MIPS/GAS: Correct tab-after-space formatting mistakes
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_DSPR3,
1414 OPTION_NO_DSPR3,
1415 OPTION_EVA,
1416 OPTION_NO_EVA,
1417 OPTION_XPA,
1418 OPTION_NO_XPA,
1419 OPTION_MICROMIPS,
1420 OPTION_NO_MICROMIPS,
1421 OPTION_MCU,
1422 OPTION_NO_MCU,
1423 OPTION_COMPAT_ARCH_BASE,
1424 OPTION_M4650,
1425 OPTION_NO_M4650,
1426 OPTION_M4010,
1427 OPTION_NO_M4010,
1428 OPTION_M4100,
1429 OPTION_NO_M4100,
1430 OPTION_M3900,
1431 OPTION_NO_M3900,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1434 OPTION_FIX_24K,
1435 OPTION_NO_FIX_24K,
1436 OPTION_FIX_RM7000,
1437 OPTION_NO_FIX_RM7000,
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1442 OPTION_FIX_VR4120,
1443 OPTION_NO_FIX_VR4120,
1444 OPTION_FIX_VR4130,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1448 OPTION_TRAP,
1449 OPTION_BREAK,
1450 OPTION_EB,
1451 OPTION_EL,
1452 OPTION_FP32,
1453 OPTION_GP32,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1456 OPTION_FP64,
1457 OPTION_FPXX,
1458 OPTION_GP64,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
1461 OPTION_INSN32,
1462 OPTION_NO_INSN32,
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
1472 OPTION_CALL_SHARED,
1473 OPTION_CALL_NONPIC,
1474 OPTION_NON_SHARED,
1475 OPTION_XGOT,
1476 OPTION_MABI,
1477 OPTION_N32,
1478 OPTION_64,
1479 OPTION_MDEBUG,
1480 OPTION_NO_MDEBUG,
1481 OPTION_PDR,
1482 OPTION_NO_PDR,
1483 OPTION_MVXWORKS_PIC,
1484 OPTION_NAN,
1485 OPTION_ODD_SPREG,
1486 OPTION_NO_ODD_SPREG,
1487 OPTION_END_OF_ENUM
1488 };
1489
1490 struct option md_longopts[] =
1491 {
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1511
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1541
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1551
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1570
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1599
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1604
1605 /* ELF-specific options. */
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1619 {"mnan", required_argument, NULL, OPTION_NAN},
1620
1621 {NULL, no_argument, NULL, 0}
1622 };
1623 size_t md_longopts_size = sizeof (md_longopts);
1624 \f
1625 /* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1628 struct mips_ase
1629 {
1630 /* The name of the ASE, used in both the command-line and .set options. */
1631 const char *name;
1632
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1636 unsigned int flags;
1637
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1641
1642 /* The command-line options that turn the ASE on and off. */
1643 int option_on;
1644 int option_off;
1645
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1648 int mips32_rev;
1649 int mips64_rev;
1650 int micromips32_rev;
1651 int micromips64_rev;
1652
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1654 been removed. */
1655 int rem_rev;
1656 };
1657
1658 /* A table of all supported ASEs. */
1659 static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
1662 2, 2, 2, 2,
1663 -1 },
1664
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
1667 2, 2, 2, 2,
1668 -1 },
1669
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1672 6, 6, -1, -1,
1673 -1 },
1674
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
1677 2, 2, 2, 2,
1678 -1 },
1679
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
1682 2, 2, 2, 2,
1683 -1 },
1684
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
1688 -1, 1, -1, -1,
1689 6 },
1690
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1694 2, 1, -1, -1,
1695 6 },
1696
1697 { "mt", ASE_MT, 0,
1698 OPTION_MT, OPTION_NO_MT,
1699 2, 2, -1, -1,
1700 -1 },
1701
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1704 1, -1, -1, -1,
1705 6 },
1706
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
1709 2, 2, 2, 2,
1710 -1 },
1711
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
1714 2, 2, 2, 2,
1715 -1 },
1716
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
1719 2, 2, -1, -1,
1720 -1 },
1721 };
1722
1723 /* The set of ASEs that require -mfp64. */
1724 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1725
1726 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1727 static const unsigned int mips_ase_groups[] = {
1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1729 };
1730 \f
1731 /* Pseudo-op table.
1732
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1736
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1741 .vreg.
1742
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
1747
1748 static const pseudo_typeS mips_pseudo_table[] =
1749 {
1750 /* MIPS specific pseudo-ops. */
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
1760 {"cprestore", s_cprestore, 0},
1761 {"cpreturn", s_cpreturn, 0},
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
1766 {"gpvalue", s_gpvalue, 0},
1767 {"gpword", s_gpword, 0},
1768 {"gpdword", s_gpdword, 0},
1769 {"ehword", s_ehword, 0},
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
1772 {"nan", s_nan, 0},
1773 {"module", s_module, 0},
1774
1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
1776 chips. */
1777 {"asciiz", stringer, 8 + 1},
1778 {"bss", s_change_sec, 'b'},
1779 {"err", s_err, 0},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
1785
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1788
1789 /* These pseudo-ops are defined in read.c, but must be overridden
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1799 {"int", s_cons, 2},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
1803 {"section", s_change_section, 0},
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
1806 {"stabd", s_mips_stab, 'd'},
1807 {"stabn", s_mips_stab, 'n'},
1808 {"stabs", s_mips_stab, 's'},
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
1811
1812 { "extern", ecoff_directive_extern, 0},
1813
1814 { NULL, NULL, 0 },
1815 };
1816
1817 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1818 {
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
1826 {"file", s_mips_file, 0},
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
1829 {"loc", s_mips_loc, 0},
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
1832 { NULL, NULL, 0 },
1833 };
1834
1835 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1837
1838 int
1839 mips_address_bytes (void)
1840 {
1841 file_mips_check_options ();
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1843 }
1844
1845 extern void pop_insert (const pseudo_typeS *);
1846
1847 void
1848 mips_pop_insert (void)
1849 {
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1853 }
1854 \f
1855 /* Symbols labelling the current insn. */
1856
1857 struct insn_label_list
1858 {
1859 struct insn_label_list *next;
1860 symbolS *label;
1861 };
1862
1863 static struct insn_label_list *free_insn_labels;
1864 #define label_list tc_segment_info_data.labels
1865
1866 static void mips_clear_insn_labels (void);
1867 static void mips_mark_labels (void);
1868 static void mips_compressed_mark_labels (void);
1869
1870 static inline void
1871 mips_clear_insn_labels (void)
1872 {
1873 struct insn_label_list **pl;
1874 segment_info_type *si;
1875
1876 if (now_seg)
1877 {
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1879 ;
1880
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1884 }
1885 }
1886
1887 /* Mark instruction labels in MIPS16/microMIPS mode. */
1888
1889 static inline void
1890 mips_mark_labels (void)
1891 {
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1894 }
1895 \f
1896 static char *expr_end;
1897
1898 /* An expression in a macro instruction. This is set by mips_ip and
1899 mips16_ip and when populated is always an O_constant. */
1900
1901 static expressionS imm_expr;
1902
1903 /* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
1907
1908 static expressionS offset_expr;
1909 static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1911
1912 /* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
1915
1916 static unsigned int forced_insn_length;
1917
1918 /* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1920
1921 static bfd_boolean mips_assembling_insn;
1922
1923 /* The pdr segment for per procedure frame/regmask info. Not used for
1924 ECOFF debugging. */
1925
1926 static segT pdr_seg;
1927
1928 /* The default target format to use. */
1929
1930 #if defined (TE_FreeBSD)
1931 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932 #elif defined (TE_TMIPS)
1933 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1934 #else
1935 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1936 #endif
1937
1938 const char *
1939 mips_target_format (void)
1940 {
1941 switch (OUTPUT_FLAVOR)
1942 {
1943 case bfd_target_elf_flavour:
1944 #ifdef TE_VXWORKS
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1949 #endif
1950 return (target_big_endian
1951 ? (HAVE_64BIT_OBJECTS
1952 ? ELF_TARGET ("elf64-", "big")
1953 : (HAVE_NEWABI
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
1956 : (HAVE_64BIT_OBJECTS
1957 ? ELF_TARGET ("elf64-", "little")
1958 : (HAVE_NEWABI
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
1961 default:
1962 abort ();
1963 return NULL;
1964 }
1965 }
1966
1967 /* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1969
1970 static int
1971 mips_isa_rev (void)
1972 {
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1974 return 2;
1975
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1977 return 3;
1978
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1980 return 5;
1981
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1983 return 6;
1984
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1987 return 2;
1988
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1990 return 1;
1991
1992 return 0;
1993 }
1994
1995 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1996
1997 static unsigned int
1998 mips_ase_mask (unsigned int flags)
1999 {
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2005 return flags;
2006 }
2007
2008 /* Check whether the current ISA supports ASE. Issue a warning if
2009 appropriate. */
2010
2011 static void
2012 mips_check_isa_supports_ase (const struct mips_ase *ase)
2013 {
2014 const char *base;
2015 int min_rev, size;
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2018
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2021 else
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2025 {
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2029 if (min_rev < 0)
2030 as_warn (_("the %d-bit %s architecture does not support the"
2031 " `%s' extension"), size, base, ase->name);
2032 else
2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2034 ase->name, base, size, min_rev);
2035 }
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2038 {
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2044 }
2045
2046 if ((ase->flags & FP64_ASES)
2047 && mips_opts.fp != 64
2048 && (warned_fp32 & ase->flags) != ase->flags)
2049 {
2050 warned_fp32 |= ase->flags;
2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2052 }
2053 }
2054
2055 /* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2057
2058 static void
2059 mips_check_isa_supports_ases (void)
2060 {
2061 unsigned int i, mask;
2062
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2064 {
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2068 }
2069 }
2070
2071 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2073
2074 static unsigned int
2075 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
2077 {
2078 unsigned int mask;
2079
2080 mask = mips_ase_mask (ase->flags);
2081 opts->ase &= ~mask;
2082 if (enabled_p)
2083 opts->ase |= ase->flags;
2084 return mask;
2085 }
2086
2087 /* Return the ASE called NAME, or null if none. */
2088
2089 static const struct mips_ase *
2090 mips_lookup_ase (const char *name)
2091 {
2092 unsigned int i;
2093
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2097 return NULL;
2098 }
2099
2100 /* Return the length of a microMIPS instruction in bytes. If bits of
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
2103
2104 static inline unsigned int
2105 micromips_insn_length (const struct mips_opcode *mo)
2106 {
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2108 }
2109
2110 /* Return the length of MIPS16 instruction OPCODE. */
2111
2112 static inline unsigned int
2113 mips16_opcode_length (unsigned long opcode)
2114 {
2115 return (opcode >> 16) == 0 ? 2 : 4;
2116 }
2117
2118 /* Return the length of instruction INSN. */
2119
2120 static inline unsigned int
2121 insn_length (const struct mips_cl_insn *insn)
2122 {
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
2126 return mips16_opcode_length (insn->insn_opcode);
2127 else
2128 return 4;
2129 }
2130
2131 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2132
2133 static void
2134 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2135 {
2136 size_t i;
2137
2138 insn->insn_mo = mo;
2139 insn->insn_opcode = mo->match;
2140 insn->frag = NULL;
2141 insn->where = 0;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
2147 insn->complete_p = 0;
2148 insn->cleared_p = 0;
2149 }
2150
2151 /* Get a list of all the operands in INSN. */
2152
2153 static const struct mips_operand_array *
2154 insn_operands (const struct mips_cl_insn *insn)
2155 {
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2159
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2163
2164 if (insn->insn_mo >= &micromips_opcodes[0]
2165 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2166 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2167
2168 abort ();
2169 }
2170
2171 /* Get a description of operand OPNO of INSN. */
2172
2173 static const struct mips_operand *
2174 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2175 {
2176 const struct mips_operand_array *operands;
2177
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2180 abort ();
2181 return operands->operand[opno];
2182 }
2183
2184 /* Install UVAL as the value of OPERAND in INSN. */
2185
2186 static inline void
2187 insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2189 {
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2191 }
2192
2193 /* Extract the value of OPERAND from INSN. */
2194
2195 static inline unsigned
2196 insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2198 {
2199 return mips_extract_operand (operand, insn->insn_opcode);
2200 }
2201
2202 /* Record the current MIPS16/microMIPS mode in now_seg. */
2203
2204 static void
2205 mips_record_compressed_mode (void)
2206 {
2207 segment_info_type *si;
2208
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
2214 }
2215
2216 /* Read a standard MIPS instruction from BUF. */
2217
2218 static unsigned long
2219 read_insn (char *buf)
2220 {
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2223 else
2224 return bfd_getl32 ((bfd_byte *) buf);
2225 }
2226
2227 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2228 the next byte. */
2229
2230 static char *
2231 write_insn (char *buf, unsigned int insn)
2232 {
2233 md_number_to_chars (buf, insn, 4);
2234 return buf + 4;
2235 }
2236
2237 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2239
2240 static unsigned long
2241 read_compressed_insn (char *buf, unsigned int length)
2242 {
2243 unsigned long insn;
2244 unsigned int i;
2245
2246 insn = 0;
2247 for (i = 0; i < length; i += 2)
2248 {
2249 insn <<= 16;
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2252 else
2253 insn |= bfd_getl16 ((char *) buf);
2254 buf += 2;
2255 }
2256 return insn;
2257 }
2258
2259 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2261
2262 static char *
2263 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2264 {
2265 unsigned int i;
2266
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2270 }
2271
2272 /* Install INSN at the location specified by its "frag" and "where" fields. */
2273
2274 static void
2275 install_insn (const struct mips_cl_insn *insn)
2276 {
2277 char *f = insn->frag->fr_literal + insn->where;
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2280 else
2281 write_insn (f, insn->insn_opcode);
2282 mips_record_compressed_mode ();
2283 }
2284
2285 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2287
2288 static void
2289 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2290 {
2291 size_t i;
2292
2293 insn->frag = frag;
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2297 {
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2300 }
2301 install_insn (insn);
2302 }
2303
2304 /* Add INSN to the end of the output. */
2305
2306 static void
2307 add_fixed_insn (struct mips_cl_insn *insn)
2308 {
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2311 }
2312
2313 /* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2315
2316 static void
2317 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2319 {
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2322 insn->fixed_p = 1;
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2325 }
2326
2327 /* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2329
2330 static void
2331 insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2333 {
2334 if (mips_relax.sequence != 2)
2335 {
2336 unsigned int i;
2337
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2339 if (i >= first + n)
2340 history[i] = history[i - n];
2341 else
2342 history[i] = *insn;
2343 }
2344 }
2345
2346 /* Clear the error in insn_error. */
2347
2348 static void
2349 clear_insn_error (void)
2350 {
2351 memset (&insn_error, 0, sizeof (insn_error));
2352 }
2353
2354 /* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2358 was kept. */
2359
2360 static bfd_boolean
2361 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2362 const char *msg)
2363 {
2364 if (argnum == 0)
2365 {
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2368 if (insn_error.msg)
2369 return FALSE;
2370 }
2371 else
2372 {
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2375 return FALSE;
2376
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2381 && insn_error.msg
2382 && strcmp (insn_error.msg, msg) != 0)
2383 {
2384 insn_error.msg = 0;
2385 insn_error.min_argnum += 1;
2386 return FALSE;
2387 }
2388 }
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2392 return TRUE;
2393 }
2394
2395 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error (int argnum, const char *msg)
2400 {
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2402 }
2403
2404 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2406
2407 static void
2408 set_insn_error_i (int argnum, const char *msg, int i)
2409 {
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2411 insn_error.u.i = i;
2412 }
2413
2414 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2416
2417 static void
2418 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2419 {
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2421 {
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2424 }
2425 }
2426
2427 /* Report the error in insn_error, which is against assembly code STR. */
2428
2429 static void
2430 report_insn_error (const char *str)
2431 {
2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2433
2434 switch (insn_error.format)
2435 {
2436 case ERR_FMT_PLAIN:
2437 as_bad (msg, str);
2438 break;
2439
2440 case ERR_FMT_I:
2441 as_bad (msg, insn_error.u.i, str);
2442 break;
2443
2444 case ERR_FMT_SS:
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2446 break;
2447 }
2448
2449 free ((char *) msg);
2450 }
2451
2452 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2454 included. */
2455
2456 static void
2457 init_vr4120_conflicts (void)
2458 {
2459 #define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2461
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2465
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2471
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2475
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2483
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2492
2493 #undef CONFLICT
2494 }
2495
2496 struct regname {
2497 const char *name;
2498 unsigned int num;
2499 };
2500
2501 #define RNUM_MASK 0x00000ff
2502 #define RTYPE_MASK 0x0ffff00
2503 #define RTYPE_NUM 0x0000100
2504 #define RTYPE_FPU 0x0000200
2505 #define RTYPE_FCC 0x0000400
2506 #define RTYPE_VEC 0x0000800
2507 #define RTYPE_GP 0x0001000
2508 #define RTYPE_CP0 0x0002000
2509 #define RTYPE_PC 0x0004000
2510 #define RTYPE_ACC 0x0008000
2511 #define RTYPE_CCC 0x0010000
2512 #define RTYPE_VI 0x0020000
2513 #define RTYPE_VF 0x0040000
2514 #define RTYPE_R5900_I 0x0080000
2515 #define RTYPE_R5900_Q 0x0100000
2516 #define RTYPE_R5900_R 0x0200000
2517 #define RTYPE_R5900_ACC 0x0400000
2518 #define RTYPE_MSA 0x0800000
2519 #define RWARN 0x8000000
2520
2521 #define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
2553 {"$31", RTYPE_NUM | 31}
2554
2555 #define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2588
2589 #define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2598
2599 #define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2608
2609 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2622
2623 #define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2636
2637 /* Remaining symbolic register names */
2638 #define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2667
2668 #define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2670
2671 #define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2704
2705 #define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2707
2708 #define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2710
2711 #define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2713
2714 #define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2716
2717 #define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2722
2723 static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2725 FPU_REGISTER_NAMES,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2728
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
2731 one of the tables below once mips_abi is set after
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2734
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
2737 R5900_I_NAMES,
2738 R5900_Q_NAMES,
2739 R5900_R_NAMES,
2740 R5900_ACC_NAMES,
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2742 {0, 0}
2743 };
2744
2745 static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2747 {0, 0}
2748 };
2749
2750 static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2752 {0, 0}
2753 };
2754
2755 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
2759
2760 static unsigned int
2761 mips_prefer_vec_regno (unsigned int symval)
2762 {
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2765 return symval;
2766 }
2767
2768 /* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
2770
2771 static bfd_boolean
2772 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2773 {
2774 char save_c;
2775 symbolS *symbol;
2776
2777 /* Terminate name. */
2778 save_c = *e;
2779 *e = '\0';
2780
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2783 *e = save_c;
2784
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2786 return FALSE;
2787
2788 *symval_ptr = S_GET_VALUE (symbol);
2789 return TRUE;
2790 }
2791
2792 /* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2794 is nonnull.
2795
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2801
2802 static bfd_boolean
2803 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2805 {
2806 char *s, *e, *m;
2807 const char *q;
2808 unsigned int channels, symval, bit;
2809
2810 /* Find end of name. */
2811 s = e = *sptr;
2812 if (is_name_beginner (*e))
2813 ++e;
2814 while (is_part_of_name (*e))
2815 ++e;
2816
2817 channels = 0;
2818 if (!mips_parse_register_1 (s, e, &symval))
2819 {
2820 if (!channels_ptr)
2821 return FALSE;
2822
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2826 bit = 1;
2827 m = e;
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2830 {
2831 --m;
2832 channels |= bit;
2833 }
2834
2835 if (channels == 0
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2838 return FALSE;
2839 }
2840
2841 *sptr = e;
2842 *symval_ptr = symval;
2843 if (channels_ptr)
2844 *channels_ptr = channels;
2845 return TRUE;
2846 }
2847
2848 /* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2851
2852 static int
2853 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2854 {
2855 unsigned int regno;
2856
2857 if (mips_parse_register (s, &regno, NULL))
2858 {
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2861 if (regno & types)
2862 regno &= RNUM_MASK;
2863 else
2864 regno = ~0;
2865 }
2866 else
2867 {
2868 if (types & RWARN)
2869 as_warn (_("unrecognized register name `%s'"), *s);
2870 regno = ~0;
2871 }
2872 if (regnop)
2873 *regnop = regno;
2874 return regno <= RNUM_MASK;
2875 }
2876
2877 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2879
2880 static char *
2881 mips_parse_vu0_channels (char *s, unsigned int *channels)
2882 {
2883 unsigned int i;
2884
2885 *channels = 0;
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2888 {
2889 *channels |= 1 << (3 - i);
2890 ++s;
2891 }
2892 return s;
2893 }
2894
2895 /* Token types for parsed operand lists. */
2896 enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2898 OT_REG,
2899
2900 /* A 4-bit XYZW channel mask. */
2901 OT_CHANNELS,
2902
2903 /* A constant vector index, e.g. [1]. */
2904 OT_INTEGER_INDEX,
2905
2906 /* A register vector index, e.g. [$2]. */
2907 OT_REG_INDEX,
2908
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2910 OT_REG_RANGE,
2911
2912 /* A (possibly relocated) expression. */
2913 OT_INTEGER,
2914
2915 /* A floating-point value. */
2916 OT_FLOAT,
2917
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2919 before OT_REGs. */
2920 OT_CHAR,
2921
2922 /* A doubled character, either "--" or "++". */
2923 OT_DOUBLE_CHAR,
2924
2925 /* The end of the operand list. */
2926 OT_END
2927 };
2928
2929 /* A parsed operand token. */
2930 struct mips_operand_token
2931 {
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2934 union
2935 {
2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2937 unsigned int regno;
2938
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2941
2942 /* The integer value of an OT_INTEGER_INDEX. */
2943 addressT index;
2944
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2946 struct {
2947 unsigned int regno1;
2948 unsigned int regno2;
2949 } reg_range;
2950
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2955 struct {
2956 expressionS value;
2957 bfd_reloc_code_real_type relocs[3];
2958 } integer;
2959
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2961 in the constant. */
2962 struct {
2963 unsigned char data[8];
2964 int length;
2965 } flt;
2966
2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2968 char ch;
2969 } u;
2970 };
2971
2972 /* An obstack used to construct lists of mips_operand_tokens. */
2973 static struct obstack mips_operand_tokens;
2974
2975 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2976
2977 static void
2978 mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2980 {
2981 token->type = type;
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2983 }
2984
2985 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2988
2989 static char *
2990 mips_parse_base_start (char *s)
2991 {
2992 struct mips_operand_token token;
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
2995
2996 if (*s != '(')
2997 return 0;
2998
2999 ++s;
3000 SKIP_SPACE_TABS (s);
3001
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3005 if (decrement_p)
3006 {
3007 s += 2;
3008 SKIP_SPACE_TABS (s);
3009 }
3010
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, &regno, &channels))
3014 return 0;
3015
3016 token.u.ch = '(';
3017 mips_add_token (&token, OT_CHAR);
3018
3019 if (decrement_p)
3020 {
3021 token.u.ch = '-';
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3023 }
3024
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3027
3028 if (channels)
3029 {
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3032 }
3033
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3037 {
3038 s += 2;
3039 token.u.ch = '+';
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 }
3042
3043 return s;
3044 }
3045
3046 /* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3050
3051 static char *
3052 mips_parse_argument_token (char *s, char float_format)
3053 {
3054 char *end, *save_in;
3055 const char *err;
3056 unsigned int regno1, regno2, channels;
3057 struct mips_operand_token token;
3058
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3062 if (end)
3063 return end;
3064
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3067 {
3068 token.u.ch = *s;
3069 mips_add_token (&token, OT_CHAR);
3070 ++s;
3071 return s;
3072 }
3073
3074 /* Handle tokens that start with a register. */
3075 if (mips_parse_register (&s, &regno1, &channels))
3076 {
3077 if (channels)
3078 {
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3082
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3085 return s;
3086 }
3087
3088 SKIP_SPACE_TABS (s);
3089 if (*s == '-')
3090 {
3091 /* A register range. */
3092 ++s;
3093 SKIP_SPACE_TABS (s);
3094 if (!mips_parse_register (&s, &regno2, NULL))
3095 {
3096 set_insn_error (0, _("invalid register range"));
3097 return 0;
3098 }
3099
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3103 return s;
3104 }
3105
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3109
3110 /* Check for a vector index. */
3111 if (*s == '[')
3112 {
3113 ++s;
3114 SKIP_SPACE_TABS (s);
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3117 else
3118 {
3119 expressionS element;
3120
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3123 {
3124 set_insn_error (0, _("vector element must be constant"));
3125 return 0;
3126 }
3127 s = expr_end;
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
3130 }
3131 SKIP_SPACE_TABS (s);
3132 if (*s != ']')
3133 {
3134 set_insn_error (0, _("missing `]'"));
3135 return 0;
3136 }
3137 ++s;
3138 }
3139 return s;
3140 }
3141
3142 if (float_format)
3143 {
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3151 if (err && *err)
3152 {
3153 set_insn_error (0, err);
3154 return 0;
3155 }
3156 if (s != end)
3157 {
3158 mips_add_token (&token, OT_FLOAT);
3159 return end;
3160 }
3161 }
3162
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3168 s = expr_end;
3169 mips_add_token (&token, OT_INTEGER);
3170 return s;
3171 }
3172
3173 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3177
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3180
3181 static struct mips_operand_token *
3182 mips_parse_arguments (char *s, char float_format)
3183 {
3184 struct mips_operand_token token;
3185
3186 SKIP_SPACE_TABS (s);
3187 while (*s)
3188 {
3189 s = mips_parse_argument_token (s, float_format);
3190 if (!s)
3191 {
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3194 return 0;
3195 }
3196 SKIP_SPACE_TABS (s);
3197 }
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3200 }
3201
3202 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3204
3205 static bfd_boolean
3206 is_opcode_valid (const struct mips_opcode *mo)
3207 {
3208 int isa = mips_opts.isa;
3209 int ase = mips_opts.ase;
3210 int fp_s, fp_d;
3211 unsigned int i;
3212
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
3217
3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3219 return FALSE;
3220
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3225 {
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3228 }
3229 else
3230 {
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3233 }
3234
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3236 return FALSE;
3237
3238 if (fp_s && mips_opts.soft_float)
3239 return FALSE;
3240
3241 return TRUE;
3242 }
3243
3244 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3246
3247 static bfd_boolean
3248 is_opcode_valid_16 (const struct mips_opcode *mo)
3249 {
3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3251 }
3252
3253 /* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3255
3256 static bfd_boolean
3257 is_size_valid (const struct mips_opcode *mo)
3258 {
3259 if (!mips_opts.micromips)
3260 return TRUE;
3261
3262 if (mips_opts.insn32)
3263 {
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3265 return FALSE;
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3267 return FALSE;
3268 }
3269 if (!forced_insn_length)
3270 return TRUE;
3271 if (mo->pinfo == INSN_MACRO)
3272 return FALSE;
3273 return forced_insn_length == micromips_insn_length (mo);
3274 }
3275
3276 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3278
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
3289
3290 static bfd_boolean
3291 is_delay_slot_valid (const struct mips_opcode *mo)
3292 {
3293 if (!mips_opts.micromips)
3294 return TRUE;
3295
3296 if (mo->pinfo == INSN_MACRO)
3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3300 return FALSE;
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3303 return FALSE;
3304
3305 return TRUE;
3306 }
3307
3308 /* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3311
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
3316
3317 static int
3318 validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
3322 {
3323 const char *s;
3324 unsigned long used_bits, doubled, undefined, opno, mask;
3325 const struct mips_operand *operand;
3326
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
3329 {
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3332 return 0;
3333 }
3334 used_bits = 0;
3335 opno = 0;
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3338 for (s = opcode->args; *s; ++s)
3339 switch (*s)
3340 {
3341 case ',':
3342 case '(':
3343 case ')':
3344 break;
3345
3346 case '#':
3347 s++;
3348 break;
3349
3350 default:
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3353 else
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
3356 {
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3359 return 0;
3360 }
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3364 {
3365 used_bits = mips_insert_operand (operand, used_bits, -1);
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3372 }
3373 /* Skip prefix characters. */
3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3375 ++s;
3376 opno += 1;
3377 break;
3378 }
3379 doubled = used_bits & mask & insn_bits;
3380 if (doubled)
3381 {
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3384 return 0;
3385 }
3386 used_bits |= mask;
3387 undefined = ~used_bits & insn_bits;
3388 if (opcode->pinfo != INSN_MACRO && undefined)
3389 {
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3392 return 0;
3393 }
3394 used_bits &= ~insn_bits;
3395 if (used_bits)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 return 1;
3402 }
3403
3404 /* The MIPS16 version of validate_mips_insn. */
3405
3406 static int
3407 validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3409 {
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3411 {
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3415
3416 tmp = *opcode;
3417 tmp.match <<= 16;
3418 tmp.mask <<= 16;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3420 }
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3422 }
3423
3424 /* The microMIPS version of validate_mips_insn. */
3425
3426 static int
3427 validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
3429 {
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3433
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3436 operands);
3437
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3440 {
3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3442 "%s %s"), length, opc->name, opc->args);
3443 return 0;
3444 }
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3448 {
3449 as_bad (_("internal error: bad microMIPS opcode "
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3451 return 0;
3452 }
3453
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3457 insn_bits -= 1;
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3459 operands);
3460 }
3461
3462 /* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
3464
3465 void
3466 md_begin (void)
3467 {
3468 const char *retval = NULL;
3469 int i = 0;
3470 int broken = 0;
3471
3472 if (mips_pic != NO_PIC)
3473 {
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3476 g_switch_value = 0;
3477 }
3478 else if (mips_abicalls)
3479 {
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3482 g_switch_value = 0;
3483 }
3484
3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3486 as_warn (_("could not set architecture and machine"));
3487
3488 op_hash = hash_new ();
3489
3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3491 for (i = 0; i < NUMOPCODES;)
3492 {
3493 const char *name = mips_opcodes[i].name;
3494
3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3496 if (retval != NULL)
3497 {
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
3501 as_fatal (_("broken assembler, no assembly attempted"));
3502 }
3503 do
3504 {
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3507 broken = 1;
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3509 {
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
3514 }
3515 ++i;
3516 }
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3518 }
3519
3520 mips16_op_hash = hash_new ();
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
3523
3524 i = 0;
3525 while (i < bfd_mips16_num_opcodes)
3526 {
3527 const char *name = mips16_opcodes[i].name;
3528
3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3530 if (retval != NULL)
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3533 do
3534 {
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3536 broken = 1;
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3538 {
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3541 }
3542 ++i;
3543 }
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3546 }
3547
3548 micromips_op_hash = hash_new ();
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
3551
3552 i = 0;
3553 while (i < bfd_micromips_num_opcodes)
3554 {
3555 const char *name = micromips_opcodes[i].name;
3556
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) &micromips_opcodes[i]);
3559 if (retval != NULL)
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3562 do
3563 {
3564 struct mips_cl_insn *micromips_nop_insn;
3565
3566 if (!validate_micromips_insn (&micromips_opcodes[i],
3567 &micromips_operands[i]))
3568 broken = 1;
3569
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3571 {
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = &micromips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = &micromips_nop32_insn;
3576 else
3577 continue;
3578
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3581 {
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3584 }
3585 }
3586 }
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3589 }
3590
3591 if (broken)
3592 as_fatal (_("broken assembler, no assembly attempted"));
3593
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3596 for (i = 0; reg_names[i].name; i++)
3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3598 reg_names[i].num, /* & RNUM_MASK, */
3599 &zero_address_frag));
3600 if (HAVE_NEWABI)
3601 for (i = 0; reg_names_n32n64[i].name; i++)
3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3604 &zero_address_frag));
3605 else
3606 for (i = 0; reg_names_o32[i].name; i++)
3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3608 reg_names_o32[i].num, /* & RNUM_MASK, */
3609 &zero_address_frag));
3610
3611 for (i = 0; i < 32; i++)
3612 {
3613 char regname[6];
3614
3615 /* R5900 VU0 floating-point register. */
3616 sprintf (regname, "$vf%d", i);
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3619
3620 /* R5900 VU0 integer register. */
3621 sprintf (regname, "$vi%d", i);
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3624
3625 /* MSA register. */
3626 sprintf (regname, "$w%d", i);
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
3629 }
3630
3631 obstack_init (&mips_operand_tokens);
3632
3633 mips_no_prev_insn ();
3634
3635 mips_gprmask = 0;
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3640
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3643
3644 bfd_set_gp_size (stdoutput, g_switch_value);
3645
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3651 {
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3655 }
3656
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3659 {
3660 segT seg;
3661 subsegT subseg;
3662 flagword flags;
3663 segT sec;
3664
3665 seg = now_seg;
3666 subseg = now_subseg;
3667
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3674
3675 if (mips_abi != N64_ABI)
3676 {
3677 sec = subseg_new (".reginfo", (subsegT) 0);
3678
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3681
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3683 }
3684 else
3685 {
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
3691
3692 /* Set up the option header. */
3693 {
3694 Elf_Internal_Options opthdr;
3695 char *f;
3696
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3700 opthdr.section = 0;
3701 opthdr.info = 0;
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3705
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3707 }
3708 }
3709
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3715
3716 if (ECOFF_DEBUGGING)
3717 {
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3722 }
3723 else if (mips_flag_pdr)
3724 {
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3728 | SEC_DEBUGGING);
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3730 }
3731
3732 subseg_set (seg, subseg);
3733 }
3734
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
3737 }
3738
3739 static inline void
3740 fpabi_incompatible_with (int fpabi, const char *what)
3741 {
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744 }
3745
3746 static inline void
3747 fpabi_requires (int fpabi, const char *what)
3748 {
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751 }
3752
3753 /* Check -mabi and register sizes against the specified FP ABI. */
3754 static void
3755 check_fpabi (int fpabi)
3756 {
3757 switch (fpabi)
3758 {
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3768 break;
3769
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
3779 break;
3780
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3807 break;
3808
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3816 break;
3817
3818 default:
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3821 break;
3822 }
3823 }
3824
3825 /* Perform consistency checks on the current options. */
3826
3827 static void
3828 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3829 {
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3833 else if (abi_checks
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3836 else if (abi_checks
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3839
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3841 switch (opts->fp)
3842 {
3843 case 0:
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3848 break;
3849 case 64:
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3852 else if (abi_checks
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3856 break;
3857 case 32:
3858 if (abi_checks
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3863 break;
3864 default:
3865 as_bad (_("Unknown size of floating point registers"));
3866 break;
3867 }
3868
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3871
3872 if (opts->micromips == 1 && opts->mips16 == 1)
3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3874 else if (ISA_IS_R6 (opts->isa)
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
3877 as_fatal (_("`%s' cannot be used with `%s'"),
3878 opts->micromips ? "micromips" : "mips16",
3879 mips_cpu_info_from_isa (opts->isa)->name);
3880
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
3884 }
3885
3886 /* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3891 or, at the end. */
3892
3893 static void
3894 file_mips_check_options (void)
3895 {
3896 const struct mips_cpu_info *arch_info = 0;
3897
3898 if (file_mips_opts_checked)
3899 return;
3900
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3905
3906 if (file_mips_opts.gp < 0)
3907 {
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3913 ? 32 : 64;
3914 }
3915
3916 if (file_mips_opts.fp < 0)
3917 {
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3924 integer ones. */
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3938 }
3939
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3941
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3945 {
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3948 else
3949 file_mips_opts.oddspreg = 1;
3950 }
3951
3952 /* End of GCC-shared inference code. */
3953
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3959 mips_32bitmode = 1;
3960
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3963
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3970 ? 1 : 0;
3971
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3977
3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3982
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3986
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3989
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3993
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3996 }
3997
3998 void
3999 md_assemble (char *str)
4000 {
4001 struct mips_cl_insn insn;
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4004
4005 file_mips_check_options ();
4006
4007 imm_expr.X_op = O_absent;
4008 offset_expr.X_op = O_absent;
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
4012
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
4015 clear_insn_error ();
4016
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4019 else
4020 {
4021 mips_ip (str, &insn);
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
4024 }
4025
4026 if (insn_error.msg)
4027 report_insn_error (str);
4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
4029 {
4030 macro_start ();
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4033 else
4034 macro (&insn, str);
4035 macro_end ();
4036 }
4037 else
4038 {
4039 if (offset_expr.X_op != O_absent)
4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4041 else
4042 append_insn (&insn, NULL, unused_reloc, FALSE);
4043 }
4044
4045 mips_assembling_insn = FALSE;
4046 }
4047
4048 /* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4050
4051 static inline bfd_boolean
4052 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4053 {
4054 switch (reloc)
4055 {
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4063 return TRUE;
4064
4065 default:
4066 return FALSE;
4067 }
4068 }
4069
4070 static inline bfd_boolean
4071 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4072 {
4073 switch (reloc)
4074 {
4075 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4076 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_GPREL16:
4079 case BFD_RELOC_MICROMIPS_JMP:
4080 case BFD_RELOC_MICROMIPS_HI16:
4081 case BFD_RELOC_MICROMIPS_HI16_S:
4082 case BFD_RELOC_MICROMIPS_LO16:
4083 case BFD_RELOC_MICROMIPS_LITERAL:
4084 case BFD_RELOC_MICROMIPS_GOT16:
4085 case BFD_RELOC_MICROMIPS_CALL16:
4086 case BFD_RELOC_MICROMIPS_GOT_HI16:
4087 case BFD_RELOC_MICROMIPS_GOT_LO16:
4088 case BFD_RELOC_MICROMIPS_CALL_HI16:
4089 case BFD_RELOC_MICROMIPS_CALL_LO16:
4090 case BFD_RELOC_MICROMIPS_SUB:
4091 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4092 case BFD_RELOC_MICROMIPS_GOT_OFST:
4093 case BFD_RELOC_MICROMIPS_GOT_DISP:
4094 case BFD_RELOC_MICROMIPS_HIGHEST:
4095 case BFD_RELOC_MICROMIPS_HIGHER:
4096 case BFD_RELOC_MICROMIPS_SCN_DISP:
4097 case BFD_RELOC_MICROMIPS_JALR:
4098 return TRUE;
4099
4100 default:
4101 return FALSE;
4102 }
4103 }
4104
4105 static inline bfd_boolean
4106 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4107 {
4108 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4109 }
4110
4111 static inline bfd_boolean
4112 got16_reloc_p (bfd_reloc_code_real_type reloc)
4113 {
4114 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4115 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4116 }
4117
4118 static inline bfd_boolean
4119 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4120 {
4121 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4122 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4123 }
4124
4125 static inline bfd_boolean
4126 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4127 {
4128 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4129 || reloc == BFD_RELOC_MICROMIPS_LO16);
4130 }
4131
4132 static inline bfd_boolean
4133 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4134 {
4135 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4136 }
4137
4138 static inline bfd_boolean
4139 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4142 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4143 }
4144
4145 /* Return true if RELOC is a PC-relative relocation that does not have
4146 full address range. */
4147
4148 static inline bfd_boolean
4149 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4150 {
4151 switch (reloc)
4152 {
4153 case BFD_RELOC_16_PCREL_S2:
4154 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4155 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4156 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4157 case BFD_RELOC_MIPS_21_PCREL_S2:
4158 case BFD_RELOC_MIPS_26_PCREL_S2:
4159 case BFD_RELOC_MIPS_18_PCREL_S3:
4160 case BFD_RELOC_MIPS_19_PCREL_S2:
4161 return TRUE;
4162
4163 case BFD_RELOC_32_PCREL:
4164 case BFD_RELOC_HI16_S_PCREL:
4165 case BFD_RELOC_LO16_PCREL:
4166 return HAVE_64BIT_ADDRESSES;
4167
4168 default:
4169 return FALSE;
4170 }
4171 }
4172
4173 /* Return true if the given relocation might need a matching %lo().
4174 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4175 need a matching %lo() when applied to local symbols. */
4176
4177 static inline bfd_boolean
4178 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4179 {
4180 return (HAVE_IN_PLACE_ADDENDS
4181 && (hi16_reloc_p (reloc)
4182 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4183 all GOT16 relocations evaluate to "G". */
4184 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4185 }
4186
4187 /* Return the type of %lo() reloc needed by RELOC, given that
4188 reloc_needs_lo_p. */
4189
4190 static inline bfd_reloc_code_real_type
4191 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4192 {
4193 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4194 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4195 : BFD_RELOC_LO16));
4196 }
4197
4198 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4199 relocation. */
4200
4201 static inline bfd_boolean
4202 fixup_has_matching_lo_p (fixS *fixp)
4203 {
4204 return (fixp->fx_next != NULL
4205 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4206 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4207 && fixp->fx_offset == fixp->fx_next->fx_offset);
4208 }
4209
4210 /* Move all labels in LABELS to the current insertion point. TEXT_P
4211 says whether the labels refer to text or data. */
4212
4213 static void
4214 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4215 {
4216 struct insn_label_list *l;
4217 valueT val;
4218
4219 for (l = labels; l != NULL; l = l->next)
4220 {
4221 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4222 symbol_set_frag (l->label, frag_now);
4223 val = (valueT) frag_now_fix ();
4224 /* MIPS16/microMIPS text labels are stored as odd. */
4225 if (text_p && HAVE_CODE_COMPRESSION)
4226 ++val;
4227 S_SET_VALUE (l->label, val);
4228 }
4229 }
4230
4231 /* Move all labels in insn_labels to the current insertion point
4232 and treat them as text labels. */
4233
4234 static void
4235 mips_move_text_labels (void)
4236 {
4237 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4238 }
4239
4240 static bfd_boolean
4241 s_is_linkonce (symbolS *sym, segT from_seg)
4242 {
4243 bfd_boolean linkonce = FALSE;
4244 segT symseg = S_GET_SEGMENT (sym);
4245
4246 if (symseg != from_seg && !S_IS_LOCAL (sym))
4247 {
4248 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4249 linkonce = TRUE;
4250 /* The GNU toolchain uses an extension for ELF: a section
4251 beginning with the magic string .gnu.linkonce is a
4252 linkonce section. */
4253 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4254 sizeof ".gnu.linkonce" - 1) == 0)
4255 linkonce = TRUE;
4256 }
4257 return linkonce;
4258 }
4259
4260 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4261 linker to handle them specially, such as generating jalx instructions
4262 when needed. We also make them odd for the duration of the assembly,
4263 in order to generate the right sort of code. We will make them even
4264 in the adjust_symtab routine, while leaving them marked. This is
4265 convenient for the debugger and the disassembler. The linker knows
4266 to make them odd again. */
4267
4268 static void
4269 mips_compressed_mark_label (symbolS *label)
4270 {
4271 gas_assert (HAVE_CODE_COMPRESSION);
4272
4273 if (mips_opts.mips16)
4274 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4275 else
4276 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4277 if ((S_GET_VALUE (label) & 1) == 0
4278 /* Don't adjust the address if the label is global or weak, or
4279 in a link-once section, since we'll be emitting symbol reloc
4280 references to it which will be patched up by the linker, and
4281 the final value of the symbol may or may not be MIPS16/microMIPS. */
4282 && !S_IS_WEAK (label)
4283 && !S_IS_EXTERNAL (label)
4284 && !s_is_linkonce (label, now_seg))
4285 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4286 }
4287
4288 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4289
4290 static void
4291 mips_compressed_mark_labels (void)
4292 {
4293 struct insn_label_list *l;
4294
4295 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4296 mips_compressed_mark_label (l->label);
4297 }
4298
4299 /* End the current frag. Make it a variant frag and record the
4300 relaxation info. */
4301
4302 static void
4303 relax_close_frag (void)
4304 {
4305 mips_macro_warning.first_frag = frag_now;
4306 frag_var (rs_machine_dependent, 0, 0,
4307 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4308 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4309
4310 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4311 mips_relax.first_fixup = 0;
4312 }
4313
4314 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4315 See the comment above RELAX_ENCODE for more details. */
4316
4317 static void
4318 relax_start (symbolS *symbol)
4319 {
4320 gas_assert (mips_relax.sequence == 0);
4321 mips_relax.sequence = 1;
4322 mips_relax.symbol = symbol;
4323 }
4324
4325 /* Start generating the second version of a relaxable sequence.
4326 See the comment above RELAX_ENCODE for more details. */
4327
4328 static void
4329 relax_switch (void)
4330 {
4331 gas_assert (mips_relax.sequence == 1);
4332 mips_relax.sequence = 2;
4333 }
4334
4335 /* End the current relaxable sequence. */
4336
4337 static void
4338 relax_end (void)
4339 {
4340 gas_assert (mips_relax.sequence == 2);
4341 relax_close_frag ();
4342 mips_relax.sequence = 0;
4343 }
4344
4345 /* Return true if IP is a delayed branch or jump. */
4346
4347 static inline bfd_boolean
4348 delayed_branch_p (const struct mips_cl_insn *ip)
4349 {
4350 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4351 | INSN_COND_BRANCH_DELAY
4352 | INSN_COND_BRANCH_LIKELY)) != 0;
4353 }
4354
4355 /* Return true if IP is a compact branch or jump. */
4356
4357 static inline bfd_boolean
4358 compact_branch_p (const struct mips_cl_insn *ip)
4359 {
4360 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4361 | INSN2_COND_BRANCH)) != 0;
4362 }
4363
4364 /* Return true if IP is an unconditional branch or jump. */
4365
4366 static inline bfd_boolean
4367 uncond_branch_p (const struct mips_cl_insn *ip)
4368 {
4369 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4370 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4371 }
4372
4373 /* Return true if IP is a branch-likely instruction. */
4374
4375 static inline bfd_boolean
4376 branch_likely_p (const struct mips_cl_insn *ip)
4377 {
4378 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4379 }
4380
4381 /* Return the type of nop that should be used to fill the delay slot
4382 of delayed branch IP. */
4383
4384 static struct mips_cl_insn *
4385 get_delay_slot_nop (const struct mips_cl_insn *ip)
4386 {
4387 if (mips_opts.micromips
4388 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4389 return &micromips_nop32_insn;
4390 return NOP_INSN;
4391 }
4392
4393 /* Return a mask that has bit N set if OPCODE reads the register(s)
4394 in operand N. */
4395
4396 static unsigned int
4397 insn_read_mask (const struct mips_opcode *opcode)
4398 {
4399 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4400 }
4401
4402 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4403 in operand N. */
4404
4405 static unsigned int
4406 insn_write_mask (const struct mips_opcode *opcode)
4407 {
4408 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4409 }
4410
4411 /* Return a mask of the registers specified by operand OPERAND of INSN.
