by the object file format.
1742 However, a.out doesn't support them, so we have versions here. */
1743 {"aent", s_mips_ent, 1},
1744 {"bgnb", s_ignore, 0},
1745 {"end", s_mips_end, 0},
1746 {"endb", s_ignore, 0},
1747 {"ent", s_mips_ent, 0},
1748 {"file", s_mips_file, 0},
1749 {"fmask", s_mips_mask, 'F'},
1750 {"frame", s_mips_frame, 0},
1751 {"loc", s_mips_loc, 0},
1752 {"mask", s_mips_mask, 'R'},
1753 {"verstamp", s_ignore, 0},
1754 { NULL, NULL, 0 },
1755 };
1756
1757 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1758 purpose of the `.dc.a' internal pseudo-op. */
1759
1760 int
1761 mips_address_bytes (void)
1762 {
1763 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1764 }
1765
1766 extern void pop_insert (const pseudo_typeS *);
1767
1768 void
1769 mips_pop_insert (void)
1770 {
1771 pop_insert (mips_pseudo_table);
1772 if (! ECOFF_DEBUGGING)
1773 pop_insert (mips_nonecoff_pseudo_table);
1774 }
1775 \f
1776 /* Symbols labelling the current insn. */
1777
1778 struct insn_label_list
1779 {
1780 struct insn_label_list *next;
1781 symbolS *label;
1782 };
1783
1784 static struct insn_label_list *free_insn_labels;
1785 #define label_list tc_segment_info_data.labels
1786
1787 static void mips_clear_insn_labels (void);
1788 static void mips_mark_labels (void);
1789 static void mips_compressed_mark_labels (void);
1790
1791 static inline void
1792 mips_clear_insn_labels (void)
1793 {
1794 register struct insn_label_list **pl;
1795 segment_info_type *si;
1796
1797 if (now_seg)
1798 {
1799 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1800 ;
1801
1802 si = seg_info (now_seg);
1803 *pl = si->label_list;
1804 si->label_list = NULL;
1805 }
1806 }
1807
1808 /* Mark instruction labels in MIPS16/microMIPS mode. */
1809
1810 static inline void
1811 mips_mark_labels (void)
1812 {
1813 if (HAVE_CODE_COMPRESSION)
1814 mips_compressed_mark_labels ();
1815 }
1816 \f
1817 static char *expr_end;
1818
1819 /* An expression in a macro instruction. This is set by mips_ip and
1820 mips16_ip and when populated is always an O_constant. */
1821
1822 static expressionS imm_expr;
1823
1824 /* The relocatable field in an instruction and the relocs associated
1825 with it. These variables are used for instructions like LUI and
1826 JAL as well as true offsets. They are also used for address
1827 operands in macros. */
1828
1829 static expressionS offset_expr;
1830 static bfd_reloc_code_real_type offset_reloc[3]
1831 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1832
1833 /* This is set to the resulting size of the instruction to be produced
1834 by mips16_ip if an explicit extension is used or by mips_ip if an
1835 explicit size is supplied. */
1836
1837 static unsigned int forced_insn_length;
1838
1839 /* True if we are assembling an instruction. All dot symbols defined during
1840 this time should be treated as code labels. */
1841
1842 static bfd_boolean mips_assembling_insn;
1843
1844 /* The pdr segment for per procedure frame/regmask info. Not used for
1845 ECOFF debugging. */
1846
1847 static segT pdr_seg;
1848
1849 /* The default target format to use. */
1850
1851 #if defined (TE_FreeBSD)
1852 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1853 #elif defined (TE_TMIPS)
1854 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1855 #else
1856 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1857 #endif
1858
1859 const char *
1860 mips_target_format (void)
1861 {
1862 switch (OUTPUT_FLAVOR)
1863 {
1864 case bfd_target_elf_flavour:
1865 #ifdef TE_VXWORKS
1866 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1867 return (target_big_endian
1868 ? "elf32-bigmips-vxworks"
1869 : "elf32-littlemips-vxworks");
1870 #endif
1871 return (target_big_endian
1872 ? (HAVE_64BIT_OBJECTS
1873 ? ELF_TARGET ("elf64-", "big")
1874 : (HAVE_NEWABI
1875 ? ELF_TARGET ("elf32-n", "big")
1876 : ELF_TARGET ("elf32-", "big")))
1877 : (HAVE_64BIT_OBJECTS
1878 ? ELF_TARGET ("elf64-", "little")
1879 : (HAVE_NEWABI
1880 ? ELF_TARGET ("elf32-n", "little")
1881 : ELF_TARGET ("elf32-", "little"))));
1882 default:
1883 abort ();
1884 return NULL;
1885 }
1886 }
1887
1888 /* Return the ISA revision that is currently in use, or 0 if we are
1889 generating code for MIPS V or below. */
1890
1891 static int
1892 mips_isa_rev (void)
1893 {
1894 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1895 return 2;
1896
1897 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1898 return 3;
1899
1900 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1901 return 5;
1902
1903 /* microMIPS implies revision 2 or above. */
1904 if (mips_opts.micromips)
1905 return 2;
1906
1907 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1908 return 1;
1909
1910 return 0;
1911 }
1912
1913 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1914
1915 static unsigned int
1916 mips_ase_mask (unsigned int flags)
1917 {
1918 unsigned int i;
1919
1920 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1921 if (flags & mips_ase_groups[i])
1922 flags |= mips_ase_groups[i];
1923 return flags;
1924 }
1925
1926 /* Check whether the current ISA supports ASE. Issue a warning if
1927 appropriate. */
1928
1929 static void
1930 mips_check_isa_supports_ase (const struct mips_ase *ase)
1931 {
1932 const char *base;
1933 int min_rev, size;
1934 static unsigned int warned_isa;
1935 static unsigned int warned_fp32;
1936
1937 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
1938 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
1939 else
1940 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
1941 if ((min_rev < 0 || mips_isa_rev () < min_rev)
1942 && (warned_isa & ase->flags) != ase->flags)
1943 {
1944 warned_isa |= ase->flags;
1945 base = mips_opts.micromips ? "microMIPS" : "MIPS";
1946 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
1947 if (min_rev < 0)
1948 as_warn (_("the %d-bit %s architecture does not support the"
1949 " `%s' extension"), size, base, ase->name);
1950 else
1951 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
1952 ase->name, base, size, min_rev);
1953 }
1954 if ((ase->flags & FP64_ASES)
1955 && mips_opts.fp != 64
1956 && (warned_fp32 & ase->flags) != ase->flags)
1957 {
1958 warned_fp32 |= ase->flags;
1959 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
1960 }
1961 }
1962
1963 /* Check all enabled ASEs to see whether they are supported by the
1964 chosen architecture. */
1965
1966 static void
1967 mips_check_isa_supports_ases (void)
1968 {
1969 unsigned int i, mask;
1970
1971 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1972 {
1973 mask = mips_ase_mask (mips_ases[i].flags);
1974 if ((mips_opts.ase & mask) == mips_ases[i].flags)
1975 mips_check_isa_supports_ase (&mips_ases[i]);
1976 }
1977 }
1978
1979 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
1980 that were affected. */
1981
1982 static unsigned int
1983 mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p)
1984 {
1985 unsigned int mask;
1986
1987 mask = mips_ase_mask (ase->flags);
1988 mips_opts.ase &= ~mask;
1989 if (enabled_p)
1990 mips_opts.ase |= ase->flags;
1991 return mask;
1992 }
1993
1994 /* Return the ASE called NAME, or null if none. */
1995
1996 static const struct mips_ase *
1997 mips_lookup_ase (const char *name)
1998 {
1999 unsigned int i;
2000
2001 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2002 if (strcmp (name, mips_ases[i].name) == 0)
2003 return &mips_ases[i];
2004 return NULL;
2005 }
2006
2007 /* Return the length of a microMIPS instruction in bytes. If bits of
2008 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2009 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2010 major opcode) will require further modifications to the opcode
2011 table. */
2012
2013 static inline unsigned int
2014 micromips_insn_length (const struct mips_opcode *mo)
2015 {
2016 return (mo->mask >> 16) == 0 ? 2 : 4;
2017 }
2018
2019 /* Return the length of MIPS16 instruction OPCODE. */
2020
2021 static inline unsigned int
2022 mips16_opcode_length (unsigned long opcode)
2023 {
2024 return (opcode >> 16) == 0 ? 2 : 4;
2025 }
2026
2027 /* Return the length of instruction INSN. */
2028
2029 static inline unsigned int
2030 insn_length (const struct mips_cl_insn *insn)
2031 {
2032 if (mips_opts.micromips)
2033 return micromips_insn_length (insn->insn_mo);
2034 else if (mips_opts.mips16)
2035 return mips16_opcode_length (insn->insn_opcode);
2036 else
2037 return 4;
2038 }
2039
2040 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2041
2042 static void
2043 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2044 {
2045 size_t i;
2046
2047 insn->insn_mo = mo;
2048 insn->insn_opcode = mo->match;
2049 insn->frag = NULL;
2050 insn->where = 0;
2051 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2052 insn->fixp[i] = NULL;
2053 insn->fixed_p = (mips_opts.noreorder > 0);
2054 insn->noreorder_p = (mips_opts.noreorder > 0);
2055 insn->mips16_absolute_jump_p = 0;
2056 insn->complete_p = 0;
2057 insn->cleared_p = 0;
2058 }
2059
2060 /* Get a list of all the operands in INSN. */
2061
2062 static const struct mips_operand_array *
2063 insn_operands (const struct mips_cl_insn *insn)
2064 {
2065 if (insn->insn_mo >= &mips_opcodes[0]
2066 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2067 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2068
2069 if (insn->insn_mo >= &mips16_opcodes[0]
2070 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2071 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2072
2073 if (insn->insn_mo >= &micromips_opcodes[0]
2074 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2075 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2076
2077 abort ();
2078 }
2079
2080 /* Get a description of operand OPNO of INSN. */
2081
2082 static const struct mips_operand *
2083 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2084 {
2085 const struct mips_operand_array *operands;
2086
2087 operands = insn_operands (insn);
2088 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2089 abort ();
2090 return operands->operand[opno];
2091 }
2092
2093 /* Install UVAL as the value of OPERAND in INSN. */
2094
2095 static inline void
2096 insn_insert_operand (struct mips_cl_insn *insn,
2097 const struct mips_operand *operand, unsigned int uval)
2098 {
2099 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2100 }
2101
2102 /* Extract the value of OPERAND from INSN. */
2103
2104 static inline unsigned
2105 insn_extract_operand (const struct mips_cl_insn *insn,
2106 const struct mips_operand *operand)
2107 {
2108 return mips_extract_operand (operand, insn->insn_opcode);
2109 }
2110
2111 /* Record the current MIPS16/microMIPS mode in now_seg. */
2112
2113 static void
2114 mips_record_compressed_mode (void)
2115 {
2116 segment_info_type *si;
2117
2118 si = seg_info (now_seg);
2119 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2120 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2121 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2122 si->tc_segment_info_data.micromips = mips_opts.micromips;
2123 }
2124
2125 /* Read a standard MIPS instruction from BUF. */
2126
2127 static unsigned long
2128 read_insn (char *buf)
2129 {
2130 if (target_big_endian)
2131 return bfd_getb32 ((bfd_byte *) buf);
2132 else
2133 return bfd_getl32 ((bfd_byte *) buf);
2134 }
2135
2136 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2137 the next byte. */
2138
2139 static char *
2140 write_insn (char *buf, unsigned int insn)
2141 {
2142 md_number_to_chars (buf, insn, 4);
2143 return buf + 4;
2144 }
2145
2146 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2147 has length LENGTH. */
2148
2149 static unsigned long
2150 read_compressed_insn (char *buf, unsigned int length)
2151 {
2152 unsigned long insn;
2153 unsigned int i;
2154
2155 insn = 0;
2156 for (i = 0; i < length; i += 2)
2157 {
2158 insn <<= 16;
2159 if (target_big_endian)
2160 insn |= bfd_getb16 ((char *) buf);
2161 else
2162 insn |= bfd_getl16 ((char *) buf);
2163 buf += 2;
2164 }
2165 return insn;
2166 }
2167
2168 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2169 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2170
2171 static char *
2172 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2173 {
2174 unsigned int i;
2175
2176 for (i = 0; i < length; i += 2)
2177 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2178 return buf + length;
2179 }
2180
2181 /* Install INSN at the location specified by its "frag" and "where" fields. */
2182
2183 static void
2184 install_insn (const struct mips_cl_insn *insn)
2185 {
2186 char *f = insn->frag->fr_literal + insn->where;
2187 if (HAVE_CODE_COMPRESSION)
2188 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2189 else
2190 write_insn (f, insn->insn_opcode);
2191 mips_record_compressed_mode ();
2192 }
2193
2194 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2195 and install the opcode in the new location. */
2196
2197 static void
2198 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2199 {
2200 size_t i;
2201
2202 insn->frag = frag;
2203 insn->where = where;
2204 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2205 if (insn->fixp[i] != NULL)
2206 {
2207 insn->fixp[i]->fx_frag = frag;
2208 insn->fixp[i]->fx_where = where;
2209 }
2210 install_insn (insn);
2211 }
2212
2213 /* Add INSN to the end of the output. */
2214
2215 static void
2216 add_fixed_insn (struct mips_cl_insn *insn)
2217 {
2218 char *f = frag_more (insn_length (insn));
2219 move_insn (insn, frag_now, f - frag_now->fr_literal);
2220 }
2221
2222 /* Start a variant frag and move INSN to the start of the variant part,
2223 marking it as fixed. The other arguments are as for frag_var. */
2224
2225 static void
2226 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2227 relax_substateT subtype, symbolS *symbol, offsetT offset)
2228 {
2229 frag_grow (max_chars);
2230 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2231 insn->fixed_p = 1;
2232 frag_var (rs_machine_dependent, max_chars, var,
2233 subtype, symbol, offset, NULL);
2234 }
2235
2236 /* Insert N copies of INSN into the history buffer, starting at
2237 position FIRST. Neither FIRST nor N need to be clipped. */
2238
2239 static void
2240 insert_into_history (unsigned int first, unsigned int n,
2241 const struct mips_cl_insn *insn)
2242 {
2243 if (mips_relax.sequence != 2)
2244 {
2245 unsigned int i;
2246
2247 for (i = ARRAY_SIZE (history); i-- > first;)
2248 if (i >= first + n)
2249 history[i] = history[i - n];
2250 else
2251 history[i] = *insn;
2252 }
2253 }
2254
2255 /* Clear the error in insn_error. */
2256
2257 static void
2258 clear_insn_error (void)
2259 {
2260 memset (&insn_error, 0, sizeof (insn_error));
2261 }
2262
2263 /* Possibly record error message MSG for the current instruction.
2264 If the error is about a particular argument, ARGNUM is the 1-based
2265 number of that argument, otherwise it is 0. FORMAT is the format
2266 of MSG. Return true if MSG was used, false if the current message
2267 was kept. */
2268
2269 static bfd_boolean
2270 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2271 const char *msg)
2272 {
2273 if (argnum == 0)
2274 {
2275 /* Give priority to errors against specific arguments, and to
2276 the first whole-instruction message. */
2277 if (insn_error.msg)
2278 return FALSE;
2279 }
2280 else
2281 {
2282 /* Keep insn_error if it is against a later argument. */
2283 if (argnum < insn_error.min_argnum)
2284 return FALSE;
2285
2286 /* If both errors are against the same argument but are different,
2287 give up on reporting a specific error for this argument.
2288 See the comment about mips_insn_error for details. */
2289 if (argnum == insn_error.min_argnum
2290 && insn_error.msg
2291 && strcmp (insn_error.msg, msg) != 0)
2292 {
2293 insn_error.msg = 0;
2294 insn_error.min_argnum += 1;
2295 return FALSE;
2296 }
2297 }
2298 insn_error.min_argnum = argnum;
2299 insn_error.format = format;
2300 insn_error.msg = msg;
2301 return TRUE;
2302 }
2303
2304 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2305 as for set_insn_error_format. */
2306
2307 static void
2308 set_insn_error (int argnum, const char *msg)
2309 {
2310 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2311 }
2312
2313 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2314 as for set_insn_error_format. */
2315
2316 static void
2317 set_insn_error_i (int argnum, const char *msg, int i)
2318 {
2319 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2320 insn_error.u.i = i;
2321 }
2322
2323 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2324 are as for set_insn_error_format. */
2325
2326 static void
2327 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2328 {
2329 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2330 {
2331 insn_error.u.ss[0] = s1;
2332 insn_error.u.ss[1] = s2;
2333 }
2334 }
2335
2336 /* Report the error in insn_error, which is against assembly code STR. */
2337
2338 static void
2339 report_insn_error (const char *str)
2340 {
2341 const char *msg;
2342
2343 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2344 switch (insn_error.format)
2345 {
2346 case ERR_FMT_PLAIN:
2347 as_bad (msg, str);
2348 break;
2349
2350 case ERR_FMT_I:
2351 as_bad (msg, insn_error.u.i, str);
2352 break;
2353
2354 case ERR_FMT_SS:
2355 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2356 break;
2357 }
2358 }
2359
2360 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2361 the idea is to make it obvious at a glance that each errata is
2362 included. */
2363
2364 static void
2365 init_vr4120_conflicts (void)
2366 {
2367 #define CONFLICT(FIRST, SECOND) \
2368 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2369
2370 /* Errata 21 - [D]DIV[U] after [D]MACC */
2371 CONFLICT (MACC, DIV);
2372 CONFLICT (DMACC, DIV);
2373
2374 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2375 CONFLICT (DMULT, DMULT);
2376 CONFLICT (DMULT, DMACC);
2377 CONFLICT (DMACC, DMULT);
2378 CONFLICT (DMACC, DMACC);
2379
2380 /* Errata 24 - MT{LO,HI} after [D]MACC */
2381 CONFLICT (MACC, MTHILO);
2382 CONFLICT (DMACC, MTHILO);
2383
2384 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2385 instruction is executed immediately after a MACC or DMACC
2386 instruction, the result of [either instruction] is incorrect." */
2387 CONFLICT (MACC, MULT);
2388 CONFLICT (MACC, DMULT);
2389 CONFLICT (DMACC, MULT);
2390 CONFLICT (DMACC, DMULT);
2391
2392 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2393 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2394 DDIV or DDIVU instruction, the result of the MACC or
2395 DMACC instruction is incorrect.". */
2396 CONFLICT (DMULT, MACC);
2397 CONFLICT (DMULT, DMACC);
2398 CONFLICT (DIV, MACC);
2399 CONFLICT (DIV, DMACC);
2400
2401 #undef CONFLICT
2402 }
2403
2404 struct regname {
2405 const char *name;
2406 unsigned int num;
2407 };
2408
2409 #define RNUM_MASK 0x00000ff
2410 #define RTYPE_MASK 0x0ffff00
2411 #define RTYPE_NUM 0x0000100
2412 #define RTYPE_FPU 0x0000200
2413 #define RTYPE_FCC 0x0000400
2414 #define RTYPE_VEC 0x0000800
2415 #define RTYPE_GP 0x0001000
2416 #define RTYPE_CP0 0x0002000
2417 #define RTYPE_PC 0x0004000
2418 #define RTYPE_ACC 0x0008000
2419 #define RTYPE_CCC 0x0010000
2420 #define RTYPE_VI 0x0020000
2421 #define RTYPE_VF 0x0040000
2422 #define RTYPE_R5900_I 0x0080000
2423 #define RTYPE_R5900_Q 0x0100000
2424 #define RTYPE_R5900_R 0x0200000
2425 #define RTYPE_R5900_ACC 0x0400000
2426 #define RTYPE_MSA 0x0800000
2427 #define RWARN 0x8000000
2428
2429 #define GENERIC_REGISTER_NUMBERS \
2430 {"$0", RTYPE_NUM | 0}, \
2431 {"$1", RTYPE_NUM | 1}, \
2432 {"$2", RTYPE_NUM | 2}, \
2433 {"$3", RTYPE_NUM | 3}, \
2434 {"$4", RTYPE_NUM | 4}, \
2435 {"$5", RTYPE_NUM | 5}, \
2436 {"$6", RTYPE_NUM | 6}, \
2437 {"$7", RTYPE_NUM | 7}, \
2438 {"$8", RTYPE_NUM | 8}, \
2439 {"$9", RTYPE_NUM | 9}, \
2440 {"$10", RTYPE_NUM | 10}, \
2441 {"$11", RTYPE_NUM | 11}, \
2442 {"$12", RTYPE_NUM | 12}, \
2443 {"$13", RTYPE_NUM | 13}, \
2444 {"$14", RTYPE_NUM | 14}, \
2445 {"$15", RTYPE_NUM | 15}, \
2446 {"$16", RTYPE_NUM | 16}, \
2447 {"$17", RTYPE_NUM | 17}, \
2448 {"$18", RTYPE_NUM | 18}, \
2449 {"$19", RTYPE_NUM | 19}, \
2450 {"$20", RTYPE_NUM | 20}, \
2451 {"$21", RTYPE_NUM | 21}, \
2452 {"$22", RTYPE_NUM | 22}, \
2453 {"$23", RTYPE_NUM | 23}, \
2454 {"$24", RTYPE_NUM | 24}, \
2455 {"$25", RTYPE_NUM | 25}, \
2456 {"$26", RTYPE_NUM | 26}, \
2457 {"$27", RTYPE_NUM | 27}, \
2458 {"$28", RTYPE_NUM | 28}, \
2459 {"$29", RTYPE_NUM | 29}, \
2460 {"$30", RTYPE_NUM | 30}, \
2461 {"$31", RTYPE_NUM | 31}
2462
2463 #define FPU_REGISTER_NAMES \
2464 {"$f0", RTYPE_FPU | 0}, \
2465 {"$f1", RTYPE_FPU | 1}, \
2466 {"$f2", RTYPE_FPU | 2}, \
2467 {"$f3", RTYPE_FPU | 3}, \
2468 {"$f4", RTYPE_FPU | 4}, \
2469 {"$f5", RTYPE_FPU | 5}, \
2470 {"$f6", RTYPE_FPU | 6}, \
2471 {"$f7", RTYPE_FPU | 7}, \
2472 {"$f8", RTYPE_FPU | 8}, \
2473 {"$f9", RTYPE_FPU | 9}, \
2474 {"$f10", RTYPE_FPU | 10}, \
2475 {"$f11", RTYPE_FPU | 11}, \
2476 {"$f12", RTYPE_FPU | 12}, \
2477 {"$f13", RTYPE_FPU | 13}, \
2478 {"$f14", RTYPE_FPU | 14}, \
2479 {"$f15", RTYPE_FPU | 15}, \
2480 {"$f16", RTYPE_FPU | 16}, \
2481 {"$f17", RTYPE_FPU | 17}, \
2482 {"$f18", RTYPE_FPU | 18}, \
2483 {"$f19", RTYPE_FPU | 19}, \
2484 {"$f20", RTYPE_FPU | 20}, \
2485 {"$f21", RTYPE_FPU | 21}, \
2486 {"$f22", RTYPE_FPU | 22}, \
2487 {"$f23", RTYPE_FPU | 23}, \
2488 {"$f24", RTYPE_FPU | 24}, \
2489 {"$f25", RTYPE_FPU | 25}, \
2490 {"$f26", RTYPE_FPU | 26}, \
2491 {"$f27", RTYPE_FPU | 27}, \
2492 {"$f28", RTYPE_FPU | 28}, \
2493 {"$f29", RTYPE_FPU | 29}, \
2494 {"$f30", RTYPE_FPU | 30}, \
2495 {"$f31", RTYPE_FPU | 31}
2496
2497 #define FPU_CONDITION_CODE_NAMES \
2498 {"$fcc0", RTYPE_FCC | 0}, \
2499 {"$fcc1", RTYPE_FCC | 1}, \
2500 {"$fcc2", RTYPE_FCC | 2}, \
2501 {"$fcc3", RTYPE_FCC | 3}, \
2502 {"$fcc4", RTYPE_FCC | 4}, \
2503 {"$fcc5", RTYPE_FCC | 5}, \
2504 {"$fcc6", RTYPE_FCC | 6}, \
2505 {"$fcc7", RTYPE_FCC | 7}
2506
2507 #define COPROC_CONDITION_CODE_NAMES \
2508 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2509 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2510 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2511 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2512 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2513 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2514 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2515 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2516
2517 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2518 {"$a4", RTYPE_GP | 8}, \
2519 {"$a5", RTYPE_GP | 9}, \
2520 {"$a6", RTYPE_GP | 10}, \
2521 {"$a7", RTYPE_GP | 11}, \
2522 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2523 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2524 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2525 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2526 {"$t0", RTYPE_GP | 12}, \
2527 {"$t1", RTYPE_GP | 13}, \
2528 {"$t2", RTYPE_GP | 14}, \
2529 {"$t3", RTYPE_GP | 15}
2530
2531 #define O32_SYMBOLIC_REGISTER_NAMES \
2532 {"$t0", RTYPE_GP | 8}, \
2533 {"$t1", RTYPE_GP | 9}, \
2534 {"$t2", RTYPE_GP | 10}, \
2535 {"$t3", RTYPE_GP | 11}, \
2536 {"$t4", RTYPE_GP | 12}, \
2537 {"$t5", RTYPE_GP | 13}, \
2538 {"$t6", RTYPE_GP | 14}, \
2539 {"$t7", RTYPE_GP | 15}, \
2540 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2541 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2542 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2543 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2544
2545 /* Remaining symbolic register names */
2546 #define SYMBOLIC_REGISTER_NAMES \
2547 {"$zero", RTYPE_GP | 0}, \
2548 {"$at", RTYPE_GP | 1}, \
2549 {"$AT", RTYPE_GP | 1}, \
2550 {"$v0", RTYPE_GP | 2}, \
2551 {"$v1", RTYPE_GP | 3}, \
2552 {"$a0", RTYPE_GP | 4}, \
2553 {"$a1", RTYPE_GP | 5}, \
2554 {"$a2", RTYPE_GP | 6}, \
2555 {"$a3", RTYPE_GP | 7}, \
2556 {"$s0", RTYPE_GP | 16}, \
2557 {"$s1", RTYPE_GP | 17}, \
2558 {"$s2", RTYPE_GP | 18}, \
2559 {"$s3", RTYPE_GP | 19}, \
2560 {"$s4", RTYPE_GP | 20}, \
2561 {"$s5", RTYPE_GP | 21}, \
2562 {"$s6", RTYPE_GP | 22}, \
2563 {"$s7", RTYPE_GP | 23}, \
2564 {"$t8", RTYPE_GP | 24}, \
2565 {"$t9", RTYPE_GP | 25}, \
2566 {"$k0", RTYPE_GP | 26}, \
2567 {"$kt0", RTYPE_GP | 26}, \
2568 {"$k1", RTYPE_GP | 27}, \
2569 {"$kt1", RTYPE_GP | 27}, \
2570 {"$gp", RTYPE_GP | 28}, \
2571 {"$sp", RTYPE_GP | 29}, \
2572 {"$s8", RTYPE_GP | 30}, \
2573 {"$fp", RTYPE_GP | 30}, \
2574 {"$ra", RTYPE_GP | 31}
2575
2576 #define MIPS16_SPECIAL_REGISTER_NAMES \
2577 {"$pc", RTYPE_PC | 0}
2578
2579 #define MDMX_VECTOR_REGISTER_NAMES \
2580 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2581 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2582 {"$v2", RTYPE_VEC | 2}, \
2583 {"$v3", RTYPE_VEC | 3}, \
2584 {"$v4", RTYPE_VEC | 4}, \
2585 {"$v5", RTYPE_VEC | 5}, \
2586 {"$v6", RTYPE_VEC | 6}, \
2587 {"$v7", RTYPE_VEC | 7}, \
2588 {"$v8", RTYPE_VEC | 8}, \
2589 {"$v9", RTYPE_VEC | 9}, \
2590 {"$v10", RTYPE_VEC | 10}, \
2591 {"$v11", RTYPE_VEC | 11}, \
2592 {"$v12", RTYPE_VEC | 12}, \
2593 {"$v13", RTYPE_VEC | 13}, \
2594 {"$v14", RTYPE_VEC | 14}, \
2595 {"$v15", RTYPE_VEC | 15}, \
2596 {"$v16", RTYPE_VEC | 16}, \
2597 {"$v17", RTYPE_VEC | 17}, \
2598 {"$v18", RTYPE_VEC | 18}, \
2599 {"$v19", RTYPE_VEC | 19}, \
2600 {"$v20", RTYPE_VEC | 20}, \
2601 {"$v21", RTYPE_VEC | 21}, \
2602 {"$v22", RTYPE_VEC | 22}, \
2603 {"$v23", RTYPE_VEC | 23}, \
2604 {"$v24", RTYPE_VEC | 24}, \
2605 {"$v25", RTYPE_VEC | 25}, \
2606 {"$v26", RTYPE_VEC | 26}, \
2607 {"$v27", RTYPE_VEC | 27}, \
2608 {"$v28", RTYPE_VEC | 28}, \
2609 {"$v29", RTYPE_VEC | 29}, \
2610 {"$v30", RTYPE_VEC | 30}, \
2611 {"$v31", RTYPE_VEC | 31}
2612
2613 #define R5900_I_NAMES \
2614 {"$I", RTYPE_R5900_I | 0}
2615
2616 #define R5900_Q_NAMES \
2617 {"$Q", RTYPE_R5900_Q | 0}
2618
2619 #define R5900_R_NAMES \
2620 {"$R", RTYPE_R5900_R | 0}
2621
2622 #define R5900_ACC_NAMES \
2623 {"$ACC", RTYPE_R5900_ACC | 0 }
2624
2625 #define MIPS_DSP_ACCUMULATOR_NAMES \
2626 {"$ac0", RTYPE_ACC | 0}, \
2627 {"$ac1", RTYPE_ACC | 1}, \
2628 {"$ac2", RTYPE_ACC | 2}, \
2629 {"$ac3", RTYPE_ACC | 3}
2630
2631 static const struct regname reg_names[] = {
2632 GENERIC_REGISTER_NUMBERS,
2633 FPU_REGISTER_NAMES,
2634 FPU_CONDITION_CODE_NAMES,
2635 COPROC_CONDITION_CODE_NAMES,
2636
2637 /* The $txx registers depends on the abi,
2638 these will be added later into the symbol table from
2639 one of the tables below once mips_abi is set after
2640 parsing of arguments from the command line. */
2641 SYMBOLIC_REGISTER_NAMES,
2642
2643 MIPS16_SPECIAL_REGISTER_NAMES,
2644 MDMX_VECTOR_REGISTER_NAMES,
2645 R5900_I_NAMES,
2646 R5900_Q_NAMES,
2647 R5900_R_NAMES,
2648 R5900_ACC_NAMES,
2649 MIPS_DSP_ACCUMULATOR_NAMES,
2650 {0, 0}
2651 };
2652
2653 static const struct regname reg_names_o32[] = {
2654 O32_SYMBOLIC_REGISTER_NAMES,
2655 {0, 0}
2656 };
2657
2658 static const struct regname reg_names_n32n64[] = {
2659 N32N64_SYMBOLIC_REGISTER_NAMES,
2660 {0, 0}
2661 };
2662
2663 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2664 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2665 of these register symbols, return the associated vector register,
2666 otherwise return SYMVAL itself. */
2667
2668 static unsigned int
2669 mips_prefer_vec_regno (unsigned int symval)
2670 {
2671 if ((symval & -2) == (RTYPE_GP | 2))
2672 return RTYPE_VEC | (symval & 1);
2673 return symval;
2674 }
2675
2676 /* Return true if string [S, E) is a valid register name, storing its
2677 symbol value in *SYMVAL_PTR if so. */
2678
2679 static bfd_boolean
2680 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2681 {
2682 char save_c;
2683 symbolS *symbol;
2684
2685 /* Terminate name. */
2686 save_c = *e;
2687 *e = '\0';
2688
2689 /* Look up the name. */
2690 symbol = symbol_find (s);
2691 *e = save_c;
2692
2693 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2694 return FALSE;
2695
2696 *symval_ptr = S_GET_VALUE (symbol);
2697 return TRUE;
2698 }
2699
2700 /* Return true if the string at *SPTR is a valid register name. Allow it
2701 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2702 is nonnull.
2703
2704 When returning true, move *SPTR past the register, store the
2705 register's symbol value in *SYMVAL_PTR and the channel mask in
2706 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2707 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2708 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2709
2710 static bfd_boolean
2711 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2712 unsigned int *channels_ptr)
2713 {
2714 char *s, *e, *m;
2715 const char *q;
2716 unsigned int channels, symval, bit;
2717
2718 /* Find end of name. */
2719 s = e = *sptr;
2720 if (is_name_beginner (*e))
2721 ++e;
2722 while (is_part_of_name (*e))
2723 ++e;
2724
2725 channels = 0;
2726 if (!mips_parse_register_1 (s, e, &symval))
2727 {
2728 if (!channels_ptr)
2729 return FALSE;
2730
2731 /* Eat characters from the end of the string that are valid
2732 channel suffixes. The preceding register must be $ACC or
2733 end with a digit, so there is no ambiguity. */
2734 bit = 1;
2735 m = e;
2736 for (q = "wzyx"; *q; q++, bit <<= 1)
2737 if (m > s && m[-1] == *q)
2738 {
2739 --m;
2740 channels |= bit;
2741 }
2742
2743 if (channels == 0
2744 || !mips_parse_register_1 (s, m, &symval)
2745 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2746 return FALSE;
2747 }
2748
2749 *sptr = e;
2750 *symval_ptr = symval;
2751 if (channels_ptr)
2752 *channels_ptr = channels;
2753 return TRUE;
2754 }
2755
2756 /* Check if SPTR points at a valid register specifier according to TYPES.
2757 If so, then return 1, advance S to consume the specifier and store
2758 the register's number in REGNOP, otherwise return 0. */
2759
2760 static int
2761 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2762 {
2763 unsigned int regno;
2764
2765 if (mips_parse_register (s, &regno, NULL))
2766 {
2767 if (types & RTYPE_VEC)
2768 regno = mips_prefer_vec_regno (regno);
2769 if (regno & types)
2770 regno &= RNUM_MASK;
2771 else
2772 regno = ~0;
2773 }
2774 else
2775 {
2776 if (types & RWARN)
2777 as_warn (_("unrecognized register name `%s'"), *s);
2778 regno = ~0;
2779 }
2780 if (regnop)
2781 *regnop = regno;
2782 return regno <= RNUM_MASK;
2783 }
2784
2785 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2786 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2787
2788 static char *
2789 mips_parse_vu0_channels (char *s, unsigned int *channels)
2790 {
2791 unsigned int i;
2792
2793 *channels = 0;
2794 for (i = 0; i < 4; i++)
2795 if (*s == "xyzw"[i])
2796 {
2797 *channels |= 1 << (3 - i);
2798 ++s;
2799 }
2800 return s;
2801 }
2802
2803 /* Token types for parsed operand lists. */
2804 enum mips_operand_token_type {
2805 /* A plain register, e.g. $f2. */
2806 OT_REG,
2807
2808 /* A 4-bit XYZW channel mask. */
2809 OT_CHANNELS,
2810
2811 /* A constant vector index, e.g. [1]. */
2812 OT_INTEGER_INDEX,
2813
2814 /* A register vector index, e.g. [$2]. */
2815 OT_REG_INDEX,
2816
2817 /* A continuous range of registers, e.g. $s0-$s4. */
2818 OT_REG_RANGE,
2819
2820 /* A (possibly relocated) expression. */
2821 OT_INTEGER,
2822
2823 /* A floating-point value. */
2824 OT_FLOAT,
2825
2826 /* A single character. This can be '(', ')' or ',', but '(' only appears
2827 before OT_REGs. */
2828 OT_CHAR,
2829
2830 /* A doubled character, either "--" or "++". */
2831 OT_DOUBLE_CHAR,
2832
2833 /* The end of the operand list. */
2834 OT_END
2835 };
2836
2837 /* A parsed operand token. */
2838 struct mips_operand_token
2839 {
2840 /* The type of token. */
2841 enum mips_operand_token_type type;
2842 union
2843 {
2844 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2845 unsigned int regno;
2846
2847 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2848 unsigned int channels;
2849
2850 /* The integer value of an OT_INTEGER_INDEX. */
2851 addressT index;
2852
2853 /* The two register symbol values involved in an OT_REG_RANGE. */
2854 struct {
2855 unsigned int regno1;
2856 unsigned int regno2;
2857 } reg_range;
2858
2859 /* The value of an OT_INTEGER. The value is represented as an
2860 expression and the relocation operators that were applied to
2861 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2862 relocation operators were used. */
2863 struct {
2864 expressionS value;
2865 bfd_reloc_code_real_type relocs[3];
2866 } integer;
2867
2868 /* The binary data for an OT_FLOAT constant, and the number of bytes
2869 in the constant. */
2870 struct {
2871 unsigned char data[8];
2872 int length;
2873 } flt;
2874
2875 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2876 char ch;
2877 } u;
2878 };
2879
2880 /* An obstack used to construct lists of mips_operand_tokens. */
2881 static struct obstack mips_operand_tokens;
2882
2883 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2884
2885 static void
2886 mips_add_token (struct mips_operand_token *token,
2887 enum mips_operand_token_type type)
2888 {
2889 token->type = type;
2890 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2891 }
2892
2893 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2894 and OT_REG tokens for them if so, and return a pointer to the first
2895 unconsumed character. Return null otherwise. */
2896
2897 static char *
2898 mips_parse_base_start (char *s)
2899 {
2900 struct mips_operand_token token;
2901 unsigned int regno, channels;
2902 bfd_boolean decrement_p;
2903
2904 if (*s != '(')
2905 return 0;
2906
2907 ++s;
2908 SKIP_SPACE_TABS (s);
2909
2910 /* Only match "--" as part of a base expression. In other contexts "--X"
2911 is a double negative. */
2912 decrement_p = (s[0] == '-' && s[1] == '-');
2913 if (decrement_p)
2914 {
2915 s += 2;
2916 SKIP_SPACE_TABS (s);
2917 }
2918
2919 /* Allow a channel specifier because that leads to better error messages
2920 than treating something like "$vf0x++" as an expression. */
2921 if (!mips_parse_register (&s, &regno, &channels))
2922 return 0;
2923
2924 token.u.ch = '(';
2925 mips_add_token (&token, OT_CHAR);
2926
2927 if (decrement_p)
2928 {
2929 token.u.ch = '-';
2930 mips_add_token (&token, OT_DOUBLE_CHAR);
2931 }
2932
2933 token.u.regno = regno;
2934 mips_add_token (&token, OT_REG);
2935
2936 if (channels)
2937 {
2938 token.u.channels = channels;
2939 mips_add_token (&token, OT_CHANNELS);
2940 }
2941
2942 /* For consistency, only match "++" as part of base expressions too. */
2943 SKIP_SPACE_TABS (s);
2944 if (s[0] == '+' && s[1] == '+')
2945 {
2946 s += 2;
2947 token.u.ch = '+';
2948 mips_add_token (&token, OT_DOUBLE_CHAR);
2949 }
2950
2951 return s;
2952 }
2953
2954 /* Parse one or more tokens from S. Return a pointer to the first
2955 unconsumed character on success. Return null if an error was found
2956 and store the error text in insn_error. FLOAT_FORMAT is as for
2957 mips_parse_arguments. */
2958
2959 static char *
2960 mips_parse_argument_token (char *s, char float_format)
2961 {
2962 char *end, *save_in, *err;
2963 unsigned int regno1, regno2, channels;
2964 struct mips_operand_token token;
2965
2966 /* First look for "($reg", since we want to treat that as an
2967 OT_CHAR and OT_REG rather than an expression. */
2968 end = mips_parse_base_start (s);
2969 if (end)
2970 return end;
2971
2972 /* Handle other characters that end up as OT_CHARs. */
2973 if (*s == ')' || *s == ',')
2974 {
2975 token.u.ch = *s;
2976 mips_add_token (&token, OT_CHAR);
2977 ++s;
2978 return s;
2979 }
2980
2981 /* Handle tokens that start with a register. */
2982 if (mips_parse_register (&s, &regno1, &channels))
2983 {
2984 if (channels)
2985 {
2986 /* A register and a VU0 channel suffix. */
2987 token.u.regno = regno1;
2988 mips_add_token (&token, OT_REG);
2989
2990 token.u.channels = channels;
2991 mips_add_token (&token, OT_CHANNELS);
2992 return s;
2993 }
2994
2995 SKIP_SPACE_TABS (s);
2996 if (*s == '-')
2997 {
2998 /* A register range. */
2999 ++s;
3000 SKIP_SPACE_TABS (s);
3001 if (!mips_parse_register (&s, &regno2, NULL))
3002 {
3003 set_insn_error (0, _("invalid register range"));
3004 return 0;
3005 }
3006
3007 token.u.reg_range.regno1 = regno1;
3008 token.u.reg_range.regno2 = regno2;
3009 mips_add_token (&token, OT_REG_RANGE);
3010 return s;
3011 }
3012
3013 /* Add the register itself. */
3014 token.u.regno = regno1;
3015 mips_add_token (&token, OT_REG);
3016
3017 /* Check for a vector index. */
3018 if (*s == '[')
3019 {
3020 ++s;
3021 SKIP_SPACE_TABS (s);
3022 if (mips_parse_register (&s, &token.u.regno, NULL))
3023 mips_add_token (&token, OT_REG_INDEX);
3024 else
3025 {
3026 expressionS element;
3027
3028 my_getExpression (&element, s);
3029 if (element.X_op != O_constant)
3030 {
3031 set_insn_error (0, _("vector element must be constant"));
3032 return 0;
3033 }
3034 s = expr_end;
3035 token.u.index = element.X_add_number;
3036 mips_add_token (&token, OT_INTEGER_INDEX);
3037 }
3038 SKIP_SPACE_TABS (s);
3039 if (*s != ']')
3040 {
3041 set_insn_error (0, _("missing `]'"));
3042 return 0;
3043 }
3044 ++s;
3045 }
3046 return s;
3047 }
3048
3049 if (float_format)
3050 {
3051 /* First try to treat expressions as floats. */
3052 save_in = input_line_pointer;
3053 input_line_pointer = s;
3054 err = md_atof (float_format, (char *) token.u.flt.data,
3055 &token.u.flt.length);
3056 end = input_line_pointer;
3057 input_line_pointer = save_in;
3058 if (err && *err)
3059 {
3060 set_insn_error (0, err);
3061 return 0;
3062 }
3063 if (s != end)
3064 {
3065 mips_add_token (&token, OT_FLOAT);
3066 return end;
3067 }
3068 }
3069
3070 /* Treat everything else as an integer expression. */
3071 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3072 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3073 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3074 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3075 s = expr_end;
3076 mips_add_token (&token, OT_INTEGER);
3077 return s;
3078 }
3079
3080 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3081 if expressions should be treated as 32-bit floating-point constants,
3082 'd' if they should be treated as 64-bit floating-point constants,
3083 or 0 if they should be treated as integer expressions (the usual case).
3084
3085 Return a list of tokens on success, otherwise return 0. The caller
3086 must obstack_free the list after use. */
3087
3088 static struct mips_operand_token *
3089 mips_parse_arguments (char *s, char float_format)
3090 {
3091 struct mips_operand_token token;
3092
3093 SKIP_SPACE_TABS (s);
3094 while (*s)
3095 {
3096 s = mips_parse_argument_token (s, float_format);
3097 if (!s)
3098 {
3099 obstack_free (&mips_operand_tokens,
3100 obstack_finish (&mips_operand_tokens));
3101 return 0;
3102 }
3103 SKIP_SPACE_TABS (s);
3104 }
3105 mips_add_token (&token, OT_END);
3106 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3107 }
3108
3109 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3110 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3111
3112 static bfd_boolean
3113 is_opcode_valid (const struct mips_opcode *mo)
3114 {
3115 int isa = mips_opts.isa;
3116 int ase = mips_opts.ase;
3117 int fp_s, fp_d;
3118 unsigned int i;
3119
3120 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3121 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3122 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3123 ase |= mips_ases[i].flags64;
3124
3125 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3126 return FALSE;
3127
3128 /* Check whether the instruction or macro requires single-precision or
3129 double-precision floating-point support. Note that this information is
3130 stored differently in the opcode table for insns and macros. */
3131 if (mo->pinfo == INSN_MACRO)
3132 {
3133 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3134 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3135 }
3136 else
3137 {
3138 fp_s = mo->pinfo & FP_S;
3139 fp_d = mo->pinfo & FP_D;
3140 }
3141
3142 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3143 return FALSE;
3144
3145 if (fp_s && mips_opts.soft_float)
3146 return FALSE;
3147
3148 return TRUE;
3149 }
3150
3151 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3152 selected ISA and architecture. */
3153
3154 static bfd_boolean
3155 is_opcode_valid_16 (const struct mips_opcode *mo)
3156 {
3157 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3158 }
3159
3160 /* Return TRUE if the size of the microMIPS opcode MO matches one
3161 explicitly requested. Always TRUE in the standard MIPS mode. */
3162
3163 static bfd_boolean
3164 is_size_valid (const struct mips_opcode *mo)
3165 {
3166 if (!mips_opts.micromips)
3167 return TRUE;
3168
3169 if (mips_opts.insn32)
3170 {
3171 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3172 return FALSE;
3173 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3174 return FALSE;
3175 }
3176 if (!forced_insn_length)
3177 return TRUE;
3178 if (mo->pinfo == INSN_MACRO)
3179 return FALSE;
3180 return forced_insn_length == micromips_insn_length (mo);
3181 }
3182
3183 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3184 of the preceding instruction. Always TRUE in the standard MIPS mode.
3185
3186 We don't accept macros in 16-bit delay slots to avoid a case where
3187 a macro expansion fails because it relies on a preceding 32-bit real
3188 instruction to have matched and does not handle the operands correctly.
3189 The only macros that may expand to 16-bit instructions are JAL that
3190 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3191 and BGT (that likewise cannot be placed in a delay slot) that decay to
3192 a NOP. In all these cases the macros precede any corresponding real
3193 instruction definitions in the opcode table, so they will match in the
3194 second pass where the size of the delay slot is ignored and therefore
3195 produce correct code. */
3196
3197 static bfd_boolean
3198 is_delay_slot_valid (const struct mips_opcode *mo)
3199 {
3200 if (!mips_opts.micromips)
3201 return TRUE;
3202
3203 if (mo->pinfo == INSN_MACRO)
3204 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3205 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3206 && micromips_insn_length (mo) != 4)
3207 return FALSE;
3208 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3209 && micromips_insn_length (mo) != 2)
3210 return FALSE;
3211
3212 return TRUE;
3213 }
3214
3215 /* For consistency checking, verify that all bits of OPCODE are specified
3216 either by the match/mask part of the instruction definition, or by the
3217 operand list. Also build up a list of operands in OPERANDS.
3218
3219 INSN_BITS says which bits of the instruction are significant.
3220 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3221 provides the mips_operand description of each operand. DECODE_OPERAND
3222 is null for MIPS16 instructions. */
3223
3224 static int
3225 validate_mips_insn (const struct mips_opcode *opcode,
3226 unsigned long insn_bits,
3227 const struct mips_operand *(*decode_operand) (const char *),
3228 struct mips_operand_array *operands)
3229 {
3230 const char *s;
3231 unsigned long used_bits, doubled, undefined, opno, mask;
3232 const struct mips_operand *operand;
3233
3234 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3235 if ((mask & opcode->match) != opcode->match)
3236 {
3237 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3238 opcode->name, opcode->args);
3239 return 0;
3240 }
3241 used_bits = 0;
3242 opno = 0;
3243 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3244 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3245 for (s = opcode->args; *s; ++s)
3246 switch (*s)
3247 {
3248 case ',':
3249 case '(':
3250 case ')':
3251 break;
3252
3253 case '#':
3254 s++;
3255 break;
3256
3257 default:
3258 if (!decode_operand)
3259 operand = decode_mips16_operand (*s, FALSE);
3260 else
3261 operand = decode_operand (s);
3262 if (!operand && opcode->pinfo != INSN_MACRO)
3263 {
3264 as_bad (_("internal: unknown operand type: %s %s"),
3265 opcode->name, opcode->args);
3266 return 0;
3267 }
3268 gas_assert (opno < MAX_OPERANDS);
3269 operands->operand[opno] = operand;
3270 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3271 {
3272 used_bits = mips_insert_operand (operand, used_bits, -1);
3273 if (operand->type == OP_MDMX_IMM_REG)
3274 /* Bit 5 is the format selector (OB vs QH). The opcode table
3275 has separate entries for each format. */
3276 used_bits &= ~(1 << (operand->lsb + 5));
3277 if (operand->type == OP_ENTRY_EXIT_LIST)
3278 used_bits &= ~(mask & 0x700);
3279 }
3280 /* Skip prefix characters. */
3281 if (decode_operand && (*s == '+' || *s == 'm'))
3282 ++s;
3283 opno += 1;
3284 break;
3285 }
3286 doubled = used_bits & mask & insn_bits;
3287 if (doubled)
3288 {
3289 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3290 " %s %s"), doubled, opcode->name, opcode->args);
3291 return 0;
3292 }
3293 used_bits |= mask;
3294 undefined = ~used_bits & insn_bits;
3295 if (opcode->pinfo != INSN_MACRO && undefined)
3296 {
3297 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3298 undefined, opcode->name, opcode->args);
3299 return 0;
3300 }
3301 used_bits &= ~insn_bits;
3302 if (used_bits)
3303 {
3304 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3305 used_bits, opcode->name, opcode->args);
3306 return 0;
3307 }
3308 return 1;
3309 }
3310
3311 /* The MIPS16 version of validate_mips_insn. */
3312
3313 static int
3314 validate_mips16_insn (const struct mips_opcode *opcode,
3315 struct mips_operand_array *operands)
3316 {
3317 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3318 {
3319 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3320 instruction. Use TMP to describe the full instruction. */
3321 struct mips_opcode tmp;
3322
3323 tmp = *opcode;
3324 tmp.match <<= 16;
3325 tmp.mask <<= 16;
3326 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3327 }
3328 return validate_mips_insn (opcode, 0xffff, 0, operands);
3329 }
3330
3331 /* The microMIPS version of validate_mips_insn. */
3332
3333 static int
3334 validate_micromips_insn (const struct mips_opcode *opc,
3335 struct mips_operand_array *operands)
3336 {
3337 unsigned long insn_bits;
3338 unsigned long major;
3339 unsigned int length;
3340
3341 if (opc->pinfo == INSN_MACRO)
3342 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3343 operands);
3344
3345 length = micromips_insn_length (opc);
3346 if (length != 2 && length != 4)
3347 {
3348 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3349 "%s %s"), length, opc->name, opc->args);
3350 return 0;
3351 }
3352 major = opc->match >> (10 + 8 * (length - 2));
3353 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3354 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3355 {
3356 as_bad (_("internal error: bad microMIPS opcode "
3357 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3358 return 0;
3359 }
3360
3361 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3362 insn_bits = 1 << 4 * length;
3363 insn_bits <<= 4 * length;
3364 insn_bits -= 1;
3365 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3366 operands);
3367 }
3368
3369 /* This function is called once, at assembler startup time. It should set up
3370 all the tables, etc. that the MD part of the assembler will need. */
3371
3372 void
3373 md_begin (void)
3374 {
3375 const char *retval = NULL;
3376 int i = 0;
3377 int broken = 0;
3378
3379 if (mips_pic != NO_PIC)
3380 {
3381 if (g_switch_seen && g_switch_value != 0)
3382 as_bad (_("-G may not be used in position-independent code"));
3383 g_switch_value = 0;
3384 }
3385
3386 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3387 as_warn (_("could not set architecture and machine"));
3388
3389 op_hash = hash_new ();
3390
3391 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3392 for (i = 0; i < NUMOPCODES;)
3393 {
3394 const char *name = mips_opcodes[i].name;
3395
3396 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3397 if (retval != NULL)
3398 {
3399 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3400 mips_opcodes[i].name, retval);
3401 /* Probably a memory allocation problem? Give up now. */
3402 as_fatal (_("broken assembler, no assembly attempted"));
3403 }
3404 do
3405 {
3406 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3407 decode_mips_operand, &mips_operands[i]))
3408 broken = 1;
3409 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3410 {
3411 create_insn (&nop_insn, mips_opcodes + i);
3412 if (mips_fix_loongson2f_nop)
3413 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3414 nop_insn.fixed_p = 1;
3415 }
3416 ++i;
3417 }
3418 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3419 }
3420
3421 mips16_op_hash = hash_new ();
3422 mips16_operands = XCNEWVEC (struct mips_operand_array,
3423 bfd_mips16_num_opcodes);
3424
3425 i = 0;
3426 while (i < bfd_mips16_num_opcodes)
3427 {
3428 const char *name = mips16_opcodes[i].name;
3429
3430 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3431 if (retval != NULL)
3432 as_fatal (_("internal: can't hash `%s': %s"),
3433 mips16_opcodes[i].name, retval);
3434 do
3435 {
3436 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3437 broken = 1;
3438 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3439 {
3440 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3441 mips16_nop_insn.fixed_p = 1;
3442 }
3443 ++i;
3444 }
3445 while (i < bfd_mips16_num_opcodes
3446 && strcmp (mips16_opcodes[i].name, name) == 0);
3447 }
3448
3449 micromips_op_hash = hash_new ();
3450 micromips_operands = XCNEWVEC (struct mips_operand_array,
3451 bfd_micromips_num_opcodes);
3452
3453 i = 0;
3454 while (i < bfd_micromips_num_opcodes)
3455 {
3456 const char *name = micromips_opcodes[i].name;
3457
3458 retval = hash_insert (micromips_op_hash, name,
3459 (void *) &micromips_opcodes[i]);
3460 if (retval != NULL)
3461 as_fatal (_("internal: can't hash `%s': %s"),
3462 micromips_opcodes[i].name, retval);
3463 do
3464 {
3465 struct mips_cl_insn *micromips_nop_insn;
3466
3467 if (!validate_micromips_insn (&micromips_opcodes[i],
3468 &micromips_operands[i]))
3469 broken = 1;
3470
3471 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3472 {
3473 if (micromips_insn_length (micromips_opcodes + i) == 2)
3474 micromips_nop_insn = &micromips_nop16_insn;
3475 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3476 micromips_nop_insn = &micromips_nop32_insn;
3477 else
3478 continue;
3479
3480 if (micromips_nop_insn->insn_mo == NULL
3481 && strcmp (name, "nop") == 0)
3482 {
3483 create_insn (micromips_nop_insn, micromips_opcodes + i);
3484 micromips_nop_insn->fixed_p = 1;
3485 }
3486 }
3487 }
3488 while (++i < bfd_micromips_num_opcodes
3489 && strcmp (micromips_opcodes[i].name, name) == 0);
3490 }
3491
3492 if (broken)
3493 as_fatal (_("broken assembler, no assembly attempted"));
3494
3495 /* We add all the general register names to the symbol table. This
3496 helps us detect invalid uses of them. */
3497 for (i = 0; reg_names[i].name; i++)
3498 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3499 reg_names[i].num, /* & RNUM_MASK, */
3500 &zero_address_frag));
3501 if (HAVE_NEWABI)
3502 for (i = 0; reg_names_n32n64[i].name; i++)
3503 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3504 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3505 &zero_address_frag));
3506 else
3507 for (i = 0; reg_names_o32[i].name; i++)
3508 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3509 reg_names_o32[i].num, /* & RNUM_MASK, */
3510 &zero_address_frag));
3511
3512 for (i = 0; i < 32; i++)
3513 {
3514 char regname[7];
3515
3516 /* R5900 VU0 floating-point register. */
3517 regname[sizeof (rename) - 1] = 0;
3518 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3519 symbol_table_insert (symbol_new (regname, reg_section,
3520 RTYPE_VF | i, &zero_address_frag));
3521
3522 /* R5900 VU0 integer register. */
3523 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3524 symbol_table_insert (symbol_new (regname, reg_section,
3525 RTYPE_VI | i, &zero_address_frag));
3526
3527 /* MSA register. */
3528 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3529 symbol_table_insert (symbol_new (regname, reg_section,
3530 RTYPE_MSA | i, &zero_address_frag));
3531 }
3532
3533 obstack_init (&mips_operand_tokens);
3534
3535 mips_no_prev_insn ();
3536
3537 mips_gprmask = 0;
3538 mips_cprmask[0] = 0;
3539 mips_cprmask[1] = 0;
3540 mips_cprmask[2] = 0;
3541 mips_cprmask[3] = 0;
3542
3543 /* set the default alignment for the text section (2**2) */
3544 record_alignment (text_section, 2);
3545
3546 bfd_set_gp_size (stdoutput, g_switch_value);
3547
3548 /* On a native system other than VxWorks, sections must be aligned
3549 to 16 byte boundaries. When configured for an embedded ELF
3550 target, we don't bother. */
3551 if (strncmp (TARGET_OS, "elf", 3) != 0
3552 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3553 {
3554 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3555 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3556 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3557 }
3558
3559 /* Create a .reginfo section for register masks and a .mdebug
3560 section for debugging information. */
3561 {
3562 segT seg;
3563 subsegT subseg;
3564 flagword flags;
3565 segT sec;
3566
3567 seg = now_seg;
3568 subseg = now_subseg;
3569
3570 /* The ABI says this section should be loaded so that the
3571 running program can access it. However, we don't load it
3572 if we are configured for an embedded target */
3573 flags = SEC_READONLY | SEC_DATA;
3574 if (strncmp (TARGET_OS, "elf", 3) != 0)
3575 flags |= SEC_ALLOC | SEC_LOAD;
3576
3577 if (mips_abi != N64_ABI)
3578 {
3579 sec = subseg_new (".reginfo", (subsegT) 0);
3580
3581 bfd_set_section_flags (stdoutput, sec, flags);
3582 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3583
3584 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3585 }
3586 else
3587 {
3588 /* The 64-bit ABI uses a .MIPS.options section rather than
3589 .reginfo section. */
3590 sec = subseg_new (".MIPS.options", (subsegT) 0);
3591 bfd_set_section_flags (stdoutput, sec, flags);
3592 bfd_set_section_alignment (stdoutput, sec, 3);
3593
3594 /* Set up the option header. */
3595 {
3596 Elf_Internal_Options opthdr;
3597 char *f;
3598
3599 opthdr.kind = ODK_REGINFO;
3600 opthdr.size = (sizeof (Elf_External_Options)
3601 + sizeof (Elf64_External_RegInfo));
3602 opthdr.section = 0;
3603 opthdr.info = 0;
3604 f = frag_more (sizeof (Elf_External_Options));
3605 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3606 (Elf_External_Options *) f);
3607
3608 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3609 }
3610 }
3611
3612 if (ECOFF_DEBUGGING)
3613 {
3614 sec = subseg_new (".mdebug", (subsegT) 0);
3615 (void) bfd_set_section_flags (stdoutput, sec,
3616 SEC_HAS_CONTENTS | SEC_READONLY);
3617 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3618 }
3619 else if (mips_flag_pdr)
3620 {
3621 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3622 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3623 SEC_READONLY | SEC_RELOC
3624 | SEC_DEBUGGING);
3625 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3626 }
3627
3628 subseg_set (seg, subseg);
3629 }
3630
3631 if (! ECOFF_DEBUGGING)
3632 md_obj_begin ();
3633
3634 if (mips_fix_vr4120)
3635 init_vr4120_conflicts ();
3636 }
3637
3638 void
3639 md_mips_end (void)
3640 {
3641 mips_emit_delays ();
3642 if (! ECOFF_DEBUGGING)
3643 md_obj_end ();
3644 }
3645
3646 void
3647 md_assemble (char *str)
3648 {
3649 struct mips_cl_insn insn;
3650 bfd_reloc_code_real_type unused_reloc[3]
3651 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3652
3653 imm_expr.X_op = O_absent;
3654 offset_expr.X_op = O_absent;
3655 offset_reloc[0] = BFD_RELOC_UNUSED;
3656 offset_reloc[1] = BFD_RELOC_UNUSED;
3657 offset_reloc[2] = BFD_RELOC_UNUSED;
3658
3659 mips_mark_labels ();
3660 mips_assembling_insn = TRUE;
3661 clear_insn_error ();
3662
3663 if (mips_opts.mips16)
3664 mips16_ip (str, &insn);
3665 else
3666 {
3667 mips_ip (str, &insn);
3668 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
3669 str, insn.insn_opcode));
3670 }
3671
3672 if (insn_error.msg)
3673 report_insn_error (str);
3674 else if (insn.insn_mo->pinfo == INSN_MACRO)
3675 {
3676 macro_start ();
3677 if (mips_opts.mips16)
3678 mips16_macro (&insn);
3679 else
3680 macro (&insn, str);
3681 macro_end ();
3682 }
3683 else
3684 {
3685 if (offset_expr.X_op != O_absent)
3686 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
3687 else
3688 append_insn (&insn, NULL, unused_reloc, FALSE);
3689 }
3690
3691 mips_assembling_insn = FALSE;
3692 }
3693
3694 /* Convenience functions for abstracting away the differences between
3695 MIPS16 and non-MIPS16 relocations. */
3696
3697 static inline bfd_boolean
3698 mips16_reloc_p (bfd_reloc_code_real_type reloc)
3699 {
3700 switch (reloc)
3701 {
3702 case BFD_RELOC_MIPS16_JMP:
3703 case BFD_RELOC_MIPS16_GPREL:
3704 case BFD_RELOC_MIPS16_GOT16:
3705 case BFD_RELOC_MIPS16_CALL16:
3706 case BFD_RELOC_MIPS16_HI16_S:
3707 case BFD_RELOC_MIPS16_HI16:
3708 case BFD_RELOC_MIPS16_LO16:
3709 return TRUE;
3710
3711 default:
3712 return FALSE;
3713 }
3714 }
3715
3716 static inline bfd_boolean
3717 micromips_reloc_p (bfd_reloc_code_real_type reloc)
3718 {
3719 switch (reloc)
3720 {
3721 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3722 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3723 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3724 case BFD_RELOC_MICROMIPS_GPREL16:
3725 case BFD_RELOC_MICROMIPS_JMP:
3726 case BFD_RELOC_MICROMIPS_HI16:
3727 case BFD_RELOC_MICROMIPS_HI16_S:
3728 case BFD_RELOC_MICROMIPS_LO16:
3729 case BFD_RELOC_MICROMIPS_LITERAL:
3730 case BFD_RELOC_MICROMIPS_GOT16:
3731 case BFD_RELOC_MICROMIPS_CALL16:
3732 case BFD_RELOC_MICROMIPS_GOT_HI16:
3733 case BFD_RELOC_MICROMIPS_GOT_LO16:
3734 case BFD_RELOC_MICROMIPS_CALL_HI16:
3735 case BFD_RELOC_MICROMIPS_CALL_LO16:
3736 case BFD_RELOC_MICROMIPS_SUB:
3737 case BFD_RELOC_MICROMIPS_GOT_PAGE:
3738 case BFD_RELOC_MICROMIPS_GOT_OFST:
3739 case BFD_RELOC_MICROMIPS_GOT_DISP:
3740 case BFD_RELOC_MICROMIPS_HIGHEST:
3741 case BFD_RELOC_MICROMIPS_HIGHER:
3742 case BFD_RELOC_MICROMIPS_SCN_DISP:
3743 case BFD_RELOC_MICROMIPS_JALR:
3744 return TRUE;
3745
3746 default:
3747 return FALSE;
3748 }
3749 }
3750
3751 static inline bfd_boolean
3752 jmp_reloc_p (bfd_reloc_code_real_type reloc)
3753 {
3754 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
3755 }
3756
3757 static inline bfd_boolean
3758 got16_reloc_p (bfd_reloc_code_real_type reloc)
3759 {
3760 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
3761 || reloc == BFD_RELOC_MICROMIPS_GOT16);
3762 }
3763
3764 static inline bfd_boolean
3765 hi16_reloc_p (bfd_reloc_code_real_type reloc)
3766 {
3767 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
3768 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
3769 }
3770
3771 static inline bfd_boolean
3772 lo16_reloc_p (bfd_reloc_code_real_type reloc)
3773 {
3774 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
3775 || reloc == BFD_RELOC_MICROMIPS_LO16);
3776 }
3777
3778 static inline bfd_boolean
3779 jalr_reloc_p (bfd_reloc_code_real_type reloc)
3780 {
3781 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
3782 }
3783
3784 static inline bfd_boolean
3785 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
3786 {
3787 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
3788 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
3789 }
3790
3791 /* Return true if RELOC is a PC-relative relocation that does not have
3792 full address range. */
3793
3794 static inline bfd_boolean
3795 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
3796 {
3797 switch (reloc)
3798 {
3799 case BFD_RELOC_16_PCREL_S2:
3800 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3801 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3802 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3803 return TRUE;
3804
3805 case BFD_RELOC_32_PCREL:
3806 return HAVE_64BIT_ADDRESSES;
3807
3808 default:
3809 return FALSE;
3810 }
3811 }
3812
3813 /* Return true if the given relocation might need a matching %lo().