4412 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4413 is set. */
4414
4415 static unsigned int
4416 operand_reg_mask (const struct mips_cl_insn *insn,
4417 const struct mips_operand *operand,
4418 unsigned int type_mask)
4419 {
4420 unsigned int uval, vsel;
4421
4422 switch (operand->type)
4423 {
4424 case OP_INT:
4425 case OP_MAPPED_INT:
4426 case OP_MSB:
4427 case OP_PCREL:
4428 case OP_PERF_REG:
4429 case OP_ADDIUSP_INT:
4430 case OP_ENTRY_EXIT_LIST:
4431 case OP_REPEAT_DEST_REG:
4432 case OP_REPEAT_PREV_REG:
4433 case OP_PC:
4434 case OP_VU0_SUFFIX:
4435 case OP_VU0_MATCH_SUFFIX:
4436 case OP_IMM_INDEX:
4437 abort ();
4438
4439 case OP_REG:
4440 case OP_OPTIONAL_REG:
4441 {
4442 const struct mips_reg_operand *reg_op;
4443
4444 reg_op = (const struct mips_reg_operand *) operand;
4445 if (!(type_mask & (1 << reg_op->reg_type)))
4446 return 0;
4447 uval = insn_extract_operand (insn, operand);
4448 return 1 << mips_decode_reg_operand (reg_op, uval);
4449 }
4450
4451 case OP_REG_PAIR:
4452 {
4453 const struct mips_reg_pair_operand *pair_op;
4454
4455 pair_op = (const struct mips_reg_pair_operand *) operand;
4456 if (!(type_mask & (1 << pair_op->reg_type)))
4457 return 0;
4458 uval = insn_extract_operand (insn, operand);
4459 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4460 }
4461
4462 case OP_CLO_CLZ_DEST:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return (1 << (uval & 31)) | (1 << (uval >> 5));
4467
4468 case OP_SAME_RS_RT:
4469 if (!(type_mask & (1 << OP_REG_GP)))
4470 return 0;
4471 uval = insn_extract_operand (insn, operand);
4472 gas_assert ((uval & 31) == (uval >> 5));
4473 return 1 << (uval & 31);
4474
4475 case OP_CHECK_PREV:
4476 case OP_NON_ZERO_REG:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return 1 << (uval & 31);
4481
4482 case OP_LWM_SWM_LIST:
4483 abort ();
4484
4485 case OP_SAVE_RESTORE_LIST:
4486 abort ();
4487
4488 case OP_MDMX_IMM_REG:
4489 if (!(type_mask & (1 << OP_REG_VEC)))
4490 return 0;
4491 uval = insn_extract_operand (insn, operand);
4492 vsel = uval >> 5;
4493 if ((vsel & 0x18) == 0x18)
4494 return 0;
4495 return 1 << (uval & 31);
4496
4497 case OP_REG_INDEX:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4499 return 0;
4500 return 1 << insn_extract_operand (insn, operand);
4501 }
4502 abort ();
4503 }
4504
4505 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4506 where bit N of OPNO_MASK is set if operand N should be included.
4507 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4508 is set. */
4509
4510 static unsigned int
4511 insn_reg_mask (const struct mips_cl_insn *insn,
4512 unsigned int type_mask, unsigned int opno_mask)
4513 {
4514 unsigned int opno, reg_mask;
4515
4516 opno = 0;
4517 reg_mask = 0;
4518 while (opno_mask != 0)
4519 {
4520 if (opno_mask & 1)
4521 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4522 opno_mask >>= 1;
4523 opno += 1;
4524 }
4525 return reg_mask;
4526 }
4527
4528 /* Return the mask of core registers that IP reads. */
4529
4530 static unsigned int
4531 gpr_read_mask (const struct mips_cl_insn *ip)
4532 {
4533 unsigned long pinfo, pinfo2;
4534 unsigned int mask;
4535
4536 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4537 pinfo = ip->insn_mo->pinfo;
4538 pinfo2 = ip->insn_mo->pinfo2;
4539 if (pinfo & INSN_UDI)
4540 {
4541 /* UDI instructions have traditionally been assumed to read RS
4542 and RT. */
4543 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4544 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4545 }
4546 if (pinfo & INSN_READ_GPR_24)
4547 mask |= 1 << 24;
4548 if (pinfo2 & INSN2_READ_GPR_16)
4549 mask |= 1 << 16;
4550 if (pinfo2 & INSN2_READ_SP)
4551 mask |= 1 << SP;
4552 if (pinfo2 & INSN2_READ_GPR_31)
4553 mask |= 1 << 31;
4554 /* Don't include register 0. */
4555 return mask & ~1;
4556 }
4557
4558 /* Return the mask of core registers that IP writes. */
4559
4560 static unsigned int
4561 gpr_write_mask (const struct mips_cl_insn *ip)
4562 {
4563 unsigned long pinfo, pinfo2;
4564 unsigned int mask;
4565
4566 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4567 pinfo = ip->insn_mo->pinfo;
4568 pinfo2 = ip->insn_mo->pinfo2;
4569 if (pinfo & INSN_WRITE_GPR_24)
4570 mask |= 1 << 24;
4571 if (pinfo & INSN_WRITE_GPR_31)
4572 mask |= 1 << 31;
4573 if (pinfo & INSN_UDI)
4574 /* UDI instructions have traditionally been assumed to write to RD. */
4575 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4576 if (pinfo2 & INSN2_WRITE_SP)
4577 mask |= 1 << SP;
4578 /* Don't include register 0. */
4579 return mask & ~1;
4580 }
4581
4582 /* Return the mask of floating-point registers that IP reads. */
4583
4584 static unsigned int
4585 fpr_read_mask (const struct mips_cl_insn *ip)
4586 {
4587 unsigned long pinfo;
4588 unsigned int mask;
4589
4590 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4591 | (1 << OP_REG_MSA)),
4592 insn_read_mask (ip->insn_mo));
4593 pinfo = ip->insn_mo->pinfo;
4594 /* Conservatively treat all operands to an FP_D instruction are doubles.
4595 (This is overly pessimistic for things like cvt.d.s.) */
4596 if (FPR_SIZE != 64 && (pinfo & FP_D))
4597 mask |= mask << 1;
4598 return mask;
4599 }
4600
4601 /* Return the mask of floating-point registers that IP writes. */
4602
4603 static unsigned int
4604 fpr_write_mask (const struct mips_cl_insn *ip)
4605 {
4606 unsigned long pinfo;
4607 unsigned int mask;
4608
4609 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4610 | (1 << OP_REG_MSA)),
4611 insn_write_mask (ip->insn_mo));
4612 pinfo = ip->insn_mo->pinfo;
4613 /* Conservatively treat all operands to an FP_D instruction are doubles.
4614 (This is overly pessimistic for things like cvt.s.d.) */
4615 if (FPR_SIZE != 64 && (pinfo & FP_D))
4616 mask |= mask << 1;
4617 return mask;
4618 }
4619
4620 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4621 Check whether that is allowed. */
4622
4623 static bfd_boolean
4624 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4625 {
4626 const char *s = insn->name;
4627 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4628 || FPR_SIZE == 64)
4629 && mips_opts.oddspreg;
4630
4631 if (insn->pinfo == INSN_MACRO)
4632 /* Let a macro pass, we'll catch it later when it is expanded. */
4633 return TRUE;
4634
4635 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4636 otherwise it depends on oddspreg. */
4637 if ((insn->pinfo & FP_S)
4638 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4639 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4640 return FPR_SIZE == 32 || oddspreg;
4641
4642 /* Allow odd registers for single-precision ops and double-precision if the
4643 floating-point registers are 64-bit wide. */
4644 switch (insn->pinfo & (FP_S | FP_D))
4645 {
4646 case FP_S:
4647 case 0:
4648 return oddspreg;
4649 case FP_D:
4650 return FPR_SIZE == 64;
4651 default:
4652 break;
4653 }
4654
4655 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4656 s = strchr (insn->name, '.');
4657 if (s != NULL && opnum == 2)
4658 s = strchr (s + 1, '.');
4659 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4660 return oddspreg;
4661
4662 return FPR_SIZE == 64;
4663 }
4664
4665 /* Information about an instruction argument that we're trying to match. */
4666 struct mips_arg_info
4667 {
4668 /* The instruction so far. */
4669 struct mips_cl_insn *insn;
4670
4671 /* The first unconsumed operand token. */
4672 struct mips_operand_token *token;
4673
4674 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4675 int opnum;
4676
4677 /* The 1-based argument number, for error reporting. This does not
4678 count elided optional registers, etc.. */
4679 int argnum;
4680
4681 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4682 unsigned int last_regno;
4683
4684 /* If the first operand was an OP_REG, this is the register that it
4685 specified, otherwise it is ILLEGAL_REG. */
4686 unsigned int dest_regno;
4687
4688 /* The value of the last OP_INT operand. Only used for OP_MSB,
4689 where it gives the lsb position. */
4690 unsigned int last_op_int;
4691
4692 /* If true, match routines should assume that no later instruction
4693 alternative matches and should therefore be as accomodating as
4694 possible. Match routines should not report errors if something
4695 is only invalid for !LAX_MATCH. */
4696 bfd_boolean lax_match;
4697
4698 /* True if a reference to the current AT register was seen. */
4699 bfd_boolean seen_at;
4700 };
4701
4702 /* Record that the argument is out of range. */
4703
4704 static void
4705 match_out_of_range (struct mips_arg_info *arg)
4706 {
4707 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4708 }
4709
4710 /* Record that the argument isn't constant but needs to be. */
4711
4712 static void
4713 match_not_constant (struct mips_arg_info *arg)
4714 {
4715 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4716 arg->argnum);
4717 }
4718
4719 /* Try to match an OT_CHAR token for character CH. Consume the token
4720 and return true on success, otherwise return false. */
4721
4722 static bfd_boolean
4723 match_char (struct mips_arg_info *arg, char ch)
4724 {
4725 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4726 {
4727 ++arg->token;
4728 if (ch == ',')
4729 arg->argnum += 1;
4730 return TRUE;
4731 }
4732 return FALSE;
4733 }
4734
4735 /* Try to get an expression from the next tokens in ARG. Consume the
4736 tokens and return true on success, storing the expression value in
4737 VALUE and relocation types in R. */
4738
4739 static bfd_boolean
4740 match_expression (struct mips_arg_info *arg, expressionS *value,
4741 bfd_reloc_code_real_type *r)
4742 {
4743 /* If the next token is a '(' that was parsed as being part of a base
4744 expression, assume we have an elided offset. The later match will fail
4745 if this turns out to be wrong. */
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4747 {
4748 value->X_op = O_constant;
4749 value->X_add_number = 0;
4750 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4751 return TRUE;
4752 }
4753
4754 /* Reject register-based expressions such as "0+$2" and "(($2))".
4755 For plain registers the default error seems more appropriate. */
4756 if (arg->token->type == OT_INTEGER
4757 && arg->token->u.integer.value.X_op == O_register)
4758 {
4759 set_insn_error (arg->argnum, _("register value used as expression"));
4760 return FALSE;
4761 }
4762
4763 if (arg->token->type == OT_INTEGER)
4764 {
4765 *value = arg->token->u.integer.value;
4766 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4767 ++arg->token;
4768 return TRUE;
4769 }
4770
4771 set_insn_error_i
4772 (arg->argnum, _("operand %d must be an immediate expression"),
4773 arg->argnum);
4774 return FALSE;
4775 }
4776
4777 /* Try to get a constant expression from the next tokens in ARG. Consume
4778 the tokens and return return true on success, storing the constant value
4779 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4780 error. */
4781
4782 static bfd_boolean
4783 match_const_int (struct mips_arg_info *arg, offsetT *value)
4784 {
4785 expressionS ex;
4786 bfd_reloc_code_real_type r[3];
4787
4788 if (!match_expression (arg, &ex, r))
4789 return FALSE;
4790
4791 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4792 *value = ex.X_add_number;
4793 else
4794 {
4795 match_not_constant (arg);
4796 return FALSE;
4797 }
4798 return TRUE;
4799 }
4800
4801 /* Return the RTYPE_* flags for a register operand of type TYPE that
4802 appears in instruction OPCODE. */
4803
4804 static unsigned int
4805 convert_reg_type (const struct mips_opcode *opcode,
4806 enum mips_reg_operand_type type)
4807 {
4808 switch (type)
4809 {
4810 case OP_REG_GP:
4811 return RTYPE_NUM | RTYPE_GP;
4812
4813 case OP_REG_FP:
4814 /* Allow vector register names for MDMX if the instruction is a 64-bit
4815 FPR load, store or move (including moves to and from GPRs). */
4816 if ((mips_opts.ase & ASE_MDMX)
4817 && (opcode->pinfo & FP_D)
4818 && (opcode->pinfo & (INSN_COPROC_MOVE
4819 | INSN_COPROC_MEMORY_DELAY
4820 | INSN_LOAD_COPROC
4821 | INSN_LOAD_MEMORY
4822 | INSN_STORE_MEMORY)))
4823 return RTYPE_FPU | RTYPE_VEC;
4824 return RTYPE_FPU;
4825
4826 case OP_REG_CCC:
4827 if (opcode->pinfo & (FP_D | FP_S))
4828 return RTYPE_CCC | RTYPE_FCC;
4829 return RTYPE_CCC;
4830
4831 case OP_REG_VEC:
4832 if (opcode->membership & INSN_5400)
4833 return RTYPE_FPU;
4834 return RTYPE_FPU | RTYPE_VEC;
4835
4836 case OP_REG_ACC:
4837 return RTYPE_ACC;
4838
4839 case OP_REG_COPRO:
4840 if (opcode->name[strlen (opcode->name) - 1] == '0')
4841 return RTYPE_NUM | RTYPE_CP0;
4842 return RTYPE_NUM;
4843
4844 case OP_REG_HW:
4845 return RTYPE_NUM;
4846
4847 case OP_REG_VI:
4848 return RTYPE_NUM | RTYPE_VI;
4849
4850 case OP_REG_VF:
4851 return RTYPE_NUM | RTYPE_VF;
4852
4853 case OP_REG_R5900_I:
4854 return RTYPE_R5900_I;
4855
4856 case OP_REG_R5900_Q:
4857 return RTYPE_R5900_Q;
4858
4859 case OP_REG_R5900_R:
4860 return RTYPE_R5900_R;
4861
4862 case OP_REG_R5900_ACC:
4863 return RTYPE_R5900_ACC;
4864
4865 case OP_REG_MSA:
4866 return RTYPE_MSA;
4867
4868 case OP_REG_MSA_CTRL:
4869 return RTYPE_NUM;
4870 }
4871 abort ();
4872 }
4873
4874 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4875
4876 static void
4877 check_regno (struct mips_arg_info *arg,
4878 enum mips_reg_operand_type type, unsigned int regno)
4879 {
4880 if (AT && type == OP_REG_GP && regno == AT)
4881 arg->seen_at = TRUE;
4882
4883 if (type == OP_REG_FP
4884 && (regno & 1) != 0
4885 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4886 {
4887 /* This was a warning prior to introducing O32 FPXX and FP64 support
4888 so maintain a warning for FP32 but raise an error for the new
4889 cases. */
4890 if (FPR_SIZE == 32)
4891 as_warn (_("float register should be even, was %d"), regno);
4892 else
4893 as_bad (_("float register should be even, was %d"), regno);
4894 }
4895
4896 if (type == OP_REG_CCC)
4897 {
4898 const char *name;
4899 size_t length;
4900
4901 name = arg->insn->insn_mo->name;
4902 length = strlen (name);
4903 if ((regno & 1) != 0
4904 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4905 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4906 as_warn (_("condition code register should be even for %s, was %d"),
4907 name, regno);
4908
4909 if ((regno & 3) != 0
4910 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4911 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4912 name, regno);
4913 }
4914 }
4915
4916 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4917 a register of type TYPE. Return true on success, storing the register
4918 number in *REGNO and warning about any dubious uses. */
4919
4920 static bfd_boolean
4921 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4922 unsigned int symval, unsigned int *regno)
4923 {
4924 if (type == OP_REG_VEC)
4925 symval = mips_prefer_vec_regno (symval);
4926 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4927 return FALSE;
4928
4929 *regno = symval & RNUM_MASK;
4930 check_regno (arg, type, *regno);
4931 return TRUE;
4932 }
4933
4934 /* Try to interpret the next token in ARG as a register of type TYPE.
4935 Consume the token and return true on success, storing the register
4936 number in *REGNO. Return false on failure. */
4937
4938 static bfd_boolean
4939 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4940 unsigned int *regno)
4941 {
4942 if (arg->token->type == OT_REG
4943 && match_regno (arg, type, arg->token->u.regno, regno))
4944 {
4945 ++arg->token;
4946 return TRUE;
4947 }
4948 return FALSE;
4949 }
4950
4951 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4952 Consume the token and return true on success, storing the register numbers
4953 in *REGNO1 and *REGNO2. Return false on failure. */
4954
4955 static bfd_boolean
4956 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4957 unsigned int *regno1, unsigned int *regno2)
4958 {
4959 if (match_reg (arg, type, regno1))
4960 {
4961 *regno2 = *regno1;
4962 return TRUE;
4963 }
4964 if (arg->token->type == OT_REG_RANGE
4965 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4966 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4967 && *regno1 <= *regno2)
4968 {
4969 ++arg->token;
4970 return TRUE;
4971 }
4972 return FALSE;
4973 }
4974
4975 /* OP_INT matcher. */
4976
4977 static bfd_boolean
4978 match_int_operand (struct mips_arg_info *arg,
4979 const struct mips_operand *operand_base)
4980 {
4981 const struct mips_int_operand *operand;
4982 unsigned int uval;
4983 int min_val, max_val, factor;
4984 offsetT sval;
4985
4986 operand = (const struct mips_int_operand *) operand_base;
4987 factor = 1 << operand->shift;
4988 min_val = mips_int_operand_min (operand);
4989 max_val = mips_int_operand_max (operand);
4990
4991 if (operand_base->lsb == 0
4992 && operand_base->size == 16
4993 && operand->shift == 0
4994 && operand->bias == 0
4995 && (operand->max_val == 32767 || operand->max_val == 65535))
4996 {
4997 /* The operand can be relocated. */
4998 if (!match_expression (arg, &offset_expr, offset_reloc))
4999 return FALSE;
5000
5001 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5002 /* Relocation operators were used. Accept the arguent and
5003 leave the relocation value in offset_expr and offset_relocs
5004 for the caller to process. */
5005 return TRUE;
5006
5007 if (offset_expr.X_op != O_constant)
5008 {
5009 /* Accept non-constant operands if no later alternative matches,
5010 leaving it for the caller to process. */
5011 if (!arg->lax_match)
5012 return FALSE;
5013 offset_reloc[0] = BFD_RELOC_LO16;
5014 return TRUE;
5015 }
5016
5017 /* Clear the global state; we're going to install the operand
5018 ourselves. */
5019 sval = offset_expr.X_add_number;
5020 offset_expr.X_op = O_absent;
5021
5022 /* For compatibility with older assemblers, we accept
5023 0x8000-0xffff as signed 16-bit numbers when only
5024 signed numbers are allowed. */
5025 if (sval > max_val)
5026 {
5027 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5028 if (!arg->lax_match && sval <= max_val)
5029 return FALSE;
5030 }
5031 }
5032 else
5033 {
5034 if (!match_const_int (arg, &sval))
5035 return FALSE;
5036 }
5037
5038 arg->last_op_int = sval;
5039
5040 if (sval < min_val || sval > max_val || sval % factor)
5041 {
5042 match_out_of_range (arg);
5043 return FALSE;
5044 }
5045
5046 uval = (unsigned int) sval >> operand->shift;
5047 uval -= operand->bias;
5048
5049 /* Handle -mfix-cn63xxp1. */
5050 if (arg->opnum == 1
5051 && mips_fix_cn63xxp1
5052 && !mips_opts.micromips
5053 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5054 switch (uval)
5055 {
5056 case 5:
5057 case 25:
5058 case 26:
5059 case 27:
5060 case 28:
5061 case 29:
5062 case 30:
5063 case 31:
5064 /* These are ok. */
5065 break;
5066
5067 default:
5068 /* The rest must be changed to 28. */
5069 uval = 28;
5070 break;
5071 }
5072
5073 insn_insert_operand (arg->insn, operand_base, uval);
5074 return TRUE;
5075 }
5076
5077 /* OP_MAPPED_INT matcher. */
5078
5079 static bfd_boolean
5080 match_mapped_int_operand (struct mips_arg_info *arg,
5081 const struct mips_operand *operand_base)
5082 {
5083 const struct mips_mapped_int_operand *operand;
5084 unsigned int uval, num_vals;
5085 offsetT sval;
5086
5087 operand = (const struct mips_mapped_int_operand *) operand_base;
5088 if (!match_const_int (arg, &sval))
5089 return FALSE;
5090
5091 num_vals = 1 << operand_base->size;
5092 for (uval = 0; uval < num_vals; uval++)
5093 if (operand->int_map[uval] == sval)
5094 break;
5095 if (uval == num_vals)
5096 {
5097 match_out_of_range (arg);
5098 return FALSE;
5099 }
5100
5101 insn_insert_operand (arg->insn, operand_base, uval);
5102 return TRUE;
5103 }
5104
5105 /* OP_MSB matcher. */
5106
5107 static bfd_boolean
5108 match_msb_operand (struct mips_arg_info *arg,
5109 const struct mips_operand *operand_base)
5110 {
5111 const struct mips_msb_operand *operand;
5112 int min_val, max_val, max_high;
5113 offsetT size, sval, high;
5114
5115 operand = (const struct mips_msb_operand *) operand_base;
5116 min_val = operand->bias;
5117 max_val = min_val + (1 << operand_base->size) - 1;
5118 max_high = operand->opsize;
5119
5120 if (!match_const_int (arg, &size))
5121 return FALSE;
5122
5123 high = size + arg->last_op_int;
5124 sval = operand->add_lsb ? high : size;
5125
5126 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5127 {
5128 match_out_of_range (arg);
5129 return FALSE;
5130 }
5131 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5132 return TRUE;
5133 }
5134
5135 /* OP_REG matcher. */
5136
5137 static bfd_boolean
5138 match_reg_operand (struct mips_arg_info *arg,
5139 const struct mips_operand *operand_base)
5140 {
5141 const struct mips_reg_operand *operand;
5142 unsigned int regno, uval, num_vals;
5143
5144 operand = (const struct mips_reg_operand *) operand_base;
5145 if (!match_reg (arg, operand->reg_type, &regno))
5146 return FALSE;
5147
5148 if (operand->reg_map)
5149 {
5150 num_vals = 1 << operand->root.size;
5151 for (uval = 0; uval < num_vals; uval++)
5152 if (operand->reg_map[uval] == regno)
5153 break;
5154 if (num_vals == uval)
5155 return FALSE;
5156 }
5157 else
5158 uval = regno;
5159
5160 arg->last_regno = regno;
5161 if (arg->opnum == 1)
5162 arg->dest_regno = regno;
5163 insn_insert_operand (arg->insn, operand_base, uval);
5164 return TRUE;
5165 }
5166
5167 /* OP_REG_PAIR matcher. */
5168
5169 static bfd_boolean
5170 match_reg_pair_operand (struct mips_arg_info *arg,
5171 const struct mips_operand *operand_base)
5172 {
5173 const struct mips_reg_pair_operand *operand;
5174 unsigned int regno1, regno2, uval, num_vals;
5175
5176 operand = (const struct mips_reg_pair_operand *) operand_base;
5177 if (!match_reg (arg, operand->reg_type, &regno1)
5178 || !match_char (arg, ',')
5179 || !match_reg (arg, operand->reg_type, &regno2))
5180 return FALSE;
5181
5182 num_vals = 1 << operand_base->size;
5183 for (uval = 0; uval < num_vals; uval++)
5184 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5185 break;
5186 if (uval == num_vals)
5187 return FALSE;
5188
5189 insn_insert_operand (arg->insn, operand_base, uval);
5190 return TRUE;
5191 }
5192
5193 /* OP_PCREL matcher. The caller chooses the relocation type. */
5194
5195 static bfd_boolean
5196 match_pcrel_operand (struct mips_arg_info *arg)
5197 {
5198 bfd_reloc_code_real_type r[3];
5199
5200 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5201 }
5202
5203 /* OP_PERF_REG matcher. */
5204
5205 static bfd_boolean
5206 match_perf_reg_operand (struct mips_arg_info *arg,
5207 const struct mips_operand *operand)
5208 {
5209 offsetT sval;
5210
5211 if (!match_const_int (arg, &sval))
5212 return FALSE;
5213
5214 if (sval != 0
5215 && (sval != 1
5216 || (mips_opts.arch == CPU_R5900
5217 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5218 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5219 {
5220 set_insn_error (arg->argnum, _("invalid performance register"));
5221 return FALSE;
5222 }
5223
5224 insn_insert_operand (arg->insn, operand, sval);
5225 return TRUE;
5226 }
5227
5228 /* OP_ADDIUSP matcher. */
5229
5230 static bfd_boolean
5231 match_addiusp_operand (struct mips_arg_info *arg,
5232 const struct mips_operand *operand)
5233 {
5234 offsetT sval;
5235 unsigned int uval;
5236
5237 if (!match_const_int (arg, &sval))
5238 return FALSE;
5239
5240 if (sval % 4)
5241 {
5242 match_out_of_range (arg);
5243 return FALSE;
5244 }
5245
5246 sval /= 4;
5247 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5248 {
5249 match_out_of_range (arg);
5250 return FALSE;
5251 }
5252
5253 uval = (unsigned int) sval;
5254 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5255 insn_insert_operand (arg->insn, operand, uval);
5256 return TRUE;
5257 }
5258
5259 /* OP_CLO_CLZ_DEST matcher. */
5260
5261 static bfd_boolean
5262 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5263 const struct mips_operand *operand)
5264 {
5265 unsigned int regno;
5266
5267 if (!match_reg (arg, OP_REG_GP, &regno))
5268 return FALSE;
5269
5270 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5271 return TRUE;
5272 }
5273
5274 /* OP_CHECK_PREV matcher. */
5275
5276 static bfd_boolean
5277 match_check_prev_operand (struct mips_arg_info *arg,
5278 const struct mips_operand *operand_base)
5279 {
5280 const struct mips_check_prev_operand *operand;
5281 unsigned int regno;
5282
5283 operand = (const struct mips_check_prev_operand *) operand_base;
5284
5285 if (!match_reg (arg, OP_REG_GP, &regno))
5286 return FALSE;
5287
5288 if (!operand->zero_ok && regno == 0)
5289 return FALSE;
5290
5291 if ((operand->less_than_ok && regno < arg->last_regno)
5292 || (operand->greater_than_ok && regno > arg->last_regno)
5293 || (operand->equal_ok && regno == arg->last_regno))
5294 {
5295 arg->last_regno = regno;
5296 insn_insert_operand (arg->insn, operand_base, regno);
5297 return TRUE;
5298 }
5299
5300 return FALSE;
5301 }
5302
5303 /* OP_SAME_RS_RT matcher. */
5304
5305 static bfd_boolean
5306 match_same_rs_rt_operand (struct mips_arg_info *arg,
5307 const struct mips_operand *operand)
5308 {
5309 unsigned int regno;
5310
5311 if (!match_reg (arg, OP_REG_GP, &regno))
5312 return FALSE;
5313
5314 if (regno == 0)
5315 {
5316 set_insn_error (arg->argnum, _("the source register must not be $0"));
5317 return FALSE;
5318 }
5319
5320 arg->last_regno = regno;
5321
5322 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5323 return TRUE;
5324 }
5325
5326 /* OP_LWM_SWM_LIST matcher. */
5327
5328 static bfd_boolean
5329 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5330 const struct mips_operand *operand)
5331 {
5332 unsigned int reglist, sregs, ra, regno1, regno2;
5333 struct mips_arg_info reset;
5334
5335 reglist = 0;
5336 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5337 return FALSE;
5338 do
5339 {
5340 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5341 {
5342 reglist |= 1 << FP;
5343 regno2 = S7;
5344 }
5345 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5346 reset = *arg;
5347 }
5348 while (match_char (arg, ',')
5349 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5350 *arg = reset;
5351
5352 if (operand->size == 2)
5353 {
5354 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5355
5356 s0, ra
5357 s0, s1, ra, s2, s3
5358 s0-s2, ra
5359
5360 and any permutations of these. */
5361 if ((reglist & 0xfff1ffff) != 0x80010000)
5362 return FALSE;
5363
5364 sregs = (reglist >> 17) & 7;
5365 ra = 0;
5366 }
5367 else
5368 {
5369 /* The list must include at least one of ra and s0-sN,
5370 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5371 which are $23 and $30 respectively.) E.g.:
5372
5373 ra
5374 s0
5375 ra, s0, s1, s2
5376 s0-s8
5377 s0-s5, ra
5378
5379 and any permutations of these. */
5380 if ((reglist & 0x3f00ffff) != 0)
5381 return FALSE;
5382
5383 ra = (reglist >> 27) & 0x10;
5384 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5385 }
5386 sregs += 1;
5387 if ((sregs & -sregs) != sregs)
5388 return FALSE;
5389
5390 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5391 return TRUE;
5392 }
5393
5394 /* OP_ENTRY_EXIT_LIST matcher. */
5395
5396 static unsigned int
5397 match_entry_exit_operand (struct mips_arg_info *arg,
5398 const struct mips_operand *operand)
5399 {
5400 unsigned int mask;
5401 bfd_boolean is_exit;
5402
5403 /* The format is the same for both ENTRY and EXIT, but the constraints
5404 are different. */
5405 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5406 mask = (is_exit ? 7 << 3 : 0);
5407 do
5408 {
5409 unsigned int regno1, regno2;
5410 bfd_boolean is_freg;
5411
5412 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5413 is_freg = FALSE;
5414 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5415 is_freg = TRUE;
5416 else
5417 return FALSE;
5418
5419 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5420 {
5421 mask &= ~(7 << 3);
5422 mask |= (5 + regno2) << 3;
5423 }
5424 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5425 mask |= (regno2 - 3) << 3;
5426 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5427 mask |= (regno2 - 15) << 1;
5428 else if (regno1 == RA && regno2 == RA)
5429 mask |= 1;
5430 else
5431 return FALSE;
5432 }
5433 while (match_char (arg, ','));
5434
5435 insn_insert_operand (arg->insn, operand, mask);
5436 return TRUE;
5437 }
5438
5439 /* OP_SAVE_RESTORE_LIST matcher. */
5440
5441 static bfd_boolean
5442 match_save_restore_list_operand (struct mips_arg_info *arg)
5443 {
5444 unsigned int opcode, args, statics, sregs;
5445 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5446 offsetT frame_size;
5447
5448 opcode = arg->insn->insn_opcode;
5449 frame_size = 0;
5450 num_frame_sizes = 0;
5451 args = 0;
5452 statics = 0;
5453 sregs = 0;
5454 do
5455 {
5456 unsigned int regno1, regno2;
5457
5458 if (arg->token->type == OT_INTEGER)
5459 {
5460 /* Handle the frame size. */
5461 if (!match_const_int (arg, &frame_size))
5462 return FALSE;
5463 num_frame_sizes += 1;
5464 }
5465 else
5466 {
5467 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5468 return FALSE;
5469
5470 while (regno1 <= regno2)
5471 {
5472 if (regno1 >= 4 && regno1 <= 7)
5473 {
5474 if (num_frame_sizes == 0)
5475 /* args $a0-$a3 */
5476 args |= 1 << (regno1 - 4);
5477 else
5478 /* statics $a0-$a3 */
5479 statics |= 1 << (regno1 - 4);
5480 }
5481 else if (regno1 >= 16 && regno1 <= 23)
5482 /* $s0-$s7 */
5483 sregs |= 1 << (regno1 - 16);
5484 else if (regno1 == 30)
5485 /* $s8 */
5486 sregs |= 1 << 8;
5487 else if (regno1 == 31)
5488 /* Add $ra to insn. */
5489 opcode |= 0x40;
5490 else
5491 return FALSE;
5492 regno1 += 1;
5493 if (regno1 == 24)
5494 regno1 = 30;
5495 }
5496 }
5497 }
5498 while (match_char (arg, ','));
5499
5500 /* Encode args/statics combination. */
5501 if (args & statics)
5502 return FALSE;
5503 else if (args == 0xf)
5504 /* All $a0-$a3 are args. */
5505 opcode |= MIPS16_ALL_ARGS << 16;
5506 else if (statics == 0xf)
5507 /* All $a0-$a3 are statics. */
5508 opcode |= MIPS16_ALL_STATICS << 16;
5509 else
5510 {
5511 /* Count arg registers. */
5512 num_args = 0;
5513 while (args & 0x1)
5514 {
5515 args >>= 1;
5516 num_args += 1;
5517 }
5518 if (args != 0)
5519 return FALSE;
5520
5521 /* Count static registers. */
5522 num_statics = 0;
5523 while (statics & 0x8)
5524 {
5525 statics = (statics << 1) & 0xf;
5526 num_statics += 1;
5527 }
5528 if (statics != 0)
5529 return FALSE;
5530
5531 /* Encode args/statics. */
5532 opcode |= ((num_args << 2) | num_statics) << 16;
5533 }
5534
5535 /* Encode $s0/$s1. */
5536 if (sregs & (1 << 0)) /* $s0 */
5537 opcode |= 0x20;
5538 if (sregs & (1 << 1)) /* $s1 */
5539 opcode |= 0x10;
5540 sregs >>= 2;
5541
5542 /* Encode $s2-$s8. */
5543 num_sregs = 0;
5544 while (sregs & 1)
5545 {
5546 sregs >>= 1;
5547 num_sregs += 1;
5548 }
5549 if (sregs != 0)
5550 return FALSE;
5551 opcode |= num_sregs << 24;
5552
5553 /* Encode frame size. */
5554 if (num_frame_sizes == 0)
5555 {
5556 set_insn_error (arg->argnum, _("missing frame size"));
5557 return FALSE;
5558 }
5559 if (num_frame_sizes > 1)
5560 {
5561 set_insn_error (arg->argnum, _("frame size specified twice"));
5562 return FALSE;
5563 }
5564 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5565 {
5566 set_insn_error (arg->argnum, _("invalid frame size"));
5567 return FALSE;
5568 }
5569 if (frame_size != 128 || (opcode >> 16) != 0)
5570 {
5571 frame_size /= 8;
5572 opcode |= (((frame_size & 0xf0) << 16)
5573 | (frame_size & 0x0f));
5574 }
5575
5576 /* Finally build the instruction. */
5577 if ((opcode >> 16) != 0 || frame_size == 0)
5578 opcode |= MIPS16_EXTEND;
5579 arg->insn->insn_opcode = opcode;
5580 return TRUE;
5581 }
5582
5583 /* OP_MDMX_IMM_REG matcher. */
5584
5585 static bfd_boolean
5586 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5587 const struct mips_operand *operand)
5588 {
5589 unsigned int regno, uval;
5590 bfd_boolean is_qh;
5591 const struct mips_opcode *opcode;
5592
5593 /* The mips_opcode records whether this is an octobyte or quadhalf
5594 instruction. Start out with that bit in place. */
5595 opcode = arg->insn->insn_mo;
5596 uval = mips_extract_operand (operand, opcode->match);
5597 is_qh = (uval != 0);
5598
5599 if (arg->token->type == OT_REG)
5600 {
5601 if ((opcode->membership & INSN_5400)
5602 && strcmp (opcode->name, "rzu.ob") == 0)
5603 {
5604 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5605 arg->argnum);
5606 return FALSE;
5607 }
5608
5609 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5610 return FALSE;
5611 ++arg->token;
5612
5613 /* Check whether this is a vector register or a broadcast of
5614 a single element. */
5615 if (arg->token->type == OT_INTEGER_INDEX)
5616 {
5617 if (arg->token->u.index > (is_qh ? 3 : 7))
5618 {
5619 set_insn_error (arg->argnum, _("invalid element selector"));
5620 return FALSE;
5621 }
5622 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5623 ++arg->token;
5624 }
5625 else
5626 {
5627 /* A full vector. */
5628 if ((opcode->membership & INSN_5400)
5629 && (strcmp (opcode->name, "sll.ob") == 0
5630 || strcmp (opcode->name, "srl.ob") == 0))
5631 {
5632 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5633 arg->argnum);
5634 return FALSE;
5635 }
5636
5637 if (is_qh)
5638 uval |= MDMX_FMTSEL_VEC_QH << 5;
5639 else
5640 uval |= MDMX_FMTSEL_VEC_OB << 5;
5641 }
5642 uval |= regno;
5643 }
5644 else
5645 {
5646 offsetT sval;
5647
5648 if (!match_const_int (arg, &sval))
5649 return FALSE;
5650 if (sval < 0 || sval > 31)
5651 {
5652 match_out_of_range (arg);
5653 return FALSE;
5654 }
5655 uval |= (sval & 31);
5656 if (is_qh)
5657 uval |= MDMX_FMTSEL_IMM_QH << 5;
5658 else
5659 uval |= MDMX_FMTSEL_IMM_OB << 5;
5660 }
5661 insn_insert_operand (arg->insn, operand, uval);
5662 return TRUE;
5663 }
5664
5665 /* OP_IMM_INDEX matcher. */
5666
5667 static bfd_boolean
5668 match_imm_index_operand (struct mips_arg_info *arg,
5669 const struct mips_operand *operand)
5670 {
5671 unsigned int max_val;
5672
5673 if (arg->token->type != OT_INTEGER_INDEX)
5674 return FALSE;
5675
5676 max_val = (1 << operand->size) - 1;
5677 if (arg->token->u.index > max_val)
5678 {
5679 match_out_of_range (arg);
5680 return FALSE;
5681 }
5682 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5683 ++arg->token;
5684 return TRUE;
5685 }
5686
5687 /* OP_REG_INDEX matcher. */
5688
5689 static bfd_boolean
5690 match_reg_index_operand (struct mips_arg_info *arg,
5691 const struct mips_operand *operand)
5692 {
5693 unsigned int regno;
5694
5695 if (arg->token->type != OT_REG_INDEX)
5696 return FALSE;
5697
5698 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5699 return FALSE;
5700
5701 insn_insert_operand (arg->insn, operand, regno);
5702 ++arg->token;
5703 return TRUE;
5704 }
5705
5706 /* OP_PC matcher. */
5707
5708 static bfd_boolean
5709 match_pc_operand (struct mips_arg_info *arg)
5710 {
5711 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5712 {
5713 ++arg->token;
5714 return TRUE;
5715 }
5716 return FALSE;
5717 }
5718
5719 /* OP_NON_ZERO_REG matcher. */
5720
5721 static bfd_boolean
5722 match_non_zero_reg_operand (struct mips_arg_info *arg,
5723 const struct mips_operand *operand)
5724 {
5725 unsigned int regno;
5726
5727 if (!match_reg (arg, OP_REG_GP, &regno))
5728 return FALSE;
5729
5730 if (regno == 0)
5731 return FALSE;
5732
5733 arg->last_regno = regno;
5734 insn_insert_operand (arg->insn, operand, regno);
5735 return TRUE;
5736 }
5737
5738 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5739 register that we need to match. */
5740
5741 static bfd_boolean
5742 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5743 {
5744 unsigned int regno;
5745
5746 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5747 }
5748
5749 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5750 the length of the value in bytes (4 for float, 8 for double) and
5751 USING_GPRS says whether the destination is a GPR rather than an FPR.
5752
5753 Return the constant in IMM and OFFSET as follows:
5754
5755 - If the constant should be loaded via memory, set IMM to O_absent and
5756 OFFSET to the memory address.
5757
5758 - Otherwise, if the constant should be loaded into two 32-bit registers,
5759 set IMM to the O_constant to load into the high register and OFFSET
5760 to the corresponding value for the low register.
5761
5762 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5763
5764 These constants only appear as the last operand in an instruction,
5765 and every instruction that accepts them in any variant accepts them
5766 in all variants. This means we don't have to worry about backing out
5767 any changes if the instruction does not match. We just match
5768 unconditionally and report an error if the constant is invalid. */
5769
5770 static bfd_boolean
5771 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5772 expressionS *offset, int length, bfd_boolean using_gprs)
5773 {
5774 char *p;
5775 segT seg, new_seg;
5776 subsegT subseg;
5777 const char *newname;
5778 unsigned char *data;
5779
5780 /* Where the constant is placed is based on how the MIPS assembler
5781 does things:
5782
5783 length == 4 && using_gprs -- immediate value only
5784 length == 8 && using_gprs -- .rdata or immediate value
5785 length == 4 && !using_gprs -- .lit4 or immediate value
5786 length == 8 && !using_gprs -- .lit8 or immediate value
5787
5788 The .lit4 and .lit8 sections are only used if permitted by the
5789 -G argument. */
5790 if (arg->token->type != OT_FLOAT)
5791 {
5792 set_insn_error (arg->argnum, _("floating-point expression required"));
5793 return FALSE;
5794 }
5795
5796 gas_assert (arg->token->u.flt.length == length);
5797 data = arg->token->u.flt.data;
5798 ++arg->token;
5799
5800 /* Handle 32-bit constants for which an immediate value is best. */
5801 if (length == 4
5802 && (using_gprs
5803 || g_switch_value < 4
5804 || (data[0] == 0 && data[1] == 0)
5805 || (data[2] == 0 && data[3] == 0)))
5806 {
5807 imm->X_op = O_constant;
5808 if (!target_big_endian)
5809 imm->X_add_number = bfd_getl32 (data);
5810 else
5811 imm->X_add_number = bfd_getb32 (data);
5812 offset->X_op = O_absent;
5813 return TRUE;
5814 }
5815
5816 /* Handle 64-bit constants for which an immediate value is best. */
5817 if (length == 8
5818 && !mips_disable_float_construction
5819 /* Constants can only be constructed in GPRs and copied to FPRs if the
5820 GPRs are at least as wide as the FPRs or MTHC1 is available.
5821 Unlike most tests for 32-bit floating-point registers this check
5822 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5823 permit 64-bit moves without MXHC1.
5824 Force the constant into memory otherwise. */
5825 && (using_gprs
5826 || GPR_SIZE == 64
5827 || ISA_HAS_MXHC1 (mips_opts.isa)
5828 || FPR_SIZE == 32)
5829 && ((data[0] == 0 && data[1] == 0)
5830 || (data[2] == 0 && data[3] == 0))
5831 && ((data[4] == 0 && data[5] == 0)
5832 || (data[6] == 0 && data[7] == 0)))
5833 {
5834 /* The value is simple enough to load with a couple of instructions.
5835 If using 32-bit registers, set IMM to the high order 32 bits and
5836 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5837 64 bit constant. */
5838 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5839 {
5840 imm->X_op = O_constant;
5841 offset->X_op = O_constant;
5842 if (!target_big_endian)
5843 {
5844 imm->X_add_number = bfd_getl32 (data + 4);
5845 offset->X_add_number = bfd_getl32 (data);
5846 }
5847 else
5848 {
5849 imm->X_add_number = bfd_getb32 (data);
5850 offset->X_add_number = bfd_getb32 (data + 4);
5851 }
5852 if (offset->X_add_number == 0)
5853 offset->X_op = O_absent;
5854 }
5855 else
5856 {
5857 imm->X_op = O_constant;
5858 if (!target_big_endian)
5859 imm->X_add_number = bfd_getl64 (data);
5860 else
5861 imm->X_add_number = bfd_getb64 (data);
5862 offset->X_op = O_absent;
5863 }
5864 return TRUE;
5865 }
5866
5867 /* Switch to the right section. */
5868 seg = now_seg;
5869 subseg = now_subseg;
5870 if (length == 4)
5871 {
5872 gas_assert (!using_gprs && g_switch_value >= 4);
5873 newname = ".lit4";
5874 }
5875 else
5876 {
5877 if (using_gprs || g_switch_value < 8)
5878 newname = RDATA_SECTION_NAME;
5879 else
5880 newname = ".lit8";
5881 }
5882
5883 new_seg = subseg_new (newname, (subsegT) 0);
5884 bfd_set_section_flags (stdoutput, new_seg,
5885 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5886 frag_align (length == 4 ? 2 : 3, 0, 0);
5887 if (strncmp (TARGET_OS, "elf", 3) != 0)
5888 record_alignment (new_seg, 4);
5889 else
5890 record_alignment (new_seg, length == 4 ? 2 : 3);
5891 if (seg == now_seg)
5892 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5893
5894 /* Set the argument to the current address in the section. */
5895 imm->X_op = O_absent;
5896 offset->X_op = O_symbol;
5897 offset->X_add_symbol = symbol_temp_new_now ();
5898 offset->X_add_number = 0;
5899
5900 /* Put the floating point number into the section. */
5901 p = frag_more (length);
5902 memcpy (p, data, length);
5903
5904 /* Switch back to the original section. */
5905 subseg_set (seg, subseg);
5906 return TRUE;
5907 }
5908
5909 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5910 them. */
5911
5912 static bfd_boolean
5913 match_vu0_suffix_operand (struct mips_arg_info *arg,
5914 const struct mips_operand *operand,
5915 bfd_boolean match_p)
5916 {
5917 unsigned int uval;
5918
5919 /* The operand can be an XYZW mask or a single 2-bit channel index
5920 (with X being 0). */
5921 gas_assert (operand->size == 2 || operand->size == 4);
5922
5923 /* The suffix can be omitted when it is already part of the opcode. */
5924 if (arg->token->type != OT_CHANNELS)
5925 return match_p;
5926
5927 uval = arg->token->u.channels;
5928 if (operand->size == 2)
5929 {
5930 /* Check that a single bit is set and convert it into a 2-bit index. */
5931 if ((uval & -uval) != uval)
5932 return FALSE;
5933 uval = 4 - ffs (uval);
5934 }
5935
5936 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5937 return FALSE;
5938
5939 ++arg->token;
5940 if (!match_p)
5941 insn_insert_operand (arg->insn, operand, uval);
5942 return TRUE;
5943 }
5944
5945 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5946 of the argument text if the match is successful, otherwise return null. */
5947
5948 static bfd_boolean
5949 match_operand (struct mips_arg_info *arg,
5950 const struct mips_operand *operand)
5951 {
5952 switch (operand->type)
5953 {
5954 case OP_INT:
5955 return match_int_operand (arg, operand);
5956
5957 case OP_MAPPED_INT:
5958 return match_mapped_int_operand (arg, operand);
5959
5960 case OP_MSB:
5961 return match_msb_operand (arg, operand);
5962
5963 case OP_REG:
5964 case OP_OPTIONAL_REG:
5965 return match_reg_operand (arg, operand);
5966
5967 case OP_REG_PAIR:
5968 return match_reg_pair_operand (arg, operand);
5969
5970 case OP_PCREL:
5971 return match_pcrel_operand (arg);
5972
5973 case OP_PERF_REG:
5974 return match_perf_reg_operand (arg, operand);
5975
5976 case OP_ADDIUSP_INT:
5977 return match_addiusp_operand (arg, operand);
5978
5979 case OP_CLO_CLZ_DEST:
5980 return match_clo_clz_dest_operand (arg, operand);
5981
5982 case OP_LWM_SWM_LIST:
5983 return match_lwm_swm_list_operand (arg, operand);
5984
5985 case OP_ENTRY_EXIT_LIST:
5986 return match_entry_exit_operand (arg, operand);
5987
5988 case OP_SAVE_RESTORE_LIST:
5989 return match_save_restore_list_operand (arg);
5990
5991 case OP_MDMX_IMM_REG:
5992 return match_mdmx_imm_reg_operand (arg, operand);
5993
5994 case OP_REPEAT_DEST_REG:
5995 return match_tied_reg_operand (arg, arg->dest_regno);
5996
5997 case OP_REPEAT_PREV_REG:
5998 return match_tied_reg_operand (arg, arg->last_regno);
5999
6000 case OP_PC:
6001 return match_pc_operand (arg);
6002
6003 case OP_VU0_SUFFIX:
6004 return match_vu0_suffix_operand (arg, operand, FALSE);
6005
6006 case OP_VU0_MATCH_SUFFIX:
6007 return match_vu0_suffix_operand (arg, operand, TRUE);
6008
6009 case OP_IMM_INDEX:
6010 return match_imm_index_operand (arg, operand);
6011
6012 case OP_REG_INDEX:
6013 return match_reg_index_operand (arg, operand);
6014
6015 case OP_SAME_RS_RT:
6016 return match_same_rs_rt_operand (arg, operand);
6017
6018 case OP_CHECK_PREV:
6019 return match_check_prev_operand (arg, operand);
6020
6021 case OP_NON_ZERO_REG:
6022 return match_non_zero_reg_operand (arg, operand);
6023 }
6024 abort ();
6025 }
6026
6027 /* ARG is the state after successfully matching an instruction.