3814 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
3815 need a matching %lo() when applied to local symbols. */
3816
3817 static inline bfd_boolean
3818 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
3819 {
3820 return (HAVE_IN_PLACE_ADDENDS
3821 && (hi16_reloc_p (reloc)
3822 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
3823 all GOT16 relocations evaluate to "G". */
3824 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
3825 }
3826
3827 /* Return the type of %lo() reloc needed by RELOC, given that
3828 reloc_needs_lo_p. */
3829
3830 static inline bfd_reloc_code_real_type
3831 matching_lo_reloc (bfd_reloc_code_real_type reloc)
3832 {
3833 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
3834 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
3835 : BFD_RELOC_LO16));
3836 }
3837
3838 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
3839 relocation. */
3840
3841 static inline bfd_boolean
3842 fixup_has_matching_lo_p (fixS *fixp)
3843 {
3844 return (fixp->fx_next != NULL
3845 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
3846 && fixp->fx_addsy == fixp->fx_next->fx_addsy
3847 && fixp->fx_offset == fixp->fx_next->fx_offset);
3848 }
3849
3850 /* Move all labels in LABELS to the current insertion point. TEXT_P
3851 says whether the labels refer to text or data. */
3852
3853 static void
3854 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
3855 {
3856 struct insn_label_list *l;
3857 valueT val;
3858
3859 for (l = labels; l != NULL; l = l->next)
3860 {
3861 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
3862 symbol_set_frag (l->label, frag_now);
3863 val = (valueT) frag_now_fix ();
3864 /* MIPS16/microMIPS text labels are stored as odd. */
3865 if (text_p && HAVE_CODE_COMPRESSION)
3866 ++val;
3867 S_SET_VALUE (l->label, val);
3868 }
3869 }
3870
3871 /* Move all labels in insn_labels to the current insertion point
3872 and treat them as text labels. */
3873
3874 static void
3875 mips_move_text_labels (void)
3876 {
3877 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
3878 }
3879
3880 static bfd_boolean
3881 s_is_linkonce (symbolS *sym, segT from_seg)
3882 {
3883 bfd_boolean linkonce = FALSE;
3884 segT symseg = S_GET_SEGMENT (sym);
3885
3886 if (symseg != from_seg && !S_IS_LOCAL (sym))
3887 {
3888 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
3889 linkonce = TRUE;
3890 /* The GNU toolchain uses an extension for ELF: a section
3891 beginning with the magic string .gnu.linkonce is a
3892 linkonce section. */
3893 if (strncmp (segment_name (symseg), ".gnu.linkonce",
3894 sizeof ".gnu.linkonce" - 1) == 0)
3895 linkonce = TRUE;
3896 }
3897 return linkonce;
3898 }
3899
3900 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
3901 linker to handle them specially, such as generating jalx instructions
3902 when needed. We also make them odd for the duration of the assembly,
3903 in order to generate the right sort of code. We will make them even
3904 in the adjust_symtab routine, while leaving them marked. This is
3905 convenient for the debugger and the disassembler. The linker knows
3906 to make them odd again. */
3907
3908 static void
3909 mips_compressed_mark_label (symbolS *label)
3910 {
3911 gas_assert (HAVE_CODE_COMPRESSION);
3912
3913 if (mips_opts.mips16)
3914 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
3915 else
3916 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
3917 if ((S_GET_VALUE (label) & 1) == 0
3918 /* Don't adjust the address if the label is global or weak, or
3919 in a link-once section, since we'll be emitting symbol reloc
3920 references to it which will be patched up by the linker, and
3921 the final value of the symbol may or may not be MIPS16/microMIPS. */
3922 && !S_IS_WEAK (label)
3923 && !S_IS_EXTERNAL (label)
3924 && !s_is_linkonce (label, now_seg))
3925 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
3926 }
3927
3928 /* Mark preceding MIPS16 or microMIPS instruction labels. */
3929
3930 static void
3931 mips_compressed_mark_labels (void)
3932 {
3933 struct insn_label_list *l;
3934
3935 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
3936 mips_compressed_mark_label (l->label);
3937 }
3938
3939 /* End the current frag. Make it a variant frag and record the
3940 relaxation info. */
3941
3942 static void
3943 relax_close_frag (void)
3944 {
3945 mips_macro_warning.first_frag = frag_now;
3946 frag_var (rs_machine_dependent, 0, 0,
3947 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
3948 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
3949
3950 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
3951 mips_relax.first_fixup = 0;
3952 }
3953
3954 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
3955 See the comment above RELAX_ENCODE for more details. */
3956
3957 static void
3958 relax_start (symbolS *symbol)
3959 {
3960 gas_assert (mips_relax.sequence == 0);
3961 mips_relax.sequence = 1;
3962 mips_relax.symbol = symbol;
3963 }
3964
3965 /* Start generating the second version of a relaxable sequence.
3966 See the comment above RELAX_ENCODE for more details. */
3967
3968 static void
3969 relax_switch (void)
3970 {
3971 gas_assert (mips_relax.sequence == 1);
3972 mips_relax.sequence = 2;
3973 }
3974
3975 /* End the current relaxable sequence. */
3976
3977 static void
3978 relax_end (void)
3979 {
3980 gas_assert (mips_relax.sequence == 2);
3981 relax_close_frag ();
3982 mips_relax.sequence = 0;
3983 }
3984
3985 /* Return true if IP is a delayed branch or jump. */
3986
3987 static inline bfd_boolean
3988 delayed_branch_p (const struct mips_cl_insn *ip)
3989 {
3990 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3991 | INSN_COND_BRANCH_DELAY
3992 | INSN_COND_BRANCH_LIKELY)) != 0;
3993 }
3994
3995 /* Return true if IP is a compact branch or jump. */
3996
3997 static inline bfd_boolean
3998 compact_branch_p (const struct mips_cl_insn *ip)
3999 {
4000 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4001 | INSN2_COND_BRANCH)) != 0;
4002 }
4003
4004 /* Return true if IP is an unconditional branch or jump. */
4005
4006 static inline bfd_boolean
4007 uncond_branch_p (const struct mips_cl_insn *ip)
4008 {
4009 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4010 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4011 }
4012
4013 /* Return true if IP is a branch-likely instruction. */
4014
4015 static inline bfd_boolean
4016 branch_likely_p (const struct mips_cl_insn *ip)
4017 {
4018 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4019 }
4020
4021 /* Return the type of nop that should be used to fill the delay slot
4022 of delayed branch IP. */
4023
4024 static struct mips_cl_insn *
4025 get_delay_slot_nop (const struct mips_cl_insn *ip)
4026 {
4027 if (mips_opts.micromips
4028 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4029 return &micromips_nop32_insn;
4030 return NOP_INSN;
4031 }
4032
4033 /* Return a mask that has bit N set if OPCODE reads the register(s)
4034 in operand N. */
4035
4036 static unsigned int
4037 insn_read_mask (const struct mips_opcode *opcode)
4038 {
4039 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4040 }
4041
4042 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4043 in operand N. */
4044
4045 static unsigned int
4046 insn_write_mask (const struct mips_opcode *opcode)
4047 {
4048 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4049 }
4050
4051 /* Return a mask of the registers specified by operand OPERAND of INSN.
4052 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4053 is set. */
4054
4055 static unsigned int
4056 operand_reg_mask (const struct mips_cl_insn *insn,
4057 const struct mips_operand *operand,
4058 unsigned int type_mask)
4059 {
4060 unsigned int uval, vsel;
4061
4062 switch (operand->type)
4063 {
4064 case OP_INT:
4065 case OP_MAPPED_INT:
4066 case OP_MSB:
4067 case OP_PCREL:
4068 case OP_PERF_REG:
4069 case OP_ADDIUSP_INT:
4070 case OP_ENTRY_EXIT_LIST:
4071 case OP_REPEAT_DEST_REG:
4072 case OP_REPEAT_PREV_REG:
4073 case OP_PC:
4074 case OP_VU0_SUFFIX:
4075 case OP_VU0_MATCH_SUFFIX:
4076 case OP_IMM_INDEX:
4077 abort ();
4078
4079 case OP_REG:
4080 case OP_OPTIONAL_REG:
4081 {
4082 const struct mips_reg_operand *reg_op;
4083
4084 reg_op = (const struct mips_reg_operand *) operand;
4085 if (!(type_mask & (1 << reg_op->reg_type)))
4086 return 0;
4087 uval = insn_extract_operand (insn, operand);
4088 return 1 << mips_decode_reg_operand (reg_op, uval);
4089 }
4090
4091 case OP_REG_PAIR:
4092 {
4093 const struct mips_reg_pair_operand *pair_op;
4094
4095 pair_op = (const struct mips_reg_pair_operand *) operand;
4096 if (!(type_mask & (1 << pair_op->reg_type)))
4097 return 0;
4098 uval = insn_extract_operand (insn, operand);
4099 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4100 }
4101
4102 case OP_CLO_CLZ_DEST:
4103 if (!(type_mask & (1 << OP_REG_GP)))
4104 return 0;
4105 uval = insn_extract_operand (insn, operand);
4106 return (1 << (uval & 31)) | (1 << (uval >> 5));
4107
4108 case OP_LWM_SWM_LIST:
4109 abort ();
4110
4111 case OP_SAVE_RESTORE_LIST:
4112 abort ();
4113
4114 case OP_MDMX_IMM_REG:
4115 if (!(type_mask & (1 << OP_REG_VEC)))
4116 return 0;
4117 uval = insn_extract_operand (insn, operand);
4118 vsel = uval >> 5;
4119 if ((vsel & 0x18) == 0x18)
4120 return 0;
4121 return 1 << (uval & 31);
4122
4123 case OP_REG_INDEX:
4124 if (!(type_mask & (1 << OP_REG_GP)))
4125 return 0;
4126 return 1 << insn_extract_operand (insn, operand);
4127 }
4128 abort ();
4129 }
4130
4131 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4132 where bit N of OPNO_MASK is set if operand N should be included.
4133 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4134 is set. */
4135
4136 static unsigned int
4137 insn_reg_mask (const struct mips_cl_insn *insn,
4138 unsigned int type_mask, unsigned int opno_mask)
4139 {
4140 unsigned int opno, reg_mask;
4141
4142 opno = 0;
4143 reg_mask = 0;
4144 while (opno_mask != 0)
4145 {
4146 if (opno_mask & 1)
4147 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4148 opno_mask >>= 1;
4149 opno += 1;
4150 }
4151 return reg_mask;
4152 }
4153
4154 /* Return the mask of core registers that IP reads. */
4155
4156 static unsigned int
4157 gpr_read_mask (const struct mips_cl_insn *ip)
4158 {
4159 unsigned long pinfo, pinfo2;
4160 unsigned int mask;
4161
4162 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4163 pinfo = ip->insn_mo->pinfo;
4164 pinfo2 = ip->insn_mo->pinfo2;
4165 if (pinfo & INSN_UDI)
4166 {
4167 /* UDI instructions have traditionally been assumed to read RS
4168 and RT. */
4169 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4170 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4171 }
4172 if (pinfo & INSN_READ_GPR_24)
4173 mask |= 1 << 24;
4174 if (pinfo2 & INSN2_READ_GPR_16)
4175 mask |= 1 << 16;
4176 if (pinfo2 & INSN2_READ_SP)
4177 mask |= 1 << SP;
4178 if (pinfo2 & INSN2_READ_GPR_31)
4179 mask |= 1 << 31;
4180 /* Don't include register 0. */
4181 return mask & ~1;
4182 }
4183
4184 /* Return the mask of core registers that IP writes. */
4185
4186 static unsigned int
4187 gpr_write_mask (const struct mips_cl_insn *ip)
4188 {
4189 unsigned long pinfo, pinfo2;
4190 unsigned int mask;
4191
4192 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4193 pinfo = ip->insn_mo->pinfo;
4194 pinfo2 = ip->insn_mo->pinfo2;
4195 if (pinfo & INSN_WRITE_GPR_24)
4196 mask |= 1 << 24;
4197 if (pinfo & INSN_WRITE_GPR_31)
4198 mask |= 1 << 31;
4199 if (pinfo & INSN_UDI)
4200 /* UDI instructions have traditionally been assumed to write to RD. */
4201 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4202 if (pinfo2 & INSN2_WRITE_SP)
4203 mask |= 1 << SP;
4204 /* Don't include register 0. */
4205 return mask & ~1;
4206 }
4207
4208 /* Return the mask of floating-point registers that IP reads. */
4209
4210 static unsigned int
4211 fpr_read_mask (const struct mips_cl_insn *ip)
4212 {
4213 unsigned long pinfo;
4214 unsigned int mask;
4215
4216 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4217 | (1 << OP_REG_MSA)),
4218 insn_read_mask (ip->insn_mo));
4219 pinfo = ip->insn_mo->pinfo;
4220 /* Conservatively treat all operands to an FP_D instruction are doubles.
4221 (This is overly pessimistic for things like cvt.d.s.) */
4222 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
4223 mask |= mask << 1;
4224 return mask;
4225 }
4226
4227 /* Return the mask of floating-point registers that IP writes. */
4228
4229 static unsigned int
4230 fpr_write_mask (const struct mips_cl_insn *ip)
4231 {
4232 unsigned long pinfo;
4233 unsigned int mask;
4234
4235 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4236 | (1 << OP_REG_MSA)),
4237 insn_write_mask (ip->insn_mo));
4238 pinfo = ip->insn_mo->pinfo;
4239 /* Conservatively treat all operands to an FP_D instruction are doubles.
4240 (This is overly pessimistic for things like cvt.s.d.) */
4241 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
4242 mask |= mask << 1;
4243 return mask;
4244 }
4245
4246 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4247 Check whether that is allowed. */
4248
4249 static bfd_boolean
4250 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4251 {
4252 const char *s = insn->name;
4253
4254 if (insn->pinfo == INSN_MACRO)
4255 /* Let a macro pass, we'll catch it later when it is expanded. */
4256 return TRUE;
4257
4258 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || mips_opts.arch == CPU_R5900)
4259 {
4260 /* Allow odd registers for single-precision ops. */
4261 switch (insn->pinfo & (FP_S | FP_D))
4262 {
4263 case FP_S:
4264 case 0:
4265 return TRUE;
4266 case FP_D:
4267 return FALSE;
4268 default:
4269 break;
4270 }
4271
4272 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4273 s = strchr (insn->name, '.');
4274 if (s != NULL && opnum == 2)
4275 s = strchr (s + 1, '.');
4276 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
4277 }
4278
4279 /* Single-precision coprocessor loads and moves are OK too. */
4280 if ((insn->pinfo & FP_S)
4281 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
4282 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
4283 return TRUE;
4284
4285 return FALSE;
4286 }
4287
4288 /* Information about an instruction argument that we're trying to match. */
4289 struct mips_arg_info
4290 {
4291 /* The instruction so far. */
4292 struct mips_cl_insn *insn;
4293
4294 /* The first unconsumed operand token. */
4295 struct mips_operand_token *token;
4296
4297 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4298 int opnum;
4299
4300 /* The 1-based argument number, for error reporting. This does not
4301 count elided optional registers, etc.. */
4302 int argnum;
4303
4304 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4305 unsigned int last_regno;
4306
4307 /* If the first operand was an OP_REG, this is the register that it
4308 specified, otherwise it is ILLEGAL_REG. */
4309 unsigned int dest_regno;
4310
4311 /* The value of the last OP_INT operand. Only used for OP_MSB,
4312 where it gives the lsb position. */
4313 unsigned int last_op_int;
4314
4315 /* If true, match routines should assume that no later instruction
4316 alternative matches and should therefore be as accomodating as
4317 possible. Match routines should not report errors if something
4318 is only invalid for !LAX_MATCH. */
4319 bfd_boolean lax_match;
4320
4321 /* True if a reference to the current AT register was seen. */
4322 bfd_boolean seen_at;
4323 };
4324
4325 /* Record that the argument is out of range. */
4326
4327 static void
4328 match_out_of_range (struct mips_arg_info *arg)
4329 {
4330 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4331 }
4332
4333 /* Record that the argument isn't constant but needs to be. */
4334
4335 static void
4336 match_not_constant (struct mips_arg_info *arg)
4337 {
4338 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4339 arg->argnum);
4340 }
4341
4342 /* Try to match an OT_CHAR token for character CH. Consume the token
4343 and return true on success, otherwise return false. */
4344
4345 static bfd_boolean
4346 match_char (struct mips_arg_info *arg, char ch)
4347 {
4348 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4349 {
4350 ++arg->token;
4351 if (ch == ',')
4352 arg->argnum += 1;
4353 return TRUE;
4354 }
4355 return FALSE;
4356 }
4357
4358 /* Try to get an expression from the next tokens in ARG. Consume the
4359 tokens and return true on success, storing the expression value in
4360 VALUE and relocation types in R. */
4361
4362 static bfd_boolean
4363 match_expression (struct mips_arg_info *arg, expressionS *value,
4364 bfd_reloc_code_real_type *r)
4365 {
4366 /* If the next token is a '(' that was parsed as being part of a base
4367 expression, assume we have an elided offset. The later match will fail
4368 if this turns out to be wrong. */
4369 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4370 {
4371 value->X_op = O_constant;
4372 value->X_add_number = 0;
4373 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4374 return TRUE;
4375 }
4376
4377 /* Reject register-based expressions such as "0+$2" and "(($2))".
4378 For plain registers the default error seems more appropriate. */
4379 if (arg->token->type == OT_INTEGER
4380 && arg->token->u.integer.value.X_op == O_register)
4381 {
4382 set_insn_error (arg->argnum, _("register value used as expression"));
4383 return FALSE;
4384 }
4385
4386 if (arg->token->type == OT_INTEGER)
4387 {
4388 *value = arg->token->u.integer.value;
4389 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4390 ++arg->token;
4391 return TRUE;
4392 }
4393
4394 set_insn_error_i
4395 (arg->argnum, _("operand %d must be an immediate expression"),
4396 arg->argnum);
4397 return FALSE;
4398 }
4399
4400 /* Try to get a constant expression from the next tokens in ARG. Consume
4401 the tokens and return return true on success, storing the constant value
4402 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4403 error. */
4404
4405 static bfd_boolean
4406 match_const_int (struct mips_arg_info *arg, offsetT *value)
4407 {
4408 expressionS ex;
4409 bfd_reloc_code_real_type r[3];
4410
4411 if (!match_expression (arg, &ex, r))
4412 return FALSE;
4413
4414 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4415 *value = ex.X_add_number;
4416 else
4417 {
4418 match_not_constant (arg);
4419 return FALSE;
4420 }
4421 return TRUE;
4422 }
4423
4424 /* Return the RTYPE_* flags for a register operand of type TYPE that
4425 appears in instruction OPCODE. */
4426
4427 static unsigned int
4428 convert_reg_type (const struct mips_opcode *opcode,
4429 enum mips_reg_operand_type type)
4430 {
4431 switch (type)
4432 {
4433 case OP_REG_GP:
4434 return RTYPE_NUM | RTYPE_GP;
4435
4436 case OP_REG_FP:
4437 /* Allow vector register names for MDMX if the instruction is a 64-bit
4438 FPR load, store or move (including moves to and from GPRs). */
4439 if ((mips_opts.ase & ASE_MDMX)
4440 && (opcode->pinfo & FP_D)
4441 && (opcode->pinfo & (INSN_COPROC_MOVE_DELAY
4442 | INSN_COPROC_MEMORY_DELAY
4443 | INSN_LOAD_COPROC_DELAY
4444 | INSN_LOAD_MEMORY
4445 | INSN_STORE_MEMORY)))
4446 return RTYPE_FPU | RTYPE_VEC;
4447 return RTYPE_FPU;
4448
4449 case OP_REG_CCC:
4450 if (opcode->pinfo & (FP_D | FP_S))
4451 return RTYPE_CCC | RTYPE_FCC;
4452 return RTYPE_CCC;
4453
4454 case OP_REG_VEC:
4455 if (opcode->membership & INSN_5400)
4456 return RTYPE_FPU;
4457 return RTYPE_FPU | RTYPE_VEC;
4458
4459 case OP_REG_ACC:
4460 return RTYPE_ACC;
4461
4462 case OP_REG_COPRO:
4463 if (opcode->name[strlen (opcode->name) - 1] == '0')
4464 return RTYPE_NUM | RTYPE_CP0;
4465 return RTYPE_NUM;
4466
4467 case OP_REG_HW:
4468 return RTYPE_NUM;
4469
4470 case OP_REG_VI:
4471 return RTYPE_NUM | RTYPE_VI;
4472
4473 case OP_REG_VF:
4474 return RTYPE_NUM | RTYPE_VF;
4475
4476 case OP_REG_R5900_I:
4477 return RTYPE_R5900_I;
4478
4479 case OP_REG_R5900_Q:
4480 return RTYPE_R5900_Q;
4481
4482 case OP_REG_R5900_R:
4483 return RTYPE_R5900_R;
4484
4485 case OP_REG_R5900_ACC:
4486 return RTYPE_R5900_ACC;
4487
4488 case OP_REG_MSA:
4489 return RTYPE_MSA;
4490
4491 case OP_REG_MSA_CTRL:
4492 return RTYPE_NUM;
4493 }
4494 abort ();
4495 }
4496
4497 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4498
4499 static void
4500 check_regno (struct mips_arg_info *arg,
4501 enum mips_reg_operand_type type, unsigned int regno)
4502 {
4503 if (AT && type == OP_REG_GP && regno == AT)
4504 arg->seen_at = TRUE;
4505
4506 if (type == OP_REG_FP
4507 && (regno & 1) != 0
4508 && HAVE_32BIT_FPRS
4509 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4510 as_warn (_("float register should be even, was %d"), regno);
4511
4512 if (type == OP_REG_CCC)
4513 {
4514 const char *name;
4515 size_t length;
4516
4517 name = arg->insn->insn_mo->name;
4518 length = strlen (name);
4519 if ((regno & 1) != 0
4520 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4521 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4522 as_warn (_("condition code register should be even for %s, was %d"),
4523 name, regno);
4524
4525 if ((regno & 3) != 0
4526 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4527 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4528 name, regno);
4529 }
4530 }
4531
4532 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4533 a register of type TYPE. Return true on success, storing the register
4534 number in *REGNO and warning about any dubious uses. */
4535
4536 static bfd_boolean
4537 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4538 unsigned int symval, unsigned int *regno)
4539 {
4540 if (type == OP_REG_VEC)
4541 symval = mips_prefer_vec_regno (symval);
4542 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4543 return FALSE;
4544
4545 *regno = symval & RNUM_MASK;
4546 check_regno (arg, type, *regno);
4547 return TRUE;
4548 }
4549
4550 /* Try to interpret the next token in ARG as a register of type TYPE.
4551 Consume the token and return true on success, storing the register
4552 number in *REGNO. Return false on failure. */
4553
4554 static bfd_boolean
4555 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4556 unsigned int *regno)
4557 {
4558 if (arg->token->type == OT_REG
4559 && match_regno (arg, type, arg->token->u.regno, regno))
4560 {
4561 ++arg->token;
4562 return TRUE;
4563 }
4564 return FALSE;
4565 }
4566
4567 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4568 Consume the token and return true on success, storing the register numbers
4569 in *REGNO1 and *REGNO2. Return false on failure. */
4570
4571 static bfd_boolean
4572 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4573 unsigned int *regno1, unsigned int *regno2)
4574 {
4575 if (match_reg (arg, type, regno1))
4576 {
4577 *regno2 = *regno1;
4578 return TRUE;
4579 }
4580 if (arg->token->type == OT_REG_RANGE
4581 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4582 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4583 && *regno1 <= *regno2)
4584 {
4585 ++arg->token;
4586 return TRUE;
4587 }
4588 return FALSE;
4589 }
4590
4591 /* OP_INT matcher. */
4592
4593 static bfd_boolean
4594 match_int_operand (struct mips_arg_info *arg,
4595 const struct mips_operand *operand_base)
4596 {
4597 const struct mips_int_operand *operand;
4598 unsigned int uval;
4599 int min_val, max_val, factor;
4600 offsetT sval;
4601
4602 operand = (const struct mips_int_operand *) operand_base;
4603 factor = 1 << operand->shift;
4604 min_val = mips_int_operand_min (operand);
4605 max_val = mips_int_operand_max (operand);
4606
4607 if (operand_base->lsb == 0
4608 && operand_base->size == 16
4609 && operand->shift == 0
4610 && operand->bias == 0
4611 && (operand->max_val == 32767 || operand->max_val == 65535))
4612 {
4613 /* The operand can be relocated. */
4614 if (!match_expression (arg, &offset_expr, offset_reloc))
4615 return FALSE;
4616
4617 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4618 /* Relocation operators were used. Accept the arguent and
4619 leave the relocation value in offset_expr and offset_relocs
4620 for the caller to process. */
4621 return TRUE;
4622
4623 if (offset_expr.X_op != O_constant)
4624 {
4625 /* Accept non-constant operands if no later alternative matches,
4626 leaving it for the caller to process. */
4627 if (!arg->lax_match)
4628 return FALSE;
4629 offset_reloc[0] = BFD_RELOC_LO16;
4630 return TRUE;
4631 }
4632
4633 /* Clear the global state; we're going to install the operand
4634 ourselves. */
4635 sval = offset_expr.X_add_number;
4636 offset_expr.X_op = O_absent;
4637
4638 /* For compatibility with older assemblers, we accept
4639 0x8000-0xffff as signed 16-bit numbers when only
4640 signed numbers are allowed. */
4641 if (sval > max_val)
4642 {
4643 max_val = ((1 << operand_base->size) - 1) << operand->shift;
4644 if (!arg->lax_match && sval <= max_val)
4645 return FALSE;
4646 }
4647 }
4648 else
4649 {
4650 if (!match_const_int (arg, &sval))
4651 return FALSE;
4652 }
4653
4654 arg->last_op_int = sval;
4655
4656 if (sval < min_val || sval > max_val || sval % factor)
4657 {
4658 match_out_of_range (arg);
4659 return FALSE;
4660 }
4661
4662 uval = (unsigned int) sval >> operand->shift;
4663 uval -= operand->bias;
4664
4665 /* Handle -mfix-cn63xxp1. */
4666 if (arg->opnum == 1
4667 && mips_fix_cn63xxp1
4668 && !mips_opts.micromips
4669 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
4670 switch (uval)
4671 {
4672 case 5:
4673 case 25:
4674 case 26:
4675 case 27:
4676 case 28:
4677 case 29:
4678 case 30:
4679 case 31:
4680 /* These are ok. */
4681 break;
4682
4683 default:
4684 /* The rest must be changed to 28. */
4685 uval = 28;
4686 break;
4687 }
4688
4689 insn_insert_operand (arg->insn, operand_base, uval);
4690 return TRUE;
4691 }
4692
4693 /* OP_MAPPED_INT matcher. */
4694
4695 static bfd_boolean
4696 match_mapped_int_operand (struct mips_arg_info *arg,
4697 const struct mips_operand *operand_base)
4698 {
4699 const struct mips_mapped_int_operand *operand;
4700 unsigned int uval, num_vals;
4701 offsetT sval;
4702
4703 operand = (const struct mips_mapped_int_operand *) operand_base;
4704 if (!match_const_int (arg, &sval))
4705 return FALSE;
4706
4707 num_vals = 1 << operand_base->size;
4708 for (uval = 0; uval < num_vals; uval++)
4709 if (operand->int_map[uval] == sval)
4710 break;
4711 if (uval == num_vals)
4712 {
4713 match_out_of_range (arg);
4714 return FALSE;
4715 }
4716
4717 insn_insert_operand (arg->insn, operand_base, uval);
4718 return TRUE;
4719 }
4720
4721 /* OP_MSB matcher. */
4722
4723 static bfd_boolean
4724 match_msb_operand (struct mips_arg_info *arg,
4725 const struct mips_operand *operand_base)
4726 {
4727 const struct mips_msb_operand *operand;
4728 int min_val, max_val, max_high;
4729 offsetT size, sval, high;
4730
4731 operand = (const struct mips_msb_operand *) operand_base;
4732 min_val = operand->bias;
4733 max_val = min_val + (1 << operand_base->size) - 1;
4734 max_high = operand->opsize;
4735
4736 if (!match_const_int (arg, &size))
4737 return FALSE;
4738
4739 high = size + arg->last_op_int;
4740 sval = operand->add_lsb ? high : size;
4741
4742 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
4743 {
4744 match_out_of_range (arg);
4745 return FALSE;
4746 }
4747 insn_insert_operand (arg->insn, operand_base, sval - min_val);
4748 return TRUE;
4749 }
4750
4751 /* OP_REG matcher. */
4752
4753 static bfd_boolean
4754 match_reg_operand (struct mips_arg_info *arg,
4755 const struct mips_operand *operand_base)
4756 {
4757 const struct mips_reg_operand *operand;
4758 unsigned int regno, uval, num_vals;
4759
4760 operand = (const struct mips_reg_operand *) operand_base;
4761 if (!match_reg (arg, operand->reg_type, &regno))
4762 return FALSE;
4763
4764 if (operand->reg_map)
4765 {
4766 num_vals = 1 << operand->root.size;
4767 for (uval = 0; uval < num_vals; uval++)
4768 if (operand->reg_map[uval] == regno)
4769 break;
4770 if (num_vals == uval)
4771 return FALSE;
4772 }
4773 else
4774 uval = regno;
4775
4776 arg->last_regno = regno;
4777 if (arg->opnum == 1)
4778 arg->dest_regno = regno;
4779 insn_insert_operand (arg->insn, operand_base, uval);
4780 return TRUE;
4781 }
4782
4783 /* OP_REG_PAIR matcher. */
4784
4785 static bfd_boolean
4786 match_reg_pair_operand (struct mips_arg_info *arg,
4787 const struct mips_operand *operand_base)
4788 {
4789 const struct mips_reg_pair_operand *operand;
4790 unsigned int regno1, regno2, uval, num_vals;
4791
4792 operand = (const struct mips_reg_pair_operand *) operand_base;
4793 if (!match_reg (arg, operand->reg_type, &regno1)
4794 || !match_char (arg, ',')
4795 || !match_reg (arg, operand->reg_type, &regno2))
4796 return FALSE;
4797
4798 num_vals = 1 << operand_base->size;
4799 for (uval = 0; uval < num_vals; uval++)
4800 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
4801 break;
4802 if (uval == num_vals)
4803 return FALSE;
4804
4805 insn_insert_operand (arg->insn, operand_base, uval);
4806 return TRUE;
4807 }
4808
4809 /* OP_PCREL matcher. The caller chooses the relocation type. */
4810
4811 static bfd_boolean
4812 match_pcrel_operand (struct mips_arg_info *arg)
4813 {
4814 bfd_reloc_code_real_type r[3];
4815
4816 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
4817 }
4818
4819 /* OP_PERF_REG matcher. */
4820
4821 static bfd_boolean
4822 match_perf_reg_operand (struct mips_arg_info *arg,
4823 const struct mips_operand *operand)
4824 {
4825 offsetT sval;
4826
4827 if (!match_const_int (arg, &sval))
4828 return FALSE;
4829
4830 if (sval != 0
4831 && (sval != 1
4832 || (mips_opts.arch == CPU_R5900
4833 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
4834 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
4835 {
4836 set_insn_error (arg->argnum, _("invalid performance register"));
4837 return FALSE;
4838 }
4839
4840 insn_insert_operand (arg->insn, operand, sval);
4841 return TRUE;
4842 }
4843
4844 /* OP_ADDIUSP matcher. */
4845
4846 static bfd_boolean
4847 match_addiusp_operand (struct mips_arg_info *arg,
4848 const struct mips_operand *operand)
4849 {
4850 offsetT sval;
4851 unsigned int uval;
4852
4853 if (!match_const_int (arg, &sval))
4854 return FALSE;
4855
4856 if (sval % 4)
4857 {
4858 match_out_of_range (arg);
4859 return FALSE;
4860 }
4861
4862 sval /= 4;
4863 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
4864 {
4865 match_out_of_range (arg);
4866 return FALSE;
4867 }
4868
4869 uval = (unsigned int) sval;
4870 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
4871 insn_insert_operand (arg->insn, operand, uval);
4872 return TRUE;
4873 }
4874
4875 /* OP_CLO_CLZ_DEST matcher. */
4876
4877 static bfd_boolean
4878 match_clo_clz_dest_operand (struct mips_arg_info *arg,
4879 const struct mips_operand *operand)
4880 {
4881 unsigned int regno;
4882
4883 if (!match_reg (arg, OP_REG_GP, &regno))
4884 return FALSE;
4885
4886 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
4887 return TRUE;
4888 }
4889
4890 /* OP_LWM_SWM_LIST matcher. */
4891
4892 static bfd_boolean
4893 match_lwm_swm_list_operand (struct mips_arg_info *arg,
4894 const struct mips_operand *operand)
4895 {
4896 unsigned int reglist, sregs, ra, regno1, regno2;
4897 struct mips_arg_info reset;
4898
4899 reglist = 0;
4900 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4901 return FALSE;
4902 do
4903 {
4904 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
4905 {
4906 reglist |= 1 << FP;
4907 regno2 = S7;
4908 }
4909 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
4910 reset = *arg;
4911 }
4912 while (match_char (arg, ',')
4913 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
4914 *arg = reset;
4915
4916 if (operand->size == 2)
4917 {
4918 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
4919
4920 s0, ra
4921 s0, s1, ra, s2, s3
4922 s0-s2, ra
4923
4924 and any permutations of these. */
4925 if ((reglist & 0xfff1ffff) != 0x80010000)
4926 return FALSE;
4927
4928 sregs = (reglist >> 17) & 7;
4929 ra = 0;
4930 }
4931 else
4932 {
4933 /* The list must include at least one of ra and s0-sN,
4934 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
4935 which are $23 and $30 respectively.) E.g.:
4936
4937 ra
4938 s0
4939 ra, s0, s1, s2
4940 s0-s8
4941 s0-s5, ra
4942
4943 and any permutations of these. */
4944 if ((reglist & 0x3f00ffff) != 0)
4945 return FALSE;
4946
4947 ra = (reglist >> 27) & 0x10;
4948 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
4949 }
4950 sregs += 1;
4951 if ((sregs & -sregs) != sregs)
4952 return FALSE;
4953
4954 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
4955 return TRUE;
4956 }
4957
4958 /* OP_ENTRY_EXIT_LIST matcher. */
4959
4960 static unsigned int
4961 match_entry_exit_operand (struct mips_arg_info *arg,
4962 const struct mips_operand *operand)
4963 {
4964 unsigned int mask;
4965 bfd_boolean is_exit;
4966
4967 /* The format is the same for both ENTRY and EXIT, but the constraints
4968 are different. */
4969 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
4970 mask = (is_exit ? 7 << 3 : 0);
4971 do
4972 {
4973 unsigned int regno1, regno2;
4974 bfd_boolean is_freg;
4975
4976 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4977 is_freg = FALSE;
4978 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
4979 is_freg = TRUE;
4980 else
4981 return FALSE;
4982
4983 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
4984 {
4985 mask &= ~(7 << 3);
4986 mask |= (5 + regno2) << 3;
4987 }
4988 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
4989 mask |= (regno2 - 3) << 3;
4990 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
4991 mask |= (regno2 - 15) << 1;
4992 else if (regno1 == RA && regno2 == RA)
4993 mask |= 1;
4994 else
4995 return FALSE;
4996 }
4997 while (match_char (arg, ','));
4998
4999 insn_insert_operand (arg->insn, operand, mask);
5000 return TRUE;
5001 }
5002
5003 /* OP_SAVE_RESTORE_LIST matcher. */
5004
5005 static bfd_boolean
5006 match_save_restore_list_operand (struct mips_arg_info *arg)
5007 {
5008 unsigned int opcode, args, statics, sregs;
5009 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5010 offsetT frame_size;
5011
5012 opcode = arg->insn->insn_opcode;
5013 frame_size = 0;
5014 num_frame_sizes = 0;
5015 args = 0;
5016 statics = 0;
5017 sregs = 0;
5018 do
5019 {
5020 unsigned int regno1, regno2;
5021
5022 if (arg->token->type == OT_INTEGER)
5023 {
5024 /* Handle the frame size. */
5025 if (!match_const_int (arg, &frame_size))
5026 return FALSE;
5027 num_frame_sizes += 1;
5028 }
5029 else
5030 {
5031 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5032 return FALSE;
5033
5034 while (regno1 <= regno2)
5035 {
5036 if (regno1 >= 4 && regno1 <= 7)
5037 {
5038 if (num_frame_sizes == 0)
5039 /* args $a0-$a3 */
5040 args |= 1 << (regno1 - 4);
5041 else
5042 /* statics $a0-$a3 */
5043 statics |= 1 << (regno1 - 4);
5044 }
5045 else if (regno1 >= 16 && regno1 <= 23)
5046 /* $s0-$s7 */
5047 sregs |= 1 << (regno1 - 16);
5048 else if (regno1 == 30)
5049 /* $s8 */
5050 sregs |= 1 << 8;
5051 else if (regno1 == 31)
5052 /* Add $ra to insn. */
5053 opcode |= 0x40;
5054 else
5055 return FALSE;
5056 regno1 += 1;
5057 if (regno1 == 24)
5058 regno1 = 30;
5059 }
5060 }
5061 }
5062 while (match_char (arg, ','));
5063
5064 /* Encode args/statics combination. */
5065 if (args & statics)
5066 return FALSE;
5067 else if (args == 0xf)
5068 /* All $a0-$a3 are args. */
5069 opcode |= MIPS16_ALL_ARGS << 16;
5070 else if (statics == 0xf)
5071 /* All $a0-$a3 are statics. */
5072 opcode |= MIPS16_ALL_STATICS << 16;
5073 else
5074 {
5075 /* Count arg registers. */
5076 num_args = 0;
5077 while (args & 0x1)
5078 {
5079 args >>= 1;
5080 num_args += 1;
5081 }
5082 if (args != 0)
5083 return FALSE;
5084
5085 /* Count static registers. */
5086 num_statics = 0;
5087 while (statics & 0x8)
5088 {
5089 statics = (statics << 1) & 0xf;
5090 num_statics += 1;
5091 }
5092 if (statics != 0)
5093 return FALSE;
5094
5095 /* Encode args/statics. */
5096 opcode |= ((num_args << 2) | num_statics) << 16;
5097 }
5098
5099 /* Encode $s0/$s1. */
5100 if (sregs & (1 << 0)) /* $s0 */
5101 opcode |= 0x20;
5102 if (sregs & (1 << 1)) /* $s1 */
5103 opcode |= 0x10;
5104 sregs >>= 2;
5105
5106 /* Encode $s2-$s8. */
5107 num_sregs = 0;
5108 while (sregs & 1)
5109 {
5110 sregs >>= 1;
5111 num_sregs += 1;
5112 }
5113 if (sregs != 0)
5114 return FALSE;
5115 opcode |= num_sregs << 24;
5116
5117 /* Encode frame size. */
5118 if (num_frame_sizes == 0)
5119 {
5120 set_insn_error (arg->argnum, _("missing frame size"));
5121 return FALSE;
5122 }
5123 if (num_frame_sizes > 1)
5124 {
5125 set_insn_error (arg->argnum, _("frame size specified twice"));
5126 return FALSE;
5127 }
5128 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5129 {
5130 set_insn_error (arg->argnum, _("invalid frame size"));
5131 return FALSE;
5132 }
5133 if (frame_size != 128 || (opcode >> 16) != 0)
5134 {
5135 frame_size /= 8;
5136 opcode |= (((frame_size & 0xf0) << 16)
5137 | (frame_size & 0x0f));
5138 }
5139
5140 /* Finally build the instruction. */
5141 if ((opcode >> 16) != 0 || frame_size == 0)
5142 opcode |= MIPS16_EXTEND;
5143 arg->insn->insn_opcode = opcode;
5144 return TRUE;
5145 }
5146
5147 /* OP_MDMX_IMM_REG matcher. */
5148
5149 static bfd_boolean
5150 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5151 const struct mips_operand *operand)
5152 {
5153 unsigned int regno, uval;
5154 bfd_boolean is_qh;
5155 const struct mips_opcode *opcode;
5156
5157 /* The mips_opcode records whether this is an octobyte or quadhalf
5158 instruction. Start out with that bit in place. */
5159 opcode = arg->insn->insn_mo;
5160 uval = mips_extract_operand (operand, opcode->match);
5161 is_qh = (uval != 0);
5162
5163 if (arg->token->type == OT_REG)
5164 {
5165 if ((opcode->membership & INSN_5400)
5166 && strcmp (opcode->name, "rzu.ob") == 0)
5167 {
5168 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5169 arg->argnum);
5170 return FALSE;
5171 }
5172
5173 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5174 return FALSE;
5175 ++arg->token;
5176
5177 /* Check whether this is a vector register or a broadcast of
5178 a single element. */
5179 if (arg->token->type == OT_INTEGER_INDEX)
5180 {
5181 if (arg->token->u.index > (is_qh ? 3 : 7))
5182 {
5183 set_insn_error (arg->argnum, _("invalid element selector"));
5184 return FALSE;
5185 }
5186 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5187 ++arg->token;
5188 }
5189 else
5190 {
5191 /* A full vector. */
5192 if ((opcode->membership & INSN_5400)
5193 && (strcmp (opcode->name, "sll.ob") == 0
5194 || strcmp (opcode->name, "srl.ob") == 0))
5195 {
5196 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5197 arg->argnum);
5198 return FALSE;
5199 }
5200
5201 if (is_qh)
5202 uval |= MDMX_FMTSEL_VEC_QH << 5;
5203 else
5204 uval |= MDMX_FMTSEL_VEC_OB << 5;
5205 }
5206 uval |= regno;
5207 }
5208 else
5209 {
5210 offsetT sval;
5211
5212 if (!match_const_int (arg, &sval))
5213 return FALSE;
5214 if (sval < 0 || sval > 31)
5215 {
5216 match_out_of_range (arg);
5217 return FALSE;
5218 }
5219 uval |= (sval & 31);
5220 if (is_qh)
5221 uval |= MDMX_FMTSEL_IMM_QH << 5;
5222 else
5223 uval |= MDMX_FMTSEL_IMM_OB << 5;
5224 }
5225 insn_insert_operand (arg->insn, operand, uval);
5226 return TRUE;
5227 }
5228
5229 /* OP_IMM_INDEX matcher. */
5230
5231 static bfd_boolean
5232 match_imm_index_operand (struct mips_arg_info *arg,
5233 const struct mips_operand *operand)
5234 {
5235 unsigned int max_val;
5236
5237 if (arg->token->type != OT_INTEGER_INDEX)
5238 return FALSE;
5239
5240 max_val = (1 << operand->size) - 1;
5241 if (arg->token->u.index > max_val)
5242 {
5243 match_out_of_range (arg);
5244 return FALSE;
5245 }
5246 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5247 ++arg->token;
5248 return TRUE;
5249 }
5250
5251 /* OP_REG_INDEX matcher. */
5252
5253 static bfd_boolean
5254 match_reg_index_operand (struct mips_arg_info *arg,
5255 const struct mips_operand *operand)
5256 {
5257 unsigned int regno;
5258
5259 if (arg->token->type != OT_REG_INDEX)
5260 return FALSE;
5261
5262 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5263 return FALSE;
5264
5265 insn_insert_operand (arg->insn, operand, regno);
5266 ++arg->token;
5267 return TRUE;
5268 }
5269
5270 /* OP_PC matcher. */
5271
5272 static bfd_boolean
5273 match_pc_operand (struct mips_arg_info *arg)
5274 {
5275 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5276 {
5277 ++arg->token;
5278 return TRUE;
5279 }
5280 return FALSE;
5281 }
5282
5283 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5284 register that we need to match. */
5285
5286 static bfd_boolean
5287 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5288 {
5289 unsigned int regno;
5290
5291 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5292 }
5293
5294 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5295 the length of the value in bytes (4 for float, 8 for double) and
5296 USING_GPRS says whether the destination is a GPR rather than an FPR.
5297
5298 Return the constant in IMM and OFFSET as follows:
5299
5300 - If the constant should be loaded via memory, set IMM to O_absent and
5301 OFFSET to the memory address.
5302
5303 - Otherwise, if the constant should be loaded into two 32-bit registers,
5304 set IMM to the O_constant to load into the high register and OFFSET
5305 to the corresponding value for the low register.
5306
5307 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5308
5309 These constants only appear as the last operand in an instruction,
5310 and every instruction that accepts them in any variant accepts them
5311 in all variants. This means we don't have to worry about backing out
5312 any changes if the instruction does not match. We just match
5313 unconditionally and report an error if the constant is invalid. */
5314
5315 static bfd_boolean
5316 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5317 expressionS *offset, int length, bfd_boolean using_gprs)
5318 {
5319 char *p;
5320 segT seg, new_seg;
5321 subsegT subseg;
5322 const char *newname;
5323 unsigned char *data;
5324
5325 /* Where the constant is placed is based on how the MIPS assembler
5326 does things:
5327
5328 length == 4 && using_gprs -- immediate value only
5329 length == 8 && using_gprs -- .rdata or immediate value
5330 length == 4 && !using_gprs -- .lit4 or immediate value
5331 length == 8 && !using_gprs -- .lit8 or immediate value
5332
5333 The .lit4 and .lit8 sections are only used if permitted by the
5334 -G argument. */
5335 if (arg->token->type != OT_FLOAT)
5336 {
5337 set_insn_error (arg->argnum, _("floating-point expression required"));
5338 return FALSE;
5339 }
5340
5341 gas_assert (arg->token->u.flt.length == length);
5342 data = arg->token->u.flt.data;
5343 ++arg->token;
5344
5345 /* Handle 32-bit constants for which an immediate value is best. */
5346 if (length == 4
5347 && (using_gprs
5348 || g_switch_value < 4
5349 || (data[0] == 0 && data[1] == 0)
5350 || (data[2] == 0 && data[3] == 0)))
5351 {
5352 imm->X_op = O_constant;
5353 if (!target_big_endian)
5354 imm->X_add_number = bfd_getl32 (data);
5355 else
5356 imm->X_add_number = bfd_getb32 (data);
5357 offset->X_op = O_absent;
5358 return TRUE;
5359 }
5360
5361 /* Handle 64-bit constants for which an immediate value is best. */
5362 if (length == 8
5363 && !mips_disable_float_construction
5364 /* Constants can only be constructed in GPRs and copied
5365 to FPRs if the GPRs are at least as wide as the FPRs.
5366 Force the constant into memory if we are using 64-bit FPRs
5367 but the GPRs are only 32 bits wide. */
5368 /* ??? No longer true with the addition of MTHC1, but this
5369 is legacy code... */
5370 && (using_gprs || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
5371 && ((data[0] == 0 && data[1] == 0)
5372 || (data[2] == 0 && data[3] == 0))
5373 && ((data[4] == 0 && data[5] == 0)
5374 || (data[6] == 0 && data[7] == 0)))
5375 {
5376 /* The value is simple enough to load with a couple of instructions.
5377 If using 32-bit registers, set IMM to the high order 32 bits and
5378 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5379 64 bit constant. */
5380 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
5381 {
5382 imm->X_op = O_constant;
5383 offset->X_op = O_constant;
5384 if (!target_big_endian)
5385 {
5386 imm->X_add_number = bfd_getl32 (data + 4);
5387 offset->X_add_number = bfd_getl32 (data);
5388 }
5389 else
5390 {
5391 imm->X_add_number = bfd_getb32 (data);
5392 offset->X_add_number = bfd_getb32 (data + 4);
5393 }
5394 if (offset->X_add_number == 0)
5395 offset->X_op = O_absent;
5396 }
5397 else
5398 {
5399 imm->X_op = O_constant;
5400 if (!target_big_endian)
5401 imm->X_add_number = bfd_getl64 (data);
5402 else
5403 imm->X_add_number = bfd_getb64 (data);
5404 offset->X_op = O_absent;
5405 }
5406 return TRUE;
5407 }
5408
5409 /* Switch to the right section. */
5410 seg = now_seg;
5411 subseg = now_subseg;
5412 if (length == 4)
5413 {
5414 gas_assert (!using_gprs && g_switch_value >= 4);
5415 newname = ".lit4";
5416 }
5417 else
5418 {
5419 if (using_gprs || g_switch_value < 8)
5420 newname = RDATA_SECTION_NAME;
5421 else
5422 newname = ".lit8";
5423 }
5424
5425 new_seg = subseg_new (newname, (subsegT) 0);
5426 bfd_set_section_flags (stdoutput, new_seg,
5427 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5428 frag_align (length == 4 ? 2 : 3, 0, 0);
5429 if (strncmp (TARGET_OS, "elf", 3) != 0)
5430 record_alignment (new_seg, 4);
5431 else
5432 record_alignment (new_seg, length == 4 ? 2 : 3);
5433 if (seg == now_seg)
5434 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5435
5436 /* Set the argument to the current address in the section. */
5437 imm->X_op = O_absent;
5438 offset->X_op = O_symbol;
5439 offset->X_add_symbol = symbol_temp_new_now ();
5440 offset->X_add_number = 0;
5441
5442 /* Put the floating point number into the section. */
5443 p = frag_more (length);
5444 memcpy (p, data, length);
5445
5446 /* Switch back to the original section. */
5447 subseg_set (seg, subseg);
5448 return TRUE;
5449 }
5450
5451 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5452 them. */
5453
5454 static bfd_boolean
5455 match_vu0_suffix_operand (struct mips_arg_info *arg,
5456 const struct mips_operand *operand,
5457 bfd_boolean match_p)
5458 {
5459 unsigned int uval;
5460
5461 /* The operand can be an XYZW mask or a single 2-bit channel index
5462 (with X being 0). */
5463 gas_assert (operand->size == 2 || operand->size == 4);
5464
5465 /* The suffix can be omitted when it is already part of the opcode. */
5466 if (arg->token->type != OT_CHANNELS)
5467 return match_p;
5468
5469 uval = arg->token->u.channels;
5470 if (operand->size == 2)
5471 {
5472 /* Check that a single bit is set and convert it into a 2-bit index. */
5473 if ((uval & -uval) != uval)
5474 return FALSE;
5475 uval = 4 - ffs (uval);
5476 }
5477
5478 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5479 return FALSE;
5480
5481 ++arg->token;
5482 if (!match_p)
5483 insn_insert_operand (arg->insn, operand, uval);
5484 return TRUE;
5485 }
5486
5487 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5488 of the argument text if the match is successful, otherwise return null. */
5489
5490 static bfd_boolean
5491 match_operand (struct mips_arg_info *arg,
5492 const struct mips_operand *operand)
5493 {
5494 switch (operand->type)
5495 {
5496 case OP_INT:
5497 return match_int_operand (arg, operand);
5498
5499 case OP_MAPPED_INT:
5500 return match_mapped_int_operand (arg, operand);
5501
5502 case OP_MSB:
5503 return match_msb_operand (arg, operand);
5504
5505 case OP_REG:
5506 case OP_OPTIONAL_REG:
5507 return match_reg_operand (arg, operand);
5508
5509 case OP_REG_PAIR:
5510 return match_reg_pair_operand (arg, operand);
5511
5512 case OP_PCREL:
5513 return match_pcrel_operand (arg);
5514
5515 case OP_PERF_REG:
5516 return match_perf_reg_operand (arg, operand);
5517
5518 case OP_ADDIUSP_INT:
5519 return match_addiusp_operand (arg, operand);
5520
5521 case OP_CLO_CLZ_DEST:
5522 return match_clo_clz_dest_operand (arg, operand);
5523
5524 case OP_LWM_SWM_LIST:
5525 return match_lwm_swm_list_operand (arg, operand);
5526
5527 case OP_ENTRY_EXIT_LIST:
5528 return match_entry_exit_operand (arg, operand);
5529
5530 case OP_SAVE_RESTORE_LIST:
5531 return match_save_restore_list_operand (arg);
5532
5533 case OP_MDMX_IMM_REG:
5534 return match_mdmx_imm_reg_operand (arg, operand);
5535
5536 case OP_REPEAT_DEST_REG:
5537 return match_tied_reg_operand (arg, arg->dest_regno);
5538
5539 case OP_REPEAT_PREV_REG:
5540 return match_tied_reg_operand (arg, arg->last_regno);
5541
5542 case OP_PC:
5543 return match_pc_operand (arg);
5544
5545 case OP_VU0_SUFFIX:
5546 return match_vu0_suffix_operand (arg, operand, FALSE);
5547
5548 case OP_VU0_MATCH_SUFFIX:
5549 return match_vu0_suffix_operand (arg, operand, TRUE);
5550
5551 case OP_IMM_INDEX:
5552 return match_imm_index_operand (arg, operand);
5553
5554 case OP_REG_INDEX:
5555 return match_reg_index_operand (arg, operand);
5556 }
5557 abort ();
5558 }
5559
5560 /* ARG is the state after successfully matching an instruction.
5561 Issue any queued-up warnings. */
5562
5563 static void
5564 check_completed_insn (struct mips_arg_info *arg)
5565 {
5566 if (arg->seen_at)
5567 {
5568 if (AT == ATREG)
5569 as_warn (_("used $at without \".set noat\""));
5570 else
5571 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
5572 }
5573 }
5574
5575 /* Return true if modifying general-purpose register REG needs a delay. */
5576
5577 static bfd_boolean
5578 reg_needs_delay (unsigned int reg)
5579 {
5580 unsigned long prev_pinfo;
5581
5582 prev_pinfo = history[0].insn_mo->pinfo;
5583 if (!mips_opts.noreorder
5584 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
5585 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY) && !cop_interlocks))
5586 && (gpr_write_mask (&history[0]) & (1 << reg)))
5587 return TRUE;
5588
5589 return FALSE;
5590 }
5591
5592 /* Classify an instruction according to the FIX_VR4120_* enumeration.
5593 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
5594 by VR4120 errata. */
5595
5596 static unsigned int
5597 classify_vr4120_insn (const char *name)
5598 {
5599 if (strncmp (name, "macc", 4) == 0)
5600 return FIX_VR4120_MACC;
5601 if (strncmp (name, "dmacc", 5) == 0)
5602 return FIX_VR4120_DMACC;
5603 if (strncmp (name, "mult", 4) == 0)
5604 return FIX_VR4120_MULT;
5605 if (strncmp (name, "dmult", 5) == 0)
5606 return FIX_VR4120_DMULT;
5607 if (strstr (name, "div"))
5608 return FIX_VR4120_DIV;
5609 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
5610 return FIX_VR4120_MTHILO;
5611 return NUM_FIX_VR4120_CLASSES;
5612 }
5613
5614 #define INSN_ERET 0x42000018
5615 #define INSN_DERET 0x4200001f
5616 #define INSN_DMULT 0x1c
5617 #define INSN_DMULTU 0x1d
5618
5619 /* Return the number of instructions that must separate INSN1 and INSN2,
5620 where INSN1 is the earlier instruction. Return the worst-case value
5621 for any INSN2 if INSN2 is null. */
5622
5623 static unsigned int
5624 insns_between (const struct mips_cl_insn *insn1,
5625 const struct mips_cl_insn *insn2)
5626 {
5627 unsigned long pinfo1, pinfo2;
5628 unsigned int mask;
5629
5630 /* If INFO2 is null, pessimistically assume that all flags are set for
5631 the second instruction. */
5632 pinfo1 = insn1->insn_mo->pinfo;
5633 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
5634
5635 /* For most targets, write-after-read dependencies on the HI and LO
5636 registers must be separated by at least two instructions. */
5637 if (!hilo_interlocks)
5638 {
5639 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
5640 return 2;
5641 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
5642 return 2;
5643 }
5644
5645 /* If we're working around r7000 errata, there must be two instructions
5646 between an mfhi or mflo and any instruction that uses the result. */
5647 if (mips_7000_hilo_fix
5648 && !mips_opts.micromips
5649 && MF_HILO_INSN (pinfo1)
5650 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
5651 return 2;
5652
5653 /* If we're working around 24K errata, one instruction is required
5654 if an ERET or DERET is followed by a branch instruction. */
5655 if (mips_fix_24k && !mips_opts.micromips)
5656 {
5657 if (insn1->insn_opcode == INSN_ERET
5658 || insn1->insn_opcode == INSN_DERET)
5659 {
5660 if (insn2 == NULL
5661 || insn2->insn_opcode == INSN_ERET
5662 || insn2->insn_opcode == INSN_DERET
5663 || delayed_branch_p (insn2))
5664 return 1;
5665 }
5666 }
5667
5668 /* If we're working around PMC RM7000 errata, there must be three
5669 nops between a dmult and a load instruction. */
5670 if (mips_fix_rm7000 && !mips_opts.micromips)
5671 {
5672 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
5673 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
5674 {
5675 if (pinfo2 & INSN_LOAD_MEMORY)
5676 return 3;
5677 }
5678 }
5679
5680 /* If working around VR4120 errata, check for combinations that need
5681 a single intervening instruction. */
5682 if (mips_fix_vr4120 && !mips_opts.micromips)
5683 {
5684 unsigned int class1, class2;
5685
5686 class1 = classify_vr4120_insn (insn1->insn_mo->name);
5687 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
5688 {
5689 if (insn2 == NULL)
5690 return 1;
5691 class2 = classify_vr4120_insn (insn2->insn_mo->name);
5692 if (vr4120_conflicts[class1] & (1 << class2))
5693 return 1;
5694 }
5695 }
5696
5697 if (!HAVE_CODE_COMPRESSION)
5698 {
5699 /* Check for GPR or coprocessor load delays. All such delays
5700 are on the RT register. */
5701 /* Itbl support may require additional care here. */
5702 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
5703 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
5704 {
5705 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
5706 return 1;
5707 }
5708
5709 /* Check for generic coprocessor hazards.
5710
5711 This case is not handled very well. There is no special
5712 knowledge of CP0 handling, and the coprocessors other than
5713 the floating point unit are not distinguished at all. */
5714 /* Itbl support may require additional care here. FIXME!