6028 Issue any queued-up warnings. */
6029
6030 static void
6031 check_completed_insn (struct mips_arg_info *arg)
6032 {
6033 if (arg->seen_at)
6034 {
6035 if (AT == ATREG)
6036 as_warn (_("used $at without \".set noat\""));
6037 else
6038 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6039 }
6040 }
6041
6042 /* Return true if modifying general-purpose register REG needs a delay. */
6043
6044 static bfd_boolean
6045 reg_needs_delay (unsigned int reg)
6046 {
6047 unsigned long prev_pinfo;
6048
6049 prev_pinfo = history[0].insn_mo->pinfo;
6050 if (!mips_opts.noreorder
6051 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6052 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6053 && (gpr_write_mask (&history[0]) & (1 << reg)))
6054 return TRUE;
6055
6056 return FALSE;
6057 }
6058
6059 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6060 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6061 by VR4120 errata. */
6062
6063 static unsigned int
6064 classify_vr4120_insn (const char *name)
6065 {
6066 if (strncmp (name, "macc", 4) == 0)
6067 return FIX_VR4120_MACC;
6068 if (strncmp (name, "dmacc", 5) == 0)
6069 return FIX_VR4120_DMACC;
6070 if (strncmp (name, "mult", 4) == 0)
6071 return FIX_VR4120_MULT;
6072 if (strncmp (name, "dmult", 5) == 0)
6073 return FIX_VR4120_DMULT;
6074 if (strstr (name, "div"))
6075 return FIX_VR4120_DIV;
6076 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6077 return FIX_VR4120_MTHILO;
6078 return NUM_FIX_VR4120_CLASSES;
6079 }
6080
6081 #define INSN_ERET 0x42000018
6082 #define INSN_DERET 0x4200001f
6083 #define INSN_DMULT 0x1c
6084 #define INSN_DMULTU 0x1d
6085
6086 /* Return the number of instructions that must separate INSN1 and INSN2,
6087 where INSN1 is the earlier instruction. Return the worst-case value
6088 for any INSN2 if INSN2 is null. */
6089
6090 static unsigned int
6091 insns_between (const struct mips_cl_insn *insn1,
6092 const struct mips_cl_insn *insn2)
6093 {
6094 unsigned long pinfo1, pinfo2;
6095 unsigned int mask;
6096
6097 /* If INFO2 is null, pessimistically assume that all flags are set for
6098 the second instruction. */
6099 pinfo1 = insn1->insn_mo->pinfo;
6100 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6101
6102 /* For most targets, write-after-read dependencies on the HI and LO
6103 registers must be separated by at least two instructions. */
6104 if (!hilo_interlocks)
6105 {
6106 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6107 return 2;
6108 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6109 return 2;
6110 }
6111
6112 /* If we're working around r7000 errata, there must be two instructions
6113 between an mfhi or mflo and any instruction that uses the result. */
6114 if (mips_7000_hilo_fix
6115 && !mips_opts.micromips
6116 && MF_HILO_INSN (pinfo1)
6117 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6118 return 2;
6119
6120 /* If we're working around 24K errata, one instruction is required
6121 if an ERET or DERET is followed by a branch instruction. */
6122 if (mips_fix_24k && !mips_opts.micromips)
6123 {
6124 if (insn1->insn_opcode == INSN_ERET
6125 || insn1->insn_opcode == INSN_DERET)
6126 {
6127 if (insn2 == NULL
6128 || insn2->insn_opcode == INSN_ERET
6129 || insn2->insn_opcode == INSN_DERET
6130 || delayed_branch_p (insn2))
6131 return 1;
6132 }
6133 }
6134
6135 /* If we're working around PMC RM7000 errata, there must be three
6136 nops between a dmult and a load instruction. */
6137 if (mips_fix_rm7000 && !mips_opts.micromips)
6138 {
6139 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6140 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6141 {
6142 if (pinfo2 & INSN_LOAD_MEMORY)
6143 return 3;
6144 }
6145 }
6146
6147 /* If working around VR4120 errata, check for combinations that need
6148 a single intervening instruction. */
6149 if (mips_fix_vr4120 && !mips_opts.micromips)
6150 {
6151 unsigned int class1, class2;
6152
6153 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6154 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6155 {
6156 if (insn2 == NULL)
6157 return 1;
6158 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6159 if (vr4120_conflicts[class1] & (1 << class2))
6160 return 1;
6161 }
6162 }
6163
6164 if (!HAVE_CODE_COMPRESSION)
6165 {
6166 /* Check for GPR or coprocessor load delays. All such delays
6167 are on the RT register. */
6168 /* Itbl support may require additional care here. */
6169 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6170 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6171 {
6172 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6173 return 1;
6174 }
6175
6176 /* Check for generic coprocessor hazards.
6177
6178 This case is not handled very well. There is no special
6179 knowledge of CP0 handling, and the coprocessors other than
6180 the floating point unit are not distinguished at all. */
6181 /* Itbl support may require additional care here. FIXME!
6182 Need to modify this to include knowledge about
6183 user specified delays! */
6184 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6185 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6186 {
6187 /* Handle cases where INSN1 writes to a known general coprocessor
6188 register. There must be a one instruction delay before INSN2
6189 if INSN2 reads that register, otherwise no delay is needed. */
6190 mask = fpr_write_mask (insn1);
6191 if (mask != 0)
6192 {
6193 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6194 return 1;
6195 }
6196 else
6197 {
6198 /* Read-after-write dependencies on the control registers
6199 require a two-instruction gap. */
6200 if ((pinfo1 & INSN_WRITE_COND_CODE)
6201 && (pinfo2 & INSN_READ_COND_CODE))
6202 return 2;
6203
6204 /* We don't know exactly what INSN1 does. If INSN2 is
6205 also a coprocessor instruction, assume there must be
6206 a one instruction gap. */
6207 if (pinfo2 & INSN_COP)
6208 return 1;
6209 }
6210 }
6211
6212 /* Check for read-after-write dependencies on the coprocessor
6213 control registers in cases where INSN1 does not need a general
6214 coprocessor delay. This means that INSN1 is a floating point
6215 comparison instruction. */
6216 /* Itbl support may require additional care here. */
6217 else if (!cop_interlocks
6218 && (pinfo1 & INSN_WRITE_COND_CODE)
6219 && (pinfo2 & INSN_READ_COND_CODE))
6220 return 1;
6221 }
6222
6223 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6224 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6225 and pause. */
6226 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6227 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6228 || (insn2 && delayed_branch_p (insn2))))
6229 return 1;
6230
6231 return 0;
6232 }
6233
6234 /* Return the number of nops that would be needed to work around the
6235 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6236 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6237 that are contained within the first IGNORE instructions of HIST. */
6238
6239 static int
6240 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6241 const struct mips_cl_insn *insn)
6242 {
6243 int i, j;
6244 unsigned int mask;
6245
6246 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6247 are not affected by the errata. */
6248 if (insn != 0
6249 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6250 || strcmp (insn->insn_mo->name, "mtlo") == 0
6251 || strcmp (insn->insn_mo->name, "mthi") == 0))
6252 return 0;
6253
6254 /* Search for the first MFLO or MFHI. */
6255 for (i = 0; i < MAX_VR4130_NOPS; i++)
6256 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6257 {
6258 /* Extract the destination register. */
6259 mask = gpr_write_mask (&hist[i]);
6260
6261 /* No nops are needed if INSN reads that register. */
6262 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6263 return 0;
6264
6265 /* ...or if any of the intervening instructions do. */
6266 for (j = 0; j < i; j++)
6267 if (gpr_read_mask (&hist[j]) & mask)
6268 return 0;
6269
6270 if (i >= ignore)
6271 return MAX_VR4130_NOPS - i;
6272 }
6273 return 0;
6274 }
6275
6276 #define BASE_REG_EQ(INSN1, INSN2) \
6277 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6278 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6279
6280 /* Return the minimum alignment for this store instruction. */
6281
6282 static int
6283 fix_24k_align_to (const struct mips_opcode *mo)
6284 {
6285 if (strcmp (mo->name, "sh") == 0)
6286 return 2;
6287
6288 if (strcmp (mo->name, "swc1") == 0
6289 || strcmp (mo->name, "swc2") == 0
6290 || strcmp (mo->name, "sw") == 0
6291 || strcmp (mo->name, "sc") == 0
6292 || strcmp (mo->name, "s.s") == 0)
6293 return 4;
6294
6295 if (strcmp (mo->name, "sdc1") == 0
6296 || strcmp (mo->name, "sdc2") == 0
6297 || strcmp (mo->name, "s.d") == 0)
6298 return 8;
6299
6300 /* sb, swl, swr */
6301 return 1;
6302 }
6303
6304 struct fix_24k_store_info
6305 {
6306 /* Immediate offset, if any, for this store instruction. */
6307 short off;
6308 /* Alignment required by this store instruction. */
6309 int align_to;
6310 /* True for register offsets. */
6311 int register_offset;
6312 };
6313
6314 /* Comparison function used by qsort. */
6315
6316 static int
6317 fix_24k_sort (const void *a, const void *b)
6318 {
6319 const struct fix_24k_store_info *pos1 = a;
6320 const struct fix_24k_store_info *pos2 = b;
6321
6322 return (pos1->off - pos2->off);
6323 }
6324
6325 /* INSN is a store instruction. Try to record the store information
6326 in STINFO. Return false if the information isn't known. */
6327
6328 static bfd_boolean
6329 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6330 const struct mips_cl_insn *insn)
6331 {
6332 /* The instruction must have a known offset. */
6333 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6334 return FALSE;
6335
6336 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6337 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6338 return TRUE;
6339 }
6340
6341 /* Return the number of nops that would be needed to work around the 24k
6342 "lost data on stores during refill" errata if instruction INSN
6343 immediately followed the 2 instructions described by HIST.
6344 Ignore hazards that are contained within the first IGNORE
6345 instructions of HIST.
6346
6347 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6348 for the data cache refills and store data. The following describes
6349 the scenario where the store data could be lost.
6350
6351 * A data cache miss, due to either a load or a store, causing fill
6352 data to be supplied by the memory subsystem
6353 * The first three doublewords of fill data are returned and written
6354 into the cache
6355 * A sequence of four stores occurs in consecutive cycles around the
6356 final doubleword of the fill:
6357 * Store A
6358 * Store B
6359 * Store C
6360 * Zero, One or more instructions
6361 * Store D
6362
6363 The four stores A-D must be to different doublewords of the line that
6364 is being filled. The fourth instruction in the sequence above permits
6365 the fill of the final doubleword to be transferred from the FSB into
6366 the cache. In the sequence above, the stores may be either integer
6367 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6368 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6369 different doublewords on the line. If the floating point unit is
6370 running in 1:2 mode, it is not possible to create the sequence above
6371 using only floating point store instructions.
6372
6373 In this case, the cache line being filled is incorrectly marked
6374 invalid, thereby losing the data from any store to the line that
6375 occurs between the original miss and the completion of the five
6376 cycle sequence shown above.
6377
6378 The workarounds are:
6379
6380 * Run the data cache in write-through mode.
6381 * Insert a non-store instruction between
6382 Store A and Store B or Store B and Store C. */
6383
6384 static int
6385 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6386 const struct mips_cl_insn *insn)
6387 {
6388 struct fix_24k_store_info pos[3];
6389 int align, i, base_offset;
6390
6391 if (ignore >= 2)
6392 return 0;
6393
6394 /* If the previous instruction wasn't a store, there's nothing to
6395 worry about. */
6396 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6397 return 0;
6398
6399 /* If the instructions after the previous one are unknown, we have
6400 to assume the worst. */
6401 if (!insn)
6402 return 1;
6403
6404 /* Check whether we are dealing with three consecutive stores. */
6405 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6406 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6407 return 0;
6408
6409 /* If we don't know the relationship between the store addresses,
6410 assume the worst. */
6411 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6412 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6413 return 1;
6414
6415 if (!fix_24k_record_store_info (&pos[0], insn)
6416 || !fix_24k_record_store_info (&pos[1], &hist[0])
6417 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6418 return 1;
6419
6420 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6421
6422 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6423 X bytes and such that the base register + X is known to be aligned
6424 to align bytes. */
6425
6426 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6427 align = 8;
6428 else
6429 {
6430 align = pos[0].align_to;
6431 base_offset = pos[0].off;
6432 for (i = 1; i < 3; i++)
6433 if (align < pos[i].align_to)
6434 {
6435 align = pos[i].align_to;
6436 base_offset = pos[i].off;
6437 }
6438 for (i = 0; i < 3; i++)
6439 pos[i].off -= base_offset;
6440 }
6441
6442 pos[0].off &= ~align + 1;
6443 pos[1].off &= ~align + 1;
6444 pos[2].off &= ~align + 1;
6445
6446 /* If any two stores write to the same chunk, they also write to the
6447 same doubleword. The offsets are still sorted at this point. */
6448 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6449 return 0;
6450
6451 /* A range of at least 9 bytes is needed for the stores to be in
6452 non-overlapping doublewords. */
6453 if (pos[2].off - pos[0].off <= 8)
6454 return 0;
6455
6456 if (pos[2].off - pos[1].off >= 24
6457 || pos[1].off - pos[0].off >= 24
6458 || pos[2].off - pos[0].off >= 32)
6459 return 0;
6460
6461 return 1;
6462 }
6463
6464 /* Return the number of nops that would be needed if instruction INSN
6465 immediately followed the MAX_NOPS instructions given by HIST,
6466 where HIST[0] is the most recent instruction. Ignore hazards
6467 between INSN and the first IGNORE instructions in HIST.
6468
6469 If INSN is null, return the worse-case number of nops for any
6470 instruction. */
6471
6472 static int
6473 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6474 const struct mips_cl_insn *insn)
6475 {
6476 int i, nops, tmp_nops;
6477
6478 nops = 0;
6479 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6480 {
6481 tmp_nops = insns_between (hist + i, insn) - i;
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
6485
6486 if (mips_fix_vr4130 && !mips_opts.micromips)
6487 {
6488 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6489 if (tmp_nops > nops)
6490 nops = tmp_nops;
6491 }
6492
6493 if (mips_fix_24k && !mips_opts.micromips)
6494 {
6495 tmp_nops = nops_for_24k (ignore, hist, insn);
6496 if (tmp_nops > nops)
6497 nops = tmp_nops;
6498 }
6499
6500 return nops;
6501 }
6502
6503 /* The variable arguments provide NUM_INSNS extra instructions that
6504 might be added to HIST. Return the largest number of nops that
6505 would be needed after the extended sequence, ignoring hazards
6506 in the first IGNORE instructions. */
6507
6508 static int
6509 nops_for_sequence (int num_insns, int ignore,
6510 const struct mips_cl_insn *hist, ...)
6511 {
6512 va_list args;
6513 struct mips_cl_insn buffer[MAX_NOPS];
6514 struct mips_cl_insn *cursor;
6515 int nops;
6516
6517 va_start (args, hist);
6518 cursor = buffer + num_insns;
6519 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6520 while (cursor > buffer)
6521 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6522
6523 nops = nops_for_insn (ignore, buffer, NULL);
6524 va_end (args);
6525 return nops;
6526 }
6527
6528 /* Like nops_for_insn, but if INSN is a branch, take into account the
6529 worst-case delay for the branch target. */
6530
6531 static int
6532 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6533 const struct mips_cl_insn *insn)
6534 {
6535 int nops, tmp_nops;
6536
6537 nops = nops_for_insn (ignore, hist, insn);
6538 if (delayed_branch_p (insn))
6539 {
6540 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6541 hist, insn, get_delay_slot_nop (insn));
6542 if (tmp_nops > nops)
6543 nops = tmp_nops;
6544 }
6545 else if (compact_branch_p (insn))
6546 {
6547 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6548 if (tmp_nops > nops)
6549 nops = tmp_nops;
6550 }
6551 return nops;
6552 }
6553
6554 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6555
6556 static void
6557 fix_loongson2f_nop (struct mips_cl_insn * ip)
6558 {
6559 gas_assert (!HAVE_CODE_COMPRESSION);
6560 if (strcmp (ip->insn_mo->name, "nop") == 0)
6561 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6562 }
6563
6564 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6565 jr target pc &= 'hffff_ffff_cfff_ffff. */
6566
6567 static void
6568 fix_loongson2f_jump (struct mips_cl_insn * ip)
6569 {
6570 gas_assert (!HAVE_CODE_COMPRESSION);
6571 if (strcmp (ip->insn_mo->name, "j") == 0
6572 || strcmp (ip->insn_mo->name, "jr") == 0
6573 || strcmp (ip->insn_mo->name, "jalr") == 0)
6574 {
6575 int sreg;
6576 expressionS ep;
6577
6578 if (! mips_opts.at)
6579 return;
6580
6581 sreg = EXTRACT_OPERAND (0, RS, *ip);
6582 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6583 return;
6584
6585 ep.X_op = O_constant;
6586 ep.X_add_number = 0xcfff0000;
6587 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6588 ep.X_add_number = 0xffff;
6589 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6590 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6591 }
6592 }
6593
6594 static void
6595 fix_loongson2f (struct mips_cl_insn * ip)
6596 {
6597 if (mips_fix_loongson2f_nop)
6598 fix_loongson2f_nop (ip);
6599
6600 if (mips_fix_loongson2f_jump)
6601 fix_loongson2f_jump (ip);
6602 }
6603
6604 /* IP is a branch that has a delay slot, and we need to fill it
6605 automatically. Return true if we can do that by swapping IP
6606 with the previous instruction.
6607 ADDRESS_EXPR is an operand of the instruction to be used with
6608 RELOC_TYPE. */
6609
6610 static bfd_boolean
6611 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6612 bfd_reloc_code_real_type *reloc_type)
6613 {
6614 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6615 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6616 unsigned int fpr_read, prev_fpr_write;
6617
6618 /* -O2 and above is required for this optimization. */
6619 if (mips_optimize < 2)
6620 return FALSE;
6621
6622 /* If we have seen .set volatile or .set nomove, don't optimize. */
6623 if (mips_opts.nomove)
6624 return FALSE;
6625
6626 /* We can't swap if the previous instruction's position is fixed. */
6627 if (history[0].fixed_p)
6628 return FALSE;
6629
6630 /* If the previous previous insn was in a .set noreorder, we can't
6631 swap. Actually, the MIPS assembler will swap in this situation.
6632 However, gcc configured -with-gnu-as will generate code like
6633
6634 .set noreorder
6635 lw $4,XXX
6636 .set reorder
6637 INSN
6638 bne $4,$0,foo
6639
6640 in which we can not swap the bne and INSN. If gcc is not configured
6641 -with-gnu-as, it does not output the .set pseudo-ops. */
6642 if (history[1].noreorder_p)
6643 return FALSE;
6644
6645 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6646 This means that the previous instruction was a 4-byte one anyhow. */
6647 if (mips_opts.mips16 && history[0].fixp[0])
6648 return FALSE;
6649
6650 /* If the branch is itself the target of a branch, we can not swap.
6651 We cheat on this; all we check for is whether there is a label on
6652 this instruction. If there are any branches to anything other than
6653 a label, users must use .set noreorder. */
6654 if (seg_info (now_seg)->label_list)
6655 return FALSE;
6656
6657 /* If the previous instruction is in a variant frag other than this
6658 branch's one, we cannot do the swap. This does not apply to
6659 MIPS16 code, which uses variant frags for different purposes. */
6660 if (!mips_opts.mips16
6661 && history[0].frag
6662 && history[0].frag->fr_type == rs_machine_dependent)
6663 return FALSE;
6664
6665 /* We do not swap with instructions that cannot architecturally
6666 be placed in a branch delay slot, such as SYNC or ERET. We
6667 also refrain from swapping with a trap instruction, since it
6668 complicates trap handlers to have the trap instruction be in
6669 a delay slot. */
6670 prev_pinfo = history[0].insn_mo->pinfo;
6671 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6672 return FALSE;
6673
6674 /* Check for conflicts between the branch and the instructions
6675 before the candidate delay slot. */
6676 if (nops_for_insn (0, history + 1, ip) > 0)
6677 return FALSE;
6678
6679 /* Check for conflicts between the swapped sequence and the
6680 target of the branch. */
6681 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6682 return FALSE;
6683
6684 /* If the branch reads a register that the previous
6685 instruction sets, we can not swap. */
6686 gpr_read = gpr_read_mask (ip);
6687 prev_gpr_write = gpr_write_mask (&history[0]);
6688 if (gpr_read & prev_gpr_write)
6689 return FALSE;
6690
6691 fpr_read = fpr_read_mask (ip);
6692 prev_fpr_write = fpr_write_mask (&history[0]);
6693 if (fpr_read & prev_fpr_write)
6694 return FALSE;
6695
6696 /* If the branch writes a register that the previous
6697 instruction sets, we can not swap. */
6698 gpr_write = gpr_write_mask (ip);
6699 if (gpr_write & prev_gpr_write)
6700 return FALSE;
6701
6702 /* If the branch writes a register that the previous
6703 instruction reads, we can not swap. */
6704 prev_gpr_read = gpr_read_mask (&history[0]);
6705 if (gpr_write & prev_gpr_read)
6706 return FALSE;
6707
6708 /* If one instruction sets a condition code and the
6709 other one uses a condition code, we can not swap. */
6710 pinfo = ip->insn_mo->pinfo;
6711 if ((pinfo & INSN_READ_COND_CODE)
6712 && (prev_pinfo & INSN_WRITE_COND_CODE))
6713 return FALSE;
6714 if ((pinfo & INSN_WRITE_COND_CODE)
6715 && (prev_pinfo & INSN_READ_COND_CODE))
6716 return FALSE;
6717
6718 /* If the previous instruction uses the PC, we can not swap. */
6719 prev_pinfo2 = history[0].insn_mo->pinfo2;
6720 if (prev_pinfo2 & INSN2_READ_PC)
6721 return FALSE;
6722
6723 /* If the previous instruction has an incorrect size for a fixed
6724 branch delay slot in microMIPS mode, we cannot swap. */
6725 pinfo2 = ip->insn_mo->pinfo2;
6726 if (mips_opts.micromips
6727 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6728 && insn_length (history) != 2)
6729 return FALSE;
6730 if (mips_opts.micromips
6731 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6732 && insn_length (history) != 4)
6733 return FALSE;
6734
6735 /* On R5900 short loops need to be fixed by inserting a nop in
6736 the branch delay slots.
6737 A short loop can be terminated too early. */
6738 if (mips_opts.arch == CPU_R5900
6739 /* Check if instruction has a parameter, ignore "j $31". */
6740 && (address_expr != NULL)
6741 /* Parameter must be 16 bit. */
6742 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6743 /* Branch to same segment. */
6744 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6745 /* Branch to same code fragment. */
6746 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6747 /* Can only calculate branch offset if value is known. */
6748 && symbol_constant_p (address_expr->X_add_symbol)
6749 /* Check if branch is really conditional. */
6750 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6751 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6752 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6753 {
6754 int distance;
6755 /* Check if loop is shorter than 6 instructions including
6756 branch and delay slot. */
6757 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6758 if (distance <= 20)
6759 {
6760 int i;
6761 int rv;
6762
6763 rv = FALSE;
6764 /* When the loop includes branches or jumps,
6765 it is not a short loop. */
6766 for (i = 0; i < (distance / 4); i++)
6767 {
6768 if ((history[i].cleared_p)
6769 || delayed_branch_p (&history[i]))
6770 {
6771 rv = TRUE;
6772 break;
6773 }
6774 }
6775 if (rv == FALSE)
6776 {
6777 /* Insert nop after branch to fix short loop. */
6778 return FALSE;
6779 }
6780 }
6781 }
6782
6783 return TRUE;
6784 }
6785
6786 /* Decide how we should add IP to the instruction stream.
6787 ADDRESS_EXPR is an operand of the instruction to be used with
6788 RELOC_TYPE. */
6789
6790 static enum append_method
6791 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6792 bfd_reloc_code_real_type *reloc_type)
6793 {
6794 /* The relaxed version of a macro sequence must be inherently
6795 hazard-free. */
6796 if (mips_relax.sequence == 2)
6797 return APPEND_ADD;
6798
6799 /* We must not dabble with instructions in a ".set norerorder" block. */
6800 if (mips_opts.noreorder)
6801 return APPEND_ADD;
6802
6803 /* Otherwise, it's our responsibility to fill branch delay slots. */
6804 if (delayed_branch_p (ip))
6805 {
6806 if (!branch_likely_p (ip)
6807 && can_swap_branch_p (ip, address_expr, reloc_type))
6808 return APPEND_SWAP;
6809
6810 if (mips_opts.mips16
6811 && ISA_SUPPORTS_MIPS16E
6812 && gpr_read_mask (ip) != 0)
6813 return APPEND_ADD_COMPACT;
6814
6815 return APPEND_ADD_WITH_NOP;
6816 }
6817
6818 return APPEND_ADD;
6819 }
6820
6821 /* IP is a MIPS16 instruction whose opcode we have just changed.
6822 Point IP->insn_mo to the new opcode's definition. */
6823
6824 static void
6825 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6826 {
6827 const struct mips_opcode *mo, *end;
6828
6829 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6830 for (mo = ip->insn_mo; mo < end; mo++)
6831 if ((ip->insn_opcode & mo->mask) == mo->match)
6832 {
6833 ip->insn_mo = mo;
6834 return;
6835 }
6836 abort ();
6837 }
6838
6839 /* For microMIPS macros, we need to generate a local number label
6840 as the target of branches. */
6841 #define MICROMIPS_LABEL_CHAR '\037'
6842 static unsigned long micromips_target_label;
6843 static char micromips_target_name[32];
6844
6845 static char *
6846 micromips_label_name (void)
6847 {
6848 char *p = micromips_target_name;
6849 char symbol_name_temporary[24];
6850 unsigned long l;
6851 int i;
6852
6853 if (*p)
6854 return p;
6855
6856 i = 0;
6857 l = micromips_target_label;
6858 #ifdef LOCAL_LABEL_PREFIX
6859 *p++ = LOCAL_LABEL_PREFIX;
6860 #endif
6861 *p++ = 'L';
6862 *p++ = MICROMIPS_LABEL_CHAR;
6863 do
6864 {
6865 symbol_name_temporary[i++] = l % 10 + '0';
6866 l /= 10;
6867 }
6868 while (l != 0);
6869 while (i > 0)
6870 *p++ = symbol_name_temporary[--i];
6871 *p = '\0';
6872
6873 return micromips_target_name;
6874 }
6875
6876 static void
6877 micromips_label_expr (expressionS *label_expr)
6878 {
6879 label_expr->X_op = O_symbol;
6880 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6881 label_expr->X_add_number = 0;
6882 }
6883
6884 static void
6885 micromips_label_inc (void)
6886 {
6887 micromips_target_label++;
6888 *micromips_target_name = '\0';
6889 }
6890
6891 static void
6892 micromips_add_label (void)
6893 {
6894 symbolS *s;
6895
6896 s = colon (micromips_label_name ());
6897 micromips_label_inc ();
6898 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6899 }
6900
6901 /* If assembling microMIPS code, then return the microMIPS reloc
6902 corresponding to the requested one if any. Otherwise return
6903 the reloc unchanged. */
6904
6905 static bfd_reloc_code_real_type
6906 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6907 {
6908 static const bfd_reloc_code_real_type relocs[][2] =
6909 {
6910 /* Keep sorted incrementally by the left-hand key. */
6911 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6912 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6913 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6914 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6915 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6916 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6917 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6918 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6919 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6920 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6921 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6922 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6923 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6924 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6925 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6926 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6927 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6928 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6929 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6930 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6931 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6932 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6933 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6934 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6935 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6936 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6937 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6938 };
6939 bfd_reloc_code_real_type r;
6940 size_t i;
6941
6942 if (!mips_opts.micromips)
6943 return reloc;
6944 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6945 {
6946 r = relocs[i][0];
6947 if (r > reloc)
6948 return reloc;
6949 if (r == reloc)
6950 return relocs[i][1];
6951 }
6952 return reloc;
6953 }
6954
6955 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6956 Return true on success, storing the resolved value in RESULT. */
6957
6958 static bfd_boolean
6959 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6960 offsetT *result)
6961 {
6962 switch (reloc)
6963 {
6964 case BFD_RELOC_MIPS_HIGHEST:
6965 case BFD_RELOC_MICROMIPS_HIGHEST:
6966 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6967 return TRUE;
6968
6969 case BFD_RELOC_MIPS_HIGHER:
6970 case BFD_RELOC_MICROMIPS_HIGHER:
6971 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6972 return TRUE;
6973
6974 case BFD_RELOC_HI16_S:
6975 case BFD_RELOC_MICROMIPS_HI16_S:
6976 case BFD_RELOC_MIPS16_HI16_S:
6977 *result = ((operand + 0x8000) >> 16) & 0xffff;
6978 return TRUE;
6979
6980 case BFD_RELOC_HI16:
6981 case BFD_RELOC_MICROMIPS_HI16:
6982 case BFD_RELOC_MIPS16_HI16:
6983 *result = (operand >> 16) & 0xffff;
6984 return TRUE;
6985
6986 case BFD_RELOC_LO16:
6987 case BFD_RELOC_MICROMIPS_LO16:
6988 case BFD_RELOC_MIPS16_LO16:
6989 *result = operand & 0xffff;
6990 return TRUE;
6991
6992 case BFD_RELOC_UNUSED:
6993 *result = operand;
6994 return TRUE;
6995
6996 default:
6997 return FALSE;
6998 }
6999 }
7000
7001 /* Output an instruction. IP is the instruction information.
7002 ADDRESS_EXPR is an operand of the instruction to be used with
7003 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7004 a macro expansion. */
7005
7006 static void
7007 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7008 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7009 {
7010 unsigned long prev_pinfo2, pinfo;
7011 bfd_boolean relaxed_branch = FALSE;
7012 enum append_method method;
7013 bfd_boolean relax32;
7014 int branch_disp;
7015
7016 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7017 fix_loongson2f (ip);
7018
7019 file_ase_mips16 |= mips_opts.mips16;
7020 file_ase_micromips |= mips_opts.micromips;
7021
7022 prev_pinfo2 = history[0].insn_mo->pinfo2;
7023 pinfo = ip->insn_mo->pinfo;
7024
7025 if (mips_opts.micromips
7026 && !expansionp
7027 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7028 && micromips_insn_length (ip->insn_mo) != 2)
7029 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7030 && micromips_insn_length (ip->insn_mo) != 4)))
7031 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7032 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7033
7034 if (address_expr == NULL)
7035 ip->complete_p = 1;
7036 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7037 && reloc_type[1] == BFD_RELOC_UNUSED
7038 && reloc_type[2] == BFD_RELOC_UNUSED
7039 && address_expr->X_op == O_constant)
7040 {
7041 switch (*reloc_type)
7042 {
7043 case BFD_RELOC_MIPS_JMP:
7044 {
7045 int shift;
7046
7047 shift = mips_opts.micromips ? 1 : 2;
7048 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7049 as_bad (_("jump to misaligned address (0x%lx)"),
7050 (unsigned long) address_expr->X_add_number);
7051 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7052 & 0x3ffffff);
7053 ip->complete_p = 1;
7054 }
7055 break;
7056
7057 case BFD_RELOC_MIPS16_JMP:
7058 if ((address_expr->X_add_number & 3) != 0)
7059 as_bad (_("jump to misaligned address (0x%lx)"),
7060 (unsigned long) address_expr->X_add_number);
7061 ip->insn_opcode |=
7062 (((address_expr->X_add_number & 0x7c0000) << 3)
7063 | ((address_expr->X_add_number & 0xf800000) >> 7)
7064 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7065 ip->complete_p = 1;
7066 break;
7067
7068 case BFD_RELOC_16_PCREL_S2:
7069 {
7070 int shift;
7071
7072 shift = mips_opts.micromips ? 1 : 2;
7073 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7074 as_bad (_("branch to misaligned address (0x%lx)"),
7075 (unsigned long) address_expr->X_add_number);
7076 if (!mips_relax_branch)
7077 {
7078 if ((address_expr->X_add_number + (1 << (shift + 15)))
7079 & ~((1 << (shift + 16)) - 1))
7080 as_bad (_("branch address range overflow (0x%lx)"),
7081 (unsigned long) address_expr->X_add_number);
7082 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7083 & 0xffff);
7084 }
7085 }
7086 break;
7087
7088 case BFD_RELOC_MIPS_21_PCREL_S2:
7089 {
7090 int shift;
7091
7092 shift = 2;
7093 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7094 as_bad (_("branch to misaligned address (0x%lx)"),
7095 (unsigned long) address_expr->X_add_number);
7096 if ((address_expr->X_add_number + (1 << (shift + 20)))
7097 & ~((1 << (shift + 21)) - 1))
7098 as_bad (_("branch address range overflow (0x%lx)"),
7099 (unsigned long) address_expr->X_add_number);
7100 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7101 & 0x1fffff);
7102 }
7103 break;
7104
7105 case BFD_RELOC_MIPS_26_PCREL_S2:
7106 {
7107 int shift;
7108
7109 shift = 2;
7110 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7111 as_bad (_("branch to misaligned address (0x%lx)"),
7112 (unsigned long) address_expr->X_add_number);
7113 if ((address_expr->X_add_number + (1 << (shift + 25)))
7114 & ~((1 << (shift + 26)) - 1))
7115 as_bad (_("branch address range overflow (0x%lx)"),
7116 (unsigned long) address_expr->X_add_number);
7117 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7118 & 0x3ffffff);
7119 }
7120 break;
7121
7122 default:
7123 {
7124 offsetT value;
7125
7126 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7127 &value))
7128 {
7129 ip->insn_opcode |= value & 0xffff;
7130 ip->complete_p = 1;
7131 }
7132 }
7133 break;
7134 }
7135 }
7136
7137 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7138 {
7139 /* There are a lot of optimizations we could do that we don't.
7140 In particular, we do not, in general, reorder instructions.
7141 If you use gcc with optimization, it will reorder
7142 instructions and generally do much more optimization then we
7143 do here; repeating all that work in the assembler would only
7144 benefit hand written assembly code, and does not seem worth
7145 it. */
7146 int nops = (mips_optimize == 0
7147 ? nops_for_insn (0, history, NULL)
7148 : nops_for_insn_or_target (0, history, ip));
7149 if (nops > 0)
7150 {
7151 fragS *old_frag;
7152 unsigned long old_frag_offset;
7153 int i;
7154
7155 old_frag = frag_now;
7156 old_frag_offset = frag_now_fix ();
7157
7158 for (i = 0; i < nops; i++)
7159 add_fixed_insn (NOP_INSN);
7160 insert_into_history (0, nops, NOP_INSN);
7161
7162 if (listing)
7163 {
7164 listing_prev_line ();
7165 /* We may be at the start of a variant frag. In case we
7166 are, make sure there is enough space for the frag
7167 after the frags created by listing_prev_line. The
7168 argument to frag_grow here must be at least as large
7169 as the argument to all other calls to frag_grow in
7170 this file. We don't have to worry about being in the
7171 middle of a variant frag, because the variants insert
7172 all needed nop instructions themselves. */
7173 frag_grow (40);
7174 }
7175
7176 mips_move_text_labels ();
7177
7178 #ifndef NO_ECOFF_DEBUGGING
7179 if (ECOFF_DEBUGGING)
7180 ecoff_fix_loc (old_frag, old_frag_offset);
7181 #endif
7182 }
7183 }
7184 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7185 {
7186 int nops;
7187
7188 /* Work out how many nops in prev_nop_frag are needed by IP,
7189 ignoring hazards generated by the first prev_nop_frag_since
7190 instructions. */
7191 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7192 gas_assert (nops <= prev_nop_frag_holds);
7193
7194 /* Enforce NOPS as a minimum. */
7195 if (nops > prev_nop_frag_required)
7196 prev_nop_frag_required = nops;
7197
7198 if (prev_nop_frag_holds == prev_nop_frag_required)
7199 {
7200 /* Settle for the current number of nops. Update the history
7201 accordingly (for the benefit of any future .set reorder code). */
7202 prev_nop_frag = NULL;
7203 insert_into_history (prev_nop_frag_since,
7204 prev_nop_frag_holds, NOP_INSN);
7205 }
7206 else
7207 {
7208 /* Allow this instruction to replace one of the nops that was
7209 tentatively added to prev_nop_frag. */
7210 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7211 prev_nop_frag_holds--;
7212 prev_nop_frag_since++;
7213 }
7214 }
7215
7216 method = get_append_method (ip, address_expr, reloc_type);
7217 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7218
7219 dwarf2_emit_insn (0);
7220 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7221 so "move" the instruction address accordingly.
7222
7223 Also, it doesn't seem appropriate for the assembler to reorder .loc
7224 entries. If this instruction is a branch that we are going to swap
7225 with the previous instruction, the two instructions should be
7226 treated as a unit, and the debug information for both instructions
7227 should refer to the start of the branch sequence. Using the
7228 current position is certainly wrong when swapping a 32-bit branch
7229 and a 16-bit delay slot, since the current position would then be
7230 in the middle of a branch. */
7231 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7232
7233 relax32 = (mips_relax_branch
7234 /* Don't try branch relaxation within .set nomacro, or within
7235 .set noat if we use $at for PIC computations. If it turns
7236 out that the branch was out-of-range, we'll get an error. */
7237 && !mips_opts.warn_about_macros
7238 && (mips_opts.at || mips_pic == NO_PIC)
7239 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7240 as they have no complementing branches. */
7241 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7242
7243 if (!HAVE_CODE_COMPRESSION
7244 && address_expr
7245 && relax32
7246 && *reloc_type == BFD_RELOC_16_PCREL_S2
7247 && delayed_branch_p (ip))
7248 {
7249 relaxed_branch = TRUE;
7250 add_relaxed_insn (ip, (relaxed_branch_length
7251 (NULL, NULL,
7252 uncond_branch_p (ip) ? -1
7253 : branch_likely_p (ip) ? 1
7254 : 0)), 4,
7255 RELAX_BRANCH_ENCODE
7256 (AT,
7257 uncond_branch_p (ip),
7258 branch_likely_p (ip),
7259 pinfo & INSN_WRITE_GPR_31,
7260 0),
7261 address_expr->X_add_symbol,
7262 address_expr->X_add_number);
7263 *reloc_type = BFD_RELOC_UNUSED;
7264 }
7265 else if (mips_opts.micromips
7266 && address_expr
7267 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7268 || *reloc_type > BFD_RELOC_UNUSED)
7269 && (delayed_branch_p (ip) || compact_branch_p (ip))
7270 /* Don't try branch relaxation when users specify
7271 16-bit/32-bit instructions. */
7272 && !forced_insn_length)
7273 {
7274 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7275 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7276 int uncond = uncond_branch_p (ip) ? -1 : 0;
7277 int compact = compact_branch_p (ip);
7278 int al = pinfo & INSN_WRITE_GPR_31;
7279 int length32;
7280
7281 gas_assert (address_expr != NULL);
7282 gas_assert (!mips_relax.sequence);
7283
7284 relaxed_branch = TRUE;
7285 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7286 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7287 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7288 relax32, 0, 0),
7289 address_expr->X_add_symbol,
7290 address_expr->X_add_number);
7291 *reloc_type = BFD_RELOC_UNUSED;
7292 }
7293 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7294 {
7295 /* We need to set up a variant frag. */
7296 gas_assert (address_expr != NULL);
7297 add_relaxed_insn (ip, 4, 0,
7298 RELAX_MIPS16_ENCODE
7299 (*reloc_type - BFD_RELOC_UNUSED,
7300 forced_insn_length == 2, forced_insn_length == 4,
7301 delayed_branch_p (&history[0]),
7302 history[0].mips16_absolute_jump_p),
7303 make_expr_symbol (address_expr), 0);
7304 }
7305 else if (mips_opts.mips16 && insn_length (ip) == 2)
7306 {
7307 if (!delayed_branch_p (ip))
7308 /* Make sure there is enough room to swap this instruction with
7309 a following jump instruction. */
7310 frag_grow (6);
7311 add_fixed_insn (ip);
7312 }
7313 else
7314 {
7315 if (mips_opts.mips16
7316 && mips_opts.noreorder
7317 && delayed_branch_p (&history[0]))
7318 as_warn (_("extended instruction in delay slot"));
7319
7320 if (mips_relax.sequence)
7321 {
7322 /* If we've reached the end of this frag, turn it into a variant
7323 frag and record the information for the instructions we've
7324 written so far. */
7325 if (frag_room () < 4)
7326 relax_close_frag ();
7327 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7328 }
7329
7330 if (mips_relax.sequence != 2)
7331 {
7332 if (mips_macro_warning.first_insn_sizes[0] == 0)
7333 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7334 mips_macro_warning.sizes[0] += insn_length (ip);
7335 mips_macro_warning.insns[0]++;
7336 }
7337 if (mips_relax.sequence != 1)
7338 {
7339 if (mips_macro_warning.first_insn_sizes[1] == 0)
7340 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7341 mips_macro_warning.sizes[1] += insn_length (ip);
7342 mips_macro_warning.insns[1]++;
7343 }
7344
7345 if (mips_opts.mips16)
7346 {
7347 ip->fixed_p = 1;
7348 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7349 }
7350 add_fixed_insn (ip);
7351 }
7352
7353 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7354 {
7355 bfd_reloc_code_real_type final_type[3];
7356 reloc_howto_type *howto0;
7357 reloc_howto_type *howto;
7358 int i;
7359
7360 /* Perform any necessary conversion to microMIPS relocations
7361 and find out how many relocations there actually are. */
7362 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7363 final_type[i] = micromips_map_reloc (reloc_type[i]);
7364
7365 /* In a compound relocation, it is the final (outermost)
7366 operator that determines the relocated field. */
7367 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7368 if (!howto)
7369 abort ();
7370
7371 if (i > 1)
7372 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7373 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7374 bfd_get_reloc_size (howto),
7375 address_expr,
7376 howto0 && howto0->pc_relative,
7377 final_type[0]);
7378
7379 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7380 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7381 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7382
7383 /* These relocations can have an addend that won't fit in
7384 4 octets for 64bit assembly. */
7385 if (GPR_SIZE == 64
7386 && ! howto->partial_inplace
7387 && (reloc_type[0] == BFD_RELOC_16
7388 || reloc_type[0] == BFD_RELOC_32
7389 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7390 || reloc_type[0] == BFD_RELOC_GPREL16
7391 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7392 || reloc_type[0] == BFD_RELOC_GPREL32
7393 || reloc_type[0] == BFD_RELOC_64
7394 || reloc_type[0] == BFD_RELOC_CTOR
7395 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7396 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7397 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7398 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7399 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7400 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7401 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7402 || hi16_reloc_p (reloc_type[0])
7403 || lo16_reloc_p (reloc_type[0])))
7404 ip->fixp[0]->fx_no_overflow = 1;
7405
7406 /* These relocations can have an addend that won't fit in 2 octets. */
7407 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7408 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7409 ip->fixp[0]->fx_no_overflow = 1;
7410
7411 if (mips_relax.sequence)
7412 {
7413 if (mips_relax.first_fixup == 0)
7414 mips_relax.first_fixup = ip->fixp[0];
7415 }
7416 else if (reloc_needs_lo_p (*reloc_type))
7417 {
7418 struct mips_hi_fixup *hi_fixup;
7419
7420 /* Reuse the last entry if it already has a matching %lo. */
7421 hi_fixup = mips_hi_fixup_list;
7422 if (hi_fixup == 0
7423 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7424 {
7425 hi_fixup = XNEW (struct mips_hi_fixup);
7426 hi_fixup->next = mips_hi_fixup_list;
7427 mips_hi_fixup_list = hi_fixup;
7428 }
7429 hi_fixup->fixp = ip->fixp[0];
7430 hi_fixup->seg = now_seg;
7431 }
7432
7433 /* Add fixups for the second and third relocations, if given.
7434 Note that the ABI allows the second relocation to be
7435 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7436 moment we only use RSS_UNDEF, but we could add support
7437 for the others if it ever becomes necessary. */
7438 for (i = 1; i < 3; i++)
7439 if (reloc_type[i] != BFD_RELOC_UNUSED)
7440 {
7441 ip->fixp[i] = fix_new (ip->frag, ip->where,
7442 ip->fixp[0]->fx_size, NULL, 0,
7443 FALSE, final_type[i]);
7444
7445 /* Use fx_tcbit to mark compound relocs. */
7446 ip->fixp[0]->fx_tcbit = 1;
7447 ip->fixp[i]->fx_tcbit = 1;
7448 }
7449 }
7450 install_insn (ip);
7451
7452 /* Update the register mask information. */
7453 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7454 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7455
7456 switch (method)
7457 {
7458 case APPEND_ADD:
7459 insert_into_history (0, 1, ip);
7460 break;
7461
7462 case APPEND_ADD_WITH_NOP:
7463 {
7464 struct mips_cl_insn *nop;
7465
7466 insert_into_history (0, 1, ip);
7467 nop = get_delay_slot_nop (ip);
7468 add_fixed_insn (nop);
7469 insert_into_history (0, 1, nop);
7470 if (mips_relax.sequence)
7471 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7472 }
7473 break;
7474
7475 case APPEND_ADD_COMPACT:
7476 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7477 gas_assert (mips_opts.mips16);
7478 ip->insn_opcode |= 0x0080;
7479 find_altered_mips16_opcode (ip);
7480 install_insn (ip);
7481 insert_into_history (0, 1, ip);
7482 break;
7483
7484 case APPEND_SWAP:
7485 {
7486 struct mips_cl_insn delay = history[0];
7487 if (mips_opts.mips16)
7488 {
7489 know (delay.frag == ip->frag);
7490 move_insn (ip, delay.frag, delay.where);
7491 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7492 }
7493 else if (relaxed_branch || delay.frag != ip->frag)
7494 {
7495 /* Add the delay slot instruction to the end of the
7496 current frag and shrink the fixed part of the
7497 original frag. If the branch occupies the tail of
7498 the latter, move it backwards to cover the gap. */
7499 delay.frag->fr_fix -= branch_disp;
7500 if (delay.frag == ip->frag)
7501 move_insn (ip, ip->frag, ip->where - branch_disp);
7502 add_fixed_insn (&delay);
7503 }
7504 else
7505 {
7506 move_insn (&delay, ip->frag,
7507 ip->where - branch_disp + insn_length (ip));
7508 move_insn (ip, history[0].frag, history[0].where);
7509 }
7510 history[0] = *ip;
7511 delay.fixed_p = 1;
7512 insert_into_history (0, 1, &delay);
7513 }
7514 break;
7515 }
7516
7517 /* If we have just completed an unconditional branch, clear the history. */
7518 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7519 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7520 {
7521 unsigned int i;
7522
7523 mips_no_prev_insn ();
7524
7525 for (i = 0; i < ARRAY_SIZE (history); i++)
7526 history[i].cleared_p = 1;
7527 }
7528
7529 /* We need to emit a label at the end of branch-likely macros. */
7530 if (emit_branch_likely_macro)
7531 {
7532 emit_branch_likely_macro = FALSE;
7533 micromips_add_label ();
7534 }
7535
7536 /* We just output an insn, so the next one doesn't have a label. */
7537 mips_clear_insn_labels ();
7538 }
7539
7540 /* Forget that there was any previous instruction or label.