5715 Need to modify this to include knowledge about
5716 user specified delays! */
5717 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
5718 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
5719 {
5720 /* Handle cases where INSN1 writes to a known general coprocessor
5721 register. There must be a one instruction delay before INSN2
5722 if INSN2 reads that register, otherwise no delay is needed. */
5723 mask = fpr_write_mask (insn1);
5724 if (mask != 0)
5725 {
5726 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
5727 return 1;
5728 }
5729 else
5730 {
5731 /* Read-after-write dependencies on the control registers
5732 require a two-instruction gap. */
5733 if ((pinfo1 & INSN_WRITE_COND_CODE)
5734 && (pinfo2 & INSN_READ_COND_CODE))
5735 return 2;
5736
5737 /* We don't know exactly what INSN1 does. If INSN2 is
5738 also a coprocessor instruction, assume there must be
5739 a one instruction gap. */
5740 if (pinfo2 & INSN_COP)
5741 return 1;
5742 }
5743 }
5744
5745 /* Check for read-after-write dependencies on the coprocessor
5746 control registers in cases where INSN1 does not need a general
5747 coprocessor delay. This means that INSN1 is a floating point
5748 comparison instruction. */
5749 /* Itbl support may require additional care here. */
5750 else if (!cop_interlocks
5751 && (pinfo1 & INSN_WRITE_COND_CODE)
5752 && (pinfo2 & INSN_READ_COND_CODE))
5753 return 1;
5754 }
5755
5756 return 0;
5757 }
5758
5759 /* Return the number of nops that would be needed to work around the
5760 VR4130 mflo/mfhi errata if instruction INSN immediately followed
5761 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
5762 that are contained within the first IGNORE instructions of HIST. */
5763
5764 static int
5765 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
5766 const struct mips_cl_insn *insn)
5767 {
5768 int i, j;
5769 unsigned int mask;
5770
5771 /* Check if the instruction writes to HI or LO. MTHI and MTLO
5772 are not affected by the errata. */
5773 if (insn != 0
5774 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
5775 || strcmp (insn->insn_mo->name, "mtlo") == 0
5776 || strcmp (insn->insn_mo->name, "mthi") == 0))
5777 return 0;
5778
5779 /* Search for the first MFLO or MFHI. */
5780 for (i = 0; i < MAX_VR4130_NOPS; i++)
5781 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
5782 {
5783 /* Extract the destination register. */
5784 mask = gpr_write_mask (&hist[i]);
5785
5786 /* No nops are needed if INSN reads that register. */
5787 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
5788 return 0;
5789
5790 /* ...or if any of the intervening instructions do. */
5791 for (j = 0; j < i; j++)
5792 if (gpr_read_mask (&hist[j]) & mask)
5793 return 0;
5794
5795 if (i >= ignore)
5796 return MAX_VR4130_NOPS - i;
5797 }
5798 return 0;
5799 }
5800
5801 #define BASE_REG_EQ(INSN1, INSN2) \
5802 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
5803 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
5804
5805 /* Return the minimum alignment for this store instruction. */
5806
5807 static int
5808 fix_24k_align_to (const struct mips_opcode *mo)
5809 {
5810 if (strcmp (mo->name, "sh") == 0)
5811 return 2;
5812
5813 if (strcmp (mo->name, "swc1") == 0
5814 || strcmp (mo->name, "swc2") == 0
5815 || strcmp (mo->name, "sw") == 0
5816 || strcmp (mo->name, "sc") == 0
5817 || strcmp (mo->name, "s.s") == 0)
5818 return 4;
5819
5820 if (strcmp (mo->name, "sdc1") == 0
5821 || strcmp (mo->name, "sdc2") == 0
5822 || strcmp (mo->name, "s.d") == 0)
5823 return 8;
5824
5825 /* sb, swl, swr */
5826 return 1;
5827 }
5828
5829 struct fix_24k_store_info
5830 {
5831 /* Immediate offset, if any, for this store instruction. */
5832 short off;
5833 /* Alignment required by this store instruction. */
5834 int align_to;
5835 /* True for register offsets. */
5836 int register_offset;
5837 };
5838
5839 /* Comparison function used by qsort. */
5840
5841 static int
5842 fix_24k_sort (const void *a, const void *b)
5843 {
5844 const struct fix_24k_store_info *pos1 = a;
5845 const struct fix_24k_store_info *pos2 = b;
5846
5847 return (pos1->off - pos2->off);
5848 }
5849
5850 /* INSN is a store instruction. Try to record the store information
5851 in STINFO. Return false if the information isn't known. */
5852
5853 static bfd_boolean
5854 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
5855 const struct mips_cl_insn *insn)
5856 {
5857 /* The instruction must have a known offset. */
5858 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
5859 return FALSE;
5860
5861 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
5862 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
5863 return TRUE;
5864 }
5865
5866 /* Return the number of nops that would be needed to work around the 24k
5867 "lost data on stores during refill" errata if instruction INSN
5868 immediately followed the 2 instructions described by HIST.
5869 Ignore hazards that are contained within the first IGNORE
5870 instructions of HIST.
5871
5872 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
5873 for the data cache refills and store data. The following describes
5874 the scenario where the store data could be lost.
5875
5876 * A data cache miss, due to either a load or a store, causing fill
5877 data to be supplied by the memory subsystem
5878 * The first three doublewords of fill data are returned and written
5879 into the cache
5880 * A sequence of four stores occurs in consecutive cycles around the
5881 final doubleword of the fill:
5882 * Store A
5883 * Store B
5884 * Store C
5885 * Zero, One or more instructions
5886 * Store D
5887
5888 The four stores A-D must be to different doublewords of the line that
5889 is being filled. The fourth instruction in the sequence above permits
5890 the fill of the final doubleword to be transferred from the FSB into
5891 the cache. In the sequence above, the stores may be either integer
5892 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
5893 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
5894 different doublewords on the line. If the floating point unit is
5895 running in 1:2 mode, it is not possible to create the sequence above
5896 using only floating point store instructions.
5897
5898 In this case, the cache line being filled is incorrectly marked
5899 invalid, thereby losing the data from any store to the line that
5900 occurs between the original miss and the completion of the five
5901 cycle sequence shown above.
5902
5903 The workarounds are:
5904
5905 * Run the data cache in write-through mode.
5906 * Insert a non-store instruction between
5907 Store A and Store B or Store B and Store C. */
5908
5909 static int
5910 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
5911 const struct mips_cl_insn *insn)
5912 {
5913 struct fix_24k_store_info pos[3];
5914 int align, i, base_offset;
5915
5916 if (ignore >= 2)
5917 return 0;
5918
5919 /* If the previous instruction wasn't a store, there's nothing to
5920 worry about. */
5921 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5922 return 0;
5923
5924 /* If the instructions after the previous one are unknown, we have
5925 to assume the worst. */
5926 if (!insn)
5927 return 1;
5928
5929 /* Check whether we are dealing with three consecutive stores. */
5930 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
5931 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5932 return 0;
5933
5934 /* If we don't know the relationship between the store addresses,
5935 assume the worst. */
5936 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
5937 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
5938 return 1;
5939
5940 if (!fix_24k_record_store_info (&pos[0], insn)
5941 || !fix_24k_record_store_info (&pos[1], &hist[0])
5942 || !fix_24k_record_store_info (&pos[2], &hist[1]))
5943 return 1;
5944
5945 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
5946
5947 /* Pick a value of ALIGN and X such that all offsets are adjusted by
5948 X bytes and such that the base register + X is known to be aligned
5949 to align bytes. */
5950
5951 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
5952 align = 8;
5953 else
5954 {
5955 align = pos[0].align_to;
5956 base_offset = pos[0].off;
5957 for (i = 1; i < 3; i++)
5958 if (align < pos[i].align_to)
5959 {
5960 align = pos[i].align_to;
5961 base_offset = pos[i].off;
5962 }
5963 for (i = 0; i < 3; i++)
5964 pos[i].off -= base_offset;
5965 }
5966
5967 pos[0].off &= ~align + 1;
5968 pos[1].off &= ~align + 1;
5969 pos[2].off &= ~align + 1;
5970
5971 /* If any two stores write to the same chunk, they also write to the
5972 same doubleword. The offsets are still sorted at this point. */
5973 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
5974 return 0;
5975
5976 /* A range of at least 9 bytes is needed for the stores to be in
5977 non-overlapping doublewords. */
5978 if (pos[2].off - pos[0].off <= 8)
5979 return 0;
5980
5981 if (pos[2].off - pos[1].off >= 24
5982 || pos[1].off - pos[0].off >= 24
5983 || pos[2].off - pos[0].off >= 32)
5984 return 0;
5985
5986 return 1;
5987 }
5988
5989 /* Return the number of nops that would be needed if instruction INSN
5990 immediately followed the MAX_NOPS instructions given by HIST,
5991 where HIST[0] is the most recent instruction. Ignore hazards
5992 between INSN and the first IGNORE instructions in HIST.
5993
5994 If INSN is null, return the worse-case number of nops for any
5995 instruction. */
5996
5997 static int
5998 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
5999 const struct mips_cl_insn *insn)
6000 {
6001 int i, nops, tmp_nops;
6002
6003 nops = 0;
6004 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6005 {
6006 tmp_nops = insns_between (hist + i, insn) - i;
6007 if (tmp_nops > nops)
6008 nops = tmp_nops;
6009 }
6010
6011 if (mips_fix_vr4130 && !mips_opts.micromips)
6012 {
6013 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6014 if (tmp_nops > nops)
6015 nops = tmp_nops;
6016 }
6017
6018 if (mips_fix_24k && !mips_opts.micromips)
6019 {
6020 tmp_nops = nops_for_24k (ignore, hist, insn);
6021 if (tmp_nops > nops)
6022 nops = tmp_nops;
6023 }
6024
6025 return nops;
6026 }
6027
6028 /* The variable arguments provide NUM_INSNS extra instructions that
6029 might be added to HIST. Return the largest number of nops that
6030 would be needed after the extended sequence, ignoring hazards
6031 in the first IGNORE instructions. */
6032
6033 static int
6034 nops_for_sequence (int num_insns, int ignore,
6035 const struct mips_cl_insn *hist, ...)
6036 {
6037 va_list args;
6038 struct mips_cl_insn buffer[MAX_NOPS];
6039 struct mips_cl_insn *cursor;
6040 int nops;
6041
6042 va_start (args, hist);
6043 cursor = buffer + num_insns;
6044 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6045 while (cursor > buffer)
6046 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6047
6048 nops = nops_for_insn (ignore, buffer, NULL);
6049 va_end (args);
6050 return nops;
6051 }
6052
6053 /* Like nops_for_insn, but if INSN is a branch, take into account the
6054 worst-case delay for the branch target. */
6055
6056 static int
6057 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6058 const struct mips_cl_insn *insn)
6059 {
6060 int nops, tmp_nops;
6061
6062 nops = nops_for_insn (ignore, hist, insn);
6063 if (delayed_branch_p (insn))
6064 {
6065 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6066 hist, insn, get_delay_slot_nop (insn));
6067 if (tmp_nops > nops)
6068 nops = tmp_nops;
6069 }
6070 else if (compact_branch_p (insn))
6071 {
6072 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6073 if (tmp_nops > nops)
6074 nops = tmp_nops;
6075 }
6076 return nops;
6077 }
6078
6079 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6080
6081 static void
6082 fix_loongson2f_nop (struct mips_cl_insn * ip)
6083 {
6084 gas_assert (!HAVE_CODE_COMPRESSION);
6085 if (strcmp (ip->insn_mo->name, "nop") == 0)
6086 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6087 }
6088
6089 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6090 jr target pc &= 'hffff_ffff_cfff_ffff. */
6091
6092 static void
6093 fix_loongson2f_jump (struct mips_cl_insn * ip)
6094 {
6095 gas_assert (!HAVE_CODE_COMPRESSION);
6096 if (strcmp (ip->insn_mo->name, "j") == 0
6097 || strcmp (ip->insn_mo->name, "jr") == 0
6098 || strcmp (ip->insn_mo->name, "jalr") == 0)
6099 {
6100 int sreg;
6101 expressionS ep;
6102
6103 if (! mips_opts.at)
6104 return;
6105
6106 sreg = EXTRACT_OPERAND (0, RS, *ip);
6107 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6108 return;
6109
6110 ep.X_op = O_constant;
6111 ep.X_add_number = 0xcfff0000;
6112 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6113 ep.X_add_number = 0xffff;
6114 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6115 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6116 }
6117 }
6118
6119 static void
6120 fix_loongson2f (struct mips_cl_insn * ip)
6121 {
6122 if (mips_fix_loongson2f_nop)
6123 fix_loongson2f_nop (ip);
6124
6125 if (mips_fix_loongson2f_jump)
6126 fix_loongson2f_jump (ip);
6127 }
6128
6129 /* IP is a branch that has a delay slot, and we need to fill it
6130 automatically. Return true if we can do that by swapping IP
6131 with the previous instruction.
6132 ADDRESS_EXPR is an operand of the instruction to be used with
6133 RELOC_TYPE. */
6134
6135 static bfd_boolean
6136 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6137 bfd_reloc_code_real_type *reloc_type)
6138 {
6139 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6140 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6141 unsigned int fpr_read, prev_fpr_write;
6142
6143 /* -O2 and above is required for this optimization. */
6144 if (mips_optimize < 2)
6145 return FALSE;
6146
6147 /* If we have seen .set volatile or .set nomove, don't optimize. */
6148 if (mips_opts.nomove)
6149 return FALSE;
6150
6151 /* We can't swap if the previous instruction's position is fixed. */
6152 if (history[0].fixed_p)
6153 return FALSE;
6154
6155 /* If the previous previous insn was in a .set noreorder, we can't
6156 swap. Actually, the MIPS assembler will swap in this situation.
6157 However, gcc configured -with-gnu-as will generate code like
6158
6159 .set noreorder
6160 lw $4,XXX
6161 .set reorder
6162 INSN
6163 bne $4,$0,foo
6164
6165 in which we can not swap the bne and INSN. If gcc is not configured
6166 -with-gnu-as, it does not output the .set pseudo-ops. */
6167 if (history[1].noreorder_p)
6168 return FALSE;
6169
6170 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6171 This means that the previous instruction was a 4-byte one anyhow. */
6172 if (mips_opts.mips16 && history[0].fixp[0])
6173 return FALSE;
6174
6175 /* If the branch is itself the target of a branch, we can not swap.
6176 We cheat on this; all we check for is whether there is a label on
6177 this instruction. If there are any branches to anything other than
6178 a label, users must use .set noreorder. */
6179 if (seg_info (now_seg)->label_list)
6180 return FALSE;
6181
6182 /* If the previous instruction is in a variant frag other than this
6183 branch's one, we cannot do the swap. This does not apply to
6184 MIPS16 code, which uses variant frags for different purposes. */
6185 if (!mips_opts.mips16
6186 && history[0].frag
6187 && history[0].frag->fr_type == rs_machine_dependent)
6188 return FALSE;
6189
6190 /* We do not swap with instructions that cannot architecturally
6191 be placed in a branch delay slot, such as SYNC or ERET. We
6192 also refrain from swapping with a trap instruction, since it
6193 complicates trap handlers to have the trap instruction be in
6194 a delay slot. */
6195 prev_pinfo = history[0].insn_mo->pinfo;
6196 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6197 return FALSE;
6198
6199 /* Check for conflicts between the branch and the instructions
6200 before the candidate delay slot. */
6201 if (nops_for_insn (0, history + 1, ip) > 0)
6202 return FALSE;
6203
6204 /* Check for conflicts between the swapped sequence and the
6205 target of the branch. */
6206 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6207 return FALSE;
6208
6209 /* If the branch reads a register that the previous
6210 instruction sets, we can not swap. */
6211 gpr_read = gpr_read_mask (ip);
6212 prev_gpr_write = gpr_write_mask (&history[0]);
6213 if (gpr_read & prev_gpr_write)
6214 return FALSE;
6215
6216 fpr_read = fpr_read_mask (ip);
6217 prev_fpr_write = fpr_write_mask (&history[0]);
6218 if (fpr_read & prev_fpr_write)
6219 return FALSE;
6220
6221 /* If the branch writes a register that the previous
6222 instruction sets, we can not swap. */
6223 gpr_write = gpr_write_mask (ip);
6224 if (gpr_write & prev_gpr_write)
6225 return FALSE;
6226
6227 /* If the branch writes a register that the previous
6228 instruction reads, we can not swap. */
6229 prev_gpr_read = gpr_read_mask (&history[0]);
6230 if (gpr_write & prev_gpr_read)
6231 return FALSE;
6232
6233 /* If one instruction sets a condition code and the
6234 other one uses a condition code, we can not swap. */
6235 pinfo = ip->insn_mo->pinfo;
6236 if ((pinfo & INSN_READ_COND_CODE)
6237 && (prev_pinfo & INSN_WRITE_COND_CODE))
6238 return FALSE;
6239 if ((pinfo & INSN_WRITE_COND_CODE)
6240 && (prev_pinfo & INSN_READ_COND_CODE))
6241 return FALSE;
6242
6243 /* If the previous instruction uses the PC, we can not swap. */
6244 prev_pinfo2 = history[0].insn_mo->pinfo2;
6245 if (prev_pinfo2 & INSN2_READ_PC)
6246 return FALSE;
6247
6248 /* If the previous instruction has an incorrect size for a fixed
6249 branch delay slot in microMIPS mode, we cannot swap. */
6250 pinfo2 = ip->insn_mo->pinfo2;
6251 if (mips_opts.micromips
6252 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6253 && insn_length (history) != 2)
6254 return FALSE;
6255 if (mips_opts.micromips
6256 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6257 && insn_length (history) != 4)
6258 return FALSE;
6259
6260 /* On R5900 short loops need to be fixed by inserting a nop in
6261 the branch delay slots.
6262 A short loop can be terminated too early. */
6263 if (mips_opts.arch == CPU_R5900
6264 /* Check if instruction has a parameter, ignore "j $31". */
6265 && (address_expr != NULL)
6266 /* Parameter must be 16 bit. */
6267 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6268 /* Branch to same segment. */
6269 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6270 /* Branch to same code fragment. */
6271 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6272 /* Can only calculate branch offset if value is known. */
6273 && symbol_constant_p(address_expr->X_add_symbol)
6274 /* Check if branch is really conditional. */
6275 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6276 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6277 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6278 {
6279 int distance;
6280 /* Check if loop is shorter than 6 instructions including
6281 branch and delay slot. */
6282 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6283 if (distance <= 20)
6284 {
6285 int i;
6286 int rv;
6287
6288 rv = FALSE;
6289 /* When the loop includes branches or jumps,
6290 it is not a short loop. */
6291 for (i = 0; i < (distance / 4); i++)
6292 {
6293 if ((history[i].cleared_p)
6294 || delayed_branch_p(&history[i]))
6295 {
6296 rv = TRUE;
6297 break;
6298 }
6299 }
6300 if (rv == FALSE)
6301 {
6302 /* Insert nop after branch to fix short loop. */
6303 return FALSE;
6304 }
6305 }
6306 }
6307
6308 return TRUE;
6309 }
6310
6311 /* Decide how we should add IP to the instruction stream.
6312 ADDRESS_EXPR is an operand of the instruction to be used with
6313 RELOC_TYPE. */
6314
6315 static enum append_method
6316 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6317 bfd_reloc_code_real_type *reloc_type)
6318 {
6319 /* The relaxed version of a macro sequence must be inherently
6320 hazard-free. */
6321 if (mips_relax.sequence == 2)
6322 return APPEND_ADD;
6323
6324 /* We must not dabble with instructions in a ".set norerorder" block. */
6325 if (mips_opts.noreorder)
6326 return APPEND_ADD;
6327
6328 /* Otherwise, it's our responsibility to fill branch delay slots. */
6329 if (delayed_branch_p (ip))
6330 {
6331 if (!branch_likely_p (ip)
6332 && can_swap_branch_p (ip, address_expr, reloc_type))
6333 return APPEND_SWAP;
6334
6335 if (mips_opts.mips16
6336 && ISA_SUPPORTS_MIPS16E
6337 && gpr_read_mask (ip) != 0)
6338 return APPEND_ADD_COMPACT;
6339
6340 return APPEND_ADD_WITH_NOP;
6341 }
6342
6343 return APPEND_ADD;
6344 }
6345
6346 /* IP is a MIPS16 instruction whose opcode we have just changed.
6347 Point IP->insn_mo to the new opcode's definition. */
6348
6349 static void
6350 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6351 {
6352 const struct mips_opcode *mo, *end;
6353
6354 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6355 for (mo = ip->insn_mo; mo < end; mo++)
6356 if ((ip->insn_opcode & mo->mask) == mo->match)
6357 {
6358 ip->insn_mo = mo;
6359 return;
6360 }
6361 abort ();
6362 }
6363
6364 /* For microMIPS macros, we need to generate a local number label
6365 as the target of branches. */
6366 #define MICROMIPS_LABEL_CHAR '\037'
6367 static unsigned long micromips_target_label;
6368 static char micromips_target_name[32];
6369
6370 static char *
6371 micromips_label_name (void)
6372 {
6373 char *p = micromips_target_name;
6374 char symbol_name_temporary[24];
6375 unsigned long l;
6376 int i;
6377
6378 if (*p)
6379 return p;
6380
6381 i = 0;
6382 l = micromips_target_label;
6383 #ifdef LOCAL_LABEL_PREFIX
6384 *p++ = LOCAL_LABEL_PREFIX;
6385 #endif
6386 *p++ = 'L';
6387 *p++ = MICROMIPS_LABEL_CHAR;
6388 do
6389 {
6390 symbol_name_temporary[i++] = l % 10 + '0';
6391 l /= 10;
6392 }
6393 while (l != 0);
6394 while (i > 0)
6395 *p++ = symbol_name_temporary[--i];
6396 *p = '\0';
6397
6398 return micromips_target_name;
6399 }
6400
6401 static void
6402 micromips_label_expr (expressionS *label_expr)
6403 {
6404 label_expr->X_op = O_symbol;
6405 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6406 label_expr->X_add_number = 0;
6407 }
6408
6409 static void
6410 micromips_label_inc (void)
6411 {
6412 micromips_target_label++;
6413 *micromips_target_name = '\0';
6414 }
6415
6416 static void
6417 micromips_add_label (void)
6418 {
6419 symbolS *s;
6420
6421 s = colon (micromips_label_name ());
6422 micromips_label_inc ();
6423 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6424 }
6425
6426 /* If assembling microMIPS code, then return the microMIPS reloc
6427 corresponding to the requested one if any. Otherwise return
6428 the reloc unchanged. */
6429
6430 static bfd_reloc_code_real_type
6431 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6432 {
6433 static const bfd_reloc_code_real_type relocs[][2] =
6434 {
6435 /* Keep sorted incrementally by the left-hand key. */
6436 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6437 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6438 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6439 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6440 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6441 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6442 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6443 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6444 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6445 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6446 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6447 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6448 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6449 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6450 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6451 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6452 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6453 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6454 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6455 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6456 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6457 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6458 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6459 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6460 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6461 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6462 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6463 };
6464 bfd_reloc_code_real_type r;
6465 size_t i;
6466
6467 if (!mips_opts.micromips)
6468 return reloc;
6469 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6470 {
6471 r = relocs[i][0];
6472 if (r > reloc)
6473 return reloc;
6474 if (r == reloc)
6475 return relocs[i][1];
6476 }
6477 return reloc;
6478 }
6479
6480 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6481 Return true on success, storing the resolved value in RESULT. */
6482
6483 static bfd_boolean
6484 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6485 offsetT *result)
6486 {
6487 switch (reloc)
6488 {
6489 case BFD_RELOC_MIPS_HIGHEST:
6490 case BFD_RELOC_MICROMIPS_HIGHEST:
6491 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6492 return TRUE;
6493
6494 case BFD_RELOC_MIPS_HIGHER:
6495 case BFD_RELOC_MICROMIPS_HIGHER:
6496 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6497 return TRUE;
6498
6499 case BFD_RELOC_HI16_S:
6500 case BFD_RELOC_MICROMIPS_HI16_S:
6501 case BFD_RELOC_MIPS16_HI16_S:
6502 *result = ((operand + 0x8000) >> 16) & 0xffff;
6503 return TRUE;
6504
6505 case BFD_RELOC_HI16:
6506 case BFD_RELOC_MICROMIPS_HI16:
6507 case BFD_RELOC_MIPS16_HI16:
6508 *result = (operand >> 16) & 0xffff;
6509 return TRUE;
6510
6511 case BFD_RELOC_LO16:
6512 case BFD_RELOC_MICROMIPS_LO16:
6513 case BFD_RELOC_MIPS16_LO16:
6514 *result = operand & 0xffff;
6515 return TRUE;
6516
6517 case BFD_RELOC_UNUSED:
6518 *result = operand;
6519 return TRUE;
6520
6521 default:
6522 return FALSE;
6523 }
6524 }
6525
6526 /* Output an instruction. IP is the instruction information.
6527 ADDRESS_EXPR is an operand of the instruction to be used with
6528 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6529 a macro expansion. */
6530
6531 static void
6532 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6533 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
6534 {
6535 unsigned long prev_pinfo2, pinfo;
6536 bfd_boolean relaxed_branch = FALSE;
6537 enum append_method method;
6538 bfd_boolean relax32;
6539 int branch_disp;
6540
6541 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
6542 fix_loongson2f (ip);
6543
6544 file_ase_mips16 |= mips_opts.mips16;
6545 file_ase_micromips |= mips_opts.micromips;
6546
6547 prev_pinfo2 = history[0].insn_mo->pinfo2;
6548 pinfo = ip->insn_mo->pinfo;
6549
6550 if (mips_opts.micromips
6551 && !expansionp
6552 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
6553 && micromips_insn_length (ip->insn_mo) != 2)
6554 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
6555 && micromips_insn_length (ip->insn_mo) != 4)))
6556 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
6557 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
6558
6559 if (address_expr == NULL)
6560 ip->complete_p = 1;
6561 else if (reloc_type[0] <= BFD_RELOC_UNUSED
6562 && reloc_type[1] == BFD_RELOC_UNUSED
6563 && reloc_type[2] == BFD_RELOC_UNUSED
6564 && address_expr->X_op == O_constant)
6565 {
6566 switch (*reloc_type)
6567 {
6568 case BFD_RELOC_MIPS_JMP:
6569 {
6570 int shift;
6571
6572 shift = mips_opts.micromips ? 1 : 2;
6573 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6574 as_bad (_("jump to misaligned address (0x%lx)"),
6575 (unsigned long) address_expr->X_add_number);
6576 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6577 & 0x3ffffff);
6578 ip->complete_p = 1;
6579 }
6580 break;
6581
6582 case BFD_RELOC_MIPS16_JMP:
6583 if ((address_expr->X_add_number & 3) != 0)
6584 as_bad (_("jump to misaligned address (0x%lx)"),
6585 (unsigned long) address_expr->X_add_number);
6586 ip->insn_opcode |=
6587 (((address_expr->X_add_number & 0x7c0000) << 3)
6588 | ((address_expr->X_add_number & 0xf800000) >> 7)
6589 | ((address_expr->X_add_number & 0x3fffc) >> 2));
6590 ip->complete_p = 1;
6591 break;
6592
6593 case BFD_RELOC_16_PCREL_S2:
6594 {
6595 int shift;
6596
6597 shift = mips_opts.micromips ? 1 : 2;
6598 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6599 as_bad (_("branch to misaligned address (0x%lx)"),
6600 (unsigned long) address_expr->X_add_number);
6601 if (!mips_relax_branch)
6602 {
6603 if ((address_expr->X_add_number + (1 << (shift + 15)))
6604 & ~((1 << (shift + 16)) - 1))
6605 as_bad (_("branch address range overflow (0x%lx)"),
6606 (unsigned long) address_expr->X_add_number);
6607 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6608 & 0xffff);
6609 }
6610 }
6611 break;
6612
6613 default:
6614 {
6615 offsetT value;
6616
6617 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
6618 &value))
6619 {
6620 ip->insn_opcode |= value & 0xffff;
6621 ip->complete_p = 1;
6622 }
6623 }
6624 break;
6625 }
6626 }
6627
6628 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
6629 {
6630 /* There are a lot of optimizations we could do that we don't.
6631 In particular, we do not, in general, reorder instructions.
6632 If you use gcc with optimization, it will reorder
6633 instructions and generally do much more optimization then we
6634 do here; repeating all that work in the assembler would only
6635 benefit hand written assembly code, and does not seem worth
6636 it. */
6637 int nops = (mips_optimize == 0
6638 ? nops_for_insn (0, history, NULL)
6639 : nops_for_insn_or_target (0, history, ip));
6640 if (nops > 0)
6641 {
6642 fragS *old_frag;
6643 unsigned long old_frag_offset;
6644 int i;
6645
6646 old_frag = frag_now;
6647 old_frag_offset = frag_now_fix ();
6648
6649 for (i = 0; i < nops; i++)
6650 add_fixed_insn (NOP_INSN);
6651 insert_into_history (0, nops, NOP_INSN);
6652
6653 if (listing)
6654 {
6655 listing_prev_line ();
6656 /* We may be at the start of a variant frag. In case we
6657 are, make sure there is enough space for the frag
6658 after the frags created by listing_prev_line. The
6659 argument to frag_grow here must be at least as large
6660 as the argument to all other calls to frag_grow in
6661 this file. We don't have to worry about being in the
6662 middle of a variant frag, because the variants insert
6663 all needed nop instructions themselves. */
6664 frag_grow (40);
6665 }
6666
6667 mips_move_text_labels ();
6668
6669 #ifndef NO_ECOFF_DEBUGGING
6670 if (ECOFF_DEBUGGING)
6671 ecoff_fix_loc (old_frag, old_frag_offset);
6672 #endif
6673 }
6674 }
6675 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
6676 {
6677 int nops;
6678
6679 /* Work out how many nops in prev_nop_frag are needed by IP,
6680 ignoring hazards generated by the first prev_nop_frag_since
6681 instructions. */
6682 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
6683 gas_assert (nops <= prev_nop_frag_holds);
6684
6685 /* Enforce NOPS as a minimum. */
6686 if (nops > prev_nop_frag_required)
6687 prev_nop_frag_required = nops;
6688
6689 if (prev_nop_frag_holds == prev_nop_frag_required)
6690 {
6691 /* Settle for the current number of nops. Update the history
6692 accordingly (for the benefit of any future .set reorder code). */
6693 prev_nop_frag = NULL;
6694 insert_into_history (prev_nop_frag_since,
6695 prev_nop_frag_holds, NOP_INSN);
6696 }
6697 else
6698 {
6699 /* Allow this instruction to replace one of the nops that was
6700 tentatively added to prev_nop_frag. */
6701 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
6702 prev_nop_frag_holds--;
6703 prev_nop_frag_since++;
6704 }
6705 }
6706
6707 method = get_append_method (ip, address_expr, reloc_type);
6708 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
6709
6710 dwarf2_emit_insn (0);
6711 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
6712 so "move" the instruction address accordingly.
6713
6714 Also, it doesn't seem appropriate for the assembler to reorder .loc
6715 entries. If this instruction is a branch that we are going to swap
6716 with the previous instruction, the two instructions should be
6717 treated as a unit, and the debug information for both instructions
6718 should refer to the start of the branch sequence. Using the
6719 current position is certainly wrong when swapping a 32-bit branch
6720 and a 16-bit delay slot, since the current position would then be
6721 in the middle of a branch. */
6722 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
6723
6724 relax32 = (mips_relax_branch
6725 /* Don't try branch relaxation within .set nomacro, or within
6726 .set noat if we use $at for PIC computations. If it turns
6727 out that the branch was out-of-range, we'll get an error. */
6728 && !mips_opts.warn_about_macros
6729 && (mips_opts.at || mips_pic == NO_PIC)
6730 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
6731 as they have no complementing branches. */
6732 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
6733
6734 if (!HAVE_CODE_COMPRESSION
6735 && address_expr
6736 && relax32
6737 && *reloc_type == BFD_RELOC_16_PCREL_S2
6738 && delayed_branch_p (ip))
6739 {
6740 relaxed_branch = TRUE;
6741 add_relaxed_insn (ip, (relaxed_branch_length
6742 (NULL, NULL,
6743 uncond_branch_p (ip) ? -1
6744 : branch_likely_p (ip) ? 1
6745 : 0)), 4,
6746 RELAX_BRANCH_ENCODE
6747 (AT,
6748 uncond_branch_p (ip),
6749 branch_likely_p (ip),
6750 pinfo & INSN_WRITE_GPR_31,
6751 0),
6752 address_expr->X_add_symbol,
6753 address_expr->X_add_number);
6754 *reloc_type = BFD_RELOC_UNUSED;
6755 }
6756 else if (mips_opts.micromips
6757 && address_expr
6758 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
6759 || *reloc_type > BFD_RELOC_UNUSED)
6760 && (delayed_branch_p (ip) || compact_branch_p (ip))
6761 /* Don't try branch relaxation when users specify
6762 16-bit/32-bit instructions. */
6763 && !forced_insn_length)
6764 {
6765 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
6766 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
6767 int uncond = uncond_branch_p (ip) ? -1 : 0;
6768 int compact = compact_branch_p (ip);
6769 int al = pinfo & INSN_WRITE_GPR_31;
6770 int length32;
6771
6772 gas_assert (address_expr != NULL);
6773 gas_assert (!mips_relax.sequence);
6774
6775 relaxed_branch = TRUE;
6776 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
6777 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
6778 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
6779 relax32, 0, 0),
6780 address_expr->X_add_symbol,
6781 address_expr->X_add_number);
6782 *reloc_type = BFD_RELOC_UNUSED;
6783 }
6784 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
6785 {
6786 /* We need to set up a variant frag. */
6787 gas_assert (address_expr != NULL);
6788 add_relaxed_insn (ip, 4, 0,
6789 RELAX_MIPS16_ENCODE
6790 (*reloc_type - BFD_RELOC_UNUSED,
6791 forced_insn_length == 2, forced_insn_length == 4,
6792 delayed_branch_p (&history[0]),
6793 history[0].mips16_absolute_jump_p),
6794 make_expr_symbol (address_expr), 0);
6795 }
6796 else if (mips_opts.mips16 && insn_length (ip) == 2)
6797 {
6798 if (!delayed_branch_p (ip))
6799 /* Make sure there is enough room to swap this instruction with
6800 a following jump instruction. */
6801 frag_grow (6);
6802 add_fixed_insn (ip);
6803 }
6804 else
6805 {
6806 if (mips_opts.mips16
6807 && mips_opts.noreorder
6808 && delayed_branch_p (&history[0]))
6809 as_warn (_("extended instruction in delay slot"));
6810
6811 if (mips_relax.sequence)
6812 {
6813 /* If we've reached the end of this frag, turn it into a variant
6814 frag and record the information for the instructions we've
6815 written so far. */
6816 if (frag_room () < 4)
6817 relax_close_frag ();
6818 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
6819 }
6820
6821 if (mips_relax.sequence != 2)
6822 {
6823 if (mips_macro_warning.first_insn_sizes[0] == 0)
6824 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
6825 mips_macro_warning.sizes[0] += insn_length (ip);
6826 mips_macro_warning.insns[0]++;
6827 }
6828 if (mips_relax.sequence != 1)
6829 {
6830 if (mips_macro_warning.first_insn_sizes[1] == 0)
6831 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
6832 mips_macro_warning.sizes[1] += insn_length (ip);
6833 mips_macro_warning.insns[1]++;
6834 }
6835
6836 if (mips_opts.mips16)
6837 {
6838 ip->fixed_p = 1;
6839 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
6840 }
6841 add_fixed_insn (ip);
6842 }
6843
6844 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
6845 {
6846 bfd_reloc_code_real_type final_type[3];
6847 reloc_howto_type *howto0;
6848 reloc_howto_type *howto;
6849 int i;
6850
6851 /* Perform any necessary conversion to microMIPS relocations
6852 and find out how many relocations there actually are. */
6853 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
6854 final_type[i] = micromips_map_reloc (reloc_type[i]);
6855
6856 /* In a compound relocation, it is the final (outermost)
6857 operator that determines the relocated field. */
6858 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
6859 if (!howto)
6860 abort ();
6861
6862 if (i > 1)
6863 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
6864 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
6865 bfd_get_reloc_size (howto),
6866 address_expr,
6867 howto0 && howto0->pc_relative,
6868 final_type[0]);
6869
6870 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
6871 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
6872 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
6873
6874 /* These relocations can have an addend that won't fit in
6875 4 octets for 64bit assembly. */
6876 if (HAVE_64BIT_GPRS
6877 && ! howto->partial_inplace
6878 && (reloc_type[0] == BFD_RELOC_16
6879 || reloc_type[0] == BFD_RELOC_32
6880 || reloc_type[0] == BFD_RELOC_MIPS_JMP
6881 || reloc_type[0] == BFD_RELOC_GPREL16
6882 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
6883 || reloc_type[0] == BFD_RELOC_GPREL32
6884 || reloc_type[0] == BFD_RELOC_64
6885 || reloc_type[0] == BFD_RELOC_CTOR
6886 || reloc_type[0] == BFD_RELOC_MIPS_SUB
6887 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
6888 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
6889 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
6890 || reloc_type[0] == BFD_RELOC_MIPS_REL16
6891 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
6892 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
6893 || hi16_reloc_p (reloc_type[0])
6894 || lo16_reloc_p (reloc_type[0])))
6895 ip->fixp[0]->fx_no_overflow = 1;
6896
6897 /* These relocations can have an addend that won't fit in 2 octets. */
6898 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
6899 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
6900 ip->fixp[0]->fx_no_overflow = 1;
6901
6902 if (mips_relax.sequence)
6903 {
6904 if (mips_relax.first_fixup == 0)
6905 mips_relax.first_fixup = ip->fixp[0];
6906 }
6907 else if (reloc_needs_lo_p (*reloc_type))
6908 {
6909 struct mips_hi_fixup *hi_fixup;
6910
6911 /* Reuse the last entry if it already has a matching %lo. */
6912 hi_fixup = mips_hi_fixup_list;
6913 if (hi_fixup == 0
6914 || !fixup_has_matching_lo_p (hi_fixup->fixp))
6915 {
6916 hi_fixup = ((struct mips_hi_fixup *)
6917 xmalloc (sizeof (struct mips_hi_fixup)));
6918 hi_fixup->next = mips_hi_fixup_list;
6919 mips_hi_fixup_list = hi_fixup;
6920 }
6921 hi_fixup->fixp = ip->fixp[0];
6922 hi_fixup->seg = now_seg;
6923 }
6924
6925 /* Add fixups for the second and third relocations, if given.
6926 Note that the ABI allows the second relocation to be
6927 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
6928 moment we only use RSS_UNDEF, but we could add support
6929 for the others if it ever becomes necessary. */
6930 for (i = 1; i < 3; i++)
6931 if (reloc_type[i] != BFD_RELOC_UNUSED)
6932 {
6933 ip->fixp[i] = fix_new (ip->frag, ip->where,
6934 ip->fixp[0]->fx_size, NULL, 0,
6935 FALSE, final_type[i]);
6936
6937 /* Use fx_tcbit to mark compound relocs. */
6938 ip->fixp[0]->fx_tcbit = 1;
6939 ip->fixp[i]->fx_tcbit = 1;
6940 }
6941 }
6942 install_insn (ip);
6943
6944 /* Update the register mask information. */
6945 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
6946 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
6947
6948 switch (method)
6949 {
6950 case APPEND_ADD:
6951 insert_into_history (0, 1, ip);
6952 break;
6953
6954 case APPEND_ADD_WITH_NOP:
6955 {
6956 struct mips_cl_insn *nop;
6957
6958 insert_into_history (0, 1, ip);
6959 nop = get_delay_slot_nop (ip);
6960 add_fixed_insn (nop);
6961 insert_into_history (0, 1, nop);
6962 if (mips_relax.sequence)
6963 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
6964 }
6965 break;
6966
6967 case APPEND_ADD_COMPACT:
6968 /* Convert MIPS16 jr/jalr into a "compact" jump. */
6969 gas_assert (mips_opts.mips16);
6970 ip->insn_opcode |= 0x0080;
6971 find_altered_mips16_opcode (ip);
6972 install_insn (ip);
6973 insert_into_history (0, 1, ip);
6974 break;
6975
6976 case APPEND_SWAP:
6977 {
6978 struct mips_cl_insn delay = history[0];
6979 if (mips_opts.mips16)
6980 {
6981 know (delay.frag == ip->frag);
6982 move_insn (ip, delay.frag, delay.where);
6983 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
6984 }
6985 else if (relaxed_branch || delay.frag != ip->frag)
6986 {
6987 /* Add the delay slot instruction to the end of the
6988 current frag and shrink the fixed part of the
6989 original frag. If the branch occupies the tail of
6990 the latter, move it backwards to cover the gap. */
6991 delay.frag->fr_fix -= branch_disp;
6992 if (delay.frag == ip->frag)
6993 move_insn (ip, ip->frag, ip->where - branch_disp);
6994 add_fixed_insn (&delay);
6995 }
6996 else
6997 {
6998 move_insn (&delay, ip->frag,
6999 ip->where - branch_disp + insn_length (ip));
7000 move_insn (ip, history[0].frag, history[0].where);
7001 }
7002 history[0] = *ip;
7003 delay.fixed_p = 1;
7004 insert_into_history (0, 1, &delay);
7005 }
7006 break;
7007 }
7008
7009 /* If we have just completed an unconditional branch, clear the history. */
7010 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7011 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7012 {
7013 unsigned int i;
7014
7015 mips_no_prev_insn ();
7016
7017 for (i = 0; i < ARRAY_SIZE (history); i++)
7018 history[i].cleared_p = 1;
7019 }
7020
7021 /* We need to emit a label at the end of branch-likely macros. */
7022 if (emit_branch_likely_macro)
7023 {
7024 emit_branch_likely_macro = FALSE;
7025 micromips_add_label ();
7026 }
7027
7028 /* We just output an insn, so the next one doesn't have a label. */
7029 mips_clear_insn_labels ();
7030 }
7031
7032 /* Forget that there was any previous instruction or label.
7033 When BRANCH is true, the branch history is also flushed. */
7034
7035 static void
7036 mips_no_prev_insn (void)
7037 {
7038 prev_nop_frag = NULL;
7039 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7040 mips_clear_insn_labels ();
7041 }
7042
7043 /* This function must be called before we emit something other than
7044 instructions. It is like mips_no_prev_insn except that it inserts
7045 any NOPS that might be needed by previous instructions. */
7046
7047 void
7048 mips_emit_delays (void)
7049 {
7050 if (! mips_opts.noreorder)
7051 {
7052 int nops = nops_for_insn (0, history, NULL);
7053 if (nops > 0)
7054 {
7055 while (nops-- > 0)
7056 add_fixed_insn (NOP_INSN);
7057 mips_move_text_labels ();
7058 }
7059 }
7060 mips_no_prev_insn ();
7061 }
7062
7063 /* Start a (possibly nested) noreorder block. */
7064
7065 static void
7066 start_noreorder (void)
7067 {
7068 if (mips_opts.noreorder == 0)
7069 {
7070 unsigned int i;
7071 int nops;
7072
7073 /* None of the instructions before the .set noreorder can be moved. */
7074 for (i = 0; i < ARRAY_SIZE (history); i++)
7075 history[i].fixed_p = 1;
7076
7077 /* Insert any nops that might be needed between the .set noreorder
7078 block and the previous instructions. We will later remove any
7079 nops that turn out not to be needed. */
7080 nops = nops_for_insn (0, history, NULL);
7081 if (nops > 0)
7082 {
7083 if (mips_optimize != 0)
7084 {
7085 /* Record the frag which holds the nop instructions, so
7086 that we can remove them if we don't need them. */
7087 frag_grow (nops * NOP_INSN_SIZE);
7088 prev_nop_frag = frag_now;
7089 prev_nop_frag_holds = nops;
7090 prev_nop_frag_required = 0;
7091 prev_nop_frag_since = 0;
7092 }
7093
7094 for (; nops > 0; --nops)
7095 add_fixed_insn (NOP_INSN);
7096
7097 /* Move on to a new frag, so that it is safe to simply
7098 decrease the size of prev_nop_frag. */
7099 frag_wane (frag_now);
7100 frag_new (0);
7101 mips_move_text_labels ();
7102 }
7103 mips_mark_labels ();
7104 mips_clear_insn_labels ();
7105 }
7106 mips_opts.noreorder++;
7107 mips_any_noreorder = 1;
7108 }
7109
7110 /* End a nested noreorder block. */
7111
7112 static void
7113 end_noreorder (void)
7114 {
7115 mips_opts.noreorder--;
7116 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7117 {
7118 /* Commit to inserting prev_nop_frag_required nops and go back to
7119 handling nop insertion the .set reorder way. */
7120 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7121 * NOP_INSN_SIZE);
7122 insert_into_history (prev_nop_frag_since,
7123 prev_nop_frag_required, NOP_INSN);
7124 prev_nop_frag = NULL;
7125 }
7126 }
7127
7128 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7129 higher bits unset. */
7130
7131 static void
7132 normalize_constant_expr (expressionS *ex)
7133 {
7134 if (ex->X_op == O_constant
7135 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7136 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7137 - 0x80000000);
7138 }
7139
7140 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7141 all higher bits unset. */
7142
7143 static void
7144 normalize_address_expr (expressionS *ex)
7145 {
7146 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7147 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7148 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7149 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7150 - 0x80000000);
7151 }
7152
7153 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7154 Return true if the match was successful.
7155
7156 OPCODE_EXTRA is a value that should be ORed into the opcode
7157 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7158 there are more alternatives after OPCODE and SOFT_MATCH is
7159 as for mips_arg_info. */
7160
7161 static bfd_boolean
7162 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7163 struct mips_operand_token *tokens, unsigned int opcode_extra,
7164 bfd_boolean lax_match, bfd_boolean complete_p)
7165 {
7166 const char *args;
7167 struct mips_arg_info arg;
7168 const struct mips_operand *operand;
7169 char c;
7170
7171 imm_expr.X_op = O_absent;
7172 offset_expr.X_op = O_absent;
7173 offset_reloc[0] = BFD_RELOC_UNUSED;
7174 offset_reloc[1] = BFD_RELOC_UNUSED;
7175 offset_reloc[2] = BFD_RELOC_UNUSED;
7176
7177 create_insn (insn, opcode);
7178 /* When no opcode suffix is specified, assume ".xyzw". */
7179 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7180 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7181 else
7182 insn->insn_opcode |= opcode_extra;
7183 memset (&arg, 0, sizeof (arg));
7184 arg.insn = insn;
7185 arg.token = tokens;
7186 arg.argnum = 1;
7187 arg.last_regno = ILLEGAL_REG;
7188 arg.dest_regno = ILLEGAL_REG;
7189 arg.lax_match = lax_match;
7190 for (args = opcode->args;; ++args)
7191 {
7192 if (arg.token->type == OT_END)
7193 {
7194 /* Handle unary instructions in which only one operand is given.
7195 The source is then the same as the destination. */
7196 if (arg.opnum == 1 && *args == ',')
7197 {
7198 operand = (mips_opts.micromips
7199 ? decode_micromips_operand (args + 1)
7200 : decode_mips_operand (args + 1));
7201 if (operand && mips_optional_operand_p (operand))
7202 {
7203 arg.token = tokens;
7204 arg.argnum = 1;
7205 continue;
7206 }
7207 }
7208
7209 /* Treat elided base registers as $0. */
7210 if (strcmp (args, "(b)") == 0)
7211 args += 3;
7212
7213 if (args[0] == '+')
7214 switch (args[1])
7215 {
7216 case 'K':
7217 case 'N':
7218 /* The register suffix is optional. */
7219 args += 2;
7220 break;
7221 }
7222
7223 /* Fail the match if there were too few operands. */
7224 if (*args)
7225 return FALSE;
7226
7227 /* Successful match. */
7228 if (!complete_p)
7229 return TRUE;
7230 clear_insn_error ();
7231 if (arg.dest_regno == arg.last_regno
7232 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7233 {
7234 if (arg.opnum == 2)
7235 set_insn_error
7236 (0, _("source and destination must be different"));
7237 else if (arg.last_regno == 31)
7238 set_insn_error
7239 (0, _("a destination register must be supplied"));
7240 }
7241 else if (arg.last_regno == 31
7242 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7243 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7244 set_insn_error (0, _("the source register must not be $31"));
7245 check_completed_insn (&arg);
7246 return TRUE;
7247 }
7248
7249 /* Fail the match if the line has too many operands. */
7250 if (*args == 0)
7251 return FALSE;
7252
7253 /* Handle characters that need to match exactly. */
7254 if (*args == '(' || *args == ')' || *args == ',')
7255 {
7256 if (match_char (&arg, *args))
7257 continue;
7258 return FALSE;
7259 }
7260 if (*args == '#')
7261 {
7262 ++args;
7263 if (arg.token->type == OT_DOUBLE_CHAR
7264 && arg.token->u.ch == *args)
7265 {
7266 ++arg.token;
7267 continue;
7268 }
7269 return FALSE;
7270 }
7271
7272 /* Handle special macro operands. Work out the properties of
7273 other operands. */
7274 arg.opnum += 1;
7275 switch (*args)
7276 {
7277 case '+':
7278 switch (args[1])
7279 {
7280 case 'i':
7281 *offset_reloc = BFD_RELOC_MIPS_JMP;
7282 break;
7283 }
7284 break;
7285
7286 case 'I':
7287 if (!match_const_int (&arg, &imm_expr.X_add_number))
7288 return FALSE;
7289 imm_expr.X_op = O_constant;
7290 if (HAVE_32BIT_GPRS)
7291 normalize_constant_expr (&imm_expr);
7292 continue;
7293
7294 case 'A':
7295 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7296 {
7297 /* Assume that the offset has been elided and that what
7298 we saw was a base register. The match will fail later
7299 if that assumption turns out to be wrong. */
7300 offset_expr.X_op = O_constant;
7301 offset_expr.X_add_number = 0;
7302 }
7303 else
7304 {
7305 if (!match_expression (&arg, &offset_expr, offset_reloc))
7306 return FALSE;
7307 normalize_address_expr (&offset_expr);
7308 }
7309 continue;
7310
7311 case 'F':
7312 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7313 8, TRUE))
7314 return FALSE;
7315 continue;
7316
7317 case 'L':
7318 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7319 8, FALSE))
7320 return FALSE;
7321 continue;
7322
7323 case 'f':
7324 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7325 4, TRUE))
7326 return FALSE;
7327 continue;
7328
7329 case 'l':
7330 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7331 4, FALSE))
7332 return FALSE;
7333 continue;
7334
7335 case 'p':
7336 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7337 break;
7338
7339 case 'a':
7340 *offset_reloc = BFD_RELOC_MIPS_JMP;
7341 break;
7342
7343 case 'm':
7344 gas_assert (mips_opts.micromips);
7345 c = args[1];
7346 switch (c)
7347 {
7348 case 'D':
7349 case 'E':
7350 if (!forced_insn_length)
7351 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7352 else if (c == 'D')
7353 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7354 else
7355 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7356 break;
7357 }
7358 break;
7359 }
7360
7361 operand = (mips_opts.micromips
7362 ? decode_micromips_operand (args)
7363 : decode_mips_operand (args));
7364 if (!operand)
7365 abort ();
7366
7367 /* Skip prefixes. */
7368 if (*args == '+' || *args == 'm')
7369 args++;
7370
7371 if (mips_optional_operand_p (operand)
7372 && args[1] == ','
7373 && (arg.token[0].type != OT_REG
7374 || arg.token[1].type == OT_END))
7375 {
7376 /* Assume that the register has been elided and is the
7377 same as the first operand. */
7378 arg.token = tokens;
7379 arg.argnum = 1;
7380 }
7381
7382 if (!match_operand (&arg, operand))
7383 return FALSE;
7384 }
7385 }
7386
7387 /* Like match_insn, but for MIPS16. */
7388
7389 static bfd_boolean
7390 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7391 struct mips_operand_token *tokens)
7392 {
7393 const char *args;
7394 const struct mips_operand *operand;
7395 const struct mips_operand *ext_operand;
7396 struct mips_arg_info arg;
7397 int relax_char;
7398
7399 create_insn (insn, opcode);
7400 imm_expr.X_op = O_absent;
7401 offset_expr.X_op = O_absent;
7402 offset_reloc[0] = BFD_RELOC_UNUSED;
7403 offset_reloc[1] = BFD_RELOC_UNUSED;
7404 offset_reloc[2] = BFD_RELOC_UNUSED;
7405 relax_char = 0;
7406
7407 memset (&arg, 0, sizeof (arg));
7408 arg.insn = insn;
7409 arg.token = tokens;
7410 arg.argnum = 1;
7411 arg.last_regno = ILLEGAL_REG;
7412 arg.dest_regno = ILLEGAL_REG;
7413 relax_char = 0;
7414 for (args = opcode->args;; ++args)
7415 {
7416 int c;
7417
7418 if (arg.token->type == OT_END)
7419 {
7420 offsetT value;
7421
7422 /* Handle unary instructions in which only one operand is given.
7423 The source is then the same as the destination. */
7424 if (arg.opnum == 1 && *args == ',')
7425 {
7426 operand = decode_mips16_operand (args[1], FALSE);
7427 if (operand && mips_optional_operand_p (operand))
7428 {
7429 arg.token = tokens;
7430 arg.argnum = 1;
7431 continue;
7432 }
7433 }
7434
7435 /* Fail the match if there were too few operands. */
7436 if (*args)
7437 return FALSE;
7438
7439 /* Successful match. Stuff the immediate value in now, if
7440 we can. */
7441 clear_insn_error ();
7442 if (opcode->pinfo == INSN_MACRO)
7443 {
7444 gas_assert (relax_char == 0 || relax_char == 'p');
7445 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7446 }
7447 else if (relax_char
7448 && offset_expr.X_op == O_constant
7449 && calculate_reloc (*offset_reloc,
7450 offset_expr.X_add_number,
7451 &value))
7452 {
7453 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7454 forced_insn_length, &insn->insn_opcode);
7455 offset_expr.X_op = O_absent;
7456 *offset_reloc = BFD_RELOC_UNUSED;
7457 }
7458 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7459 {
7460 if (forced_insn_length == 2)
7461 set_insn_error (0, _("invalid unextended operand value"));
7462 forced_insn_length = 4;
7463 insn->insn_opcode |= MIPS16_EXTEND;
7464 }
7465 else if (relax_char)
7466 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7467
7468 check_completed_insn (&arg);
7469 return TRUE;
7470 }
7471
7472 /* Fail the match if the line has too many operands. */
7473 if (*args == 0)
7474 return FALSE;
7475
7476 /* Handle characters that need to match exactly. */
7477 if (*args == '(' || *args == ')' || *args == ',')
7478 {
7479 if (match_char (&arg, *args))
7480 continue;
7481 return FALSE;
7482 }
7483
7484 arg.opnum += 1;
7485 c = *args;
7486 switch (c)
7487 {
7488 case 'p':
7489 case 'q':
7490 case 'A':
7491 case 'B':
7492 case 'E':
7493 relax_char = c;
7494 break;
7495
7496 case 'I':
7497 if (!match_const_int (&arg, &imm_expr.X_add_number))
7498 return FALSE;
7499 imm_expr.X_op = O_constant;
7500 if (HAVE_32BIT_GPRS)
7501 normalize_constant_expr (&imm_expr);
7502 continue;
7503
7504 case 'a':
7505 case 'i':
7506 *offset_reloc = BFD_RELOC_MIPS16_JMP;
7507 insn->insn_opcode <<= 16;
7508 break;
7509 }
7510
7511 operand = decode_mips16_operand (c, FALSE);
7512 if (!operand)
7513 abort ();
7514
7515 /* '6' is a special case. It is used for BREAK and SDBBP,
7516 whose operands are only meaningful to the software that decodes
7517 them. This means that there is no architectural reason why
7518 they cannot be prefixed by EXTEND, but in practice,
7519 exception handlers will only look at the instruction
7520 itself. We therefore allow '6' to be extended when
7521 disassembling but not when assembling. */
7522 if (operand->type != OP_PCREL && c != '6')
7523 {
7524 ext_operand = decode_mips16_operand (c, TRUE);
7525 if (operand != ext_operand)
7526 {
7527 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7528 {
7529 offset_expr.X_op = O_constant;
7530 offset_expr.X_add_number = 0;
7531 relax_char = c;
7532 continue;
7533 }
7534
7535 /* We need the OT_INTEGER check because some MIPS16
7536 immediate variants are listed before the register ones. */
7537 if (arg.token->type != OT_INTEGER
7538 || !match_expression (&arg, &offset_expr, offset_reloc))
7539 return FALSE;
7540
7541 /* '8' is used for SLTI(U) and has traditionally not
7542 been allowed to take relocation operators. */
7543 if (offset_reloc[0] != BFD_RELOC_UNUSED
7544 && (ext_operand->size != 16 || c == '8'))
7545 return FALSE;
7546
7547 relax_char = c;
7548 continue;
7549 }
7550 }
7551
7552 if (mips_optional_operand_p (operand)
7553 && args[1] == ','
7554 && (arg.token[0].type != OT_REG
7555 || arg.token[1].type == OT_END))
7556 {
7557 /* Assume that the register has been elided and is the
7558 same as the first operand. */
7559 arg.token = tokens;
7560 arg.argnum = 1;
7561 }
7562
7563 if (!match_operand (&arg, operand))
7564 return FALSE;
7565 }
7566 }
7567
7568 /* Record that the current instruction is invalid for the current ISA. */
7569
7570 static void
7571 match_invalid_for_isa (void)
7572 {
7573 set_insn_error_ss
7574 (0, _("opcode not supported on this processor: %s (%s)"),
7575 mips_cpu_info_from_arch (mips_opts.arch)->name,
7576 mips_cpu_info_from_isa (mips_opts.isa)->name);
7577 }
7578
7579 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
7580 Return true if a definite match or failure was found, storing any match
7581 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
7582 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
7583 tried and failed to match under normal conditions and now want to try a
7584 more relaxed match. */
7585
7586 static bfd_boolean
7587 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
7588 const struct mips_opcode *past, struct mips_operand_token *tokens,
7589 int opcode_extra, bfd_boolean lax_match)
7590 {
7591 const struct mips_opcode *opcode;
7592 const struct mips_opcode *invalid_delay_slot;
7593 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
7594
7595 /* Search for a match, ignoring alternatives that don't satisfy the
7596 current ISA or forced_length. */
7597 invalid_delay_slot = 0;
7598 seen_valid_for_isa = FALSE;
7599 seen_valid_for_size = FALSE;
7600 opcode = first;
7601 do
7602 {
7603 gas_assert (strcmp (opcode->name, first->name) == 0);
7604 if (is_opcode_valid (opcode))
7605 {
7606 seen_valid_for_isa = TRUE;
7607 if (is_size_valid (opcode))
7608 {
7609 bfd_boolean delay_slot_ok;
7610
7611 seen_valid_for_size = TRUE;
7612 delay_slot_ok = is_delay_slot_valid (opcode);
7613 if (match_insn (insn, opcode, tokens, opcode_extra,
7614 lax_match, delay_slot_ok))
7615 {
7616 if (!delay_slot_ok)
7617 {
7618 if (!invalid_delay_slot)
7619 invalid_delay_slot = opcode;
7620 }
7621 else
7622 return TRUE;
7623 }
7624 }
7625 }
7626 ++opcode;
7627 }
7628 while (opcode < past && strcmp (opcode->name, first->name) == 0);
7629
7630 /* If the only matches we found had the wrong length for the delay slot,
7631 pick the first such match. We'll issue an appropriate warning later. */
7632 if (invalid_delay_slot)
7633 {
7634 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
7635 lax_match, TRUE))
7636 return TRUE;
7637 abort ();
7638 }
7639
7640 /* Handle the case where we didn't try to match an instruction because
7641 all the alternatives were incompatible with the current ISA. */
7642 if (!seen_valid_for_isa)
7643 {
7644 match_invalid_for_isa ();
7645 return TRUE;
7646 }
7647
7648 /* Handle the case where we didn't try to match an instruction because
7649 all the alternatives were of the wrong size. */
7650 if (!seen_valid_for_size)
7651 {
7652 if (mips_opts.insn32)
7653 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
7654 else
7655 set_insn_error_i
7656 (0, _("unrecognized %d-bit version of microMIPS opcode"),
7657 8 * forced_insn_length);
7658 return TRUE;
7659 }
7660
7661 return FALSE;
7662 }
7663
7664 /* Like match_insns, but for MIPS16. */
7665
7666 static bfd_boolean
7667 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
7668 struct mips_operand_token *tokens)
7669 {
7670 const struct mips_opcode *opcode;
7671 bfd_boolean seen_valid_for_isa;
7672
7673 /* Search for a match, ignoring alternatives that don't satisfy the
7674 current ISA. There are no separate entries for extended forms so
7675 we deal with forced_length later. */
7676 seen_valid_for_isa = FALSE;
7677 opcode = first;
7678 do
7679 {
7680 gas_assert (strcmp (opcode->name, first->name) == 0);
7681 if (is_opcode_valid_16 (opcode))
7682 {
7683 seen_valid_for_isa = TRUE;
7684 if (match_mips16_insn (insn, opcode, tokens))
7685 return TRUE;
7686 }
7687 ++opcode;
7688 }
7689 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
7690 && strcmp (opcode->name, first->name) == 0);
7691
7692 /* Handle the case where we didn't try to match an instruction because
7693 all the alternatives were incompatible with the current ISA. */
7694 if (!seen_valid_for_isa)
7695 {
7696 match_invalid_for_isa ();
7697 return TRUE;
7698 }
7699
7700 return FALSE;
7701 }
7702
7703 /* Set up global variables for the start of a new macro. */
7704
7705 static void
7706 macro_start (void)
7707 {
7708 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
7709 memset (&mips_macro_warning.first_insn_sizes, 0,
7710 sizeof (mips_macro_warning.first_insn_sizes));
7711 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
7712 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
7713 && delayed_branch_p (&history[0]));
7714 switch (history[0].insn_mo->pinfo2
7715 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
7716 {
7717 case INSN2_BRANCH_DELAY_32BIT:
7718 mips_macro_warning.delay_slot_length = 4;
7719 break;
7720 case INSN2_BRANCH_DELAY_16BIT:
7721 mips_macro_warning.delay_slot_length = 2;
7722 break;
7723 default:
7724 mips_macro_warning.delay_slot_length = 0;
7725 break;
7726 }
7727 mips_macro_warning.first_frag = NULL;
7728 }
7729
7730 /* Given that a macro is longer than one instruction or of the wrong size,
7731 return the appropriate warning for it. Return null if no warning is
7732 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
7733 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
7734 and RELAX_NOMACRO. */
7735
7736 static const char *
7737 macro_warning (relax_substateT subtype)
7738 {
7739 if (subtype & RELAX_DELAY_SLOT)
7740 return _("macro instruction expanded into multiple instructions"
7741 " in a branch delay slot");
7742 else if (subtype & RELAX_NOMACRO)
7743 return _("macro instruction expanded into multiple instructions");
7744 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
7745 | RELAX_DELAY_SLOT_SIZE_SECOND))
7746 return ((subtype & RELAX_DELAY_SLOT_16BIT)
7747 ? _("macro instruction expanded into a wrong size instruction"
7748 " in a 16-bit branch delay slot")
7749 : _("macro instruction expanded into a wrong size instruction"
7750 " in a 32-bit branch delay slot"));
7751 else
7752 return 0;
7753 }
7754
7755 /* Finish up a macro. Emit warnings as appropriate. */
7756
7757 static void
7758 macro_end (void)
7759 {
7760 /* Relaxation warning flags. */
7761 relax_substateT subtype = 0;
7762
7763 /* Check delay slot size requirements. */
7764 if (mips_macro_warning.delay_slot_length == 2)
7765 subtype |= RELAX_DELAY_SLOT_16BIT;
7766 if (mips_macro_warning.delay_slot_length != 0)
7767 {
7768 if (mips_macro_warning.delay_slot_length
7769 != mips_macro_warning.first_insn_sizes[0])
7770 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
7771 if (mips_macro_warning.delay_slot_length
7772 != mips_macro_warning.first_insn_sizes[1])
7773 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
7774 }
7775
7776 /* Check instruction count requirements. */
7777 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
7778 {
7779 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
7780 subtype |= RELAX_SECOND_LONGER;
7781 if (mips_opts.warn_about_macros)
7782 subtype |= RELAX_NOMACRO;
7783 if (mips_macro_warning.delay_slot_p)
7784 subtype |= RELAX_DELAY_SLOT;
7785 }
7786
7787 /* If both alternatives fail to fill a delay slot correctly,
7788 emit the warning now. */
7789 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
7790 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
7791 {
7792 relax_substateT s;
7793 const char *msg;
7794
7795 s = subtype & (RELAX_DELAY_SLOT_16BIT
7796 | RELAX_DELAY_SLOT_SIZE_FIRST
7797 | RELAX_DELAY_SLOT_SIZE_SECOND);
7798 msg = macro_warning (s);
7799 if (msg != NULL)
7800 as_warn ("%s", msg);
7801 subtype &= ~s;
7802 }
7803
7804 /* If both implementations are longer than 1 instruction, then emit the
7805 warning now. */
7806 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
7807 {
7808 relax_substateT s;
7809 const char *msg;
7810
7811 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
7812 msg = macro_warning (s);
7813 if (msg != NULL)
7814 as_warn ("%s", msg);
7815 subtype &= ~s;
7816 }
7817
7818 /* If any flags still set, then one implementation might need a warning
7819 and the other either will need one of a different kind or none at all.