7541 When BRANCH is true, the branch history is also flushed. */
7542
7543 static void
7544 mips_no_prev_insn (void)
7545 {
7546 prev_nop_frag = NULL;
7547 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7548 mips_clear_insn_labels ();
7549 }
7550
7551 /* This function must be called before we emit something other than
7552 instructions. It is like mips_no_prev_insn except that it inserts
7553 any NOPS that might be needed by previous instructions. */
7554
7555 void
7556 mips_emit_delays (void)
7557 {
7558 if (! mips_opts.noreorder)
7559 {
7560 int nops = nops_for_insn (0, history, NULL);
7561 if (nops > 0)
7562 {
7563 while (nops-- > 0)
7564 add_fixed_insn (NOP_INSN);
7565 mips_move_text_labels ();
7566 }
7567 }
7568 mips_no_prev_insn ();
7569 }
7570
7571 /* Start a (possibly nested) noreorder block. */
7572
7573 static void
7574 start_noreorder (void)
7575 {
7576 if (mips_opts.noreorder == 0)
7577 {
7578 unsigned int i;
7579 int nops;
7580
7581 /* None of the instructions before the .set noreorder can be moved. */
7582 for (i = 0; i < ARRAY_SIZE (history); i++)
7583 history[i].fixed_p = 1;
7584
7585 /* Insert any nops that might be needed between the .set noreorder
7586 block and the previous instructions. We will later remove any
7587 nops that turn out not to be needed. */
7588 nops = nops_for_insn (0, history, NULL);
7589 if (nops > 0)
7590 {
7591 if (mips_optimize != 0)
7592 {
7593 /* Record the frag which holds the nop instructions, so
7594 that we can remove them if we don't need them. */
7595 frag_grow (nops * NOP_INSN_SIZE);
7596 prev_nop_frag = frag_now;
7597 prev_nop_frag_holds = nops;
7598 prev_nop_frag_required = 0;
7599 prev_nop_frag_since = 0;
7600 }
7601
7602 for (; nops > 0; --nops)
7603 add_fixed_insn (NOP_INSN);
7604
7605 /* Move on to a new frag, so that it is safe to simply
7606 decrease the size of prev_nop_frag. */
7607 frag_wane (frag_now);
7608 frag_new (0);
7609 mips_move_text_labels ();
7610 }
7611 mips_mark_labels ();
7612 mips_clear_insn_labels ();
7613 }
7614 mips_opts.noreorder++;
7615 mips_any_noreorder = 1;
7616 }
7617
7618 /* End a nested noreorder block. */
7619
7620 static void
7621 end_noreorder (void)
7622 {
7623 mips_opts.noreorder--;
7624 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7625 {
7626 /* Commit to inserting prev_nop_frag_required nops and go back to
7627 handling nop insertion the .set reorder way. */
7628 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7629 * NOP_INSN_SIZE);
7630 insert_into_history (prev_nop_frag_since,
7631 prev_nop_frag_required, NOP_INSN);
7632 prev_nop_frag = NULL;
7633 }
7634 }
7635
7636 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7637 higher bits unset. */
7638
7639 static void
7640 normalize_constant_expr (expressionS *ex)
7641 {
7642 if (ex->X_op == O_constant
7643 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7644 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7645 - 0x80000000);
7646 }
7647
7648 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7649 all higher bits unset. */
7650
7651 static void
7652 normalize_address_expr (expressionS *ex)
7653 {
7654 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7655 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7656 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7657 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7658 - 0x80000000);
7659 }
7660
7661 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7662 Return true if the match was successful.
7663
7664 OPCODE_EXTRA is a value that should be ORed into the opcode
7665 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7666 there are more alternatives after OPCODE and SOFT_MATCH is
7667 as for mips_arg_info. */
7668
7669 static bfd_boolean
7670 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7671 struct mips_operand_token *tokens, unsigned int opcode_extra,
7672 bfd_boolean lax_match, bfd_boolean complete_p)
7673 {
7674 const char *args;
7675 struct mips_arg_info arg;
7676 const struct mips_operand *operand;
7677 char c;
7678
7679 imm_expr.X_op = O_absent;
7680 offset_expr.X_op = O_absent;
7681 offset_reloc[0] = BFD_RELOC_UNUSED;
7682 offset_reloc[1] = BFD_RELOC_UNUSED;
7683 offset_reloc[2] = BFD_RELOC_UNUSED;
7684
7685 create_insn (insn, opcode);
7686 /* When no opcode suffix is specified, assume ".xyzw". */
7687 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7688 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7689 else
7690 insn->insn_opcode |= opcode_extra;
7691 memset (&arg, 0, sizeof (arg));
7692 arg.insn = insn;
7693 arg.token = tokens;
7694 arg.argnum = 1;
7695 arg.last_regno = ILLEGAL_REG;
7696 arg.dest_regno = ILLEGAL_REG;
7697 arg.lax_match = lax_match;
7698 for (args = opcode->args;; ++args)
7699 {
7700 if (arg.token->type == OT_END)
7701 {
7702 /* Handle unary instructions in which only one operand is given.
7703 The source is then the same as the destination. */
7704 if (arg.opnum == 1 && *args == ',')
7705 {
7706 operand = (mips_opts.micromips
7707 ? decode_micromips_operand (args + 1)
7708 : decode_mips_operand (args + 1));
7709 if (operand && mips_optional_operand_p (operand))
7710 {
7711 arg.token = tokens;
7712 arg.argnum = 1;
7713 continue;
7714 }
7715 }
7716
7717 /* Treat elided base registers as $0. */
7718 if (strcmp (args, "(b)") == 0)
7719 args += 3;
7720
7721 if (args[0] == '+')
7722 switch (args[1])
7723 {
7724 case 'K':
7725 case 'N':
7726 /* The register suffix is optional. */
7727 args += 2;
7728 break;
7729 }
7730
7731 /* Fail the match if there were too few operands. */
7732 if (*args)
7733 return FALSE;
7734
7735 /* Successful match. */
7736 if (!complete_p)
7737 return TRUE;
7738 clear_insn_error ();
7739 if (arg.dest_regno == arg.last_regno
7740 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7741 {
7742 if (arg.opnum == 2)
7743 set_insn_error
7744 (0, _("source and destination must be different"));
7745 else if (arg.last_regno == 31)
7746 set_insn_error
7747 (0, _("a destination register must be supplied"));
7748 }
7749 else if (arg.last_regno == 31
7750 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7751 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7752 set_insn_error (0, _("the source register must not be $31"));
7753 check_completed_insn (&arg);
7754 return TRUE;
7755 }
7756
7757 /* Fail the match if the line has too many operands. */
7758 if (*args == 0)
7759 return FALSE;
7760
7761 /* Handle characters that need to match exactly. */
7762 if (*args == '(' || *args == ')' || *args == ',')
7763 {
7764 if (match_char (&arg, *args))
7765 continue;
7766 return FALSE;
7767 }
7768 if (*args == '#')
7769 {
7770 ++args;
7771 if (arg.token->type == OT_DOUBLE_CHAR
7772 && arg.token->u.ch == *args)
7773 {
7774 ++arg.token;
7775 continue;
7776 }
7777 return FALSE;
7778 }
7779
7780 /* Handle special macro operands. Work out the properties of
7781 other operands. */
7782 arg.opnum += 1;
7783 switch (*args)
7784 {
7785 case '-':
7786 switch (args[1])
7787 {
7788 case 'A':
7789 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7790 break;
7791
7792 case 'B':
7793 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7794 break;
7795 }
7796 break;
7797
7798 case '+':
7799 switch (args[1])
7800 {
7801 case 'i':
7802 *offset_reloc = BFD_RELOC_MIPS_JMP;
7803 break;
7804
7805 case '\'':
7806 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7807 break;
7808
7809 case '\"':
7810 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7811 break;
7812 }
7813 break;
7814
7815 case 'I':
7816 if (!match_const_int (&arg, &imm_expr.X_add_number))
7817 return FALSE;
7818 imm_expr.X_op = O_constant;
7819 if (GPR_SIZE == 32)
7820 normalize_constant_expr (&imm_expr);
7821 continue;
7822
7823 case 'A':
7824 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7825 {
7826 /* Assume that the offset has been elided and that what
7827 we saw was a base register. The match will fail later
7828 if that assumption turns out to be wrong. */
7829 offset_expr.X_op = O_constant;
7830 offset_expr.X_add_number = 0;
7831 }
7832 else
7833 {
7834 if (!match_expression (&arg, &offset_expr, offset_reloc))
7835 return FALSE;
7836 normalize_address_expr (&offset_expr);
7837 }
7838 continue;
7839
7840 case 'F':
7841 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7842 8, TRUE))
7843 return FALSE;
7844 continue;
7845
7846 case 'L':
7847 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7848 8, FALSE))
7849 return FALSE;
7850 continue;
7851
7852 case 'f':
7853 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7854 4, TRUE))
7855 return FALSE;
7856 continue;
7857
7858 case 'l':
7859 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7860 4, FALSE))
7861 return FALSE;
7862 continue;
7863
7864 case 'p':
7865 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7866 break;
7867
7868 case 'a':
7869 *offset_reloc = BFD_RELOC_MIPS_JMP;
7870 break;
7871
7872 case 'm':
7873 gas_assert (mips_opts.micromips);
7874 c = args[1];
7875 switch (c)
7876 {
7877 case 'D':
7878 case 'E':
7879 if (!forced_insn_length)
7880 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7881 else if (c == 'D')
7882 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7883 else
7884 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7885 break;
7886 }
7887 break;
7888 }
7889
7890 operand = (mips_opts.micromips
7891 ? decode_micromips_operand (args)
7892 : decode_mips_operand (args));
7893 if (!operand)
7894 abort ();
7895
7896 /* Skip prefixes. */
7897 if (*args == '+' || *args == 'm' || *args == '-')
7898 args++;
7899
7900 if (mips_optional_operand_p (operand)
7901 && args[1] == ','
7902 && (arg.token[0].type != OT_REG
7903 || arg.token[1].type == OT_END))
7904 {
7905 /* Assume that the register has been elided and is the
7906 same as the first operand. */
7907 arg.token = tokens;
7908 arg.argnum = 1;
7909 }
7910
7911 if (!match_operand (&arg, operand))
7912 return FALSE;
7913 }
7914 }
7915
7916 /* Like match_insn, but for MIPS16. */
7917
7918 static bfd_boolean
7919 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7920 struct mips_operand_token *tokens)
7921 {
7922 const char *args;
7923 const struct mips_operand *operand;
7924 const struct mips_operand *ext_operand;
7925 struct mips_arg_info arg;
7926 int relax_char;
7927
7928 create_insn (insn, opcode);
7929 imm_expr.X_op = O_absent;
7930 offset_expr.X_op = O_absent;
7931 offset_reloc[0] = BFD_RELOC_UNUSED;
7932 offset_reloc[1] = BFD_RELOC_UNUSED;
7933 offset_reloc[2] = BFD_RELOC_UNUSED;
7934 relax_char = 0;
7935
7936 memset (&arg, 0, sizeof (arg));
7937 arg.insn = insn;
7938 arg.token = tokens;
7939 arg.argnum = 1;
7940 arg.last_regno = ILLEGAL_REG;
7941 arg.dest_regno = ILLEGAL_REG;
7942 relax_char = 0;
7943 for (args = opcode->args;; ++args)
7944 {
7945 int c;
7946
7947 if (arg.token->type == OT_END)
7948 {
7949 offsetT value;
7950
7951 /* Handle unary instructions in which only one operand is given.
7952 The source is then the same as the destination. */
7953 if (arg.opnum == 1 && *args == ',')
7954 {
7955 operand = decode_mips16_operand (args[1], FALSE);
7956 if (operand && mips_optional_operand_p (operand))
7957 {
7958 arg.token = tokens;
7959 arg.argnum = 1;
7960 continue;
7961 }
7962 }
7963
7964 /* Fail the match if there were too few operands. */
7965 if (*args)
7966 return FALSE;
7967
7968 /* Successful match. Stuff the immediate value in now, if
7969 we can. */
7970 clear_insn_error ();
7971 if (opcode->pinfo == INSN_MACRO)
7972 {
7973 gas_assert (relax_char == 0 || relax_char == 'p');
7974 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7975 }
7976 else if (relax_char
7977 && offset_expr.X_op == O_constant
7978 && calculate_reloc (*offset_reloc,
7979 offset_expr.X_add_number,
7980 &value))
7981 {
7982 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7983 forced_insn_length, &insn->insn_opcode);
7984 offset_expr.X_op = O_absent;
7985 *offset_reloc = BFD_RELOC_UNUSED;
7986 }
7987 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7988 {
7989 if (forced_insn_length == 2)
7990 set_insn_error (0, _("invalid unextended operand value"));
7991 forced_insn_length = 4;
7992 insn->insn_opcode |= MIPS16_EXTEND;
7993 }
7994 else if (relax_char)
7995 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7996
7997 check_completed_insn (&arg);
7998 return TRUE;
7999 }
8000
8001 /* Fail the match if the line has too many operands. */
8002 if (*args == 0)
8003 return FALSE;
8004
8005 /* Handle characters that need to match exactly. */
8006 if (*args == '(' || *args == ')' || *args == ',')
8007 {
8008 if (match_char (&arg, *args))
8009 continue;
8010 return FALSE;
8011 }
8012
8013 arg.opnum += 1;
8014 c = *args;
8015 switch (c)
8016 {
8017 case 'p':
8018 case 'q':
8019 case 'A':
8020 case 'B':
8021 case 'E':
8022 relax_char = c;
8023 break;
8024
8025 case 'I':
8026 if (!match_const_int (&arg, &imm_expr.X_add_number))
8027 return FALSE;
8028 imm_expr.X_op = O_constant;
8029 if (GPR_SIZE == 32)
8030 normalize_constant_expr (&imm_expr);
8031 continue;
8032
8033 case 'a':
8034 case 'i':
8035 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8036 insn->insn_opcode <<= 16;
8037 break;
8038 }
8039
8040 operand = decode_mips16_operand (c, FALSE);
8041 if (!operand)
8042 abort ();
8043
8044 /* '6' is a special case. It is used for BREAK and SDBBP,
8045 whose operands are only meaningful to the software that decodes
8046 them. This means that there is no architectural reason why
8047 they cannot be prefixed by EXTEND, but in practice,
8048 exception handlers will only look at the instruction
8049 itself. We therefore allow '6' to be extended when
8050 disassembling but not when assembling. */
8051 if (operand->type != OP_PCREL && c != '6')
8052 {
8053 ext_operand = decode_mips16_operand (c, TRUE);
8054 if (operand != ext_operand)
8055 {
8056 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8057 {
8058 offset_expr.X_op = O_constant;
8059 offset_expr.X_add_number = 0;
8060 relax_char = c;
8061 continue;
8062 }
8063
8064 /* We need the OT_INTEGER check because some MIPS16
8065 immediate variants are listed before the register ones. */
8066 if (arg.token->type != OT_INTEGER
8067 || !match_expression (&arg, &offset_expr, offset_reloc))
8068 return FALSE;
8069
8070 /* '8' is used for SLTI(U) and has traditionally not
8071 been allowed to take relocation operators. */
8072 if (offset_reloc[0] != BFD_RELOC_UNUSED
8073 && (ext_operand->size != 16 || c == '8'))
8074 return FALSE;
8075
8076 relax_char = c;
8077 continue;
8078 }
8079 }
8080
8081 if (mips_optional_operand_p (operand)
8082 && args[1] == ','
8083 && (arg.token[0].type != OT_REG
8084 || arg.token[1].type == OT_END))
8085 {
8086 /* Assume that the register has been elided and is the
8087 same as the first operand. */
8088 arg.token = tokens;
8089 arg.argnum = 1;
8090 }
8091
8092 if (!match_operand (&arg, operand))
8093 return FALSE;
8094 }
8095 }
8096
8097 /* Record that the current instruction is invalid for the current ISA. */
8098
8099 static void
8100 match_invalid_for_isa (void)
8101 {
8102 set_insn_error_ss
8103 (0, _("opcode not supported on this processor: %s (%s)"),
8104 mips_cpu_info_from_arch (mips_opts.arch)->name,
8105 mips_cpu_info_from_isa (mips_opts.isa)->name);
8106 }
8107
8108 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8109 Return true if a definite match or failure was found, storing any match
8110 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8111 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8112 tried and failed to match under normal conditions and now want to try a
8113 more relaxed match. */
8114
8115 static bfd_boolean
8116 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8117 const struct mips_opcode *past, struct mips_operand_token *tokens,
8118 int opcode_extra, bfd_boolean lax_match)
8119 {
8120 const struct mips_opcode *opcode;
8121 const struct mips_opcode *invalid_delay_slot;
8122 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8123
8124 /* Search for a match, ignoring alternatives that don't satisfy the
8125 current ISA or forced_length. */
8126 invalid_delay_slot = 0;
8127 seen_valid_for_isa = FALSE;
8128 seen_valid_for_size = FALSE;
8129 opcode = first;
8130 do
8131 {
8132 gas_assert (strcmp (opcode->name, first->name) == 0);
8133 if (is_opcode_valid (opcode))
8134 {
8135 seen_valid_for_isa = TRUE;
8136 if (is_size_valid (opcode))
8137 {
8138 bfd_boolean delay_slot_ok;
8139
8140 seen_valid_for_size = TRUE;
8141 delay_slot_ok = is_delay_slot_valid (opcode);
8142 if (match_insn (insn, opcode, tokens, opcode_extra,
8143 lax_match, delay_slot_ok))
8144 {
8145 if (!delay_slot_ok)
8146 {
8147 if (!invalid_delay_slot)
8148 invalid_delay_slot = opcode;
8149 }
8150 else
8151 return TRUE;
8152 }
8153 }
8154 }
8155 ++opcode;
8156 }
8157 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8158
8159 /* If the only matches we found had the wrong length for the delay slot,
8160 pick the first such match. We'll issue an appropriate warning later. */
8161 if (invalid_delay_slot)
8162 {
8163 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8164 lax_match, TRUE))
8165 return TRUE;
8166 abort ();
8167 }
8168
8169 /* Handle the case where we didn't try to match an instruction because
8170 all the alternatives were incompatible with the current ISA. */
8171 if (!seen_valid_for_isa)
8172 {
8173 match_invalid_for_isa ();
8174 return TRUE;
8175 }
8176
8177 /* Handle the case where we didn't try to match an instruction because
8178 all the alternatives were of the wrong size. */
8179 if (!seen_valid_for_size)
8180 {
8181 if (mips_opts.insn32)
8182 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8183 else
8184 set_insn_error_i
8185 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8186 8 * forced_insn_length);
8187 return TRUE;
8188 }
8189
8190 return FALSE;
8191 }
8192
8193 /* Like match_insns, but for MIPS16. */
8194
8195 static bfd_boolean
8196 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8197 struct mips_operand_token *tokens)
8198 {
8199 const struct mips_opcode *opcode;
8200 bfd_boolean seen_valid_for_isa;
8201
8202 /* Search for a match, ignoring alternatives that don't satisfy the
8203 current ISA. There are no separate entries for extended forms so
8204 we deal with forced_length later. */
8205 seen_valid_for_isa = FALSE;
8206 opcode = first;
8207 do
8208 {
8209 gas_assert (strcmp (opcode->name, first->name) == 0);
8210 if (is_opcode_valid_16 (opcode))
8211 {
8212 seen_valid_for_isa = TRUE;
8213 if (match_mips16_insn (insn, opcode, tokens))
8214 return TRUE;
8215 }
8216 ++opcode;
8217 }
8218 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8219 && strcmp (opcode->name, first->name) == 0);
8220
8221 /* Handle the case where we didn't try to match an instruction because
8222 all the alternatives were incompatible with the current ISA. */
8223 if (!seen_valid_for_isa)
8224 {
8225 match_invalid_for_isa ();
8226 return TRUE;
8227 }
8228
8229 return FALSE;
8230 }
8231
8232 /* Set up global variables for the start of a new macro. */
8233
8234 static void
8235 macro_start (void)
8236 {
8237 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8238 memset (&mips_macro_warning.first_insn_sizes, 0,
8239 sizeof (mips_macro_warning.first_insn_sizes));
8240 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8241 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8242 && delayed_branch_p (&history[0]));
8243 switch (history[0].insn_mo->pinfo2
8244 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8245 {
8246 case INSN2_BRANCH_DELAY_32BIT:
8247 mips_macro_warning.delay_slot_length = 4;
8248 break;
8249 case INSN2_BRANCH_DELAY_16BIT:
8250 mips_macro_warning.delay_slot_length = 2;
8251 break;
8252 default:
8253 mips_macro_warning.delay_slot_length = 0;
8254 break;
8255 }
8256 mips_macro_warning.first_frag = NULL;
8257 }
8258
8259 /* Given that a macro is longer than one instruction or of the wrong size,
8260 return the appropriate warning for it. Return null if no warning is
8261 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8262 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8263 and RELAX_NOMACRO. */
8264
8265 static const char *
8266 macro_warning (relax_substateT subtype)
8267 {
8268 if (subtype & RELAX_DELAY_SLOT)
8269 return _("macro instruction expanded into multiple instructions"
8270 " in a branch delay slot");
8271 else if (subtype & RELAX_NOMACRO)
8272 return _("macro instruction expanded into multiple instructions");
8273 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8274 | RELAX_DELAY_SLOT_SIZE_SECOND))
8275 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8276 ? _("macro instruction expanded into a wrong size instruction"
8277 " in a 16-bit branch delay slot")
8278 : _("macro instruction expanded into a wrong size instruction"
8279 " in a 32-bit branch delay slot"));
8280 else
8281 return 0;
8282 }
8283
8284 /* Finish up a macro. Emit warnings as appropriate. */
8285
8286 static void
8287 macro_end (void)
8288 {
8289 /* Relaxation warning flags. */
8290 relax_substateT subtype = 0;
8291
8292 /* Check delay slot size requirements. */
8293 if (mips_macro_warning.delay_slot_length == 2)
8294 subtype |= RELAX_DELAY_SLOT_16BIT;
8295 if (mips_macro_warning.delay_slot_length != 0)
8296 {
8297 if (mips_macro_warning.delay_slot_length
8298 != mips_macro_warning.first_insn_sizes[0])
8299 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8300 if (mips_macro_warning.delay_slot_length
8301 != mips_macro_warning.first_insn_sizes[1])
8302 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8303 }
8304
8305 /* Check instruction count requirements. */
8306 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8307 {
8308 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8309 subtype |= RELAX_SECOND_LONGER;
8310 if (mips_opts.warn_about_macros)
8311 subtype |= RELAX_NOMACRO;
8312 if (mips_macro_warning.delay_slot_p)
8313 subtype |= RELAX_DELAY_SLOT;
8314 }
8315
8316 /* If both alternatives fail to fill a delay slot correctly,
8317 emit the warning now. */
8318 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8319 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8320 {
8321 relax_substateT s;
8322 const char *msg;
8323
8324 s = subtype & (RELAX_DELAY_SLOT_16BIT
8325 | RELAX_DELAY_SLOT_SIZE_FIRST
8326 | RELAX_DELAY_SLOT_SIZE_SECOND);
8327 msg = macro_warning (s);
8328 if (msg != NULL)
8329 as_warn ("%s", msg);
8330 subtype &= ~s;
8331 }
8332
8333 /* If both implementations are longer than 1 instruction, then emit the
8334 warning now. */
8335 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8336 {
8337 relax_substateT s;
8338 const char *msg;
8339
8340 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8341 msg = macro_warning (s);
8342 if (msg != NULL)
8343 as_warn ("%s", msg);
8344 subtype &= ~s;
8345 }
8346
8347 /* If any flags still set, then one implementation might need a warning
8348 and the other either will need one of a different kind or none at all.
8349 Pass any remaining flags over to relaxation. */
8350 if (mips_macro_warning.first_frag != NULL)
8351 mips_macro_warning.first_frag->fr_subtype |= subtype;
8352 }
8353
8354 /* Instruction operand formats used in macros that vary between
8355 standard MIPS and microMIPS code. */
8356
8357 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8358 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8359 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8360 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8361 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8362 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8363 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8364 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8365
8366 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8367 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8368 : cop12_fmt[mips_opts.micromips])
8369 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8370 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8371 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8372 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8373 : mem12_fmt[mips_opts.micromips])
8374 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8375 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8376 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8377
8378 /* Read a macro's relocation codes from *ARGS and store them in *R.
8379 The first argument in *ARGS will be either the code for a single
8380 relocation or -1 followed by the three codes that make up a
8381 composite relocation. */
8382
8383 static void
8384 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8385 {
8386 int i, next;
8387
8388 next = va_arg (*args, int);
8389 if (next >= 0)
8390 r[0] = (bfd_reloc_code_real_type) next;
8391 else
8392 {
8393 for (i = 0; i < 3; i++)
8394 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8395 /* This function is only used for 16-bit relocation fields.
8396 To make the macro code simpler, treat an unrelocated value
8397 in the same way as BFD_RELOC_LO16. */
8398 if (r[0] == BFD_RELOC_UNUSED)
8399 r[0] = BFD_RELOC_LO16;
8400 }
8401 }
8402
8403 /* Build an instruction created by a macro expansion. This is passed
8404 a pointer to the count of instructions created so far, an
8405 expression, the name of the instruction to build, an operand format
8406 string, and corresponding arguments. */
8407
8408 static void
8409 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8410 {
8411 const struct mips_opcode *mo = NULL;
8412 bfd_reloc_code_real_type r[3];
8413 const struct mips_opcode *amo;
8414 const struct mips_operand *operand;
8415 struct hash_control *hash;
8416 struct mips_cl_insn insn;
8417 va_list args;
8418 unsigned int uval;
8419
8420 va_start (args, fmt);
8421
8422 if (mips_opts.mips16)
8423 {
8424 mips16_macro_build (ep, name, fmt, &args);
8425 va_end (args);
8426 return;
8427 }
8428
8429 r[0] = BFD_RELOC_UNUSED;
8430 r[1] = BFD_RELOC_UNUSED;
8431 r[2] = BFD_RELOC_UNUSED;
8432 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8433 amo = (struct mips_opcode *) hash_find (hash, name);
8434 gas_assert (amo);
8435 gas_assert (strcmp (name, amo->name) == 0);
8436
8437 do
8438 {
8439 /* Search until we get a match for NAME. It is assumed here that
8440 macros will never generate MDMX, MIPS-3D, or MT instructions.
8441 We try to match an instruction that fulfils the branch delay
8442 slot instruction length requirement (if any) of the previous
8443 instruction. While doing this we record the first instruction
8444 seen that matches all the other conditions and use it anyway
8445 if the requirement cannot be met; we will issue an appropriate
8446 warning later on. */
8447 if (strcmp (fmt, amo->args) == 0
8448 && amo->pinfo != INSN_MACRO
8449 && is_opcode_valid (amo)
8450 && is_size_valid (amo))
8451 {
8452 if (is_delay_slot_valid (amo))
8453 {
8454 mo = amo;
8455 break;
8456 }
8457 else if (!mo)
8458 mo = amo;
8459 }
8460
8461 ++amo;
8462 gas_assert (amo->name);
8463 }
8464 while (strcmp (name, amo->name) == 0);
8465
8466 gas_assert (mo);
8467 create_insn (&insn, mo);
8468 for (; *fmt; ++fmt)
8469 {
8470 switch (*fmt)
8471 {
8472 case ',':
8473 case '(':
8474 case ')':
8475 case 'z':
8476 break;
8477
8478 case 'i':
8479 case 'j':
8480 macro_read_relocs (&args, r);
8481 gas_assert (*r == BFD_RELOC_GPREL16
8482 || *r == BFD_RELOC_MIPS_HIGHER
8483 || *r == BFD_RELOC_HI16_S
8484 || *r == BFD_RELOC_LO16
8485 || *r == BFD_RELOC_MIPS_GOT_OFST);
8486 break;
8487
8488 case 'o':
8489 macro_read_relocs (&args, r);
8490 break;
8491
8492 case 'u':
8493 macro_read_relocs (&args, r);
8494 gas_assert (ep != NULL
8495 && (ep->X_op == O_constant
8496 || (ep->X_op == O_symbol
8497 && (*r == BFD_RELOC_MIPS_HIGHEST
8498 || *r == BFD_RELOC_HI16_S
8499 || *r == BFD_RELOC_HI16
8500 || *r == BFD_RELOC_GPREL16
8501 || *r == BFD_RELOC_MIPS_GOT_HI16
8502 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8503 break;
8504
8505 case 'p':
8506 gas_assert (ep != NULL);
8507
8508 /*
8509 * This allows macro() to pass an immediate expression for
8510 * creating short branches without creating a symbol.
8511 *
8512 * We don't allow branch relaxation for these branches, as
8513 * they should only appear in ".set nomacro" anyway.
8514 */
8515 if (ep->X_op == O_constant)
8516 {
8517 /* For microMIPS we always use relocations for branches.
8518 So we should not resolve immediate values. */
8519 gas_assert (!mips_opts.micromips);
8520
8521 if ((ep->X_add_number & 3) != 0)
8522 as_bad (_("branch to misaligned address (0x%lx)"),
8523 (unsigned long) ep->X_add_number);
8524 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8525 as_bad (_("branch address range overflow (0x%lx)"),
8526 (unsigned long) ep->X_add_number);
8527 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8528 ep = NULL;
8529 }
8530 else
8531 *r = BFD_RELOC_16_PCREL_S2;
8532 break;
8533
8534 case 'a':
8535 gas_assert (ep != NULL);
8536 *r = BFD_RELOC_MIPS_JMP;
8537 break;
8538
8539 default:
8540 operand = (mips_opts.micromips
8541 ? decode_micromips_operand (fmt)
8542 : decode_mips_operand (fmt));
8543 if (!operand)
8544 abort ();
8545
8546 uval = va_arg (args, int);
8547 if (operand->type == OP_CLO_CLZ_DEST)
8548 uval |= (uval << 5);
8549 insn_insert_operand (&insn, operand, uval);
8550
8551 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8552 ++fmt;
8553 break;
8554 }
8555 }
8556 va_end (args);
8557 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8558
8559 append_insn (&insn, ep, r, TRUE);
8560 }
8561
8562 static void
8563 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8564 va_list *args)
8565 {
8566 struct mips_opcode *mo;
8567 struct mips_cl_insn insn;
8568 const struct mips_operand *operand;
8569 bfd_reloc_code_real_type r[3]
8570 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8571
8572 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8573 gas_assert (mo);
8574 gas_assert (strcmp (name, mo->name) == 0);
8575
8576 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8577 {
8578 ++mo;
8579 gas_assert (mo->name);
8580 gas_assert (strcmp (name, mo->name) == 0);
8581 }
8582
8583 create_insn (&insn, mo);
8584 for (; *fmt; ++fmt)
8585 {
8586 int c;
8587
8588 c = *fmt;
8589 switch (c)
8590 {
8591 case ',':
8592 case '(':
8593 case ')':
8594 break;
8595
8596 case '0':
8597 case 'S':
8598 case 'P':
8599 case 'R':
8600 break;
8601
8602 case '<':
8603 case '>':
8604 case '4':
8605 case '5':
8606 case 'H':
8607 case 'W':
8608 case 'D':
8609 case 'j':
8610 case '8':
8611 case 'V':
8612 case 'C':
8613 case 'U':
8614 case 'k':
8615 case 'K':
8616 case 'p':
8617 case 'q':
8618 {
8619 offsetT value;
8620
8621 gas_assert (ep != NULL);
8622
8623 if (ep->X_op != O_constant)
8624 *r = (int) BFD_RELOC_UNUSED + c;
8625 else if (calculate_reloc (*r, ep->X_add_number, &value))
8626 {
8627 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8628 ep = NULL;
8629 *r = BFD_RELOC_UNUSED;
8630 }
8631 }
8632 break;
8633
8634 default:
8635 operand = decode_mips16_operand (c, FALSE);
8636 if (!operand)
8637 abort ();
8638
8639 insn_insert_operand (&insn, operand, va_arg (*args, int));
8640 break;
8641 }
8642 }
8643
8644 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8645
8646 append_insn (&insn, ep, r, TRUE);
8647 }
8648
8649 /*
8650 * Generate a "jalr" instruction with a relocation hint to the called
8651 * function. This occurs in NewABI PIC code.
8652 */
8653 static void
8654 macro_build_jalr (expressionS *ep, int cprestore)
8655 {
8656 static const bfd_reloc_code_real_type jalr_relocs[2]
8657 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8658 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8659 const char *jalr;
8660 char *f = NULL;
8661
8662 if (MIPS_JALR_HINT_P (ep))
8663 {
8664 frag_grow (8);
8665 f = frag_more (0);
8666 }
8667 if (mips_opts.micromips)
8668 {
8669 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8670 ? "jalr" : "jalrs");
8671 if (MIPS_JALR_HINT_P (ep)
8672 || mips_opts.insn32
8673 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8674 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8675 else
8676 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8677 }
8678 else
8679 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8680 if (MIPS_JALR_HINT_P (ep))
8681 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8682 }
8683
8684 /*
8685 * Generate a "lui" instruction.
8686 */
8687 static void
8688 macro_build_lui (expressionS *ep, int regnum)
8689 {
8690 gas_assert (! mips_opts.mips16);
8691
8692 if (ep->X_op != O_constant)
8693 {
8694 gas_assert (ep->X_op == O_symbol);
8695 /* _gp_disp is a special case, used from s_cpload.
8696 __gnu_local_gp is used if mips_no_shared. */
8697 gas_assert (mips_pic == NO_PIC
8698 || (! HAVE_NEWABI
8699 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8700 || (! mips_in_shared
8701 && strcmp (S_GET_NAME (ep->X_add_symbol),
8702 "__gnu_local_gp") == 0));
8703 }
8704
8705 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8706 }
8707
8708 /* Generate a sequence of instructions to do a load or store from a constant
8709 offset off of a base register (breg) into/from a target register (treg),
8710 using AT if necessary. */
8711 static void
8712 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8713 int treg, int breg, int dbl)
8714 {
8715 gas_assert (ep->X_op == O_constant);
8716
8717 /* Sign-extending 32-bit constants makes their handling easier. */
8718 if (!dbl)
8719 normalize_constant_expr (ep);
8720
8721 /* Right now, this routine can only handle signed 32-bit constants. */
8722 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8723 as_warn (_("operand overflow"));
8724
8725 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8726 {
8727 /* Signed 16-bit offset will fit in the op. Easy! */
8728 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8729 }
8730 else
8731 {
8732 /* 32-bit offset, need multiple instructions and AT, like:
8733 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8734 addu $tempreg,$tempreg,$breg
8735 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8736 to handle the complete offset. */
8737 macro_build_lui (ep, AT);
8738 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8739 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8740
8741 if (!mips_opts.at)
8742 as_bad (_("macro used $at after \".set noat\""));
8743 }
8744 }
8745
8746 /* set_at()
8747 * Generates code to set the $at register to true (one)
8748 * if reg is less than the immediate expression.
8749 */
8750 static void
8751 set_at (int reg, int unsignedp)
8752 {
8753 if (imm_expr.X_add_number >= -0x8000
8754 && imm_expr.X_add_number < 0x8000)
8755 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8756 AT, reg, BFD_RELOC_LO16);
8757 else
8758 {
8759 load_register (AT, &imm_expr, GPR_SIZE == 64);
8760 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8761 }
8762 }
8763
8764 /* Count the leading zeroes by performing a binary chop. This is a
8765 bulky bit of source, but performance is a LOT better for the
8766 majority of values than a simple loop to count the bits:
8767 for (lcnt = 0; (lcnt < 32); lcnt++)
8768 if ((v) & (1 << (31 - lcnt)))
8769 break;
8770 However it is not code size friendly, and the gain will drop a bit
8771 on certain cached systems.
8772 */
8773 #define COUNT_TOP_ZEROES(v) \
8774 (((v) & ~0xffff) == 0 \
8775 ? ((v) & ~0xff) == 0 \
8776 ? ((v) & ~0xf) == 0 \
8777 ? ((v) & ~0x3) == 0 \
8778 ? ((v) & ~0x1) == 0 \
8779 ? !(v) \
8780 ? 32 \
8781 : 31 \
8782 : 30 \
8783 : ((v) & ~0x7) == 0 \
8784 ? 29 \
8785 : 28 \
8786 : ((v) & ~0x3f) == 0 \
8787 ? ((v) & ~0x1f) == 0 \
8788 ? 27 \
8789 : 26 \
8790 : ((v) & ~0x7f) == 0 \
8791 ? 25 \
8792 : 24 \
8793 : ((v) & ~0xfff) == 0 \
8794 ? ((v) & ~0x3ff) == 0 \
8795 ? ((v) & ~0x1ff) == 0 \
8796 ? 23 \
8797 : 22 \
8798 : ((v) & ~0x7ff) == 0 \
8799 ? 21 \
8800 : 20 \
8801 : ((v) & ~0x3fff) == 0 \
8802 ? ((v) & ~0x1fff) == 0 \
8803 ? 19 \
8804 : 18 \
8805 : ((v) & ~0x7fff) == 0 \
8806 ? 17 \
8807 : 16 \
8808 : ((v) & ~0xffffff) == 0 \
8809 ? ((v) & ~0xfffff) == 0 \
8810 ? ((v) & ~0x3ffff) == 0 \
8811 ? ((v) & ~0x1ffff) == 0 \
8812 ? 15 \
8813 : 14 \
8814 : ((v) & ~0x7ffff) == 0 \
8815 ? 13 \
8816 : 12 \
8817 : ((v) & ~0x3fffff) == 0 \
8818 ? ((v) & ~0x1fffff) == 0 \
8819 ? 11 \
8820 : 10 \
8821 : ((v) & ~0x7fffff) == 0 \
8822 ? 9 \
8823 : 8 \
8824 : ((v) & ~0xfffffff) == 0 \
8825 ? ((v) & ~0x3ffffff) == 0 \
8826 ? ((v) & ~0x1ffffff) == 0 \
8827 ? 7 \
8828 : 6 \
8829 : ((v) & ~0x7ffffff) == 0 \
8830 ? 5 \
8831 : 4 \
8832 : ((v) & ~0x3fffffff) == 0 \
8833 ? ((v) & ~0x1fffffff) == 0 \
8834 ? 3 \
8835 : 2 \
8836 : ((v) & ~0x7fffffff) == 0 \
8837 ? 1 \
8838 : 0)
8839
8840 /* load_register()
8841 * This routine generates the least number of instructions necessary to load
8842 * an absolute expression value into a register.
8843 */
8844 static void
8845 load_register (int reg, expressionS *ep, int dbl)
8846 {
8847 int freg;
8848 expressionS hi32, lo32;
8849
8850 if (ep->X_op != O_big)
8851 {
8852 gas_assert (ep->X_op == O_constant);
8853
8854 /* Sign-extending 32-bit constants makes their handling easier. */
8855 if (!dbl)
8856 normalize_constant_expr (ep);
8857
8858 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8859 {
8860 /* We can handle 16 bit signed values with an addiu to
8861 $zero. No need to ever use daddiu here, since $zero and
8862 the result are always correct in 32 bit mode. */
8863 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8864 return;
8865 }
8866 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8867 {
8868 /* We can handle 16 bit unsigned values with an ori to
8869 $zero. */
8870 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8871 return;
8872 }
8873 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8874 {
8875 /* 32 bit values require an lui. */
8876 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8877 if ((ep->X_add_number & 0xffff) != 0)
8878 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8879 return;
8880 }
8881 }
8882
8883 /* The value is larger than 32 bits. */
8884
8885 if (!dbl || GPR_SIZE == 32)
8886 {
8887 char value[32];
8888
8889 sprintf_vma (value, ep->X_add_number);
8890 as_bad (_("number (0x%s) larger than 32 bits"), value);
8891 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8892 return;
8893 }
8894
8895 if (ep->X_op != O_big)
8896 {
8897 hi32 = *ep;
8898 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8899 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8900 hi32.X_add_number &= 0xffffffff;
8901 lo32 = *ep;
8902 lo32.X_add_number &= 0xffffffff;
8903 }
8904 else
8905 {
8906 gas_assert (ep->X_add_number > 2);
8907 if (ep->X_add_number == 3)
8908 generic_bignum[3] = 0;
8909 else if (ep->X_add_number > 4)
8910 as_bad (_("number larger than 64 bits"));
8911 lo32.X_op = O_constant;
8912 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8913 hi32.X_op = O_constant;
8914 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8915 }
8916
8917 if (hi32.X_add_number == 0)
8918 freg = 0;
8919 else
8920 {
8921 int shift, bit;
8922 unsigned long hi, lo;
8923
8924 if (hi32.X_add_number == (offsetT) 0xffffffff)
8925 {
8926 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8927 {
8928 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8929 return;
8930 }
8931 if (lo32.X_add_number & 0x80000000)
8932 {
8933 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8934 if (lo32.X_add_number & 0xffff)
8935 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8936 return;
8937 }
8938 }
8939
8940 /* Check for 16bit shifted constant. We know that hi32 is
8941 non-zero, so start the mask on the first bit of the hi32
8942 value. */
8943 shift = 17;
8944 do
8945 {
8946 unsigned long himask, lomask;
8947
8948 if (shift < 32)
8949 {
8950 himask = 0xffff >> (32 - shift);
8951 lomask = (0xffff << shift) & 0xffffffff;
8952 }
8953 else
8954 {
8955 himask = 0xffff << (shift - 32);
8956 lomask = 0;
8957 }
8958 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8959 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8960 {
8961 expressionS tmp;
8962
8963 tmp.X_op = O_constant;
8964 if (shift < 32)
8965 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8966 | (lo32.X_add_number >> shift));
8967 else
8968 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8969 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8970 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8971 reg, reg, (shift >= 32) ? shift - 32 : shift);
8972 return;
8973 }
8974 ++shift;
8975 }
8976 while (shift <= (64 - 16));
8977
8978 /* Find the bit number of the lowest one bit, and store the
8979 shifted value in hi/lo. */
8980 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8981 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8982 if (lo != 0)
8983 {
8984 bit = 0;
8985 while ((lo & 1) == 0)
8986 {
8987 lo >>= 1;
8988 ++bit;
8989 }
8990 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8991 hi >>= bit;
8992 }
8993 else
8994 {
8995 bit = 32;
8996 while ((hi & 1) == 0)
8997 {
8998 hi >>= 1;
8999 ++bit;
9000 }
9001 lo = hi;
9002 hi = 0;
9003 }
9004
9005 /* Optimize if the shifted value is a (power of 2) - 1. */
9006 if ((hi == 0 && ((lo + 1) & lo) == 0)
9007 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9008 {
9009 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9010 if (shift != 0)
9011 {
9012 expressionS tmp;
9013
9014 /* This instruction will set the register to be all
9015 ones. */
9016 tmp.X_op = O_constant;
9017 tmp.X_add_number = (offsetT) -1;
9018 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9019 if (bit != 0)
9020 {
9021 bit += shift;
9022 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9023 reg, reg, (bit >= 32) ? bit - 32 : bit);
9024 }
9025 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9026 reg, reg, (shift >= 32) ? shift - 32 : shift);
9027 return;
9028 }
9029 }
9030
9031 /* Sign extend hi32 before calling load_register, because we can
9032 generally get better code when we load a sign extended value. */
9033 if ((hi32.X_add_number & 0x80000000) != 0)
9034 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9035 load_register (reg, &hi32, 0);
9036 freg = reg;
9037 }
9038 if ((lo32.X_add_number & 0xffff0000) == 0)
9039 {
9040 if (freg != 0)
9041 {
9042 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9043 freg = reg;
9044 }
9045 }
9046 else
9047 {
9048 expressionS mid16;
9049
9050 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9051 {
9052 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9053 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9054 return;
9055 }
9056
9057 if (freg != 0)
9058 {
9059 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9060 freg = reg;
9061 }
9062 mid16 = lo32;
9063 mid16.X_add_number >>= 16;
9064 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9065 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9066 freg = reg;
9067 }
9068 if ((lo32.X_add_number & 0xffff) != 0)
9069 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9070 }
9071
9072 static inline void
9073 load_delay_nop (void)
9074 {
9075 if (!gpr_interlocks)
9076 macro_build (NULL, "nop", "");
9077 }
9078
9079 /* Load an address into a register. */
9080
9081 static void
9082 load_address (int reg, expressionS *ep, int *used_at)
9083 {
9084 if (ep->X_op != O_constant
9085 && ep->X_op != O_symbol)
9086 {
9087 as_bad (_("expression too complex"));
9088 ep->X_op = O_constant;
9089 }
9090
9091 if (ep->X_op == O_constant)
9092 {
9093 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9094 return;
9095 }
9096
9097 if (mips_pic == NO_PIC)
9098 {
9099 /* If this is a reference to a GP relative symbol, we want
9100 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9101 Otherwise we want
9102 lui $reg,<sym> (BFD_RELOC_HI16_S)
9103 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9104 If we have an addend, we always use the latter form.
9105
9106 With 64bit address space and a usable $at we want
9107 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9108 lui $at,<sym> (BFD_RELOC_HI16_S)
9109 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9110 daddiu $at,<sym> (BFD_RELOC_LO16)
9111 dsll32 $reg,0
9112 daddu $reg,$reg,$at
9113
9114 If $at is already in use, we use a path which is suboptimal
9115 on superscalar processors.
9116 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9117 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9118 dsll $reg,16
9119 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9120 dsll $reg,16
9121 daddiu $reg,<sym> (BFD_RELOC_LO16)
9122
9123 For GP relative symbols in 64bit address space we can use
9124 the same sequence as in 32bit address space. */
9125 if (HAVE_64BIT_SYMBOLS)
9126 {
9127 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9128 && !nopic_need_relax (ep->X_add_symbol, 1))
9129 {
9130 relax_start (ep->X_add_symbol);
9131 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9132 mips_gp_register, BFD_RELOC_GPREL16);
9133 relax_switch ();
9134 }
9135
9136 if (*used_at == 0 && mips_opts.at)
9137 {
9138 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9139 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9140 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9141 BFD_RELOC_MIPS_HIGHER);
9142 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9143 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9144 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9145 *used_at = 1;
9146 }
9147 else
9148 {
9149 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9150 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9151 BFD_RELOC_MIPS_HIGHER);
9152 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9153 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9154 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9155 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9156 }
9157
9158 if (mips_relax.sequence)
9159 relax_end ();
9160 }
9161 else
9162 {
9163 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9164 && !nopic_need_relax (ep->X_add_symbol, 1))
9165 {
9166 relax_start (ep->X_add_symbol);
9167 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9168 mips_gp_register, BFD_RELOC_GPREL16);
9169 relax_switch ();
9170 }
9171 macro_build_lui (ep, reg);
9172 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9173 reg, reg, BFD_RELOC_LO16);
9174 if (mips_relax.sequence)
9175 relax_end ();
9176 }
9177 }
9178 else if (!mips_big_got)
9179 {
9180 expressionS ex;
9181
9182 /* If this is a reference to an external symbol, we want
9183 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9184 Otherwise we want
9185 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9186 nop
9187 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9188 If there is a constant, it must be added in after.
9189
9190 If we have NewABI, we want
9191 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9192 unless we're referencing a global symbol with a non-zero
9193 offset, in which case cst must be added separately. */
9194 if (HAVE_NEWABI)
9195 {
9196 if (ep->X_add_number)
9197 {
9198 ex.X_add_number = ep->X_add_number;
9199 ep->X_add_number = 0;
9200 relax_start (ep->X_add_symbol);
9201 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9202 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9203 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9204 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9205 ex.X_op = O_constant;
9206 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9207 reg, reg, BFD_RELOC_LO16);
9208 ep->X_add_number = ex.X_add_number;
9209 relax_switch ();
9210 }
9211 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9212 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9213 if (mips_relax.sequence)
9214 relax_end ();
9215 }
9216 else
9217 {
9218 ex.X_add_number = ep->X_add_number;
9219 ep->X_add_number = 0;
9220 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9221 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9222 load_delay_nop ();
9223 relax_start (ep->X_add_symbol);
9224 relax_switch ();
9225 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9226 BFD_RELOC_LO16);
9227 relax_end ();
9228
9229 if (ex.X_add_number != 0)
9230 {
9231 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9232 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9233 ex.X_op = O_constant;
9234 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9235 reg, reg, BFD_RELOC_LO16);
9236 }
9237 }
9238 }
9239 else if (mips_big_got)
9240 {
9241 expressionS ex;
9242
9243 /* This is the large GOT case. If this is a reference to an
9244 external symbol, we want
9245 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9246 addu $reg,$reg,$gp
9247 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9248
9249 Otherwise, for a reference to a local symbol in old ABI, we want
9250 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9251 nop
9252 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9253 If there is a constant, it must be added in after.
9254
9255 In the NewABI, for local symbols, with or without offsets, we want:
9256 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9257 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9258 */
9259 if (HAVE_NEWABI)
9260 {
9261 ex.X_add_number = ep->X_add_number;
9262 ep->X_add_number = 0;
9263 relax_start (ep->X_add_symbol);
9264 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9265 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9266 reg, reg, mips_gp_register);
9267 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9268 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9269 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9270 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9271 else if (ex.X_add_number)
9272 {
9273 ex.X_op = O_constant;
9274 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9275 BFD_RELOC_LO16);
9276 }
9277
9278 ep->X_add_number = ex.X_add_number;
9279 relax_switch ();
9280 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9281 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9282 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9283 BFD_RELOC_MIPS_GOT_OFST);
9284 relax_end ();
9285 }
9286 else
9287 {
9288 ex.X_add_number = ep->X_add_number;
9289 ep->X_add_number = 0;
9290 relax_start (ep->X_add_symbol);
9291 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9292 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9293 reg, reg, mips_gp_register);
9294 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9295 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9296 relax_switch ();
9297 if (reg_needs_delay (mips_gp_register))
9298 {
9299 /* We need a nop before loading from $gp. This special
9300 check is required because the lui which starts the main
9301 instruction stream does not refer to $gp, and so will not
9302 insert the nop which may be required. */
9303 macro_build (NULL, "nop", "");
9304 }
9305 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9306 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9307 load_delay_nop ();
9308 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9309 BFD_RELOC_LO16);
9310 relax_end ();
9311
9312 if (ex.X_add_number != 0)
9313 {
9314 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9315 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9316 ex.X_op = O_constant;
9317 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9318 BFD_RELOC_LO16);
9319 }
9320 }
9321 }
9322 else
9323 abort ();
9324
9325 if (!mips_opts.at && *used_at == 1)
9326 as_bad (_("macro used $at after \".set noat\""));
9327 }
9328
9329 /* Move the contents of register SOURCE into register DEST. */
9330
9331 static void
9332 move_register (int dest, int source)
9333 {
9334 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9335 instruction specifically requires a 32-bit one. */
9336 if (mips_opts.micromips
9337 && !mips_opts.insn32
9338 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9339 macro_build (NULL, "move", "mp,mj", dest, source);
9340 else
9341 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9342 }
9343
9344 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9345 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9346 The two alternatives are:
9347
9348 Global symbol Local sybmol
9349 ------------- ------------
9350 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9351 ... ...
9352 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9353
9354 load_got_offset emits the first instruction and add_got_offset
9355 emits the second for a 16-bit offset or add_got_offset_hilo emits
9356 a sequence to add a 32-bit offset using a scratch register. */
9357
9358 static void
9359 load_got_offset (int dest, expressionS *local)
9360 {
9361 expressionS global;
9362
9363 global = *local;
9364 global.X_add_number = 0;
9365
9366 relax_start (local->X_add_symbol);
9367 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9368 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9369 relax_switch ();
9370 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9371 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9372 relax_end ();
9373 }
9374
9375 static void
9376 add_got_offset (int dest, expressionS *local)
9377 {
9378 expressionS global;
9379
9380 global.X_op = O_constant;
9381 global.X_op_symbol = NULL;
9382 global.X_add_symbol = NULL;
9383 global.X_add_number = local->X_add_number;
9384
9385 relax_start (local->X_add_symbol);
9386 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9387 dest, dest, BFD_RELOC_LO16);
9388 relax_switch ();
9389 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9390 relax_end ();
9391 }
9392
9393 static void
9394 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9395 {
9396 expressionS global;
9397 int hold_mips_optimize;
9398
9399 global.X_op = O_constant;
9400 global.X_op_symbol = NULL;
9401 global.X_add_symbol = NULL;
9402 global.X_add_number = local->X_add_number;
9403
9404 relax_start (local->X_add_symbol);
9405 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9406 relax_switch ();
9407 /* Set mips_optimize around the lui instruction to avoid
9408 inserting an unnecessary nop after the lw. */
9409 hold_mips_optimize = mips_optimize;
9410 mips_optimize = 2;
9411 macro_build_lui (&global, tmp);
9412 mips_optimize = hold_mips_optimize;
9413 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9414 relax_end ();
9415
9416 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9417 }
9418
9419 /* Emit a sequence of instructions to emulate a branch likely operation.
9420 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9421 is its complementing branch with the original condition negated.
9422 CALL is set if the original branch specified the link operation.
9423 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9424
9425 Code like this is produced in the noreorder mode:
9426
9427 BRNEG <args>, 1f
9428 nop
9429 b <sym>
9430 delay slot (executed only if branch taken)
9431 1:
9432
9433 or, if CALL is set:
9434
9435 BRNEG <args>, 1f
9436 nop
9437 bal <sym>
9438 delay slot (executed only if branch taken)
9439 1:
9440
9441 In the reorder mode the delay slot would be filled with a nop anyway,
9442 so code produced is simply:
9443
9444 BR <args>, <sym>
9445 nop
9446
9447 This function is used when producing code for the microMIPS ASE that
9448 does not implement branch likely instructions in hardware. */
9449
9450 static void
9451 macro_build_branch_likely (const char *br, const char *brneg,
9452 int call, expressionS *ep, const char *fmt,
9453 unsigned int sreg, unsigned int treg)
9454 {
9455 int noreorder = mips_opts.noreorder;
9456 expressionS expr1;
9457
9458 gas_assert (mips_opts.micromips);
9459 start_noreorder ();
9460 if (noreorder)
9461 {
9462 micromips_label_expr (&expr1);
9463 macro_build (&expr1, brneg, fmt, sreg, treg);
9464 macro_build (NULL, "nop", "");
9465 macro_build (ep, call ? "bal" : "b", "p");
9466
9467 /* Set to true so that append_insn adds a label. */
9468 emit_branch_likely_macro = TRUE;
9469 }
9470 else
9471 {
9472 macro_build (ep, br, fmt, sreg, treg);
9473 macro_build (NULL, "nop", "");
9474 }
9475 end_noreorder ();
9476 }
9477
9478 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9479 the condition code tested. EP specifies the branch target. */
9480
9481 static void
9482 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9483 {
9484 const int call = 0;
9485 const char *brneg;
9486 const char *br;
9487
9488 switch (type)
9489 {
9490 case M_BC1FL:
9491 br = "bc1f";
9492 brneg = "bc1t";
9493 break;
9494 case M_BC1TL:
9495 br = "bc1t";
9496 brneg = "bc1f";
9497 break;
9498 case M_BC2FL:
9499 br = "bc2f";
9500 brneg = "bc2t";
9501 break;
9502 case M_BC2TL:
9503 br = "bc2t";
9504 brneg = "bc2f";
9505 break;
9506 default:
9507 abort ();
9508 }
9509 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9510 }
9511
9512 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9513 the register tested. EP specifies the branch target. */
9514
9515 static void
9516 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9517 {
9518 const char *brneg = NULL;
9519 const char *br;
9520 int call = 0;
9521
9522 switch (type)
9523 {
9524 case M_BGEZ:
9525 br = "bgez";
9526 break;
9527 case M_BGEZL:
9528 br = mips_opts.micromips ? "bgez" : "bgezl";
9529 brneg = "bltz";
9530 break;
9531 case M_BGEZALL:
9532 gas_assert (mips_opts.micromips);
9533 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9534 brneg = "bltz";
9535 call = 1;
9536 break;
9537 case M_BGTZ:
9538 br = "bgtz";
9539 break;
9540 case M_BGTZL:
9541 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9542 brneg = "blez";
9543 break;
9544 case M_BLEZ:
9545 br = "blez";
9546 break;
9547 case M_BLEZL:
9548 br = mips_opts.micromips ? "blez" : "blezl";
9549 brneg = "bgtz";
9550 break;
9551 case M_BLTZ:
9552 br = "bltz";
9553 break;
9554 case M_BLTZL:
9555 br = mips_opts.micromips ? "bltz" : "bltzl";
9556 brneg = "bgez";
9557 break;
9558 case M_BLTZALL:
9559 gas_assert (mips_opts.micromips);
9560 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9561 brneg = "bgez";
9562 call = 1;
9563 break;
9564 default:
9565 abort ();
9566 }
9567 if (mips_opts.micromips && brneg)
9568 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9569 else
9570 macro_build (ep, br, "s,p", sreg);
9571 }
9572
9573 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9574 TREG as the registers tested. EP specifies the branch target. */
9575
9576 static void
9577 macro_build_branch_rsrt (int type, expressionS *ep,
9578 unsigned int sreg, unsigned int treg)
9579 {
9580 const char *brneg = NULL;
9581 const int call = 0;
9582 const char *br;
9583
9584 switch (type)
9585 {
9586 case M_BEQ:
9587 case M_BEQ_I:
9588 br = "beq";
9589 break;
9590 case M_BEQL:
9591 case M_BEQL_I:
9592 br = mips_opts.micromips ? "beq" : "beql";
9593 brneg = "bne";
9594 break;
9595 case M_BNE:
9596 case M_BNE_I:
9597 br = "bne";
9598 break;
9599 case M_BNEL:
9600 case M_BNEL_I:
9601 br = mips_opts.micromips ? "bne" : "bnel";
9602 brneg = "beq";
9603 break;
9604 default:
9605 abort ();
9606 }
9607 if (mips_opts.micromips && brneg)
9608 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9609 else
9610 macro_build (ep, br, "s,t,p", sreg, treg);
9611 }
9612
9613 /* Return the high part that should be loaded in order to make the low
9614 part of VALUE accessible using an offset of OFFBITS bits. */
9615
9616 static offsetT
9617 offset_high_part (offsetT value, unsigned int offbits)
9618 {
9619 offsetT bias;
9620 addressT low_mask;
9621
9622 if (offbits == 0)
9623 return value;
9624 bias = 1 << (offbits - 1);
9625 low_mask = bias * 2 - 1;
9626 return (value + bias) & ~low_mask;
9627 }
9628
9629 /* Return true if the value stored in offset_expr and offset_reloc
9630 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9631 amount that the caller wants to add without inducing overflow
9632 and ALIGN is the known alignment of the value in bytes. */
9633
9634 static bfd_boolean
9635 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9636 {
9637 if (offbits == 16)
9638 {
9639 /* Accept any relocation operator if overflow isn't a concern. */
9640 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9641 return TRUE;
9642
9643 /* These relocations are guaranteed not to overflow in correct links. */
9644 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9645 || gprel16_reloc_p (*offset_reloc))
9646 return TRUE;
9647 }
9648 if (offset_expr.X_op == O_constant
9649 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9650 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9651 return TRUE;
9652 return FALSE;
9653 }
9654
9655 /*
9656 * Build macros
9657 * This routine implements the seemingly endless macro or synthesized
9658 * instructions and addressing modes in the mips assembly language. Many
9659 * of these macros are simple and are similar to each other. These could
9660 * probably be handled by some kind of table or grammar approach instead of
9661 * this verbose method. Others are not simple macros but are more like
9662 * optimizing code generation.
9663 * One interesting optimization is when several store macros appear
9664 * consecutively that would load AT with the upper half of the same address.
9665 * The ensuing load upper instructions are ommited. This implies some kind
9666 * of global optimization. We currently only optimize within a single macro.
9667 * For many of the load and store macros if the address is specified as a
9668 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9669 * first load register 'at' with zero and use it as the base register. The
9670 * mips assembler simply uses register $zero. Just one tiny optimization
9671 * we're missing.
9672 */
9673 static void
9674 macro (struct mips_cl_insn *ip, char *str)
9675 {
9676 const struct mips_operand_array *operands;
9677 unsigned int breg, i;
9678 unsigned int tempreg;
9679 int mask;
9680 int used_at = 0;
9681 expressionS label_expr;
9682 expressionS expr1;
9683 expressionS *ep;
9684 const char *s;
9685 const char *s2;
9686 const char *fmt;
9687 int likely = 0;
9688 int coproc = 0;
9689 int offbits = 16;
9690 int call = 0;
9691 int jals = 0;
9692 int dbl = 0;
9693 int imm = 0;
9694 int ust = 0;
9695 int lp = 0;
9696 bfd_boolean large_offset;
9697 int off;
9698 int hold_mips_optimize;
9699 unsigned int align;
9700 unsigned int op[MAX_OPERANDS];
9701
9702 gas_assert (! mips_opts.mips16);
9703
9704 operands = insn_operands (ip);
9705 for (i = 0; i < MAX_OPERANDS; i++)
9706 if (operands->operand[i])
9707 op[i] = insn_extract_operand (ip, operands->operand[i]);
9708 else
9709 op[i] = -1;
9710
9711 mask = ip->insn_mo->mask;
9712
9713 label_expr.X_op = O_constant;
9714 label_expr.X_op_symbol = NULL;
9715 label_expr.X_add_symbol = NULL;
9716 label_expr.X_add_number = 0;
9717
9718 expr1.X_op = O_constant;
9719 expr1.X_op_symbol = NULL;
9720 expr1.X_add_symbol = NULL;
9721 expr1.X_add_number = 1;
9722 align = 1;
9723
9724 switch (mask)
9725 {
9726 case M_DABS:
9727 dbl = 1;
9728 case M_ABS:
9729 /* bgez $a0,1f
9730 move v0,$a0
9731 sub v0,$zero,$a0
9732 1:
9733 */
9734
9735 start_noreorder ();
9736
9737 if (mips_opts.micromips)
9738 micromips_label_expr (&label_expr);
9739 else
9740 label_expr.X_add_number = 8;
9741 macro_build (&label_expr, "bgez", "s,p", op[1]);
9742 if (op[0] == op[1])
9743 macro_build (NULL, "nop", "");
9744 else
9745 move_register (op[0], op[1]);
9746 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9747 if (mips_opts.micromips)
9748 micromips_add_label ();
9749
9750 end_noreorder ();
9751 break;
9752
9753 case M_ADD_I:
9754 s = "addi";
9755 s2 = "add";
9756 goto do_addi;
9757 case M_ADDU_I:
9758 s = "addiu";
9759 s2 = "addu";
9760 goto do_addi;
9761 case M_DADD_I:
9762 dbl = 1;
9763 s = "daddi";
9764 s2 = "dadd";
9765 if (!mips_opts.micromips)
9766 goto do_addi;
9767 if (imm_expr.X_add_number >= -0x200
9768 && imm_expr.X_add_number < 0x200)
9769 {
9770 macro_build (NULL, s, "t,r,.", op[0], op[1],
9771 (int) imm_expr.X_add_number);
9772 break;
9773 }
9774 goto do_addi_i;
9775 case M_DADDU_I:
9776 dbl = 1;
9777 s = "daddiu";
9778 s2 = "daddu";
9779 do_addi:
9780 if (imm_expr.X_add_number >= -0x8000
9781 && imm_expr.X_add_number < 0x8000)
9782 {
9783 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9784 break;
9785 }
9786 do_addi_i:
9787 used_at = 1;
9788 load_register (AT, &imm_expr, dbl);
9789 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9790 break;
9791
9792 case M_AND_I:
9793 s = "andi";
9794 s2 = "and";
9795 goto do_bit;
9796 case M_OR_I:
9797 s = "ori";
9798 s2 = "or";
9799 goto do_bit;
9800 case M_NOR_I:
9801 s = "";
9802 s2 = "nor";
9803 goto do_bit;
9804 case M_XOR_I:
9805 s = "xori";
9806 s2 = "xor";
9807 do_bit:
9808 if (imm_expr.X_add_number >= 0
9809 && imm_expr.X_add_number < 0x10000)
9810 {
9811 if (mask != M_NOR_I)
9812 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9813 else
9814 {
9815 macro_build (&imm_expr, "ori", "t,r,i",
9816 op[0], op[1], BFD_RELOC_LO16);
9817 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9818 }
9819 break;
9820 }
9821
9822 used_at = 1;
9823 load_register (AT, &imm_expr, GPR_SIZE == 64);
9824 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9825 break;
9826
9827 case M_BALIGN:
9828 switch (imm_expr.X_add_number)
9829 {
9830 case 0:
9831 macro_build (NULL, "nop", "");
9832 break;
9833 case 2:
9834 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9835 break;
9836 case 1:
9837 case 3:
9838 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9839 (int) imm_expr.X_add_number);
9840 break;
9841 default:
9842 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9843 (unsigned long) imm_expr.X_add_number);
9844 break;
9845 }
9846 break;
9847
9848 case M_BC1FL:
9849 case M_BC1TL:
9850 case M_BC2FL:
9851 case M_BC2TL:
9852 gas_assert (mips_opts.micromips);
9853 macro_build_branch_ccl (mask, &offset_expr,
9854 EXTRACT_OPERAND (1, BCC, *ip));
9855 break;
9856
9857 case M_BEQ_I:
9858 case M_BEQL_I:
9859 case M_BNE_I:
9860 case M_BNEL_I:
9861 if (imm_expr.X_add_number == 0)
9862 op[1] = 0;
9863 else
9864 {
9865 op[1] = AT;
9866 used_at = 1;
9867 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9868 }
9869 /* Fall through. */
9870 case M_BEQL:
9871 case M_BNEL:
9872 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9873 break;
9874
9875 case M_BGEL:
9876 likely = 1;
9877 case M_BGE:
9878 if (op[1] == 0)
9879 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9880 else if (op[0] == 0)
9881 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9882 else
9883 {
9884 used_at = 1;
9885 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9886 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9887 &offset_expr, AT, ZERO);
9888 }
9889 break;
9890
9891 case M_BGEZL:
9892 case M_BGEZALL:
9893 case M_BGTZL:
9894 case M_BLEZL:
9895 case M_BLTZL:
9896 case M_BLTZALL:
9897 macro_build_branch_rs (mask, &offset_expr, op[0]);
9898 break;
9899
9900 case M_BGTL_I:
9901 likely = 1;
9902 case M_BGT_I:
9903 /* Check for > max integer. */
9904 if (imm_expr.X_add_number >= GPR_SMAX)
9905 {
9906 do_false:
9907 /* Result is always false. */
9908 if (! likely)
9909 macro_build (NULL, "nop", "");
9910 else
9911 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9912 break;
9913 }
9914 ++imm_expr.X_add_number;
9915 /* FALLTHROUGH */
9916 case M_BGE_I:
9917 case M_BGEL_I:
9918 if (mask == M_BGEL_I)
9919 likely = 1;
9920 if (imm_expr.X_add_number == 0)
9921 {
9922 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9923 &offset_expr, op[0]);
9924 break;
9925 }
9926 if (imm_expr.X_add_number == 1)
9927 {
9928 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9929 &offset_expr, op[0]);
9930 break;
9931 }
9932 if (imm_expr.X_add_number <= GPR_SMIN)
9933 {
9934 do_true:
9935 /* result is always true */
9936 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9937 macro_build (&offset_expr, "b", "p");
9938 break;
9939 }
9940 used_at = 1;
9941 set_at (op[0], 0);
9942 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9943 &offset_expr, AT, ZERO);
9944 break;
9945
9946 case M_BGEUL:
9947 likely = 1;
9948 case M_BGEU:
9949 if (op[1] == 0)
9950 goto do_true;
9951 else if (op[0] == 0)
9952 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9953 &offset_expr, ZERO, op[1]);
9954 else
9955 {
9956 used_at = 1;
9957 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9958 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9959 &offset_expr, AT, ZERO);
9960 }
9961 break;
9962
9963 case M_BGTUL_I:
9964 likely = 1;
9965 case M_BGTU_I:
9966 if (op[0] == 0
9967 || (GPR_SIZE == 32
9968 && imm_expr.X_add_number == -1))
9969 goto do_false;
9970 ++imm_expr.X_add_number;
9971 /* FALLTHROUGH */
9972 case M_BGEU_I:
9973 case M_BGEUL_I:
9974 if (mask == M_BGEUL_I)
9975 likely = 1;
9976 if (imm_expr.X_add_number == 0)
9977 goto do_true;
9978 else if (imm_expr.X_add_number == 1)
9979 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9980 &offset_expr, op[0], ZERO);
9981 else
9982 {
9983 used_at = 1;
9984 set_at (op[0], 1);
9985 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9986 &offset_expr, AT, ZERO);
9987 }
9988 break;
9989
9990 case M_BGTL:
9991 likely = 1;
9992 case M_BGT:
9993 if (op[1] == 0)
9994 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9995 else if (op[0] == 0)
9996 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9997 else
9998 {
9999 used_at = 1;
10000 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10001 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10002 &offset_expr, AT, ZERO);
10003 }
10004 break;
10005
10006 case M_BGTUL:
10007 likely = 1;
10008 case M_BGTU:
10009 if (op[1] == 0)
10010 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10011 &offset_expr, op[0], ZERO);
10012 else if (op[0] == 0)
10013 goto do_false;
10014 else
10015 {
10016 used_at = 1;
10017 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10018 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10019 &offset_expr, AT, ZERO);
10020 }
10021 break;
10022
10023 case M_BLEL:
10024 likely = 1;
10025 case M_BLE:
10026 if (op[1] == 0)
10027 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10028 else if (op[0] == 0)
10029 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10030 else
10031 {
10032 used_at = 1;
10033 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10034 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10035 &offset_expr, AT, ZERO);
10036 }
10037 break;
10038
10039 case M_BLEL_I:
10040 likely = 1;
10041 case M_BLE_I:
10042 if (imm_expr.X_add_number >= GPR_SMAX)
10043 goto do_true;
10044 ++imm_expr.X_add_number;
10045 /* FALLTHROUGH */
10046 case M_BLT_I:
10047 case M_BLTL_I:
10048 if (mask == M_BLTL_I)
10049 likely = 1;
10050 if (imm_expr.X_add_number == 0)
10051 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10052 else if (imm_expr.X_add_number == 1)
10053 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10054 else
10055 {
10056 used_at = 1;
10057 set_at (op[0], 0);
10058 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10059 &offset_expr, AT, ZERO);
10060 }
10061 break;
10062
10063 case M_BLEUL:
10064 likely = 1;
10065 case M_BLEU:
10066 if (op[1] == 0)
10067 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10068 &offset_expr, op[0], ZERO);
10069 else if (op[0] == 0)
10070 goto do_true;
10071 else
10072 {
10073 used_at = 1;
10074 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10075 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10076 &offset_expr, AT, ZERO);
10077 }
10078 break;
10079
10080 case M_BLEUL_I:
10081 likely = 1;
10082 case M_BLEU_I:
10083 if (op[0] == 0
10084 || (GPR_SIZE == 32
10085 && imm_expr.X_add_number == -1))
10086 goto do_true;
10087 ++imm_expr.X_add_number;
10088 /* FALLTHROUGH */
10089 case M_BLTU_I:
10090 case M_BLTUL_I:
10091 if (mask == M_BLTUL_I)
10092 likely = 1;
10093 if (imm_expr.X_add_number == 0)
10094 goto do_false;
10095 else if (imm_expr.X_add_number == 1)
10096 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10097 &offset_expr, op[0], ZERO);
10098 else
10099 {
10100 used_at = 1;
10101 set_at (op[0], 1);
10102 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10103 &offset_expr, AT, ZERO);
10104 }
10105 break;
10106
10107 case M_BLTL:
10108 likely = 1;
10109 case M_BLT:
10110 if (op[1] == 0)
10111 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10112 else if (op[0] == 0)
10113 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10114 else
10115 {
10116 used_at = 1;
10117 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10118 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10119 &offset_expr, AT, ZERO);
10120 }
10121 break;
10122
10123 case M_BLTUL:
10124 likely = 1;
10125 case M_BLTU:
10126 if (op[1] == 0)
10127 goto do_false;
10128 else if (op[0] == 0)
10129 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10130 &offset_expr, ZERO, op[1]);
10131 else
10132 {
10133 used_at = 1;
10134 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10135 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10136 &offset_expr, AT, ZERO);
10137 }
10138 break;
10139
10140 case M_DDIV_3:
10141 dbl = 1;
10142 case M_DIV_3:
10143 s = "mflo";
10144 goto do_div3;
10145 case M_DREM_3:
10146 dbl = 1;
10147 case M_REM_3:
10148 s = "mfhi";
10149 do_div3:
10150 if (op[2] == 0)
10151 {
10152 as_warn (_("divide by zero"));
10153 if (mips_trap)
10154 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10155 else
10156 macro_build (NULL, "break", BRK_FMT, 7);
10157 break;
10158 }
10159
10160 start_noreorder ();
10161 if (mips_trap)
10162 {
10163 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10164 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10165 }
10166 else
10167 {
10168 if (mips_opts.micromips)
10169 micromips_label_expr (&label_expr);
10170 else
10171 label_expr.X_add_number = 8;
10172 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10173 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10174 macro_build (NULL, "break", BRK_FMT, 7);
10175 if (mips_opts.micromips)
10176 micromips_add_label ();
10177 }
10178 expr1.X_add_number = -1;
10179 used_at = 1;
10180 load_register (AT, &expr1, dbl);
10181 if (mips_opts.micromips)
10182 micromips_label_expr (&label_expr);
10183 else
10184 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10185 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10186 if (dbl)
10187 {
10188 expr1.X_add_number = 1;
10189 load_register (AT, &expr1, dbl);
10190 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10191 }
10192 else
10193 {
10194 expr1.X_add_number = 0x80000000;
10195 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10196 }
10197 if (mips_trap)
10198 {
10199 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10200 /* We want to close the noreorder block as soon as possible, so
10201 that later insns are available for delay slot filling. */
10202 end_noreorder ();
10203 }
10204 else
10205 {
10206 if (mips_opts.micromips)
10207 micromips_label_expr (&label_expr);
10208 else
10209 label_expr.X_add_number = 8;
10210 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10211 macro_build (NULL, "nop", "");
10212
10213 /* We want to close the noreorder block as soon as possible, so
10214 that later insns are available for delay slot filling. */
10215 end_noreorder ();
10216
10217 macro_build (NULL, "break", BRK_FMT, 6);
10218 }
10219 if (mips_opts.micromips)
10220 micromips_add_label ();
10221 macro_build (NULL, s, MFHL_FMT, op[0]);
10222 break;
10223
10224 case M_DIV_3I:
10225 s = "div";
10226 s2 = "mflo";
10227 goto do_divi;
10228 case M_DIVU_3I:
10229 s = "divu";
10230 s2 = "mflo";
10231 goto do_divi;
10232 case M_REM_3I:
10233 s = "div";
10234 s2 = "mfhi";
10235 goto do_divi;
10236 case M_REMU_3I:
10237 s = "divu";
10238 s2 = "mfhi";
10239 goto do_divi;
10240 case M_DDIV_3I:
10241 dbl = 1;
10242 s = "ddiv";
10243 s2 = "mflo";
10244 goto do_divi;
10245 case M_DDIVU_3I:
10246 dbl = 1;
10247 s = "ddivu";
10248 s2 = "mflo";
10249 goto do_divi;
10250 case M_DREM_3I:
10251 dbl = 1;
10252 s = "ddiv";
10253 s2 = "mfhi";
10254 goto do_divi;
10255 case M_DREMU_3I:
10256 dbl = 1;
10257 s = "ddivu";
10258 s2 = "mfhi";
10259 do_divi:
10260 if (imm_expr.X_add_number == 0)
10261 {
10262 as_warn (_("divide by zero"));
10263 if (mips_trap)
10264 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10265 else
10266 macro_build (NULL, "break", BRK_FMT, 7);
10267 break;
10268 }
10269 if (imm_expr.X_add_number == 1)
10270 {
10271 if (strcmp (s2, "mflo") == 0)
10272 move_register (op[0], op[1]);
10273 else
10274 move_register (op[0], ZERO);
10275 break;
10276 }
10277 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10278 {
10279 if (strcmp (s2, "mflo") == 0)
10280 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10281 else
10282 move_register (op[0], ZERO);
10283 break;
10284 }
10285
10286 used_at = 1;
10287 load_register (AT, &imm_expr, dbl);
10288 macro_build (NULL, s, "z,s,t", op[1], AT);
10289 macro_build (NULL, s2, MFHL_FMT, op[0]);
10290 break;
10291
10292 case M_DIVU_3:
10293 s = "divu";
10294 s2 = "mflo";
10295 goto do_divu3;
10296 case M_REMU_3:
10297 s = "divu";
10298 s2 = "mfhi";
10299 goto do_divu3;
10300 case M_DDIVU_3:
10301 s = "ddivu";
10302 s2 = "mflo";
10303 goto do_divu3;
10304 case M_DREMU_3:
10305 s = "ddivu";
10306 s2 = "mfhi";
10307 do_divu3:
10308 start_noreorder ();
10309 if (mips_trap)
10310 {
10311 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10312 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10313 /* We want to close the noreorder block as soon as possible, so
10314 that later insns are available for delay slot filling. */
10315 end_noreorder ();
10316 }
10317 else
10318 {
10319 if (mips_opts.micromips)
10320 micromips_label_expr (&label_expr);
10321 else
10322 label_expr.X_add_number = 8;
10323 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10324 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10325
10326 /* We want to close the noreorder block as soon as possible, so
10327 that later insns are available for delay slot filling. */
10328 end_noreorder ();
10329 macro_build (NULL, "break", BRK_FMT, 7);
10330 if (mips_opts.micromips)
10331 micromips_add_label ();
10332 }
10333 macro_build (NULL, s2, MFHL_FMT, op[0]);
10334 break;
10335
10336 case M_DLCA_AB:
10337 dbl = 1;
10338 case M_LCA_AB:
10339 call = 1;
10340 goto do_la;
10341 case M_DLA_AB:
10342 dbl = 1;
10343 case M_LA_AB:
10344 do_la:
10345 /* Load the address of a symbol into a register. If breg is not
10346 zero, we then add a base register to it. */
10347
10348 breg = op[2];
10349 if (dbl && GPR_SIZE == 32)
10350 as_warn (_("dla used to load 32-bit register; recommend using la "
10351 "instead"));
10352
10353 if (!dbl && HAVE_64BIT_OBJECTS)
10354 as_warn (_("la used to load 64-bit address; recommend using dla "
10355 "instead"));
10356
10357 if (small_offset_p (0, align, 16))
10358 {
10359 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10360 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10361 break;
10362 }
10363
10364 if (mips_opts.at && (op[0] == breg))
10365 {
10366 tempreg = AT;
10367 used_at = 1;
10368 }
10369 else
10370 tempreg = op[0];
10371
10372 if (offset_expr.X_op != O_symbol
10373 && offset_expr.X_op != O_constant)
10374 {
10375 as_bad (_("expression too complex"));
10376 offset_expr.X_op = O_constant;
10377 }
10378
10379 if (offset_expr.X_op == O_constant)
10380 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10381 else if (mips_pic == NO_PIC)
10382 {
10383 /* If this is a reference to a GP relative symbol, we want
10384 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10385 Otherwise we want
10386 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10387 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10388 If we have a constant, we need two instructions anyhow,
10389 so we may as well always use the latter form.
10390
10391 With 64bit address space and a usable $at we want
10392 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10393 lui $at,<sym> (BFD_RELOC_HI16_S)
10394 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10395 daddiu $at,<sym> (BFD_RELOC_LO16)
10396 dsll32 $tempreg,0
10397 daddu $tempreg,$tempreg,$at
10398
10399 If $at is already in use, we use a path which is suboptimal
10400 on superscalar processors.
10401 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10402 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10403 dsll $tempreg,16
10404 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10405 dsll $tempreg,16
10406 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10407
10408 For GP relative symbols in 64bit address space we can use
10409 the same sequence as in 32bit address space. */
10410 if (HAVE_64BIT_SYMBOLS)
10411 {
10412 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10413 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10414 {
10415 relax_start (offset_expr.X_add_symbol);
10416 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10417 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10418 relax_switch ();
10419 }
10420
10421 if (used_at == 0 && mips_opts.at)
10422 {
10423 macro_build (&offset_expr, "lui", LUI_FMT,
10424 tempreg, BFD_RELOC_MIPS_HIGHEST);
10425 macro_build (&offset_expr, "lui", LUI_FMT,
10426 AT, BFD_RELOC_HI16_S);
10427 macro_build (&offset_expr, "daddiu", "t,r,j",
10428 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10429 macro_build (&offset_expr, "daddiu", "t,r,j",
10430 AT, AT, BFD_RELOC_LO16);
10431 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10432 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10433 used_at = 1;
10434 }
10435 else
10436 {
10437 macro_build (&offset_expr, "lui", LUI_FMT,
10438 tempreg, BFD_RELOC_MIPS_HIGHEST);
10439 macro_build (&offset_expr, "daddiu", "t,r,j",
10440 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10441 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10442 macro_build (&offset_expr, "daddiu", "t,r,j",
10443 tempreg, tempreg, BFD_RELOC_HI16_S);
10444 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10445 macro_build (&offset_expr, "daddiu", "t,r,j",
10446 tempreg, tempreg, BFD_RELOC_LO16);
10447 }
10448
10449 if (mips_relax.sequence)
10450 relax_end ();
10451 }
10452 else
10453 {
10454 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10455 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10456 {
10457 relax_start (offset_expr.X_add_symbol);
10458 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10459 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10460 relax_switch ();
10461 }
10462 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10463 as_bad (_("offset too large"));
10464 macro_build_lui (&offset_expr, tempreg);
10465 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10466 tempreg, tempreg, BFD_RELOC_LO16);
10467 if (mips_relax.sequence)
10468 relax_end ();
10469 }
10470 }
10471 else if (!mips_big_got && !HAVE_NEWABI)
10472 {
10473 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10474
10475 /* If this is a reference to an external symbol, and there
10476 is no constant, we want
10477 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10478 or for lca or if tempreg is PIC_CALL_REG
10479 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10480 For a local symbol, we want
10481 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10482 nop
10483 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10484
10485 If we have a small constant, and this is a reference to
10486 an external symbol, we want
10487 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10488 nop
10489 addiu $tempreg,$tempreg,<constant>
10490 For a local symbol, we want the same instruction
10491 sequence, but we output a BFD_RELOC_LO16 reloc on the
10492 addiu instruction.
10493
10494 If we have a large constant, and this is a reference to
10495 an external symbol, we want
10496 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10497 lui $at,<hiconstant>
10498 addiu $at,$at,<loconstant>
10499 addu $tempreg,$tempreg,$at
10500 For a local symbol, we want the same instruction
10501 sequence, but we output a BFD_RELOC_LO16 reloc on the
10502 addiu instruction.