7820 Pass any remaining flags over to relaxation. */
7821 if (mips_macro_warning.first_frag != NULL)
7822 mips_macro_warning.first_frag->fr_subtype |= subtype;
7823 }
7824
7825 /* Instruction operand formats used in macros that vary between
7826 standard MIPS and microMIPS code. */
7827
7828 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
7829 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
7830 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
7831 static const char * const lui_fmt[2] = { "t,u", "s,u" };
7832 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
7833 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
7834 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
7835 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
7836
7837 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7838 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
7839 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
7840 #define LUI_FMT (lui_fmt[mips_opts.micromips])
7841 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7842 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
7843 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
7844 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
7845
7846 /* Read a macro's relocation codes from *ARGS and store them in *R.
7847 The first argument in *ARGS will be either the code for a single
7848 relocation or -1 followed by the three codes that make up a
7849 composite relocation. */
7850
7851 static void
7852 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
7853 {
7854 int i, next;
7855
7856 next = va_arg (*args, int);
7857 if (next >= 0)
7858 r[0] = (bfd_reloc_code_real_type) next;
7859 else
7860 {
7861 for (i = 0; i < 3; i++)
7862 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
7863 /* This function is only used for 16-bit relocation fields.
7864 To make the macro code simpler, treat an unrelocated value
7865 in the same way as BFD_RELOC_LO16. */
7866 if (r[0] == BFD_RELOC_UNUSED)
7867 r[0] = BFD_RELOC_LO16;
7868 }
7869 }
7870
7871 /* Build an instruction created by a macro expansion. This is passed
7872 a pointer to the count of instructions created so far, an
7873 expression, the name of the instruction to build, an operand format
7874 string, and corresponding arguments. */
7875
7876 static void
7877 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
7878 {
7879 const struct mips_opcode *mo = NULL;
7880 bfd_reloc_code_real_type r[3];
7881 const struct mips_opcode *amo;
7882 const struct mips_operand *operand;
7883 struct hash_control *hash;
7884 struct mips_cl_insn insn;
7885 va_list args;
7886 unsigned int uval;
7887
7888 va_start (args, fmt);
7889
7890 if (mips_opts.mips16)
7891 {
7892 mips16_macro_build (ep, name, fmt, &args);
7893 va_end (args);
7894 return;
7895 }
7896
7897 r[0] = BFD_RELOC_UNUSED;
7898 r[1] = BFD_RELOC_UNUSED;
7899 r[2] = BFD_RELOC_UNUSED;
7900 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
7901 amo = (struct mips_opcode *) hash_find (hash, name);
7902 gas_assert (amo);
7903 gas_assert (strcmp (name, amo->name) == 0);
7904
7905 do
7906 {
7907 /* Search until we get a match for NAME. It is assumed here that
7908 macros will never generate MDMX, MIPS-3D, or MT instructions.
7909 We try to match an instruction that fulfils the branch delay
7910 slot instruction length requirement (if any) of the previous
7911 instruction. While doing this we record the first instruction
7912 seen that matches all the other conditions and use it anyway
7913 if the requirement cannot be met; we will issue an appropriate
7914 warning later on. */
7915 if (strcmp (fmt, amo->args) == 0
7916 && amo->pinfo != INSN_MACRO
7917 && is_opcode_valid (amo)
7918 && is_size_valid (amo))
7919 {
7920 if (is_delay_slot_valid (amo))
7921 {
7922 mo = amo;
7923 break;
7924 }
7925 else if (!mo)
7926 mo = amo;
7927 }
7928
7929 ++amo;
7930 gas_assert (amo->name);
7931 }
7932 while (strcmp (name, amo->name) == 0);
7933
7934 gas_assert (mo);
7935 create_insn (&insn, mo);
7936 for (; *fmt; ++fmt)
7937 {
7938 switch (*fmt)
7939 {
7940 case ',':
7941 case '(':
7942 case ')':
7943 case 'z':
7944 break;
7945
7946 case 'i':
7947 case 'j':
7948 macro_read_relocs (&args, r);
7949 gas_assert (*r == BFD_RELOC_GPREL16
7950 || *r == BFD_RELOC_MIPS_HIGHER
7951 || *r == BFD_RELOC_HI16_S
7952 || *r == BFD_RELOC_LO16
7953 || *r == BFD_RELOC_MIPS_GOT_OFST);
7954 break;
7955
7956 case 'o':
7957 macro_read_relocs (&args, r);
7958 break;
7959
7960 case 'u':
7961 macro_read_relocs (&args, r);
7962 gas_assert (ep != NULL
7963 && (ep->X_op == O_constant
7964 || (ep->X_op == O_symbol
7965 && (*r == BFD_RELOC_MIPS_HIGHEST
7966 || *r == BFD_RELOC_HI16_S
7967 || *r == BFD_RELOC_HI16
7968 || *r == BFD_RELOC_GPREL16
7969 || *r == BFD_RELOC_MIPS_GOT_HI16
7970 || *r == BFD_RELOC_MIPS_CALL_HI16))));
7971 break;
7972
7973 case 'p':
7974 gas_assert (ep != NULL);
7975
7976 /*
7977 * This allows macro() to pass an immediate expression for
7978 * creating short branches without creating a symbol.
7979 *
7980 * We don't allow branch relaxation for these branches, as
7981 * they should only appear in ".set nomacro" anyway.
7982 */
7983 if (ep->X_op == O_constant)
7984 {
7985 /* For microMIPS we always use relocations for branches.
7986 So we should not resolve immediate values. */
7987 gas_assert (!mips_opts.micromips);
7988
7989 if ((ep->X_add_number & 3) != 0)
7990 as_bad (_("branch to misaligned address (0x%lx)"),
7991 (unsigned long) ep->X_add_number);
7992 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
7993 as_bad (_("branch address range overflow (0x%lx)"),
7994 (unsigned long) ep->X_add_number);
7995 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
7996 ep = NULL;
7997 }
7998 else
7999 *r = BFD_RELOC_16_PCREL_S2;
8000 break;
8001
8002 case 'a':
8003 gas_assert (ep != NULL);
8004 *r = BFD_RELOC_MIPS_JMP;
8005 break;
8006
8007 default:
8008 operand = (mips_opts.micromips
8009 ? decode_micromips_operand (fmt)
8010 : decode_mips_operand (fmt));
8011 if (!operand)
8012 abort ();
8013
8014 uval = va_arg (args, int);
8015 if (operand->type == OP_CLO_CLZ_DEST)
8016 uval |= (uval << 5);
8017 insn_insert_operand (&insn, operand, uval);
8018
8019 if (*fmt == '+' || *fmt == 'm')
8020 ++fmt;
8021 break;
8022 }
8023 }
8024 va_end (args);
8025 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8026
8027 append_insn (&insn, ep, r, TRUE);
8028 }
8029
8030 static void
8031 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8032 va_list *args)
8033 {
8034 struct mips_opcode *mo;
8035 struct mips_cl_insn insn;
8036 const struct mips_operand *operand;
8037 bfd_reloc_code_real_type r[3]
8038 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8039
8040 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8041 gas_assert (mo);
8042 gas_assert (strcmp (name, mo->name) == 0);
8043
8044 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8045 {
8046 ++mo;
8047 gas_assert (mo->name);
8048 gas_assert (strcmp (name, mo->name) == 0);
8049 }
8050
8051 create_insn (&insn, mo);
8052 for (; *fmt; ++fmt)
8053 {
8054 int c;
8055
8056 c = *fmt;
8057 switch (c)
8058 {
8059 case ',':
8060 case '(':
8061 case ')':
8062 break;
8063
8064 case '0':
8065 case 'S':
8066 case 'P':
8067 case 'R':
8068 break;
8069
8070 case '<':
8071 case '>':
8072 case '4':
8073 case '5':
8074 case 'H':
8075 case 'W':
8076 case 'D':
8077 case 'j':
8078 case '8':
8079 case 'V':
8080 case 'C':
8081 case 'U':
8082 case 'k':
8083 case 'K':
8084 case 'p':
8085 case 'q':
8086 {
8087 offsetT value;
8088
8089 gas_assert (ep != NULL);
8090
8091 if (ep->X_op != O_constant)
8092 *r = (int) BFD_RELOC_UNUSED + c;
8093 else if (calculate_reloc (*r, ep->X_add_number, &value))
8094 {
8095 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8096 ep = NULL;
8097 *r = BFD_RELOC_UNUSED;
8098 }
8099 }
8100 break;
8101
8102 default:
8103 operand = decode_mips16_operand (c, FALSE);
8104 if (!operand)
8105 abort ();
8106
8107 insn_insert_operand (&insn, operand, va_arg (*args, int));
8108 break;
8109 }
8110 }
8111
8112 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8113
8114 append_insn (&insn, ep, r, TRUE);
8115 }
8116
8117 /*
8118 * Generate a "jalr" instruction with a relocation hint to the called
8119 * function. This occurs in NewABI PIC code.
8120 */
8121 static void
8122 macro_build_jalr (expressionS *ep, int cprestore)
8123 {
8124 static const bfd_reloc_code_real_type jalr_relocs[2]
8125 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8126 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8127 const char *jalr;
8128 char *f = NULL;
8129
8130 if (MIPS_JALR_HINT_P (ep))
8131 {
8132 frag_grow (8);
8133 f = frag_more (0);
8134 }
8135 if (mips_opts.micromips)
8136 {
8137 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8138 ? "jalr" : "jalrs");
8139 if (MIPS_JALR_HINT_P (ep)
8140 || mips_opts.insn32
8141 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8142 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8143 else
8144 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8145 }
8146 else
8147 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8148 if (MIPS_JALR_HINT_P (ep))
8149 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8150 }
8151
8152 /*
8153 * Generate a "lui" instruction.
8154 */
8155 static void
8156 macro_build_lui (expressionS *ep, int regnum)
8157 {
8158 gas_assert (! mips_opts.mips16);
8159
8160 if (ep->X_op != O_constant)
8161 {
8162 gas_assert (ep->X_op == O_symbol);
8163 /* _gp_disp is a special case, used from s_cpload.
8164 __gnu_local_gp is used if mips_no_shared. */
8165 gas_assert (mips_pic == NO_PIC
8166 || (! HAVE_NEWABI
8167 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8168 || (! mips_in_shared
8169 && strcmp (S_GET_NAME (ep->X_add_symbol),
8170 "__gnu_local_gp") == 0));
8171 }
8172
8173 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8174 }
8175
8176 /* Generate a sequence of instructions to do a load or store from a constant
8177 offset off of a base register (breg) into/from a target register (treg),
8178 using AT if necessary. */
8179 static void
8180 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8181 int treg, int breg, int dbl)
8182 {
8183 gas_assert (ep->X_op == O_constant);
8184
8185 /* Sign-extending 32-bit constants makes their handling easier. */
8186 if (!dbl)
8187 normalize_constant_expr (ep);
8188
8189 /* Right now, this routine can only handle signed 32-bit constants. */
8190 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8191 as_warn (_("operand overflow"));
8192
8193 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8194 {
8195 /* Signed 16-bit offset will fit in the op. Easy! */
8196 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8197 }
8198 else
8199 {
8200 /* 32-bit offset, need multiple instructions and AT, like:
8201 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8202 addu $tempreg,$tempreg,$breg
8203 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8204 to handle the complete offset. */
8205 macro_build_lui (ep, AT);
8206 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8207 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8208
8209 if (!mips_opts.at)
8210 as_bad (_("macro used $at after \".set noat\""));
8211 }
8212 }
8213
8214 /* set_at()
8215 * Generates code to set the $at register to true (one)
8216 * if reg is less than the immediate expression.
8217 */
8218 static void
8219 set_at (int reg, int unsignedp)
8220 {
8221 if (imm_expr.X_add_number >= -0x8000
8222 && imm_expr.X_add_number < 0x8000)
8223 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8224 AT, reg, BFD_RELOC_LO16);
8225 else
8226 {
8227 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8228 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8229 }
8230 }
8231
8232 /* Count the leading zeroes by performing a binary chop. This is a
8233 bulky bit of source, but performance is a LOT better for the
8234 majority of values than a simple loop to count the bits:
8235 for (lcnt = 0; (lcnt < 32); lcnt++)
8236 if ((v) & (1 << (31 - lcnt)))
8237 break;
8238 However it is not code size friendly, and the gain will drop a bit
8239 on certain cached systems.
8240 */
8241 #define COUNT_TOP_ZEROES(v) \
8242 (((v) & ~0xffff) == 0 \
8243 ? ((v) & ~0xff) == 0 \
8244 ? ((v) & ~0xf) == 0 \
8245 ? ((v) & ~0x3) == 0 \
8246 ? ((v) & ~0x1) == 0 \
8247 ? !(v) \
8248 ? 32 \
8249 : 31 \
8250 : 30 \
8251 : ((v) & ~0x7) == 0 \
8252 ? 29 \
8253 : 28 \
8254 : ((v) & ~0x3f) == 0 \
8255 ? ((v) & ~0x1f) == 0 \
8256 ? 27 \
8257 : 26 \
8258 : ((v) & ~0x7f) == 0 \
8259 ? 25 \
8260 : 24 \
8261 : ((v) & ~0xfff) == 0 \
8262 ? ((v) & ~0x3ff) == 0 \
8263 ? ((v) & ~0x1ff) == 0 \
8264 ? 23 \
8265 : 22 \
8266 : ((v) & ~0x7ff) == 0 \
8267 ? 21 \
8268 : 20 \
8269 : ((v) & ~0x3fff) == 0 \
8270 ? ((v) & ~0x1fff) == 0 \
8271 ? 19 \
8272 : 18 \
8273 : ((v) & ~0x7fff) == 0 \
8274 ? 17 \
8275 : 16 \
8276 : ((v) & ~0xffffff) == 0 \
8277 ? ((v) & ~0xfffff) == 0 \
8278 ? ((v) & ~0x3ffff) == 0 \
8279 ? ((v) & ~0x1ffff) == 0 \
8280 ? 15 \
8281 : 14 \
8282 : ((v) & ~0x7ffff) == 0 \
8283 ? 13 \
8284 : 12 \
8285 : ((v) & ~0x3fffff) == 0 \
8286 ? ((v) & ~0x1fffff) == 0 \
8287 ? 11 \
8288 : 10 \
8289 : ((v) & ~0x7fffff) == 0 \
8290 ? 9 \
8291 : 8 \
8292 : ((v) & ~0xfffffff) == 0 \
8293 ? ((v) & ~0x3ffffff) == 0 \
8294 ? ((v) & ~0x1ffffff) == 0 \
8295 ? 7 \
8296 : 6 \
8297 : ((v) & ~0x7ffffff) == 0 \
8298 ? 5 \
8299 : 4 \
8300 : ((v) & ~0x3fffffff) == 0 \
8301 ? ((v) & ~0x1fffffff) == 0 \
8302 ? 3 \
8303 : 2 \
8304 : ((v) & ~0x7fffffff) == 0 \
8305 ? 1 \
8306 : 0)
8307
8308 /* load_register()
8309 * This routine generates the least number of instructions necessary to load
8310 * an absolute expression value into a register.
8311 */
8312 static void
8313 load_register (int reg, expressionS *ep, int dbl)
8314 {
8315 int freg;
8316 expressionS hi32, lo32;
8317
8318 if (ep->X_op != O_big)
8319 {
8320 gas_assert (ep->X_op == O_constant);
8321
8322 /* Sign-extending 32-bit constants makes their handling easier. */
8323 if (!dbl)
8324 normalize_constant_expr (ep);
8325
8326 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8327 {
8328 /* We can handle 16 bit signed values with an addiu to
8329 $zero. No need to ever use daddiu here, since $zero and
8330 the result are always correct in 32 bit mode. */
8331 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8332 return;
8333 }
8334 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8335 {
8336 /* We can handle 16 bit unsigned values with an ori to
8337 $zero. */
8338 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8339 return;
8340 }
8341 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8342 {
8343 /* 32 bit values require an lui. */
8344 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8345 if ((ep->X_add_number & 0xffff) != 0)
8346 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8347 return;
8348 }
8349 }
8350
8351 /* The value is larger than 32 bits. */
8352
8353 if (!dbl || HAVE_32BIT_GPRS)
8354 {
8355 char value[32];
8356
8357 sprintf_vma (value, ep->X_add_number);
8358 as_bad (_("number (0x%s) larger than 32 bits"), value);
8359 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8360 return;
8361 }
8362
8363 if (ep->X_op != O_big)
8364 {
8365 hi32 = *ep;
8366 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8367 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8368 hi32.X_add_number &= 0xffffffff;
8369 lo32 = *ep;
8370 lo32.X_add_number &= 0xffffffff;
8371 }
8372 else
8373 {
8374 gas_assert (ep->X_add_number > 2);
8375 if (ep->X_add_number == 3)
8376 generic_bignum[3] = 0;
8377 else if (ep->X_add_number > 4)
8378 as_bad (_("number larger than 64 bits"));
8379 lo32.X_op = O_constant;
8380 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8381 hi32.X_op = O_constant;
8382 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8383 }
8384
8385 if (hi32.X_add_number == 0)
8386 freg = 0;
8387 else
8388 {
8389 int shift, bit;
8390 unsigned long hi, lo;
8391
8392 if (hi32.X_add_number == (offsetT) 0xffffffff)
8393 {
8394 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8395 {
8396 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8397 return;
8398 }
8399 if (lo32.X_add_number & 0x80000000)
8400 {
8401 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8402 if (lo32.X_add_number & 0xffff)
8403 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8404 return;
8405 }
8406 }
8407
8408 /* Check for 16bit shifted constant. We know that hi32 is
8409 non-zero, so start the mask on the first bit of the hi32
8410 value. */
8411 shift = 17;
8412 do
8413 {
8414 unsigned long himask, lomask;
8415
8416 if (shift < 32)
8417 {
8418 himask = 0xffff >> (32 - shift);
8419 lomask = (0xffff << shift) & 0xffffffff;
8420 }
8421 else
8422 {
8423 himask = 0xffff << (shift - 32);
8424 lomask = 0;
8425 }
8426 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8427 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8428 {
8429 expressionS tmp;
8430
8431 tmp.X_op = O_constant;
8432 if (shift < 32)
8433 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8434 | (lo32.X_add_number >> shift));
8435 else
8436 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8437 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8438 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8439 reg, reg, (shift >= 32) ? shift - 32 : shift);
8440 return;
8441 }
8442 ++shift;
8443 }
8444 while (shift <= (64 - 16));
8445
8446 /* Find the bit number of the lowest one bit, and store the
8447 shifted value in hi/lo. */
8448 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8449 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8450 if (lo != 0)
8451 {
8452 bit = 0;
8453 while ((lo & 1) == 0)
8454 {
8455 lo >>= 1;
8456 ++bit;
8457 }
8458 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8459 hi >>= bit;
8460 }
8461 else
8462 {
8463 bit = 32;
8464 while ((hi & 1) == 0)
8465 {
8466 hi >>= 1;
8467 ++bit;
8468 }
8469 lo = hi;
8470 hi = 0;
8471 }
8472
8473 /* Optimize if the shifted value is a (power of 2) - 1. */
8474 if ((hi == 0 && ((lo + 1) & lo) == 0)
8475 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
8476 {
8477 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
8478 if (shift != 0)
8479 {
8480 expressionS tmp;
8481
8482 /* This instruction will set the register to be all
8483 ones. */
8484 tmp.X_op = O_constant;
8485 tmp.X_add_number = (offsetT) -1;
8486 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8487 if (bit != 0)
8488 {
8489 bit += shift;
8490 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8491 reg, reg, (bit >= 32) ? bit - 32 : bit);
8492 }
8493 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
8494 reg, reg, (shift >= 32) ? shift - 32 : shift);
8495 return;
8496 }
8497 }
8498
8499 /* Sign extend hi32 before calling load_register, because we can
8500 generally get better code when we load a sign extended value. */
8501 if ((hi32.X_add_number & 0x80000000) != 0)
8502 hi32.X_add_number |= ~(offsetT) 0xffffffff;
8503 load_register (reg, &hi32, 0);
8504 freg = reg;
8505 }
8506 if ((lo32.X_add_number & 0xffff0000) == 0)
8507 {
8508 if (freg != 0)
8509 {
8510 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
8511 freg = reg;
8512 }
8513 }
8514 else
8515 {
8516 expressionS mid16;
8517
8518 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
8519 {
8520 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8521 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
8522 return;
8523 }
8524
8525 if (freg != 0)
8526 {
8527 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
8528 freg = reg;
8529 }
8530 mid16 = lo32;
8531 mid16.X_add_number >>= 16;
8532 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
8533 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8534 freg = reg;
8535 }
8536 if ((lo32.X_add_number & 0xffff) != 0)
8537 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
8538 }
8539
8540 static inline void
8541 load_delay_nop (void)
8542 {
8543 if (!gpr_interlocks)
8544 macro_build (NULL, "nop", "");
8545 }
8546
8547 /* Load an address into a register. */
8548
8549 static void
8550 load_address (int reg, expressionS *ep, int *used_at)
8551 {
8552 if (ep->X_op != O_constant
8553 && ep->X_op != O_symbol)
8554 {
8555 as_bad (_("expression too complex"));
8556 ep->X_op = O_constant;
8557 }
8558
8559 if (ep->X_op == O_constant)
8560 {
8561 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
8562 return;
8563 }
8564
8565 if (mips_pic == NO_PIC)
8566 {
8567 /* If this is a reference to a GP relative symbol, we want
8568 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
8569 Otherwise we want
8570 lui $reg,<sym> (BFD_RELOC_HI16_S)
8571 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8572 If we have an addend, we always use the latter form.
8573
8574 With 64bit address space and a usable $at we want
8575 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8576 lui $at,<sym> (BFD_RELOC_HI16_S)
8577 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8578 daddiu $at,<sym> (BFD_RELOC_LO16)
8579 dsll32 $reg,0
8580 daddu $reg,$reg,$at
8581
8582 If $at is already in use, we use a path which is suboptimal
8583 on superscalar processors.
8584 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8585 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8586 dsll $reg,16
8587 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
8588 dsll $reg,16
8589 daddiu $reg,<sym> (BFD_RELOC_LO16)
8590
8591 For GP relative symbols in 64bit address space we can use
8592 the same sequence as in 32bit address space. */
8593 if (HAVE_64BIT_SYMBOLS)
8594 {
8595 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
8596 && !nopic_need_relax (ep->X_add_symbol, 1))
8597 {
8598 relax_start (ep->X_add_symbol);
8599 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
8600 mips_gp_register, BFD_RELOC_GPREL16);
8601 relax_switch ();
8602 }
8603
8604 if (*used_at == 0 && mips_opts.at)
8605 {
8606 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
8607 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
8608 macro_build (ep, "daddiu", "t,r,j", reg, reg,
8609 BFD_RELOC_MIPS_HIGHER);
8610 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
8611 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
8612 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
8613 *used_at = 1;
8614 }
8615 else
8616 {
8617 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
8618 macro_build (ep, "daddiu", "t,r,j", reg, reg,
8619 BFD_RELOC_MIPS_HIGHER);
8620 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8621 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
8622 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8623 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
8624 }
8625
8626 if (mips_relax.sequence)
8627 relax_end ();
8628 }
8629 else
8630 {
8631 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
8632 && !nopic_need_relax (ep->X_add_symbol, 1))
8633 {
8634 relax_start (ep->X_add_symbol);
8635 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
8636 mips_gp_register, BFD_RELOC_GPREL16);
8637 relax_switch ();
8638 }
8639 macro_build_lui (ep, reg);
8640 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
8641 reg, reg, BFD_RELOC_LO16);
8642 if (mips_relax.sequence)
8643 relax_end ();
8644 }
8645 }
8646 else if (!mips_big_got)
8647 {
8648 expressionS ex;
8649
8650 /* If this is a reference to an external symbol, we want
8651 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8652 Otherwise we want
8653 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8654 nop
8655 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8656 If there is a constant, it must be added in after.
8657
8658 If we have NewABI, we want
8659 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
8660 unless we're referencing a global symbol with a non-zero
8661 offset, in which case cst must be added separately. */
8662 if (HAVE_NEWABI)
8663 {
8664 if (ep->X_add_number)
8665 {
8666 ex.X_add_number = ep->X_add_number;
8667 ep->X_add_number = 0;
8668 relax_start (ep->X_add_symbol);
8669 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8670 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
8671 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8672 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8673 ex.X_op = O_constant;
8674 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
8675 reg, reg, BFD_RELOC_LO16);
8676 ep->X_add_number = ex.X_add_number;
8677 relax_switch ();
8678 }
8679 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8680 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
8681 if (mips_relax.sequence)
8682 relax_end ();
8683 }
8684 else
8685 {
8686 ex.X_add_number = ep->X_add_number;
8687 ep->X_add_number = 0;
8688 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8689 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8690 load_delay_nop ();
8691 relax_start (ep->X_add_symbol);
8692 relax_switch ();
8693 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8694 BFD_RELOC_LO16);
8695 relax_end ();
8696
8697 if (ex.X_add_number != 0)
8698 {
8699 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8700 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8701 ex.X_op = O_constant;
8702 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
8703 reg, reg, BFD_RELOC_LO16);
8704 }
8705 }
8706 }
8707 else if (mips_big_got)
8708 {
8709 expressionS ex;
8710
8711 /* This is the large GOT case. If this is a reference to an
8712 external symbol, we want
8713 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8714 addu $reg,$reg,$gp
8715 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
8716
8717 Otherwise, for a reference to a local symbol in old ABI, we want
8718 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8719 nop
8720 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8721 If there is a constant, it must be added in after.
8722
8723 In the NewABI, for local symbols, with or without offsets, we want:
8724 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8725 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
8726 */
8727 if (HAVE_NEWABI)
8728 {
8729 ex.X_add_number = ep->X_add_number;
8730 ep->X_add_number = 0;
8731 relax_start (ep->X_add_symbol);
8732 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
8733 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8734 reg, reg, mips_gp_register);
8735 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
8736 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
8737 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8738 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8739 else if (ex.X_add_number)
8740 {
8741 ex.X_op = O_constant;
8742 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8743 BFD_RELOC_LO16);
8744 }
8745
8746 ep->X_add_number = ex.X_add_number;
8747 relax_switch ();
8748 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8749 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8750 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8751 BFD_RELOC_MIPS_GOT_OFST);
8752 relax_end ();
8753 }
8754 else
8755 {
8756 ex.X_add_number = ep->X_add_number;
8757 ep->X_add_number = 0;
8758 relax_start (ep->X_add_symbol);
8759 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
8760 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8761 reg, reg, mips_gp_register);
8762 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
8763 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
8764 relax_switch ();
8765 if (reg_needs_delay (mips_gp_register))
8766 {
8767 /* We need a nop before loading from $gp. This special
8768 check is required because the lui which starts the main
8769 instruction stream does not refer to $gp, and so will not
8770 insert the nop which may be required. */
8771 macro_build (NULL, "nop", "");
8772 }
8773 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8774 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8775 load_delay_nop ();
8776 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8777 BFD_RELOC_LO16);
8778 relax_end ();
8779
8780 if (ex.X_add_number != 0)
8781 {
8782 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8783 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8784 ex.X_op = O_constant;
8785 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8786 BFD_RELOC_LO16);
8787 }
8788 }
8789 }
8790 else
8791 abort ();
8792
8793 if (!mips_opts.at && *used_at == 1)
8794 as_bad (_("macro used $at after \".set noat\""));
8795 }
8796
8797 /* Move the contents of register SOURCE into register DEST. */
8798
8799 static void
8800 move_register (int dest, int source)
8801 {
8802 /* Prefer to use a 16-bit microMIPS instruction unless the previous
8803 instruction specifically requires a 32-bit one. */
8804 if (mips_opts.micromips
8805 && !mips_opts.insn32
8806 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8807 macro_build (NULL, "move", "mp,mj", dest, source);
8808 else
8809 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
8810 dest, source, 0);
8811 }
8812
8813 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
8814 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
8815 The two alternatives are:
8816
8817 Global symbol Local sybmol
8818 ------------- ------------
8819 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
8820 ... ...
8821 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
8822
8823 load_got_offset emits the first instruction and add_got_offset
8824 emits the second for a 16-bit offset or add_got_offset_hilo emits
8825 a sequence to add a 32-bit offset using a scratch register. */
8826
8827 static void
8828 load_got_offset (int dest, expressionS *local)
8829 {
8830 expressionS global;
8831
8832 global = *local;
8833 global.X_add_number = 0;
8834
8835 relax_start (local->X_add_symbol);
8836 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
8837 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8838 relax_switch ();
8839 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
8840 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8841 relax_end ();
8842 }
8843
8844 static void
8845 add_got_offset (int dest, expressionS *local)
8846 {
8847 expressionS global;
8848
8849 global.X_op = O_constant;
8850 global.X_op_symbol = NULL;
8851 global.X_add_symbol = NULL;
8852 global.X_add_number = local->X_add_number;
8853
8854 relax_start (local->X_add_symbol);
8855 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
8856 dest, dest, BFD_RELOC_LO16);
8857 relax_switch ();
8858 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
8859 relax_end ();
8860 }
8861
8862 static void
8863 add_got_offset_hilo (int dest, expressionS *local, int tmp)
8864 {
8865 expressionS global;
8866 int hold_mips_optimize;
8867
8868 global.X_op = O_constant;
8869 global.X_op_symbol = NULL;
8870 global.X_add_symbol = NULL;
8871 global.X_add_number = local->X_add_number;
8872
8873 relax_start (local->X_add_symbol);
8874 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
8875 relax_switch ();
8876 /* Set mips_optimize around the lui instruction to avoid
8877 inserting an unnecessary nop after the lw. */
8878 hold_mips_optimize = mips_optimize;
8879 mips_optimize = 2;
8880 macro_build_lui (&global, tmp);
8881 mips_optimize = hold_mips_optimize;
8882 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
8883 relax_end ();
8884
8885 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
8886 }
8887
8888 /* Emit a sequence of instructions to emulate a branch likely operation.
8889 BR is an ordinary branch corresponding to one to be emulated. BRNEG
8890 is its complementing branch with the original condition negated.
8891 CALL is set if the original branch specified the link operation.
8892 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
8893
8894 Code like this is produced in the noreorder mode:
8895
8896 BRNEG <args>, 1f
8897 nop
8898 b <sym>
8899 delay slot (executed only if branch taken)
8900 1:
8901
8902 or, if CALL is set:
8903
8904 BRNEG <args>, 1f
8905 nop
8906 bal <sym>
8907 delay slot (executed only if branch taken)
8908 1:
8909
8910 In the reorder mode the delay slot would be filled with a nop anyway,
8911 so code produced is simply:
8912
8913 BR <args>, <sym>
8914 nop
8915
8916 This function is used when producing code for the microMIPS ASE that
8917 does not implement branch likely instructions in hardware. */
8918
8919 static void
8920 macro_build_branch_likely (const char *br, const char *brneg,
8921 int call, expressionS *ep, const char *fmt,
8922 unsigned int sreg, unsigned int treg)
8923 {
8924 int noreorder = mips_opts.noreorder;
8925 expressionS expr1;
8926
8927 gas_assert (mips_opts.micromips);
8928 start_noreorder ();
8929 if (noreorder)
8930 {
8931 micromips_label_expr (&expr1);
8932 macro_build (&expr1, brneg, fmt, sreg, treg);
8933 macro_build (NULL, "nop", "");
8934 macro_build (ep, call ? "bal" : "b", "p");
8935
8936 /* Set to true so that append_insn adds a label. */
8937 emit_branch_likely_macro = TRUE;
8938 }
8939 else
8940 {
8941 macro_build (ep, br, fmt, sreg, treg);
8942 macro_build (NULL, "nop", "");
8943 }
8944 end_noreorder ();
8945 }
8946
8947 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
8948 the condition code tested. EP specifies the branch target. */
8949
8950 static void
8951 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
8952 {
8953 const int call = 0;
8954 const char *brneg;
8955 const char *br;
8956
8957 switch (type)
8958 {
8959 case M_BC1FL:
8960 br = "bc1f";
8961 brneg = "bc1t";
8962 break;
8963 case M_BC1TL:
8964 br = "bc1t";
8965 brneg = "bc1f";
8966 break;
8967 case M_BC2FL:
8968 br = "bc2f";
8969 brneg = "bc2t";
8970 break;
8971 case M_BC2TL:
8972 br = "bc2t";
8973 brneg = "bc2f";
8974 break;
8975 default:
8976 abort ();
8977 }
8978 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
8979 }
8980
8981 /* Emit a two-argument branch macro specified by TYPE, using SREG as
8982 the register tested. EP specifies the branch target. */
8983
8984 static void
8985 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
8986 {
8987 const char *brneg = NULL;
8988 const char *br;
8989 int call = 0;
8990
8991 switch (type)
8992 {
8993 case M_BGEZ:
8994 br = "bgez";
8995 break;
8996 case M_BGEZL:
8997 br = mips_opts.micromips ? "bgez" : "bgezl";
8998 brneg = "bltz";
8999 break;
9000 case M_BGEZALL:
9001 gas_assert (mips_opts.micromips);
9002 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9003 brneg = "bltz";
9004 call = 1;
9005 break;
9006 case M_BGTZ:
9007 br = "bgtz";
9008 break;
9009 case M_BGTZL:
9010 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9011 brneg = "blez";
9012 break;
9013 case M_BLEZ:
9014 br = "blez";
9015 break;
9016 case M_BLEZL:
9017 br = mips_opts.micromips ? "blez" : "blezl";
9018 brneg = "bgtz";
9019 break;
9020 case M_BLTZ:
9021 br = "bltz";
9022 break;
9023 case M_BLTZL:
9024 br = mips_opts.micromips ? "bltz" : "bltzl";
9025 brneg = "bgez";
9026 break;
9027 case M_BLTZALL:
9028 gas_assert (mips_opts.micromips);
9029 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9030 brneg = "bgez";
9031 call = 1;
9032 break;
9033 default:
9034 abort ();
9035 }
9036 if (mips_opts.micromips && brneg)
9037 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9038 else
9039 macro_build (ep, br, "s,p", sreg);
9040 }
9041
9042 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9043 TREG as the registers tested. EP specifies the branch target. */
9044
9045 static void
9046 macro_build_branch_rsrt (int type, expressionS *ep,
9047 unsigned int sreg, unsigned int treg)
9048 {
9049 const char *brneg = NULL;
9050 const int call = 0;
9051 const char *br;
9052
9053 switch (type)
9054 {
9055 case M_BEQ:
9056 case M_BEQ_I:
9057 br = "beq";
9058 break;
9059 case M_BEQL:
9060 case M_BEQL_I:
9061 br = mips_opts.micromips ? "beq" : "beql";
9062 brneg = "bne";
9063 break;
9064 case M_BNE:
9065 case M_BNE_I:
9066 br = "bne";
9067 break;
9068 case M_BNEL:
9069 case M_BNEL_I:
9070 br = mips_opts.micromips ? "bne" : "bnel";
9071 brneg = "beq";
9072 break;
9073 default:
9074 abort ();
9075 }
9076 if (mips_opts.micromips && brneg)
9077 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9078 else
9079 macro_build (ep, br, "s,t,p", sreg, treg);
9080 }
9081
9082 /* Return the high part that should be loaded in order to make the low
9083 part of VALUE accessible using an offset of OFFBITS bits. */
9084
9085 static offsetT
9086 offset_high_part (offsetT value, unsigned int offbits)
9087 {
9088 offsetT bias;
9089 addressT low_mask;
9090
9091 if (offbits == 0)
9092 return value;
9093 bias = 1 << (offbits - 1);
9094 low_mask = bias * 2 - 1;
9095 return (value + bias) & ~low_mask;
9096 }
9097
9098 /* Return true if the value stored in offset_expr and offset_reloc
9099 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9100 amount that the caller wants to add without inducing overflow
9101 and ALIGN is the known alignment of the value in bytes. */
9102
9103 static bfd_boolean
9104 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9105 {
9106 if (offbits == 16)
9107 {
9108 /* Accept any relocation operator if overflow isn't a concern. */
9109 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9110 return TRUE;
9111
9112 /* These relocations are guaranteed not to overflow in correct links. */
9113 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9114 || gprel16_reloc_p (*offset_reloc))
9115 return TRUE;
9116 }
9117 if (offset_expr.X_op == O_constant
9118 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9119 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9120 return TRUE;
9121 return FALSE;
9122 }
9123
9124 /*
9125 * Build macros
9126 * This routine implements the seemingly endless macro or synthesized
9127 * instructions and addressing modes in the mips assembly language. Many
9128 * of these macros are simple and are similar to each other. These could
9129 * probably be handled by some kind of table or grammar approach instead of
9130 * this verbose method. Others are not simple macros but are more like
9131 * optimizing code generation.
9132 * One interesting optimization is when several store macros appear
9133 * consecutively that would load AT with the upper half of the same address.
9134 * The ensuing load upper instructions are ommited. This implies some kind
9135 * of global optimization. We currently only optimize within a single macro.
9136 * For many of the load and store macros if the address is specified as a
9137 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9138 * first load register 'at' with zero and use it as the base register. The
9139 * mips assembler simply uses register $zero. Just one tiny optimization
9140 * we're missing.
9141 */
9142 static void
9143 macro (struct mips_cl_insn *ip, char *str)
9144 {
9145 const struct mips_operand_array *operands;
9146 unsigned int breg, i;
9147 unsigned int tempreg;
9148 int mask;
9149 int used_at = 0;
9150 expressionS label_expr;
9151 expressionS expr1;
9152 expressionS *ep;
9153 const char *s;
9154 const char *s2;
9155 const char *fmt;
9156 int likely = 0;
9157 int coproc = 0;
9158 int offbits = 16;
9159 int call = 0;
9160 int jals = 0;
9161 int dbl = 0;
9162 int imm = 0;
9163 int ust = 0;
9164 int lp = 0;
9165 bfd_boolean large_offset;
9166 int off;
9167 int hold_mips_optimize;
9168 unsigned int align;
9169 unsigned int op[MAX_OPERANDS];
9170
9171 gas_assert (! mips_opts.mips16);
9172
9173 operands = insn_operands (ip);
9174 for (i = 0; i < MAX_OPERANDS; i++)
9175 if (operands->operand[i])
9176 op[i] = insn_extract_operand (ip, operands->operand[i]);
9177 else
9178 op[i] = -1;
9179
9180 mask = ip->insn_mo->mask;
9181
9182 label_expr.X_op = O_constant;
9183 label_expr.X_op_symbol = NULL;
9184 label_expr.X_add_symbol = NULL;
9185 label_expr.X_add_number = 0;
9186
9187 expr1.X_op = O_constant;
9188 expr1.X_op_symbol = NULL;
9189 expr1.X_add_symbol = NULL;
9190 expr1.X_add_number = 1;
9191 align = 1;
9192
9193 switch (mask)
9194 {
9195 case M_DABS:
9196 dbl = 1;
9197 case M_ABS:
9198 /* bgez $a0,1f
9199 move v0,$a0
9200 sub v0,$zero,$a0
9201 1:
9202 */
9203
9204 start_noreorder ();
9205
9206 if (mips_opts.micromips)
9207 micromips_label_expr (&label_expr);
9208 else
9209 label_expr.X_add_number = 8;
9210 macro_build (&label_expr, "bgez", "s,p", op[1]);
9211 if (op[0] == op[1])
9212 macro_build (NULL, "nop", "");
9213 else
9214 move_register (op[0], op[1]);
9215 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9216 if (mips_opts.micromips)
9217 micromips_add_label ();
9218
9219 end_noreorder ();
9220 break;
9221
9222 case M_ADD_I:
9223 s = "addi";
9224 s2 = "add";
9225 goto do_addi;
9226 case M_ADDU_I:
9227 s = "addiu";
9228 s2 = "addu";
9229 goto do_addi;
9230 case M_DADD_I:
9231 dbl = 1;
9232 s = "daddi";
9233 s2 = "dadd";
9234 if (!mips_opts.micromips)
9235 goto do_addi;
9236 if (imm_expr.X_add_number >= -0x200
9237 && imm_expr.X_add_number < 0x200)
9238 {
9239 macro_build (NULL, s, "t,r,.", op[0], op[1],
9240 (int) imm_expr.X_add_number);
9241 break;
9242 }
9243 goto do_addi_i;
9244 case M_DADDU_I:
9245 dbl = 1;
9246 s = "daddiu";
9247 s2 = "daddu";
9248 do_addi:
9249 if (imm_expr.X_add_number >= -0x8000
9250 && imm_expr.X_add_number < 0x8000)
9251 {
9252 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9253 break;
9254 }
9255 do_addi_i:
9256 used_at = 1;
9257 load_register (AT, &imm_expr, dbl);
9258 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9259 break;
9260
9261 case M_AND_I:
9262 s = "andi";
9263 s2 = "and";
9264 goto do_bit;
9265 case M_OR_I:
9266 s = "ori";
9267 s2 = "or";
9268 goto do_bit;
9269 case M_NOR_I:
9270 s = "";
9271 s2 = "nor";
9272 goto do_bit;
9273 case M_XOR_I:
9274 s = "xori";
9275 s2 = "xor";
9276 do_bit:
9277 if (imm_expr.X_add_number >= 0
9278 && imm_expr.X_add_number < 0x10000)
9279 {
9280 if (mask != M_NOR_I)
9281 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9282 else
9283 {
9284 macro_build (&imm_expr, "ori", "t,r,i",
9285 op[0], op[1], BFD_RELOC_LO16);
9286 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9287 }
9288 break;
9289 }
9290
9291 used_at = 1;
9292 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9293 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9294 break;
9295
9296 case M_BALIGN:
9297 switch (imm_expr.X_add_number)
9298 {
9299 case 0:
9300 macro_build (NULL, "nop", "");
9301 break;
9302 case 2:
9303 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9304 break;
9305 case 1:
9306 case 3:
9307 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9308 (int) imm_expr.X_add_number);
9309 break;
9310 default:
9311 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9312 (unsigned long) imm_expr.X_add_number);
9313 break;
9314 }
9315 break;
9316
9317 case M_BC1FL:
9318 case M_BC1TL:
9319 case M_BC2FL:
9320 case M_BC2TL:
9321 gas_assert (mips_opts.micromips);
9322 macro_build_branch_ccl (mask, &offset_expr,
9323 EXTRACT_OPERAND (1, BCC, *ip));
9324 break;
9325
9326 case M_BEQ_I:
9327 case M_BEQL_I:
9328 case M_BNE_I:
9329 case M_BNEL_I:
9330 if (imm_expr.X_add_number == 0)
9331 op[1] = 0;
9332 else
9333 {
9334 op[1] = AT;
9335 used_at = 1;
9336 load_register (op[1], &imm_expr, HAVE_64BIT_GPRS);
9337 }
9338 /* Fall through. */
9339 case M_BEQL:
9340 case M_BNEL:
9341 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9342 break;
9343
9344 case M_BGEL:
9345 likely = 1;
9346 case M_BGE:
9347 if (op[1] == 0)
9348 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9349 else if (op[0] == 0)
9350 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9351 else
9352 {
9353 used_at = 1;
9354 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9355 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9356 &offset_expr, AT, ZERO);
9357 }
9358 break;
9359
9360 case M_BGEZL:
9361 case M_BGEZALL:
9362 case M_BGTZL:
9363 case M_BLEZL:
9364 case M_BLTZL:
9365 case M_BLTZALL:
9366 macro_build_branch_rs (mask, &offset_expr, op[0]);
9367 break;
9368
9369 case M_BGTL_I:
9370 likely = 1;
9371 case M_BGT_I:
9372 /* Check for > max integer. */
9373 if (imm_expr.X_add_number >= GPR_SMAX)
9374 {
9375 do_false:
9376 /* Result is always false. */
9377 if (! likely)
9378 macro_build (NULL, "nop", "");
9379 else
9380 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9381 break;
9382 }
9383 ++imm_expr.X_add_number;
9384 /* FALLTHROUGH */
9385 case M_BGE_I:
9386 case M_BGEL_I:
9387 if (mask == M_BGEL_I)
9388 likely = 1;
9389 if (imm_expr.X_add_number == 0)
9390 {
9391 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9392 &offset_expr, op[0]);
9393 break;
9394 }
9395 if (imm_expr.X_add_number == 1)
9396 {
9397 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9398 &offset_expr, op[0]);
9399 break;
9400 }
9401 if (imm_expr.X_add_number <= GPR_SMIN)
9402 {
9403 do_true:
9404 /* result is always true */
9405 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9406 macro_build (&offset_expr, "b", "p");
9407 break;
9408 }
9409 used_at = 1;
9410 set_at (op[0], 0);
9411 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9412 &offset_expr, AT, ZERO);
9413 break;
9414
9415 case M_BGEUL:
9416 likely = 1;
9417 case M_BGEU:
9418 if (op[1] == 0)
9419 goto do_true;
9420 else if (op[0] == 0)
9421 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9422 &offset_expr, ZERO, op[1]);
9423 else
9424 {
9425 used_at = 1;
9426 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9427 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9428 &offset_expr, AT, ZERO);
9429 }
9430 break;
9431
9432 case M_BGTUL_I:
9433 likely = 1;
9434 case M_BGTU_I:
9435 if (op[0] == 0
9436 || (HAVE_32BIT_GPRS
9437 && imm_expr.X_add_number == -1))
9438 goto do_false;
9439 ++imm_expr.X_add_number;
9440 /* FALLTHROUGH */
9441 case M_BGEU_I:
9442 case M_BGEUL_I:
9443 if (mask == M_BGEUL_I)
9444 likely = 1;
9445 if (imm_expr.X_add_number == 0)
9446 goto do_true;
9447 else if (imm_expr.X_add_number == 1)
9448 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9449 &offset_expr, op[0], ZERO);
9450 else
9451 {
9452 used_at = 1;
9453 set_at (op[0], 1);
9454 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9455 &offset_expr, AT, ZERO);
9456 }
9457 break;
9458
9459 case M_BGTL:
9460 likely = 1;
9461 case M_BGT:
9462 if (op[1] == 0)
9463 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9464 else if (op[0] == 0)
9465 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9466 else
9467 {
9468 used_at = 1;
9469 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9470 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9471 &offset_expr, AT, ZERO);
9472 }
9473 break;
9474
9475 case M_BGTUL:
9476 likely = 1;
9477 case M_BGTU:
9478 if (op[1] == 0)
9479 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9480 &offset_expr, op[0], ZERO);
9481 else if (op[0] == 0)
9482 goto do_false;
9483 else
9484 {
9485 used_at = 1;
9486 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
9487 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9488 &offset_expr, AT, ZERO);
9489 }
9490 break;
9491
9492 case M_BLEL:
9493 likely = 1;
9494 case M_BLE:
9495 if (op[1] == 0)
9496 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
9497 else if (op[0] == 0)
9498 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
9499 else
9500 {
9501 used_at = 1;
9502 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9503 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9504 &offset_expr, AT, ZERO);
9505 }
9506 break;
9507
9508 case M_BLEL_I:
9509 likely = 1;
9510 case M_BLE_I:
9511 if (imm_expr.X_add_number >= GPR_SMAX)
9512 goto do_true;
9513 ++imm_expr.X_add_number;
9514 /* FALLTHROUGH */
9515 case M_BLT_I:
9516 case M_BLTL_I:
9517 if (mask == M_BLTL_I)
9518 likely = 1;
9519 if (imm_expr.X_add_number == 0)
9520 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
9521 else if (imm_expr.X_add_number == 1)
9522 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
9523 else
9524 {
9525 used_at = 1;
9526 set_at (op[0], 0);
9527 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9528 &offset_expr, AT, ZERO);
9529 }
9530 break;
9531
9532 case M_BLEUL:
9533 likely = 1;
9534 case M_BLEU:
9535 if (op[1] == 0)
9536 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9537 &offset_expr, op[0], ZERO);
9538 else if (op[0] == 0)
9539 goto do_true;
9540 else
9541 {
9542 used_at = 1;
9543 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
9544 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9545 &offset_expr, AT, ZERO);
9546 }
9547 break;
9548
9549 case M_BLEUL_I:
9550 likely = 1;
9551 case M_BLEU_I:
9552 if (op[0] == 0
9553 || (HAVE_32BIT_GPRS
9554 && imm_expr.X_add_number == -1))
9555 goto do_true;
9556 ++imm_expr.X_add_number;
9557 /* FALLTHROUGH */
9558 case M_BLTU_I:
9559 case M_BLTUL_I:
9560 if (mask == M_BLTUL_I)
9561 likely = 1;
9562 if (imm_expr.X_add_number == 0)
9563 goto do_false;
9564 else if (imm_expr.X_add_number == 1)
9565 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9566 &offset_expr, op[0], ZERO);
9567 else
9568 {
9569 used_at = 1;
9570 set_at (op[0], 1);
9571 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9572 &offset_expr, AT, ZERO);
9573 }
9574 break;
9575
9576 case M_BLTL:
9577 likely = 1;
9578 case M_BLT:
9579 if (op[1] == 0)
9580 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
9581 else if (op[0] == 0)
9582 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
9583 else
9584 {
9585 used_at = 1;
9586 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9587 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9588 &offset_expr, AT, ZERO);
9589 }
9590 break;
9591
9592 case M_BLTUL:
9593 likely = 1;
9594 case M_BLTU:
9595 if (op[1] == 0)
9596 goto do_false;
9597 else if (op[0] == 0)
9598 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9599 &offset_expr, ZERO, op[1]);
9600 else
9601 {
9602 used_at = 1;
9603 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9604 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9605 &offset_expr, AT, ZERO);
9606 }
9607 break;
9608
9609 case M_DDIV_3:
9610 dbl = 1;
9611 case M_DIV_3:
9612 s = "mflo";
9613 goto do_div3;
9614 case M_DREM_3:
9615 dbl = 1;
9616 case M_REM_3:
9617 s = "mfhi";
9618 do_div3:
9619 if (op[2] == 0)
9620 {
9621 as_warn (_("divide by zero"));
9622 if (mips_trap)
9623 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
9624 else
9625 macro_build (NULL, "break", BRK_FMT, 7);
9626 break;
9627 }
9628
9629 start_noreorder ();
9630 if (mips_trap)
9631 {
9632 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
9633 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
9634 }
9635 else
9636 {
9637 if (mips_opts.micromips)
9638 micromips_label_expr (&label_expr);
9639 else
9640 label_expr.X_add_number = 8;
9641 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
9642 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
9643 macro_build (NULL, "break", BRK_FMT, 7);
9644 if (mips_opts.micromips)
9645 micromips_add_label ();
9646 }
9647 expr1.X_add_number = -1;
9648 used_at = 1;
9649 load_register (AT, &expr1, dbl);
9650 if (mips_opts.micromips)
9651 micromips_label_expr (&label_expr);
9652 else
9653 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
9654 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
9655 if (dbl)
9656 {
9657 expr1.X_add_number = 1;
9658 load_register (AT, &expr1, dbl);
9659 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
9660 }
9661 else
9662 {
9663 expr1.X_add_number = 0x80000000;
9664 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
9665 }
9666 if (mips_trap)
9667 {
9668 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
9669 /* We want to close the noreorder block as soon as possible, so
9670 that later insns are available for delay slot filling. */
9671 end_noreorder ();
9672 }
9673 else
9674 {
9675 if (mips_opts.micromips)
9676 micromips_label_expr (&label_expr);
9677 else
9678 label_expr.X_add_number = 8;
9679 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
9680 macro_build (NULL, "nop", "");
9681
9682 /* We want to close the noreorder block as soon as possible, so
9683 that later insns are available for delay slot filling. */
9684 end_noreorder ();
9685
9686 macro_build (NULL, "break", BRK_FMT, 6);
9687 }
9688 if (mips_opts.micromips)
9689 micromips_add_label ();
9690 macro_build (NULL, s, MFHL_FMT, op[0]);
9691 break;
9692
9693 case M_DIV_3I:
9694 s = "div";
9695 s2 = "mflo";
9696 goto do_divi;
9697 case M_DIVU_3I:
9698 s = "divu";
9699 s2 = "mflo";
9700 goto do_divi;
9701 case M_REM_3I:
9702 s = "div";
9703 s2 = "mfhi";
9704 goto do_divi;
9705 case M_REMU_3I:
9706 s = "divu";
9707 s2 = "mfhi";
9708 goto do_divi;
9709 case M_DDIV_3I:
9710 dbl = 1;
9711 s = "ddiv";
9712 s2 = "mflo";
9713 goto do_divi;
9714 case M_DDIVU_3I:
9715 dbl = 1;
9716 s = "ddivu";
9717 s2 = "mflo";
9718 goto do_divi;
9719 case M_DREM_3I:
9720 dbl = 1;
9721 s = "ddiv";
9722 s2 = "mfhi";
9723 goto do_divi;
9724 case M_DREMU_3I:
9725 dbl = 1;
9726 s = "ddivu";
9727 s2 = "mfhi";
9728 do_divi:
9729 if (imm_expr.X_add_number == 0)
9730 {
9731 as_warn (_("divide by zero"));
9732 if (mips_trap)
9733 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
9734 else
9735 macro_build (NULL, "break", BRK_FMT, 7);
9736 break;
9737 }
9738 if (imm_expr.X_add_number == 1)
9739 {
9740 if (strcmp (s2, "mflo") == 0)
9741 move_register (op[0], op[1]);
9742 else
9743 move_register (op[0], ZERO);
9744 break;
9745 }
9746 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
9747 {
9748 if (strcmp (s2, "mflo") == 0)
9749 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
9750 else
9751 move_register (op[0], ZERO);
9752 break;
9753 }
9754
9755 used_at = 1;
9756 load_register (AT, &imm_expr, dbl);
9757 macro_build (NULL, s, "z,s,t", op[1], AT);
9758 macro_build (NULL, s2, MFHL_FMT, op[0]);
9759 break;
9760
9761 case M_DIVU_3:
9762 s = "divu";
9763 s2 = "mflo";
9764 goto do_divu3;
9765 case M_REMU_3:
9766 s = "divu";
9767 s2 = "mfhi";
9768 goto do_divu3;
9769 case M_DDIVU_3:
9770 s = "ddivu";
9771 s2 = "mflo";
9772 goto do_divu3;
9773 case M_DREMU_3:
9774 s = "ddivu";
9775 s2 = "mfhi";
9776 do_divu3:
9777 start_noreorder ();
9778 if (mips_trap)
9779 {
9780 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
9781 macro_build (NULL, s, "z,s,t", op[1], op[2]);
9782 /* We want to close the noreorder block as soon as possible, so
9783 that later insns are available for delay slot filling. */
9784 end_noreorder ();
9785 }
9786 else
9787 {
9788 if (mips_opts.micromips)
9789 micromips_label_expr (&label_expr);
9790 else
9791 label_expr.X_add_number = 8;
9792 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
9793 macro_build (NULL, s, "z,s,t", op[1], op[2]);
9794
9795 /* We want to close the noreorder block as soon as possible, so
9796 that later insns are available for delay slot filling. */
9797 end_noreorder ();
9798 macro_build (NULL, "break", BRK_FMT, 7);
9799 if (mips_opts.micromips)
9800 micromips_add_label ();
9801 }
9802 macro_build (NULL, s2, MFHL_FMT, op[0]);
9803 break;
9804
9805 case M_DLCA_AB:
9806 dbl = 1;
9807 case M_LCA_AB:
9808 call = 1;
9809 goto do_la;
9810 case M_DLA_AB:
9811 dbl = 1;
9812 case M_LA_AB:
9813 do_la:
9814 /* Load the address of a symbol into a register. If breg is not
9815 zero, we then add a base register to it. */
9816
9817 breg = op[2];
9818 if (dbl && HAVE_32BIT_GPRS)
9819 as_warn (_("dla used to load 32-bit register"));
9820
9821 if (!dbl && HAVE_64BIT_OBJECTS)
9822 as_warn (_("la used to load 64-bit address"));
9823
9824 if (small_offset_p (0, align, 16))
9825 {
9826 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
9827 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
9828 break;
9829 }
9830
9831 if (mips_opts.at && (op[0] == breg))
9832 {
9833 tempreg = AT;
9834 used_at = 1;
9835 }
9836 else
9837 tempreg = op[0];
9838
9839 if (offset_expr.X_op != O_symbol
9840 && offset_expr.X_op != O_constant)
9841 {
9842 as_bad (_("expression too complex"));
9843 offset_expr.X_op = O_constant;
9844 }
9845
9846 if (offset_expr.X_op == O_constant)
9847 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
9848 else if (mips_pic == NO_PIC)
9849 {
9850 /* If this is a reference to a GP relative symbol, we want
9851 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
9852 Otherwise we want
9853 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
9854 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9855 If we have a constant, we need two instructions anyhow,
9856 so we may as well always use the latter form.
9857
9858 With 64bit address space and a usable $at we want
9859 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9860 lui $at,<sym> (BFD_RELOC_HI16_S)
9861 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9862 daddiu $at,<sym> (BFD_RELOC_LO16)
9863 dsll32 $tempreg,0
9864 daddu $tempreg,$tempreg,$at
9865
9866 If $at is already in use, we use a path which is suboptimal
9867 on superscalar processors.
9868 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9869 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9870 dsll $tempreg,16
9871 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
9872 dsll $tempreg,16
9873 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
9874
9875 For GP relative symbols in 64bit address space we can use
9876 the same sequence as in 32bit address space. */
9877 if (HAVE_64BIT_SYMBOLS)
9878 {
9879 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9880 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9881 {
9882 relax_start (offset_expr.X_add_symbol);
9883 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9884 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
9885 relax_switch ();
9886 }
9887
9888 if (used_at == 0 && mips_opts.at)
9889 {
9890 macro_build (&offset_expr, "lui", LUI_FMT,
9891 tempreg, BFD_RELOC_MIPS_HIGHEST);
9892 macro_build (&offset_expr, "lui", LUI_FMT,
9893 AT, BFD_RELOC_HI16_S);
9894 macro_build (&offset_expr, "daddiu", "t,r,j",
9895 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
9896 macro_build (&offset_expr, "daddiu", "t,r,j",
9897 AT, AT, BFD_RELOC_LO16);
9898 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
9899 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
9900 used_at = 1;
9901 }
9902 else
9903 {
9904 macro_build (&offset_expr, "lui", LUI_FMT,
9905 tempreg, BFD_RELOC_MIPS_HIGHEST);
9906 macro_build (&offset_expr, "daddiu", "t,r,j",
9907 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
9908 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
9909 macro_build (&offset_expr, "daddiu", "t,r,j",
9910 tempreg, tempreg, BFD_RELOC_HI16_S);
9911 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
9912 macro_build (&offset_expr, "daddiu", "t,r,j",
9913 tempreg, tempreg, BFD_RELOC_LO16);
9914 }
9915
9916 if (mips_relax.sequence)
9917 relax_end ();
9918 }
9919 else
9920 {
9921 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9922 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9923 {
9924 relax_start (offset_expr.X_add_symbol);
9925 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9926 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
9927 relax_switch ();
9928 }
9929 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
9930 as_bad (_("offset too large"));
9931 macro_build_lui (&offset_expr, tempreg);
9932 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9933 tempreg, tempreg, BFD_RELOC_LO16);
9934 if (mips_relax.sequence)
9935 relax_end ();
9936 }
9937 }
9938 else if (!mips_big_got && !HAVE_NEWABI)
9939 {
9940 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9941
9942 /* If this is a reference to an external symbol, and there
9943 is no constant, we want
9944 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9945 or for lca or if tempreg is PIC_CALL_REG
9946 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9947 For a local symbol, we want
9948 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9949 nop
9950 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9951
9952 If we have a small constant, and this is a reference to
9953 an external symbol, we want
9954 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9955 nop
9956 addiu $tempreg,$tempreg,<constant>
9957 For a local symbol, we want the same instruction
9958 sequence, but we output a BFD_RELOC_LO16 reloc on the
9959 addiu instruction.
9960
9961 If we have a large constant, and this is a reference to
9962 an external symbol, we want
9963 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9964 lui $at,<hiconstant>
9965 addiu $at,$at,<loconstant>
9966 addu $tempreg,$tempreg,$at
9967 For a local symbol, we want the same instruction
9968 sequence, but we output a BFD_RELOC_LO16 reloc on the
9969 addiu instruction.
9970 */
9971
9972 if (offset_expr.X_add_number == 0)
9973 {
9974 if (mips_pic == SVR4_PIC
9975 && breg == 0
9976 && (call || tempreg == PIC_CALL_REG))
9977 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
9978
9979 relax_start (offset_expr.X_add_symbol);
9980 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9981 lw_reloc_type, mips_gp_register);
9982 if (breg != 0)
9983 {
9984 /* We're going to put in an addu instruction using
9985 tempreg, so we may as well insert the nop right
9986 now. */
9987 load_delay_nop ();
9988 }
9989 relax_switch ();
9990 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9991 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
9992 load_delay_nop ();
9993 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9994 tempreg, tempreg, BFD_RELOC_LO16);
9995 relax_end ();
9996 /* FIXME: If breg == 0, and the next instruction uses
9997 $tempreg, then if this variant case is used an extra
9998 nop will be generated. */
9999 }
10000 else if (offset_expr.X_add_number >= -0x8000
10001 && offset_expr.X_add_number < 0x8000)
10002 {
10003 load_got_offset (tempreg, &offset_expr);
10004 load_delay_nop ();
10005 add_got_offset (tempreg, &offset_expr);
10006 }
10007 else
10008 {
10009 expr1.X_add_number = offset_expr.X_add_number;
10010 offset_expr.X_add_number =
10011 SEXT_16BIT (offset_expr.X_add_number);
10012 load_got_offset (tempreg, &offset_expr);
10013 offset_expr.X_add_number = expr1.X_add_number;
10014 /* If we are going to add in a base register, and the
10015 target register and the base register are the same,
10016 then we are using AT as a temporary register. Since
10017 we want to load the constant into AT, we add our
10018 current AT (from the global offset table) and the
10019 register into the register now, and pretend we were
10020 not using a base register. */
10021 if (breg == op[0])
10022 {
10023 load_delay_nop ();
10024 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10025 op[0], AT, breg);
10026 breg = 0;
10027 tempreg = op[0];
10028 }
10029 add_got_offset_hilo (tempreg, &offset_expr, AT);
10030 used_at = 1;
10031 }
10032 }
10033 else if (!mips_big_got && HAVE_NEWABI)
10034 {
10035 int add_breg_early = 0;
10036
10037 /* If this is a reference to an external, and there is no
10038 constant, or local symbol (*), with or without a
10039 constant, we want
10040 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10041 or for lca or if tempreg is PIC_CALL_REG
10042 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10043
10044 If we have a small constant, and this is a reference to
10045 an external symbol, we want
10046 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10047 addiu $tempreg,$tempreg,<constant>
10048
10049 If we have a large constant, and this is a reference to
10050 an external symbol, we want
10051 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10052 lui $at,<hiconstant>
10053 addiu $at,$at,<loconstant>
10054 addu $tempreg,$tempreg,$at
10055
10056 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10057 local symbols, even though it introduces an additional
10058 instruction. */
10059
10060 if (offset_expr.X_add_number)
10061 {
10062 expr1.X_add_number = offset_expr.X_add_number;
10063 offset_expr.X_add_number = 0;
10064
10065 relax_start (offset_expr.X_add_symbol);
10066 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10067 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10068
10069 if (expr1.X_add_number >= -0x8000
10070 && expr1.X_add_number < 0x8000)
10071 {
10072 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10073 tempreg, tempreg, BFD_RELOC_LO16);
10074 }
10075 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10076 {
10077 unsigned int dreg;
10078
10079 /* If we are going to add in a base register, and the
10080 target register and the base register are the same,
10081 then we are using AT as a temporary register. Since
10082 we want to load the constant into AT, we add our
10083 current AT (from the global offset table) and the
10084 register into the register now, and pretend we were
10085 not using a base register. */
10086 if (breg != op[0])
10087 dreg = tempreg;
10088 else
10089 {
10090 gas_assert (tempreg == AT);
10091 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10092 op[0], AT, breg);
10093 dreg = op[0];
10094 add_breg_early = 1;
10095 }
10096
10097 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10098 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10099 dreg, dreg, AT);
10100
10101 used_at = 1;
10102 }
10103 else
10104 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10105
10106 relax_switch ();
10107 offset_expr.X_add_number = expr1.X_add_number;
10108
10109 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10110 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10111 if (add_breg_early)
10112 {
10113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10114 op[0], tempreg, breg);
10115 breg = 0;
10116 tempreg = op[0];
10117 }
10118 relax_end ();
10119 }
10120 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10121 {
10122 relax_start (offset_expr.X_add_symbol);
10123 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10124 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10125 relax_switch ();
10126 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10127 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10128 relax_end ();
10129 }
10130 else
10131 {
10132 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10133 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10134 }
10135 }
10136 else if (mips_big_got && !HAVE_NEWABI)
10137 {
10138 int gpdelay;
10139 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10140 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10141 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10142
10143 /* This is the large GOT case. If this is a reference to an
10144 external symbol, and there is no constant, we want
10145 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10146 addu $tempreg,$tempreg,$gp
10147 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10148 or for lca or if tempreg is PIC_CALL_REG
10149 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10150 addu $tempreg,$tempreg,$gp
10151 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10152 For a local symbol, we want
10153 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10154 nop
10155 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10156
10157 If we have a small constant, and this is a reference to
10158 an external symbol, we want
10159 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10160 addu $tempreg,$tempreg,$gp
10161 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10162 nop
10163 addiu $tempreg,$tempreg,<constant>
10164 For a local symbol, we want
10165 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10166 nop
10167 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10168
10169 If we have a large constant, and this is a reference to
10170 an external symbol, we want
10171 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10172 addu $tempreg,$tempreg,$gp
10173 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10174 lui $at,<hiconstant>
10175 addiu $at,$at,<loconstant>
10176 addu $tempreg,$tempreg,$at
10177 For a local symbol, we want
10178 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10179 lui $at,<hiconstant>
10180 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10181 addu $tempreg,$tempreg,$at
10182 */
10183
10184 expr1.X_add_number = offset_expr.X_add_number;
10185 offset_expr.X_add_number = 0;
10186 relax_start (offset_expr.X_add_symbol);
10187 gpdelay = reg_needs_delay (mips_gp_register);
10188 if (expr1.X_add_number == 0 && breg == 0
10189 && (call || tempreg == PIC_CALL_REG))
10190 {
10191 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10192 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10193 }
10194 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10195 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10196 tempreg, tempreg, mips_gp_register);
10197 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10198 tempreg, lw_reloc_type, tempreg);
10199 if (expr1.X_add_number == 0)
10200 {
10201 if (breg != 0)
10202 {
10203 /* We're going to put in an addu instruction using
10204 tempreg, so we may as well insert the nop right
10205 now. */
10206 load_delay_nop ();
10207 }
10208 }
10209 else if (expr1.X_add_number >= -0x8000
10210 && expr1.X_add_number < 0x8000)
10211 {
10212 load_delay_nop ();
10213 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10214 tempreg, tempreg, BFD_RELOC_LO16);
10215 }
10216 else
10217 {
10218 unsigned int dreg;
10219
10220 /* If we are going to add in a base register, and the
10221 target register and the base register are the same,
10222 then we are using AT as a temporary register. Since
10223 we want to load the constant into AT, we add our
10224 current AT (from the global offset table) and the
10225 register into the register now, and pretend we were
10226 not using a base register. */
10227 if (breg != op[0])
10228 dreg = tempreg;
10229 else
10230 {
10231 gas_assert (tempreg == AT);
10232 load_delay_nop ();
10233 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10234 op[0], AT, breg);
10235 dreg = op[0];
10236 }
10237
10238 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10239 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10240
10241 used_at = 1;
10242 }
10243 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10244 relax_switch ();
10245
10246 if (gpdelay)
10247 {
10248 /* This is needed because this instruction uses $gp, but
10249 the first instruction on the main stream does not. */
10250 macro_build (NULL, "nop", "");
10251 }
10252
10253 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10254 local_reloc_type, mips_gp_register);
10255 if (expr1.X_add_number >= -0x8000
10256 && expr1.X_add_number < 0x8000)
10257 {
10258 load_delay_nop ();
10259 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10260 tempreg, tempreg, BFD_RELOC_LO16);
10261 /* FIXME: If add_number is 0, and there was no base
10262 register, the external symbol case ended with a load,
10263 so if the symbol turns out to not be external, and
10264 the next instruction uses tempreg, an unnecessary nop
10265 will be inserted. */
10266 }
10267 else
10268 {
10269 if (breg == op[0])
10270 {
10271 /* We must add in the base register now, as in the
10272 external symbol case. */
10273 gas_assert (tempreg == AT);
10274 load_delay_nop ();
10275 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10276 op[0], AT, breg);
10277 tempreg = op[0];
10278 /* We set breg to 0 because we have arranged to add
10279 it in in both cases. */
10280 breg = 0;
10281 }
10282
10283 macro_build_lui (&expr1, AT);
10284 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10285 AT, AT, BFD_RELOC_LO16);
10286 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10287 tempreg, tempreg, AT);
10288 used_at = 1;
10289 }
10290 relax_end ();
10291 }
10292 else if (mips_big_got && HAVE_NEWABI)
10293 {
10294 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10295 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10296 int add_breg_early = 0;
10297
10298 /* This is the large GOT case. If this is a reference to an
10299 external symbol, and there is no constant, we want
10300 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10301 add $tempreg,$tempreg,$gp
10302 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10303 or for lca or if tempreg is PIC_CALL_REG
10304 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10305 add $tempreg,$tempreg,$gp
10306 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10307
10308 If we have a small constant, and this is a reference to
10309 an external symbol, we want
10310 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10311 add $tempreg,$tempreg,$gp
10312 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10313 addi $tempreg,$tempreg,<constant>
10314
10315 If we have a large constant, and this is a reference to
10316 an external symbol, we want
10317 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10318 addu $tempreg,$tempreg,$gp
10319 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10320 lui $at,<hiconstant>
10321 addi $at,$at,<loconstant>
10322 add $tempreg,$tempreg,$at
10323
10324 If we have NewABI, and we know it's a local symbol, we want
10325 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10326 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10327 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10328
10329 relax_start (offset_expr.X_add_symbol);
10330
10331 expr1.X_add_number = offset_expr.X_add_number;
10332 offset_expr.X_add_number = 0;
10333
10334 if (expr1.X_add_number == 0 && breg == 0
10335 && (call || tempreg == PIC_CALL_REG))
10336 {
10337 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10338 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10339 }
10340 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10341 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10342 tempreg, tempreg, mips_gp_register);
10343 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10344 tempreg, lw_reloc_type, tempreg);
10345
10346 if (expr1.X_add_number == 0)
10347 ;
10348 else if (expr1.X_add_number >= -0x8000
10349 && expr1.X_add_number < 0x8000)
10350 {
10351 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10352 tempreg, tempreg, BFD_RELOC_LO16);
10353 }
10354 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10355 {
10356 unsigned int dreg;
10357
10358 /* If we are going to add in a base register, and the
10359 target register and the base register are the same,
10360 then we are using AT as a temporary register. Since
10361 we want to load the constant into AT, we add our
10362 current AT (from the global offset table) and the
10363 register into the register now, and pretend we were
10364 not using a base register. */
10365 if (breg != op[0])
10366 dreg = tempreg;
10367 else
10368 {
10369 gas_assert (tempreg == AT);
10370 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10371 op[0], AT, breg);
10372 dreg = op[0];
10373 add_breg_early = 1;
10374 }
10375
10376 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10377 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10378
10379 used_at = 1;
10380 }
10381 else
10382 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10383
10384 relax_switch ();
10385 offset_expr.X_add_number = expr1.X_add_number;
10386 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10387 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10388 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10389 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10390 if (add_breg_early)
10391 {
10392 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10393 op[0], tempreg, breg);
10394 breg = 0;
10395 tempreg = op[0];
10396 }
10397 relax_end ();
10398 }
10399 else
10400 abort ();
10401
10402 if (breg != 0)
10403 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10404 break;
10405
10406 case M_MSGSND:
10407 gas_assert (!mips_opts.micromips);
10408 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10409 break;
10410
10411 case M_MSGLD:
10412 gas_assert (!mips_opts.micromips);
10413 macro_build (NULL, "c2", "C", 0x02);
10414 break;
10415
10416 case M_MSGLD_T:
10417 gas_assert (!mips_opts.micromips);
10418 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10419 break;
10420
10421 case M_MSGWAIT:
10422 gas_assert (!mips_opts.micromips);
10423 macro_build (NULL, "c2", "C", 3);
10424 break;
10425
10426 case M_MSGWAIT_T:
10427 gas_assert (!mips_opts.micromips);
10428 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10429 break;
10430
10431 case M_J_A:
10432 /* The j instruction may not be used in PIC code, since it
10433 requires an absolute address. We convert it to a b
10434 instruction. */
10435 if (mips_pic == NO_PIC)
10436 macro_build (&offset_expr, "j", "a");
10437 else
10438 macro_build (&offset_expr, "b", "p");
10439 break;
10440
10441 /* The jal instructions must be handled as macros because when
10442 generating PIC code they expand to multi-instruction
10443 sequences. Normally they are simple instructions. */
10444 case M_JALS_1:
10445 op[1] = op[0];
10446 op[0] = RA;
10447 /* Fall through. */
10448 case M_JALS_2:
10449 gas_assert (mips_opts.micromips);
10450 if (mips_opts.insn32)
10451 {
10452 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10453 break;
10454 }
10455 jals = 1;
10456 goto jal;
10457 case M_JAL_1:
10458 op[1] = op[0];
10459 op[0] = RA;
10460 /* Fall through. */
10461 case M_JAL_2:
10462 jal:
10463 if (mips_pic == NO_PIC)
10464 {
10465 s = jals ? "jalrs" : "jalr";
10466 if (mips_opts.micromips
10467 && !mips_opts.insn32
10468 && op[0] == RA
10469 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10470 macro_build (NULL, s, "mj", op[1]);
10471 else
10472 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10473 }
10474 else
10475 {
10476 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10477 && mips_cprestore_offset >= 0);
10478
10479 if (op[1] != PIC_CALL_REG)
10480 as_warn (_("MIPS PIC call to register other than $25"));
10481
10482 s = ((mips_opts.micromips
10483 && !mips_opts.insn32
10484 && (!mips_opts.noreorder || cprestore))
10485 ? "jalrs" : "jalr");
10486 if (mips_opts.micromips
10487 && !mips_opts.insn32
10488 && op[0] == RA
10489 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10490 macro_build (NULL, s, "mj", op[1]);
10491 else
10492 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10493 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
10494 {
10495 if (mips_cprestore_offset < 0)
10496 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10497 else
10498 {
10499 if (!mips_frame_reg_valid)
10500 {
10501 as_warn (_("no .frame pseudo-op used in PIC code"));
10502 /* Quiet this warning. */
10503 mips_frame_reg_valid = 1;
10504 }
10505 if (!mips_cprestore_valid)
10506 {
10507 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10508 /* Quiet this warning. */
10509 mips_cprestore_valid = 1;
10510 }
10511 if (mips_opts.noreorder)
10512 macro_build (NULL, "nop", "");
10513 expr1.X_add_number = mips_cprestore_offset;
10514 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
10515 mips_gp_register,
10516 mips_frame_reg,
10517 HAVE_64BIT_ADDRESSES);
10518 }
10519 }
10520 }
10521
10522 break;
10523
10524 case M_JALS_A:
10525 gas_assert (mips_opts.micromips);
10526 if (mips_opts.insn32)
10527 {
10528 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10529 break;
10530 }
10531 jals = 1;
10532 /* Fall through. */
10533 case M_JAL_A:
10534 if (mips_pic == NO_PIC)
10535 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
10536 else if (mips_pic == SVR4_PIC)
10537 {
10538 /* If this is a reference to an external symbol, and we are
10539 using a small GOT, we want
10540 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10541 nop
10542 jalr $ra,$25
10543 nop
10544 lw $gp,cprestore($sp)
10545 The cprestore value is set using the .cprestore
10546 pseudo-op. If we are using a big GOT, we want
10547 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10548 addu $25,$25,$gp
10549 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
10550 nop
10551 jalr $ra,$25
10552 nop
10553 lw $gp,cprestore($sp)
10554 If the symbol is not external, we want
10555 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10556 nop
10557 addiu $25,$25,<sym> (BFD_RELOC_LO16)
10558 jalr $ra,$25
10559 nop
10560 lw $gp,cprestore($sp)
10561
10562 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
10563 sequences above, minus nops, unless the symbol is local,
10564 which enables us to use GOT_PAGE/GOT_OFST (big got) or
10565 GOT_DISP. */
10566 if (HAVE_NEWABI)
10567 {
10568 if (!mips_big_got)
10569 {
10570 relax_start (offset_expr.X_add_symbol);
10571 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10572 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
10573 mips_gp_register);
10574 relax_switch ();
10575 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10576 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
10577 mips_gp_register);
10578 relax_end ();
10579 }
10580 else
10581 {
10582 relax_start (offset_expr.X_add_symbol);
10583 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
10584 BFD_RELOC_MIPS_CALL_HI16);
10585 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
10586 PIC_CALL_REG, mips_gp_register);
10587 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10588 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
10589 PIC_CALL_REG);
10590 relax_switch ();
10591 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10592 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
10593 mips_gp_register);
10594 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10595 PIC_CALL_REG, PIC_CALL_REG,
10596 BFD_RELOC_MIPS_GOT_OFST);
10597 relax_end ();
10598 }
10599
10600 macro_build_jalr (&offset_expr, 0);
10601 }
10602 else
10603 {
10604 relax_start (offset_expr.X_add_symbol);
10605 if (!mips_big_got)
10606 {
10607 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10608 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
10609 mips_gp_register);
10610 load_delay_nop ();
10611 relax_switch ();
10612 }
10613 else
10614 {
10615 int gpdelay;
10616
10617 gpdelay = reg_needs_delay (mips_gp_register);
10618 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
10619 BFD_RELOC_MIPS_CALL_HI16);
10620 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
10621 PIC_CALL_REG, mips_gp_register);
10622 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10623 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
10624 PIC_CALL_REG);
10625 load_delay_nop ();
10626 relax_switch ();
10627 if (gpdelay)
10628 macro_build (NULL, "nop", "");
10629 }
10630 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10631 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
10632 mips_gp_register);
10633 load_delay_nop ();
10634 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10635 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
10636 relax_end ();
10637 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
10638
10639 if (mips_cprestore_offset < 0)
10640 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10641 else
10642 {
10643 if (!mips_frame_reg_valid)
10644 {
10645 as_warn (_("no .frame pseudo-op used in PIC code"));
10646 /* Quiet this warning. */
10647 mips_frame_reg_valid = 1;
10648 }
10649 if (!mips_cprestore_valid)
10650 {
10651 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10652 /* Quiet this warning. */
10653 mips_cprestore_valid = 1;
10654 }
10655 if (mips_opts.noreorder)
10656 macro_build (NULL, "nop", "");
10657 expr1.X_add_number = mips_cprestore_offset;
10658 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
10659 mips_gp_register,
10660 mips_frame_reg,
10661 HAVE_64BIT_ADDRESSES);
10662 }
10663 }
10664 }
10665 else if (mips_pic == VXWORKS_PIC)
10666 as_bad (_("non-PIC jump used in PIC library"));
10667 else
10668 abort ();
10669
10670 break;
10671
10672 case M_LBUE_AB:
10673 s = "lbue";
10674 fmt = "t,+j(b)";
10675 offbits = 9;
10676 goto ld_st;
10677 case M_LHUE_AB:
10678 s = "lhue";
10679 fmt = "t,+j(b)";
10680 offbits = 9;
10681 goto ld_st;
10682 case M_LBE_AB:
10683 s = "lbe";
10684 fmt = "t,+j(b)";
10685 offbits = 9;
10686 goto ld_st;
10687 case M_LHE_AB:
10688 s = "lhe";
10689 fmt = "t,+j(b)";
10690 offbits = 9;
10691 goto ld_st;
10692 case M_LLE_AB:
10693 s = "lle";
10694 fmt = "t,+j(b)";
10695 offbits = 9;
10696 goto ld_st;
10697 case M_LWE_AB:
10698 s = "lwe";
10699 fmt = "t,+j(b)";
10700 offbits = 9;
10701 goto ld_st;
10702 case M_LWLE_AB:
10703 s = "lwle";
10704 fmt = "t,+j(b)";
10705 offbits = 9;
10706 goto ld_st;
10707 case M_LWRE_AB:
10708 s = "lwre";
10709 fmt = "t,+j(b)";
10710 offbits = 9;
10711 goto ld_st;
10712 case M_SBE_AB:
10713 s = "sbe";
10714 fmt = "t,+j(b)";
10715 offbits = 9;
10716 goto ld_st;
10717 case M_SCE_AB:
10718 s = "sce";
10719 fmt = "t,+j(b)";
10720 offbits = 9;
10721 goto ld_st;
10722 case M_SHE_AB:
10723 s = "she";
10724 fmt = "t,+j(b)";
10725 offbits = 9;
10726 goto ld_st;
10727 case M_SWE_AB:
10728 s = "swe";
10729 fmt = "t,+j(b)";
10730 offbits = 9;
10731 goto ld_st;
10732 case M_SWLE_AB:
10733 s = "swle";
10734 fmt = "t,+j(b)";
10735 offbits = 9;
10736 goto ld_st;
10737 case M_SWRE_AB:
10738 s = "swre";
10739 fmt = "t,+j(b)";
10740 offbits = 9;
10741 goto ld_st;
10742 case M_ACLR_AB:
10743 s = "aclr";
10744 fmt = "\\,~(b)";
10745 offbits = 12;
10746 goto ld_st;
10747 case M_ASET_AB:
10748 s = "aset";
10749 fmt = "\\,~(b)";
10750 offbits = 12;
10751 goto ld_st;
10752 case M_LB_AB:
10753 s = "lb";
10754 fmt = "t,o(b)";
10755 goto ld;
10756 case M_LBU_AB:
10757 s = "lbu";
10758 fmt = "t,o(b)";
10759 goto ld;
10760 case M_LH_AB:
10761 s = "lh";
10762 fmt = "t,o(b)";
10763 goto ld;
10764 case M_LHU_AB:
10765 s = "lhu";
10766 fmt = "t,o(b)";
10767 goto ld;
10768 case M_LW_AB:
10769 s = "lw";
10770 fmt = "t,o(b)";
10771 goto ld;
10772 case M_LWC0_AB:
10773 gas_assert (!mips_opts.micromips);
10774 s = "lwc0";
10775 fmt = "E,o(b)";
10776 /* Itbl support may require additional care here. */
10777 coproc = 1;
10778 goto ld_st;
10779 case M_LWC1_AB:
10780 s = "lwc1";
10781 fmt = "T,o(b)";
10782 /* Itbl support may require additional care here. */
10783 coproc = 1;
10784 goto ld_st;
10785 case M_LWC2_AB:
10786 s = "lwc2";
10787 fmt = COP12_FMT;
10788 offbits = (mips_opts.micromips ? 12 : 16);
10789 /* Itbl support may require additional care here. */
10790 coproc = 1;
10791 goto ld_st;
10792 case M_LWC3_AB:
10793 gas_assert (!mips_opts.micromips);
10794 s = "lwc3";
10795 fmt = "E,o(b)";
10796 /* Itbl support may require additional care here. */
10797 coproc = 1;
10798 goto ld_st;
10799 case M_LWL_AB:
10800 s = "lwl";
10801 fmt = MEM12_FMT;
10802 offbits = (mips_opts.micromips ? 12 : 16);
10803 goto ld_st;
10804 case M_LWR_AB:
10805 s = "lwr";
10806 fmt = MEM12_FMT;
10807 offbits = (mips_opts.micromips ? 12 : 16);
10808 goto ld_st;
10809 case M_LDC1_AB:
10810 s = "ldc1";
10811 fmt = "T,o(b)";
10812 /* Itbl support may require additional care here. */
10813 coproc = 1;
10814 goto ld_st;
10815 case M_LDC2_AB:
10816 s = "ldc2";
10817 fmt = COP12_FMT;
10818 offbits = (mips_opts.micromips ? 12 : 16);
10819 /* Itbl support may require additional care here. */
10820 coproc = 1;
10821 goto ld_st;
10822 case M_LQC2_AB:
10823 s = "lqc2";
10824 fmt = "+7,o(b)";
10825 /* Itbl support may require additional care here. */
10826 coproc = 1;
10827 goto ld_st;
10828 case M_LDC3_AB:
10829 s = "ldc3";
10830 fmt = "E,o(b)";
10831 /* Itbl support may require additional care here. */
10832 coproc = 1;
10833 goto ld_st;
10834 case M_LDL_AB:
10835 s = "ldl";
10836 fmt = MEM12_FMT;
10837 offbits = (mips_opts.micromips ? 12 : 16);
10838 goto ld_st;
10839 case M_LDR_AB:
10840 s = "ldr";
10841 fmt = MEM12_FMT;
10842 offbits = (mips_opts.micromips ? 12 : 16);
10843 goto ld_st;
10844 case M_LL_AB:
10845 s = "ll";
10846 fmt = MEM12_FMT;
10847 offbits = (mips_opts.micromips ? 12 : 16);
10848 goto ld;
10849 case M_LLD_AB:
10850 s = "lld";
10851 fmt = MEM12_FMT;
10852 offbits = (mips_opts.micromips ? 12 : 16);
10853 goto ld;
10854 case M_LWU_AB:
10855 s = "lwu";
10856 fmt = MEM12_FMT;
10857 offbits = (mips_opts.micromips ? 12 : 16);
10858 goto ld;
10859 case M_LWP_AB:
10860 gas_assert (mips_opts.micromips);
10861 s = "lwp";
10862 fmt = "t,~(b)";
10863 offbits = 12;
10864 lp = 1;
10865 goto ld;
10866 case M_LDP_AB:
10867 gas_assert (mips_opts.micromips);
10868 s = "ldp";
10869 fmt = "t,~(b)";
10870 offbits = 12;
10871 lp = 1;
10872 goto ld;
10873 case M_LWM_AB:
10874 gas_assert (mips_opts.micromips);
10875 s = "lwm";
10876 fmt = "n,~(b)";
10877 offbits = 12;
10878 goto ld_st;
10879 case M_LDM_AB:
10880 gas_assert (mips_opts.micromips);
10881 s = "ldm";
10882 fmt = "n,~(b)";
10883 offbits = 12;
10884 goto ld_st;
10885
10886 ld:
10887 /* We don't want to use $0 as tempreg. */
10888 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
10889 goto ld_st;
10890 else
10891 tempreg = op[0] + lp;
10892 goto ld_noat;
10893
10894 case M_SB_AB:
10895 s = "sb";
10896 fmt = "t,o(b)";
10897 goto ld_st;
10898 case M_SH_AB:
10899 s = "sh";
10900 fmt = "t,o(b)";
10901 goto ld_st;
10902 case M_SW_AB:
10903 s = "sw";
10904 fmt = "t,o(b)";
10905 goto ld_st;
10906 case M_SWC0_AB:
10907 gas_assert (!mips_opts.micromips);
10908 s = "swc0";
10909 fmt = "E,o(b)";
10910 /* Itbl support may require additional care here. */
10911 coproc = 1;
10912 goto ld_st;
10913 case M_SWC1_AB:
10914 s = "swc1";
10915 fmt = "T,o(b)";
10916 /* Itbl support may require additional care here. */
10917 coproc = 1;
10918 goto ld_st;
10919 case M_SWC2_AB:
10920 s = "swc2";
10921 fmt = COP12_FMT;
10922 offbits = (mips_opts.micromips ? 12 : 16);
10923 /* Itbl support may require additional care here. */
10924 coproc = 1;
10925 goto ld_st;
10926 case M_SWC3_AB:
10927 gas_assert (!mips_opts.micromips);
10928 s = "swc3";
10929 fmt = "E,o(b)";
10930 /* Itbl support may require additional care here. */
10931 coproc = 1;
10932 goto ld_st;
10933 case M_SWL_AB:
10934 s = "swl";
10935 fmt = MEM12_FMT;
10936 offbits = (mips_opts.micromips ? 12 : 16);
10937 goto ld_st;
10938 case M_SWR_AB:
10939 s = "swr";
10940 fmt = MEM12_FMT;
10941 offbits = (mips_opts.micromips ? 12 : 16);
10942 goto ld_st;
10943 case M_SC_AB:
10944 s = "sc";
10945 fmt = MEM12_FMT;
10946 offbits = (mips_opts.micromips ? 12 : 16);
10947 goto ld_st;
10948 case M_SCD_AB:
10949 s = "scd";
10950 fmt = MEM12_FMT;
10951 offbits = (mips_opts.micromips ? 12 : 16);
10952 goto ld_st;
10953 case M_CACHE_AB:
10954 s = "cache";
10955 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
10956 offbits = (mips_opts.micromips ? 12 : 16);
10957 goto ld_st;
10958 case M_CACHEE_AB:
10959 s = "cachee";
10960 fmt = "k,+j(b)";
10961 offbits = 9;
10962 goto ld_st;
10963 case M_PREF_AB:
10964 s = "pref";
10965 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
10966 offbits = (mips_opts.micromips ? 12 : 16);
10967 goto ld_st;
10968 case M_PREFE_AB:
10969 s = "prefe";
10970 fmt = "k,+j(b)";
10971 offbits = 9;
10972 goto ld_st;
10973 case M_SDC1_AB:
10974 s = "sdc1";
10975 fmt = "T,o(b)";
10976 coproc = 1;
10977 /* Itbl support may require additional care here. */
10978 goto ld_st;
10979 case M_SDC2_AB:
10980 s = "sdc2";
10981 fmt = COP12_FMT;
10982 offbits = (mips_opts.micromips ? 12 : 16);
10983 /* Itbl support may require additional care here. */
10984 coproc = 1;
10985 goto ld_st;
10986 case M_SQC2_AB:
10987 s = "sqc2";
10988 fmt = "+7,o(b)";
10989 /* Itbl support may require additional care here. */
10990 coproc = 1;
10991 goto ld_st;
10992 case M_SDC3_AB:
10993 gas_assert (!mips_opts.micromips);
10994 s = "sdc3";
10995 fmt = "E,o(b)";
10996 /* Itbl support may require additional care here. */
10997 coproc = 1;
10998 goto ld_st;
10999 case M_SDL_AB:
11000 s = "sdl";
11001 fmt = MEM12_FMT;
11002 offbits = (mips_opts.micromips ? 12 : 16);
11003 goto ld_st;
11004 case M_SDR_AB:
11005 s = "sdr";
11006 fmt = MEM12_FMT;
11007 offbits = (mips_opts.micromips ? 12 : 16);
11008 goto ld_st;
11009 case M_SWP_AB:
11010 gas_assert (mips_opts.micromips);
11011 s = "swp";
11012 fmt = "t,~(b)";
11013 offbits = 12;
11014 goto ld_st;
11015 case M_SDP_AB:
11016 gas_assert (mips_opts.micromips);
11017 s = "sdp";
11018 fmt = "t,~(b)";
11019 offbits = 12;
11020 goto ld_st;
11021 case M_SWM_AB:
11022 gas_assert (mips_opts.micromips);
11023 s = "swm";
11024 fmt = "n,~(b)";
11025 offbits = 12;
11026 goto ld_st;
11027 case M_SDM_AB:
11028 gas_assert (mips_opts.micromips);
11029 s = "sdm";
11030 fmt = "n,~(b)";
11031 offbits = 12;
11032
11033 ld_st:
11034 tempreg = AT;
11035 ld_noat:
11036 breg = op[2];
11037 if (small_offset_p (0, align, 16))
11038 {
11039 /* The first case exists for M_LD_AB and M_SD_AB, which are
11040 macros for o32 but which should act like normal instructions
11041 otherwise. */
11042 if (offbits == 16)
11043 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11044 offset_reloc[1], offset_reloc[2], breg);
11045 else if (small_offset_p (0, align, offbits))
11046 {
11047 if (offbits == 0)
11048 macro_build (NULL, s, fmt, op[0], breg);
11049 else
11050 macro_build (NULL, s, fmt, op[0],
11051 (int) offset_expr.X_add_number, breg);
11052 }
11053 else
11054 {
11055 if (tempreg == AT)
11056 used_at = 1;
11057 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11058 tempreg, breg, -1, offset_reloc[0],
11059 offset_reloc[1], offset_reloc[2]);
11060 if (offbits == 0)
11061 macro_build (NULL, s, fmt, op[0], tempreg);
11062 else
11063 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11064 }
11065 break;
11066 }
11067
11068 if (tempreg == AT)
11069 used_at = 1;
11070
11071 if (offset_expr.X_op != O_constant
11072 && offset_expr.X_op != O_symbol)
11073 {
11074 as_bad (_("expression too complex"));
11075 offset_expr.X_op = O_constant;
11076 }
11077
11078 if (HAVE_32BIT_ADDRESSES
11079 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11080 {
11081 char value [32];
11082
11083 sprintf_vma (value, offset_expr.X_add_number);
11084 as_bad (_("number (0x%s) larger than 32 bits"), value);
11085 }
11086
11087 /* A constant expression in PIC code can be handled just as it
11088 is in non PIC code. */
11089 if (offset_expr.X_op == O_constant)
11090 {
11091 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11092 offbits == 0 ? 16 : offbits);
11093 offset_expr.X_add_number -= expr1.X_add_number;
11094
11095 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11096 if (breg != 0)
11097 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11098 tempreg, tempreg, breg);
11099 if (offbits == 0)
11100 {
11101 if (offset_expr.X_add_number != 0)
11102 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11103 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11104 macro_build (NULL, s, fmt, op[0], tempreg);
11105 }
11106 else if (offbits == 16)
11107 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11108 else
11109 macro_build (NULL, s, fmt, op[0],
11110 (int) offset_expr.X_add_number, tempreg);
11111 }
11112 else if (offbits != 16)
11113 {
11114 /* The offset field is too narrow to be used for a low-part
11115 relocation, so load the whole address into the auxillary
11116 register. */
11117 load_address (tempreg, &offset_expr, &used_at);
11118 if (breg != 0)
11119 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11120 tempreg, tempreg, breg);
11121 if (offbits == 0)
11122 macro_build (NULL, s, fmt, op[0], tempreg);
11123 else
11124 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11125 }
11126 else if (mips_pic == NO_PIC)
11127 {
11128 /* If this is a reference to a GP relative symbol, and there
11129 is no base register, we want
11130 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11131 Otherwise, if there is no base register, we want
11132 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11133 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11134 If we have a constant, we need two instructions anyhow,
11135 so we always use the latter form.
11136
11137 If we have a base register, and this is a reference to a
11138 GP relative symbol, we want
11139 addu $tempreg,$breg,$gp
11140 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11141 Otherwise we want
11142 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11143 addu $tempreg,$tempreg,$breg
11144 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11145 With a constant we always use the latter case.
11146
11147 With 64bit address space and no base register and $at usable,
11148 we want
11149 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11150 lui $at,<sym> (BFD_RELOC_HI16_S)
11151 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11152 dsll32 $tempreg,0
11153 daddu $tempreg,$at
11154 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11155 If we have a base register, we want
11156 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11157 lui $at,<sym> (BFD_RELOC_HI16_S)
11158 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11159 daddu $at,$breg
11160 dsll32 $tempreg,0
11161 daddu $tempreg,$at
11162 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11163
11164 Without $at we can't generate the optimal path for superscalar
11165 processors here since this would require two temporary registers.
11166 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11167 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11168 dsll $tempreg,16
11169 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11170 dsll $tempreg,16
11171 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11172 If we have a base register, we want
11173 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11174 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11175 dsll $tempreg,16
11176 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11177 dsll $tempreg,16
11178 daddu $tempreg,$tempreg,$breg
11179 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11180
11181 For GP relative symbols in 64bit address space we can use
11182 the same sequence as in 32bit address space. */
11183 if (HAVE_64BIT_SYMBOLS)
11184 {
11185 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11186 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11187 {
11188 relax_start (offset_expr.X_add_symbol);
11189 if (breg == 0)
11190 {
11191 macro_build (&offset_expr, s, fmt, op[0],
11192 BFD_RELOC_GPREL16, mips_gp_register);
11193 }
11194 else
11195 {
11196 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11197 tempreg, breg, mips_gp_register);
11198 macro_build (&offset_expr, s, fmt, op[0],
11199 BFD_RELOC_GPREL16, tempreg);
11200 }
11201 relax_switch ();
11202 }
11203
11204 if (used_at == 0 && mips_opts.at)
11205 {
11206 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11207 BFD_RELOC_MIPS_HIGHEST);
11208 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11209 BFD_RELOC_HI16_S);
11210 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11211 tempreg, BFD_RELOC_MIPS_HIGHER);
11212 if (breg != 0)
11213 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11214 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11215 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11216 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11217 tempreg);
11218 used_at = 1;
11219 }
11220 else
11221 {
11222 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11223 BFD_RELOC_MIPS_HIGHEST);
11224 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11225 tempreg, BFD_RELOC_MIPS_HIGHER);
11226 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11227 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11228 tempreg, BFD_RELOC_HI16_S);
11229 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11230 if (breg != 0)
11231 macro_build (NULL, "daddu", "d,v,t",
11232 tempreg, tempreg, breg);
11233 macro_build (&offset_expr, s, fmt, op[0],
11234 BFD_RELOC_LO16, tempreg);
11235 }
11236
11237 if (mips_relax.sequence)
11238 relax_end ();
11239 break;
11240 }
11241
11242 if (breg == 0)
11243 {
11244 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11245 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11246 {
11247 relax_start (offset_expr.X_add_symbol);
11248 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11249 mips_gp_register);
11250 relax_switch ();
11251 }
11252 macro_build_lui (&offset_expr, tempreg);
11253 macro_build (&offset_expr, s, fmt, op[0],
11254 BFD_RELOC_LO16, tempreg);
11255 if (mips_relax.sequence)
11256 relax_end ();
11257 }
11258 else
11259 {
11260 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11261 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11262 {
11263 relax_start (offset_expr.X_add_symbol);
11264 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11265 tempreg, breg, mips_gp_register);
11266 macro_build (&offset_expr, s, fmt, op[0],
11267 BFD_RELOC_GPREL16, tempreg);
11268 relax_switch ();
11269 }
11270 macro_build_lui (&offset_expr, tempreg);
11271 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11272 tempreg, tempreg, breg);
11273 macro_build (&offset_expr, s, fmt, op[0],
11274 BFD_RELOC_LO16, tempreg);
11275 if (mips_relax.sequence)
11276 relax_end ();
11277 }
11278 }
11279 else if (!mips_big_got)
11280 {
11281 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11282
11283 /* If this is a reference to an external symbol, we want
11284 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11285 nop
11286 <op> op[0],0($tempreg)
11287 Otherwise we want
11288 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11289 nop
11290 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11291 <op> op[0],0($tempreg)
11292
11293 For NewABI, we want
11294 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11295 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11296
11297 If there is a base register, we add it to $tempreg before
11298 the <op>. If there is a constant, we stick it in the
11299 <op> instruction. We don't handle constants larger than
11300 16 bits, because we have no way to load the upper 16 bits
11301 (actually, we could handle them for the subset of cases
11302 in which we are not using $at). */
11303 gas_assert (offset_expr.X_op == O_symbol);
11304 if (HAVE_NEWABI)
11305 {
11306 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11307 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11308 if (breg != 0)
11309 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11310 tempreg, tempreg, breg);
11311 macro_build (&offset_expr, s, fmt, op[0],
11312 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11313 break;
11314 }
11315 expr1.X_add_number = offset_expr.X_add_number;
11316 offset_expr.X_add_number = 0;
11317 if (expr1.X_add_number < -0x8000
11318 || expr1.X_add_number >= 0x8000)
11319 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11320 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11321 lw_reloc_type, mips_gp_register);
11322 load_delay_nop ();
11323 relax_start (offset_expr.X_add_symbol);
11324 relax_switch ();
11325 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11326 tempreg, BFD_RELOC_LO16);
11327 relax_end ();
11328 if (breg != 0)
11329 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11330 tempreg, tempreg, breg);
11331 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11332 }
11333 else if (mips_big_got && !HAVE_NEWABI)
11334 {
11335 int gpdelay;
11336
11337 /* If this is a reference to an external symbol, we want
11338 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11339 addu $tempreg,$tempreg,$gp
11340 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11341 <op> op[0],0($tempreg)
11342 Otherwise we want
11343 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11344 nop
11345 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11346 <op> op[0],0($tempreg)
11347 If there is a base register, we add it to $tempreg before
11348 the <op>. If there is a constant, we stick it in the
11349 <op> instruction. We don't handle constants larger than
11350 16 bits, because we have no way to load the upper 16 bits
11351 (actually, we could handle them for the subset of cases
11352 in which we are not using $at). */
11353 gas_assert (offset_expr.X_op == O_symbol);
11354 expr1.X_add_number = offset_expr.X_add_number;
11355 offset_expr.X_add_number = 0;
11356 if (expr1.X_add_number < -0x8000
11357 || expr1.X_add_number >= 0x8000)
11358 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11359 gpdelay = reg_needs_delay (mips_gp_register);
11360 relax_start (offset_expr.X_add_symbol);
11361 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11362 BFD_RELOC_MIPS_GOT_HI16);
11363 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11364 mips_gp_register);
11365 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11366 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11367 relax_switch ();
11368 if (gpdelay)
11369 macro_build (NULL, "nop", "");
11370 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11371 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11372 load_delay_nop ();
11373 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11374 tempreg, BFD_RELOC_LO16);
11375 relax_end ();
11376
11377 if (breg != 0)
11378 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11379 tempreg, tempreg, breg);
11380 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11381 }
11382 else if (mips_big_got && HAVE_NEWABI)
11383 {
11384 /* If this is a reference to an external symbol, we want
11385 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11386 add $tempreg,$tempreg,$gp
11387 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11388 <op> op[0],<ofst>($tempreg)
11389 Otherwise, for local symbols, we want:
11390 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11391 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11392 gas_assert (offset_expr.X_op == O_symbol);
11393 expr1.X_add_number = offset_expr.X_add_number;
11394 offset_expr.X_add_number = 0;
11395 if (expr1.X_add_number < -0x8000
11396 || expr1.X_add_number >= 0x8000)
11397 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11398 relax_start (offset_expr.X_add_symbol);
11399 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11400 BFD_RELOC_MIPS_GOT_HI16);
11401 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11402 mips_gp_register);
11403 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11404 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11405 if (breg != 0)
11406 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11407 tempreg, tempreg, breg);
11408 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11409
11410 relax_switch ();
11411 offset_expr.X_add_number = expr1.X_add_number;
11412 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11413 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11414 if (breg != 0)
11415 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11416 tempreg, tempreg, breg);
11417 macro_build (&offset_expr, s, fmt, op[0],
11418 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11419 relax_end ();
11420 }
11421 else
11422 abort ();
11423
11424 break;
11425
11426 case M_JRADDIUSP:
11427 gas_assert (mips_opts.micromips);
11428 gas_assert (mips_opts.insn32);
11429 start_noreorder ();
11430 macro_build (NULL, "jr", "s", RA);
11431 expr1.X_add_number = op[0] << 2;
11432 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11433 end_noreorder ();
11434 break;
11435
11436 case M_JRC:
11437 gas_assert (mips_opts.micromips);
11438 gas_assert (mips_opts.insn32);
11439 macro_build (NULL, "jr", "s", op[0]);
11440 if (mips_opts.noreorder)
11441 macro_build (NULL, "nop", "");
11442 break;
11443
11444 case M_LI:
11445 case M_LI_S:
11446 load_register (op[0], &imm_expr, 0);
11447 break;
11448
11449 case M_DLI:
11450 load_register (op[0], &imm_expr, 1);
11451 break;
11452
11453 case M_LI_SS:
11454 if (imm_expr.X_op == O_constant)
11455 {
11456 used_at = 1;
11457 load_register (AT, &imm_expr, 0);
11458 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
11459 break;
11460 }
11461 else
11462 {
11463 gas_assert (imm_expr.X_op == O_absent
11464 && offset_expr.X_op == O_symbol
11465 && strcmp (segment_name (S_GET_SEGMENT
11466 (offset_expr.X_add_symbol)),
11467 ".lit4") == 0
11468 && offset_expr.X_add_number == 0);
11469 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
11470 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
11471 break;
11472 }
11473
11474 case M_LI_D:
11475 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
11476 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
11477 order 32 bits of the value and the low order 32 bits are either
11478 zero or in OFFSET_EXPR. */
11479 if (imm_expr.X_op == O_constant)
11480 {
11481 if (HAVE_64BIT_GPRS)
11482 load_register (op[0], &imm_expr, 1);
11483 else
11484 {
11485 int hreg, lreg;
11486
11487 if (target_big_endian)
11488 {
11489 hreg = op[0];
11490 lreg = op[0] + 1;
11491 }
11492 else
11493 {
11494 hreg = op[0] + 1;
11495 lreg = op[0];
11496 }
11497
11498 if (hreg <= 31)
11499 load_register (hreg, &imm_expr, 0);
11500 if (lreg <= 31)
11501 {
11502 if (offset_expr.X_op == O_absent)
11503 move_register (lreg, 0);
11504 else
11505 {
11506 gas_assert (offset_expr.X_op == O_constant);
11507 load_register (lreg, &offset_expr, 0);
11508 }
11509 }
11510 }
11511 break;
11512 }
11513 gas_assert (imm_expr.X_op == O_absent);
11514
11515 /* We know that sym is in the .rdata section. First we get the
11516 upper 16 bits of the address. */
11517 if (mips_pic == NO_PIC)
11518 {
11519 macro_build_lui (&offset_expr, AT);
11520 used_at = 1;
11521 }
11522 else
11523 {
11524 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11525 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11526 used_at = 1;
11527 }
11528
11529 /* Now we load the register(s). */
11530 if (HAVE_64BIT_GPRS)
11531 {
11532 used_at = 1;
11533 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
11534 BFD_RELOC_LO16, AT);
11535 }
11536 else
11537 {
11538 used_at = 1;
11539 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
11540 BFD_RELOC_LO16, AT);
11541 if (op[0] != RA)
11542 {
11543 /* FIXME: How in the world do we deal with the possible
11544 overflow here? */
11545 offset_expr.X_add_number += 4;
11546 macro_build (&offset_expr, "lw", "t,o(b)",
11547 op[0] + 1, BFD_RELOC_LO16, AT);
11548 }
11549 }
11550 break;
11551
11552 case M_LI_DD:
11553 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
11554 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
11555 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
11556 the value and the low order 32 bits are either zero or in
11557 OFFSET_EXPR. */
11558 if (imm_expr.X_op == O_constant)
11559 {
11560 used_at = 1;
11561 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
11562 if (HAVE_64BIT_FPRS)
11563 {
11564 gas_assert (HAVE_64BIT_GPRS);
11565 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
11566 }
11567 else
11568 {
11569 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
11570 if (offset_expr.X_op == O_absent)
11571 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
11572 else
11573 {
11574 gas_assert (offset_expr.X_op == O_constant);
11575 load_register (AT, &offset_expr, 0);
11576 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
11577 }
11578 }
11579 break;
11580 }
11581
11582 gas_assert (imm_expr.X_op == O_absent
11583 && offset_expr.X_op == O_symbol
11584 && offset_expr.X_add_number == 0);
11585 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
11586 if (strcmp (s, ".lit8") == 0)
11587 {
11588 op[2] = mips_gp_register;
11589 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
11590 offset_reloc[1] = BFD_RELOC_UNUSED;
11591 offset_reloc[2] = BFD_RELOC_UNUSED;
11592 }
11593 else
11594 {
11595 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
11596 used_at = 1;
11597 if (mips_pic != NO_PIC)
11598 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11599 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11600 else
11601 {
11602 /* FIXME: This won't work for a 64 bit address. */
11603 macro_build_lui (&offset_expr, AT);
11604 }
11605
11606 op[2] = AT;
11607 offset_reloc[0] = BFD_RELOC_LO16;
11608 offset_reloc[1] = BFD_RELOC_UNUSED;
11609 offset_reloc[2] = BFD_RELOC_UNUSED;
11610 }
11611 align = 8;
11612 /* Fall through */
11613
11614 case M_L_DAB:
11615 /*
11616 * The MIPS assembler seems to check for X_add_number not
11617 * being double aligned and generating:
11618 * lui at,%hi(foo+1)
11619 * addu at,at,v1
11620 * addiu at,at,%lo(foo+1)
11621 * lwc1 f2,0(at)
11622 * lwc1 f3,4(at)
11623 * But, the resulting address is the same after relocation so why
11624 * generate the extra instruction?
11625 */
11626 /* Itbl support may require additional care here. */
11627 coproc = 1;
11628 fmt = "T,o(b)";
11629 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
11630 {
11631 s = "ldc1";
11632 goto ld_st;
11633 }
11634 s = "lwc1";
11635 goto ldd_std;
11636
11637 case M_S_DAB:
11638 gas_assert (!mips_opts.micromips);
11639 /* Itbl support may require additional care here. */
11640 coproc = 1;
11641 fmt = "T,o(b)";
11642 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
11643 {
11644 s = "sdc1";
11645 goto ld_st;
11646 }
11647 s = "swc1";
11648 goto ldd_std;
11649
11650 case M_LQ_AB:
11651 fmt = "t,o(b)";
11652 s = "lq";
11653 goto ld;
11654
11655 case M_SQ_AB:
11656 fmt = "t,o(b)";
11657 s = "sq";
11658 goto ld_st;
11659
11660 case M_LD_AB:
11661 fmt = "t,o(b)";
11662 if (HAVE_64BIT_GPRS)
11663 {
11664 s = "ld";
11665 goto ld;
11666 }
11667 s = "lw";
11668 goto ldd_std;
11669
11670 case M_SD_AB:
11671 fmt = "t,o(b)";
11672 if (HAVE_64BIT_GPRS)
11673 {
11674 s = "sd";
11675 goto ld_st;
11676 }
11677 s = "sw";
11678
11679 ldd_std:
11680 /* Even on a big endian machine $fn comes before $fn+1. We have
11681 to adjust when loading from memory. We set coproc if we must
11682 load $fn+1 first. */
11683 /* Itbl support may require additional care here. */
11684 if (!target_big_endian)
11685 coproc = 0;
11686
11687 breg = op[2];
11688 if (small_offset_p (0, align, 16))
11689 {
11690 ep = &offset_expr;
11691 if (!small_offset_p (4, align, 16))
11692 {
11693 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
11694 -1, offset_reloc[0], offset_reloc[1],
11695 offset_reloc[2]);
11696 expr1.X_add_number = 0;
11697 ep = &expr1;
11698 breg = AT;
11699 used_at = 1;
11700 offset_reloc[0] = BFD_RELOC_LO16;
11701 offset_reloc[1] = BFD_RELOC_UNUSED;
11702 offset_reloc[2] = BFD_RELOC_UNUSED;
11703 }
11704 if (strcmp (s, "lw") == 0 && op[0] == breg)
11705 {
11706 ep->X_add_number += 4;
11707 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
11708 offset_reloc[1], offset_reloc[2], breg);
11709 ep->X_add_number -= 4;
11710 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
11711 offset_reloc[1], offset_reloc[2], breg);
11712 }
11713 else
11714 {
11715 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
11716 offset_reloc[0], offset_reloc[1], offset_reloc[2],
11717 breg);
11718 ep->X_add_number += 4;
11719 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
11720 offset_reloc[0], offset_reloc[1], offset_reloc[2],
11721 breg);
11722 }
11723 break;
11724 }
11725
11726 if (offset_expr.X_op != O_symbol
11727 && offset_expr.X_op != O_constant)
11728 {
11729 as_bad (_("expression too complex"));
11730 offset_expr.X_op = O_constant;
11731 }
11732
11733 if (HAVE_32BIT_ADDRESSES
11734 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11735 {
11736 char value [32];
11737
11738 sprintf_vma (value, offset_expr.X_add_number);
11739 as_bad (_("number (0x%s) larger than 32 bits"), value);
11740 }
11741
11742 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
11743 {
11744 /* If this is a reference to a GP relative symbol, we want
11745 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11746 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
11747 If we have a base register, we use this
11748 addu $at,$breg,$gp
11749 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
11750 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
11751 If this is not a GP relative symbol, we want
11752 lui $at,<sym> (BFD_RELOC_HI16_S)
11753 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11754 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11755 If there is a base register, we add it to $at after the
11756 lui instruction. If there is a constant, we always use
11757 the last case. */
11758 if (offset_expr.X_op == O_symbol
11759 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11760 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11761 {
11762 relax_start (offset_expr.X_add_symbol);
11763 if (breg == 0)
11764 {
11765 tempreg = mips_gp_register;
11766 }
11767 else
11768 {
11769 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11770 AT, breg, mips_gp_register);
11771 tempreg = AT;
11772 used_at = 1;
11773 }
11774
11775 /* Itbl support may require additional care here. */
11776 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11777 BFD_RELOC_GPREL16, tempreg);
11778 offset_expr.X_add_number += 4;
11779
11780 /* Set mips_optimize to 2 to avoid inserting an
11781 undesired nop. */
11782 hold_mips_optimize = mips_optimize;
11783 mips_optimize = 2;
11784 /* Itbl support may require additional care here. */
11785 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11786 BFD_RELOC_GPREL16, tempreg);
11787 mips_optimize = hold_mips_optimize;
11788
11789 relax_switch ();
11790
11791 offset_expr.X_add_number -= 4;
11792 }
11793 used_at = 1;
11794 if (offset_high_part (offset_expr.X_add_number, 16)
11795 != offset_high_part (offset_expr.X_add_number + 4, 16))
11796 {
11797 load_address (AT, &offset_expr, &used_at);
11798 offset_expr.X_op = O_constant;
11799 offset_expr.X_add_number = 0;
11800 }
11801 else
11802 macro_build_lui (&offset_expr, AT);
11803 if (breg != 0)
11804 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11805 /* Itbl support may require additional care here. */
11806 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11807 BFD_RELOC_LO16, AT);
11808 /* FIXME: How do we handle overflow here? */
11809 offset_expr.X_add_number += 4;
11810 /* Itbl support may require additional care here. */
11811 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11812 BFD_RELOC_LO16, AT);
11813 if (mips_relax.sequence)
11814 relax_end ();
11815 }
11816 else if (!mips_big_got)
11817 {
11818 /* If this is a reference to an external symbol, we want
11819 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11820 nop
11821 <op> op[0],0($at)
11822 <op> op[0]+1,4($at)
11823 Otherwise we want
11824 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11825 nop
11826 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11827 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11828 If there is a base register we add it to $at before the
11829 lwc1 instructions. If there is a constant we include it
11830 in the lwc1 instructions. */
11831 used_at = 1;
11832 expr1.X_add_number = offset_expr.X_add_number;
11833 if (expr1.X_add_number < -0x8000
11834 || expr1.X_add_number >= 0x8000 - 4)
11835 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11836 load_got_offset (AT, &offset_expr);
11837 load_delay_nop ();
11838 if (breg != 0)
11839 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11840
11841 /* Set mips_optimize to 2 to avoid inserting an undesired
11842 nop. */
11843 hold_mips_optimize = mips_optimize;
11844 mips_optimize = 2;
11845
11846 /* Itbl support may require additional care here. */
11847 relax_start (offset_expr.X_add_symbol);
11848 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
11849 BFD_RELOC_LO16, AT);
11850 expr1.X_add_number += 4;
11851 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
11852 BFD_RELOC_LO16, AT);
11853 relax_switch ();
11854 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11855 BFD_RELOC_LO16, AT);
11856 offset_expr.X_add_number += 4;
11857 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11858 BFD_RELOC_LO16, AT);
11859 relax_end ();
11860
11861 mips_optimize = hold_mips_optimize;
11862 }
11863 else if (mips_big_got)
11864 {
11865 int gpdelay;
11866
11867 /* If this is a reference to an external symbol, we want
11868 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11869 addu $at,$at,$gp
11870 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
11871 nop
11872 <op> op[0],0($at)
11873 <op> op[0]+1,4($at)
11874 Otherwise we want
11875 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11876 nop
11877 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11878 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11879 If there is a base register we add it to $at before the
11880 lwc1 instructions. If there is a constant we include it
11881 in the lwc1 instructions. */
11882 used_at = 1;
11883 expr1.X_add_number = offset_expr.X_add_number;
11884 offset_expr.X_add_number = 0;
11885 if (expr1.X_add_number < -0x8000
11886 || expr1.X_add_number >= 0x8000 - 4)
11887 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11888 gpdelay = reg_needs_delay (mips_gp_register);
11889 relax_start (offset_expr.X_add_symbol);
11890 macro_build (&offset_expr, "lui", LUI_FMT,
11891 AT, BFD_RELOC_MIPS_GOT_HI16);
11892 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11893 AT, AT, mips_gp_register);
11894 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11895 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
11896 load_delay_nop ();
11897 if (breg != 0)
11898 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11899 /* Itbl support may require additional care here. */
11900 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
11901 BFD_RELOC_LO16, AT);
11902 expr1.X_add_number += 4;
11903
11904 /* Set mips_optimize to 2 to avoid inserting an undesired
11905 nop. */
11906 hold_mips_optimize = mips_optimize;
11907 mips_optimize = 2;
11908 /* Itbl support may require additional care here. */
11909 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
11910 BFD_RELOC_LO16, AT);
11911 mips_optimize = hold_mips_optimize;
11912 expr1.X_add_number -= 4;
11913
11914 relax_switch ();
11915 offset_expr.X_add_number = expr1.X_add_number;
11916 if (gpdelay)
11917 macro_build (NULL, "nop", "");
11918 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11919 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11920 load_delay_nop ();
11921 if (breg != 0)
11922 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11923 /* Itbl support may require additional care here. */
11924 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11925 BFD_RELOC_LO16, AT);
11926 offset_expr.X_add_number += 4;
11927
11928 /* Set mips_optimize to 2 to avoid inserting an undesired
11929 nop. */
11930 hold_mips_optimize = mips_optimize;
11931 mips_optimize = 2;
11932 /* Itbl support may require additional care here. */
11933 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11934 BFD_RELOC_LO16, AT);
11935 mips_optimize = hold_mips_optimize;
11936 relax_end ();
11937 }
11938 else
11939 abort ();
11940
11941 break;
11942
11943 case M_SAA_AB:
11944 s = "saa";
11945 offbits = 0;
11946 fmt = "t,(b)";
11947 goto ld_st;
11948 case M_SAAD_AB:
11949 s = "saad";
11950 offbits = 0;
11951 fmt = "t,(b)";
11952 goto ld_st;
11953
11954 /* New code added to support COPZ instructions.
11955 This code builds table entries out of the macros in mip_opcodes.
11956 R4000 uses interlocks to handle coproc delays.
11957 Other chips (like the R3000) require nops to be inserted for delays.
11958
11959 FIXME: Currently, we require that the user handle delays.
11960 In order to fill delay slots for non-interlocked chips,
11961 we must have a way to specify delays based on the coprocessor.