10503 */
10504
10505 if (offset_expr.X_add_number == 0)
10506 {
10507 if (mips_pic == SVR4_PIC
10508 && breg == 0
10509 && (call || tempreg == PIC_CALL_REG))
10510 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10511
10512 relax_start (offset_expr.X_add_symbol);
10513 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10514 lw_reloc_type, mips_gp_register);
10515 if (breg != 0)
10516 {
10517 /* We're going to put in an addu instruction using
10518 tempreg, so we may as well insert the nop right
10519 now. */
10520 load_delay_nop ();
10521 }
10522 relax_switch ();
10523 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10524 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10525 load_delay_nop ();
10526 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10527 tempreg, tempreg, BFD_RELOC_LO16);
10528 relax_end ();
10529 /* FIXME: If breg == 0, and the next instruction uses
10530 $tempreg, then if this variant case is used an extra
10531 nop will be generated. */
10532 }
10533 else if (offset_expr.X_add_number >= -0x8000
10534 && offset_expr.X_add_number < 0x8000)
10535 {
10536 load_got_offset (tempreg, &offset_expr);
10537 load_delay_nop ();
10538 add_got_offset (tempreg, &offset_expr);
10539 }
10540 else
10541 {
10542 expr1.X_add_number = offset_expr.X_add_number;
10543 offset_expr.X_add_number =
10544 SEXT_16BIT (offset_expr.X_add_number);
10545 load_got_offset (tempreg, &offset_expr);
10546 offset_expr.X_add_number = expr1.X_add_number;
10547 /* If we are going to add in a base register, and the
10548 target register and the base register are the same,
10549 then we are using AT as a temporary register. Since
10550 we want to load the constant into AT, we add our
10551 current AT (from the global offset table) and the
10552 register into the register now, and pretend we were
10553 not using a base register. */
10554 if (breg == op[0])
10555 {
10556 load_delay_nop ();
10557 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10558 op[0], AT, breg);
10559 breg = 0;
10560 tempreg = op[0];
10561 }
10562 add_got_offset_hilo (tempreg, &offset_expr, AT);
10563 used_at = 1;
10564 }
10565 }
10566 else if (!mips_big_got && HAVE_NEWABI)
10567 {
10568 int add_breg_early = 0;
10569
10570 /* If this is a reference to an external, and there is no
10571 constant, or local symbol (*), with or without a
10572 constant, we want
10573 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10574 or for lca or if tempreg is PIC_CALL_REG
10575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10576
10577 If we have a small constant, and this is a reference to
10578 an external symbol, we want
10579 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10580 addiu $tempreg,$tempreg,<constant>
10581
10582 If we have a large constant, and this is a reference to
10583 an external symbol, we want
10584 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10585 lui $at,<hiconstant>
10586 addiu $at,$at,<loconstant>
10587 addu $tempreg,$tempreg,$at
10588
10589 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10590 local symbols, even though it introduces an additional
10591 instruction. */
10592
10593 if (offset_expr.X_add_number)
10594 {
10595 expr1.X_add_number = offset_expr.X_add_number;
10596 offset_expr.X_add_number = 0;
10597
10598 relax_start (offset_expr.X_add_symbol);
10599 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10600 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10601
10602 if (expr1.X_add_number >= -0x8000
10603 && expr1.X_add_number < 0x8000)
10604 {
10605 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10606 tempreg, tempreg, BFD_RELOC_LO16);
10607 }
10608 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10609 {
10610 unsigned int dreg;
10611
10612 /* If we are going to add in a base register, and the
10613 target register and the base register are the same,
10614 then we are using AT as a temporary register. Since
10615 we want to load the constant into AT, we add our
10616 current AT (from the global offset table) and the
10617 register into the register now, and pretend we were
10618 not using a base register. */
10619 if (breg != op[0])
10620 dreg = tempreg;
10621 else
10622 {
10623 gas_assert (tempreg == AT);
10624 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10625 op[0], AT, breg);
10626 dreg = op[0];
10627 add_breg_early = 1;
10628 }
10629
10630 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10631 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10632 dreg, dreg, AT);
10633
10634 used_at = 1;
10635 }
10636 else
10637 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10638
10639 relax_switch ();
10640 offset_expr.X_add_number = expr1.X_add_number;
10641
10642 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10643 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10644 if (add_breg_early)
10645 {
10646 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10647 op[0], tempreg, breg);
10648 breg = 0;
10649 tempreg = op[0];
10650 }
10651 relax_end ();
10652 }
10653 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10654 {
10655 relax_start (offset_expr.X_add_symbol);
10656 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10657 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10658 relax_switch ();
10659 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10660 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10661 relax_end ();
10662 }
10663 else
10664 {
10665 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10666 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10667 }
10668 }
10669 else if (mips_big_got && !HAVE_NEWABI)
10670 {
10671 int gpdelay;
10672 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10673 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10674 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10675
10676 /* This is the large GOT case. If this is a reference to an
10677 external symbol, and there is no constant, we want
10678 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10679 addu $tempreg,$tempreg,$gp
10680 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10681 or for lca or if tempreg is PIC_CALL_REG
10682 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10683 addu $tempreg,$tempreg,$gp
10684 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10685 For a local symbol, we want
10686 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10687 nop
10688 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10689
10690 If we have a small constant, and this is a reference to
10691 an external symbol, we want
10692 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10693 addu $tempreg,$tempreg,$gp
10694 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10695 nop
10696 addiu $tempreg,$tempreg,<constant>
10697 For a local symbol, we want
10698 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10699 nop
10700 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10701
10702 If we have a large constant, and this is a reference to
10703 an external symbol, we want
10704 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10705 addu $tempreg,$tempreg,$gp
10706 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10707 lui $at,<hiconstant>
10708 addiu $at,$at,<loconstant>
10709 addu $tempreg,$tempreg,$at
10710 For a local symbol, we want
10711 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10712 lui $at,<hiconstant>
10713 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10714 addu $tempreg,$tempreg,$at
10715 */
10716
10717 expr1.X_add_number = offset_expr.X_add_number;
10718 offset_expr.X_add_number = 0;
10719 relax_start (offset_expr.X_add_symbol);
10720 gpdelay = reg_needs_delay (mips_gp_register);
10721 if (expr1.X_add_number == 0 && breg == 0
10722 && (call || tempreg == PIC_CALL_REG))
10723 {
10724 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10725 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10726 }
10727 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10728 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10729 tempreg, tempreg, mips_gp_register);
10730 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10731 tempreg, lw_reloc_type, tempreg);
10732 if (expr1.X_add_number == 0)
10733 {
10734 if (breg != 0)
10735 {
10736 /* We're going to put in an addu instruction using
10737 tempreg, so we may as well insert the nop right
10738 now. */
10739 load_delay_nop ();
10740 }
10741 }
10742 else if (expr1.X_add_number >= -0x8000
10743 && expr1.X_add_number < 0x8000)
10744 {
10745 load_delay_nop ();
10746 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10747 tempreg, tempreg, BFD_RELOC_LO16);
10748 }
10749 else
10750 {
10751 unsigned int dreg;
10752
10753 /* If we are going to add in a base register, and the
10754 target register and the base register are the same,
10755 then we are using AT as a temporary register. Since
10756 we want to load the constant into AT, we add our
10757 current AT (from the global offset table) and the
10758 register into the register now, and pretend we were
10759 not using a base register. */
10760 if (breg != op[0])
10761 dreg = tempreg;
10762 else
10763 {
10764 gas_assert (tempreg == AT);
10765 load_delay_nop ();
10766 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10767 op[0], AT, breg);
10768 dreg = op[0];
10769 }
10770
10771 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10772 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10773
10774 used_at = 1;
10775 }
10776 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10777 relax_switch ();
10778
10779 if (gpdelay)
10780 {
10781 /* This is needed because this instruction uses $gp, but
10782 the first instruction on the main stream does not. */
10783 macro_build (NULL, "nop", "");
10784 }
10785
10786 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10787 local_reloc_type, mips_gp_register);
10788 if (expr1.X_add_number >= -0x8000
10789 && expr1.X_add_number < 0x8000)
10790 {
10791 load_delay_nop ();
10792 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10793 tempreg, tempreg, BFD_RELOC_LO16);
10794 /* FIXME: If add_number is 0, and there was no base
10795 register, the external symbol case ended with a load,
10796 so if the symbol turns out to not be external, and
10797 the next instruction uses tempreg, an unnecessary nop
10798 will be inserted. */
10799 }
10800 else
10801 {
10802 if (breg == op[0])
10803 {
10804 /* We must add in the base register now, as in the
10805 external symbol case. */
10806 gas_assert (tempreg == AT);
10807 load_delay_nop ();
10808 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10809 op[0], AT, breg);
10810 tempreg = op[0];
10811 /* We set breg to 0 because we have arranged to add
10812 it in in both cases. */
10813 breg = 0;
10814 }
10815
10816 macro_build_lui (&expr1, AT);
10817 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10818 AT, AT, BFD_RELOC_LO16);
10819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10820 tempreg, tempreg, AT);
10821 used_at = 1;
10822 }
10823 relax_end ();
10824 }
10825 else if (mips_big_got && HAVE_NEWABI)
10826 {
10827 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10828 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10829 int add_breg_early = 0;
10830
10831 /* This is the large GOT case. If this is a reference to an
10832 external symbol, and there is no constant, we want
10833 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10834 add $tempreg,$tempreg,$gp
10835 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10836 or for lca or if tempreg is PIC_CALL_REG
10837 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10838 add $tempreg,$tempreg,$gp
10839 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10840
10841 If we have a small constant, and this is a reference to
10842 an external symbol, we want
10843 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10844 add $tempreg,$tempreg,$gp
10845 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10846 addi $tempreg,$tempreg,<constant>
10847
10848 If we have a large constant, and this is a reference to
10849 an external symbol, we want
10850 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10851 addu $tempreg,$tempreg,$gp
10852 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10853 lui $at,<hiconstant>
10854 addi $at,$at,<loconstant>
10855 add $tempreg,$tempreg,$at
10856
10857 If we have NewABI, and we know it's a local symbol, we want
10858 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10859 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10860 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10861
10862 relax_start (offset_expr.X_add_symbol);
10863
10864 expr1.X_add_number = offset_expr.X_add_number;
10865 offset_expr.X_add_number = 0;
10866
10867 if (expr1.X_add_number == 0 && breg == 0
10868 && (call || tempreg == PIC_CALL_REG))
10869 {
10870 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10871 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10872 }
10873 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10874 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10875 tempreg, tempreg, mips_gp_register);
10876 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10877 tempreg, lw_reloc_type, tempreg);
10878
10879 if (expr1.X_add_number == 0)
10880 ;
10881 else if (expr1.X_add_number >= -0x8000
10882 && expr1.X_add_number < 0x8000)
10883 {
10884 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10885 tempreg, tempreg, BFD_RELOC_LO16);
10886 }
10887 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10888 {
10889 unsigned int dreg;
10890
10891 /* If we are going to add in a base register, and the
10892 target register and the base register are the same,
10893 then we are using AT as a temporary register. Since
10894 we want to load the constant into AT, we add our
10895 current AT (from the global offset table) and the
10896 register into the register now, and pretend we were
10897 not using a base register. */
10898 if (breg != op[0])
10899 dreg = tempreg;
10900 else
10901 {
10902 gas_assert (tempreg == AT);
10903 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10904 op[0], AT, breg);
10905 dreg = op[0];
10906 add_breg_early = 1;
10907 }
10908
10909 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10910 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10911
10912 used_at = 1;
10913 }
10914 else
10915 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10916
10917 relax_switch ();
10918 offset_expr.X_add_number = expr1.X_add_number;
10919 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10920 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10921 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10922 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10923 if (add_breg_early)
10924 {
10925 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10926 op[0], tempreg, breg);
10927 breg = 0;
10928 tempreg = op[0];
10929 }
10930 relax_end ();
10931 }
10932 else
10933 abort ();
10934
10935 if (breg != 0)
10936 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10937 break;
10938
10939 case M_MSGSND:
10940 gas_assert (!mips_opts.micromips);
10941 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10942 break;
10943
10944 case M_MSGLD:
10945 gas_assert (!mips_opts.micromips);
10946 macro_build (NULL, "c2", "C", 0x02);
10947 break;
10948
10949 case M_MSGLD_T:
10950 gas_assert (!mips_opts.micromips);
10951 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10952 break;
10953
10954 case M_MSGWAIT:
10955 gas_assert (!mips_opts.micromips);
10956 macro_build (NULL, "c2", "C", 3);
10957 break;
10958
10959 case M_MSGWAIT_T:
10960 gas_assert (!mips_opts.micromips);
10961 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10962 break;
10963
10964 case M_J_A:
10965 /* The j instruction may not be used in PIC code, since it
10966 requires an absolute address. We convert it to a b
10967 instruction. */
10968 if (mips_pic == NO_PIC)
10969 macro_build (&offset_expr, "j", "a");
10970 else
10971 macro_build (&offset_expr, "b", "p");
10972 break;
10973
10974 /* The jal instructions must be handled as macros because when
10975 generating PIC code they expand to multi-instruction
10976 sequences. Normally they are simple instructions. */
10977 case M_JALS_1:
10978 op[1] = op[0];
10979 op[0] = RA;
10980 /* Fall through. */
10981 case M_JALS_2:
10982 gas_assert (mips_opts.micromips);
10983 if (mips_opts.insn32)
10984 {
10985 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10986 break;
10987 }
10988 jals = 1;
10989 goto jal;
10990 case M_JAL_1:
10991 op[1] = op[0];
10992 op[0] = RA;
10993 /* Fall through. */
10994 case M_JAL_2:
10995 jal:
10996 if (mips_pic == NO_PIC)
10997 {
10998 s = jals ? "jalrs" : "jalr";
10999 if (mips_opts.micromips
11000 && !mips_opts.insn32
11001 && op[0] == RA
11002 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11003 macro_build (NULL, s, "mj", op[1]);
11004 else
11005 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11006 }
11007 else
11008 {
11009 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11010 && mips_cprestore_offset >= 0);
11011
11012 if (op[1] != PIC_CALL_REG)
11013 as_warn (_("MIPS PIC call to register other than $25"));
11014
11015 s = ((mips_opts.micromips
11016 && !mips_opts.insn32
11017 && (!mips_opts.noreorder || cprestore))
11018 ? "jalrs" : "jalr");
11019 if (mips_opts.micromips
11020 && !mips_opts.insn32
11021 && op[0] == RA
11022 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11023 macro_build (NULL, s, "mj", op[1]);
11024 else
11025 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11026 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11027 {
11028 if (mips_cprestore_offset < 0)
11029 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11030 else
11031 {
11032 if (!mips_frame_reg_valid)
11033 {
11034 as_warn (_("no .frame pseudo-op used in PIC code"));
11035 /* Quiet this warning. */
11036 mips_frame_reg_valid = 1;
11037 }
11038 if (!mips_cprestore_valid)
11039 {
11040 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11041 /* Quiet this warning. */
11042 mips_cprestore_valid = 1;
11043 }
11044 if (mips_opts.noreorder)
11045 macro_build (NULL, "nop", "");
11046 expr1.X_add_number = mips_cprestore_offset;
11047 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11048 mips_gp_register,
11049 mips_frame_reg,
11050 HAVE_64BIT_ADDRESSES);
11051 }
11052 }
11053 }
11054
11055 break;
11056
11057 case M_JALS_A:
11058 gas_assert (mips_opts.micromips);
11059 if (mips_opts.insn32)
11060 {
11061 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11062 break;
11063 }
11064 jals = 1;
11065 /* Fall through. */
11066 case M_JAL_A:
11067 if (mips_pic == NO_PIC)
11068 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11069 else if (mips_pic == SVR4_PIC)
11070 {
11071 /* If this is a reference to an external symbol, and we are
11072 using a small GOT, we want
11073 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11074 nop
11075 jalr $ra,$25
11076 nop
11077 lw $gp,cprestore($sp)
11078 The cprestore value is set using the .cprestore
11079 pseudo-op. If we are using a big GOT, we want
11080 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11081 addu $25,$25,$gp
11082 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11083 nop
11084 jalr $ra,$25
11085 nop
11086 lw $gp,cprestore($sp)
11087 If the symbol is not external, we want
11088 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11089 nop
11090 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11091 jalr $ra,$25
11092 nop
11093 lw $gp,cprestore($sp)
11094
11095 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11096 sequences above, minus nops, unless the symbol is local,
11097 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11098 GOT_DISP. */
11099 if (HAVE_NEWABI)
11100 {
11101 if (!mips_big_got)
11102 {
11103 relax_start (offset_expr.X_add_symbol);
11104 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11105 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11106 mips_gp_register);
11107 relax_switch ();
11108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11109 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11110 mips_gp_register);
11111 relax_end ();
11112 }
11113 else
11114 {
11115 relax_start (offset_expr.X_add_symbol);
11116 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11117 BFD_RELOC_MIPS_CALL_HI16);
11118 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11119 PIC_CALL_REG, mips_gp_register);
11120 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11121 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11122 PIC_CALL_REG);
11123 relax_switch ();
11124 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11125 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11126 mips_gp_register);
11127 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11128 PIC_CALL_REG, PIC_CALL_REG,
11129 BFD_RELOC_MIPS_GOT_OFST);
11130 relax_end ();
11131 }
11132
11133 macro_build_jalr (&offset_expr, 0);
11134 }
11135 else
11136 {
11137 relax_start (offset_expr.X_add_symbol);
11138 if (!mips_big_got)
11139 {
11140 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11141 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11142 mips_gp_register);
11143 load_delay_nop ();
11144 relax_switch ();
11145 }
11146 else
11147 {
11148 int gpdelay;
11149
11150 gpdelay = reg_needs_delay (mips_gp_register);
11151 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11152 BFD_RELOC_MIPS_CALL_HI16);
11153 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11154 PIC_CALL_REG, mips_gp_register);
11155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11156 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11157 PIC_CALL_REG);
11158 load_delay_nop ();
11159 relax_switch ();
11160 if (gpdelay)
11161 macro_build (NULL, "nop", "");
11162 }
11163 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11164 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11165 mips_gp_register);
11166 load_delay_nop ();
11167 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11168 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11169 relax_end ();
11170 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11171
11172 if (mips_cprestore_offset < 0)
11173 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11174 else
11175 {
11176 if (!mips_frame_reg_valid)
11177 {
11178 as_warn (_("no .frame pseudo-op used in PIC code"));
11179 /* Quiet this warning. */
11180 mips_frame_reg_valid = 1;
11181 }
11182 if (!mips_cprestore_valid)
11183 {
11184 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11185 /* Quiet this warning. */
11186 mips_cprestore_valid = 1;
11187 }
11188 if (mips_opts.noreorder)
11189 macro_build (NULL, "nop", "");
11190 expr1.X_add_number = mips_cprestore_offset;
11191 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11192 mips_gp_register,
11193 mips_frame_reg,
11194 HAVE_64BIT_ADDRESSES);
11195 }
11196 }
11197 }
11198 else if (mips_pic == VXWORKS_PIC)
11199 as_bad (_("non-PIC jump used in PIC library"));
11200 else
11201 abort ();
11202
11203 break;
11204
11205 case M_LBUE_AB:
11206 s = "lbue";
11207 fmt = "t,+j(b)";
11208 offbits = 9;
11209 goto ld_st;
11210 case M_LHUE_AB:
11211 s = "lhue";
11212 fmt = "t,+j(b)";
11213 offbits = 9;
11214 goto ld_st;
11215 case M_LBE_AB:
11216 s = "lbe";
11217 fmt = "t,+j(b)";
11218 offbits = 9;
11219 goto ld_st;
11220 case M_LHE_AB:
11221 s = "lhe";
11222 fmt = "t,+j(b)";
11223 offbits = 9;
11224 goto ld_st;
11225 case M_LLE_AB:
11226 s = "lle";
11227 fmt = "t,+j(b)";
11228 offbits = 9;
11229 goto ld_st;
11230 case M_LWE_AB:
11231 s = "lwe";
11232 fmt = "t,+j(b)";
11233 offbits = 9;
11234 goto ld_st;
11235 case M_LWLE_AB:
11236 s = "lwle";
11237 fmt = "t,+j(b)";
11238 offbits = 9;
11239 goto ld_st;
11240 case M_LWRE_AB:
11241 s = "lwre";
11242 fmt = "t,+j(b)";
11243 offbits = 9;
11244 goto ld_st;
11245 case M_SBE_AB:
11246 s = "sbe";
11247 fmt = "t,+j(b)";
11248 offbits = 9;
11249 goto ld_st;
11250 case M_SCE_AB:
11251 s = "sce";
11252 fmt = "t,+j(b)";
11253 offbits = 9;
11254 goto ld_st;
11255 case M_SHE_AB:
11256 s = "she";
11257 fmt = "t,+j(b)";
11258 offbits = 9;
11259 goto ld_st;
11260 case M_SWE_AB:
11261 s = "swe";
11262 fmt = "t,+j(b)";
11263 offbits = 9;
11264 goto ld_st;
11265 case M_SWLE_AB:
11266 s = "swle";
11267 fmt = "t,+j(b)";
11268 offbits = 9;
11269 goto ld_st;
11270 case M_SWRE_AB:
11271 s = "swre";
11272 fmt = "t,+j(b)";
11273 offbits = 9;
11274 goto ld_st;
11275 case M_ACLR_AB:
11276 s = "aclr";
11277 fmt = "\\,~(b)";
11278 offbits = 12;
11279 goto ld_st;
11280 case M_ASET_AB:
11281 s = "aset";
11282 fmt = "\\,~(b)";
11283 offbits = 12;
11284 goto ld_st;
11285 case M_LB_AB:
11286 s = "lb";
11287 fmt = "t,o(b)";
11288 goto ld;
11289 case M_LBU_AB:
11290 s = "lbu";
11291 fmt = "t,o(b)";
11292 goto ld;
11293 case M_LH_AB:
11294 s = "lh";
11295 fmt = "t,o(b)";
11296 goto ld;
11297 case M_LHU_AB:
11298 s = "lhu";
11299 fmt = "t,o(b)";
11300 goto ld;
11301 case M_LW_AB:
11302 s = "lw";
11303 fmt = "t,o(b)";
11304 goto ld;
11305 case M_LWC0_AB:
11306 gas_assert (!mips_opts.micromips);
11307 s = "lwc0";
11308 fmt = "E,o(b)";
11309 /* Itbl support may require additional care here. */
11310 coproc = 1;
11311 goto ld_st;
11312 case M_LWC1_AB:
11313 s = "lwc1";
11314 fmt = "T,o(b)";
11315 /* Itbl support may require additional care here. */
11316 coproc = 1;
11317 goto ld_st;
11318 case M_LWC2_AB:
11319 s = "lwc2";
11320 fmt = COP12_FMT;
11321 offbits = (mips_opts.micromips ? 12
11322 : ISA_IS_R6 (mips_opts.isa) ? 11
11323 : 16);
11324 /* Itbl support may require additional care here. */
11325 coproc = 1;
11326 goto ld_st;
11327 case M_LWC3_AB:
11328 gas_assert (!mips_opts.micromips);
11329 s = "lwc3";
11330 fmt = "E,o(b)";
11331 /* Itbl support may require additional care here. */
11332 coproc = 1;
11333 goto ld_st;
11334 case M_LWL_AB:
11335 s = "lwl";
11336 fmt = MEM12_FMT;
11337 offbits = (mips_opts.micromips ? 12 : 16);
11338 goto ld_st;
11339 case M_LWR_AB:
11340 s = "lwr";
11341 fmt = MEM12_FMT;
11342 offbits = (mips_opts.micromips ? 12 : 16);
11343 goto ld_st;
11344 case M_LDC1_AB:
11345 s = "ldc1";
11346 fmt = "T,o(b)";
11347 /* Itbl support may require additional care here. */
11348 coproc = 1;
11349 goto ld_st;
11350 case M_LDC2_AB:
11351 s = "ldc2";
11352 fmt = COP12_FMT;
11353 offbits = (mips_opts.micromips ? 12
11354 : ISA_IS_R6 (mips_opts.isa) ? 11
11355 : 16);
11356 /* Itbl support may require additional care here. */
11357 coproc = 1;
11358 goto ld_st;
11359 case M_LQC2_AB:
11360 s = "lqc2";
11361 fmt = "+7,o(b)";
11362 /* Itbl support may require additional care here. */
11363 coproc = 1;
11364 goto ld_st;
11365 case M_LDC3_AB:
11366 s = "ldc3";
11367 fmt = "E,o(b)";
11368 /* Itbl support may require additional care here. */
11369 coproc = 1;
11370 goto ld_st;
11371 case M_LDL_AB:
11372 s = "ldl";
11373 fmt = MEM12_FMT;
11374 offbits = (mips_opts.micromips ? 12 : 16);
11375 goto ld_st;
11376 case M_LDR_AB:
11377 s = "ldr";
11378 fmt = MEM12_FMT;
11379 offbits = (mips_opts.micromips ? 12 : 16);
11380 goto ld_st;
11381 case M_LL_AB:
11382 s = "ll";
11383 fmt = LL_SC_FMT;
11384 offbits = (mips_opts.micromips ? 12
11385 : ISA_IS_R6 (mips_opts.isa) ? 9
11386 : 16);
11387 goto ld;
11388 case M_LLD_AB:
11389 s = "lld";
11390 fmt = LL_SC_FMT;
11391 offbits = (mips_opts.micromips ? 12
11392 : ISA_IS_R6 (mips_opts.isa) ? 9
11393 : 16);
11394 goto ld;
11395 case M_LWU_AB:
11396 s = "lwu";
11397 fmt = MEM12_FMT;
11398 offbits = (mips_opts.micromips ? 12 : 16);
11399 goto ld;
11400 case M_LWP_AB:
11401 gas_assert (mips_opts.micromips);
11402 s = "lwp";
11403 fmt = "t,~(b)";
11404 offbits = 12;
11405 lp = 1;
11406 goto ld;
11407 case M_LDP_AB:
11408 gas_assert (mips_opts.micromips);
11409 s = "ldp";
11410 fmt = "t,~(b)";
11411 offbits = 12;
11412 lp = 1;
11413 goto ld;
11414 case M_LWM_AB:
11415 gas_assert (mips_opts.micromips);
11416 s = "lwm";
11417 fmt = "n,~(b)";
11418 offbits = 12;
11419 goto ld_st;
11420 case M_LDM_AB:
11421 gas_assert (mips_opts.micromips);
11422 s = "ldm";
11423 fmt = "n,~(b)";
11424 offbits = 12;
11425 goto ld_st;
11426
11427 ld:
11428 /* We don't want to use $0 as tempreg. */
11429 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11430 goto ld_st;
11431 else
11432 tempreg = op[0] + lp;
11433 goto ld_noat;
11434
11435 case M_SB_AB:
11436 s = "sb";
11437 fmt = "t,o(b)";
11438 goto ld_st;
11439 case M_SH_AB:
11440 s = "sh";
11441 fmt = "t,o(b)";
11442 goto ld_st;
11443 case M_SW_AB:
11444 s = "sw";
11445 fmt = "t,o(b)";
11446 goto ld_st;
11447 case M_SWC0_AB:
11448 gas_assert (!mips_opts.micromips);
11449 s = "swc0";
11450 fmt = "E,o(b)";
11451 /* Itbl support may require additional care here. */
11452 coproc = 1;
11453 goto ld_st;
11454 case M_SWC1_AB:
11455 s = "swc1";
11456 fmt = "T,o(b)";
11457 /* Itbl support may require additional care here. */
11458 coproc = 1;
11459 goto ld_st;
11460 case M_SWC2_AB:
11461 s = "swc2";
11462 fmt = COP12_FMT;
11463 offbits = (mips_opts.micromips ? 12
11464 : ISA_IS_R6 (mips_opts.isa) ? 11
11465 : 16);
11466 /* Itbl support may require additional care here. */
11467 coproc = 1;
11468 goto ld_st;
11469 case M_SWC3_AB:
11470 gas_assert (!mips_opts.micromips);
11471 s = "swc3";
11472 fmt = "E,o(b)";
11473 /* Itbl support may require additional care here. */
11474 coproc = 1;
11475 goto ld_st;
11476 case M_SWL_AB:
11477 s = "swl";
11478 fmt = MEM12_FMT;
11479 offbits = (mips_opts.micromips ? 12 : 16);
11480 goto ld_st;
11481 case M_SWR_AB:
11482 s = "swr";
11483 fmt = MEM12_FMT;
11484 offbits = (mips_opts.micromips ? 12 : 16);
11485 goto ld_st;
11486 case M_SC_AB:
11487 s = "sc";
11488 fmt = LL_SC_FMT;
11489 offbits = (mips_opts.micromips ? 12
11490 : ISA_IS_R6 (mips_opts.isa) ? 9
11491 : 16);
11492 goto ld_st;
11493 case M_SCD_AB:
11494 s = "scd";
11495 fmt = LL_SC_FMT;
11496 offbits = (mips_opts.micromips ? 12
11497 : ISA_IS_R6 (mips_opts.isa) ? 9
11498 : 16);
11499 goto ld_st;
11500 case M_CACHE_AB:
11501 s = "cache";
11502 fmt = (mips_opts.micromips ? "k,~(b)"
11503 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11504 : "k,o(b)");
11505 offbits = (mips_opts.micromips ? 12
11506 : ISA_IS_R6 (mips_opts.isa) ? 9
11507 : 16);
11508 goto ld_st;
11509 case M_CACHEE_AB:
11510 s = "cachee";
11511 fmt = "k,+j(b)";
11512 offbits = 9;
11513 goto ld_st;
11514 case M_PREF_AB:
11515 s = "pref";
11516 fmt = (mips_opts.micromips ? "k,~(b)"
11517 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11518 : "k,o(b)");
11519 offbits = (mips_opts.micromips ? 12
11520 : ISA_IS_R6 (mips_opts.isa) ? 9
11521 : 16);
11522 goto ld_st;
11523 case M_PREFE_AB:
11524 s = "prefe";
11525 fmt = "k,+j(b)";
11526 offbits = 9;
11527 goto ld_st;
11528 case M_SDC1_AB:
11529 s = "sdc1";
11530 fmt = "T,o(b)";
11531 coproc = 1;
11532 /* Itbl support may require additional care here. */
11533 goto ld_st;
11534 case M_SDC2_AB:
11535 s = "sdc2";
11536 fmt = COP12_FMT;
11537 offbits = (mips_opts.micromips ? 12
11538 : ISA_IS_R6 (mips_opts.isa) ? 11
11539 : 16);
11540 /* Itbl support may require additional care here. */
11541 coproc = 1;
11542 goto ld_st;
11543 case M_SQC2_AB:
11544 s = "sqc2";
11545 fmt = "+7,o(b)";
11546 /* Itbl support may require additional care here. */
11547 coproc = 1;
11548 goto ld_st;
11549 case M_SDC3_AB:
11550 gas_assert (!mips_opts.micromips);
11551 s = "sdc3";
11552 fmt = "E,o(b)";
11553 /* Itbl support may require additional care here. */
11554 coproc = 1;
11555 goto ld_st;
11556 case M_SDL_AB:
11557 s = "sdl";
11558 fmt = MEM12_FMT;
11559 offbits = (mips_opts.micromips ? 12 : 16);
11560 goto ld_st;
11561 case M_SDR_AB:
11562 s = "sdr";
11563 fmt = MEM12_FMT;
11564 offbits = (mips_opts.micromips ? 12 : 16);
11565 goto ld_st;
11566 case M_SWP_AB:
11567 gas_assert (mips_opts.micromips);
11568 s = "swp";
11569 fmt = "t,~(b)";
11570 offbits = 12;
11571 goto ld_st;
11572 case M_SDP_AB:
11573 gas_assert (mips_opts.micromips);
11574 s = "sdp";
11575 fmt = "t,~(b)";
11576 offbits = 12;
11577 goto ld_st;
11578 case M_SWM_AB:
11579 gas_assert (mips_opts.micromips);
11580 s = "swm";
11581 fmt = "n,~(b)";
11582 offbits = 12;
11583 goto ld_st;
11584 case M_SDM_AB:
11585 gas_assert (mips_opts.micromips);
11586 s = "sdm";
11587 fmt = "n,~(b)";
11588 offbits = 12;
11589
11590 ld_st:
11591 tempreg = AT;
11592 ld_noat:
11593 breg = op[2];
11594 if (small_offset_p (0, align, 16))
11595 {
11596 /* The first case exists for M_LD_AB and M_SD_AB, which are
11597 macros for o32 but which should act like normal instructions
11598 otherwise. */
11599 if (offbits == 16)
11600 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11601 offset_reloc[1], offset_reloc[2], breg);
11602 else if (small_offset_p (0, align, offbits))
11603 {
11604 if (offbits == 0)
11605 macro_build (NULL, s, fmt, op[0], breg);
11606 else
11607 macro_build (NULL, s, fmt, op[0],
11608 (int) offset_expr.X_add_number, breg);
11609 }
11610 else
11611 {
11612 if (tempreg == AT)
11613 used_at = 1;
11614 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11615 tempreg, breg, -1, offset_reloc[0],
11616 offset_reloc[1], offset_reloc[2]);
11617 if (offbits == 0)
11618 macro_build (NULL, s, fmt, op[0], tempreg);
11619 else
11620 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11621 }
11622 break;
11623 }
11624
11625 if (tempreg == AT)
11626 used_at = 1;
11627
11628 if (offset_expr.X_op != O_constant
11629 && offset_expr.X_op != O_symbol)
11630 {
11631 as_bad (_("expression too complex"));
11632 offset_expr.X_op = O_constant;
11633 }
11634
11635 if (HAVE_32BIT_ADDRESSES
11636 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11637 {
11638 char value [32];
11639
11640 sprintf_vma (value, offset_expr.X_add_number);
11641 as_bad (_("number (0x%s) larger than 32 bits"), value);
11642 }
11643
11644 /* A constant expression in PIC code can be handled just as it
11645 is in non PIC code. */
11646 if (offset_expr.X_op == O_constant)
11647 {
11648 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11649 offbits == 0 ? 16 : offbits);
11650 offset_expr.X_add_number -= expr1.X_add_number;
11651
11652 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11653 if (breg != 0)
11654 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11655 tempreg, tempreg, breg);
11656 if (offbits == 0)
11657 {
11658 if (offset_expr.X_add_number != 0)
11659 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11660 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11661 macro_build (NULL, s, fmt, op[0], tempreg);
11662 }
11663 else if (offbits == 16)
11664 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11665 else
11666 macro_build (NULL, s, fmt, op[0],
11667 (int) offset_expr.X_add_number, tempreg);
11668 }
11669 else if (offbits != 16)
11670 {
11671 /* The offset field is too narrow to be used for a low-part
11672 relocation, so load the whole address into the auxillary
11673 register. */
11674 load_address (tempreg, &offset_expr, &used_at);
11675 if (breg != 0)
11676 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11677 tempreg, tempreg, breg);
11678 if (offbits == 0)
11679 macro_build (NULL, s, fmt, op[0], tempreg);
11680 else
11681 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11682 }
11683 else if (mips_pic == NO_PIC)
11684 {
11685 /* If this is a reference to a GP relative symbol, and there
11686 is no base register, we want
11687 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11688 Otherwise, if there is no base register, we want
11689 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11690 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11691 If we have a constant, we need two instructions anyhow,
11692 so we always use the latter form.
11693
11694 If we have a base register, and this is a reference to a
11695 GP relative symbol, we want
11696 addu $tempreg,$breg,$gp
11697 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11698 Otherwise we want
11699 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11700 addu $tempreg,$tempreg,$breg
11701 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11702 With a constant we always use the latter case.
11703
11704 With 64bit address space and no base register and $at usable,
11705 we want
11706 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11707 lui $at,<sym> (BFD_RELOC_HI16_S)
11708 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11709 dsll32 $tempreg,0
11710 daddu $tempreg,$at
11711 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11712 If we have a base register, we want
11713 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11714 lui $at,<sym> (BFD_RELOC_HI16_S)
11715 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11716 daddu $at,$breg
11717 dsll32 $tempreg,0
11718 daddu $tempreg,$at
11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11720
11721 Without $at we can't generate the optimal path for superscalar
11722 processors here since this would require two temporary registers.
11723 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11724 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11725 dsll $tempreg,16
11726 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11727 dsll $tempreg,16
11728 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11729 If we have a base register, we want
11730 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11731 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11732 dsll $tempreg,16
11733 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11734 dsll $tempreg,16
11735 daddu $tempreg,$tempreg,$breg
11736 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11737
11738 For GP relative symbols in 64bit address space we can use
11739 the same sequence as in 32bit address space. */
11740 if (HAVE_64BIT_SYMBOLS)
11741 {
11742 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11743 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11744 {
11745 relax_start (offset_expr.X_add_symbol);
11746 if (breg == 0)
11747 {
11748 macro_build (&offset_expr, s, fmt, op[0],
11749 BFD_RELOC_GPREL16, mips_gp_register);
11750 }
11751 else
11752 {
11753 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11754 tempreg, breg, mips_gp_register);
11755 macro_build (&offset_expr, s, fmt, op[0],
11756 BFD_RELOC_GPREL16, tempreg);
11757 }
11758 relax_switch ();
11759 }
11760
11761 if (used_at == 0 && mips_opts.at)
11762 {
11763 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11764 BFD_RELOC_MIPS_HIGHEST);
11765 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11766 BFD_RELOC_HI16_S);
11767 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11768 tempreg, BFD_RELOC_MIPS_HIGHER);
11769 if (breg != 0)
11770 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11771 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11772 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11773 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11774 tempreg);
11775 used_at = 1;
11776 }
11777 else
11778 {
11779 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11780 BFD_RELOC_MIPS_HIGHEST);
11781 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11782 tempreg, BFD_RELOC_MIPS_HIGHER);
11783 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11784 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11785 tempreg, BFD_RELOC_HI16_S);
11786 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11787 if (breg != 0)
11788 macro_build (NULL, "daddu", "d,v,t",
11789 tempreg, tempreg, breg);
11790 macro_build (&offset_expr, s, fmt, op[0],
11791 BFD_RELOC_LO16, tempreg);
11792 }
11793
11794 if (mips_relax.sequence)
11795 relax_end ();
11796 break;
11797 }
11798
11799 if (breg == 0)
11800 {
11801 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11802 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11803 {
11804 relax_start (offset_expr.X_add_symbol);
11805 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11806 mips_gp_register);
11807 relax_switch ();
11808 }
11809 macro_build_lui (&offset_expr, tempreg);
11810 macro_build (&offset_expr, s, fmt, op[0],
11811 BFD_RELOC_LO16, tempreg);
11812 if (mips_relax.sequence)
11813 relax_end ();
11814 }
11815 else
11816 {
11817 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11818 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11819 {
11820 relax_start (offset_expr.X_add_symbol);
11821 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11822 tempreg, breg, mips_gp_register);
11823 macro_build (&offset_expr, s, fmt, op[0],
11824 BFD_RELOC_GPREL16, tempreg);
11825 relax_switch ();
11826 }
11827 macro_build_lui (&offset_expr, tempreg);
11828 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11829 tempreg, tempreg, breg);
11830 macro_build (&offset_expr, s, fmt, op[0],
11831 BFD_RELOC_LO16, tempreg);
11832 if (mips_relax.sequence)
11833 relax_end ();
11834 }
11835 }
11836 else if (!mips_big_got)
11837 {
11838 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11839
11840 /* If this is a reference to an external symbol, we want
11841 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11842 nop
11843 <op> op[0],0($tempreg)
11844 Otherwise we want
11845 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11846 nop
11847 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11848 <op> op[0],0($tempreg)
11849
11850 For NewABI, we want
11851 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11852 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11853
11854 If there is a base register, we add it to $tempreg before
11855 the <op>. If there is a constant, we stick it in the
11856 <op> instruction. We don't handle constants larger than
11857 16 bits, because we have no way to load the upper 16 bits
11858 (actually, we could handle them for the subset of cases
11859 in which we are not using $at). */
11860 gas_assert (offset_expr.X_op == O_symbol);
11861 if (HAVE_NEWABI)
11862 {
11863 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11864 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11865 if (breg != 0)
11866 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11867 tempreg, tempreg, breg);
11868 macro_build (&offset_expr, s, fmt, op[0],
11869 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11870 break;
11871 }
11872 expr1.X_add_number = offset_expr.X_add_number;
11873 offset_expr.X_add_number = 0;
11874 if (expr1.X_add_number < -0x8000
11875 || expr1.X_add_number >= 0x8000)
11876 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11877 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11878 lw_reloc_type, mips_gp_register);
11879 load_delay_nop ();
11880 relax_start (offset_expr.X_add_symbol);
11881 relax_switch ();
11882 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11883 tempreg, BFD_RELOC_LO16);
11884 relax_end ();
11885 if (breg != 0)
11886 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11887 tempreg, tempreg, breg);
11888 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11889 }
11890 else if (mips_big_got && !HAVE_NEWABI)
11891 {
11892 int gpdelay;
11893
11894 /* If this is a reference to an external symbol, we want
11895 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11896 addu $tempreg,$tempreg,$gp
11897 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11898 <op> op[0],0($tempreg)
11899 Otherwise we want
11900 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11901 nop
11902 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11903 <op> op[0],0($tempreg)
11904 If there is a base register, we add it to $tempreg before
11905 the <op>. If there is a constant, we stick it in the
11906 <op> instruction. We don't handle constants larger than
11907 16 bits, because we have no way to load the upper 16 bits
11908 (actually, we could handle them for the subset of cases
11909 in which we are not using $at). */
11910 gas_assert (offset_expr.X_op == O_symbol);
11911 expr1.X_add_number = offset_expr.X_add_number;
11912 offset_expr.X_add_number = 0;
11913 if (expr1.X_add_number < -0x8000
11914 || expr1.X_add_number >= 0x8000)
11915 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11916 gpdelay = reg_needs_delay (mips_gp_register);
11917 relax_start (offset_expr.X_add_symbol);
11918 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11919 BFD_RELOC_MIPS_GOT_HI16);
11920 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11921 mips_gp_register);
11922 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11923 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11924 relax_switch ();
11925 if (gpdelay)
11926 macro_build (NULL, "nop", "");
11927 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11928 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11929 load_delay_nop ();
11930 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11931 tempreg, BFD_RELOC_LO16);
11932 relax_end ();
11933
11934 if (breg != 0)
11935 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11936 tempreg, tempreg, breg);
11937 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11938 }
11939 else if (mips_big_got && HAVE_NEWABI)
11940 {
11941 /* If this is a reference to an external symbol, we want
11942 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11943 add $tempreg,$tempreg,$gp
11944 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11945 <op> op[0],<ofst>($tempreg)
11946 Otherwise, for local symbols, we want:
11947 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11948 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11949 gas_assert (offset_expr.X_op == O_symbol);
11950 expr1.X_add_number = offset_expr.X_add_number;
11951 offset_expr.X_add_number = 0;
11952 if (expr1.X_add_number < -0x8000
11953 || expr1.X_add_number >= 0x8000)
11954 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11955 relax_start (offset_expr.X_add_symbol);
11956 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11957 BFD_RELOC_MIPS_GOT_HI16);
11958 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11959 mips_gp_register);
11960 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11961 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11962 if (breg != 0)
11963 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11964 tempreg, tempreg, breg);
11965 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11966
11967 relax_switch ();
11968 offset_expr.X_add_number = expr1.X_add_number;
11969 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11970 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11971 if (breg != 0)
11972 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11973 tempreg, tempreg, breg);
11974 macro_build (&offset_expr, s, fmt, op[0],
11975 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11976 relax_end ();
11977 }
11978 else
11979 abort ();
11980
11981 break;
11982
11983 case M_JRADDIUSP:
11984 gas_assert (mips_opts.micromips);
11985 gas_assert (mips_opts.insn32);
11986 start_noreorder ();
11987 macro_build (NULL, "jr", "s", RA);
11988 expr1.X_add_number = op[0] << 2;
11989 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11990 end_noreorder ();
11991 break;
11992
11993 case M_JRC:
11994 gas_assert (mips_opts.micromips);
11995 gas_assert (mips_opts.insn32);
11996 macro_build (NULL, "jr", "s", op[0]);
11997 if (mips_opts.noreorder)
11998 macro_build (NULL, "nop", "");
11999 break;
12000
12001 case M_LI:
12002 case M_LI_S:
12003 load_register (op[0], &imm_expr, 0);
12004 break;
12005
12006 case M_DLI:
12007 load_register (op[0], &imm_expr, 1);
12008 break;
12009
12010 case M_LI_SS:
12011 if (imm_expr.X_op == O_constant)
12012 {
12013 used_at = 1;
12014 load_register (AT, &imm_expr, 0);
12015 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12016 break;
12017 }
12018 else
12019 {
12020 gas_assert (imm_expr.X_op == O_absent
12021 && offset_expr.X_op == O_symbol
12022 && strcmp (segment_name (S_GET_SEGMENT
12023 (offset_expr.X_add_symbol)),
12024 ".lit4") == 0
12025 && offset_expr.X_add_number == 0);
12026 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12027 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12028 break;
12029 }
12030
12031 case M_LI_D:
12032 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12033 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12034 order 32 bits of the value and the low order 32 bits are either
12035 zero or in OFFSET_EXPR. */
12036 if (imm_expr.X_op == O_constant)
12037 {
12038 if (GPR_SIZE == 64)
12039 load_register (op[0], &imm_expr, 1);
12040 else
12041 {
12042 int hreg, lreg;
12043
12044 if (target_big_endian)
12045 {
12046 hreg = op[0];
12047 lreg = op[0] + 1;
12048 }
12049 else
12050 {
12051 hreg = op[0] + 1;
12052 lreg = op[0];
12053 }
12054
12055 if (hreg <= 31)
12056 load_register (hreg, &imm_expr, 0);
12057 if (lreg <= 31)
12058 {
12059 if (offset_expr.X_op == O_absent)
12060 move_register (lreg, 0);
12061 else
12062 {
12063 gas_assert (offset_expr.X_op == O_constant);
12064 load_register (lreg, &offset_expr, 0);
12065 }
12066 }
12067 }
12068 break;
12069 }
12070 gas_assert (imm_expr.X_op == O_absent);
12071
12072 /* We know that sym is in the .rdata section. First we get the
12073 upper 16 bits of the address. */
12074 if (mips_pic == NO_PIC)
12075 {
12076 macro_build_lui (&offset_expr, AT);
12077 used_at = 1;
12078 }
12079 else
12080 {
12081 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12082 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12083 used_at = 1;
12084 }
12085
12086 /* Now we load the register(s). */
12087 if (GPR_SIZE == 64)
12088 {
12089 used_at = 1;
12090 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12091 BFD_RELOC_LO16, AT);
12092 }
12093 else
12094 {
12095 used_at = 1;
12096 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12097 BFD_RELOC_LO16, AT);
12098 if (op[0] != RA)
12099 {
12100 /* FIXME: How in the world do we deal with the possible
12101 overflow here? */
12102 offset_expr.X_add_number += 4;
12103 macro_build (&offset_expr, "lw", "t,o(b)",
12104 op[0] + 1, BFD_RELOC_LO16, AT);
12105 }
12106 }
12107 break;
12108
12109 case M_LI_DD:
12110 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12111 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12112 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12113 the value and the low order 32 bits are either zero or in
12114 OFFSET_EXPR. */
12115 if (imm_expr.X_op == O_constant)
12116 {
12117 used_at = 1;
12118 load_register (AT, &imm_expr, FPR_SIZE == 64);
12119 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12120 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12121 else
12122 {
12123 if (ISA_HAS_MXHC1 (mips_opts.isa))
12124 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12125 else if (FPR_SIZE != 32)
12126 as_bad (_("Unable to generate `%s' compliant code "
12127 "without mthc1"),
12128 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12129 else
12130 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12131 if (offset_expr.X_op == O_absent)
12132 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12133 else
12134 {
12135 gas_assert (offset_expr.X_op == O_constant);
12136 load_register (AT, &offset_expr, 0);
12137 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12138 }
12139 }
12140 break;
12141 }
12142
12143 gas_assert (imm_expr.X_op == O_absent
12144 && offset_expr.X_op == O_symbol
12145 && offset_expr.X_add_number == 0);
12146 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12147 if (strcmp (s, ".lit8") == 0)
12148 {
12149 op[2] = mips_gp_register;
12150 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12151 offset_reloc[1] = BFD_RELOC_UNUSED;
12152 offset_reloc[2] = BFD_RELOC_UNUSED;
12153 }
12154 else
12155 {
12156 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12157 used_at = 1;
12158 if (mips_pic != NO_PIC)
12159 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12160 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12161 else
12162 {
12163 /* FIXME: This won't work for a 64 bit address. */
12164 macro_build_lui (&offset_expr, AT);
12165 }
12166
12167 op[2] = AT;
12168 offset_reloc[0] = BFD_RELOC_LO16;
12169 offset_reloc[1] = BFD_RELOC_UNUSED;
12170 offset_reloc[2] = BFD_RELOC_UNUSED;
12171 }
12172 align = 8;
12173 /* Fall through */
12174
12175 case M_L_DAB:
12176 /*
12177 * The MIPS assembler seems to check for X_add_number not
12178 * being double aligned and generating:
12179 * lui at,%hi(foo+1)
12180 * addu at,at,v1
12181 * addiu at,at,%lo(foo+1)
12182 * lwc1 f2,0(at)
12183 * lwc1 f3,4(at)
12184 * But, the resulting address is the same after relocation so why
12185 * generate the extra instruction?
12186 */
12187 /* Itbl support may require additional care here. */
12188 coproc = 1;
12189 fmt = "T,o(b)";
12190 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12191 {
12192 s = "ldc1";
12193 goto ld_st;
12194 }
12195 s = "lwc1";
12196 goto ldd_std;
12197
12198 case M_S_DAB:
12199 gas_assert (!mips_opts.micromips);
12200 /* Itbl support may require additional care here. */
12201 coproc = 1;
12202 fmt = "T,o(b)";
12203 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12204 {
12205 s = "sdc1";
12206 goto ld_st;
12207 }
12208 s = "swc1";
12209 goto ldd_std;
12210
12211 case M_LQ_AB:
12212 fmt = "t,o(b)";
12213 s = "lq";
12214 goto ld;
12215
12216 case M_SQ_AB:
12217 fmt = "t,o(b)";
12218 s = "sq";
12219 goto ld_st;
12220
12221 case M_LD_AB:
12222 fmt = "t,o(b)";
12223 if (GPR_SIZE == 64)
12224 {
12225 s = "ld";
12226 goto ld;
12227 }
12228 s = "lw";
12229 goto ldd_std;
12230
12231 case M_SD_AB:
12232 fmt = "t,o(b)";
12233 if (GPR_SIZE == 64)
12234 {
12235 s = "sd";
12236 goto ld_st;
12237 }
12238 s = "sw";
12239
12240 ldd_std:
12241 /* Even on a big endian machine $fn comes before $fn+1. We have
12242 to adjust when loading from memory. We set coproc if we must
12243 load $fn+1 first. */
12244 /* Itbl support may require additional care here. */
12245 if (!target_big_endian)
12246 coproc = 0;
12247
12248 breg = op[2];
12249 if (small_offset_p (0, align, 16))
12250 {
12251 ep = &offset_expr;
12252 if (!small_offset_p (4, align, 16))
12253 {
12254 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12255 -1, offset_reloc[0], offset_reloc[1],
12256 offset_reloc[2]);
12257 expr1.X_add_number = 0;
12258 ep = &expr1;
12259 breg = AT;
12260 used_at = 1;
12261 offset_reloc[0] = BFD_RELOC_LO16;
12262 offset_reloc[1] = BFD_RELOC_UNUSED;
12263 offset_reloc[2] = BFD_RELOC_UNUSED;
12264 }
12265 if (strcmp (s, "lw") == 0 && op[0] == breg)
12266 {
12267 ep->X_add_number += 4;
12268 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12269 offset_reloc[1], offset_reloc[2], breg);
12270 ep->X_add_number -= 4;
12271 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12272 offset_reloc[1], offset_reloc[2], breg);
12273 }
12274 else
12275 {
12276 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12277 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12278 breg);
12279 ep->X_add_number += 4;
12280 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12281 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12282 breg);
12283 }
12284 break;
12285 }
12286
12287 if (offset_expr.X_op != O_symbol
12288 && offset_expr.X_op != O_constant)
12289 {
12290 as_bad (_("expression too complex"));
12291 offset_expr.X_op = O_constant;
12292 }
12293
12294 if (HAVE_32BIT_ADDRESSES
12295 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12296 {
12297 char value [32];
12298
12299 sprintf_vma (value, offset_expr.X_add_number);
12300 as_bad (_("number (0x%s) larger than 32 bits"), value);
12301 }
12302
12303 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12304 {
12305 /* If this is a reference to a GP relative symbol, we want
12306 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12307 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12308 If we have a base register, we use this
12309 addu $at,$breg,$gp
12310 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12311 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12312 If this is not a GP relative symbol, we want
12313 lui $at,<sym> (BFD_RELOC_HI16_S)
12314 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12315 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12316 If there is a base register, we add it to $at after the
12317 lui instruction. If there is a constant, we always use
12318 the last case. */
12319 if (offset_expr.X_op == O_symbol
12320 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12321 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12322 {
12323 relax_start (offset_expr.X_add_symbol);
12324 if (breg == 0)
12325 {
12326 tempreg = mips_gp_register;
12327 }
12328 else
12329 {
12330 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12331 AT, breg, mips_gp_register);
12332 tempreg = AT;
12333 used_at = 1;
12334 }
12335
12336 /* Itbl support may require additional care here. */
12337 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12338 BFD_RELOC_GPREL16, tempreg);
12339 offset_expr.X_add_number += 4;
12340
12341 /* Set mips_optimize to 2 to avoid inserting an
12342 undesired nop. */
12343 hold_mips_optimize = mips_optimize;
12344 mips_optimize = 2;
12345 /* Itbl support may require additional care here. */
12346 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12347 BFD_RELOC_GPREL16, tempreg);
12348 mips_optimize = hold_mips_optimize;
12349
12350 relax_switch ();
12351
12352 offset_expr.X_add_number -= 4;
12353 }
12354 used_at = 1;
12355 if (offset_high_part (offset_expr.X_add_number, 16)
12356 != offset_high_part (offset_expr.X_add_number + 4, 16))
12357 {
12358 load_address (AT, &offset_expr, &used_at);
12359 offset_expr.X_op = O_constant;
12360 offset_expr.X_add_number = 0;
12361 }
12362 else
12363 macro_build_lui (&offset_expr, AT);
12364 if (breg != 0)
12365 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12366 /* Itbl support may require additional care here. */
12367 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12368 BFD_RELOC_LO16, AT);
12369 /* FIXME: How do we handle overflow here? */
12370 offset_expr.X_add_number += 4;
12371 /* Itbl support may require additional care here. */
12372 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12373 BFD_RELOC_LO16, AT);
12374 if (mips_relax.sequence)
12375 relax_end ();
12376 }
12377 else if (!mips_big_got)
12378 {
12379 /* If this is a reference to an external symbol, we want
12380 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12381 nop
12382 <op> op[0],0($at)
12383 <op> op[0]+1,4($at)
12384 Otherwise we want
12385 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12386 nop
12387 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12388 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12389 If there is a base register we add it to $at before the
12390 lwc1 instructions. If there is a constant we include it
12391 in the lwc1 instructions. */
12392 used_at = 1;
12393 expr1.X_add_number = offset_expr.X_add_number;
12394 if (expr1.X_add_number < -0x8000
12395 || expr1.X_add_number >= 0x8000 - 4)
12396 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12397 load_got_offset (AT, &offset_expr);
12398 load_delay_nop ();
12399 if (breg != 0)
12400 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12401
12402 /* Set mips_optimize to 2 to avoid inserting an undesired
12403 nop. */
12404 hold_mips_optimize = mips_optimize;
12405 mips_optimize = 2;
12406
12407 /* Itbl support may require additional care here. */
12408 relax_start (offset_expr.X_add_symbol);
12409 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12410 BFD_RELOC_LO16, AT);
12411 expr1.X_add_number += 4;
12412 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12413 BFD_RELOC_LO16, AT);
12414 relax_switch ();
12415 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12416 BFD_RELOC_LO16, AT);
12417 offset_expr.X_add_number += 4;
12418 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12419 BFD_RELOC_LO16, AT);
12420 relax_end ();
12421
12422 mips_optimize = hold_mips_optimize;
12423 }
12424 else if (mips_big_got)
12425 {
12426 int gpdelay;
12427
12428 /* If this is a reference to an external symbol, we want
12429 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12430 addu $at,$at,$gp
12431 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12432 nop
12433 <op> op[0],0($at)
12434 <op> op[0]+1,4($at)
12435 Otherwise we want
12436 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12437 nop
12438 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12439 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12440 If there is a base register we add it to $at before the
12441 lwc1 instructions. If there is a constant we include it
12442 in the lwc1 instructions. */
12443 used_at = 1;
12444 expr1.X_add_number = offset_expr.X_add_number;
12445 offset_expr.X_add_number = 0;
12446 if (expr1.X_add_number < -0x8000
12447 || expr1.X_add_number >= 0x8000 - 4)
12448 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12449 gpdelay = reg_needs_delay (mips_gp_register);
12450 relax_start (offset_expr.X_add_symbol);
12451 macro_build (&offset_expr, "lui", LUI_FMT,
12452 AT, BFD_RELOC_MIPS_GOT_HI16);
12453 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12454 AT, AT, mips_gp_register);
12455 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12456 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12457 load_delay_nop ();
12458 if (breg != 0)
12459 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12460 /* Itbl support may require additional care here. */
12461 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12462 BFD_RELOC_LO16, AT);
12463 expr1.X_add_number += 4;
12464
12465 /* Set mips_optimize to 2 to avoid inserting an undesired
12466 nop. */
12467 hold_mips_optimize = mips_optimize;
12468 mips_optimize = 2;
12469 /* Itbl support may require additional care here. */
12470 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12471 BFD_RELOC_LO16, AT);
12472 mips_optimize = hold_mips_optimize;
12473 expr1.X_add_number -= 4;
12474
12475 relax_switch ();
12476 offset_expr.X_add_number = expr1.X_add_number;
12477 if (gpdelay)
12478 macro_build (NULL, "nop", "");
12479 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12480 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12481 load_delay_nop ();
12482 if (breg != 0)
12483 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12484 /* Itbl support may require additional care here. */
12485 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12486 BFD_RELOC_LO16, AT);
12487 offset_expr.X_add_number += 4;
12488
12489 /* Set mips_optimize to 2 to avoid inserting an undesired
12490 nop. */
12491 hold_mips_optimize = mips_optimize;
12492 mips_optimize = 2;
12493 /* Itbl support may require additional care here. */
12494 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12495 BFD_RELOC_LO16, AT);
12496 mips_optimize = hold_mips_optimize;
12497 relax_end ();
12498 }
12499 else
12500 abort ();
12501
12502 break;
12503
12504 case M_SAA_AB:
12505 s = "saa";
12506 goto saa_saad;
12507 case M_SAAD_AB:
12508 s = "saad";
12509 saa_saad:
12510 gas_assert (!mips_opts.micromips);
12511 offbits = 0;
12512 fmt = "t,(b)";
12513 goto ld_st;
12514
12515 /* New code added to support COPZ instructions.
12516 This code builds table entries out of the macros in mip_opcodes.
12517 R4000 uses interlocks to handle coproc delays.
12518 Other chips (like the R3000) require nops to be inserted for delays.
12519
12520 FIXME: Currently, we require that the user handle delays.
12521 In order to fill delay slots for non-interlocked chips,
12522 we must have a way to specify delays based on the coprocessor.
12523 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12524 What are the side-effects of the cop instruction?
12525 What cache support might we have and what are its effects?
12526 Both coprocessor & memory require delays. how long???
12527 What registers are read/set/modified?
12528
12529 If an itbl is provided to interpret cop instructions,
12530 this knowledge can be encoded in the itbl spec. */
12531
12532 case M_COP0:
12533 s = "c0";
12534 goto copz;
12535 case M_COP1:
12536 s = "c1";
12537 goto copz;
12538 case M_COP2:
12539 s = "c2";
12540 goto copz;
12541 case M_COP3:
12542 s = "c3";
12543 copz:
12544 gas_assert (!mips_opts.micromips);
12545 /* For now we just do C (same as Cz). The parameter will be
12546 stored in insn_opcode by mips_ip. */
12547 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12548 break;
12549
12550 case M_MOVE:
12551 move_register (op[0], op[1]);
12552 break;
12553
12554 case M_MOVEP:
12555 gas_assert (mips_opts.micromips);
12556 gas_assert (mips_opts.insn32);
12557 move_register (micromips_to_32_reg_h_map1[op[0]],
12558 micromips_to_32_reg_m_map[op[1]]);
12559 move_register (micromips_to_32_reg_h_map2[op[0]],
12560 micromips_to_32_reg_n_map[op[2]]);
12561 break;
12562
12563 case M_DMUL:
12564 dbl = 1;
12565 case M_MUL:
12566 if (mips_opts.arch == CPU_R5900)
12567 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12568 op[2]);
12569 else
12570 {
12571 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12572 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12573 }
12574 break;
12575
12576 case M_DMUL_I:
12577 dbl = 1;
12578 case M_MUL_I:
12579 /* The MIPS assembler some times generates shifts and adds. I'm
12580 not trying to be that fancy. GCC should do this for us
12581 anyway. */
12582 used_at = 1;
12583 load_register (AT, &imm_expr, dbl);
12584 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12585 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12586 break;
12587
12588 case M_DMULO_I:
12589 dbl = 1;
12590 case M_MULO_I:
12591 imm = 1;
12592 goto do_mulo;
12593
12594 case M_DMULO:
12595 dbl = 1;
12596 case M_MULO:
12597 do_mulo:
12598 start_noreorder ();
12599 used_at = 1;
12600 if (imm)
12601 load_register (AT, &imm_expr, dbl);
12602 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12603 op[1], imm ? AT : op[2]);
12604 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12605 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12606 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12607 if (mips_trap)
12608 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12609 else
12610 {
12611 if (mips_opts.micromips)
12612 micromips_label_expr (&label_expr);
12613 else
12614 label_expr.X_add_number = 8;
12615 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12616 macro_build (NULL, "nop", "");
12617 macro_build (NULL, "break", BRK_FMT, 6);
12618 if (mips_opts.micromips)
12619 micromips_add_label ();
12620 }
12621 end_noreorder ();
12622 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12623 break;
12624
12625 case M_DMULOU_I:
12626 dbl = 1;
12627 case M_MULOU_I:
12628 imm = 1;
12629 goto do_mulou;
12630
12631 case M_DMULOU:
12632 dbl = 1;
12633 case M_MULOU:
12634 do_mulou:
12635 start_noreorder ();
12636 used_at = 1;
12637 if (imm)
12638 load_register (AT, &imm_expr, dbl);
12639 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12640 op[1], imm ? AT : op[2]);
12641 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12642 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12643 if (mips_trap)
12644 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12645 else
12646 {
12647 if (mips_opts.micromips)
12648 micromips_label_expr (&label_expr);
12649 else
12650 label_expr.X_add_number = 8;
12651 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12652 macro_build (NULL, "nop", "");
12653 macro_build (NULL, "break", BRK_FMT, 6);
12654 if (mips_opts.micromips)
12655 micromips_add_label ();
12656 }
12657 end_noreorder ();
12658 break;
12659
12660 case M_DROL:
12661 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12662 {
12663 if (op[0] == op[1])
12664 {
12665 tempreg = AT;
12666 used_at = 1;
12667 }
12668 else
12669 tempreg = op[0];
12670 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12671 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12672 break;
12673 }
12674 used_at = 1;
12675 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12676 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12677 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12678 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12679 break;
12680
12681 case M_ROL:
12682 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12683 {
12684 if (op[0] == op[1])
12685 {
12686 tempreg = AT;
12687 used_at = 1;
12688 }
12689 else
12690 tempreg = op[0];
12691 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12692 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12693 break;
12694 }
12695 used_at = 1;
12696 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12697 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12698 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12699 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12700 break;
12701
12702 case M_DROL_I:
12703 {
12704 unsigned int rot;
12705 const char *l;
12706 const char *rr;
12707
12708 rot = imm_expr.X_add_number & 0x3f;
12709 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12710 {
12711 rot = (64 - rot) & 0x3f;
12712 if (rot >= 32)
12713 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12714 else
12715 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12716 break;
12717 }
12718 if (rot == 0)
12719 {
12720 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12721 break;
12722 }
12723 l = (rot < 0x20) ? "dsll" : "dsll32";
12724 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12725 rot &= 0x1f;
12726 used_at = 1;
12727 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12728 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12729 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12730 }
12731 break;
12732
12733 case M_ROL_I:
12734 {
12735 unsigned int rot;
12736
12737 rot = imm_expr.X_add_number & 0x1f;
12738 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12739 {
12740 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12741 (32 - rot) & 0x1f);
12742 break;
12743 }
12744 if (rot == 0)
12745 {
12746 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12747 break;
12748 }
12749 used_at = 1;
12750 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12751 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12752 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12753 }
12754 break;
12755
12756 case M_DROR:
12757 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12758 {
12759 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12760 break;
12761 }
12762 used_at = 1;
12763 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12764 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12765 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12766 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12767 break;
12768
12769 case M_ROR:
12770 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12771 {
12772 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12773 break;
12774 }
12775 used_at = 1;
12776 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12777 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12778 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12779 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12780 break;
12781
12782 case M_DROR_I:
12783 {
12784 unsigned int rot;
12785 const char *l;
12786 const char *rr;
12787
12788 rot = imm_expr.X_add_number & 0x3f;
12789 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12790 {
12791 if (rot >= 32)
12792 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12793 else
12794 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12795 break;
12796 }
12797 if (rot == 0)
12798 {
12799 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12800 break;
12801 }
12802 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12803 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12804 rot &= 0x1f;
12805 used_at = 1;
12806 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12807 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12808 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12809 }
12810 break;
12811
12812 case M_ROR_I:
12813 {
12814 unsigned int rot;
12815
12816 rot = imm_expr.X_add_number & 0x1f;
12817 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12818 {
12819 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12820 break;
12821 }
12822 if (rot == 0)
12823 {
12824 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12825 break;
12826 }
12827 used_at = 1;
12828 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12829 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12830 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12831 }
12832 break;
12833
12834 case M_SEQ:
12835 if (op[1] == 0)
12836 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12837 else if (op[2] == 0)
12838 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12839 else
12840 {
12841 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12842 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12843 }
12844 break;
12845
12846 case M_SEQ_I:
12847 if (imm_expr.X_add_number == 0)
12848 {
12849 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12850 break;
12851 }
12852 if (op[1] == 0)
12853 {
12854 as_warn (_("instruction %s: result is always false"),
12855 ip->insn_mo->name);
12856 move_register (op[0], 0);
12857 break;
12858 }
12859 if (CPU_HAS_SEQ (mips_opts.arch)
12860 && -512 <= imm_expr.X_add_number
12861 && imm_expr.X_add_number < 512)
12862 {
12863 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12864 (int) imm_expr.X_add_number);
12865 break;
12866 }
12867 if (imm_expr.X_add_number >= 0
12868 && imm_expr.X_add_number < 0x10000)
12869 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12870 else if (imm_expr.X_add_number > -0x8000
12871 && imm_expr.X_add_number < 0)
12872 {
12873 imm_expr.X_add_number = -imm_expr.X_add_number;
12874 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12875 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12876 }
12877 else if (CPU_HAS_SEQ (mips_opts.arch))
12878 {
12879 used_at = 1;
12880 load_register (AT, &imm_expr, GPR_SIZE == 64);
12881 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12882 break;
12883 }
12884 else
12885 {
12886 load_register (AT, &imm_expr, GPR_SIZE == 64);
12887 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12888 used_at = 1;
12889 }
12890 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12891 break;
12892
12893 case M_SGE: /* X >= Y <==> not (X < Y) */
12894 s = "slt";
12895 goto sge;
12896 case M_SGEU:
12897 s = "sltu";
12898 sge:
12899 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12900 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12901 break;
12902
12903 case M_SGE_I: /* X >= I <==> not (X < I) */
12904 case M_SGEU_I:
12905 if (imm_expr.X_add_number >= -0x8000
12906 && imm_expr.X_add_number < 0x8000)
12907 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12908 op[0], op[1], BFD_RELOC_LO16);
12909 else
12910 {
12911 load_register (AT, &imm_expr, GPR_SIZE == 64);
12912 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12913 op[0], op[1], AT);
12914 used_at = 1;
12915 }
12916 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12917 break;
12918
12919 case M_SGT: /* X > Y <==> Y < X */
12920 s = "slt";
12921 goto sgt;
12922 case M_SGTU:
12923 s = "sltu";
12924 sgt:
12925 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12926 break;
12927
12928 case M_SGT_I: /* X > I <==> I < X */
12929 s = "slt";
12930 goto sgti;
12931 case M_SGTU_I:
12932 s = "sltu";
12933 sgti:
12934 used_at = 1;
12935 load_register (AT, &imm_expr, GPR_SIZE == 64);
12936 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12937 break;
12938
12939 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12940 s = "slt";
12941 goto sle;
12942 case M_SLEU:
12943 s = "sltu";
12944 sle:
12945 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12946 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12947 break;
12948
12949 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12950 s = "slt";
12951 goto slei;
12952 case M_SLEU_I:
12953 s = "sltu";
12954 slei:
12955 used_at = 1;
12956 load_register (AT, &imm_expr, GPR_SIZE == 64);
12957 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12958 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12959 break;
12960
12961 case M_SLT_I:
12962 if (imm_expr.X_add_number >= -0x8000
12963 && imm_expr.X_add_number < 0x8000)
12964 {
12965 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12966 BFD_RELOC_LO16);
12967 break;
12968 }
12969 used_at = 1;
12970 load_register (AT, &imm_expr, GPR_SIZE == 64);
12971 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12972 break;
12973
12974 case M_SLTU_I:
12975 if (imm_expr.X_add_number >= -0x8000
12976 && imm_expr.X_add_number < 0x8000)
12977 {
12978 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12979 BFD_RELOC_LO16);
12980 break;
12981 }
12982 used_at = 1;
12983 load_register (AT, &imm_expr, GPR_SIZE == 64);
12984 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12985 break;
12986
12987 case M_SNE:
12988 if (op[1] == 0)
12989 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12990 else if (op[2] == 0)
12991 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12992 else
12993 {
12994 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12995 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12996 }
12997 break;
12998
12999 case M_SNE_I:
13000 if (imm_expr.X_add_number == 0)
13001 {
13002 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13003 break;
13004 }
13005 if (op[1] == 0)
13006 {
13007 as_warn (_("instruction %s: result is always true"),
13008 ip->insn_mo->name);
13009 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13010 op[0], 0, BFD_RELOC_LO16);
13011 break;
13012 }
13013 if (CPU_HAS_SEQ (mips_opts.arch)
13014 && -512 <= imm_expr.X_add_number
13015 && imm_expr.X_add_number < 512)
13016 {
13017 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13018 (int) imm_expr.X_add_number);
13019 break;
13020 }
13021 if (imm_expr.X_add_number >= 0
13022 && imm_expr.X_add_number < 0x10000)
13023 {
13024 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13025 BFD_RELOC_LO16);
13026 }
13027 else if (imm_expr.X_add_number > -0x8000
13028 && imm_expr.X_add_number < 0)
13029 {
13030 imm_expr.X_add_number = -imm_expr.X_add_number;
13031 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13032 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13033 }
13034 else if (CPU_HAS_SEQ (mips_opts.arch))
13035 {
13036 used_at = 1;
13037 load_register (AT, &imm_expr, GPR_SIZE == 64);
13038 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13039 break;
13040 }
13041 else
13042 {
13043 load_register (AT, &imm_expr, GPR_SIZE == 64);
13044 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13045 used_at = 1;
13046 }
13047 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13048 break;
13049
13050 case M_SUB_I:
13051 s = "addi";
13052 s2 = "sub";
13053 goto do_subi;
13054 case M_SUBU_I:
13055 s = "addiu";
13056 s2 = "subu";
13057 goto do_subi;
13058 case M_DSUB_I:
13059 dbl = 1;
13060 s = "daddi";
13061 s2 = "dsub";
13062 if (!mips_opts.micromips)
13063 goto do_subi;
13064 if (imm_expr.X_add_number > -0x200
13065 && imm_expr.X_add_number <= 0x200)
13066 {
13067 macro_build (NULL, s, "t,r,.", op[0], op[1],
13068 (int) -imm_expr.X_add_number);
13069 break;
13070 }
13071 goto do_subi_i;
13072 case M_DSUBU_I:
13073 dbl = 1;
13074 s = "daddiu";
13075 s2 = "dsubu";
13076 do_subi:
13077 if (imm_expr.X_add_number > -0x8000
13078 && imm_expr.X_add_number <= 0x8000)
13079 {
13080 imm_expr.X_add_number = -imm_expr.X_add_number;
13081 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13082 break;
13083 }
13084 do_subi_i:
13085 used_at = 1;
13086 load_register (AT, &imm_expr, dbl);
13087 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13088 break;
13089
13090 case M_TEQ_I:
13091 s = "teq";
13092 goto trap;
13093 case M_TGE_I:
13094 s = "tge";
13095 goto trap;
13096 case M_TGEU_I:
13097 s = "tgeu";
13098 goto trap;
13099 case M_TLT_I:
13100 s = "tlt";
13101 goto trap;
13102 case M_TLTU_I:
13103 s = "tltu";
13104 goto trap;
13105 case M_TNE_I:
13106 s = "tne";
13107 trap:
13108 used_at = 1;
13109 load_register (AT, &imm_expr, GPR_SIZE == 64);
13110 macro_build (NULL, s, "s,t", op[0], AT);
13111 break;
13112
13113 case M_TRUNCWS:
13114 case M_TRUNCWD:
13115 gas_assert (!mips_opts.micromips);
13116 gas_assert (mips_opts.isa == ISA_MIPS1);
13117 used_at = 1;
13118
13119 /*
13120 * Is the double cfc1 instruction a bug in the mips assembler;
13121 * or is there a reason for it?
13122 */
13123 start_noreorder ();
13124 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13125 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13126 macro_build (NULL, "nop", "");
13127 expr1.X_add_number = 3;
13128 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13129 expr1.X_add_number = 2;
13130 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13131 macro_build (NULL, "ctc1", "t,G", AT, RA);
13132 macro_build (NULL, "nop", "");
13133 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13134 op[0], op[1]);
13135 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13136 macro_build (NULL, "nop", "");
13137 end_noreorder ();
13138 break;
13139
13140 case M_ULH_AB:
13141 s = "lb";
13142 s2 = "lbu";
13143 off = 1;
13144 goto uld_st;
13145 case M_ULHU_AB:
13146 s = "lbu";
13147 s2 = "lbu";
13148 off = 1;
13149 goto uld_st;
13150 case M_ULW_AB:
13151 s = "lwl";
13152 s2 = "lwr";
13153 offbits = (mips_opts.micromips ? 12 : 16);
13154 off = 3;
13155 goto uld_st;
13156 case M_ULD_AB:
13157 s = "ldl";
13158 s2 = "ldr";
13159 offbits = (mips_opts.micromips ? 12 : 16);
13160 off = 7;
13161 goto uld_st;
13162 case M_USH_AB:
13163 s = "sb";
13164 s2 = "sb";
13165 off = 1;
13166 ust = 1;
13167 goto uld_st;
13168 case M_USW_AB:
13169 s = "swl";
13170 s2 = "swr";
13171 offbits = (mips_opts.micromips ? 12 : 16);
13172 off = 3;
13173 ust = 1;
13174 goto uld_st;
13175 case M_USD_AB:
13176 s = "sdl";
13177 s2 = "sdr";
13178 offbits = (mips_opts.micromips ? 12 : 16);
13179 off = 7;
13180 ust = 1;
13181
13182 uld_st:
13183 breg = op[2];
13184 large_offset = !small_offset_p (off, align, offbits);
13185 ep = &offset_expr;
13186 expr1.X_add_number = 0;
13187 if (large_offset)
13188 {
13189 used_at = 1;
13190 tempreg = AT;
13191 if (small_offset_p (0, align, 16))
13192 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13193 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13194 else
13195 {
13196 load_address (tempreg, ep, &used_at);
13197 if (breg != 0)
13198 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13199 tempreg, tempreg, breg);
13200 }
13201 offset_reloc[0] = BFD_RELOC_LO16;
13202 offset_reloc[1] = BFD_RELOC_UNUSED;
13203 offset_reloc[2] = BFD_RELOC_UNUSED;
13204 breg = tempreg;
13205 tempreg = op[0];
13206 ep = &expr1;
13207 }
13208 else if (!ust && op[0] == breg)
13209 {
13210 used_at = 1;
13211 tempreg = AT;
13212 }
13213 else
13214 tempreg = op[0];
13215
13216 if (off == 1)
13217 goto ulh_sh;
13218
13219 if (!target_big_endian)
13220 ep->X_add_number += off;
13221 if (offbits == 12)
13222 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13223 else
13224 macro_build (ep, s, "t,o(b)", tempreg, -1,
13225 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13226
13227 if (!target_big_endian)
13228 ep->X_add_number -= off;
13229 else
13230 ep->X_add_number += off;
13231 if (offbits == 12)
13232 macro_build (NULL, s2, "t,~(b)",
13233 tempreg, (int) ep->X_add_number, breg);
13234 else
13235 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13236 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13237
13238 /* If necessary, move the result in tempreg to the final destination. */
13239 if (!ust && op[0] != tempreg)
13240 {
13241 /* Protect second load's delay slot. */
13242 load_delay_nop ();
13243 move_register (op[0], tempreg);
13244 }
13245 break;
13246
13247 ulh_sh:
13248 used_at = 1;
13249 if (target_big_endian == ust)
13250 ep->X_add_number += off;
13251 tempreg = ust || large_offset ? op[0] : AT;
13252 macro_build (ep, s, "t,o(b)", tempreg, -1,
13253 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13254
13255 /* For halfword transfers we need a temporary register to shuffle
13256 bytes. Unfortunately for M_USH_A we have none available before
13257 the next store as AT holds the base address. We deal with this
13258 case by clobbering TREG and then restoring it as with ULH. */
13259 tempreg = ust == large_offset ? op[0] : AT;
13260 if (ust)
13261 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13262
13263 if (target_big_endian == ust)
13264 ep->X_add_number -= off;
13265 else
13266 ep->X_add_number += off;
13267 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13268 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13269
13270 /* For M_USH_A re-retrieve the LSB. */
13271 if (ust && large_offset)
13272 {
13273 if (target_big_endian)
13274 ep->X_add_number += off;
13275 else
13276 ep->X_add_number -= off;
13277 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13278 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13279 }
13280 /* For ULH and M_USH_A OR the LSB in. */
13281 if (!ust || large_offset)
13282 {
13283 tempreg = !large_offset ? AT : op[0];
13284 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13285 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13286 }
13287 break;
13288
13289 default:
13290 /* FIXME: Check if this is one of the itbl macros, since they
13291 are added dynamically. */
13292 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13293 break;
13294 }
13295 if (!mips_opts.at && used_at)
13296 as_bad (_("macro used $at after \".set noat\""));
13297 }
13298
13299 /* Implement macros in mips16 mode. */
13300
13301 static void
13302 mips16_macro (struct mips_cl_insn *ip)
13303 {
13304 const struct mips_operand_array *operands;
13305 int mask;
13306 int tmp;
13307 expressionS expr1;
13308 int dbl;
13309 const char *s, *s2, *s3;
13310 unsigned int op[MAX_OPERANDS];
13311 unsigned int i;
13312
13313 mask = ip->insn_mo->mask;
13314
13315 operands = insn_operands (ip);
13316 for (i = 0; i < MAX_OPERANDS; i++)
13317 if (operands->operand[i])
13318 op[i] = insn_extract_operand (ip, operands->operand[i]);
13319 else
13320 op[i] = -1;
13321
13322 expr1.X_op = O_constant;
13323 expr1.X_op_symbol = NULL;
13324 expr1.X_add_symbol = NULL;
13325 expr1.X_add_number = 1;
13326
13327 dbl = 0;
13328
13329 switch (mask)
13330 {
13331 default:
13332 abort ();
13333
13334 case M_DDIV_3:
13335 dbl = 1;
13336 case M_DIV_3:
13337 s = "mflo";
13338 goto do_div3;
13339 case M_DREM_3:
13340 dbl = 1;
13341 case M_REM_3:
13342 s = "mfhi";
13343 do_div3:
13344 start_noreorder ();
13345 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13346 expr1.X_add_number = 2;
13347 macro_build (&expr1, "bnez", "x,p", op[2]);
13348 macro_build (NULL, "break", "6", 7);
13349
13350 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13351 since that causes an overflow. We should do that as well,
13352 but I don't see how to do the comparisons without a temporary
13353 register. */
13354 end_noreorder ();
13355 macro_build (NULL, s, "x", op[0]);
13356 break;
13357
13358 case M_DIVU_3:
13359 s = "divu";
13360 s2 = "mflo";
13361 goto do_divu3;
13362 case M_REMU_3:
13363 s = "divu";
13364 s2 = "mfhi";
13365 goto do_divu3;
13366 case M_DDIVU_3:
13367 s = "ddivu";
13368 s2 = "mflo";
13369 goto do_divu3;
13370 case M_DREMU_3:
13371 s = "ddivu";
13372 s2 = "mfhi";
13373 do_divu3:
13374 start_noreorder ();
13375 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13376 expr1.X_add_number = 2;
13377 macro_build (&expr1, "bnez", "x,p", op[2]);
13378 macro_build (NULL, "break", "6", 7);
13379 end_noreorder ();
13380 macro_build (NULL, s2, "x", op[0]);
13381 break;
13382
13383 case M_DMUL:
13384 dbl = 1;
13385 case M_MUL:
13386 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13387 macro_build (NULL, "mflo", "x", op[0]);
13388 break;
13389
13390 case M_DSUBU_I:
13391 dbl = 1;
13392 goto do_subu;
13393 case M_SUBU_I:
13394 do_subu:
13395 imm_expr.X_add_number = -imm_expr.X_add_number;
13396 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13397 break;
13398
13399 case M_SUBU_I_2:
13400 imm_expr.X_add_number = -imm_expr.X_add_number;
13401 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13402 break;
13403
13404 case M_DSUBU_I_2:
13405 imm_expr.X_add_number = -imm_expr.X_add_number;
13406 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13407 break;
13408
13409 case M_BEQ:
13410 s = "cmp";
13411 s2 = "bteqz";
13412 goto do_branch;
13413 case M_BNE:
13414 s = "cmp";
13415 s2 = "btnez";
13416 goto do_branch;
13417 case M_BLT:
13418 s = "slt";
13419 s2 = "btnez";
13420 goto do_branch;
13421 case M_BLTU:
13422 s = "sltu";
13423 s2 = "btnez";
13424 goto do_branch;
13425 case M_BLE:
13426 s = "slt";
13427 s2 = "bteqz";
13428 goto do_reverse_branch;
13429 case M_BLEU:
13430 s = "sltu";
13431 s2 = "bteqz";
13432 goto do_reverse_branch;
13433 case M_BGE:
13434 s = "slt";
13435 s2 = "bteqz";
13436 goto do_branch;
13437 case M_BGEU:
13438 s = "sltu";
13439 s2 = "bteqz";
13440 goto do_branch;
13441 case M_BGT:
13442 s = "slt";
13443 s2 = "btnez";
13444 goto do_reverse_branch;
13445 case M_BGTU:
13446 s = "sltu";
13447 s2 = "btnez";
13448
13449 do_reverse_branch:
13450 tmp = op[1];
13451 op[1] = op[0];
13452 op[0] = tmp;
13453
13454 do_branch:
13455 macro_build (NULL, s, "x,y", op[0], op[1]);
13456 macro_build (&offset_expr, s2, "p");
13457 break;
13458
13459 case M_BEQ_I:
13460 s = "cmpi";
13461 s2 = "bteqz";
13462 s3 = "x,U";
13463 goto do_branch_i;
13464 case M_BNE_I:
13465 s = "cmpi";
13466 s2 = "btnez";
13467 s3 = "x,U";
13468 goto do_branch_i;
13469 case M_BLT_I:
13470 s = "slti";
13471 s2 = "btnez";
13472 s3 = "x,8";
13473 goto do_branch_i;
13474 case M_BLTU_I:
13475 s = "sltiu";
13476 s2 = "btnez";
13477 s3 = "x,8";
13478 goto do_branch_i;
13479 case M_BLE_I:
13480 s = "slti";
13481 s2 = "btnez";
13482 s3 = "x,8";
13483 goto do_addone_branch_i;
13484 case M_BLEU_I:
13485 s = "sltiu";
13486 s2 = "btnez";
13487 s3 = "x,8";
13488 goto do_addone_branch_i;
13489 case M_BGE_I:
13490 s = "slti";
13491 s2 = "bteqz";
13492 s3 = "x,8";
13493 goto do_branch_i;
13494 case M_BGEU_I:
13495 s = "sltiu";
13496 s2 = "bteqz";
13497 s3 = "x,8";
13498 goto do_branch_i;
13499 case M_BGT_I:
13500 s = "slti";
13501 s2 = "bteqz";
13502 s3 = "x,8";
13503 goto do_addone_branch_i;
13504 case M_BGTU_I:
13505 s = "sltiu";
13506 s2 = "bteqz";
13507 s3 = "x,8";
13508
13509 do_addone_branch_i:
13510 ++imm_expr.X_add_number;
13511
13512 do_branch_i:
13513 macro_build (&imm_expr, s, s3, op[0]);
13514 macro_build (&offset_expr, s2, "p");
13515 break;
13516
13517 case M_ABS:
13518 expr1.X_add_number = 0;
13519 macro_build (&expr1, "slti", "x,8", op[1]);
13520 if (op[0] != op[1])
13521 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13522 expr1.X_add_number = 2;
13523 macro_build (&expr1, "bteqz", "p");
13524 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13525 break;
13526 }
13527 }
13528
13529 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13530 opcode bits in *OPCODE_EXTRA. */
13531
13532 static struct mips_opcode *
13533 mips_lookup_insn (struct hash_control *hash, const char *start,
13534 ssize_t length, unsigned int *opcode_extra)
13535 {
13536 char *name, *dot, *p;
13537 unsigned int mask, suffix;
13538 ssize_t opend;
13539 struct mips_opcode *insn;
13540
13541 /* Make a copy of the instruction so that we can fiddle with it. */
13542 name = xstrndup (start, length);
13543
13544 /* Look up the instruction as-is. */
13545 insn = (struct mips_opcode *) hash_find (hash, name);
13546 if (insn)
13547 goto end;
13548
13549 dot = strchr (name, '.');
13550 if (dot && dot[1])
13551 {
13552 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13553 p = mips_parse_vu0_channels (dot + 1, &mask);
13554 if (*p == 0 && mask != 0)
13555 {
13556 *dot = 0;
13557 insn = (struct mips_opcode *) hash_find (hash, name);
13558 *dot = '.';
13559 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13560 {
13561 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13562 goto end;
13563 }
13564 }
13565 }
13566
13567 if (mips_opts.micromips)
13568 {
13569 /* See if there's an instruction size override suffix,
13570 either `16' or `32', at the end of the mnemonic proper,
13571 that defines the operation, i.e. before the first `.'
13572 character if any. Strip it and retry. */
13573 opend = dot != NULL ? dot - name : length;
13574 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13575 suffix = 2;
13576 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13577 suffix = 4;
13578 else
13579 suffix = 0;
13580 if (suffix)
13581 {
13582 memcpy (name + opend - 2, name + opend, length - opend + 1);
13583 insn = (struct mips_opcode *) hash_find (hash, name);
13584 if (insn)
13585 {
13586 forced_insn_length = suffix;
13587 goto end;
13588 }
13589 }
13590 }
13591
13592 insn = NULL;
13593 end:
13594 free (name);
13595 return insn;
13596 }
13597
13598 /* Assemble an instruction into its binary format. If the instruction
13599 is a macro, set imm_expr and offset_expr to the values associated
13600 with "I" and "A" operands respectively. Otherwise store the value
13601 of the relocatable field (if any) in offset_expr. In both cases
13602 set offset_reloc to the relocation operators applied to offset_expr. */
13603
13604 static void
13605 mips_ip (char *str, struct mips_cl_insn *insn)
13606 {
13607 const struct mips_opcode *first, *past;
13608 struct hash_control *hash;
13609 char format;
13610 size_t end;
13611 struct mips_operand_token *tokens;
13612 unsigned int opcode_extra;
13613
13614 if (mips_opts.micromips)
13615 {
13616 hash = micromips_op_hash;
13617 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13618 }
13619 else
13620 {
13621 hash = op_hash;
13622 past = &mips_opcodes[NUMOPCODES];
13623 }
13624 forced_insn_length = 0;
13625 opcode_extra = 0;
13626
13627 /* We first try to match an instruction up to a space or to the end. */
13628 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13629 continue;
13630
13631 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13632 if (first == NULL)
13633 {
13634 set_insn_error (0, _("unrecognized opcode"));
13635 return;
13636 }
13637
13638 if (strcmp (first->name, "li.s") == 0)
13639 format = 'f';
13640 else if (strcmp (first->name, "li.d") == 0)
13641 format = 'd';
13642 else
13643 format = 0;
13644 tokens = mips_parse_arguments (str + end, format);
13645 if (!tokens)
13646 return;
13647
13648 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13649 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13650 set_insn_error (0, _("invalid operands"));
13651
13652 obstack_free (&mips_operand_tokens, tokens);
13653 }
13654
13655 /* As for mips_ip, but used when assembling MIPS16 code.
13656 Also set forced_insn_length to the resulting instruction size in
13657 bytes if the user explicitly requested a small or extended instruction. */
13658
13659 static void
13660 mips16_ip (char *str, struct mips_cl_insn *insn)
13661 {
13662 char *end, *s, c;
13663 struct mips_opcode *first;
13664 struct mips_operand_token *tokens;
13665
13666 forced_insn_length = 0;
13667
13668 for (s = str; ISLOWER (*s); ++s)
13669 ;
13670 end = s;
13671 c = *end;
13672 switch (c)
13673 {
13674 case '\0':
13675 break;
13676
13677 case ' ':
13678 s++;
13679 break;
13680
13681 case '.':
13682 if (s[1] == 't' && s[2] == ' ')
13683 {
13684 forced_insn_length = 2;
13685 s += 3;
13686 break;
13687 }
13688 else if (s[1] == 'e' && s[2] == ' ')
13689 {
13690 forced_insn_length = 4;
13691 s += 3;
13692 break;
13693 }
13694 /* Fall through. */
13695 default:
13696 set_insn_error (0, _("unrecognized opcode"));
13697 return;
13698 }
13699
13700 if (mips_opts.noautoextend && !forced_insn_length)
13701 forced_insn_length = 2;
13702
13703 *end = 0;
13704 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13705 *end = c;
13706
13707 if (!first)
13708 {
13709 set_insn_error (0, _("unrecognized opcode"));
13710 return;
13711 }
13712
13713 tokens = mips_parse_arguments (s, 0);
13714 if (!tokens)
13715 return;
13716
13717 if (!match_mips16_insns (insn, first, tokens))
13718 set_insn_error (0, _("invalid operands"));
13719
13720 obstack_free (&mips_operand_tokens, tokens);
13721 }
13722
13723 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13724 NBITS is the number of significant bits in VAL. */
13725
13726 static unsigned long
13727 mips16_immed_extend (offsetT val, unsigned int nbits)
13728 {
13729 int extval;
13730 if (nbits == 16)
13731 {
13732 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13733 val &= 0x1f;
13734 }
13735 else if (nbits == 15)
13736 {
13737 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13738 val &= 0xf;
13739 }
13740 else
13741 {
13742 extval = ((val & 0x1f) << 6) | (val & 0x20);
13743 val = 0;
13744 }
13745 return (extval << 16) | val;
13746 }
13747
13748 /* Like decode_mips16_operand, but require the operand to be defined and
13749 require it to be an integer. */
13750
13751 static const struct mips_int_operand *
13752 mips16_immed_operand (int type, bfd_boolean extended_p)
13753 {
13754 const struct mips_operand *operand;
13755
13756 operand = decode_mips16_operand (type, extended_p);
13757 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13758 abort ();
13759 return (const struct mips_int_operand *) operand;
13760 }
13761
13762 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13763
13764 static bfd_boolean
13765 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13766 bfd_reloc_code_real_type reloc, offsetT sval)
13767 {
13768 int min_val, max_val;
13769
13770 min_val = mips_int_operand_min (operand);
13771 max_val = mips_int_operand_max (operand);
13772 if (reloc != BFD_RELOC_UNUSED)
13773 {
13774 if (min_val < 0)
13775 sval = SEXT_16BIT (sval);
13776 else
13777 sval &= 0xffff;
13778 }
13779
13780 return (sval >= min_val
13781 && sval <= max_val
13782 && (sval & ((1 << operand->shift) - 1)) == 0);
13783 }
13784
13785 /* Install immediate value VAL into MIPS16 instruction *INSN,
13786 extending it if necessary. The instruction in *INSN may
13787 already be extended.
13788
13789 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13790 if none. In the former case, VAL is a 16-bit number with no
13791 defined signedness.
13792
13793 TYPE is the type of the immediate field. USER_INSN_LENGTH
13794 is the length that the user requested, or 0 if none. */
13795
13796 static void
13797 mips16_immed (const char *file, unsigned int line, int type,
13798 bfd_reloc_code_real_type reloc, offsetT val,
13799 unsigned int user_insn_length, unsigned long *insn)
13800 {
13801 const struct mips_int_operand *operand;
13802 unsigned int uval, length;
13803
13804 operand = mips16_immed_operand (type, FALSE);
13805 if (!mips16_immed_in_range_p (operand, reloc, val))
13806 {
13807 /* We need an extended instruction. */
13808 if (user_insn_length == 2)
13809 as_bad_where (file, line, _("invalid unextended operand value"));
13810 else
13811 *insn |= MIPS16_EXTEND;
13812 }
13813 else if (user_insn_length == 4)
13814 {
13815 /* The operand doesn't force an unextended instruction to be extended.
13816 Warn if the user wanted an extended instruction anyway. */
13817 *insn |= MIPS16_EXTEND;
13818 as_warn_where (file, line,
13819 _("extended operand requested but not required"));
13820 }
13821
13822 length = mips16_opcode_length (*insn);
13823 if (length == 4)
13824 {
13825 operand = mips16_immed_operand (type, TRUE);
13826 if (!mips16_immed_in_range_p (operand, reloc, val))
13827 as_bad_where (file, line,
13828 _("operand value out of range for instruction"));
13829 }
13830 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13831 if (length == 2)
13832 *insn = mips_insert_operand (&operand->root, *insn, uval);
13833 else
13834 *insn |= mips16_immed_extend (uval, operand->root.size);
13835 }
13836 \f
13837 struct percent_op_match
13838 {
13839 const char *str;
13840 bfd_reloc_code_real_type reloc;
13841 };
13842
13843 static const struct percent_op_match mips_percent_op[] =
13844 {
13845 {"%lo", BFD_RELOC_LO16},
13846 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13847 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13848 {"%call16", BFD_RELOC_MIPS_CALL16},
13849 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13850 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13851 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13852 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13853 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13854 {"%got", BFD_RELOC_MIPS_GOT16},
13855 {"%gp_rel", BFD_RELOC_GPREL16},
13856 {"%half", BFD_RELOC_16},
13857 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13858 {"%higher", BFD_RELOC_MIPS_HIGHER},
13859 {"%neg", BFD_RELOC_MIPS_SUB},
13860 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13861 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13862 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13863 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13864 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13865 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13866 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13867 {"%hi", BFD_RELOC_HI16_S},
13868 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13869 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13870 };
13871
13872 static const struct percent_op_match mips16_percent_op[] =
13873 {
13874 {"%lo", BFD_RELOC_MIPS16_LO16},
13875 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13876 {"%got", BFD_RELOC_MIPS16_GOT16},
13877 {"%call16", BFD_RELOC_MIPS16_CALL16},
13878 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13879 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13880 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13881 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13882 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13883 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13884 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13885 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13886 };
13887
13888
13889 /* Return true if *STR points to a relocation operator. When returning true,
13890 move *STR over the operator and store its relocation code in *RELOC.
13891 Leave both *STR and *RELOC alone when returning false. */
13892
13893 static bfd_boolean
13894 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13895 {
13896 const struct percent_op_match *percent_op;
13897 size_t limit, i;
13898
13899 if (mips_opts.mips16)
13900 {
13901 percent_op = mips16_percent_op;
13902 limit = ARRAY_SIZE (mips16_percent_op);
13903 }
13904 else
13905 {
13906 percent_op = mips_percent_op;
13907 limit = ARRAY_SIZE (mips_percent_op);
13908 }
13909
13910 for (i = 0; i < limit; i++)
13911 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13912 {
13913 int len = strlen (percent_op[i].str);
13914
13915 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13916 continue;
13917
13918 *str += strlen (percent_op[i].str);
13919 *reloc = percent_op[i].reloc;
13920
13921 /* Check whether the output BFD supports this relocation.
13922 If not, issue an error and fall back on something safe. */
13923 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13924 {
13925 as_bad (_("relocation %s isn't supported by the current ABI"),
13926 percent_op[i].str);
13927 *reloc = BFD_RELOC_UNUSED;
13928 }
13929 return TRUE;
13930 }
13931 return FALSE;
13932 }
13933
13934
13935 /* Parse string STR as a 16-bit relocatable operand. Store the
13936 expression in *EP and the relocations in the array starting
13937 at RELOC. Return the number of relocation operators used.
13938
13939 On exit, EXPR_END points to the first character after the expression. */
13940
13941 static size_t
13942 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13943 char *str)
13944 {
13945 bfd_reloc_code_real_type reversed_reloc[3];
13946 size_t reloc_index, i;
13947 int crux_depth, str_depth;
13948 char *crux;
13949
13950 /* Search for the start of the main expression, recoding relocations
13951 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13952 of the main expression and with CRUX_DEPTH containing the number
13953 of open brackets at that point. */
13954 reloc_index = -1;
13955 str_depth = 0;
13956 do
13957 {
13958 reloc_index++;
13959 crux = str;
13960 crux_depth = str_depth;
13961
13962 /* Skip over whitespace and brackets, keeping count of the number
13963 of brackets. */
13964 while (*str == ' ' || *str == '\t' || *str == '(')
13965 if (*str++ == '(')
13966 str_depth++;
13967 }
13968 while (*str == '%'
13969 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13970 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13971
13972 my_getExpression (ep, crux);
13973 str = expr_end;
13974
13975 /* Match every open bracket. */
13976 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13977 if (*str++ == ')')
13978 crux_depth--;
13979
13980 if (crux_depth > 0)
13981 as_bad (_("unclosed '('"));
13982
13983 expr_end = str;
13984
13985 if (reloc_index != 0)
13986 {
13987 prev_reloc_op_frag = frag_now;
13988 for (i = 0; i < reloc_index; i++)
13989 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13990 }
13991
13992 return reloc_index;
13993 }
13994
13995 static void
13996 my_getExpression (expressionS *ep, char *str)
13997 {
13998 char *save_in;
13999
14000 save_in = input_line_pointer;
14001 input_line_pointer = str;
14002 expression (ep);
14003 expr_end = input_line_pointer;
14004 input_line_pointer = save_in;
14005 }
14006
14007 const char *
14008 md_atof (int type, char *litP, int *sizeP)
14009 {
14010 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14011 }
14012
14013 void
14014 md_number_to_chars (char *buf, valueT val, int n)
14015 {
14016 if (target_big_endian)
14017 number_to_chars_bigendian (buf, val, n);
14018 else
14019 number_to_chars_littleendian (buf, val, n);
14020 }
14021 \f
14022 static int support_64bit_objects(void)
14023 {
14024 const char **list, **l;
14025 int yes;
14026
14027 list = bfd_target_list ();
14028 for (l = list; *l != NULL; l++)
14029 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14030 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14031 break;
14032 yes = (*l != NULL);
14033 free (list);
14034 return yes;
14035 }
14036
14037 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14038 NEW_VALUE. Warn if another value was already specified. Note:
14039 we have to defer parsing the -march and -mtune arguments in order
14040 to handle 'from-abi' correctly, since the ABI might be specified
14041 in a later argument. */
14042
14043 static void
14044 mips_set_option_string (const char **string_ptr, const char *new_value)
14045 {
14046 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14047 as_warn (_("a different %s was already specified, is now %s"),
14048 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14049 new_value);
14050
14051 *string_ptr = new_value;
14052 }
14053
14054 int
14055 md_parse_option (int c, const char *arg)
14056 {
14057 unsigned int i;
14058
14059 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14060 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14061 {
14062 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14063 c == mips_ases[i].option_on);
14064 return 1;
14065 }
14066
14067 switch (c)
14068 {
14069 case OPTION_CONSTRUCT_FLOATS:
14070 mips_disable_float_construction = 0;
14071 break;
14072
14073 case OPTION_NO_CONSTRUCT_FLOATS:
14074 mips_disable_float_construction = 1;
14075 break;
14076
14077 case OPTION_TRAP:
14078 mips_trap = 1;
14079 break;
14080
14081 case OPTION_BREAK:
14082 mips_trap = 0;
14083 break;
14084
14085 case OPTION_EB:
14086 target_big_endian = 1;
14087 break;
14088
14089 case OPTION_EL:
14090 target_big_endian = 0;
14091 break;
14092
14093 case 'O':
14094 if (arg == NULL)
14095 mips_optimize = 1;
14096 else if (arg[0] == '0')
14097 mips_optimize = 0;
14098 else if (arg[0] == '1')
14099 mips_optimize = 1;
14100 else
14101 mips_optimize = 2;
14102 break;
14103
14104 case 'g':
14105 if (arg == NULL)
14106 mips_debug = 2;
14107 else
14108 mips_debug = atoi (arg);
14109 break;
14110
14111 case OPTION_MIPS1:
14112 file_mips_opts.isa = ISA_MIPS1;
14113 break;
14114
14115 case OPTION_MIPS2:
14116 file_mips_opts.isa = ISA_MIPS2;
14117 break;
14118
14119 case OPTION_MIPS3:
14120 file_mips_opts.isa = ISA_MIPS3;
14121 break;
14122
14123 case OPTION_MIPS4:
14124 file_mips_opts.isa = ISA_MIPS4;
14125 break;
14126
14127 case OPTION_MIPS5:
14128 file_mips_opts.isa = ISA_MIPS5;
14129 break;
14130
14131 case OPTION_MIPS32:
14132 file_mips_opts.isa = ISA_MIPS32;
14133 break;
14134
14135 case OPTION_MIPS32R2:
14136 file_mips_opts.isa = ISA_MIPS32R2;
14137 break;
14138
14139 case OPTION_MIPS32R3:
14140 file_mips_opts.isa = ISA_MIPS32R3;
14141 break;
14142
14143 case OPTION_MIPS32R5:
14144 file_mips_opts.isa = ISA_MIPS32R5;
14145 break;
14146
14147 case OPTION_MIPS32R6:
14148 file_mips_opts.isa = ISA_MIPS32R6;
14149 break;
14150
14151 case OPTION_MIPS64R2:
14152 file_mips_opts.isa = ISA_MIPS64R2;
14153 break;
14154
14155 case OPTION_MIPS64R3:
14156 file_mips_opts.isa = ISA_MIPS64R3;
14157 break;
14158
14159 case OPTION_MIPS64R5:
14160 file_mips_opts.isa = ISA_MIPS64R5;
14161 break;
14162
14163 case OPTION_MIPS64R6:
14164 file_mips_opts.isa = ISA_MIPS64R6;
14165 break;
14166
14167 case OPTION_MIPS64:
14168 file_mips_opts.isa = ISA_MIPS64;
14169 break;
14170
14171 case OPTION_MTUNE:
14172 mips_set_option_string (&mips_tune_string, arg);
14173 break;
14174
14175 case OPTION_MARCH:
14176 mips_set_option_string (&mips_arch_string, arg);
14177 break;
14178
14179 case OPTION_M4650:
14180 mips_set_option_string (&mips_arch_string, "4650");
14181 mips_set_option_string (&mips_tune_string, "4650");
14182 break;
14183
14184 case OPTION_NO_M4650:
14185 break;
14186
14187 case OPTION_M4010:
14188 mips_set_option_string (&mips_arch_string, "4010");
14189 mips_set_option_string (&mips_tune_string, "4010");
14190 break;
14191
14192 case OPTION_NO_M4010:
14193 break;
14194
14195 case OPTION_M4100:
14196 mips_set_option_string (&mips_arch_string, "4100");
14197 mips_set_option_string (&mips_tune_string, "4100");
14198 break;
14199
14200 case OPTION_NO_M4100:
14201 break;
14202
14203 case OPTION_M3900:
14204 mips_set_option_string (&mips_arch_string, "3900");
14205 mips_set_option_string (&mips_tune_string, "3900");
14206 break;
14207
14208 case OPTION_NO_M3900:
14209 break;
14210
14211 case OPTION_MICROMIPS:
14212 if (file_mips_opts.mips16 == 1)
14213 {
14214 as_bad (_("-mmicromips cannot be used with -mips16"));
14215 return 0;
14216 }
14217 file_mips_opts.micromips = 1;
14218 mips_no_prev_insn ();
14219 break;
14220
14221 case OPTION_NO_MICROMIPS:
14222 file_mips_opts.micromips = 0;
14223 mips_no_prev_insn ();
14224 break;
14225
14226 case OPTION_MIPS16:
14227 if (file_mips_opts.micromips == 1)
14228 {
14229 as_bad (_("-mips16 cannot be used with -micromips"));
14230 return 0;
14231 }
14232 file_mips_opts.mips16 = 1;
14233 mips_no_prev_insn ();
14234 break;
14235
14236 case OPTION_NO_MIPS16:
14237 file_mips_opts.mips16 = 0;
14238 mips_no_prev_insn ();
14239 break;
14240
14241 case OPTION_FIX_24K:
14242 mips_fix_24k = 1;
14243 break;
14244
14245 case OPTION_NO_FIX_24K:
14246 mips_fix_24k = 0;
14247 break;
14248
14249 case OPTION_FIX_RM7000:
14250 mips_fix_rm7000 = 1;
14251 break;
14252
14253 case OPTION_NO_FIX_RM7000:
14254 mips_fix_rm7000 = 0;
14255 break;
14256
14257 case OPTION_FIX_LOONGSON2F_JUMP:
14258 mips_fix_loongson2f_jump = TRUE;
14259 break;
14260
14261 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14262 mips_fix_loongson2f_jump = FALSE;
14263 break;
14264
14265 case OPTION_FIX_LOONGSON2F_NOP:
14266 mips_fix_loongson2f_nop = TRUE;
14267 break;
14268
14269 case OPTION_NO_FIX_LOONGSON2F_NOP:
14270 mips_fix_loongson2f_nop = FALSE;
14271 break;
14272
14273 case OPTION_FIX_VR4120:
14274 mips_fix_vr4120 = 1;
14275 break;
14276
14277 case OPTION_NO_FIX_VR4120:
14278 mips_fix_vr4120 = 0;
14279 break;
14280
14281 case OPTION_FIX_VR4130:
14282 mips_fix_vr4130 = 1;
14283 break;
14284
14285 case OPTION_NO_FIX_VR4130:
14286 mips_fix_vr4130 = 0;
14287 break;
14288
14289 case OPTION_FIX_CN63XXP1:
14290 mips_fix_cn63xxp1 = TRUE;
14291 break;
14292
14293 case OPTION_NO_FIX_CN63XXP1:
14294 mips_fix_cn63xxp1 = FALSE;
14295 break;
14296
14297 case OPTION_RELAX_BRANCH:
14298 mips_relax_branch = 1;
14299 break;
14300
14301 case OPTION_NO_RELAX_BRANCH:
14302 mips_relax_branch = 0;
14303 break;
14304
14305 case OPTION_INSN32:
14306 file_mips_opts.insn32 = TRUE;
14307 break;
14308
14309 case OPTION_NO_INSN32:
14310 file_mips_opts.insn32 = FALSE;
14311 break;
14312
14313 case OPTION_MSHARED:
14314 mips_in_shared = TRUE;
14315 break;
14316
14317 case OPTION_MNO_SHARED:
14318 mips_in_shared = FALSE;
14319 break;
14320
14321 case OPTION_MSYM32:
14322 file_mips_opts.sym32 = TRUE;
14323 break;
14324
14325 case OPTION_MNO_SYM32:
14326 file_mips_opts.sym32 = FALSE;
14327 break;
14328
14329 /* When generating ELF code, we permit -KPIC and -call_shared to
14330 select SVR4_PIC, and -non_shared to select no PIC. This is
14331 intended to be compatible with Irix 5. */
14332 case OPTION_CALL_SHARED:
14333 mips_pic = SVR4_PIC;
14334 mips_abicalls = TRUE;
14335 break;
14336
14337 case OPTION_CALL_NONPIC:
14338 mips_pic = NO_PIC;
14339 mips_abicalls = TRUE;
14340 break;
14341
14342 case OPTION_NON_SHARED:
14343 mips_pic = NO_PIC;
14344 mips_abicalls = FALSE;
14345 break;
14346
14347 /* The -xgot option tells the assembler to use 32 bit offsets
14348 when accessing the got in SVR4_PIC mode. It is for Irix
14349 compatibility. */
14350 case OPTION_XGOT:
14351 mips_big_got = 1;
14352 break;
14353
14354 case 'G':
14355 g_switch_value = atoi (arg);
14356 g_switch_seen = 1;
14357 break;
14358
14359 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14360 and -mabi=64. */
14361 case OPTION_32:
14362 mips_abi = O32_ABI;
14363 break;
14364
14365 case OPTION_N32:
14366 mips_abi = N32_ABI;
14367 break;
14368
14369 case OPTION_64:
14370 mips_abi = N64_ABI;
14371 if (!support_64bit_objects())
14372 as_fatal (_("no compiled in support for 64 bit object file format"));
14373 break;
14374
14375 case OPTION_GP32:
14376 file_mips_opts.gp = 32;
14377 break;
14378
14379 case OPTION_GP64:
14380 file_mips_opts.gp = 64;
14381 break;
14382
14383 case OPTION_FP32:
14384 file_mips_opts.fp = 32;
14385 break;
14386
14387 case OPTION_FPXX:
14388 file_mips_opts.fp = 0;
14389 break;
14390
14391 case OPTION_FP64:
14392 file_mips_opts.fp = 64;
14393 break;
14394
14395 case OPTION_ODD_SPREG:
14396 file_mips_opts.oddspreg = 1;
14397 break;
14398
14399 case OPTION_NO_ODD_SPREG:
14400 file_mips_opts.oddspreg = 0;
14401 break;
14402
14403 case OPTION_SINGLE_FLOAT:
14404 file_mips_opts.single_float = 1;
14405 break;
14406
14407 case OPTION_DOUBLE_FLOAT:
14408 file_mips_opts.single_float = 0;
14409 break;
14410
14411 case OPTION_SOFT_FLOAT:
14412 file_mips_opts.soft_float = 1;
14413 break;
14414
14415 case OPTION_HARD_FLOAT:
14416 file_mips_opts.soft_float = 0;
14417 break;
14418
14419 case OPTION_MABI:
14420 if (strcmp (arg, "32") == 0)
14421 mips_abi = O32_ABI;
14422 else if (strcmp (arg, "o64") == 0)
14423 mips_abi = O64_ABI;
14424 else if (strcmp (arg, "n32") == 0)
14425 mips_abi = N32_ABI;
14426 else if (strcmp (arg, "64") == 0)
14427 {
14428 mips_abi = N64_ABI;
14429 if (! support_64bit_objects())
14430 as_fatal (_("no compiled in support for 64 bit object file "
14431 "format"));
14432 }
14433 else if (strcmp (arg, "eabi") == 0)
14434 mips_abi = EABI_ABI;
14435 else
14436 {
14437 as_fatal (_("invalid abi -mabi=%s"), arg);
14438 return 0;
14439 }
14440 break;
14441
14442 case OPTION_M7000_HILO_FIX:
14443 mips_7000_hilo_fix = TRUE;
14444 break;
14445
14446 case OPTION_MNO_7000_HILO_FIX:
14447 mips_7000_hilo_fix = FALSE;
14448 break;
14449
14450 case OPTION_MDEBUG:
14451 mips_flag_mdebug = TRUE;
14452 break;
14453
14454 case OPTION_NO_MDEBUG:
14455 mips_flag_mdebug = FALSE;
14456 break;
14457
14458 case OPTION_PDR:
14459 mips_flag_pdr = TRUE;
14460 break;
14461
14462 case OPTION_NO_PDR:
14463 mips_flag_pdr = FALSE;
14464 break;
14465
14466 case OPTION_MVXWORKS_PIC:
14467 mips_pic = VXWORKS_PIC;
14468 break;
14469
14470 case OPTION_NAN:
14471 if (strcmp (arg, "2008") == 0)
14472 mips_nan2008 = 1;
14473 else if (strcmp (arg, "legacy") == 0)
14474 mips_nan2008 = 0;
14475 else
14476 {
14477 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14478 return 0;
14479 }
14480 break;
14481
14482 default:
14483 return 0;
14484 }
14485
14486 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14487
14488 return 1;
14489 }
14490 \f
14491 /* Set up globals to tune for the ISA or processor described by INFO. */
14492
14493 static void
14494 mips_set_tune (const struct mips_cpu_info *info)
14495 {
14496 if (info != 0)
14497 mips_tune = info->cpu;
14498 }
14499
14500
14501 void
14502 mips_after_parse_args (void)
14503 {
14504 const struct mips_cpu_info *arch_info = 0;
14505 const struct mips_cpu_info *tune_info = 0;
14506
14507 /* GP relative stuff not working for PE */
14508 if (strncmp (TARGET_OS, "pe", 2) == 0)
14509 {
14510 if (g_switch_seen && g_switch_value != 0)
14511 as_bad (_("-G not supported in this configuration"));
14512 g_switch_value = 0;
14513 }
14514
14515 if (mips_abi == NO_ABI)
14516 mips_abi = MIPS_DEFAULT_ABI;
14517
14518 /* The following code determines the architecture.