11962 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
11963 What are the side-effects of the cop instruction?
11964 What cache support might we have and what are its effects?
11965 Both coprocessor & memory require delays. how long???
11966 What registers are read/set/modified?
11967
11968 If an itbl is provided to interpret cop instructions,
11969 this knowledge can be encoded in the itbl spec. */
11970
11971 case M_COP0:
11972 s = "c0";
11973 goto copz;
11974 case M_COP1:
11975 s = "c1";
11976 goto copz;
11977 case M_COP2:
11978 s = "c2";
11979 goto copz;
11980 case M_COP3:
11981 s = "c3";
11982 copz:
11983 gas_assert (!mips_opts.micromips);
11984 /* For now we just do C (same as Cz). The parameter will be
11985 stored in insn_opcode by mips_ip. */
11986 macro_build (NULL, s, "C", (int) ip->insn_opcode);
11987 break;
11988
11989 case M_MOVE:
11990 move_register (op[0], op[1]);
11991 break;
11992
11993 case M_MOVEP:
11994 gas_assert (mips_opts.micromips);
11995 gas_assert (mips_opts.insn32);
11996 move_register (micromips_to_32_reg_h_map1[op[0]],
11997 micromips_to_32_reg_m_map[op[1]]);
11998 move_register (micromips_to_32_reg_h_map2[op[0]],
11999 micromips_to_32_reg_n_map[op[2]]);
12000 break;
12001
12002 case M_DMUL:
12003 dbl = 1;
12004 case M_MUL:
12005 if (mips_opts.arch == CPU_R5900)
12006 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12007 op[2]);
12008 else
12009 {
12010 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12011 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12012 }
12013 break;
12014
12015 case M_DMUL_I:
12016 dbl = 1;
12017 case M_MUL_I:
12018 /* The MIPS assembler some times generates shifts and adds. I'm
12019 not trying to be that fancy. GCC should do this for us
12020 anyway. */
12021 used_at = 1;
12022 load_register (AT, &imm_expr, dbl);
12023 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12024 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12025 break;
12026
12027 case M_DMULO_I:
12028 dbl = 1;
12029 case M_MULO_I:
12030 imm = 1;
12031 goto do_mulo;
12032
12033 case M_DMULO:
12034 dbl = 1;
12035 case M_MULO:
12036 do_mulo:
12037 start_noreorder ();
12038 used_at = 1;
12039 if (imm)
12040 load_register (AT, &imm_expr, dbl);
12041 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12042 op[1], imm ? AT : op[2]);
12043 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12044 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12045 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12046 if (mips_trap)
12047 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12048 else
12049 {
12050 if (mips_opts.micromips)
12051 micromips_label_expr (&label_expr);
12052 else
12053 label_expr.X_add_number = 8;
12054 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12055 macro_build (NULL, "nop", "");
12056 macro_build (NULL, "break", BRK_FMT, 6);
12057 if (mips_opts.micromips)
12058 micromips_add_label ();
12059 }
12060 end_noreorder ();
12061 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12062 break;
12063
12064 case M_DMULOU_I:
12065 dbl = 1;
12066 case M_MULOU_I:
12067 imm = 1;
12068 goto do_mulou;
12069
12070 case M_DMULOU:
12071 dbl = 1;
12072 case M_MULOU:
12073 do_mulou:
12074 start_noreorder ();
12075 used_at = 1;
12076 if (imm)
12077 load_register (AT, &imm_expr, dbl);
12078 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12079 op[1], imm ? AT : op[2]);
12080 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12081 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12082 if (mips_trap)
12083 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12084 else
12085 {
12086 if (mips_opts.micromips)
12087 micromips_label_expr (&label_expr);
12088 else
12089 label_expr.X_add_number = 8;
12090 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12091 macro_build (NULL, "nop", "");
12092 macro_build (NULL, "break", BRK_FMT, 6);
12093 if (mips_opts.micromips)
12094 micromips_add_label ();
12095 }
12096 end_noreorder ();
12097 break;
12098
12099 case M_DROL:
12100 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12101 {
12102 if (op[0] == op[1])
12103 {
12104 tempreg = AT;
12105 used_at = 1;
12106 }
12107 else
12108 tempreg = op[0];
12109 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12110 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12111 break;
12112 }
12113 used_at = 1;
12114 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12115 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12116 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12117 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12118 break;
12119
12120 case M_ROL:
12121 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12122 {
12123 if (op[0] == op[1])
12124 {
12125 tempreg = AT;
12126 used_at = 1;
12127 }
12128 else
12129 tempreg = op[0];
12130 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12131 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12132 break;
12133 }
12134 used_at = 1;
12135 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12136 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12137 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12138 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12139 break;
12140
12141 case M_DROL_I:
12142 {
12143 unsigned int rot;
12144 char *l;
12145 char *rr;
12146
12147 rot = imm_expr.X_add_number & 0x3f;
12148 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12149 {
12150 rot = (64 - rot) & 0x3f;
12151 if (rot >= 32)
12152 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12153 else
12154 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12155 break;
12156 }
12157 if (rot == 0)
12158 {
12159 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12160 break;
12161 }
12162 l = (rot < 0x20) ? "dsll" : "dsll32";
12163 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12164 rot &= 0x1f;
12165 used_at = 1;
12166 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12167 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12168 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12169 }
12170 break;
12171
12172 case M_ROL_I:
12173 {
12174 unsigned int rot;
12175
12176 rot = imm_expr.X_add_number & 0x1f;
12177 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12178 {
12179 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12180 (32 - rot) & 0x1f);
12181 break;
12182 }
12183 if (rot == 0)
12184 {
12185 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12186 break;
12187 }
12188 used_at = 1;
12189 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12190 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12191 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12192 }
12193 break;
12194
12195 case M_DROR:
12196 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12197 {
12198 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12199 break;
12200 }
12201 used_at = 1;
12202 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12203 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12204 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12205 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12206 break;
12207
12208 case M_ROR:
12209 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12210 {
12211 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12212 break;
12213 }
12214 used_at = 1;
12215 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12216 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12217 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12218 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12219 break;
12220
12221 case M_DROR_I:
12222 {
12223 unsigned int rot;
12224 char *l;
12225 char *rr;
12226
12227 rot = imm_expr.X_add_number & 0x3f;
12228 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12229 {
12230 if (rot >= 32)
12231 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12232 else
12233 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12234 break;
12235 }
12236 if (rot == 0)
12237 {
12238 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12239 break;
12240 }
12241 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12242 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12243 rot &= 0x1f;
12244 used_at = 1;
12245 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12246 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12247 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12248 }
12249 break;
12250
12251 case M_ROR_I:
12252 {
12253 unsigned int rot;
12254
12255 rot = imm_expr.X_add_number & 0x1f;
12256 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12257 {
12258 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12259 break;
12260 }
12261 if (rot == 0)
12262 {
12263 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12264 break;
12265 }
12266 used_at = 1;
12267 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12268 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12269 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12270 }
12271 break;
12272
12273 case M_SEQ:
12274 if (op[1] == 0)
12275 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12276 else if (op[2] == 0)
12277 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12278 else
12279 {
12280 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12281 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12282 }
12283 break;
12284
12285 case M_SEQ_I:
12286 if (imm_expr.X_add_number == 0)
12287 {
12288 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12289 break;
12290 }
12291 if (op[1] == 0)
12292 {
12293 as_warn (_("instruction %s: result is always false"),
12294 ip->insn_mo->name);
12295 move_register (op[0], 0);
12296 break;
12297 }
12298 if (CPU_HAS_SEQ (mips_opts.arch)
12299 && -512 <= imm_expr.X_add_number
12300 && imm_expr.X_add_number < 512)
12301 {
12302 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12303 (int) imm_expr.X_add_number);
12304 break;
12305 }
12306 if (imm_expr.X_add_number >= 0
12307 && imm_expr.X_add_number < 0x10000)
12308 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12309 else if (imm_expr.X_add_number > -0x8000
12310 && imm_expr.X_add_number < 0)
12311 {
12312 imm_expr.X_add_number = -imm_expr.X_add_number;
12313 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
12314 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12315 }
12316 else if (CPU_HAS_SEQ (mips_opts.arch))
12317 {
12318 used_at = 1;
12319 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12320 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12321 break;
12322 }
12323 else
12324 {
12325 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12326 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12327 used_at = 1;
12328 }
12329 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12330 break;
12331
12332 case M_SGE: /* X >= Y <==> not (X < Y) */
12333 s = "slt";
12334 goto sge;
12335 case M_SGEU:
12336 s = "sltu";
12337 sge:
12338 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12339 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12340 break;
12341
12342 case M_SGE_I: /* X >= I <==> not (X < I) */
12343 case M_SGEU_I:
12344 if (imm_expr.X_add_number >= -0x8000
12345 && imm_expr.X_add_number < 0x8000)
12346 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12347 op[0], op[1], BFD_RELOC_LO16);
12348 else
12349 {
12350 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12351 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12352 op[0], op[1], AT);
12353 used_at = 1;
12354 }
12355 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12356 break;
12357
12358 case M_SGT: /* X > Y <==> Y < X */
12359 s = "slt";
12360 goto sgt;
12361 case M_SGTU:
12362 s = "sltu";
12363 sgt:
12364 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12365 break;
12366
12367 case M_SGT_I: /* X > I <==> I < X */
12368 s = "slt";
12369 goto sgti;
12370 case M_SGTU_I:
12371 s = "sltu";
12372 sgti:
12373 used_at = 1;
12374 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12375 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12376 break;
12377
12378 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12379 s = "slt";
12380 goto sle;
12381 case M_SLEU:
12382 s = "sltu";
12383 sle:
12384 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12385 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12386 break;
12387
12388 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12389 s = "slt";
12390 goto slei;
12391 case M_SLEU_I:
12392 s = "sltu";
12393 slei:
12394 used_at = 1;
12395 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12396 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12397 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12398 break;
12399
12400 case M_SLT_I:
12401 if (imm_expr.X_add_number >= -0x8000
12402 && imm_expr.X_add_number < 0x8000)
12403 {
12404 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12405 BFD_RELOC_LO16);
12406 break;
12407 }
12408 used_at = 1;
12409 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12410 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12411 break;
12412
12413 case M_SLTU_I:
12414 if (imm_expr.X_add_number >= -0x8000
12415 && imm_expr.X_add_number < 0x8000)
12416 {
12417 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12418 BFD_RELOC_LO16);
12419 break;
12420 }
12421 used_at = 1;
12422 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12423 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12424 break;
12425
12426 case M_SNE:
12427 if (op[1] == 0)
12428 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12429 else if (op[2] == 0)
12430 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12431 else
12432 {
12433 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12434 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12435 }
12436 break;
12437
12438 case M_SNE_I:
12439 if (imm_expr.X_add_number == 0)
12440 {
12441 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12442 break;
12443 }
12444 if (op[1] == 0)
12445 {
12446 as_warn (_("instruction %s: result is always true"),
12447 ip->insn_mo->name);
12448 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
12449 op[0], 0, BFD_RELOC_LO16);
12450 break;
12451 }
12452 if (CPU_HAS_SEQ (mips_opts.arch)
12453 && -512 <= imm_expr.X_add_number
12454 && imm_expr.X_add_number < 512)
12455 {
12456 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
12457 (int) imm_expr.X_add_number);
12458 break;
12459 }
12460 if (imm_expr.X_add_number >= 0
12461 && imm_expr.X_add_number < 0x10000)
12462 {
12463 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
12464 BFD_RELOC_LO16);
12465 }
12466 else if (imm_expr.X_add_number > -0x8000
12467 && imm_expr.X_add_number < 0)
12468 {
12469 imm_expr.X_add_number = -imm_expr.X_add_number;
12470 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
12471 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12472 }
12473 else if (CPU_HAS_SEQ (mips_opts.arch))
12474 {
12475 used_at = 1;
12476 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12477 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
12478 break;
12479 }
12480 else
12481 {
12482 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12483 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12484 used_at = 1;
12485 }
12486 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12487 break;
12488
12489 case M_SUB_I:
12490 s = "addi";
12491 s2 = "sub";
12492 goto do_subi;
12493 case M_SUBU_I:
12494 s = "addiu";
12495 s2 = "subu";
12496 goto do_subi;
12497 case M_DSUB_I:
12498 dbl = 1;
12499 s = "daddi";
12500 s2 = "dsub";
12501 if (!mips_opts.micromips)
12502 goto do_subi;
12503 if (imm_expr.X_add_number > -0x200
12504 && imm_expr.X_add_number <= 0x200)
12505 {
12506 macro_build (NULL, s, "t,r,.", op[0], op[1],
12507 (int) -imm_expr.X_add_number);
12508 break;
12509 }
12510 goto do_subi_i;
12511 case M_DSUBU_I:
12512 dbl = 1;
12513 s = "daddiu";
12514 s2 = "dsubu";
12515 do_subi:
12516 if (imm_expr.X_add_number > -0x8000
12517 && imm_expr.X_add_number <= 0x8000)
12518 {
12519 imm_expr.X_add_number = -imm_expr.X_add_number;
12520 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12521 break;
12522 }
12523 do_subi_i:
12524 used_at = 1;
12525 load_register (AT, &imm_expr, dbl);
12526 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
12527 break;
12528
12529 case M_TEQ_I:
12530 s = "teq";
12531 goto trap;
12532 case M_TGE_I:
12533 s = "tge";
12534 goto trap;
12535 case M_TGEU_I:
12536 s = "tgeu";
12537 goto trap;
12538 case M_TLT_I:
12539 s = "tlt";
12540 goto trap;
12541 case M_TLTU_I:
12542 s = "tltu";
12543 goto trap;
12544 case M_TNE_I:
12545 s = "tne";
12546 trap:
12547 used_at = 1;
12548 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12549 macro_build (NULL, s, "s,t", op[0], AT);
12550 break;
12551
12552 case M_TRUNCWS:
12553 case M_TRUNCWD:
12554 gas_assert (!mips_opts.micromips);
12555 gas_assert (mips_opts.isa == ISA_MIPS1);
12556 used_at = 1;
12557
12558 /*
12559 * Is the double cfc1 instruction a bug in the mips assembler;
12560 * or is there a reason for it?
12561 */
12562 start_noreorder ();
12563 macro_build (NULL, "cfc1", "t,G", op[2], RA);
12564 macro_build (NULL, "cfc1", "t,G", op[2], RA);
12565 macro_build (NULL, "nop", "");
12566 expr1.X_add_number = 3;
12567 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
12568 expr1.X_add_number = 2;
12569 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
12570 macro_build (NULL, "ctc1", "t,G", AT, RA);
12571 macro_build (NULL, "nop", "");
12572 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
12573 op[0], op[1]);
12574 macro_build (NULL, "ctc1", "t,G", op[2], RA);
12575 macro_build (NULL, "nop", "");
12576 end_noreorder ();
12577 break;
12578
12579 case M_ULH_AB:
12580 s = "lb";
12581 s2 = "lbu";
12582 off = 1;
12583 goto uld_st;
12584 case M_ULHU_AB:
12585 s = "lbu";
12586 s2 = "lbu";
12587 off = 1;
12588 goto uld_st;
12589 case M_ULW_AB:
12590 s = "lwl";
12591 s2 = "lwr";
12592 offbits = (mips_opts.micromips ? 12 : 16);
12593 off = 3;
12594 goto uld_st;
12595 case M_ULD_AB:
12596 s = "ldl";
12597 s2 = "ldr";
12598 offbits = (mips_opts.micromips ? 12 : 16);
12599 off = 7;
12600 goto uld_st;
12601 case M_USH_AB:
12602 s = "sb";
12603 s2 = "sb";
12604 off = 1;
12605 ust = 1;
12606 goto uld_st;
12607 case M_USW_AB:
12608 s = "swl";
12609 s2 = "swr";
12610 offbits = (mips_opts.micromips ? 12 : 16);
12611 off = 3;
12612 ust = 1;
12613 goto uld_st;
12614 case M_USD_AB:
12615 s = "sdl";
12616 s2 = "sdr";
12617 offbits = (mips_opts.micromips ? 12 : 16);
12618 off = 7;
12619 ust = 1;
12620
12621 uld_st:
12622 breg = op[2];
12623 large_offset = !small_offset_p (off, align, offbits);
12624 ep = &offset_expr;
12625 expr1.X_add_number = 0;
12626 if (large_offset)
12627 {
12628 used_at = 1;
12629 tempreg = AT;
12630 if (small_offset_p (0, align, 16))
12631 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
12632 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
12633 else
12634 {
12635 load_address (tempreg, ep, &used_at);
12636 if (breg != 0)
12637 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12638 tempreg, tempreg, breg);
12639 }
12640 offset_reloc[0] = BFD_RELOC_LO16;
12641 offset_reloc[1] = BFD_RELOC_UNUSED;
12642 offset_reloc[2] = BFD_RELOC_UNUSED;
12643 breg = tempreg;
12644 tempreg = op[0];
12645 ep = &expr1;
12646 }
12647 else if (!ust && op[0] == breg)
12648 {
12649 used_at = 1;
12650 tempreg = AT;
12651 }
12652 else
12653 tempreg = op[0];
12654
12655 if (off == 1)
12656 goto ulh_sh;
12657
12658 if (!target_big_endian)
12659 ep->X_add_number += off;
12660 if (offbits == 12)
12661 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
12662 else
12663 macro_build (ep, s, "t,o(b)", tempreg, -1,
12664 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12665
12666 if (!target_big_endian)
12667 ep->X_add_number -= off;
12668 else
12669 ep->X_add_number += off;
12670 if (offbits == 12)
12671 macro_build (NULL, s2, "t,~(b)",
12672 tempreg, (int) ep->X_add_number, breg);
12673 else
12674 macro_build (ep, s2, "t,o(b)", tempreg, -1,
12675 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12676
12677 /* If necessary, move the result in tempreg to the final destination. */
12678 if (!ust && op[0] != tempreg)
12679 {
12680 /* Protect second load's delay slot. */
12681 load_delay_nop ();
12682 move_register (op[0], tempreg);
12683 }
12684 break;
12685
12686 ulh_sh:
12687 used_at = 1;
12688 if (target_big_endian == ust)
12689 ep->X_add_number += off;
12690 tempreg = ust || large_offset ? op[0] : AT;
12691 macro_build (ep, s, "t,o(b)", tempreg, -1,
12692 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12693
12694 /* For halfword transfers we need a temporary register to shuffle
12695 bytes. Unfortunately for M_USH_A we have none available before
12696 the next store as AT holds the base address. We deal with this
12697 case by clobbering TREG and then restoring it as with ULH. */
12698 tempreg = ust == large_offset ? op[0] : AT;
12699 if (ust)
12700 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
12701
12702 if (target_big_endian == ust)
12703 ep->X_add_number -= off;
12704 else
12705 ep->X_add_number += off;
12706 macro_build (ep, s2, "t,o(b)", tempreg, -1,
12707 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12708
12709 /* For M_USH_A re-retrieve the LSB. */
12710 if (ust && large_offset)
12711 {
12712 if (target_big_endian)
12713 ep->X_add_number += off;
12714 else
12715 ep->X_add_number -= off;
12716 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
12717 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
12718 }
12719 /* For ULH and M_USH_A OR the LSB in. */
12720 if (!ust || large_offset)
12721 {
12722 tempreg = !large_offset ? AT : op[0];
12723 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
12724 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12725 }
12726 break;
12727
12728 default:
12729 /* FIXME: Check if this is one of the itbl macros, since they
12730 are added dynamically. */
12731 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
12732 break;
12733 }
12734 if (!mips_opts.at && used_at)
12735 as_bad (_("macro used $at after \".set noat\""));
12736 }
12737
12738 /* Implement macros in mips16 mode. */
12739
12740 static void
12741 mips16_macro (struct mips_cl_insn *ip)
12742 {
12743 const struct mips_operand_array *operands;
12744 int mask;
12745 int tmp;
12746 expressionS expr1;
12747 int dbl;
12748 const char *s, *s2, *s3;
12749 unsigned int op[MAX_OPERANDS];
12750 unsigned int i;
12751
12752 mask = ip->insn_mo->mask;
12753
12754 operands = insn_operands (ip);
12755 for (i = 0; i < MAX_OPERANDS; i++)
12756 if (operands->operand[i])
12757 op[i] = insn_extract_operand (ip, operands->operand[i]);
12758 else
12759 op[i] = -1;
12760
12761 expr1.X_op = O_constant;
12762 expr1.X_op_symbol = NULL;
12763 expr1.X_add_symbol = NULL;
12764 expr1.X_add_number = 1;
12765
12766 dbl = 0;
12767
12768 switch (mask)
12769 {
12770 default:
12771 abort ();
12772
12773 case M_DDIV_3:
12774 dbl = 1;
12775 case M_DIV_3:
12776 s = "mflo";
12777 goto do_div3;
12778 case M_DREM_3:
12779 dbl = 1;
12780 case M_REM_3:
12781 s = "mfhi";
12782 do_div3:
12783 start_noreorder ();
12784 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
12785 expr1.X_add_number = 2;
12786 macro_build (&expr1, "bnez", "x,p", op[2]);
12787 macro_build (NULL, "break", "6", 7);
12788
12789 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
12790 since that causes an overflow. We should do that as well,
12791 but I don't see how to do the comparisons without a temporary
12792 register. */
12793 end_noreorder ();
12794 macro_build (NULL, s, "x", op[0]);
12795 break;
12796
12797 case M_DIVU_3:
12798 s = "divu";
12799 s2 = "mflo";
12800 goto do_divu3;
12801 case M_REMU_3:
12802 s = "divu";
12803 s2 = "mfhi";
12804 goto do_divu3;
12805 case M_DDIVU_3:
12806 s = "ddivu";
12807 s2 = "mflo";
12808 goto do_divu3;
12809 case M_DREMU_3:
12810 s = "ddivu";
12811 s2 = "mfhi";
12812 do_divu3:
12813 start_noreorder ();
12814 macro_build (NULL, s, "0,x,y", op[1], op[2]);
12815 expr1.X_add_number = 2;
12816 macro_build (&expr1, "bnez", "x,p", op[2]);
12817 macro_build (NULL, "break", "6", 7);
12818 end_noreorder ();
12819 macro_build (NULL, s2, "x", op[0]);
12820 break;
12821
12822 case M_DMUL:
12823 dbl = 1;
12824 case M_MUL:
12825 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
12826 macro_build (NULL, "mflo", "x", op[0]);
12827 break;
12828
12829 case M_DSUBU_I:
12830 dbl = 1;
12831 goto do_subu;
12832 case M_SUBU_I:
12833 do_subu:
12834 imm_expr.X_add_number = -imm_expr.X_add_number;
12835 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
12836 break;
12837
12838 case M_SUBU_I_2:
12839 imm_expr.X_add_number = -imm_expr.X_add_number;
12840 macro_build (&imm_expr, "addiu", "x,k", op[0]);
12841 break;
12842
12843 case M_DSUBU_I_2:
12844 imm_expr.X_add_number = -imm_expr.X_add_number;
12845 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
12846 break;
12847
12848 case M_BEQ:
12849 s = "cmp";
12850 s2 = "bteqz";
12851 goto do_branch;
12852 case M_BNE:
12853 s = "cmp";
12854 s2 = "btnez";
12855 goto do_branch;
12856 case M_BLT:
12857 s = "slt";
12858 s2 = "btnez";
12859 goto do_branch;
12860 case M_BLTU:
12861 s = "sltu";
12862 s2 = "btnez";
12863 goto do_branch;
12864 case M_BLE:
12865 s = "slt";
12866 s2 = "bteqz";
12867 goto do_reverse_branch;
12868 case M_BLEU:
12869 s = "sltu";
12870 s2 = "bteqz";
12871 goto do_reverse_branch;
12872 case M_BGE:
12873 s = "slt";
12874 s2 = "bteqz";
12875 goto do_branch;
12876 case M_BGEU:
12877 s = "sltu";
12878 s2 = "bteqz";
12879 goto do_branch;
12880 case M_BGT:
12881 s = "slt";
12882 s2 = "btnez";
12883 goto do_reverse_branch;
12884 case M_BGTU:
12885 s = "sltu";
12886 s2 = "btnez";
12887
12888 do_reverse_branch:
12889 tmp = op[1];
12890 op[1] = op[0];
12891 op[0] = tmp;
12892
12893 do_branch:
12894 macro_build (NULL, s, "x,y", op[0], op[1]);
12895 macro_build (&offset_expr, s2, "p");
12896 break;
12897
12898 case M_BEQ_I:
12899 s = "cmpi";
12900 s2 = "bteqz";
12901 s3 = "x,U";
12902 goto do_branch_i;
12903 case M_BNE_I:
12904 s = "cmpi";
12905 s2 = "btnez";
12906 s3 = "x,U";
12907 goto do_branch_i;
12908 case M_BLT_I:
12909 s = "slti";
12910 s2 = "btnez";
12911 s3 = "x,8";
12912 goto do_branch_i;
12913 case M_BLTU_I:
12914 s = "sltiu";
12915 s2 = "btnez";
12916 s3 = "x,8";
12917 goto do_branch_i;
12918 case M_BLE_I:
12919 s = "slti";
12920 s2 = "btnez";
12921 s3 = "x,8";
12922 goto do_addone_branch_i;
12923 case M_BLEU_I:
12924 s = "sltiu";
12925 s2 = "btnez";
12926 s3 = "x,8";
12927 goto do_addone_branch_i;
12928 case M_BGE_I:
12929 s = "slti";
12930 s2 = "bteqz";
12931 s3 = "x,8";
12932 goto do_branch_i;
12933 case M_BGEU_I:
12934 s = "sltiu";
12935 s2 = "bteqz";
12936 s3 = "x,8";
12937 goto do_branch_i;
12938 case M_BGT_I:
12939 s = "slti";
12940 s2 = "bteqz";
12941 s3 = "x,8";
12942 goto do_addone_branch_i;
12943 case M_BGTU_I:
12944 s = "sltiu";
12945 s2 = "bteqz";
12946 s3 = "x,8";
12947
12948 do_addone_branch_i:
12949 ++imm_expr.X_add_number;
12950
12951 do_branch_i:
12952 macro_build (&imm_expr, s, s3, op[0]);
12953 macro_build (&offset_expr, s2, "p");
12954 break;
12955
12956 case M_ABS:
12957 expr1.X_add_number = 0;
12958 macro_build (&expr1, "slti", "x,8", op[1]);
12959 if (op[0] != op[1])
12960 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
12961 expr1.X_add_number = 2;
12962 macro_build (&expr1, "bteqz", "p");
12963 macro_build (NULL, "neg", "x,w", op[0], op[0]);
12964 break;
12965 }
12966 }
12967
12968 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
12969 opcode bits in *OPCODE_EXTRA. */
12970
12971 static struct mips_opcode *
12972 mips_lookup_insn (struct hash_control *hash, const char *start,
12973 ssize_t length, unsigned int *opcode_extra)
12974 {
12975 char *name, *dot, *p;
12976 unsigned int mask, suffix;
12977 ssize_t opend;
12978 struct mips_opcode *insn;
12979
12980 /* Make a copy of the instruction so that we can fiddle with it. */
12981 name = alloca (length + 1);
12982 memcpy (name, start, length);
12983 name[length] = '\0';
12984
12985 /* Look up the instruction as-is. */
12986 insn = (struct mips_opcode *) hash_find (hash, name);
12987 if (insn)
12988 return insn;
12989
12990 dot = strchr (name, '.');
12991 if (dot && dot[1])
12992 {
12993 /* Try to interpret the text after the dot as a VU0 channel suffix. */
12994 p = mips_parse_vu0_channels (dot + 1, &mask);
12995 if (*p == 0 && mask != 0)
12996 {
12997 *dot = 0;
12998 insn = (struct mips_opcode *) hash_find (hash, name);
12999 *dot = '.';
13000 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13001 {
13002 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13003 return insn;
13004 }
13005 }
13006 }
13007
13008 if (mips_opts.micromips)
13009 {
13010 /* See if there's an instruction size override suffix,
13011 either `16' or `32', at the end of the mnemonic proper,
13012 that defines the operation, i.e. before the first `.'
13013 character if any. Strip it and retry. */
13014 opend = dot != NULL ? dot - name : length;
13015 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13016 suffix = 2;
13017 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13018 suffix = 4;
13019 else
13020 suffix = 0;
13021 if (suffix)
13022 {
13023 memcpy (name + opend - 2, name + opend, length - opend + 1);
13024 insn = (struct mips_opcode *) hash_find (hash, name);
13025 if (insn)
13026 {
13027 forced_insn_length = suffix;
13028 return insn;
13029 }
13030 }
13031 }
13032
13033 return NULL;
13034 }
13035
13036 /* Assemble an instruction into its binary format. If the instruction
13037 is a macro, set imm_expr and offset_expr to the values associated
13038 with "I" and "A" operands respectively. Otherwise store the value
13039 of the relocatable field (if any) in offset_expr. In both cases
13040 set offset_reloc to the relocation operators applied to offset_expr. */
13041
13042 static void
13043 mips_ip (char *str, struct mips_cl_insn *insn)
13044 {
13045 const struct mips_opcode *first, *past;
13046 struct hash_control *hash;
13047 char format;
13048 size_t end;
13049 struct mips_operand_token *tokens;
13050 unsigned int opcode_extra;
13051
13052 if (mips_opts.micromips)
13053 {
13054 hash = micromips_op_hash;
13055 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13056 }
13057 else
13058 {
13059 hash = op_hash;
13060 past = &mips_opcodes[NUMOPCODES];
13061 }
13062 forced_insn_length = 0;
13063 opcode_extra = 0;
13064
13065 /* We first try to match an instruction up to a space or to the end. */
13066 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13067 continue;
13068
13069 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13070 if (first == NULL)
13071 {
13072 set_insn_error (0, _("unrecognized opcode"));
13073 return;
13074 }
13075
13076 if (strcmp (first->name, "li.s") == 0)
13077 format = 'f';
13078 else if (strcmp (first->name, "li.d") == 0)
13079 format = 'd';
13080 else
13081 format = 0;
13082 tokens = mips_parse_arguments (str + end, format);
13083 if (!tokens)
13084 return;
13085
13086 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13087 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13088 set_insn_error (0, _("invalid operands"));
13089
13090 obstack_free (&mips_operand_tokens, tokens);
13091 }
13092
13093 /* As for mips_ip, but used when assembling MIPS16 code.
13094 Also set forced_insn_length to the resulting instruction size in
13095 bytes if the user explicitly requested a small or extended instruction. */
13096
13097 static void
13098 mips16_ip (char *str, struct mips_cl_insn *insn)
13099 {
13100 char *end, *s, c;
13101 struct mips_opcode *first;
13102 struct mips_operand_token *tokens;
13103
13104 forced_insn_length = 0;
13105
13106 for (s = str; ISLOWER (*s); ++s)
13107 ;
13108 end = s;
13109 c = *end;
13110 switch (c)
13111 {
13112 case '\0':
13113 break;
13114
13115 case ' ':
13116 s++;
13117 break;
13118
13119 case '.':
13120 if (s[1] == 't' && s[2] == ' ')
13121 {
13122 forced_insn_length = 2;
13123 s += 3;
13124 break;
13125 }
13126 else if (s[1] == 'e' && s[2] == ' ')
13127 {
13128 forced_insn_length = 4;
13129 s += 3;
13130 break;
13131 }
13132 /* Fall through. */
13133 default:
13134 set_insn_error (0, _("unrecognized opcode"));
13135 return;
13136 }
13137
13138 if (mips_opts.noautoextend && !forced_insn_length)
13139 forced_insn_length = 2;
13140
13141 *end = 0;
13142 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13143 *end = c;
13144
13145 if (!first)
13146 {
13147 set_insn_error (0, _("unrecognized opcode"));
13148 return;
13149 }
13150
13151 tokens = mips_parse_arguments (s, 0);
13152 if (!tokens)
13153 return;
13154
13155 if (!match_mips16_insns (insn, first, tokens))
13156 set_insn_error (0, _("invalid operands"));
13157
13158 obstack_free (&mips_operand_tokens, tokens);
13159 }
13160
13161 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13162 NBITS is the number of significant bits in VAL. */
13163
13164 static unsigned long
13165 mips16_immed_extend (offsetT val, unsigned int nbits)
13166 {
13167 int extval;
13168 if (nbits == 16)
13169 {
13170 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13171 val &= 0x1f;
13172 }
13173 else if (nbits == 15)
13174 {
13175 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13176 val &= 0xf;
13177 }
13178 else
13179 {
13180 extval = ((val & 0x1f) << 6) | (val & 0x20);
13181 val = 0;
13182 }
13183 return (extval << 16) | val;
13184 }
13185
13186 /* Like decode_mips16_operand, but require the operand to be defined and
13187 require it to be an integer. */
13188
13189 static const struct mips_int_operand *
13190 mips16_immed_operand (int type, bfd_boolean extended_p)
13191 {
13192 const struct mips_operand *operand;
13193
13194 operand = decode_mips16_operand (type, extended_p);
13195 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13196 abort ();
13197 return (const struct mips_int_operand *) operand;
13198 }
13199
13200 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13201
13202 static bfd_boolean
13203 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13204 bfd_reloc_code_real_type reloc, offsetT sval)
13205 {
13206 int min_val, max_val;
13207
13208 min_val = mips_int_operand_min (operand);
13209 max_val = mips_int_operand_max (operand);
13210 if (reloc != BFD_RELOC_UNUSED)
13211 {
13212 if (min_val < 0)
13213 sval = SEXT_16BIT (sval);
13214 else
13215 sval &= 0xffff;
13216 }
13217
13218 return (sval >= min_val
13219 && sval <= max_val
13220 && (sval & ((1 << operand->shift) - 1)) == 0);
13221 }
13222
13223 /* Install immediate value VAL into MIPS16 instruction *INSN,
13224 extending it if necessary. The instruction in *INSN may
13225 already be extended.
13226
13227 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13228 if none. In the former case, VAL is a 16-bit number with no
13229 defined signedness.
13230
13231 TYPE is the type of the immediate field. USER_INSN_LENGTH
13232 is the length that the user requested, or 0 if none. */
13233
13234 static void
13235 mips16_immed (char *file, unsigned int line, int type,
13236 bfd_reloc_code_real_type reloc, offsetT val,
13237 unsigned int user_insn_length, unsigned long *insn)
13238 {
13239 const struct mips_int_operand *operand;
13240 unsigned int uval, length;
13241
13242 operand = mips16_immed_operand (type, FALSE);
13243 if (!mips16_immed_in_range_p (operand, reloc, val))
13244 {
13245 /* We need an extended instruction. */
13246 if (user_insn_length == 2)
13247 as_bad_where (file, line, _("invalid unextended operand value"));
13248 else
13249 *insn |= MIPS16_EXTEND;
13250 }
13251 else if (user_insn_length == 4)
13252 {
13253 /* The operand doesn't force an unextended instruction to be extended.
13254 Warn if the user wanted an extended instruction anyway. */
13255 *insn |= MIPS16_EXTEND;
13256 as_warn_where (file, line,
13257 _("extended operand requested but not required"));
13258 }
13259
13260 length = mips16_opcode_length (*insn);
13261 if (length == 4)
13262 {
13263 operand = mips16_immed_operand (type, TRUE);
13264 if (!mips16_immed_in_range_p (operand, reloc, val))
13265 as_bad_where (file, line,
13266 _("operand value out of range for instruction"));
13267 }
13268 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13269 if (length == 2)
13270 *insn = mips_insert_operand (&operand->root, *insn, uval);
13271 else
13272 *insn |= mips16_immed_extend (uval, operand->root.size);
13273 }
13274 \f
13275 struct percent_op_match
13276 {
13277 const char *str;
13278 bfd_reloc_code_real_type reloc;
13279 };
13280
13281 static const struct percent_op_match mips_percent_op[] =
13282 {
13283 {"%lo", BFD_RELOC_LO16},
13284 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13285 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13286 {"%call16", BFD_RELOC_MIPS_CALL16},
13287 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13288 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13289 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13290 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13291 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13292 {"%got", BFD_RELOC_MIPS_GOT16},
13293 {"%gp_rel", BFD_RELOC_GPREL16},
13294 {"%half", BFD_RELOC_16},
13295 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13296 {"%higher", BFD_RELOC_MIPS_HIGHER},
13297 {"%neg", BFD_RELOC_MIPS_SUB},
13298 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13299 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13300 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13301 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13302 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13303 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13304 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13305 {"%hi", BFD_RELOC_HI16_S}
13306 };
13307
13308 static const struct percent_op_match mips16_percent_op[] =
13309 {
13310 {"%lo", BFD_RELOC_MIPS16_LO16},
13311 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13312 {"%got", BFD_RELOC_MIPS16_GOT16},
13313 {"%call16", BFD_RELOC_MIPS16_CALL16},
13314 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13315 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13316 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13317 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13318 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13319 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13320 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13321 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13322 };
13323
13324
13325 /* Return true if *STR points to a relocation operator. When returning true,
13326 move *STR over the operator and store its relocation code in *RELOC.
13327 Leave both *STR and *RELOC alone when returning false. */
13328
13329 static bfd_boolean
13330 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13331 {
13332 const struct percent_op_match *percent_op;
13333 size_t limit, i;
13334
13335 if (mips_opts.mips16)
13336 {
13337 percent_op = mips16_percent_op;
13338 limit = ARRAY_SIZE (mips16_percent_op);
13339 }
13340 else
13341 {
13342 percent_op = mips_percent_op;
13343 limit = ARRAY_SIZE (mips_percent_op);
13344 }
13345
13346 for (i = 0; i < limit; i++)
13347 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13348 {
13349 int len = strlen (percent_op[i].str);
13350
13351 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13352 continue;
13353
13354 *str += strlen (percent_op[i].str);
13355 *reloc = percent_op[i].reloc;
13356
13357 /* Check whether the output BFD supports this relocation.
13358 If not, issue an error and fall back on something safe. */
13359 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13360 {
13361 as_bad (_("relocation %s isn't supported by the current ABI"),
13362 percent_op[i].str);
13363 *reloc = BFD_RELOC_UNUSED;
13364 }
13365 return TRUE;
13366 }
13367 return FALSE;
13368 }
13369
13370
13371 /* Parse string STR as a 16-bit relocatable operand. Store the
13372 expression in *EP and the relocations in the array starting
13373 at RELOC. Return the number of relocation operators used.
13374
13375 On exit, EXPR_END points to the first character after the expression. */
13376
13377 static size_t
13378 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13379 char *str)
13380 {
13381 bfd_reloc_code_real_type reversed_reloc[3];
13382 size_t reloc_index, i;
13383 int crux_depth, str_depth;
13384 char *crux;
13385
13386 /* Search for the start of the main expression, recoding relocations
13387 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13388 of the main expression and with CRUX_DEPTH containing the number
13389 of open brackets at that point. */
13390 reloc_index = -1;
13391 str_depth = 0;
13392 do
13393 {
13394 reloc_index++;
13395 crux = str;
13396 crux_depth = str_depth;
13397
13398 /* Skip over whitespace and brackets, keeping count of the number
13399 of brackets. */
13400 while (*str == ' ' || *str == '\t' || *str == '(')
13401 if (*str++ == '(')
13402 str_depth++;
13403 }
13404 while (*str == '%'
13405 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13406 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13407
13408 my_getExpression (ep, crux);
13409 str = expr_end;
13410
13411 /* Match every open bracket. */
13412 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13413 if (*str++ == ')')
13414 crux_depth--;
13415
13416 if (crux_depth > 0)
13417 as_bad (_("unclosed '('"));
13418
13419 expr_end = str;
13420
13421 if (reloc_index != 0)
13422 {
13423 prev_reloc_op_frag = frag_now;
13424 for (i = 0; i < reloc_index; i++)
13425 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13426 }
13427
13428 return reloc_index;
13429 }
13430
13431 static void
13432 my_getExpression (expressionS *ep, char *str)
13433 {
13434 char *save_in;
13435
13436 save_in = input_line_pointer;
13437 input_line_pointer = str;
13438 expression (ep);
13439 expr_end = input_line_pointer;
13440 input_line_pointer = save_in;
13441 }
13442
13443 char *
13444 md_atof (int type, char *litP, int *sizeP)
13445 {
13446 return ieee_md_atof (type, litP, sizeP, target_big_endian);
13447 }
13448
13449 void
13450 md_number_to_chars (char *buf, valueT val, int n)
13451 {
13452 if (target_big_endian)
13453 number_to_chars_bigendian (buf, val, n);
13454 else
13455 number_to_chars_littleendian (buf, val, n);
13456 }
13457 \f
13458 static int support_64bit_objects(void)
13459 {
13460 const char **list, **l;
13461 int yes;
13462
13463 list = bfd_target_list ();
13464 for (l = list; *l != NULL; l++)
13465 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
13466 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
13467 break;
13468 yes = (*l != NULL);
13469 free (list);
13470 return yes;
13471 }
13472
13473 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
13474 NEW_VALUE. Warn if another value was already specified. Note:
13475 we have to defer parsing the -march and -mtune arguments in order
13476 to handle 'from-abi' correctly, since the ABI might be specified
13477 in a later argument. */
13478
13479 static void
13480 mips_set_option_string (const char **string_ptr, const char *new_value)
13481 {
13482 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
13483 as_warn (_("a different %s was already specified, is now %s"),
13484 string_ptr == &mips_arch_string ? "-march" : "-mtune",
13485 new_value);
13486
13487 *string_ptr = new_value;
13488 }
13489
13490 int
13491 md_parse_option (int c, char *arg)
13492 {
13493 unsigned int i;
13494
13495 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
13496 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
13497 {
13498 file_ase_explicit |= mips_set_ase (&mips_ases[i],
13499 c == mips_ases[i].option_on);
13500 return 1;
13501 }
13502
13503 switch (c)
13504 {
13505 case OPTION_CONSTRUCT_FLOATS:
13506 mips_disable_float_construction = 0;
13507 break;
13508
13509 case OPTION_NO_CONSTRUCT_FLOATS:
13510 mips_disable_float_construction = 1;
13511 break;
13512
13513 case OPTION_TRAP:
13514 mips_trap = 1;
13515 break;
13516
13517 case OPTION_BREAK:
13518 mips_trap = 0;
13519 break;
13520
13521 case OPTION_EB:
13522 target_big_endian = 1;
13523 break;
13524
13525 case OPTION_EL:
13526 target_big_endian = 0;
13527 break;
13528
13529 case 'O':
13530 if (arg == NULL)
13531 mips_optimize = 1;
13532 else if (arg[0] == '0')
13533 mips_optimize = 0;
13534 else if (arg[0] == '1')
13535 mips_optimize = 1;
13536 else
13537 mips_optimize = 2;
13538 break;
13539
13540 case 'g':
13541 if (arg == NULL)
13542 mips_debug = 2;
13543 else
13544 mips_debug = atoi (arg);
13545 break;
13546
13547 case OPTION_MIPS1:
13548 file_mips_opts.isa = ISA_MIPS1;
13549 break;
13550
13551 case OPTION_MIPS2:
13552 file_mips_opts.isa = ISA_MIPS2;
13553 break;
13554
13555 case OPTION_MIPS3:
13556 file_mips_opts.isa = ISA_MIPS3;
13557 break;
13558
13559 case OPTION_MIPS4:
13560 file_mips_opts.isa = ISA_MIPS4;
13561 break;
13562
13563 case OPTION_MIPS5:
13564 file_mips_opts.isa = ISA_MIPS5;
13565 break;
13566
13567 case OPTION_MIPS32:
13568 file_mips_opts.isa = ISA_MIPS32;
13569 break;
13570
13571 case OPTION_MIPS32R2:
13572 file_mips_opts.isa = ISA_MIPS32R2;
13573 break;
13574
13575 case OPTION_MIPS32R3:
13576 file_mips_opts.isa = ISA_MIPS32R3;
13577 break;
13578
13579 case OPTION_MIPS32R5:
13580 file_mips_opts.isa = ISA_MIPS32R5;
13581 break;
13582
13583 case OPTION_MIPS64R2:
13584 file_mips_opts.isa = ISA_MIPS64R2;
13585 break;
13586
13587 case OPTION_MIPS64R3:
13588 file_mips_opts.isa = ISA_MIPS64R3;
13589 break;
13590
13591 case OPTION_MIPS64R5:
13592 file_mips_opts.isa = ISA_MIPS64R5;
13593 break;
13594
13595 case OPTION_MIPS64:
13596 file_mips_opts.isa = ISA_MIPS64;
13597 break;
13598
13599 case OPTION_MTUNE:
13600 mips_set_option_string (&mips_tune_string, arg);
13601 break;
13602
13603 case OPTION_MARCH:
13604 mips_set_option_string (&mips_arch_string, arg);
13605 break;
13606
13607 case OPTION_M4650:
13608 mips_set_option_string (&mips_arch_string, "4650");
13609 mips_set_option_string (&mips_tune_string, "4650");
13610 break;
13611
13612 case OPTION_NO_M4650:
13613 break;
13614
13615 case OPTION_M4010:
13616 mips_set_option_string (&mips_arch_string, "4010");
13617 mips_set_option_string (&mips_tune_string, "4010");
13618 break;
13619
13620 case OPTION_NO_M4010:
13621 break;
13622
13623 case OPTION_M4100:
13624 mips_set_option_string (&mips_arch_string, "4100");
13625 mips_set_option_string (&mips_tune_string, "4100");
13626 break;
13627
13628 case OPTION_NO_M4100:
13629 break;
13630
13631 case OPTION_M3900:
13632 mips_set_option_string (&mips_arch_string, "3900");
13633 mips_set_option_string (&mips_tune_string, "3900");
13634 break;
13635
13636 case OPTION_NO_M3900:
13637 break;
13638
13639 case OPTION_MICROMIPS:
13640 if (mips_opts.mips16 == 1)
13641 {
13642 as_bad (_("-mmicromips cannot be used with -mips16"));
13643 return 0;
13644 }
13645 mips_opts.micromips = 1;
13646 mips_no_prev_insn ();
13647 break;
13648
13649 case OPTION_NO_MICROMIPS:
13650 mips_opts.micromips = 0;
13651 mips_no_prev_insn ();
13652 break;
13653
13654 case OPTION_MIPS16:
13655 if (mips_opts.micromips == 1)
13656 {
13657 as_bad (_("-mips16 cannot be used with -micromips"));
13658 return 0;
13659 }
13660 mips_opts.mips16 = 1;
13661 mips_no_prev_insn ();
13662 break;
13663
13664 case OPTION_NO_MIPS16:
13665 mips_opts.mips16 = 0;
13666 mips_no_prev_insn ();
13667 break;
13668
13669 case OPTION_FIX_24K:
13670 mips_fix_24k = 1;
13671 break;
13672
13673 case OPTION_NO_FIX_24K:
13674 mips_fix_24k = 0;
13675 break;
13676
13677 case OPTION_FIX_RM7000:
13678 mips_fix_rm7000 = 1;
13679 break;
13680
13681 case OPTION_NO_FIX_RM7000:
13682 mips_fix_rm7000 = 0;
13683 break;
13684
13685 case OPTION_FIX_LOONGSON2F_JUMP:
13686 mips_fix_loongson2f_jump = TRUE;
13687 break;
13688
13689 case OPTION_NO_FIX_LOONGSON2F_JUMP:
13690 mips_fix_loongson2f_jump = FALSE;
13691 break;
13692
13693 case OPTION_FIX_LOONGSON2F_NOP:
13694 mips_fix_loongson2f_nop = TRUE;
13695 break;
13696
13697 case OPTION_NO_FIX_LOONGSON2F_NOP:
13698 mips_fix_loongson2f_nop = FALSE;
13699 break;
13700
13701 case OPTION_FIX_VR4120:
13702 mips_fix_vr4120 = 1;
13703 break;
13704
13705 case OPTION_NO_FIX_VR4120:
13706 mips_fix_vr4120 = 0;
13707 break;
13708
13709 case OPTION_FIX_VR4130:
13710 mips_fix_vr4130 = 1;
13711 break;
13712
13713 case OPTION_NO_FIX_VR4130:
13714 mips_fix_vr4130 = 0;
13715 break;
13716
13717 case OPTION_FIX_CN63XXP1:
13718 mips_fix_cn63xxp1 = TRUE;
13719 break;
13720
13721 case OPTION_NO_FIX_CN63XXP1:
13722 mips_fix_cn63xxp1 = FALSE;
13723 break;
13724
13725 case OPTION_RELAX_BRANCH:
13726 mips_relax_branch = 1;
13727 break;
13728
13729 case OPTION_NO_RELAX_BRANCH:
13730 mips_relax_branch = 0;
13731 break;
13732
13733 case OPTION_INSN32:
13734 mips_opts.insn32 = TRUE;
13735 break;
13736
13737 case OPTION_NO_INSN32:
13738 mips_opts.insn32 = FALSE;
13739 break;
13740
13741 case OPTION_MSHARED:
13742 mips_in_shared = TRUE;
13743 break;
13744
13745 case OPTION_MNO_SHARED:
13746 mips_in_shared = FALSE;
13747 break;
13748
13749 case OPTION_MSYM32:
13750 mips_opts.sym32 = TRUE;
13751 break;
13752
13753 case OPTION_MNO_SYM32:
13754 mips_opts.sym32 = FALSE;
13755 break;
13756
13757 /* When generating ELF code, we permit -KPIC and -call_shared to
13758 select SVR4_PIC, and -non_shared to select no PIC. This is
13759 intended to be compatible with Irix 5. */
13760 case OPTION_CALL_SHARED:
13761 mips_pic = SVR4_PIC;
13762 mips_abicalls = TRUE;
13763 break;
13764
13765 case OPTION_CALL_NONPIC:
13766 mips_pic = NO_PIC;
13767 mips_abicalls = TRUE;
13768 break;
13769
13770 case OPTION_NON_SHARED:
13771 mips_pic = NO_PIC;
13772 mips_abicalls = FALSE;
13773 break;
13774
13775 /* The -xgot option tells the assembler to use 32 bit offsets
13776 when accessing the got in SVR4_PIC mode. It is for Irix
13777 compatibility. */
13778 case OPTION_XGOT:
13779 mips_big_got = 1;
13780 break;
13781
13782 case 'G':
13783 g_switch_value = atoi (arg);
13784 g_switch_seen = 1;
13785 break;
13786
13787 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
13788 and -mabi=64. */
13789 case OPTION_32:
13790 mips_abi = O32_ABI;
13791 break;
13792
13793 case OPTION_N32:
13794 mips_abi = N32_ABI;
13795 break;
13796
13797 case OPTION_64:
13798 mips_abi = N64_ABI;
13799 if (!support_64bit_objects())
13800 as_fatal (_("no compiled in support for 64 bit object file format"));
13801 break;
13802
13803 case OPTION_GP32:
13804 file_mips_opts.gp32 = 1;
13805 break;
13806
13807 case OPTION_GP64:
13808 file_mips_opts.gp32 = 0;
13809 break;
13810
13811 case OPTION_FP32:
13812 file_mips_opts.fp = 32;
13813 break;
13814
13815 case OPTION_FP64:
13816 file_mips_opts.fp = 64;
13817 break;
13818
13819 case OPTION_SINGLE_FLOAT:
13820 file_mips_opts.single_float = 1;
13821 break;
13822
13823 case OPTION_DOUBLE_FLOAT:
13824 file_mips_opts.single_float = 0;
13825 break;
13826
13827 case OPTION_SOFT_FLOAT:
13828 file_mips_opts.soft_float = 1;
13829 break;
13830
13831 case OPTION_HARD_FLOAT:
13832 file_mips_opts.soft_float = 0;
13833 break;
13834
13835 case OPTION_MABI:
13836 if (strcmp (arg, "32") == 0)
13837 mips_abi = O32_ABI;
13838 else if (strcmp (arg, "o64") == 0)
13839 mips_abi = O64_ABI;
13840 else if (strcmp (arg, "n32") == 0)
13841 mips_abi = N32_ABI;
13842 else if (strcmp (arg, "64") == 0)
13843 {
13844 mips_abi = N64_ABI;
13845 if (! support_64bit_objects())
13846 as_fatal (_("no compiled in support for 64 bit object file "
13847 "format"));
13848 }
13849 else if (strcmp (arg, "eabi") == 0)
13850 mips_abi = EABI_ABI;
13851 else
13852 {
13853 as_fatal (_("invalid abi -mabi=%s"), arg);
13854 return 0;
13855 }
13856 break;
13857
13858 case OPTION_M7000_HILO_FIX:
13859 mips_7000_hilo_fix = TRUE;
13860 break;
13861
13862 case OPTION_MNO_7000_HILO_FIX:
13863 mips_7000_hilo_fix = FALSE;
13864 break;
13865
13866 case OPTION_MDEBUG:
13867 mips_flag_mdebug = TRUE;
13868 break;
13869
13870 case OPTION_NO_MDEBUG:
13871 mips_flag_mdebug = FALSE;
13872 break;
13873
13874 case OPTION_PDR:
13875 mips_flag_pdr = TRUE;
13876 break;
13877
13878 case OPTION_NO_PDR:
13879 mips_flag_pdr = FALSE;
13880 break;
13881
13882 case OPTION_MVXWORKS_PIC:
13883 mips_pic = VXWORKS_PIC;
13884 break;
13885
13886 case OPTION_NAN:
13887 if (strcmp (arg, "2008") == 0)
13888 mips_flag_nan2008 = TRUE;
13889 else if (strcmp (arg, "legacy") == 0)
13890 mips_flag_nan2008 = FALSE;
13891 else
13892 {
13893 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
13894 return 0;
13895 }
13896 break;
13897
13898 default:
13899 return 0;
13900 }
13901
13902 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
13903
13904 return 1;
13905 }
13906 \f
13907 /* Set up globals to generate code for the ISA or processor
13908 described by INFO. */
13909
13910 static void
13911 mips_set_architecture (const struct mips_cpu_info *info)
13912 {
13913 if (info != 0)
13914 {
13915 file_mips_opts.arch = info->cpu;
13916 mips_opts.arch = info->cpu;
13917 mips_opts.isa = info->isa;
13918 }
13919 }
13920
13921
13922 /* Likewise for tuning. */
13923
13924 static void
13925 mips_set_tune (const struct mips_cpu_info *info)
13926 {
13927 if (info != 0)
13928 mips_tune = info->cpu;
13929 }
13930
13931
13932 void
13933 mips_after_parse_args (void)
13934 {
13935 const struct mips_cpu_info *arch_info = 0;
13936 const struct mips_cpu_info *tune_info = 0;
13937
13938 /* GP relative stuff not working for PE */
13939 if (strncmp (TARGET_OS, "pe", 2) == 0)
13940 {
13941 if (g_switch_seen && g_switch_value != 0)
13942 as_bad (_("-G not supported in this configuration"));
13943 g_switch_value = 0;
13944 }
13945
13946 if (mips_abi == NO_ABI)
13947 mips_abi = MIPS_DEFAULT_ABI;
13948
13949 /* The following code determines the architecture and register size.
13950 Similar code was added to GCC 3.3 (see override_options() in
13951 config/mips/mips.c). The GAS and GCC code should be kept in sync
13952 as much as possible. */
13953
13954 if (mips_arch_string != 0)
13955 arch_info = mips_parse_cpu ("-march", mips_arch_string);
13956
13957 if (file_mips_opts.isa != ISA_UNKNOWN)
13958 {
13959 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
13960 ISA level specified by -mipsN, while arch_info->isa contains
13961 the -march selection (if any). */
13962 if (arch_info != 0)
13963 {
13964 /* -march takes precedence over -mipsN, since it is more descriptive.
13965 There's no harm in specifying both as long as the ISA levels
13966 are the same. */
13967 if (file_mips_opts.isa != arch_info->isa)
13968 as_bad (_("-%s conflicts with the other architecture options,"
13969 " which imply -%s"),
13970 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
13971 mips_cpu_info_from_isa (arch_info->isa)->name);
13972 }
13973 else
13974 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
13975 }
13976
13977 if (arch_info == 0)
13978 {
13979 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
13980 gas_assert (arch_info);
13981 }
13982
13983 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
13984 as_bad (_("-march=%s is not compatible with the selected ABI"),
13985 arch_info->name);
13986
13987 mips_set_architecture (arch_info);
13988
13989 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
13990 processor. */
13991 if (mips_tune_string != 0)
13992 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
13993
13994 if (tune_info == 0)
13995 mips_set_tune (arch_info);
13996 else
13997 mips_set_tune (tune_info);
13998
13999 if (file_mips_opts.gp32 >= 0)
14000 {
14001 /* The user specified the size of the integer registers. Make sure
14002 it agrees with the ABI and ISA. */
14003 if (file_mips_opts.gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
14004 as_bad (_("-mgp64 used with a 32-bit processor"));
14005 else if (file_mips_opts.gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
14006 as_bad (_("-mgp32 used with a 64-bit ABI"));
14007 else if (file_mips_opts.gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
14008 as_bad (_("-mgp64 used with a 32-bit ABI"));
14009 }
14010 else
14011 {
14012 /* Infer the integer register size from the ABI and processor.
14013 Restrict ourselves to 32-bit registers if that's all the
14014 processor has, or if the ABI cannot handle 64-bit registers. */
14015 file_mips_opts.gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
14016 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
14017 }
14018
14019 switch (file_mips_opts.fp)
14020 {
14021 default:
14022 case -1:
14023 /* No user specified float register size.
14024 ??? GAS treats single-float processors as though they had 64-bit
14025 float registers (although it complains when double-precision
14026 instructions are used). As things stand, saying they have 32-bit
14027 registers would lead to spurious "register must be even" messages.
14028 So here we assume float registers are never smaller than the
14029 integer ones. */
14030 if (file_mips_opts.gp32 == 0)
14031 /* 64-bit integer registers implies 64-bit float registers. */
14032 file_mips_opts.fp = 64;
14033 else if ((mips_opts.ase & FP64_ASES)
14034 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
14035 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
14036 file_mips_opts.fp = 64;
14037 else
14038 /* 32-bit float registers. */
14039 file_mips_opts.fp = 32;
14040 break;
14041
14042 /* The user specified the size of the float registers. Check if it
14043 agrees with the ABI and ISA. */
14044 case 64:
14045 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
14046 as_bad (_("-mfp64 used with a 32-bit fpu"));
14047 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
14048 && !ISA_HAS_MXHC1 (mips_opts.isa))
14049 as_warn (_("-mfp64 used with a 32-bit ABI"));
14050 break;
14051 case 32:
14052 if (ABI_NEEDS_64BIT_REGS (mips_abi))
14053 as_warn (_("-mfp32 used with a 64-bit ABI"));
14054 break;
14055 }
14056
14057 /* End of GCC-shared inference code. */
14058
14059 /* This flag is set when we have a 64-bit capable CPU but use only
14060 32-bit wide registers. Note that EABI does not use it. */
14061 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
14062 && ((mips_abi == NO_ABI && file_mips_opts.gp32 == 1)
14063 || mips_abi == O32_ABI))
14064 mips_32bitmode = 1;
14065
14066 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
14067 as_bad (_("trap exception not supported at ISA 1"));
14068
14069 /* If the selected architecture includes support for ASEs, enable
14070 generation of code for them. */
14071 if (mips_opts.mips16 == -1)
14072 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
14073 if (mips_opts.micromips == -1)
14074 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
14075 ? 1 : 0;
14076
14077 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
14078 ASEs from being selected implicitly. */
14079 if (file_mips_opts.fp != 64)
14080 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
14081
14082 /* If the user didn't explicitly select or deselect a particular ASE,
14083 use the default setting for the CPU. */
14084 mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
14085
14086 file_mips_opts.isa = mips_opts.isa;
14087 file_mips_opts.ase = mips_opts.ase;
14088 mips_opts.gp32 = file_mips_opts.gp32;
14089 mips_opts.fp = file_mips_opts.fp;
14090 mips_opts.soft_float = file_mips_opts.soft_float;
14091 mips_opts.single_float = file_mips_opts.single_float;
14092
14093 mips_check_isa_supports_ases ();
14094
14095 if (mips_flag_mdebug < 0)
14096 mips_flag_mdebug = 0;
14097 }
14098 \f
14099 void
14100 mips_init_after_args (void)
14101 {
14102 /* initialize opcodes */
14103 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14104 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14105 }
14106
14107 long
14108 md_pcrel_from (fixS *fixP)
14109 {
14110 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14111 switch (fixP->fx_r_type)
14112 {
14113 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14114 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14115 /* Return the address of the delay slot. */
14116 return addr + 2;
14117
14118 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14119 case BFD_RELOC_MICROMIPS_JMP:
14120 case BFD_RELOC_16_PCREL_S2:
14121 case BFD_RELOC_MIPS_JMP:
14122 /* Return the address of the delay slot. */
14123 return addr + 4;
14124
14125 default:
14126 return addr;
14127 }
14128 }
14129
14130 /* This is called before the symbol table is processed. In order to
14131 work with gcc when using mips-tfile, we must keep all local labels.
14132 However, in other cases, we want to discard them. If we were
14133 called with -g, but we didn't see any debugging information, it may
14134 mean that gcc is smuggling debugging information through to
14135 mips-tfile, in which case we must generate all local labels. */
14136
14137 void
14138 mips_frob_file_before_adjust (void)
14139 {
14140 #ifndef NO_ECOFF_DEBUGGING
14141 if (ECOFF_DEBUGGING
14142 && mips_debug != 0
14143 && ! ecoff_debugging_seen)
14144 flag_keep_locals = 1;
14145 #endif
14146 }
14147
14148 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14149 the corresponding LO16 reloc. This is called before md_apply_fix and
14150 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14151 relocation operators.
14152
14153 For our purposes, a %lo() expression matches a %got() or %hi()
14154 expression if:
14155
14156 (a) it refers to the same symbol; and
14157 (b) the offset applied in the %lo() expression is no lower than
14158 the offset applied in the %got() or %hi().
14159
14160 (b) allows us to cope with code like:
14161
14162 lui $4,%hi(foo)
14163 lh $4,%lo(foo+2)($4)
14164
14165 ...which is legal on RELA targets, and has a well-defined behaviour
14166 if the user knows that adding 2 to "foo" will not induce a carry to
14167 the high 16 bits.
14168
14169 When several %lo()s match a particular %got() or %hi(), we use the
14170 following rules to distinguish them:
14171
14172 (1) %lo()s with smaller offsets are a better match than %lo()s with
14173 higher offsets.
14174
14175 (2) %lo()s with no matching %got() or %hi() are better than those
14176 that already have a matching %got() or %hi().
14177
14178 (3) later %lo()s are better than earlier %lo()s.
14179
14180 These rules are applied in order.
14181
14182 (1) means, among other things, that %lo()s with identical offsets are
14183 chosen if they exist.
14184
14185 (2) means that we won't associate several high-part relocations with
14186 the same low-part relocation unless there's no alternative. Having
14187 several high parts for the same low part is a GNU extension; this rule
14188 allows careful users to avoid it.
14189
14190 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14191 with the last high-part relocation being at the front of the list.
14192 It therefore makes sense to choose the last matching low-part
14193 relocation, all other things being equal. It's also easier
14194 to code that way. */
14195
14196 void
14197 mips_frob_file (void)
14198 {
14199 struct mips_hi_fixup *l;
14200 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14201
14202 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14203 {
14204 segment_info_type *seginfo;
14205 bfd_boolean matched_lo_p;
14206 fixS **hi_pos, **lo_pos, **pos;
14207
14208 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14209
14210 /* If a GOT16 relocation turns out to be against a global symbol,
14211 there isn't supposed to be a matching LO. Ignore %gots against
14212 constants; we'll report an error for those later. */
14213 if (got16_reloc_p (l->fixp->fx_r_type)
14214 && !(l->fixp->fx_addsy
14215 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14216 continue;
14217
14218 /* Check quickly whether the next fixup happens to be a matching %lo. */
14219 if (fixup_has_matching_lo_p (l->fixp))
14220 continue;
14221
14222 seginfo = seg_info (l->seg);
14223
14224 /* Set HI_POS to the position of this relocation in the chain.
14225 Set LO_POS to the position of the chosen low-part relocation.
14226 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14227 relocation that matches an immediately-preceding high-part
14228 relocation. */
14229 hi_pos = NULL;
14230 lo_pos = NULL;
14231 matched_lo_p = FALSE;
14232 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14233
14234 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14235 {
14236 if (*pos == l->fixp)
14237 hi_pos = pos;
14238
14239 if ((*pos)->fx_r_type == looking_for_rtype
14240 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14241 && (*pos)->fx_offset >= l->fixp->fx_offset
14242 && (lo_pos == NULL
14243 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14244 || (!matched_lo_p
14245 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14246 lo_pos = pos;
14247
14248 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14249 && fixup_has_matching_lo_p (*pos));
14250 }
14251
14252 /* If we found a match, remove the high-part relocation from its
14253 current position and insert it before the low-part relocation.
14254 Make the offsets match so that fixup_has_matching_lo_p()
14255 will return true.
14256
14257 We don't warn about unmatched high-part relocations since some
14258 versions of gcc have been known to emit dead "lui ...%hi(...)"
14259 instructions. */
14260 if (lo_pos != NULL)
14261 {
14262 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14263 if (l->fixp->fx_next != *lo_pos)
14264 {
14265 *hi_pos = l->fixp->fx_next;
14266 l->fixp->fx_next = *lo_pos;
14267 *lo_pos = l->fixp;
14268 }
14269 }
14270 }
14271 }
14272
14273 int
14274 mips_force_relocation (fixS *fixp)
14275 {
14276 if (generic_force_reloc (fixp))
14277 return 1;
14278
14279 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14280 so that the linker relaxation can update targets. */
14281 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14282 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14283 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14284 return 1;
14285
14286 return 0;
14287 }
14288
14289 /* Read the instruction associated with RELOC from BUF. */
14290
14291 static unsigned int
14292 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14293 {
14294 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14295 return read_compressed_insn (buf, 4);
14296 else
14297 return read_insn (buf);
14298 }
14299
14300 /* Write instruction INSN to BUF, given that it has been relocated
14301 by RELOC. */
14302
14303 static void
14304 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14305 unsigned long insn)
14306 {
14307 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14308 write_compressed_insn (buf, insn, 4);
14309 else
14310 write_insn (buf, insn);
14311 }
14312
14313 /* Apply a fixup to the object file. */
14314
14315 void
14316 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14317 {
14318 char *buf;
14319 unsigned long insn;
14320 reloc_howto_type *howto;
14321
14322 if (fixP->fx_pcrel)
14323 switch (fixP->fx_r_type)
14324 {
14325 case BFD_RELOC_16_PCREL_S2:
14326 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14327 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14328 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14329 case BFD_RELOC_32_PCREL:
14330 break;
14331
14332 case BFD_RELOC_32:
14333 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14334 break;
14335
14336 default:
14337 as_bad_where (fixP->fx_file, fixP->fx_line,
14338 _("PC-relative reference to a different section"));
14339 break;
14340 }
14341
14342 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14343 that have no MIPS ELF equivalent. */
14344 if (fixP->fx_r_type != BFD_RELOC_8)
14345 {
14346 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14347 if (!howto)
14348 return;
14349 }
14350
14351 gas_assert (fixP->fx_size == 2
14352 || fixP->fx_size == 4
14353 || fixP->fx_r_type == BFD_RELOC_8
14354 || fixP->fx_r_type == BFD_RELOC_16
14355 || fixP->fx_r_type == BFD_RELOC_64
14356 || fixP->fx_r_type == BFD_RELOC_CTOR
14357 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14358 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14359 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14360 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14361 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
14362
14363 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14364
14365 /* Don't treat parts of a composite relocation as done. There are two
14366 reasons for this:
14367
14368 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14369 should nevertheless be emitted if the first part is.
14370
14371 (2) In normal usage, composite relocations are never assembly-time
14372 constants. The easiest way of dealing with the pathological
14373 exceptions is to generate a relocation against STN_UNDEF and
14374 leave everything up to the linker. */
14375 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14376 fixP->fx_done = 1;
14377
14378 switch (fixP->fx_r_type)
14379 {
14380 case BFD_RELOC_MIPS_TLS_GD:
14381 case BFD_RELOC_MIPS_TLS_LDM:
14382 case BFD_RELOC_MIPS_TLS_DTPREL32:
14383 case BFD_RELOC_MIPS_TLS_DTPREL64:
14384 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14385 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14386 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14387 case BFD_RELOC_MIPS_TLS_TPREL32:
14388 case BFD_RELOC_MIPS_TLS_TPREL64:
14389 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14390 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14391 case BFD_RELOC_MICROMIPS_TLS_GD:
14392 case BFD_RELOC_MICROMIPS_TLS_LDM:
14393 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14394 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14395 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14396 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14397 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14398 case BFD_RELOC_MIPS16_TLS_GD:
14399 case BFD_RELOC_MIPS16_TLS_LDM:
14400 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14401 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14402 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14403 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14404 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14405 if (!fixP->fx_addsy)
14406 {
14407 as_bad_where (fixP->fx_file, fixP->fx_line,
14408 _("TLS relocation against a constant"));
14409 break;
14410 }
14411 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14412 /* fall through */
14413
14414 case BFD_RELOC_MIPS_JMP:
14415 case BFD_RELOC_MIPS_SHIFT5:
14416 case BFD_RELOC_MIPS_SHIFT6:
14417 case BFD_RELOC_MIPS_GOT_DISP:
14418 case BFD_RELOC_MIPS_GOT_PAGE:
14419 case BFD_RELOC_MIPS_GOT_OFST:
14420 case BFD_RELOC_MIPS_SUB:
14421 case BFD_RELOC_MIPS_INSERT_A:
14422 case BFD_RELOC_MIPS_INSERT_B:
14423 case BFD_RELOC_MIPS_DELETE:
14424 case BFD_RELOC_MIPS_HIGHEST:
14425 case BFD_RELOC_MIPS_HIGHER:
14426 case BFD_RELOC_MIPS_SCN_DISP:
14427 case BFD_RELOC_MIPS_REL16:
14428 case BFD_RELOC_MIPS_RELGOT:
14429 case BFD_RELOC_MIPS_JALR:
14430 case BFD_RELOC_HI16:
14431 case BFD_RELOC_HI16_S:
14432 case BFD_RELOC_LO16:
14433 case BFD_RELOC_GPREL16:
14434 case BFD_RELOC_MIPS_LITERAL:
14435 case BFD_RELOC_MIPS_CALL16:
14436 case BFD_RELOC_MIPS_GOT16:
14437 case BFD_RELOC_GPREL32:
14438 case BFD_RELOC_MIPS_GOT_HI16:
14439 case BFD_RELOC_MIPS_GOT_LO16:
14440 case BFD_RELOC_MIPS_CALL_HI16:
14441 case BFD_RELOC_MIPS_CALL_LO16:
14442 case BFD_RELOC_MIPS16_GPREL:
14443 case BFD_RELOC_MIPS16_GOT16:
14444 case BFD_RELOC_MIPS16_CALL16:
14445 case BFD_RELOC_MIPS16_HI16:
14446 case BFD_RELOC_MIPS16_HI16_S:
14447 case BFD_RELOC_MIPS16_LO16:
14448 case BFD_RELOC_MIPS16_JMP:
14449 case BFD_RELOC_MICROMIPS_JMP:
14450 case BFD_RELOC_MICROMIPS_GOT_DISP:
14451 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14452 case BFD_RELOC_MICROMIPS_GOT_OFST:
14453 case BFD_RELOC_MICROMIPS_SUB:
14454 case BFD_RELOC_MICROMIPS_HIGHEST:
14455 case BFD_RELOC_MICROMIPS_HIGHER:
14456 case BFD_RELOC_MICROMIPS_SCN_DISP:
14457 case BFD_RELOC_MICROMIPS_JALR:
14458 case BFD_RELOC_MICROMIPS_HI16:
14459 case BFD_RELOC_MICROMIPS_HI16_S:
14460 case BFD_RELOC_MICROMIPS_LO16:
14461 case BFD_RELOC_MICROMIPS_GPREL16:
14462 case BFD_RELOC_MICROMIPS_LITERAL:
14463 case BFD_RELOC_MICROMIPS_CALL16:
14464 case BFD_RELOC_MICROMIPS_GOT16:
14465 case BFD_RELOC_MICROMIPS_GOT_HI16:
14466 case BFD_RELOC_MICROMIPS_GOT_LO16:
14467 case BFD_RELOC_MICROMIPS_CALL_HI16:
14468 case BFD_RELOC_MICROMIPS_CALL_LO16:
14469 case BFD_RELOC_MIPS_EH:
14470 if (fixP->fx_done)
14471 {
14472 offsetT value;
14473
14474 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14475 {
14476 insn = read_reloc_insn (buf, fixP->fx_r_type);
14477 if (mips16_reloc_p (fixP->fx_r_type))
14478 insn |= mips16_immed_extend (value, 16);
14479 else
14480 insn |= (value & 0xffff);
14481 write_reloc_insn (buf, fixP->fx_r_type, insn);
14482 }
14483 else
14484 as_bad_where (fixP->fx_file, fixP->fx_line,
14485 _("unsupported constant in relocation"));
14486 }
14487 break;
14488
14489 case BFD_RELOC_64:
14490 /* This is handled like BFD_RELOC_32, but we output a sign
14491 extended value if we are only 32 bits. */
14492 if (fixP->fx_done)
14493 {
14494 if (8 <= sizeof (valueT))
14495 md_number_to_chars (buf, *valP, 8);
14496 else
14497 {
14498 valueT hiv;
14499
14500 if ((*valP & 0x80000000) != 0)
14501 hiv = 0xffffffff;
14502 else
14503 hiv = 0;
14504 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14505 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14506 }
14507 }
14508 break;
14509
14510 case BFD_RELOC_RVA:
14511 case BFD_RELOC_32:
14512 case BFD_RELOC_32_PCREL:
14513 case BFD_RELOC_16:
14514 case BFD_RELOC_8:
14515 /* If we are deleting this reloc entry, we must fill in the
14516 value now. This can happen if we have a .word which is not
14517 resolved when it appears but is later defined. */
14518 if (fixP->fx_done)
14519 md_number_to_chars (buf, *valP, fixP->fx_size);
14520 break;
14521
14522 case BFD_RELOC_16_PCREL_S2:
14523 if ((*valP & 0x3) != 0)
14524 as_bad_where (fixP->fx_file, fixP->fx_line,
14525 _("branch to misaligned address (%lx)"), (long) *valP);
14526
14527 /* We need to save the bits in the instruction since fixup_segment()
14528 might be deleting the relocation entry (i.e., a branch within
14529 the current segment). */
14530 if (! fixP->fx_done)
14531 break;
14532
14533 /* Update old instruction data. */
14534 insn = read_insn (buf);
14535
14536 if (*valP + 0x20000 <= 0x3ffff)
14537 {
14538 insn |= (*valP >> 2) & 0xffff;
14539 write_insn (buf, insn);
14540 }
14541 else if (mips_pic == NO_PIC
14542 && fixP->fx_done
14543 && fixP->fx_frag->fr_address >= text_section->vma
14544 && (fixP->fx_frag->fr_address
14545 < text_section->vma + bfd_get_section_size (text_section))
14546 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
14547 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
14548 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
14549 {
14550 /* The branch offset is too large. If this is an
14551 unconditional branch, and we are not generating PIC code,
14552 we can convert it to an absolute jump instruction. */
14553 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
14554 insn = 0x0c000000; /* jal */
14555 else
14556 insn = 0x08000000; /* j */
14557 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
14558 fixP->fx_done = 0;
14559 fixP->fx_addsy = section_symbol (text_section);
14560 *valP += md_pcrel_from (fixP);
14561 write_insn (buf, insn);
14562 }
14563 else
14564 {
14565 /* If we got here, we have branch-relaxation disabled,
14566 and there's nothing we can do to fix this instruction
14567 without turning it into a longer sequence. */
14568 as_bad_where (fixP->fx_file, fixP->fx_line,
14569 _("branch out of range"));
14570 }
14571 break;
14572
14573 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14574 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14575 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14576 /* We adjust the offset back to even. */
14577 if ((*valP & 0x1) != 0)
14578 --(*valP);
14579
14580 if (! fixP->fx_done)
14581 break;
14582
14583 /* Should never visit here, because we keep the relocation. */
14584 abort ();
14585 break;
14586
14587 case BFD_RELOC_VTABLE_INHERIT:
14588 fixP->fx_done = 0;
14589 if (fixP->fx_addsy
14590 && !S_IS_DEFINED (fixP->fx_addsy)
14591 && !S_IS_WEAK (fixP->fx_addsy))
14592 S_SET_WEAK (fixP->fx_addsy);
14593 break;
14594
14595 case BFD_RELOC_VTABLE_ENTRY:
14596 fixP->fx_done = 0;
14597 break;
14598
14599 default:
14600 abort ();
14601 }
14602
14603 /* Remember value for tc_gen_reloc. */
14604 fixP->fx_addnumber = *valP;
14605 }
14606
14607 static symbolS *
14608 get_symbol (void)
14609 {
14610 int c;
14611 char *name;
14612 symbolS *p;
14613
14614 name = input_line_pointer;
14615 c = get_symbol_end ();
14616 p = (symbolS *) symbol_find_or_make (name);
14617 *input_line_pointer = c;
14618 return p;
14619 }
14620
14621 /* Align the current frag to a given power of two. If a particular
14622 fill byte should be used, FILL points to an integer that contains
14623 that byte, otherwise FILL is null.
14624
14625 This function used to have the comment:
14626
14627 The MIPS assembler also automatically adjusts any preceding label.
14628
14629 The implementation therefore applied the adjustment to a maximum of
14630 one label. However, other label adjustments are applied to batches
14631 of labels, and adjusting just one caused problems when new labels
14632 were added for the sake of debugging or unwind information.
14633 We therefore adjust all preceding labels (given as LABELS) instead. */
14634
14635 static void
14636 mips_align (int to, int *fill, struct insn_label_list *labels)
14637 {
14638 mips_emit_delays ();
14639 mips_record_compressed_mode ();
14640 if (fill == NULL && subseg_text_p (now_seg))
14641 frag_align_code (to, 0);
14642 else
14643 frag_align (to, fill ? *fill : 0, 0);
14644 record_alignment (now_seg, to);
14645 mips_move_labels (labels, FALSE);
14646 }
14647
14648 /* Align to a given power of two. .align 0 turns off the automatic
14649 alignment used by the data creating pseudo-ops. */
14650
14651 static void
14652 s_align (int x ATTRIBUTE_UNUSED)
14653 {
14654 int temp, fill_value, *fill_ptr;
14655 long max_alignment = 28;
14656
14657 /* o Note that the assembler pulls down any immediately preceding label
14658 to the aligned address.
14659 o It's not documented but auto alignment is reinstated by
14660 a .align pseudo instruction.
14661 o Note also that after auto alignment is turned off the mips assembler
14662 issues an error on attempt to assemble an improperly aligned data item.
14663 We don't. */
14664
14665 temp = get_absolute_expression ();
14666 if (temp > max_alignment)
14667 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
14668 else if (temp < 0)
14669 {
14670 as_warn (_("alignment negative, 0 assumed"));
14671 temp = 0;
14672 }
14673 if (*input_line_pointer == ',')
14674 {
14675 ++input_line_pointer;
14676 fill_value = get_absolute_expression ();
14677 fill_ptr = &fill_value;
14678 }
14679 else
14680 fill_ptr = 0;
14681 if (temp)
14682 {
14683 segment_info_type *si = seg_info (now_seg);
14684 struct insn_label_list *l = si->label_list;
14685 /* Auto alignment should be switched on by next section change. */
14686 auto_align = 1;
14687 mips_align (temp, fill_ptr, l);
14688 }
14689 else
14690 {
14691 auto_align = 0;
14692 }
14693
14694 demand_empty_rest_of_line ();
14695 }
14696
14697 static void
14698 s_change_sec (int sec)
14699 {
14700 segT seg;
14701
14702 /* The ELF backend needs to know that we are changing sections, so
14703 that .previous works correctly. We could do something like check
14704 for an obj_section_change_hook macro, but that might be confusing
14705 as it would not be appropriate to use it in the section changing
14706 functions in read.c, since obj-elf.c intercepts those. FIXME:
14707 This should be cleaner, somehow. */
14708 obj_elf_section_change_hook ();
14709
14710 mips_emit_delays ();
14711
14712 switch (sec)
14713 {
14714 case 't':
14715 s_text (0);
14716 break;
14717 case 'd':
14718 s_data (0);
14719 break;
14720 case 'b':
14721 subseg_set (bss_section, (subsegT) get_absolute_expression ());
14722 demand_empty_rest_of_line ();
14723 break;
14724
14725 case 'r':
14726 seg = subseg_new (RDATA_SECTION_NAME,
14727 (subsegT) get_absolute_expression ());
14728 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
14729 | SEC_READONLY | SEC_RELOC
14730 | SEC_DATA));
14731 if (strncmp (TARGET_OS, "elf", 3) != 0)
14732 record_alignment (seg, 4);
14733 demand_empty_rest_of_line ();
14734 break;
14735
14736 case 's':
14737 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
14738 bfd_set_section_flags (stdoutput, seg,
14739 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
14740 if (strncmp (TARGET_OS, "elf", 3) != 0)
14741 record_alignment (seg, 4);
14742 demand_empty_rest_of_line ();
14743 break;
14744
14745 case 'B':
14746 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
14747 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
14748 if (strncmp (TARGET_OS, "elf", 3) != 0)
14749 record_alignment (seg, 4);
14750 demand_empty_rest_of_line ();
14751 break;
14752 }
14753
14754 auto_align = 1;
14755 }
14756
14757 void
14758 s_change_section (int ignore ATTRIBUTE_UNUSED)
14759 {
14760 char *section_name;
14761 char c;
14762 char next_c = 0;
14763 int section_type;
14764 int section_flag;
14765 int section_entry_size;
14766 int section_alignment;
14767
14768 section_name = input_line_pointer;
14769 c = get_symbol_end ();
14770 if (c)
14771 next_c = *(input_line_pointer + 1);
14772
14773 /* Do we have .section Name<,"flags">? */
14774 if (c != ',' || (c == ',' && next_c == '"'))
14775 {
14776 /* just after name is now '\0'. */
14777 *input_line_pointer = c;
14778 input_line_pointer = section_name;
14779 obj_elf_section (ignore);
14780 return;
14781 }
14782 input_line_pointer++;
14783
14784 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
14785 if (c == ',')
14786 section_type = get_absolute_expression ();
14787 else
14788 section_type = 0;
14789 if (*input_line_pointer++ == ',')
14790 section_flag = get_absolute_expression ();
14791 else
14792 section_flag = 0;
14793 if (*input_line_pointer++ == ',')
14794 section_entry_size = get_absolute_expression ();
14795 else
14796 section_entry_size = 0;
14797 if (*input_line_pointer++ == ',')
14798 section_alignment = get_absolute_expression ();
14799 else
14800 section_alignment = 0;
14801 /* FIXME: really ignore? */
14802 (void) section_alignment;
14803
14804 section_name = xstrdup (section_name);
14805
14806 /* When using the generic form of .section (as implemented by obj-elf.c),
14807 there's no way to set the section type to SHT_MIPS_DWARF. Users have
14808 traditionally had to fall back on the more common @progbits instead.
14809
14810 There's nothing really harmful in this, since bfd will correct
14811 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
14812 means that, for backwards compatibility, the special_section entries
14813 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
14814
14815 Even so, we shouldn't force users of the MIPS .section syntax to
14816 incorrectly label the sections as SHT_PROGBITS. The best compromise
14817 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
14818 generic type-checking code. */
14819 if (section_type == SHT_MIPS_DWARF)
14820 section_type = SHT_PROGBITS;
14821
14822 obj_elf_change_section (section_name, section_type, section_flag,
14823 section_entry_size, 0, 0, 0);
14824
14825 if (now_seg->name != section_name)
14826 free (section_name);
14827 }
14828
14829 void
14830 mips_enable_auto_align (void)
14831 {
14832 auto_align = 1;
14833 }
14834
14835 static void
14836 s_cons (int log_size)
14837 {
14838 segment_info_type *si = seg_info (now_seg);
14839 struct insn_label_list *l = si->label_list;
14840
14841 mips_emit_delays ();
14842 if (log_size > 0 && auto_align)
14843 mips_align (log_size, 0, l);
14844 cons (1 << log_size);
14845 mips_clear_insn_labels ();
14846 }
14847
14848 static void
14849 s_float_cons (int type)
14850 {
14851 segment_info_type *si = seg_info (now_seg);
14852 struct insn_label_list *l = si->label_list;
14853
14854 mips_emit_delays ();
14855
14856 if (auto_align)
14857 {
14858 if (type == 'd')
14859 mips_align (3, 0, l);
14860 else
14861 mips_align (2, 0, l);
14862 }
14863
14864 float_cons (type);
14865 mips_clear_insn_labels ();
14866 }
14867
14868 /* Handle .globl. We need to override it because on Irix 5 you are
14869 permitted to say
14870 .globl foo .text
14871 where foo is an undefined symbol, to mean that foo should be
14872 considered to be the address of a function. */
14873
14874 static void
14875 s_mips_globl (int x ATTRIBUTE_UNUSED)
14876 {
14877 char *name;
14878 int c;
14879 symbolS *symbolP;
14880 flagword flag;
14881
14882 do
14883 {
14884 name = input_line_pointer;
14885 c = get_symbol_end ();
14886 symbolP = symbol_find_or_make (name);
14887 S_SET_EXTERNAL (symbolP);
14888
14889 *input_line_pointer = c;
14890 SKIP_WHITESPACE ();
14891
14892 /* On Irix 5, every global symbol that is not explicitly labelled as
14893 being a function is apparently labelled as being an object. */
14894 flag = BSF_OBJECT;
14895
14896 if (!is_end_of_line[(unsigned char) *input_line_pointer]
14897 && (*input_line_pointer != ','))
14898 {
14899 char *secname;
14900 asection *sec;
14901
14902 secname = input_line_pointer;
14903 c = get_symbol_end ();
14904 sec = bfd_get_section_by_name (stdoutput, secname);
14905 if (sec == NULL)
14906 as_bad (_("%s: no such section"), secname);
14907 *input_line_pointer = c;
14908
14909 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
14910 flag = BSF_FUNCTION;
14911 }
14912
14913 symbol_get_bfdsym (symbolP)->flags |= flag;
14914
14915 c = *input_line_pointer;
14916 if (c == ',')
14917 {
14918 input_line_pointer++;
14919 SKIP_WHITESPACE ();
14920 if (is_end_of_line[(unsigned char) *input_line_pointer])
14921 c = '\n';
14922 }
14923 }
14924 while (c == ',');
14925
14926 demand_empty_rest_of_line ();
14927 }
14928
14929 static void
14930 s_option (int x ATTRIBUTE_UNUSED)
14931 {
14932 char *opt;
14933 char c;
14934
14935 opt = input_line_pointer;
14936 c = get_symbol_end ();
14937
14938 if (*opt == 'O')
14939 {
14940 /* FIXME: What does this mean? */
14941 }
14942 else if (strncmp (opt, "pic", 3) == 0)
14943 {
14944 int i;
14945
14946 i = atoi (opt + 3);
14947 if (i == 0)
14948 mips_pic = NO_PIC;
14949 else if (i == 2)
14950 {
14951 mips_pic = SVR4_PIC;
14952 mips_abicalls = TRUE;
14953 }
14954 else
14955 as_bad (_(".option pic%d not supported"), i);
14956
14957 if (mips_pic == SVR4_PIC)
14958 {
14959 if (g_switch_seen && g_switch_value != 0)
14960 as_warn (_("-G may not be used with SVR4 PIC code"));
14961 g_switch_value = 0;
14962 bfd_set_gp_size (stdoutput, 0);
14963 }
14964 }
14965 else
14966 as_warn (_("unrecognized option \"%s\""), opt);
14967
14968 *input_line_pointer = c;
14969 demand_empty_rest_of_line ();
14970 }
14971
14972 /* This structure is used to hold a stack of .set values. */
14973
14974 struct mips_option_stack
14975 {
14976 struct mips_option_stack *next;
14977 struct mips_set_options options;
14978 };
14979
14980 static struct mips_option_stack *mips_opts_stack;
14981
14982 /* Handle the .set pseudo-op. */
14983
14984 static void
14985 s_mipsset (int x ATTRIBUTE_UNUSED)
14986 {
14987 char *name = input_line_pointer, ch;
14988 const struct mips_ase *ase;
14989
14990 while (!is_end_of_line[(unsigned char) *input_line_pointer])
14991 ++input_line_pointer;
14992 ch = *input_line_pointer;
14993 *input_line_pointer = '\0';
14994
14995 if (strcmp (name, "reorder") == 0)
14996 {
14997 if (mips_opts.noreorder)
14998 end_noreorder ();
14999 }
15000 else if (strcmp (name, "noreorder") == 0)
15001 {
15002 if (!mips_opts.noreorder)
15003 start_noreorder ();
15004 }
15005 else if (strncmp (name, "at=", 3) == 0)
15006 {
15007 char *s = name + 3;
15008
15009 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15010 as_bad (_("unrecognized register name `%s'"), s);
15011 }
15012 else if (strcmp (name, "at") == 0)
15013 {
15014 mips_opts.at = ATREG;
15015 }
15016 else if (strcmp (name, "noat") == 0)
15017 {
15018 mips_opts.at = ZERO;
15019 }
15020 else if (strcmp (name, "macro") == 0)
15021 {
15022 mips_opts.warn_about_macros = 0;
15023 }
15024 else if (strcmp (name, "nomacro") == 0)
15025 {
15026 if (mips_opts.noreorder == 0)
15027 as_bad (_("`noreorder' must be set before `nomacro'"));
15028 mips_opts.warn_about_macros = 1;
15029 }
15030 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15031 {
15032 mips_opts.nomove = 0;
15033 }
15034 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15035 {
15036 mips_opts.nomove = 1;
15037 }
15038 else if (strcmp (name, "bopt") == 0)
15039 {
15040 mips_opts.nobopt = 0;
15041 }
15042 else if (strcmp (name, "nobopt") == 0)
15043 {
15044 mips_opts.nobopt = 1;
15045 }
15046 else if (strcmp (name, "gp=default") == 0)
15047 mips_opts.gp32 = file_mips_opts.gp32;
15048 else if (strcmp (name, "gp=32") == 0)
15049 mips_opts.gp32 = 1;
15050 else if (strcmp (name, "gp=64") == 0)
15051 {
15052 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
15053 as_warn (_("%s isa does not support 64-bit registers"),
15054 mips_cpu_info_from_isa (mips_opts.isa)->name);
15055 mips_opts.gp32 = 0;
15056 }
15057 else if (strcmp (name, "fp=default") == 0)
15058 mips_opts.fp = file_mips_opts.fp;
15059 else if (strcmp (name, "fp=32") == 0)
15060 mips_opts.fp = 32;
15061 else if (strcmp (name, "fp=64") == 0)
15062 {
15063 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15064 as_warn (_("%s isa does not support 64-bit floating point registers"),
15065 mips_cpu_info_from_isa (mips_opts.isa)->name);
15066 mips_opts.fp = 64;
15067 }
15068 else if (strcmp (name, "softfloat") == 0)
15069 mips_opts.soft_float = 1;
15070 else if (strcmp (name, "hardfloat") == 0)
15071 mips_opts.soft_float = 0;
15072 else if (strcmp (name, "singlefloat") == 0)
15073 mips_opts.single_float = 1;
15074 else if (strcmp (name, "doublefloat") == 0)
15075 mips_opts.single_float = 0;
15076 else if (strcmp (name, "mips16") == 0
15077 || strcmp (name, "MIPS-16") == 0)
15078 {
15079 if (mips_opts.micromips == 1)
15080 as_fatal (_("`mips16' cannot be used with `micromips'"));
15081 mips_opts.mips16 = 1;
15082 }
15083 else if (strcmp (name, "nomips16") == 0
15084 || strcmp (name, "noMIPS-16") == 0)
15085 mips_opts.mips16 = 0;
15086 else if (strcmp (name, "micromips") == 0)
15087 {
15088 if (mips_opts.mips16 == 1)
15089 as_fatal (_("`micromips' cannot be used with `mips16'"));
15090 mips_opts.micromips = 1;
15091 }
15092 else if (strcmp (name, "nomicromips") == 0)
15093 mips_opts.micromips = 0;
15094 else if (name[0] == 'n'
15095 && name[1] == 'o'
15096 && (ase = mips_lookup_ase (name + 2)))
15097 mips_set_ase (ase, FALSE);
15098 else if ((ase = mips_lookup_ase (name)))
15099 mips_set_ase (ase, TRUE);
15100 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15101 {
15102 int reset = 0;
15103
15104 /* Permit the user to change the ISA and architecture on the fly.
15105 Needless to say, misuse can cause serious problems. */
15106 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15107 {
15108 reset = 1;
15109 mips_opts.isa = file_mips_opts.isa;
15110 mips_opts.arch = file_mips_opts.arch;
15111 }
15112 else if (strncmp (name, "arch=", 5) == 0)
15113 {
15114 const struct mips_cpu_info *p;
15115
15116 p = mips_parse_cpu("internal use", name + 5);
15117 if (!p)
15118 as_bad (_("unknown architecture %s"), name + 5);
15119 else
15120 {
15121 mips_opts.arch = p->cpu;
15122 mips_opts.isa = p->isa;
15123 }
15124 }
15125 else if (strncmp (name, "mips", 4) == 0)
15126 {
15127 const struct mips_cpu_info *p;
15128
15129 p = mips_parse_cpu("internal use", name);
15130 if (!p)
15131 as_bad (_("unknown ISA level %s"), name + 4);
15132 else
15133 {
15134 mips_opts.arch = p->cpu;
15135 mips_opts.isa = p->isa;
15136 }
15137 }
15138 else
15139 as_bad (_("unknown ISA or architecture %s"), name);
15140
15141 switch (mips_opts.isa)
15142 {
15143 case 0:
15144 break;
15145 case ISA_MIPS1:
15146 case ISA_MIPS2:
15147 case ISA_MIPS32:
15148 case ISA_MIPS32R2:
15149 case ISA_MIPS32R3:
15150 case ISA_MIPS32R5:
15151 mips_opts.gp32 = 1;
15152 mips_opts.fp = 32;
15153 break;
15154 case ISA_MIPS3:
15155 case ISA_MIPS4:
15156 case ISA_MIPS5:
15157 case ISA_MIPS64:
15158 case ISA_MIPS64R2:
15159 case ISA_MIPS64R3:
15160 case ISA_MIPS64R5:
15161 mips_opts.gp32 = 0;
15162 if (mips_opts.arch == CPU_R5900)
15163 {
15164 mips_opts.fp = 32;
15165 }
15166 else
15167 {
15168 mips_opts.fp = 64;
15169 }
15170 break;
15171 default:
15172 as_bad (_("unknown ISA level %s"), name + 4);
15173 break;
15174 }
15175 if (reset)
15176 {
15177 mips_opts.gp32 = file_mips_opts.gp32;
15178 mips_opts.fp = file_mips_opts.fp;
15179 }
15180 }
15181 else if (strcmp (name, "autoextend") == 0)
15182 mips_opts.noautoextend = 0;
15183 else if (strcmp (name, "noautoextend") == 0)
15184 mips_opts.noautoextend = 1;
15185 else if (strcmp (name, "insn32") == 0)
15186 mips_opts.insn32 = TRUE;
15187 else if (strcmp (name, "noinsn32") == 0)
15188 mips_opts.insn32 = FALSE;
15189 else if (strcmp (name, "push") == 0)
15190 {
15191 struct mips_option_stack *s;
15192
15193 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15194 s->next = mips_opts_stack;
15195 s->options = mips_opts;
15196 mips_opts_stack = s;
15197 }
15198 else if (strcmp (name, "pop") == 0)
15199 {
15200 struct mips_option_stack *s;
15201
15202 s = mips_opts_stack;
15203 if (s == NULL)
15204 as_bad (_(".set pop with no .set push"));
15205 else
15206 {
15207 /* If we're changing the reorder mode we need to handle
15208 delay slots correctly. */
15209 if (s->options.noreorder && ! mips_opts.noreorder)
15210 start_noreorder ();
15211 else if (! s->options.noreorder && mips_opts.noreorder)
15212 end_noreorder ();
15213
15214 mips_opts = s->options;
15215 mips_opts_stack = s->next;
15216 free (s);
15217 }
15218 }
15219 else if (strcmp (name, "sym32") == 0)
15220 mips_opts.sym32 = TRUE;
15221 else if (strcmp (name, "nosym32") == 0)
15222 mips_opts.sym32 = FALSE;
15223 else if (strchr (name, ','))
15224 {
15225 /* Generic ".set" directive; use the generic handler. */
15226 *input_line_pointer = ch;
15227 input_line_pointer = name;
15228 s_set (0);
15229 return;
15230 }
15231 else
15232 {
15233 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15234 }
15235 mips_check_isa_supports_ases ();
15236 *input_line_pointer = ch;
15237 demand_empty_rest_of_line ();
15238 }
15239
15240 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15241 .option pic2. It means to generate SVR4 PIC calls. */
15242
15243 static void
15244 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15245 {
15246 mips_pic = SVR4_PIC;
15247 mips_abicalls = TRUE;
15248
15249 if (g_switch_seen && g_switch_value != 0)
15250 as_warn (_("-G may not be used with SVR4 PIC code"));
15251 g_switch_value = 0;
15252
15253 bfd_set_gp_size (stdoutput, 0);
15254 demand_empty_rest_of_line ();
15255 }
15256
15257 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15258 PIC code. It sets the $gp register for the function based on the
15259 function address, which is in the register named in the argument.
15260 This uses a relocation against _gp_disp, which is handled specially
15261 by the linker. The result is:
15262 lui $gp,%hi(_gp_disp)
15263 addiu $gp,$gp,%lo(_gp_disp)
15264 addu $gp,$gp,.cpload argument
15265 The .cpload argument is normally $25 == $t9.
15266
15267 The -mno-shared option changes this to:
15268 lui $gp,%hi(__gnu_local_gp)
15269 addiu $gp,$gp,%lo(__gnu_local_gp)
15270 and the argument is ignored. This saves an instruction, but the
15271 resulting code is not position independent; it uses an absolute
15272 address for __gnu_local_gp. Thus code assembled with -mno-shared
15273 can go into an ordinary executable, but not into a shared library. */
15274
15275 static void
15276 s_cpload (int ignore ATTRIBUTE_UNUSED)
15277 {
15278 expressionS ex;
15279 int reg;
15280 int in_shared;
15281
15282 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15283 .cpload is ignored. */
15284 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15285 {
15286 s_ignore (0);
15287 return;
15288 }
15289
15290 if (mips_opts.mips16)
15291 {
15292 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15293 ignore_rest_of_line ();
15294 return;
15295 }
15296
15297 /* .cpload should be in a .set noreorder section. */
15298 if (mips_opts.noreorder == 0)
15299 as_warn (_(".cpload not in noreorder section"));
15300
15301 reg = tc_get_register (0);
15302
15303 /* If we need to produce a 64-bit address, we are better off using
15304 the default instruction sequence. */
15305 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15306
15307 ex.X_op = O_symbol;
15308 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15309 "__gnu_local_gp");
15310 ex.X_op_symbol = NULL;
15311 ex.X_add_number = 0;
15312
15313 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15314 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15315
15316 mips_mark_labels ();
15317 mips_assembling_insn = TRUE;
15318
15319 macro_start ();
15320 macro_build_lui (&ex, mips_gp_register);
15321 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15322 mips_gp_register, BFD_RELOC_LO16);
15323 if (in_shared)
15324 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15325 mips_gp_register, reg);
15326 macro_end ();
15327
15328 mips_assembling_insn = FALSE;
15329 demand_empty_rest_of_line ();
15330 }
15331
15332 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15333 .cpsetup $reg1, offset|$reg2, label
15334
15335 If offset is given, this results in:
15336 sd $gp, offset($sp)
15337 lui $gp, %hi(%neg(%gp_rel(label)))
15338 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15339 daddu $gp, $gp, $reg1
15340
15341 If $reg2 is given, this results in:
15342 daddu $reg2, $gp, $0
15343 lui $gp, %hi(%neg(%gp_rel(label)))
15344 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15345 daddu $gp, $gp, $reg1
15346 $reg1 is normally $25 == $t9.
15347
15348 The -mno-shared option replaces the last three instructions with
15349 lui $gp,%hi(_gp)
15350 addiu $gp,$gp,%lo(_gp) */
15351
15352 static void
15353 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15354 {
15355 expressionS ex_off;
15356 expressionS ex_sym;
15357 int reg1;
15358
15359 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15360 We also need NewABI support. */
15361 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15362 {
15363 s_ignore (0);
15364 return;
15365 }
15366
15367 if (mips_opts.mips16)
15368 {
15369 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15370 ignore_rest_of_line ();
15371 return;
15372 }
15373
15374 reg1 = tc_get_register (0);
15375 SKIP_WHITESPACE ();
15376 if (*input_line_pointer != ',')
15377 {
15378 as_bad (_("missing argument separator ',' for .cpsetup"));
15379 return;
15380 }
15381 else
15382 ++input_line_pointer;
15383 SKIP_WHITESPACE ();
15384 if (*input_line_pointer == '$')
15385 {
15386 mips_cpreturn_register = tc_get_register (0);
15387 mips_cpreturn_offset = -1;
15388 }
15389 else
15390 {
15391 mips_cpreturn_offset = get_absolute_expression ();
15392 mips_cpreturn_register = -1;
15393 }
15394 SKIP_WHITESPACE ();
15395 if (*input_line_pointer != ',')
15396 {
15397 as_bad (_("missing argument separator ',' for .cpsetup"));
15398 return;
15399 }
15400 else
15401 ++input_line_pointer;
15402 SKIP_WHITESPACE ();
15403 expression (&ex_sym);
15404
15405 mips_mark_labels ();
15406 mips_assembling_insn = TRUE;
15407
15408 macro_start ();
15409 if (mips_cpreturn_register == -1)
15410 {
15411 ex_off.X_op = O_constant;
15412 ex_off.X_add_symbol = NULL;
15413 ex_off.X_op_symbol = NULL;
15414 ex_off.X_add_number = mips_cpreturn_offset;
15415
15416 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15417 BFD_RELOC_LO16, SP);
15418 }
15419 else
15420 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
15421 mips_gp_register, 0);
15422
15423 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15424 {
15425 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15426 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15427 BFD_RELOC_HI16_S);
15428
15429 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15430 mips_gp_register, -1, BFD_RELOC_GPREL16,
15431 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15432
15433 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15434 mips_gp_register, reg1);
15435 }
15436 else
15437 {
15438 expressionS ex;
15439
15440 ex.X_op = O_symbol;
15441 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
15442 ex.X_op_symbol = NULL;
15443 ex.X_add_number = 0;
15444
15445 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15446 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15447
15448 macro_build_lui (&ex, mips_gp_register);
15449 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15450 mips_gp_register, BFD_RELOC_LO16);
15451 }
15452
15453 macro_end ();
15454
15455 mips_assembling_insn = FALSE;
15456 demand_empty_rest_of_line ();
15457 }
15458
15459 static void
15460 s_cplocal (int ignore ATTRIBUTE_UNUSED)
15461 {
15462 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
15463 .cplocal is ignored. */
15464 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15465 {
15466 s_ignore (0);
15467 return;
15468 }
15469
15470 if (mips_opts.mips16)
15471 {
15472 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
15473 ignore_rest_of_line ();
15474 return;
15475 }
15476
15477 mips_gp_register = tc_get_register (0);
15478 demand_empty_rest_of_line ();
15479 }
15480
15481 /* Handle the .cprestore pseudo-op. This stores $gp into a given
15482 offset from $sp. The offset is remembered, and after making a PIC
15483 call $gp is restored from that location. */
15484
15485 static void
15486 s_cprestore (int ignore ATTRIBUTE_UNUSED)
15487 {
15488 expressionS ex;
15489
15490 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15491 .cprestore is ignored. */
15492 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15493 {
15494 s_ignore (0);
15495 return;
15496 }
15497
15498 if (mips_opts.mips16)
15499 {
15500 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
15501 ignore_rest_of_line ();
15502 return;
15503 }
15504
15505 mips_cprestore_offset = get_absolute_expression ();
15506 mips_cprestore_valid = 1;
15507
15508 ex.X_op = O_constant;
15509 ex.X_add_symbol = NULL;
15510 ex.X_op_symbol = NULL;
15511 ex.X_add_number = mips_cprestore_offset;
15512
15513 mips_mark_labels ();
15514 mips_assembling_insn = TRUE;
15515
15516 macro_start ();
15517 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
15518 SP, HAVE_64BIT_ADDRESSES);
15519 macro_end ();
15520
15521 mips_assembling_insn = FALSE;
15522 demand_empty_rest_of_line ();
15523 }
15524
15525 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
15526 was given in the preceding .cpsetup, it results in:
15527 ld $gp, offset($sp)
15528
15529 If a register $reg2 was given there, it results in:
15530 daddu $gp, $reg2, $0 */
15531
15532 static void
15533 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
15534 {
15535 expressionS ex;
15536
15537 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
15538 We also need NewABI support. */
15539 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15540 {
15541 s_ignore (0);
15542 return;
15543 }
15544
15545 if (mips_opts.mips16)
15546 {
15547 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
15548 ignore_rest_of_line ();
15549 return;
15550 }
15551
15552 mips_mark_labels ();
15553 mips_assembling_insn = TRUE;
15554
15555 macro_start ();
15556 if (mips_cpreturn_register == -1)
15557 {
15558 ex.X_op = O_constant;
15559 ex.X_add_symbol = NULL;
15560 ex.X_op_symbol = NULL;
15561 ex.X_add_number = mips_cpreturn_offset;
15562
15563 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
15564 }
15565 else
15566 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
15567 mips_cpreturn_register, 0);
15568 macro_end ();
15569
15570 mips_assembling_insn = FALSE;
15571 demand_empty_rest_of_line ();
15572 }
15573
15574 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
15575 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
15576 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
15577 debug information or MIPS16 TLS. */
15578
15579 static void
15580 s_tls_rel_directive (const size_t bytes, const char *dirstr,
15581 bfd_reloc_code_real_type rtype)
15582 {
15583 expressionS ex;
15584 char *p;
15585
15586 expression (&ex);
15587
15588 if (ex.X_op != O_symbol)
15589 {
15590 as_bad (_("unsupported use of %s"), dirstr);
15591 ignore_rest_of_line ();
15592 }
15593
15594 p = frag_more (bytes);
15595 md_number_to_chars (p, 0, bytes);
15596 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
15597 demand_empty_rest_of_line ();
15598 mips_clear_insn_labels ();
15599 }
15600
15601 /* Handle .dtprelword. */
15602
15603 static void
15604 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
15605 {
15606 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
15607 }
15608
15609 /* Handle .dtpreldword. */
15610
15611 static void
15612 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
15613 {
15614 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
15615 }
15616
15617 /* Handle .tprelword. */
15618
15619 static void
15620 s_tprelword (int ignore ATTRIBUTE_UNUSED)
15621 {
15622 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
15623 }
15624
15625 /* Handle .tpreldword. */
15626
15627 static void
15628 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
15629 {
15630 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
15631 }
15632
15633 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
15634 code. It sets the offset to use in gp_rel relocations. */
15635
15636 static void
15637 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
15638 {
15639 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
15640 We also need NewABI support. */
15641 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15642 {
15643 s_ignore (0);
15644 return;
15645 }
15646
15647 mips_gprel_offset = get_absolute_expression ();
15648
15649 demand_empty_rest_of_line ();
15650 }
15651
15652 /* Handle the .gpword pseudo-op. This is used when generating PIC
15653 code. It generates a 32 bit GP relative reloc. */
15654
15655 static void
15656 s_gpword (int ignore ATTRIBUTE_UNUSED)
15657 {
15658 segment_info_type *si;
15659 struct insn_label_list *l;
15660 expressionS ex;
15661 char *p;
15662
15663 /* When not generating PIC code, this is treated as .word. */
15664 if (mips_pic != SVR4_PIC)
15665 {
15666 s_cons (2);
15667 return;
15668 }
15669
15670 si = seg_info (now_seg);
15671 l = si->label_list;
15672 mips_emit_delays ();
15673 if (auto_align)
15674 mips_align (2, 0, l);
15675
15676 expression (&ex);
15677 mips_clear_insn_labels ();
15678
15679 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15680 {
15681 as_bad (_("unsupported use of .gpword"));
15682 ignore_rest_of_line ();
15683 }
15684
15685 p = frag_more (4);
15686 md_number_to_chars (p, 0, 4);
15687 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15688 BFD_RELOC_GPREL32);
15689
15690 demand_empty_rest_of_line ();
15691 }
15692
15693 static void
15694 s_gpdword (int ignore ATTRIBUTE_UNUSED)
15695 {
15696 segment_info_type *si;
15697 struct insn_label_list *l;
15698 expressionS ex;
15699 char *p;
15700
15701 /* When not generating PIC code, this is treated as .dword. */
15702 if (mips_pic != SVR4_PIC)
15703 {
15704 s_cons (3);
15705 return;
15706 }
15707
15708 si = seg_info (now_seg);
15709 l = si->label_list;
15710 mips_emit_delays ();
15711 if (auto_align)
15712 mips_align (3, 0, l);
15713
15714 expression (&ex);
15715 mips_clear_insn_labels ();
15716
15717 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15718 {
15719 as_bad (_("unsupported use of .gpdword"));
15720 ignore_rest_of_line ();
15721 }
15722
15723 p = frag_more (8);
15724 md_number_to_chars (p, 0, 8);
15725 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15726 BFD_RELOC_GPREL32)->fx_tcbit = 1;
15727
15728 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
15729 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
15730 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
15731
15732 demand_empty_rest_of_line ();
15733 }
15734
15735 /* Handle the .ehword pseudo-op. This is used when generating unwinding
15736 tables. It generates a R_MIPS_EH reloc. */
15737
15738 static void
15739 s_ehword (int ignore ATTRIBUTE_UNUSED)
15740 {
15741 expressionS ex;
15742 char *p;
15743
15744 mips_emit_delays ();
15745
15746 expression (&ex);
15747 mips_clear_insn_labels ();
15748
15749 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15750 {
15751 as_bad (_("unsupported use of .ehword"));
15752 ignore_rest_of_line ();
15753 }
15754
15755 p = frag_more (4);
15756 md_number_to_chars (p, 0, 4);
15757 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15758 BFD_RELOC_MIPS_EH);
15759
15760 demand_empty_rest_of_line ();
15761 }
15762
15763 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
15764 tables in SVR4 PIC code. */
15765
15766 static void
15767 s_cpadd (int ignore ATTRIBUTE_UNUSED)
15768 {
15769 int reg;
15770
15771 /* This is ignored when not generating SVR4 PIC code. */
15772 if (mips_pic != SVR4_PIC)
15773 {
15774 s_ignore (0);
15775 return;
15776 }
15777
15778 mips_mark_labels ();
15779 mips_assembling_insn = TRUE;
15780
15781 /* Add $gp to the register named as an argument. */
15782 macro_start ();
15783 reg = tc_get_register (0);
15784 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
15785 macro_end ();
15786
15787 mips_assembling_insn = FALSE;
15788 demand_empty_rest_of_line ();
15789 }
15790
15791 /* Handle the .insn pseudo-op. This marks instruction labels in
15792 mips16/micromips mode. This permits the linker to handle them specially,
15793 such as generating jalx instructions when needed. We also make
15794 them odd for the duration of the assembly, in order to generate the
15795 right sort of code. We will make them even in the adjust_symtab
15796 routine, while leaving them marked. This is convenient for the
15797 debugger and the disassembler. The linker knows to make them odd
15798 again. */
15799
15800 static void
15801 s_insn (int ignore ATTRIBUTE_UNUSED)
15802 {
15803 mips_mark_labels ();
15804
15805 demand_empty_rest_of_line ();
15806 }
15807
15808 /* Handle the .nan pseudo-op. */
15809
15810 static void
15811 s_nan (int ignore ATTRIBUTE_UNUSED)
15812 {
15813 static const char str_legacy[] = "legacy";
15814 static const char str_2008[] = "2008";
15815 size_t i;
15816
15817 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
15818
15819 if (i == sizeof (str_2008) - 1
15820 && memcmp (input_line_pointer, str_2008, i) == 0)
15821 mips_flag_nan2008 = TRUE;
15822 else if (i == sizeof (str_legacy) - 1
15823 && memcmp (input_line_pointer, str_legacy, i) == 0)
15824 mips_flag_nan2008 = FALSE;
15825 else
15826 as_bad (_("bad .nan directive"));
15827
15828 input_line_pointer += i;
15829 demand_empty_rest_of_line ();
15830 }
15831
15832 /* Handle a .stab[snd] directive. Ideally these directives would be
15833 implemented in a transparent way, so that removing them would not
15834 have any effect on the generated instructions. However, s_stab
15835 internally changes the section, so in practice we need to decide
15836 now whether the preceding label marks compressed code. We do not
15837 support changing the compression mode of a label after a .stab*
15838 directive, such as in:
15839
15840 foo:
15841 .stabs ...
15842 .set mips16
15843
15844 so the current mode wins. */
15845
15846 static void
15847 s_mips_stab (int type)
15848 {
15849 mips_mark_labels ();
15850 s_stab (type);
15851 }
15852
15853 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
15854
15855 static void
15856 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
15857 {
15858 char *name;
15859 int c;
15860 symbolS *symbolP;
15861 expressionS exp;
15862
15863 name = input_line_pointer;
15864 c = get_symbol_end ();
15865 symbolP = symbol_find_or_make (name);
15866 S_SET_WEAK (symbolP);
15867 *input_line_pointer = c;
15868
15869 SKIP_WHITESPACE ();
15870
15871 if (! is_end_of_line[(unsigned char) *input_line_pointer])
15872 {
15873 if (S_IS_DEFINED (symbolP))
15874 {
15875 as_bad (_("ignoring attempt to redefine symbol %s"),
15876 S_GET_NAME (symbolP));
15877 ignore_rest_of_line ();
15878 return;
15879 }
15880
15881 if (*input_line_pointer == ',')
15882 {
15883 ++input_line_pointer;
15884 SKIP_WHITESPACE ();
15885 }
15886
15887 expression (&exp);
15888 if (exp.X_op != O_symbol)
15889 {
15890 as_bad (_("bad .weakext directive"));
15891 ignore_rest_of_line ();
15892 return;
15893 }
15894 symbol_set_value_expression (symbolP, &exp);
15895 }
15896
15897 demand_empty_rest_of_line ();
15898 }
15899
15900 /* Parse a register string into a number. Called from the ECOFF code
15901 to parse .frame. The argument is non-zero if this is the frame
15902 register, so that we can record it in mips_frame_reg. */
15903
15904 int
15905 tc_get_register (int frame)
15906 {
15907 unsigned int reg;
15908
15909 SKIP_WHITESPACE ();
15910 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
15911 reg = 0;
15912 if (frame)
15913 {
15914 mips_frame_reg = reg != 0 ? reg : SP;
15915 mips_frame_reg_valid = 1;
15916 mips_cprestore_valid = 0;
15917 }
15918 return reg;
15919 }
15920
15921 valueT
15922 md_section_align (asection *seg, valueT addr)
15923 {
15924 int align = bfd_get_section_alignment (stdoutput, seg);
15925
15926 /* We don't need to align ELF sections to the full alignment.
15927 However, Irix 5 may prefer that we align them at least to a 16
15928 byte boundary. We don't bother to align the sections if we
15929 are targeted for an embedded system. */
15930 if (strncmp (TARGET_OS, "elf", 3) == 0)
15931 return addr;
15932 if (align > 4)
15933 align = 4;
15934
15935 return ((addr + (1 << align) - 1) & (-1 << align));
15936 }
15937
15938 /* Utility routine, called from above as well. If called while the
15939 input file is still being read, it's only an approximation. (For
15940 example, a symbol may later become defined which appeared to be
15941 undefined earlier.) */
15942
15943 static int
15944 nopic_need_relax (symbolS *sym, int before_relaxing)
15945 {
15946 if (sym == 0)
15947 return 0;
15948
15949 if (g_switch_value > 0)
15950 {
15951 const char *symname;
15952 int change;
15953
15954 /* Find out whether this symbol can be referenced off the $gp
15955 register. It can be if it is smaller than the -G size or if
15956 it is in the .sdata or .sbss section. Certain symbols can
15957 not be referenced off the $gp, although it appears as though
15958 they can. */
15959 symname = S_GET_NAME (sym);
15960 if (symname != (const char *) NULL
15961 && (strcmp (symname, "eprol") == 0
15962 || strcmp (symname, "etext") == 0
15963 || strcmp (symname, "_gp") == 0
15964 || strcmp (symname, "edata") == 0
15965 || strcmp (symname, "_fbss") == 0
15966 || strcmp (symname, "_fdata") == 0
15967 || strcmp (symname, "_ftext") == 0
15968 || strcmp (symname, "end") == 0
15969 || strcmp (symname, "_gp_disp") == 0))
15970 change = 1;
15971 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
15972 && (0
15973 #ifndef NO_ECOFF_DEBUGGING
15974 || (symbol_get_obj (sym)->ecoff_extern_size != 0
15975 && (symbol_get_obj (sym)->ecoff_extern_size
15976 <= g_switch_value))
15977 #endif
15978 /* We must defer this decision until after the whole
15979 file has been read, since there might be a .extern
15980 after the first use of this symbol. */
15981 || (before_relaxing
15982 #ifndef NO_ECOFF_DEBUGGING
15983 && symbol_get_obj (sym)->ecoff_extern_size == 0
15984 #endif
15985 && S_GET_VALUE (sym) == 0)
15986 || (S_GET_VALUE (sym) != 0
15987 && S_GET_VALUE (sym) <= g_switch_value)))
15988 change = 0;
15989 else
15990 {
15991 const char *segname;
15992
15993 segname = segment_name (S_GET_SEGMENT (sym));
15994 gas_assert (strcmp (segname, ".lit8") != 0
15995 && strcmp (segname, ".lit4") != 0);
15996 change = (strcmp (segname, ".sdata") != 0
15997 && strcmp (segname, ".sbss") != 0
15998 && strncmp (segname, ".sdata.", 7) != 0
15999 && strncmp (segname, ".sbss.", 6) != 0
16000 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16001 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16002 }
16003 return change;
16004 }
16005 else
16006 /* We are not optimizing for the $gp register. */
16007 return 1;
16008 }
16009
16010
16011 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16012
16013 static bfd_boolean
16014 pic_need_relax (symbolS *sym, asection *segtype)
16015 {
16016 asection *symsec;
16017
16018 /* Handle the case of a symbol equated to another symbol. */
16019 while (symbol_equated_reloc_p (sym))
16020 {
16021 symbolS *n;
16022
16023 /* It's possible to get a loop here in a badly written program. */
16024 n = symbol_get_value_expression (sym)->X_add_symbol;
16025 if (n == sym)
16026 break;
16027 sym = n;
16028 }
16029
16030 if (symbol_section_p (sym))
16031 return TRUE;
16032
16033 symsec = S_GET_SEGMENT (sym);
16034
16035 /* This must duplicate the test in adjust_reloc_syms. */
16036 return (!bfd_is_und_section (symsec)
16037 && !bfd_is_abs_section (symsec)
16038 && !bfd_is_com_section (symsec)
16039 && !s_is_linkonce (sym, segtype)
16040 /* A global or weak symbol is treated as external. */
16041 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16042 }
16043
16044
16045 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16046 extended opcode. SEC is the section the frag is in. */
16047
16048 static int
16049 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16050 {
16051 int type;
16052 const struct mips_int_operand *operand;
16053 offsetT val;
16054 segT symsec;
16055 fragS *sym_frag;
16056
16057 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16058 return 0;
16059 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16060 return 1;
16061
16062 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16063 operand = mips16_immed_operand (type, FALSE);
16064
16065 sym_frag = symbol_get_frag (fragp->fr_symbol);
16066 val = S_GET_VALUE (fragp->fr_symbol);
16067 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16068
16069 if (operand->root.type == OP_PCREL)
16070 {
16071 const struct mips_pcrel_operand *pcrel_op;
16072 addressT addr;
16073 offsetT maxtiny;
16074
16075 /* We won't have the section when we are called from
16076 mips_relax_frag. However, we will always have been called
16077 from md_estimate_size_before_relax first. If this is a
16078 branch to a different section, we mark it as such. If SEC is
16079 NULL, and the frag is not marked, then it must be a branch to
16080 the same section. */
16081 pcrel_op = (const struct mips_pcrel_operand *) operand;
16082 if (sec == NULL)
16083 {
16084 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16085 return 1;
16086 }
16087 else
16088 {
16089 /* Must have been called from md_estimate_size_before_relax. */
16090 if (symsec != sec)
16091 {
16092 fragp->fr_subtype =
16093 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16094
16095 /* FIXME: We should support this, and let the linker
16096 catch branches and loads that are out of range. */
16097 as_bad_where (fragp->fr_file, fragp->fr_line,
16098 _("unsupported PC relative reference to different section"));
16099
16100 return 1;
16101 }
16102 if (fragp != sym_frag && sym_frag->fr_address == 0)
16103 /* Assume non-extended on the first relaxation pass.
16104 The address we have calculated will be bogus if this is
16105 a forward branch to another frag, as the forward frag
16106 will have fr_address == 0. */
16107 return 0;
16108 }
16109
16110 /* In this case, we know for sure that the symbol fragment is in
16111 the same section. If the relax_marker of the symbol fragment
16112 differs from the relax_marker of this fragment, we have not
16113 yet adjusted the symbol fragment fr_address. We want to add
16114 in STRETCH in order to get a better estimate of the address.
16115 This particularly matters because of the shift bits. */
16116 if (stretch != 0
16117 && sym_frag->relax_marker != fragp->relax_marker)
16118 {
16119 fragS *f;
16120
16121 /* Adjust stretch for any alignment frag. Note that if have
16122 been expanding the earlier code, the symbol may be
16123 defined in what appears to be an earlier frag. FIXME:
16124 This doesn't handle the fr_subtype field, which specifies
16125 a maximum number of bytes to skip when doing an
16126 alignment. */
16127 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16128 {
16129 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16130 {
16131 if (stretch < 0)
16132 stretch = - ((- stretch)
16133 & ~ ((1 << (int) f->fr_offset) - 1));
16134 else
16135 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16136 if (stretch == 0)
16137 break;
16138 }
16139 }
16140 if (f != NULL)
16141 val += stretch;
16142 }
16143
16144 addr = fragp->fr_address + fragp->fr_fix;
16145
16146 /* The base address rules are complicated. The base address of
16147 a branch is the following instruction. The base address of a
16148 PC relative load or add is the instruction itself, but if it
16149 is in a delay slot (in which case it can not be extended) use
16150 the address of the instruction whose delay slot it is in. */
16151 if (pcrel_op->include_isa_bit)
16152 {
16153 addr += 2;
16154
16155 /* If we are currently assuming that this frag should be
16156 extended, then, the current address is two bytes
16157 higher. */
16158 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16159 addr += 2;
16160
16161 /* Ignore the low bit in the target, since it will be set
16162 for a text label. */
16163 val &= -2;
16164 }
16165 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16166 addr -= 4;
16167 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16168 addr -= 2;
16169
16170 val -= addr & -(1 << pcrel_op->align_log2);
16171
16172 /* If any of the shifted bits are set, we must use an extended
16173 opcode. If the address depends on the size of this
16174 instruction, this can lead to a loop, so we arrange to always
16175 use an extended opcode. We only check this when we are in
16176 the main relaxation loop, when SEC is NULL. */
16177 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16178 {
16179 fragp->fr_subtype =
16180 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16181 return 1;
16182 }
16183
16184 /* If we are about to mark a frag as extended because the value
16185 is precisely the next value above maxtiny, then there is a
16186 chance of an infinite loop as in the following code:
16187 la $4,foo
16188 .skip 1020
16189 .align 2
16190 foo:
16191 In this case when the la is extended, foo is 0x3fc bytes
16192 away, so the la can be shrunk, but then foo is 0x400 away, so
16193 the la must be extended. To avoid this loop, we mark the
16194 frag as extended if it was small, and is about to become
16195 extended with the next value above maxtiny. */
16196 maxtiny = mips_int_operand_max (operand);
16197 if (val == maxtiny + (1 << operand->shift)
16198 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16199 && sec == NULL)
16200 {
16201 fragp->fr_subtype =
16202 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16203 return 1;
16204 }
16205 }
16206 else if (symsec != absolute_section && sec != NULL)
16207 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16208
16209 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16210 }
16211
16212 /* Compute the length of a branch sequence, and adjust the
16213 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16214 worst-case length is computed, with UPDATE being used to indicate
16215 whether an unconditional (-1), branch-likely (+1) or regular (0)
16216 branch is to be computed. */
16217 static int
16218 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16219 {
16220 bfd_boolean toofar;
16221 int length;
16222
16223 if (fragp
16224 && S_IS_DEFINED (fragp->fr_symbol)
16225 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16226 {
16227 addressT addr;
16228 offsetT val;
16229
16230 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16231
16232 addr = fragp->fr_address + fragp->fr_fix + 4;
16233
16234 val -= addr;
16235
16236 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16237 }
16238 else if (fragp)
16239 /* If the symbol is not defined or it's in a different segment,
16240 assume the user knows what's going on and emit a short
16241 branch. */
16242 toofar = FALSE;
16243 else
16244 toofar = TRUE;
16245
16246 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16247 fragp->fr_subtype
16248 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16249 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16250 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16251 RELAX_BRANCH_LINK (fragp->fr_subtype),
16252 toofar);
16253
16254 length = 4;
16255 if (toofar)
16256 {
16257 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16258 length += 8;
16259
16260 if (mips_pic != NO_PIC)
16261 {
16262 /* Additional space for PIC loading of target address. */
16263 length += 8;
16264 if (mips_opts.isa == ISA_MIPS1)
16265 /* Additional space for $at-stabilizing nop. */
16266 length += 4;
16267 }
16268
16269 /* If branch is conditional. */
16270 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16271 length += 8;
16272 }
16273
16274 return length;
16275 }
16276
16277 /* Compute the length of a branch sequence, and adjust the
16278 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16279 worst-case length is computed, with UPDATE being used to indicate
16280 whether an unconditional (-1), or regular (0) branch is to be
16281 computed. */
16282
16283 static int
16284 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16285 {
16286 bfd_boolean toofar;
16287 int length;
16288
16289 if (fragp
16290 && S_IS_DEFINED (fragp->fr_symbol)
16291 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16292 {
16293 addressT addr;
16294 offsetT val;
16295
16296 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16297 /* Ignore the low bit in the target, since it will be set
16298 for a text label. */
16299 if ((val & 1) != 0)
16300 --val;
16301
16302 addr = fragp->fr_address + fragp->fr_fix + 4;
16303
16304 val -= addr;
16305
16306 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16307 }
16308 else if (fragp)
16309 /* If the symbol is not defined or it's in a different segment,
16310 assume the user knows what's going on and emit a short
16311 branch. */
16312 toofar = FALSE;
16313 else
16314 toofar = TRUE;
16315
16316 if (fragp && update
16317 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16318 fragp->fr_subtype = (toofar
16319 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16320 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16321
16322 length = 4;
16323 if (toofar)
16324 {
16325 bfd_boolean compact_known = fragp != NULL;
16326 bfd_boolean compact = FALSE;
16327 bfd_boolean uncond;
16328
16329 if (compact_known)
16330 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16331 if (fragp)
16332 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16333 else
16334 uncond = update < 0;
16335
16336 /* If label is out of range, we turn branch <br>:
16337
16338 <br> label # 4 bytes
16339 0:
16340
16341 into:
16342
16343 j label # 4 bytes
16344 nop # 2 bytes if compact && !PIC
16345 0:
16346 */
16347 if (mips_pic == NO_PIC && (!compact_known || compact))
16348 length += 2;
16349
16350 /* If assembling PIC code, we further turn:
16351
16352 j label # 4 bytes
16353
16354 into:
16355
16356 lw/ld at, %got(label)(gp) # 4 bytes
16357 d/addiu at, %lo(label) # 4 bytes
16358 jr/c at # 2 bytes
16359 */
16360 if (mips_pic != NO_PIC)
16361 length += 6;
16362
16363 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16364
16365 <brneg> 0f # 4 bytes
16366 nop # 2 bytes if !compact
16367 */
16368 if (!uncond)
16369 length += (compact_known && compact) ? 4 : 6;
16370 }
16371
16372 return length;
16373 }
16374
16375 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16376 bit accordingly. */
16377
16378 static int
16379 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16380 {
16381 bfd_boolean toofar;
16382
16383 if (fragp
16384 && S_IS_DEFINED (fragp->fr_symbol)
16385 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16386 {
16387 addressT addr;
16388 offsetT val;
16389 int type;
16390
16391 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16392 /* Ignore the low bit in the target, since it will be set
16393 for a text label. */
16394 if ((val & 1) != 0)
16395 --val;
16396
16397 /* Assume this is a 2-byte branch. */
16398 addr = fragp->fr_address + fragp->fr_fix + 2;
16399
16400 /* We try to avoid the infinite loop by not adding 2 more bytes for
16401 long branches. */
16402
16403 val -= addr;
16404
16405 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16406 if (type == 'D')
16407 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16408 else if (type == 'E')
16409 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16410 else
16411 abort ();
16412 }
16413 else
16414 /* If the symbol is not defined or it's in a different segment,
16415 we emit a normal 32-bit branch. */
16416 toofar = TRUE;
16417
16418 if (fragp && update
16419 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16420 fragp->fr_subtype
16421 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16422 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16423
16424 if (toofar)
16425 return 4;
16426
16427 return 2;
16428 }
16429
16430 /* Estimate the size of a frag before relaxing. Unless this is the
16431 mips16, we are not really relaxing here, and the final size is
16432 encoded in the subtype information. For the mips16, we have to
16433 decide whether we are using an extended opcode or not. */
16434
16435 int
16436 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
16437 {
16438 int change;
16439
16440 if (RELAX_BRANCH_P (fragp->fr_subtype))
16441 {
16442
16443 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
16444
16445 return fragp->fr_var;
16446 }
16447
16448 if (RELAX_MIPS16_P (fragp->fr_subtype))
16449 /* We don't want to modify the EXTENDED bit here; it might get us
16450 into infinite loops. We change it only in mips_relax_frag(). */
16451 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
16452
16453 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16454 {
16455 int length = 4;
16456
16457 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16458 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
16459 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16460 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
16461 fragp->fr_var = length;
16462
16463 return length;
16464 }
16465
16466 if (mips_pic == NO_PIC)
16467 change = nopic_need_relax (fragp->fr_symbol, 0);
16468 else if (mips_pic == SVR4_PIC)
16469 change = pic_need_relax (fragp->fr_symbol, segtype);
16470 else if (mips_pic == VXWORKS_PIC)
16471 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
16472 change = 0;
16473 else
16474 abort ();
16475
16476 if (change)
16477 {
16478 fragp->fr_subtype |= RELAX_USE_SECOND;
16479 return -RELAX_FIRST (fragp->fr_subtype);
16480 }
16481 else
16482 return -RELAX_SECOND (fragp->fr_subtype);
16483 }
16484
16485 /* This is called to see whether a reloc against a defined symbol
16486 should be converted into a reloc against a section. */
16487
16488 int
16489 mips_fix_adjustable (fixS *fixp)
16490 {
16491 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
16492 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16493 return 0;
16494
16495 if (fixp->fx_addsy == NULL)
16496 return 1;
16497
16498 /* If symbol SYM is in a mergeable section, relocations of the form
16499 SYM + 0 can usually be made section-relative. The mergeable data
16500 is then identified by the section offset rather than by the symbol.
16501
16502 However, if we're generating REL LO16 relocations, the offset is split
16503 between the LO16 and parterning high part relocation. The linker will
16504 need to recalculate the complete offset in order to correctly identify
16505 the merge data.
16506
16507 The linker has traditionally not looked for the parterning high part
16508 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
16509 placed anywhere. Rather than break backwards compatibility by changing
16510 this, it seems better not to force the issue, and instead keep the
16511 original symbol. This will work with either linker behavior. */
16512 if ((lo16_reloc_p (fixp->fx_r_type)
16513 || reloc_needs_lo_p (fixp->fx_r_type))
16514 && HAVE_IN_PLACE_ADDENDS
16515 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
16516 return 0;
16517
16518 /* There is no place to store an in-place offset for JALR relocations.
16519 Likewise an in-range offset of limited PC-relative relocations may
16520 overflow the in-place relocatable field if recalculated against the
16521 start address of the symbol's containing section. */
16522 if (HAVE_IN_PLACE_ADDENDS
16523 && (limited_pcrel_reloc_p (fixp->fx_r_type)
16524 || jalr_reloc_p (fixp->fx_r_type)))
16525 return 0;
16526
16527 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
16528 to a floating-point stub. The same is true for non-R_MIPS16_26
16529 relocations against MIPS16 functions; in this case, the stub becomes
16530 the function's canonical address.
16531
16532 Floating-point stubs are stored in unique .mips16.call.* or
16533 .mips16.fn.* sections. If a stub T for function F is in section S,
16534 the first relocation in section S must be against F; this is how the
16535 linker determines the target function. All relocations that might
16536 resolve to T must also be against F. We therefore have the following
16537 restrictions, which are given in an intentionally-redundant way:
16538
16539 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
16540 symbols.
16541
16542 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
16543 if that stub might be used.
16544
16545 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
16546 symbols.
16547
16548 4. We cannot reduce a stub's relocations against MIPS16 symbols if
16549 that stub might be used.
16550
16551 There is a further restriction:
16552
16553 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
16554 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
16555 targets with in-place addends; the relocation field cannot
16556 encode the low bit.
16557
16558 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
16559 against a MIPS16 symbol. We deal with (5) by by not reducing any
16560 such relocations on REL targets.
16561
16562 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
16563 relocation against some symbol R, no relocation against R may be
16564 reduced. (Note that this deals with (2) as well as (1) because
16565 relocations against global symbols will never be reduced on ELF
16566 targets.) This approach is a little simpler than trying to detect
16567 stub sections, and gives the "all or nothing" per-symbol consistency
16568 that we have for MIPS16 symbols. */
16569 if (fixp->fx_subsy == NULL
16570 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
16571 || *symbol_get_tc (fixp->fx_addsy)
16572 || (HAVE_IN_PLACE_ADDENDS
16573 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
16574 && jmp_reloc_p (fixp->fx_r_type))))
16575 return 0;
16576
16577 return 1;
16578 }
16579
16580 /* Translate internal representation of relocation info to BFD target
16581 format. */
16582
16583 arelent **
16584 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
16585 {
16586 static arelent *retval[4];
16587 arelent *reloc;
16588 bfd_reloc_code_real_type code;
16589
16590 memset (retval, 0, sizeof(retval));
16591 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
16592 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
16593 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
16594 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
16595
16596 if (fixp->fx_pcrel)
16597 {
16598 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
16599 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
16600 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
16601 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
16602 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
16603
16604 /* At this point, fx_addnumber is "symbol offset - pcrel address".
16605 Relocations want only the symbol offset. */
16606 reloc->addend = fixp->fx_addnumber + reloc->address;
16607 }
16608 else
16609 reloc->addend = fixp->fx_addnumber;
16610
16611 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
16612 entry to be used in the relocation's section offset. */
16613 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16614 {
16615 reloc->address = reloc->addend;
16616 reloc->addend = 0;
16617 }
16618
16619 code = fixp->fx_r_type;
16620
16621 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
16622 if (reloc->howto == NULL)
16623 {
16624 as_bad_where (fixp->fx_file, fixp->fx_line,
16625 _("cannot represent %s relocation in this object file"
16626 " format"),
16627 bfd_get_reloc_code_name (code));
16628 retval[0] = NULL;
16629 }
16630
16631 return retval;
16632 }
16633
16634 /* Relax a machine dependent frag. This returns the amount by which
16635 the current size of the frag should change. */
16636
16637 int
16638 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
16639 {
16640 if (RELAX_BRANCH_P (fragp->fr_subtype))
16641 {
16642 offsetT old_var = fragp->fr_var;
16643
16644 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
16645
16646 return fragp->fr_var - old_var;
16647 }
16648
16649 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16650 {
16651 offsetT old_var = fragp->fr_var;
16652 offsetT new_var = 4;
16653
16654 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16655 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
16656 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16657 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
16658 fragp->fr_var = new_var;
16659
16660 return new_var - old_var;
16661 }
16662
16663 if (! RELAX_MIPS16_P (fragp->fr_subtype))
16664 return 0;
16665
16666 if (mips16_extended_frag (fragp, NULL, stretch))
16667 {
16668 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16669 return 0;
16670 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
16671 return 2;
16672 }
16673 else
16674 {
16675 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16676 return 0;
16677 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
16678 return -2;
16679 }
16680
16681 return 0;
16682 }
16683
16684 /* Convert a machine dependent frag. */
16685
16686 void
16687 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
16688 {
16689 if (RELAX_BRANCH_P (fragp->fr_subtype))
16690 {
16691 char *buf;
16692 unsigned long insn;
16693 expressionS exp;
16694 fixS *fixp;
16695
16696 buf = fragp->fr_literal + fragp->fr_fix;
16697 insn = read_insn (buf);
16698
16699 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16700 {
16701 /* We generate a fixup instead of applying it right now
16702 because, if there are linker relaxations, we're going to
16703 need the relocations. */
16704 exp.X_op = O_symbol;
16705 exp.X_add_symbol = fragp->fr_symbol;
16706 exp.X_add_number = fragp->fr_offset;
16707
16708 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16709 BFD_RELOC_16_PCREL_S2);
16710 fixp->fx_file = fragp->fr_file;
16711 fixp->fx_line = fragp->fr_line;
16712
16713 buf = write_insn (buf, insn);
16714 }
16715 else
16716 {
16717 int i;
16718
16719 as_warn_where (fragp->fr_file, fragp->fr_line,
16720 _("relaxed out-of-range branch into a jump"));
16721
16722 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
16723 goto uncond;
16724
16725 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16726 {
16727 /* Reverse the branch. */
16728 switch ((insn >> 28) & 0xf)
16729 {
16730 case 4:
16731 if ((insn & 0xff000000) == 0x47000000
16732 || (insn & 0xff600000) == 0x45600000)
16733 {
16734 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
16735 reversed by tweaking bit 23. */
16736 insn ^= 0x00800000;
16737 }
16738 else
16739 {
16740 /* bc[0-3][tf]l? instructions can have the condition
16741 reversed by tweaking a single TF bit, and their
16742 opcodes all have 0x4???????. */
16743 gas_assert ((insn & 0xf3e00000) == 0x41000000);
16744 insn ^= 0x00010000;
16745 }
16746 break;
16747
16748 case 0:
16749 /* bltz 0x04000000 bgez 0x04010000
16750 bltzal 0x04100000 bgezal 0x04110000 */
16751 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
16752 insn ^= 0x00010000;
16753 break;
16754
16755 case 1:
16756 /* beq 0x10000000 bne 0x14000000
16757 blez 0x18000000 bgtz 0x1c000000 */
16758 insn ^= 0x04000000;
16759 break;
16760
16761 default:
16762 abort ();
16763 }
16764 }
16765
16766 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16767 {
16768 /* Clear the and-link bit. */
16769 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
16770
16771 /* bltzal 0x04100000 bgezal 0x04110000
16772 bltzall 0x04120000 bgezall 0x04130000 */
16773 insn &= ~0x00100000;
16774 }
16775
16776 /* Branch over the branch (if the branch was likely) or the
16777 full jump (not likely case). Compute the offset from the
16778 current instruction to branch to. */
16779 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16780 i = 16;
16781 else
16782 {
16783 /* How many bytes in instructions we've already emitted? */
16784 i = buf - fragp->fr_literal - fragp->fr_fix;
16785 /* How many bytes in instructions from here to the end? */
16786 i = fragp->fr_var - i;
16787 }
16788 /* Convert to instruction count. */
16789 i >>= 2;
16790 /* Branch counts from the next instruction. */
16791 i--;
16792 insn |= i;
16793 /* Branch over the jump. */
16794 buf = write_insn (buf, insn);
16795
16796 /* nop */
16797 buf = write_insn (buf, 0);
16798
16799 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16800 {
16801 /* beql $0, $0, 2f */
16802 insn = 0x50000000;
16803 /* Compute the PC offset from the current instruction to
16804 the end of the variable frag. */
16805 /* How many bytes in instructions we've already emitted? */
16806 i = buf - fragp->fr_literal - fragp->fr_fix;
16807 /* How many bytes in instructions from here to the end? */
16808 i = fragp->fr_var - i;
16809 /* Convert to instruction count. */
16810 i >>= 2;
16811 /* Don't decrement i, because we want to branch over the
16812 delay slot. */
16813 insn |= i;
16814
16815 buf = write_insn (buf, insn);
16816 buf = write_insn (buf, 0);
16817 }
16818
16819 uncond:
16820 if (mips_pic == NO_PIC)
16821 {
16822 /* j or jal. */
16823 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
16824 ? 0x0c000000 : 0x08000000);
16825 exp.X_op = O_symbol;
16826 exp.X_add_symbol = fragp->fr_symbol;
16827 exp.X_add_number = fragp->fr_offset;
16828
16829 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16830 FALSE, BFD_RELOC_MIPS_JMP);
16831 fixp->fx_file = fragp->fr_file;
16832 fixp->fx_line = fragp->fr_line;
16833
16834 buf = write_insn (buf, insn);
16835 }
16836 else
16837 {
16838 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
16839
16840 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
16841 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
16842 insn |= at << OP_SH_RT;
16843 exp.X_op = O_symbol;
16844 exp.X_add_symbol = fragp->fr_symbol;
16845 exp.X_add_number = fragp->fr_offset;
16846
16847 if (fragp->fr_offset)
16848 {
16849 exp.X_add_symbol = make_expr_symbol (&exp);
16850 exp.X_add_number = 0;
16851 }
16852
16853 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16854 FALSE, BFD_RELOC_MIPS_GOT16);
16855 fixp->fx_file = fragp->fr_file;
16856 fixp->fx_line = fragp->fr_line;
16857
16858 buf = write_insn (buf, insn);
16859
16860 if (mips_opts.isa == ISA_MIPS1)
16861 /* nop */
16862 buf = write_insn (buf, 0);
16863
16864 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
16865 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
16866 insn |= at << OP_SH_RS | at << OP_SH_RT;
16867
16868 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16869 FALSE, BFD_RELOC_LO16);
16870 fixp->fx_file = fragp->fr_file;
16871 fixp->fx_line = fragp->fr_line;
16872
16873 buf = write_insn (buf, insn);
16874
16875 /* j(al)r $at. */
16876 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16877 insn = 0x0000f809;
16878 else
16879 insn = 0x00000008;
16880 insn |= at << OP_SH_RS;
16881
16882 buf = write_insn (buf, insn);
16883 }
16884 }
16885
16886 fragp->fr_fix += fragp->fr_var;
16887 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16888 return;
16889 }
16890
16891 /* Relax microMIPS branches. */
16892 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16893 {
16894 char *buf = fragp->fr_literal + fragp->fr_fix;
16895 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16896 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
16897 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16898 bfd_boolean short_ds;
16899 unsigned long insn;
16900 expressionS exp;
16901 fixS *fixp;
16902
16903 exp.X_op = O_symbol;
16904 exp.X_add_symbol = fragp->fr_symbol;
16905 exp.X_add_number = fragp->fr_offset;
16906
16907 fragp->fr_fix += fragp->fr_var;
16908
16909 /* Handle 16-bit branches that fit or are forced to fit. */
16910 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16911 {
16912 /* We generate a fixup instead of applying it right now,
16913 because if there is linker relaxation, we're going to
16914 need the relocations. */
16915 if (type == 'D')
16916 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
16917 BFD_RELOC_MICROMIPS_10_PCREL_S1);
16918 else if (type == 'E')
16919 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
16920 BFD_RELOC_MICROMIPS_7_PCREL_S1);
16921 else
16922 abort ();
16923
16924 fixp->fx_file = fragp->fr_file;
16925 fixp->fx_line = fragp->fr_line;
16926
16927 /* These relocations can have an addend that won't fit in
16928 2 octets. */
16929 fixp->fx_no_overflow = 1;
16930
16931 return;
16932 }
16933
16934 /* Handle 32-bit branches that fit or are forced to fit. */
16935 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16936 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16937 {
16938 /* We generate a fixup instead of applying it right now,
16939 because if there is linker relaxation, we're going to
16940 need the relocations. */
16941 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16942 BFD_RELOC_MICROMIPS_16_PCREL_S1);
16943 fixp->fx_file = fragp->fr_file;
16944 fixp->fx_line = fragp->fr_line;
16945
16946 if (type == 0)
16947 return;
16948 }
16949
16950 /* Relax 16-bit branches to 32-bit branches. */
16951 if (type != 0)
16952 {
16953 insn = read_compressed_insn (buf, 2);
16954
16955 if ((insn & 0xfc00) == 0xcc00) /* b16 */
16956 insn = 0x94000000; /* beq */
16957 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
16958 {
16959 unsigned long regno;
16960
16961 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
16962 regno = micromips_to_32_reg_d_map [regno];
16963 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
16964 insn |= regno << MICROMIPSOP_SH_RS;
16965 }
16966 else
16967 abort ();
16968
16969 /* Nothing else to do, just write it out. */
16970 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16971 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16972 {
16973 buf = write_compressed_insn (buf, insn, 4);
16974 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16975 return;
16976 }
16977 }
16978 else
16979 insn = read_compressed_insn (buf, 4);
16980
16981 /* Relax 32-bit branches to a sequence of instructions. */
16982 as_warn_where (fragp->fr_file, fragp->fr_line,
16983 _("relaxed out-of-range branch into a jump"));
16984
16985 /* Set the short-delay-slot bit. */
16986 short_ds = al && (insn & 0x02000000) != 0;
16987
16988 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
16989 {
16990 symbolS *l;
16991
16992 /* Reverse the branch. */
16993 if ((insn & 0xfc000000) == 0x94000000 /* beq */
16994 || (insn & 0xfc000000) == 0xb4000000) /* bne */
16995 insn ^= 0x20000000;
16996 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
16997 || (insn & 0xffe00000) == 0x40400000 /* bgez */
16998 || (insn & 0xffe00000) == 0x40800000 /* blez */
16999 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17000 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17001 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17002 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17003 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17004 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17005 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17006 insn ^= 0x00400000;
17007 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17008 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17009 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17010 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17011 insn ^= 0x00200000;
17012 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17013 BNZ.df */
17014 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17015 BNZ.V */
17016 insn ^= 0x00800000;
17017 else
17018 abort ();
17019
17020 if (al)
17021 {
17022 /* Clear the and-link and short-delay-slot bits. */
17023 gas_assert ((insn & 0xfda00000) == 0x40200000);
17024
17025 /* bltzal 0x40200000 bgezal 0x40600000 */
17026 /* bltzals 0x42200000 bgezals 0x42600000 */
17027 insn &= ~0x02200000;
17028 }
17029
17030 /* Make a label at the end for use with the branch. */
17031 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17032 micromips_label_inc ();
17033 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17034
17035 /* Refer to it. */
17036 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17037 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17038 fixp->fx_file = fragp->fr_file;
17039 fixp->fx_line = fragp->fr_line;
17040
17041 /* Branch over the jump. */
17042 buf = write_compressed_insn (buf, insn, 4);
17043 if (!compact)
17044 /* nop */
17045 buf = write_compressed_insn (buf, 0x0c00, 2);
17046 }
17047
17048 if (mips_pic == NO_PIC)
17049 {
17050 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17051
17052 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17053 insn = al ? jal : 0xd4000000;
17054
17055 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17056 BFD_RELOC_MICROMIPS_JMP);
17057 fixp->fx_file = fragp->fr_file;
17058 fixp->fx_line = fragp->fr_line;
17059
17060 buf = write_compressed_insn (buf, insn, 4);
17061 if (compact)
17062 /* nop */
17063 buf = write_compressed_insn (buf, 0x0c00, 2);
17064 }
17065 else
17066 {
17067 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17068 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17069 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17070
17071 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17072 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17073 insn |= at << MICROMIPSOP_SH_RT;
17074
17075 if (exp.X_add_number)
17076 {
17077 exp.X_add_symbol = make_expr_symbol (&exp);
17078 exp.X_add_number = 0;
17079 }
17080
17081 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17082 BFD_RELOC_MICROMIPS_GOT16);
17083 fixp->fx_file = fragp->fr_file;
17084 fixp->fx_line = fragp->fr_line;
17085
17086 buf = write_compressed_insn (buf, insn, 4);
17087
17088 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17089 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17090 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17091
17092 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17093 BFD_RELOC_MICROMIPS_LO16);
17094 fixp->fx_file = fragp->fr_file;
17095 fixp->fx_line = fragp->fr_line;
17096
17097 buf = write_compressed_insn (buf, insn, 4);
17098
17099 /* jr/jrc/jalr/jalrs $at */
17100 insn = al ? jalr : jr;
17101 insn |= at << MICROMIPSOP_SH_MJ;
17102
17103 buf = write_compressed_insn (buf, insn, 2);
17104 }
17105
17106 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17107 return;
17108 }
17109
17110 if (RELAX_MIPS16_P (fragp->fr_subtype))
17111 {
17112 int type;
17113 const struct mips_int_operand *operand;
17114 offsetT val;
17115 char *buf;
17116 unsigned int user_length, length;
17117 unsigned long insn;
17118 bfd_boolean ext;
17119
17120 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17121 operand = mips16_immed_operand (type, FALSE);
17122
17123 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17124 val = resolve_symbol_value (fragp->fr_symbol);
17125 if (operand->root.type == OP_PCREL)
17126 {
17127 const struct mips_pcrel_operand *pcrel_op;
17128 addressT addr;
17129
17130 pcrel_op = (const struct mips_pcrel_operand *) operand;
17131 addr = fragp->fr_address + fragp->fr_fix;
17132
17133 /* The rules for the base address of a PC relative reloc are
17134 complicated; see mips16_extended_frag. */
17135 if (pcrel_op->include_isa_bit)
17136 {
17137 addr += 2;
17138 if (ext)
17139 addr += 2;
17140 /* Ignore the low bit in the target, since it will be
17141 set for a text label. */
17142 val &= -2;
17143 }
17144 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17145 addr -= 4;
17146 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17147 addr -= 2;
17148
17149 addr &= -(1 << pcrel_op->align_log2);
17150 val -= addr;
17151
17152 /* Make sure the section winds up with the alignment we have
17153 assumed. */
17154 if (operand->shift > 0)
17155 record_alignment (asec, operand->shift);
17156 }
17157
17158 if (ext
17159 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17160 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17161 as_warn_where (fragp->fr_file, fragp->fr_line,
17162 _("extended instruction in delay slot"));
17163
17164 buf = fragp->fr_literal + fragp->fr_fix;
17165
17166 insn = read_compressed_insn (buf, 2);
17167 if (ext)
17168 insn |= MIPS16_EXTEND;
17169
17170 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17171 user_length = 4;
17172 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17173 user_length = 2;
17174 else
17175 user_length = 0;
17176
17177 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17178 BFD_RELOC_UNUSED, val, user_length, &insn);
17179
17180 length = (ext ? 4 : 2);
17181 gas_assert (mips16_opcode_length (insn) == length);
17182 write_compressed_insn (buf, insn, length);
17183 fragp->fr_fix += length;
17184 }
17185 else
17186 {
17187 relax_substateT subtype = fragp->fr_subtype;
17188 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17189 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17190 int first, second;
17191 fixS *fixp;
17192
17193 first = RELAX_FIRST (subtype);
17194 second = RELAX_SECOND (subtype);
17195 fixp = (fixS *) fragp->fr_opcode;
17196
17197 /* If the delay slot chosen does not match the size of the instruction,
17198 then emit a warning. */
17199 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17200 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17201 {
17202 relax_substateT s;
17203 const char *msg;
17204
17205 s = subtype & (RELAX_DELAY_SLOT_16BIT
17206 | RELAX_DELAY_SLOT_SIZE_FIRST
17207 | RELAX_DELAY_SLOT_SIZE_SECOND);
17208 msg = macro_warning (s);
17209 if (msg != NULL)
17210 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17211 subtype &= ~s;
17212 }
17213
17214 /* Possibly emit a warning if we've chosen the longer option. */
17215 if (use_second == second_longer)
17216 {
17217 relax_substateT s;
17218 const char *msg;
17219
17220 s = (subtype
17221 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17222 msg = macro_warning (s);
17223 if (msg != NULL)
17224 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17225 subtype &= ~s;
17226 }
17227
17228 /* Go through all the fixups for the first sequence. Disable them
17229 (by marking them as done) if we're going to use the second
17230 sequence instead. */
17231 while (fixp
17232 && fixp->fx_frag == fragp
17233 && fixp->fx_where < fragp->fr_fix - second)
17234 {
17235 if (subtype & RELAX_USE_SECOND)
17236 fixp->fx_done = 1;
17237 fixp = fixp->fx_next;
17238 }
17239
17240 /* Go through the fixups for the second sequence. Disable them if
17241 we're going to use the first sequence, otherwise adjust their
17242 addresses to account for the relaxation. */
17243 while (fixp && fixp->fx_frag == fragp)
17244 {
17245 if (subtype & RELAX_USE_SECOND)
17246 fixp->fx_where -= first;
17247 else
17248 fixp->fx_done = 1;
17249 fixp = fixp->fx_next;
17250 }
17251
17252 /* Now modify the frag contents. */
17253 if (subtype & RELAX_USE_SECOND)
17254 {
17255 char *start;
17256
17257 start = fragp->fr_literal + fragp->fr_fix - first - second;
17258 memmove (start, start + first, second);
17259 fragp->fr_fix -= first;
17260 }
17261 else
17262 fragp->fr_fix -= second;
17263 }
17264 }
17265
17266 /* This function is called after the relocs have been generated.
17267 We've been storing mips16 text labels as odd. Here we convert them
17268 back to even for the convenience of the debugger. */
17269
17270 void
17271 mips_frob_file_after_relocs (void)
17272 {
17273 asymbol **syms;
17274 unsigned int count, i;
17275
17276 syms = bfd_get_outsymbols (stdoutput);
17277 count = bfd_get_symcount (stdoutput);
17278 for (i = 0; i < count; i++, syms++)
17279 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17280 && ((*syms)->value & 1) != 0)
17281 {
17282 (*syms)->value &= ~1;
17283 /* If the symbol has an odd size, it was probably computed
17284 incorrectly, so adjust that as well. */
17285 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17286 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17287 }
17288 }
17289
17290 /* This function is called whenever a label is defined, including fake
17291 labels instantiated off the dot special symbol. It is used when
17292 handling branch delays; if a branch has a label, we assume we cannot
17293 move it. This also bumps the value of the symbol by 1 in compressed
17294 code. */
17295
17296 static void
17297 mips_record_label (symbolS *sym)
17298 {
17299 segment_info_type *si = seg_info (now_seg);
17300 struct insn_label_list *l;
17301
17302 if (free_insn_labels == NULL)
17303 l = (struct insn_label_list *) xmalloc (sizeof *l);
17304 else
17305 {
17306 l = free_insn_labels;
17307 free_insn_labels = l->next;
17308 }
17309
17310 l->label = sym;
17311 l->next = si->label_list;
17312 si->label_list = l;
17313 }
17314
17315 /* This function is called as tc_frob_label() whenever a label is defined
17316 and adds a DWARF-2 record we only want for true labels. */
17317
17318 void
17319 mips_define_label (symbolS *sym)
17320 {
17321 mips_record_label (sym);
17322 dwarf2_emit_label (sym);
17323 }
17324
17325 /* This function is called by tc_new_dot_label whenever a new dot symbol
17326 is defined. */
17327
17328 void
17329 mips_add_dot_label (symbolS *sym)
17330 {
17331 mips_record_label (sym);
17332 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17333 mips_compressed_mark_label (sym);
17334 }
17335 \f
17336 /* Some special processing for a MIPS ELF file. */
17337
17338 void
17339 mips_elf_final_processing (void)
17340 {
17341 /* Write out the register information. */
17342 if (mips_abi != N64_ABI)
17343 {
17344 Elf32_RegInfo s;
17345
17346 s.ri_gprmask = mips_gprmask;
17347 s.ri_cprmask[0] = mips_cprmask[0];
17348 s.ri_cprmask[1] = mips_cprmask[1];
17349 s.ri_cprmask[2] = mips_cprmask[2];
17350 s.ri_cprmask[3] = mips_cprmask[3];
17351 /* The gp_value field is set by the MIPS ELF backend. */
17352
17353 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
17354 ((Elf32_External_RegInfo *)
17355 mips_regmask_frag));
17356 }
17357 else
17358 {
17359 Elf64_Internal_RegInfo s;
17360
17361 s.ri_gprmask = mips_gprmask;
17362 s.ri_pad = 0;
17363 s.ri_cprmask[0] = mips_cprmask[0];
17364 s.ri_cprmask[1] = mips_cprmask[1];
17365 s.ri_cprmask[2] = mips_cprmask[2];
17366 s.ri_cprmask[3] = mips_cprmask[3];
17367 /* The gp_value field is set by the MIPS ELF backend. */
17368
17369 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
17370 ((Elf64_External_RegInfo *)
17371 mips_regmask_frag));
17372 }
17373
17374 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
17375 sort of BFD interface for this. */
17376 if (mips_any_noreorder)
17377 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
17378 if (mips_pic != NO_PIC)
17379 {
17380 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
17381 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17382 }
17383 if (mips_abicalls)
17384 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17385
17386 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
17387 defined at present; this might need to change in future. */
17388 if (file_ase_mips16)
17389 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
17390 if (file_ase_micromips)
17391 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
17392 if (file_ase & ASE_MDMX)
17393 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
17394
17395 /* Set the MIPS ELF ABI flags. */
17396 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
17397 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
17398 else if (mips_abi == O64_ABI)
17399 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
17400 else if (mips_abi == EABI_ABI)
17401 {
17402 if (!file_mips_opts.gp32)
17403 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
17404 else
17405 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
17406 }
17407 else if (mips_abi == N32_ABI)
17408 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
17409
17410 /* Nothing to do for N64_ABI. */
17411
17412 if (mips_32bitmode)
17413 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
17414
17415 if (mips_flag_nan2008)
17416 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
17417
17418 /* 32 bit code with 64 bit FP registers. */
17419 if (file_mips_opts.fp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
17420 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
17421 }
17422 \f
17423 typedef struct proc {
17424 symbolS *func_sym;
17425 symbolS *func_end_sym;
17426 unsigned long reg_mask;
17427 unsigned long reg_offset;
17428 unsigned long fpreg_mask;
17429 unsigned long fpreg_offset;
17430 unsigned long frame_offset;
17431 unsigned long frame_reg;
17432 unsigned long pc_reg;
17433 } procS;
17434
17435 static procS cur_proc;
17436 static procS *cur_proc_ptr;
17437 static int numprocs;
17438
17439 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
17440 as "2", and a normal nop as "0". */
17441
17442 #define NOP_OPCODE_MIPS 0
17443 #define NOP_OPCODE_MIPS16 1
17444 #define NOP_OPCODE_MICROMIPS 2
17445
17446 char
17447 mips_nop_opcode (void)
17448 {
17449 if (seg_info (now_seg)->tc_segment_info_data.micromips)
17450 return NOP_OPCODE_MICROMIPS;
17451 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
17452 return NOP_OPCODE_MIPS16;
17453 else
17454 return NOP_OPCODE_MIPS;
17455 }
17456
17457 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
17458 32-bit microMIPS NOPs here (if applicable). */
17459
17460 void
17461 mips_handle_align (fragS *fragp)
17462 {
17463 char nop_opcode;
17464 char *p;
17465 int bytes, size, excess;
17466 valueT opcode;
17467
17468 if (fragp->fr_type != rs_align_code)
17469 return;
17470
17471 p = fragp->fr_literal + fragp->fr_fix;
17472 nop_opcode = *p;
17473 switch (nop_opcode)
17474 {
17475 case NOP_OPCODE_MICROMIPS:
17476 opcode = micromips_nop32_insn.insn_opcode;
17477 size = 4;
17478 break;
17479 case NOP_OPCODE_MIPS16:
17480 opcode = mips16_nop_insn.insn_opcode;
17481 size = 2;
17482 break;
17483 case NOP_OPCODE_MIPS:
17484 default:
17485 opcode = nop_insn.insn_opcode;
17486 size = 4;
17487 break;
17488 }
17489
17490 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
17491 excess = bytes % size;
17492
17493 /* Handle the leading part if we're not inserting a whole number of
17494 instructions, and make it the end of the fixed part of the frag.
17495 Try to fit in a short microMIPS NOP if applicable and possible,
17496 and use zeroes otherwise. */
17497 gas_assert (excess < 4);
17498 fragp->fr_fix += excess;
17499 switch (excess)
17500 {
17501 case 3:
17502 *p++ = '\0';
17503 /* Fall through. */
17504 case 2:
17505 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
17506 {
17507 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
17508 break;
17509 }
17510 *p++ = '\0';
17511 /* Fall through. */
17512 case 1:
17513 *p++ = '\0';
17514 /* Fall through. */
17515 case 0:
17516 break;
17517 }
17518
17519 md_number_to_chars (p, opcode, size);
17520 fragp->fr_var = size;
17521 }
17522
17523 static void
17524 md_obj_begin (void)
17525 {
17526 }
17527
17528 static void
17529 md_obj_end (void)
17530 {
17531 /* Check for premature end, nesting errors, etc. */
17532 if (cur_proc_ptr)
17533 as_warn (_("missing .end at end of assembly"));
17534 }
17535
17536 static long
17537 get_number (void)
17538 {
17539 int negative = 0;
17540 long val = 0;
17541
17542 if (*input_line_pointer == '-')
17543 {
17544 ++input_line_pointer;
17545 negative = 1;
17546 }
17547 if (!ISDIGIT (*input_line_pointer))
17548 as_bad (_("expected simple number"));
17549 if (input_line_pointer[0] == '0')
17550 {
17551 if (input_line_pointer[1] == 'x')
17552 {
17553 input_line_pointer += 2;
17554 while (ISXDIGIT (*input_line_pointer))
17555 {
17556 val <<= 4;
17557 val |= hex_value (*input_line_pointer++);
17558 }
17559 return negative ? -val : val;
17560 }
17561 else
17562 {
17563 ++input_line_pointer;
17564 while (ISDIGIT (*input_line_pointer))
17565 {
17566 val <<= 3;
17567 val |= *input_line_pointer++ - '0';
17568 }
17569 return negative ? -val : val;
17570 }
17571 }
17572 if (!ISDIGIT (*input_line_pointer))
17573 {
17574 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
17575 *input_line_pointer, *input_line_pointer);
17576 as_warn (_("invalid number"));
17577 return -1;
17578 }
17579 while (ISDIGIT (*input_line_pointer))
17580 {
17581 val *= 10;
17582 val += *input_line_pointer++ - '0';
17583 }
17584 return negative ? -val : val;
17585 }
17586
17587 /* The .file directive; just like the usual .file directive, but there
17588 is an initial number which is the ECOFF file index. In the non-ECOFF
17589 case .file implies DWARF-2. */
17590
17591 static void
17592 s_mips_file (int x ATTRIBUTE_UNUSED)
17593 {
17594 static int first_file_directive = 0;
17595
17596 if (ECOFF_DEBUGGING)
17597 {
17598 get_number ();
17599 s_app_file (0);
17600 }
17601 else
17602 {
17603 char *filename;
17604
17605 filename = dwarf2_directive_file (0);
17606
17607 /* Versions of GCC up to 3.1 start files with a ".file"
17608 directive even for stabs output. Make sure that this
17609 ".file" is handled. Note that you need a version of GCC
17610 after 3.1 in order to support DWARF-2 on MIPS. */
17611 if (filename != NULL && ! first_file_directive)
17612 {
17613 (void) new_logical_line (filename, -1);
17614 s_app_file_string (filename, 0);
17615 }
17616 first_file_directive = 1;
17617 }
17618 }
17619
17620 /* The .loc directive, implying DWARF-2. */
17621
17622 static void
17623 s_mips_loc (int x ATTRIBUTE_UNUSED)
17624 {
17625 if (!ECOFF_DEBUGGING)
17626 dwarf2_directive_loc (0);
17627 }
17628
17629 /* The .end directive. */
17630
17631 static void
17632 s_mips_end (int x ATTRIBUTE_UNUSED)
17633 {
17634 symbolS *p;
17635
17636 /* Following functions need their own .frame and .cprestore directives. */
17637 mips_frame_reg_valid = 0;
17638 mips_cprestore_valid = 0;
17639
17640 if (!is_end_of_line[(unsigned char) *input_line_pointer])
17641 {
17642 p = get_symbol ();
17643 demand_empty_rest_of_line ();
17644 }
17645 else
17646 p = NULL;
17647
17648 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
17649 as_warn (_(".end not in text section"));
17650
17651 if (!cur_proc_ptr)
17652 {
17653 as_warn (_(".end directive without a preceding .ent directive"));
17654 demand_empty_rest_of_line ();
17655 return;
17656 }
17657
17658 if (p != NULL)
17659 {
17660 gas_assert (S_GET_NAME (p));
17661 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
17662 as_warn (_(".end symbol does not match .ent symbol"));
17663
17664 if (debug_type == DEBUG_STABS)
17665 stabs_generate_asm_endfunc (S_GET_NAME (p),
17666 S_GET_NAME (p));
17667 }
17668 else
17669 as_warn (_(".end directive missing or unknown symbol"));
17670
17671 /* Create an expression to calculate the size of the function. */
17672 if (p && cur_proc_ptr)
17673 {
17674 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
17675 expressionS *exp = xmalloc (sizeof (expressionS));
17676
17677 obj->size = exp;
17678 exp->X_op = O_subtract;
17679 exp->X_add_symbol = symbol_temp_new_now ();
17680 exp->X_op_symbol = p;
17681 exp->X_add_number = 0;
17682
17683 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
17684 }
17685
17686 /* Generate a .pdr section. */
17687 if (!ECOFF_DEBUGGING && mips_flag_pdr)
17688 {
17689 segT saved_seg = now_seg;
17690 subsegT saved_subseg = now_subseg;
17691 expressionS exp;
17692 char *fragp;
17693
17694 #ifdef md_flush_pending_output
17695 md_flush_pending_output ();
17696 #endif
17697
17698 gas_assert (pdr_seg);
17699 subseg_set (pdr_seg, 0);
17700
17701 /* Write the symbol. */
17702 exp.X_op = O_symbol;
17703 exp.X_add_symbol = p;
17704 exp.X_add_number = 0;
17705 emit_expr (&exp, 4);
17706
17707 fragp = frag_more (7 * 4);
17708
17709 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
17710 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
17711 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
17712 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
17713 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
17714 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
17715 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
17716
17717 subseg_set (saved_seg, saved_subseg);
17718 }
17719
17720 cur_proc_ptr = NULL;
17721 }
17722
17723 /* The .aent and .ent directives. */
17724
17725 static void
17726 s_mips_ent (int aent)
17727 {
17728 symbolS *symbolP;
17729
17730 symbolP = get_symbol ();
17731 if (*input_line_pointer == ',')
17732 ++input_line_pointer;
17733 SKIP_WHITESPACE ();
17734 if (ISDIGIT (*input_line_pointer)
17735 || *input_line_pointer == '-')
17736 get_number ();
17737
17738 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
17739 as_warn (_(".ent or .aent not in text section"));
17740
17741 if (!aent && cur_proc_ptr)
17742 as_warn (_("missing .end"));
17743
17744 if (!aent)
17745 {
17746 /* This function needs its own .frame and .cprestore directives. */
17747 mips_frame_reg_valid = 0;
17748 mips_cprestore_valid = 0;
17749
17750 cur_proc_ptr = &cur_proc;
17751 memset (cur_proc_ptr, '\0', sizeof (procS));
17752
17753 cur_proc_ptr->func_sym = symbolP;
17754
17755 ++numprocs;
17756
17757 if (debug_type == DEBUG_STABS)
17758 stabs_generate_asm_func (S_GET_NAME (symbolP),
17759 S_GET_NAME (symbolP));
17760 }
17761
17762 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
17763
17764 demand_empty_rest_of_line ();
17765 }
17766
17767 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
17768 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
17769 s_mips_frame is used so that we can set the PDR information correctly.
17770 We can't use the ecoff routines because they make reference to the ecoff
17771 symbol table (in the mdebug section). */
17772
17773 static void
17774 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
17775 {
17776 if (ECOFF_DEBUGGING)
17777 s_ignore (ignore);
17778 else
17779 {
17780 long val;
17781
17782 if (cur_proc_ptr == (procS *) NULL)
17783 {
17784 as_warn (_(".frame outside of .ent"));
17785 demand_empty_rest_of_line ();
17786 return;
17787 }
17788
17789 cur_proc_ptr->frame_reg = tc_get_register (1);
17790
17791 SKIP_WHITESPACE ();
17792 if (*input_line_pointer++ != ','
17793 || get_absolute_expression_and_terminator (&val) != ',')
17794 {
17795 as_warn (_("bad .frame directive"));
17796 --input_line_pointer;
17797 demand_empty_rest_of_line ();
17798 return;
17799 }
17800
17801 cur_proc_ptr->frame_offset = val;
17802 cur_proc_ptr->pc_reg = tc_get_register (0);
17803
17804 demand_empty_rest_of_line ();
17805 }
17806 }
17807
17808 /* The .fmask and .mask directives. If the mdebug section is present
17809 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
17810 embedded targets, s_mips_mask is used so that we can set the PDR
17811 information correctly. We can't use the ecoff routines because they
17812 make reference to the ecoff symbol table (in the mdebug section). */
17813
17814 static void
17815 s_mips_mask (int reg_type)
17816 {
17817 if (ECOFF_DEBUGGING)
17818 s_ignore (reg_type);
17819 else
17820 {
17821 long mask, off;
17822
17823 if (cur_proc_ptr == (procS *) NULL)
17824 {
17825 as_warn (_(".mask/.fmask outside of .ent"));
17826 demand_empty_rest_of_line ();
17827 return;
17828 }
17829
17830 if (get_absolute_expression_and_terminator (&mask) != ',')
17831 {
17832 as_warn (_("bad .mask/.fmask directive"));
17833 --input_line_pointer;
17834 demand_empty_rest_of_line ();
17835 return;
17836 }
17837
17838 off = get_absolute_expression ();
17839
17840 if (reg_type == 'F')
17841 {
17842 cur_proc_ptr->fpreg_mask = mask;
17843 cur_proc_ptr->fpreg_offset = off;
17844 }
17845 else
17846 {
17847 cur_proc_ptr->reg_mask = mask;
17848 cur_proc_ptr->reg_offset = off;
17849 }
17850
17851 demand_empty_rest_of_line ();
17852 }
17853 }
17854
17855 /* A table describing all the processors gas knows about. Names are
17856 matched in the order listed.
17857
17858 To ease comparison, please keep this table in the same order as
17859 gcc's mips_cpu_info_table[]. */
17860 static const struct mips_cpu_info mips_cpu_info_table[] =
17861 {
17862 /* Entries for generic ISAs */
17863 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
17864 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
17865 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
17866 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
17867 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
17868 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
17869 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17870 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
17871 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
17872 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
17873 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
17874 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
17875 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
17876
17877 /* MIPS I */
17878 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
17879 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
17880 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
17881
17882 /* MIPS II */
17883 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
17884
17885 /* MIPS III */
17886 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
17887 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
17888 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
17889 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
17890 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
17891 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
17892 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
17893 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
17894 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
17895 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
17896 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
17897 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
17898 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
17899 /* ST Microelectronics Loongson 2E and 2F cores */
17900 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
17901 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
17902
17903 /* MIPS IV */
17904 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
17905 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
17906 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
17907 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
17908 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
17909 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
17910 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
17911 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
17912 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
17913 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
17914 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
17915 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
17916 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
17917 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
17918 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
17919
17920 /* MIPS 32 */
17921 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17922 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17923 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17924 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
17925
17926 /* MIPS 32 Release 2 */
17927 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17928 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17929 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17930 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
17931 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17932 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17933 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17934 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17935 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17936 ISA_MIPS32R2, CPU_MIPS32R2 },
17937 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17938 ISA_MIPS32R2, CPU_MIPS32R2 },
17939 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17940 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17941 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17942 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17943 /* Deprecated forms of the above. */
17944 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17945 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17946 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
17947 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17948 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17949 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17950 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17951 /* Deprecated forms of the above. */
17952 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17953 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17954 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
17955 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17956 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17957 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17958 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17959 /* Deprecated forms of the above. */
17960 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17961 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17962 /* 34Kn is a 34kc without DSP. */
17963 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17964 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
17965 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17966 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17967 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17968 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17969 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17970 /* Deprecated forms of the above. */
17971 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17972 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17973 /* 1004K cores are multiprocessor versions of the 34K. */
17974 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17975 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17976 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17977 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17978 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
17979 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
17980
17981 /* MIPS 64 */
17982 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17983 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17984 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17985 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17986
17987 /* Broadcom SB-1 CPU core */
17988 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
17989 /* Broadcom SB-1A CPU core */
17990 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
17991
17992 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
17993
17994 /* MIPS 64 Release 2 */
17995
17996 /* Cavium Networks Octeon CPU core */
17997 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
17998 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
17999 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18000
18001 /* RMI Xlr */
18002 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18003
18004 /* Broadcom XLP.
18005 XLP is mostly like XLR, with the prominent exception that it is
18006 MIPS64R2 rather than MIPS64. */
18007 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18008
18009 /* End marker */
18010 { NULL, 0, 0, 0, 0 }
18011 };
18012
18013
18014 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18015 with a final "000" replaced by "k". Ignore case.
18016
18017 Note: this function is shared between GCC and GAS. */
18018
18019 static bfd_boolean
18020 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18021 {
18022 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18023 given++, canonical++;
18024
18025 return ((*given == 0 && *canonical == 0)
18026 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18027 }
18028
18029
18030 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18031 CPU name. We've traditionally allowed a lot of variation here.
18032
18033 Note: this function is shared between GCC and GAS. */
18034
18035 static bfd_boolean
18036 mips_matching_cpu_name_p (const char *canonical, const char *given)
18037 {
18038 /* First see if the name matches exactly, or with a final "000"
18039 turned into "k". */
18040 if (mips_strict_matching_cpu_name_p (canonical, given))
18041 return TRUE;
18042
18043 /* If not, try comparing based on numerical designation alone.
18044 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18045 if (TOLOWER (*given) == 'r')
18046 given++;
18047 if (!ISDIGIT (*given))
18048 return FALSE;
18049
18050 /* Skip over some well-known prefixes in the canonical name,
18051 hoping to find a number there too. */
18052 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18053 canonical += 2;
18054 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18055 canonical += 2;
18056 else if (TOLOWER (canonical[0]) == 'r')
18057 canonical += 1;
18058
18059 return mips_strict_matching_cpu_name_p (canonical, given);
18060 }
18061
18062
18063 /* Parse an option that takes the name of a processor as its argument.
18064 OPTION is the name of the option and CPU_STRING is the argument.
18065 Return the corresponding processor enumeration if the CPU_STRING is
18066 recognized, otherwise report an error and return null.
18067
18068 A similar function exists in GCC. */
18069
18070 static const struct mips_cpu_info *
18071 mips_parse_cpu (const char *option, const char *cpu_string)
18072 {
18073 const struct mips_cpu_info *p;
18074
18075 /* 'from-abi' selects the most compatible architecture for the given
18076 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18077 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18078 version. Look first at the -mgp options, if given, otherwise base
18079 the choice on MIPS_DEFAULT_64BIT.
18080
18081 Treat NO_ABI like the EABIs. One reason to do this is that the
18082 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18083 architecture. This code picks MIPS I for 'mips' and MIPS III for
18084 'mips64', just as we did in the days before 'from-abi'. */
18085 if (strcasecmp (cpu_string, "from-abi") == 0)
18086 {
18087 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18088 return mips_cpu_info_from_isa (ISA_MIPS1);
18089
18090 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18091 return mips_cpu_info_from_isa (ISA_MIPS3);
18092
18093 if (file_mips_opts.gp32 >= 0)
18094 return mips_cpu_info_from_isa (file_mips_opts.gp32
18095 ? ISA_MIPS1 : ISA_MIPS3);
18096
18097 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18098 ? ISA_MIPS3
18099 : ISA_MIPS1);
18100 }
18101
18102 /* 'default' has traditionally been a no-op. Probably not very useful. */
18103 if (strcasecmp (cpu_string, "default") == 0)
18104 return 0;
18105
18106 for (p = mips_cpu_info_table; p->name != 0; p++)
18107 if (mips_matching_cpu_name_p (p->name, cpu_string))
18108 return p;
18109
18110 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18111 return 0;
18112 }
18113
18114 /* Return the canonical processor information for ISA (a member of the
18115 ISA_MIPS* enumeration). */
18116
18117 static const struct mips_cpu_info *
18118 mips_cpu_info_from_isa (int isa)
18119 {
18120 int i;
18121
18122 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18123 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18124 && isa == mips_cpu_info_table[i].isa)
18125 return (&mips_cpu_info_table[i]);
18126
18127 return NULL;
18128 }
18129
18130 static const struct mips_cpu_info *
18131 mips_cpu_info_from_arch (int arch)
18132 {
18133 int i;
18134
18135 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18136 if (arch == mips_cpu_info_table[i].cpu)
18137 return (&mips_cpu_info_table[i]);
18138
18139 return NULL;
18140 }
18141 \f
18142 static void
18143 show (FILE *stream, const char *string, int *col_p, int *first_p)
18144 {
18145 if (*first_p)
18146 {
18147 fprintf (stream, "%24s", "");
18148 *col_p = 24;
18149 }
18150 else
18151 {
18152 fprintf (stream, ", ");
18153 *col_p += 2;
18154 }
18155
18156 if (*col_p + strlen (string) > 72)
18157 {
18158 fprintf (stream, "\n%24s", "");
18159 *col_p = 24;
18160 }
18161
18162 fprintf (stream, "%s", string);
18163 *col_p += strlen (string);
18164
18165 *first_p = 0;
18166 }
18167
18168 void
18169 md_show_usage (FILE *stream)
18170 {
18171 int column, first;
18172 size_t i;
18173
18174 fprintf (stream, _("\
18175 MIPS options:\n\
18176 -EB generate big endian output\n\
18177 -EL generate little endian output\n\
18178 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18179 -G NUM allow referencing objects up to NUM bytes\n\
18180 implicitly with the gp register [default 8]\n"));
18181 fprintf (stream, _("\
18182 -mips1 generate MIPS ISA I instructions\n\
18183 -mips2 generate MIPS ISA II instructions\n\
18184 -mips3 generate MIPS ISA III instructions\n\
18185 -mips4 generate MIPS ISA IV instructions\n\
18186 -mips5 generate MIPS ISA V instructions\n\
18187 -mips32 generate MIPS32 ISA instructions\n\
18188 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18189 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18190 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18191 -mips64 generate MIPS64 ISA instructions\n\
18192 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18193 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18194 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18195 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18196
18197 first = 1;
18198
18199 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18200 show (stream, mips_cpu_info_table[i].name, &column, &first);
18201 show (stream, "from-abi", &column, &first);
18202 fputc ('\n', stream);
18203
18204 fprintf (stream, _("\
18205 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18206 -no-mCPU don't generate code specific to CPU.\n\
18207 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18208
18209 first = 1;
18210
18211 show (stream, "3900", &column, &first);
18212 show (stream, "4010", &column, &first);
18213 show (stream, "4100", &column, &first);
18214 show (stream, "4650", &column, &first);
18215 fputc ('\n', stream);
18216
18217 fprintf (stream, _("\
18218 -mips16 generate mips16 instructions\n\
18219 -no-mips16 do not generate mips16 instructions\n"));
18220 fprintf (stream, _("\
18221 -mmicromips generate microMIPS instructions\n\
18222 -mno-micromips do not generate microMIPS instructions\n"));
18223 fprintf (stream, _("\
18224 -msmartmips generate smartmips instructions\n\
18225 -mno-smartmips do not generate smartmips instructions\n"));
18226 fprintf (stream, _("\
18227 -mdsp generate DSP instructions\n\
18228 -mno-dsp do not generate DSP instructions\n"));
18229 fprintf (stream, _("\
18230 -mdspr2 generate DSP R2 instructions\n\
18231 -mno-dspr2 do not generate DSP R2 instructions\n"));
18232 fprintf (stream, _("\
18233 -mmt generate MT instructions\n\
18234 -mno-mt do not generate MT instructions\n"));
18235 fprintf (stream, _("\
18236 -mmcu generate MCU instructions\n\
18237 -mno-mcu do not generate MCU instructions\n"));
18238 fprintf (stream, _("\
18239 -mmsa generate MSA instructions\n\
18240 -mno-msa do not generate MSA instructions\n"));
18241 fprintf (stream, _("\
18242 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18243 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18244 fprintf (stream, _("\
18245 -mvirt generate Virtualization instructions\n\
18246 -mno-virt do not generate Virtualization instructions\n"));
18247 fprintf (stream, _("\
18248 -minsn32 only generate 32-bit microMIPS instructions\n\
18249 -mno-insn32 generate all microMIPS instructions\n"));
18250 fprintf (stream, _("\
18251 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18252 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18253 -mfix-vr4120 work around certain VR4120 errata\n\
18254 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18255 -mfix-24k insert a nop after ERET and DERET instructions\n\
18256 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18257 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18258 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18259 -msym32 assume all symbols have 32-bit values\n\
18260 -O0 remove unneeded NOPs, do not swap branches\n\
18261 -O remove unneeded NOPs and swap branches\n\
18262 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18263 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18264 fprintf (stream, _("\
18265 -mhard-float allow floating-point instructions\n\
18266 -msoft-float do not allow floating-point instructions\n\
18267 -msingle-float only allow 32-bit floating-point operations\n\
18268 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18269 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18270 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18271 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18272
18273 first = 1;
18274
18275 show (stream, "legacy", &column, &first);
18276 show (stream, "2008", &column, &first);
18277
18278 fputc ('\n', stream);
18279
18280 fprintf (stream, _("\
18281 -KPIC, -call_shared generate SVR4 position independent code\n\
18282 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18283 -mvxworks-pic generate VxWorks position independent code\n\
18284 -non_shared do not generate code that can operate with DSOs\n\
18285 -xgot assume a 32 bit GOT\n\
18286 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18287 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18288 position dependent (non shared) code\n\
18289 -mabi=ABI create ABI conformant object file for:\n"));
18290
18291 first = 1;
18292
18293 show (stream, "32", &column, &first);
18294 show (stream, "o64", &column, &first);
18295 show (stream, "n32", &column, &first);
18296 show (stream, "64", &column, &first);
18297 show (stream, "eabi", &column, &first);
18298
18299 fputc ('\n', stream);
18300
18301 fprintf (stream, _("\
18302 -32 create o32 ABI object file (default)\n\
18303 -n32 create n32 ABI object file\n\
18304 -64 create 64 ABI object file\n"));
18305 }
18306
18307 #ifdef TE_IRIX
18308 enum dwarf2_format
18309 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
18310 {
18311 if (HAVE_64BIT_SYMBOLS)
18312 return dwarf2_format_64bit_irix;
18313 else
18314 return dwarf2_format_32bit;
18315 }
18316 #endif
18317
18318 int
18319 mips_dwarf2_addr_size (void)
18320 {
18321 if (HAVE_64BIT_OBJECTS)
18322 return 8;
18323 else
18324 return 4;
18325 }
18326
18327 /* Standard calling conventions leave the CFA at SP on entry. */
18328 void
18329 mips_cfi_frame_initial_instructions (void)
18330 {
18331 cfi_add_CFA_def_cfa_register (SP);
18332 }
18333
18334 int
18335 tc_mips_regname_to_dw2regnum (char *regname)
18336 {
18337 unsigned int regnum = -1;
18338 unsigned int reg;
18339
18340 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
18341 regnum = reg;
18342
18343 return regnum;
18344 }
18345
18346 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
18347 Given a symbolic attribute NAME, return the proper integer value.
18348 Returns -1 if the attribute is not known. */
18349
18350 int
18351 mips_convert_symbolic_attribute (const char *name)
18352 {
18353 static const struct
18354 {
18355 const char * name;
18356 const int tag;
18357 }
18358 attribute_table[] =
18359 {
18360 #define T(tag) {#tag, tag}
18361 T (Tag_GNU_MIPS_ABI_FP),
18362 T (Tag_GNU_MIPS_ABI_MSA),
18363 #undef T
18364 };
18365 unsigned int i;
18366
18367 if (name == NULL)
18368 return -1;
18369
18370 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
18371 if (streq (name, attribute_table[i].name))
18372 return attribute_table[i].tag;
18373
18374 return -1;
18375 }
This page took 0.671455 seconds and 5 git commands to generate.