14519 Similar code was added to GCC 3.3 (see override_options() in
14520 config/mips/mips.c). The GAS and GCC code should be kept in sync
14521 as much as possible. */
14522
14523 if (mips_arch_string != 0)
14524 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14525
14526 if (file_mips_opts.isa != ISA_UNKNOWN)
14527 {
14528 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14529 ISA level specified by -mipsN, while arch_info->isa contains
14530 the -march selection (if any). */
14531 if (arch_info != 0)
14532 {
14533 /* -march takes precedence over -mipsN, since it is more descriptive.
14534 There's no harm in specifying both as long as the ISA levels
14535 are the same. */
14536 if (file_mips_opts.isa != arch_info->isa)
14537 as_bad (_("-%s conflicts with the other architecture options,"
14538 " which imply -%s"),
14539 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14540 mips_cpu_info_from_isa (arch_info->isa)->name);
14541 }
14542 else
14543 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14544 }
14545
14546 if (arch_info == 0)
14547 {
14548 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14549 gas_assert (arch_info);
14550 }
14551
14552 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14553 as_bad (_("-march=%s is not compatible with the selected ABI"),
14554 arch_info->name);
14555
14556 file_mips_opts.arch = arch_info->cpu;
14557 file_mips_opts.isa = arch_info->isa;
14558
14559 /* Set up initial mips_opts state. */
14560 mips_opts = file_mips_opts;
14561
14562 /* The register size inference code is now placed in
14563 file_mips_check_options. */
14564
14565 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14566 processor. */
14567 if (mips_tune_string != 0)
14568 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14569
14570 if (tune_info == 0)
14571 mips_set_tune (arch_info);
14572 else
14573 mips_set_tune (tune_info);
14574
14575 if (mips_flag_mdebug < 0)
14576 mips_flag_mdebug = 0;
14577 }
14578 \f
14579 void
14580 mips_init_after_args (void)
14581 {
14582 /* initialize opcodes */
14583 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14584 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14585 }
14586
14587 long
14588 md_pcrel_from (fixS *fixP)
14589 {
14590 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14591 switch (fixP->fx_r_type)
14592 {
14593 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14594 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14595 /* Return the address of the delay slot. */
14596 return addr + 2;
14597
14598 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14599 case BFD_RELOC_MICROMIPS_JMP:
14600 case BFD_RELOC_16_PCREL_S2:
14601 case BFD_RELOC_MIPS_21_PCREL_S2:
14602 case BFD_RELOC_MIPS_26_PCREL_S2:
14603 case BFD_RELOC_MIPS_JMP:
14604 /* Return the address of the delay slot. */
14605 return addr + 4;
14606
14607 default:
14608 return addr;
14609 }
14610 }
14611
14612 /* This is called before the symbol table is processed. In order to
14613 work with gcc when using mips-tfile, we must keep all local labels.
14614 However, in other cases, we want to discard them. If we were
14615 called with -g, but we didn't see any debugging information, it may
14616 mean that gcc is smuggling debugging information through to
14617 mips-tfile, in which case we must generate all local labels. */
14618
14619 void
14620 mips_frob_file_before_adjust (void)
14621 {
14622 #ifndef NO_ECOFF_DEBUGGING
14623 if (ECOFF_DEBUGGING
14624 && mips_debug != 0
14625 && ! ecoff_debugging_seen)
14626 flag_keep_locals = 1;
14627 #endif
14628 }
14629
14630 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14631 the corresponding LO16 reloc. This is called before md_apply_fix and
14632 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14633 relocation operators.
14634
14635 For our purposes, a %lo() expression matches a %got() or %hi()
14636 expression if:
14637
14638 (a) it refers to the same symbol; and
14639 (b) the offset applied in the %lo() expression is no lower than
14640 the offset applied in the %got() or %hi().
14641
14642 (b) allows us to cope with code like:
14643
14644 lui $4,%hi(foo)
14645 lh $4,%lo(foo+2)($4)
14646
14647 ...which is legal on RELA targets, and has a well-defined behaviour
14648 if the user knows that adding 2 to "foo" will not induce a carry to
14649 the high 16 bits.
14650
14651 When several %lo()s match a particular %got() or %hi(), we use the
14652 following rules to distinguish them:
14653
14654 (1) %lo()s with smaller offsets are a better match than %lo()s with
14655 higher offsets.
14656
14657 (2) %lo()s with no matching %got() or %hi() are better than those
14658 that already have a matching %got() or %hi().
14659
14660 (3) later %lo()s are better than earlier %lo()s.
14661
14662 These rules are applied in order.
14663
14664 (1) means, among other things, that %lo()s with identical offsets are
14665 chosen if they exist.
14666
14667 (2) means that we won't associate several high-part relocations with
14668 the same low-part relocation unless there's no alternative. Having
14669 several high parts for the same low part is a GNU extension; this rule
14670 allows careful users to avoid it.
14671
14672 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14673 with the last high-part relocation being at the front of the list.
14674 It therefore makes sense to choose the last matching low-part
14675 relocation, all other things being equal. It's also easier
14676 to code that way. */
14677
14678 void
14679 mips_frob_file (void)
14680 {
14681 struct mips_hi_fixup *l;
14682 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14683
14684 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14685 {
14686 segment_info_type *seginfo;
14687 bfd_boolean matched_lo_p;
14688 fixS **hi_pos, **lo_pos, **pos;
14689
14690 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14691
14692 /* If a GOT16 relocation turns out to be against a global symbol,
14693 there isn't supposed to be a matching LO. Ignore %gots against
14694 constants; we'll report an error for those later. */
14695 if (got16_reloc_p (l->fixp->fx_r_type)
14696 && !(l->fixp->fx_addsy
14697 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14698 continue;
14699
14700 /* Check quickly whether the next fixup happens to be a matching %lo. */
14701 if (fixup_has_matching_lo_p (l->fixp))
14702 continue;
14703
14704 seginfo = seg_info (l->seg);
14705
14706 /* Set HI_POS to the position of this relocation in the chain.
14707 Set LO_POS to the position of the chosen low-part relocation.
14708 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14709 relocation that matches an immediately-preceding high-part
14710 relocation. */
14711 hi_pos = NULL;
14712 lo_pos = NULL;
14713 matched_lo_p = FALSE;
14714 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14715
14716 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14717 {
14718 if (*pos == l->fixp)
14719 hi_pos = pos;
14720
14721 if ((*pos)->fx_r_type == looking_for_rtype
14722 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14723 && (*pos)->fx_offset >= l->fixp->fx_offset
14724 && (lo_pos == NULL
14725 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14726 || (!matched_lo_p
14727 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14728 lo_pos = pos;
14729
14730 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14731 && fixup_has_matching_lo_p (*pos));
14732 }
14733
14734 /* If we found a match, remove the high-part relocation from its
14735 current position and insert it before the low-part relocation.
14736 Make the offsets match so that fixup_has_matching_lo_p()
14737 will return true.
14738
14739 We don't warn about unmatched high-part relocations since some
14740 versions of gcc have been known to emit dead "lui ...%hi(...)"
14741 instructions. */
14742 if (lo_pos != NULL)
14743 {
14744 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14745 if (l->fixp->fx_next != *lo_pos)
14746 {
14747 *hi_pos = l->fixp->fx_next;
14748 l->fixp->fx_next = *lo_pos;
14749 *lo_pos = l->fixp;
14750 }
14751 }
14752 }
14753 }
14754
14755 int
14756 mips_force_relocation (fixS *fixp)
14757 {
14758 if (generic_force_reloc (fixp))
14759 return 1;
14760
14761 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14762 so that the linker relaxation can update targets. */
14763 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14764 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14765 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14766 return 1;
14767
14768 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14769 if (ISA_IS_R6 (mips_opts.isa)
14770 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14771 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14772 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14773 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14774 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14775 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14776 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14777 return 1;
14778
14779 return 0;
14780 }
14781
14782 /* Read the instruction associated with RELOC from BUF. */
14783
14784 static unsigned int
14785 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14786 {
14787 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14788 return read_compressed_insn (buf, 4);
14789 else
14790 return read_insn (buf);
14791 }
14792
14793 /* Write instruction INSN to BUF, given that it has been relocated
14794 by RELOC. */
14795
14796 static void
14797 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14798 unsigned long insn)
14799 {
14800 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14801 write_compressed_insn (buf, insn, 4);
14802 else
14803 write_insn (buf, insn);
14804 }
14805
14806 /* Apply a fixup to the object file. */
14807
14808 void
14809 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14810 {
14811 char *buf;
14812 unsigned long insn;
14813 reloc_howto_type *howto;
14814
14815 if (fixP->fx_pcrel)
14816 switch (fixP->fx_r_type)
14817 {
14818 case BFD_RELOC_16_PCREL_S2:
14819 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14820 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14821 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14822 case BFD_RELOC_32_PCREL:
14823 case BFD_RELOC_MIPS_21_PCREL_S2:
14824 case BFD_RELOC_MIPS_26_PCREL_S2:
14825 case BFD_RELOC_MIPS_18_PCREL_S3:
14826 case BFD_RELOC_MIPS_19_PCREL_S2:
14827 case BFD_RELOC_HI16_S_PCREL:
14828 case BFD_RELOC_LO16_PCREL:
14829 break;
14830
14831 case BFD_RELOC_32:
14832 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14833 break;
14834
14835 default:
14836 as_bad_where (fixP->fx_file, fixP->fx_line,
14837 _("PC-relative reference to a different section"));
14838 break;
14839 }
14840
14841 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14842 that have no MIPS ELF equivalent. */
14843 if (fixP->fx_r_type != BFD_RELOC_8)
14844 {
14845 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14846 if (!howto)
14847 return;
14848 }
14849
14850 gas_assert (fixP->fx_size == 2
14851 || fixP->fx_size == 4
14852 || fixP->fx_r_type == BFD_RELOC_8
14853 || fixP->fx_r_type == BFD_RELOC_16
14854 || fixP->fx_r_type == BFD_RELOC_64
14855 || fixP->fx_r_type == BFD_RELOC_CTOR
14856 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14857 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14858 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14859 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14860 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14861 || fixP->fx_r_type == BFD_RELOC_NONE);
14862
14863 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14864
14865 /* Don't treat parts of a composite relocation as done. There are two
14866 reasons for this:
14867
14868 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14869 should nevertheless be emitted if the first part is.
14870
14871 (2) In normal usage, composite relocations are never assembly-time
14872 constants. The easiest way of dealing with the pathological
14873 exceptions is to generate a relocation against STN_UNDEF and
14874 leave everything up to the linker. */
14875 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14876 fixP->fx_done = 1;
14877
14878 switch (fixP->fx_r_type)
14879 {
14880 case BFD_RELOC_MIPS_TLS_GD:
14881 case BFD_RELOC_MIPS_TLS_LDM:
14882 case BFD_RELOC_MIPS_TLS_DTPREL32:
14883 case BFD_RELOC_MIPS_TLS_DTPREL64:
14884 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14885 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14886 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14887 case BFD_RELOC_MIPS_TLS_TPREL32:
14888 case BFD_RELOC_MIPS_TLS_TPREL64:
14889 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14890 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14891 case BFD_RELOC_MICROMIPS_TLS_GD:
14892 case BFD_RELOC_MICROMIPS_TLS_LDM:
14893 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14894 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14895 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14896 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14897 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14898 case BFD_RELOC_MIPS16_TLS_GD:
14899 case BFD_RELOC_MIPS16_TLS_LDM:
14900 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14901 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14902 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14903 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14904 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14905 if (!fixP->fx_addsy)
14906 {
14907 as_bad_where (fixP->fx_file, fixP->fx_line,
14908 _("TLS relocation against a constant"));
14909 break;
14910 }
14911 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14912 /* fall through */
14913
14914 case BFD_RELOC_MIPS_JMP:
14915 case BFD_RELOC_MIPS_SHIFT5:
14916 case BFD_RELOC_MIPS_SHIFT6:
14917 case BFD_RELOC_MIPS_GOT_DISP:
14918 case BFD_RELOC_MIPS_GOT_PAGE:
14919 case BFD_RELOC_MIPS_GOT_OFST:
14920 case BFD_RELOC_MIPS_SUB:
14921 case BFD_RELOC_MIPS_INSERT_A:
14922 case BFD_RELOC_MIPS_INSERT_B:
14923 case BFD_RELOC_MIPS_DELETE:
14924 case BFD_RELOC_MIPS_HIGHEST:
14925 case BFD_RELOC_MIPS_HIGHER:
14926 case BFD_RELOC_MIPS_SCN_DISP:
14927 case BFD_RELOC_MIPS_REL16:
14928 case BFD_RELOC_MIPS_RELGOT:
14929 case BFD_RELOC_MIPS_JALR:
14930 case BFD_RELOC_HI16:
14931 case BFD_RELOC_HI16_S:
14932 case BFD_RELOC_LO16:
14933 case BFD_RELOC_GPREL16:
14934 case BFD_RELOC_MIPS_LITERAL:
14935 case BFD_RELOC_MIPS_CALL16:
14936 case BFD_RELOC_MIPS_GOT16:
14937 case BFD_RELOC_GPREL32:
14938 case BFD_RELOC_MIPS_GOT_HI16:
14939 case BFD_RELOC_MIPS_GOT_LO16:
14940 case BFD_RELOC_MIPS_CALL_HI16:
14941 case BFD_RELOC_MIPS_CALL_LO16:
14942 case BFD_RELOC_MIPS16_GPREL:
14943 case BFD_RELOC_MIPS16_GOT16:
14944 case BFD_RELOC_MIPS16_CALL16:
14945 case BFD_RELOC_MIPS16_HI16:
14946 case BFD_RELOC_MIPS16_HI16_S:
14947 case BFD_RELOC_MIPS16_LO16:
14948 case BFD_RELOC_MIPS16_JMP:
14949 case BFD_RELOC_MICROMIPS_JMP:
14950 case BFD_RELOC_MICROMIPS_GOT_DISP:
14951 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14952 case BFD_RELOC_MICROMIPS_GOT_OFST:
14953 case BFD_RELOC_MICROMIPS_SUB:
14954 case BFD_RELOC_MICROMIPS_HIGHEST:
14955 case BFD_RELOC_MICROMIPS_HIGHER:
14956 case BFD_RELOC_MICROMIPS_SCN_DISP:
14957 case BFD_RELOC_MICROMIPS_JALR:
14958 case BFD_RELOC_MICROMIPS_HI16:
14959 case BFD_RELOC_MICROMIPS_HI16_S:
14960 case BFD_RELOC_MICROMIPS_LO16:
14961 case BFD_RELOC_MICROMIPS_GPREL16:
14962 case BFD_RELOC_MICROMIPS_LITERAL:
14963 case BFD_RELOC_MICROMIPS_CALL16:
14964 case BFD_RELOC_MICROMIPS_GOT16:
14965 case BFD_RELOC_MICROMIPS_GOT_HI16:
14966 case BFD_RELOC_MICROMIPS_GOT_LO16:
14967 case BFD_RELOC_MICROMIPS_CALL_HI16:
14968 case BFD_RELOC_MICROMIPS_CALL_LO16:
14969 case BFD_RELOC_MIPS_EH:
14970 if (fixP->fx_done)
14971 {
14972 offsetT value;
14973
14974 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14975 {
14976 insn = read_reloc_insn (buf, fixP->fx_r_type);
14977 if (mips16_reloc_p (fixP->fx_r_type))
14978 insn |= mips16_immed_extend (value, 16);
14979 else
14980 insn |= (value & 0xffff);
14981 write_reloc_insn (buf, fixP->fx_r_type, insn);
14982 }
14983 else
14984 as_bad_where (fixP->fx_file, fixP->fx_line,
14985 _("unsupported constant in relocation"));
14986 }
14987 break;
14988
14989 case BFD_RELOC_64:
14990 /* This is handled like BFD_RELOC_32, but we output a sign
14991 extended value if we are only 32 bits. */
14992 if (fixP->fx_done)
14993 {
14994 if (8 <= sizeof (valueT))
14995 md_number_to_chars (buf, *valP, 8);
14996 else
14997 {
14998 valueT hiv;
14999
15000 if ((*valP & 0x80000000) != 0)
15001 hiv = 0xffffffff;
15002 else
15003 hiv = 0;
15004 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15005 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15006 }
15007 }
15008 break;
15009
15010 case BFD_RELOC_RVA:
15011 case BFD_RELOC_32:
15012 case BFD_RELOC_32_PCREL:
15013 case BFD_RELOC_16:
15014 case BFD_RELOC_8:
15015 /* If we are deleting this reloc entry, we must fill in the
15016 value now. This can happen if we have a .word which is not
15017 resolved when it appears but is later defined. */
15018 if (fixP->fx_done)
15019 md_number_to_chars (buf, *valP, fixP->fx_size);
15020 break;
15021
15022 case BFD_RELOC_MIPS_21_PCREL_S2:
15023 case BFD_RELOC_MIPS_26_PCREL_S2:
15024 if ((*valP & 0x3) != 0)
15025 as_bad_where (fixP->fx_file, fixP->fx_line,
15026 _("branch to misaligned address (%lx)"), (long) *valP);
15027
15028 gas_assert (!fixP->fx_done);
15029 break;
15030
15031 case BFD_RELOC_MIPS_18_PCREL_S3:
15032 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15033 as_bad_where (fixP->fx_file, fixP->fx_line,
15034 _("PC-relative access using misaligned symbol (%lx)"),
15035 (long) S_GET_VALUE (fixP->fx_addsy));
15036 if ((fixP->fx_offset & 0x7) != 0)
15037 as_bad_where (fixP->fx_file, fixP->fx_line,
15038 _("PC-relative access using misaligned offset (%lx)"),
15039 (long) fixP->fx_offset);
15040
15041 gas_assert (!fixP->fx_done);
15042 break;
15043
15044 case BFD_RELOC_MIPS_19_PCREL_S2:
15045 if ((*valP & 0x3) != 0)
15046 as_bad_where (fixP->fx_file, fixP->fx_line,
15047 _("PC-relative access to misaligned address (%lx)"),
15048 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15049
15050 gas_assert (!fixP->fx_done);
15051 break;
15052
15053 case BFD_RELOC_HI16_S_PCREL:
15054 case BFD_RELOC_LO16_PCREL:
15055 gas_assert (!fixP->fx_done);
15056 break;
15057
15058 case BFD_RELOC_16_PCREL_S2:
15059 if ((*valP & 0x3) != 0)
15060 as_bad_where (fixP->fx_file, fixP->fx_line,
15061 _("branch to misaligned address (%lx)"), (long) *valP);
15062
15063 /* We need to save the bits in the instruction since fixup_segment()
15064 might be deleting the relocation entry (i.e., a branch within
15065 the current segment). */
15066 if (! fixP->fx_done)
15067 break;
15068
15069 /* Update old instruction data. */
15070 insn = read_insn (buf);
15071
15072 if (*valP + 0x20000 <= 0x3ffff)
15073 {
15074 insn |= (*valP >> 2) & 0xffff;
15075 write_insn (buf, insn);
15076 }
15077 else if (mips_pic == NO_PIC
15078 && fixP->fx_done
15079 && fixP->fx_frag->fr_address >= text_section->vma
15080 && (fixP->fx_frag->fr_address
15081 < text_section->vma + bfd_get_section_size (text_section))
15082 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15083 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15084 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15085 {
15086 /* The branch offset is too large. If this is an
15087 unconditional branch, and we are not generating PIC code,
15088 we can convert it to an absolute jump instruction. */
15089 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15090 insn = 0x0c000000; /* jal */
15091 else
15092 insn = 0x08000000; /* j */
15093 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15094 fixP->fx_done = 0;
15095 fixP->fx_addsy = section_symbol (text_section);
15096 *valP += md_pcrel_from (fixP);
15097 write_insn (buf, insn);
15098 }
15099 else
15100 {
15101 /* If we got here, we have branch-relaxation disabled,
15102 and there's nothing we can do to fix this instruction
15103 without turning it into a longer sequence. */
15104 as_bad_where (fixP->fx_file, fixP->fx_line,
15105 _("branch out of range"));
15106 }
15107 break;
15108
15109 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15110 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15111 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15112 /* We adjust the offset back to even. */
15113 if ((*valP & 0x1) != 0)
15114 --(*valP);
15115
15116 if (! fixP->fx_done)
15117 break;
15118
15119 /* Should never visit here, because we keep the relocation. */
15120 abort ();
15121 break;
15122
15123 case BFD_RELOC_VTABLE_INHERIT:
15124 fixP->fx_done = 0;
15125 if (fixP->fx_addsy
15126 && !S_IS_DEFINED (fixP->fx_addsy)
15127 && !S_IS_WEAK (fixP->fx_addsy))
15128 S_SET_WEAK (fixP->fx_addsy);
15129 break;
15130
15131 case BFD_RELOC_NONE:
15132 case BFD_RELOC_VTABLE_ENTRY:
15133 fixP->fx_done = 0;
15134 break;
15135
15136 default:
15137 abort ();
15138 }
15139
15140 /* Remember value for tc_gen_reloc. */
15141 fixP->fx_addnumber = *valP;
15142 }
15143
15144 static symbolS *
15145 get_symbol (void)
15146 {
15147 int c;
15148 char *name;
15149 symbolS *p;
15150
15151 c = get_symbol_name (&name);
15152 p = (symbolS *) symbol_find_or_make (name);
15153 (void) restore_line_pointer (c);
15154 return p;
15155 }
15156
15157 /* Align the current frag to a given power of two. If a particular
15158 fill byte should be used, FILL points to an integer that contains
15159 that byte, otherwise FILL is null.
15160
15161 This function used to have the comment:
15162
15163 The MIPS assembler also automatically adjusts any preceding label.
15164
15165 The implementation therefore applied the adjustment to a maximum of
15166 one label. However, other label adjustments are applied to batches
15167 of labels, and adjusting just one caused problems when new labels
15168 were added for the sake of debugging or unwind information.
15169 We therefore adjust all preceding labels (given as LABELS) instead. */
15170
15171 static void
15172 mips_align (int to, int *fill, struct insn_label_list *labels)
15173 {
15174 mips_emit_delays ();
15175 mips_record_compressed_mode ();
15176 if (fill == NULL && subseg_text_p (now_seg))
15177 frag_align_code (to, 0);
15178 else
15179 frag_align (to, fill ? *fill : 0, 0);
15180 record_alignment (now_seg, to);
15181 mips_move_labels (labels, FALSE);
15182 }
15183
15184 /* Align to a given power of two. .align 0 turns off the automatic
15185 alignment used by the data creating pseudo-ops. */
15186
15187 static void
15188 s_align (int x ATTRIBUTE_UNUSED)
15189 {
15190 int temp, fill_value, *fill_ptr;
15191 long max_alignment = 28;
15192
15193 /* o Note that the assembler pulls down any immediately preceding label
15194 to the aligned address.
15195 o It's not documented but auto alignment is reinstated by
15196 a .align pseudo instruction.
15197 o Note also that after auto alignment is turned off the mips assembler
15198 issues an error on attempt to assemble an improperly aligned data item.
15199 We don't. */
15200
15201 temp = get_absolute_expression ();
15202 if (temp > max_alignment)
15203 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15204 else if (temp < 0)
15205 {
15206 as_warn (_("alignment negative, 0 assumed"));
15207 temp = 0;
15208 }
15209 if (*input_line_pointer == ',')
15210 {
15211 ++input_line_pointer;
15212 fill_value = get_absolute_expression ();
15213 fill_ptr = &fill_value;
15214 }
15215 else
15216 fill_ptr = 0;
15217 if (temp)
15218 {
15219 segment_info_type *si = seg_info (now_seg);
15220 struct insn_label_list *l = si->label_list;
15221 /* Auto alignment should be switched on by next section change. */
15222 auto_align = 1;
15223 mips_align (temp, fill_ptr, l);
15224 }
15225 else
15226 {
15227 auto_align = 0;
15228 }
15229
15230 demand_empty_rest_of_line ();
15231 }
15232
15233 static void
15234 s_change_sec (int sec)
15235 {
15236 segT seg;
15237
15238 /* The ELF backend needs to know that we are changing sections, so
15239 that .previous works correctly. We could do something like check
15240 for an obj_section_change_hook macro, but that might be confusing
15241 as it would not be appropriate to use it in the section changing
15242 functions in read.c, since obj-elf.c intercepts those. FIXME:
15243 This should be cleaner, somehow. */
15244 obj_elf_section_change_hook ();
15245
15246 mips_emit_delays ();
15247
15248 switch (sec)
15249 {
15250 case 't':
15251 s_text (0);
15252 break;
15253 case 'd':
15254 s_data (0);
15255 break;
15256 case 'b':
15257 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15258 demand_empty_rest_of_line ();
15259 break;
15260
15261 case 'r':
15262 seg = subseg_new (RDATA_SECTION_NAME,
15263 (subsegT) get_absolute_expression ());
15264 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15265 | SEC_READONLY | SEC_RELOC
15266 | SEC_DATA));
15267 if (strncmp (TARGET_OS, "elf", 3) != 0)
15268 record_alignment (seg, 4);
15269 demand_empty_rest_of_line ();
15270 break;
15271
15272 case 's':
15273 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15274 bfd_set_section_flags (stdoutput, seg,
15275 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15276 if (strncmp (TARGET_OS, "elf", 3) != 0)
15277 record_alignment (seg, 4);
15278 demand_empty_rest_of_line ();
15279 break;
15280
15281 case 'B':
15282 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15283 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15284 if (strncmp (TARGET_OS, "elf", 3) != 0)
15285 record_alignment (seg, 4);
15286 demand_empty_rest_of_line ();
15287 break;
15288 }
15289
15290 auto_align = 1;
15291 }
15292
15293 void
15294 s_change_section (int ignore ATTRIBUTE_UNUSED)
15295 {
15296 char *saved_ilp;
15297 char *section_name;
15298 char c, endc;
15299 char next_c = 0;
15300 int section_type;
15301 int section_flag;
15302 int section_entry_size;
15303 int section_alignment;
15304
15305 saved_ilp = input_line_pointer;
15306 endc = get_symbol_name (&section_name);
15307 c = (endc == '"' ? input_line_pointer[1] : endc);
15308 if (c)
15309 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15310
15311 /* Do we have .section Name<,"flags">? */
15312 if (c != ',' || (c == ',' && next_c == '"'))
15313 {
15314 /* Just after name is now '\0'. */
15315 (void) restore_line_pointer (endc);
15316 input_line_pointer = saved_ilp;
15317 obj_elf_section (ignore);
15318 return;
15319 }
15320
15321 section_name = xstrdup (section_name);
15322 c = restore_line_pointer (endc);
15323
15324 input_line_pointer++;
15325
15326 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15327 if (c == ',')
15328 section_type = get_absolute_expression ();
15329 else
15330 section_type = 0;
15331
15332 if (*input_line_pointer++ == ',')
15333 section_flag = get_absolute_expression ();
15334 else
15335 section_flag = 0;
15336
15337 if (*input_line_pointer++ == ',')
15338 section_entry_size = get_absolute_expression ();
15339 else
15340 section_entry_size = 0;
15341
15342 if (*input_line_pointer++ == ',')
15343 section_alignment = get_absolute_expression ();
15344 else
15345 section_alignment = 0;
15346
15347 /* FIXME: really ignore? */
15348 (void) section_alignment;
15349
15350 /* When using the generic form of .section (as implemented by obj-elf.c),
15351 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15352 traditionally had to fall back on the more common @progbits instead.
15353
15354 There's nothing really harmful in this, since bfd will correct
15355 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15356 means that, for backwards compatibility, the special_section entries
15357 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15358
15359 Even so, we shouldn't force users of the MIPS .section syntax to
15360 incorrectly label the sections as SHT_PROGBITS. The best compromise
15361 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15362 generic type-checking code. */
15363 if (section_type == SHT_MIPS_DWARF)
15364 section_type = SHT_PROGBITS;
15365
15366 obj_elf_change_section (section_name, section_type, section_flag,
15367 section_entry_size, 0, 0, 0);
15368
15369 if (now_seg->name != section_name)
15370 free (section_name);
15371 }
15372
15373 void
15374 mips_enable_auto_align (void)
15375 {
15376 auto_align = 1;
15377 }
15378
15379 static void
15380 s_cons (int log_size)
15381 {
15382 segment_info_type *si = seg_info (now_seg);
15383 struct insn_label_list *l = si->label_list;
15384
15385 mips_emit_delays ();
15386 if (log_size > 0 && auto_align)
15387 mips_align (log_size, 0, l);
15388 cons (1 << log_size);
15389 mips_clear_insn_labels ();
15390 }
15391
15392 static void
15393 s_float_cons (int type)
15394 {
15395 segment_info_type *si = seg_info (now_seg);
15396 struct insn_label_list *l = si->label_list;
15397
15398 mips_emit_delays ();
15399
15400 if (auto_align)
15401 {
15402 if (type == 'd')
15403 mips_align (3, 0, l);
15404 else
15405 mips_align (2, 0, l);
15406 }
15407
15408 float_cons (type);
15409 mips_clear_insn_labels ();
15410 }
15411
15412 /* Handle .globl. We need to override it because on Irix 5 you are
15413 permitted to say
15414 .globl foo .text
15415 where foo is an undefined symbol, to mean that foo should be
15416 considered to be the address of a function. */
15417
15418 static void
15419 s_mips_globl (int x ATTRIBUTE_UNUSED)
15420 {
15421 char *name;
15422 int c;
15423 symbolS *symbolP;
15424 flagword flag;
15425
15426 do
15427 {
15428 c = get_symbol_name (&name);
15429 symbolP = symbol_find_or_make (name);
15430 S_SET_EXTERNAL (symbolP);
15431
15432 *input_line_pointer = c;
15433 SKIP_WHITESPACE_AFTER_NAME ();
15434
15435 /* On Irix 5, every global symbol that is not explicitly labelled as
15436 being a function is apparently labelled as being an object. */
15437 flag = BSF_OBJECT;
15438
15439 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15440 && (*input_line_pointer != ','))
15441 {
15442 char *secname;
15443 asection *sec;
15444
15445 c = get_symbol_name (&secname);
15446 sec = bfd_get_section_by_name (stdoutput, secname);
15447 if (sec == NULL)
15448 as_bad (_("%s: no such section"), secname);
15449 (void) restore_line_pointer (c);
15450
15451 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15452 flag = BSF_FUNCTION;
15453 }
15454
15455 symbol_get_bfdsym (symbolP)->flags |= flag;
15456
15457 c = *input_line_pointer;
15458 if (c == ',')
15459 {
15460 input_line_pointer++;
15461 SKIP_WHITESPACE ();
15462 if (is_end_of_line[(unsigned char) *input_line_pointer])
15463 c = '\n';
15464 }
15465 }
15466 while (c == ',');
15467
15468 demand_empty_rest_of_line ();
15469 }
15470
15471 static void
15472 s_option (int x ATTRIBUTE_UNUSED)
15473 {
15474 char *opt;
15475 char c;
15476
15477 c = get_symbol_name (&opt);
15478
15479 if (*opt == 'O')
15480 {
15481 /* FIXME: What does this mean? */
15482 }
15483 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15484 {
15485 int i;
15486
15487 i = atoi (opt + 3);
15488 if (i != 0 && i != 2)
15489 as_bad (_(".option pic%d not supported"), i);
15490 else if (mips_pic == VXWORKS_PIC)
15491 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15492 else if (i == 0)
15493 mips_pic = NO_PIC;
15494 else if (i == 2)
15495 {
15496 mips_pic = SVR4_PIC;
15497 mips_abicalls = TRUE;
15498 }
15499
15500 if (mips_pic == SVR4_PIC)
15501 {
15502 if (g_switch_seen && g_switch_value != 0)
15503 as_warn (_("-G may not be used with SVR4 PIC code"));
15504 g_switch_value = 0;
15505 bfd_set_gp_size (stdoutput, 0);
15506 }
15507 }
15508 else
15509 as_warn (_("unrecognized option \"%s\""), opt);
15510
15511 (void) restore_line_pointer (c);
15512 demand_empty_rest_of_line ();
15513 }
15514
15515 /* This structure is used to hold a stack of .set values. */
15516
15517 struct mips_option_stack
15518 {
15519 struct mips_option_stack *next;
15520 struct mips_set_options options;
15521 };
15522
15523 static struct mips_option_stack *mips_opts_stack;
15524
15525 /* Return status for .set/.module option handling. */
15526
15527 enum code_option_type
15528 {
15529 /* Unrecognized option. */
15530 OPTION_TYPE_BAD = -1,
15531
15532 /* Ordinary option. */
15533 OPTION_TYPE_NORMAL,
15534
15535 /* ISA changing option. */
15536 OPTION_TYPE_ISA
15537 };
15538
15539 /* Handle common .set/.module options. Return status indicating option
15540 type. */
15541
15542 static enum code_option_type
15543 parse_code_option (char * name)
15544 {
15545 bfd_boolean isa_set = FALSE;
15546 const struct mips_ase *ase;
15547
15548 if (strncmp (name, "at=", 3) == 0)
15549 {
15550 char *s = name + 3;
15551
15552 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15553 as_bad (_("unrecognized register name `%s'"), s);
15554 }
15555 else if (strcmp (name, "at") == 0)
15556 mips_opts.at = ATREG;
15557 else if (strcmp (name, "noat") == 0)
15558 mips_opts.at = ZERO;
15559 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15560 mips_opts.nomove = 0;
15561 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15562 mips_opts.nomove = 1;
15563 else if (strcmp (name, "bopt") == 0)
15564 mips_opts.nobopt = 0;
15565 else if (strcmp (name, "nobopt") == 0)
15566 mips_opts.nobopt = 1;
15567 else if (strcmp (name, "gp=32") == 0)
15568 mips_opts.gp = 32;
15569 else if (strcmp (name, "gp=64") == 0)
15570 mips_opts.gp = 64;
15571 else if (strcmp (name, "fp=32") == 0)
15572 mips_opts.fp = 32;
15573 else if (strcmp (name, "fp=xx") == 0)
15574 mips_opts.fp = 0;
15575 else if (strcmp (name, "fp=64") == 0)
15576 mips_opts.fp = 64;
15577 else if (strcmp (name, "softfloat") == 0)
15578 mips_opts.soft_float = 1;
15579 else if (strcmp (name, "hardfloat") == 0)
15580 mips_opts.soft_float = 0;
15581 else if (strcmp (name, "singlefloat") == 0)
15582 mips_opts.single_float = 1;
15583 else if (strcmp (name, "doublefloat") == 0)
15584 mips_opts.single_float = 0;
15585 else if (strcmp (name, "nooddspreg") == 0)
15586 mips_opts.oddspreg = 0;
15587 else if (strcmp (name, "oddspreg") == 0)
15588 mips_opts.oddspreg = 1;
15589 else if (strcmp (name, "mips16") == 0
15590 || strcmp (name, "MIPS-16") == 0)
15591 mips_opts.mips16 = 1;
15592 else if (strcmp (name, "nomips16") == 0
15593 || strcmp (name, "noMIPS-16") == 0)
15594 mips_opts.mips16 = 0;
15595 else if (strcmp (name, "micromips") == 0)
15596 mips_opts.micromips = 1;
15597 else if (strcmp (name, "nomicromips") == 0)
15598 mips_opts.micromips = 0;
15599 else if (name[0] == 'n'
15600 && name[1] == 'o'
15601 && (ase = mips_lookup_ase (name + 2)))
15602 mips_set_ase (ase, &mips_opts, FALSE);
15603 else if ((ase = mips_lookup_ase (name)))
15604 mips_set_ase (ase, &mips_opts, TRUE);
15605 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15606 {
15607 /* Permit the user to change the ISA and architecture on the fly.
15608 Needless to say, misuse can cause serious problems. */
15609 if (strncmp (name, "arch=", 5) == 0)
15610 {
15611 const struct mips_cpu_info *p;
15612
15613 p = mips_parse_cpu ("internal use", name + 5);
15614 if (!p)
15615 as_bad (_("unknown architecture %s"), name + 5);
15616 else
15617 {
15618 mips_opts.arch = p->cpu;
15619 mips_opts.isa = p->isa;
15620 isa_set = TRUE;
15621 }
15622 }
15623 else if (strncmp (name, "mips", 4) == 0)
15624 {
15625 const struct mips_cpu_info *p;
15626
15627 p = mips_parse_cpu ("internal use", name);
15628 if (!p)
15629 as_bad (_("unknown ISA level %s"), name + 4);
15630 else
15631 {
15632 mips_opts.arch = p->cpu;
15633 mips_opts.isa = p->isa;
15634 isa_set = TRUE;
15635 }
15636 }
15637 else
15638 as_bad (_("unknown ISA or architecture %s"), name);
15639 }
15640 else if (strcmp (name, "autoextend") == 0)
15641 mips_opts.noautoextend = 0;
15642 else if (strcmp (name, "noautoextend") == 0)
15643 mips_opts.noautoextend = 1;
15644 else if (strcmp (name, "insn32") == 0)
15645 mips_opts.insn32 = TRUE;
15646 else if (strcmp (name, "noinsn32") == 0)
15647 mips_opts.insn32 = FALSE;
15648 else if (strcmp (name, "sym32") == 0)
15649 mips_opts.sym32 = TRUE;
15650 else if (strcmp (name, "nosym32") == 0)
15651 mips_opts.sym32 = FALSE;
15652 else
15653 return OPTION_TYPE_BAD;
15654
15655 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
15656 }
15657
15658 /* Handle the .set pseudo-op. */
15659
15660 static void
15661 s_mipsset (int x ATTRIBUTE_UNUSED)
15662 {
15663 enum code_option_type type = OPTION_TYPE_NORMAL;
15664 char *name = input_line_pointer, ch;
15665
15666 file_mips_check_options ();
15667
15668 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15669 ++input_line_pointer;
15670 ch = *input_line_pointer;
15671 *input_line_pointer = '\0';
15672
15673 if (strchr (name, ','))
15674 {
15675 /* Generic ".set" directive; use the generic handler. */
15676 *input_line_pointer = ch;
15677 input_line_pointer = name;
15678 s_set (0);
15679 return;
15680 }
15681
15682 if (strcmp (name, "reorder") == 0)
15683 {
15684 if (mips_opts.noreorder)
15685 end_noreorder ();
15686 }
15687 else if (strcmp (name, "noreorder") == 0)
15688 {
15689 if (!mips_opts.noreorder)
15690 start_noreorder ();
15691 }
15692 else if (strcmp (name, "macro") == 0)
15693 mips_opts.warn_about_macros = 0;
15694 else if (strcmp (name, "nomacro") == 0)
15695 {
15696 if (mips_opts.noreorder == 0)
15697 as_bad (_("`noreorder' must be set before `nomacro'"));
15698 mips_opts.warn_about_macros = 1;
15699 }
15700 else if (strcmp (name, "gp=default") == 0)
15701 mips_opts.gp = file_mips_opts.gp;
15702 else if (strcmp (name, "fp=default") == 0)
15703 mips_opts.fp = file_mips_opts.fp;
15704 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15705 {
15706 mips_opts.isa = file_mips_opts.isa;
15707 mips_opts.arch = file_mips_opts.arch;
15708 mips_opts.gp = file_mips_opts.gp;
15709 mips_opts.fp = file_mips_opts.fp;
15710 }
15711 else if (strcmp (name, "push") == 0)
15712 {
15713 struct mips_option_stack *s;
15714
15715 s = XNEW (struct mips_option_stack);
15716 s->next = mips_opts_stack;
15717 s->options = mips_opts;
15718 mips_opts_stack = s;
15719 }
15720 else if (strcmp (name, "pop") == 0)
15721 {
15722 struct mips_option_stack *s;
15723
15724 s = mips_opts_stack;
15725 if (s == NULL)
15726 as_bad (_(".set pop with no .set push"));
15727 else
15728 {
15729 /* If we're changing the reorder mode we need to handle
15730 delay slots correctly. */
15731 if (s->options.noreorder && ! mips_opts.noreorder)
15732 start_noreorder ();
15733 else if (! s->options.noreorder && mips_opts.noreorder)
15734 end_noreorder ();
15735
15736 mips_opts = s->options;
15737 mips_opts_stack = s->next;
15738 free (s);
15739 }
15740 }
15741 else
15742 {
15743 type = parse_code_option (name);
15744 if (type == OPTION_TYPE_BAD)
15745 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15746 }
15747
15748 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15749 registers based on what is supported by the arch/cpu. */
15750 if (type == OPTION_TYPE_ISA)
15751 {
15752 switch (mips_opts.isa)
15753 {
15754 case 0:
15755 break;
15756 case ISA_MIPS1:
15757 /* MIPS I cannot support FPXX. */
15758 mips_opts.fp = 32;
15759 /* fall-through. */
15760 case ISA_MIPS2:
15761 case ISA_MIPS32:
15762 case ISA_MIPS32R2:
15763 case ISA_MIPS32R3:
15764 case ISA_MIPS32R5:
15765 mips_opts.gp = 32;
15766 if (mips_opts.fp != 0)
15767 mips_opts.fp = 32;
15768 break;
15769 case ISA_MIPS32R6:
15770 mips_opts.gp = 32;
15771 mips_opts.fp = 64;
15772 break;
15773 case ISA_MIPS3:
15774 case ISA_MIPS4:
15775 case ISA_MIPS5:
15776 case ISA_MIPS64:
15777 case ISA_MIPS64R2:
15778 case ISA_MIPS64R3:
15779 case ISA_MIPS64R5:
15780 case ISA_MIPS64R6:
15781 mips_opts.gp = 64;
15782 if (mips_opts.fp != 0)
15783 {
15784 if (mips_opts.arch == CPU_R5900)
15785 mips_opts.fp = 32;
15786 else
15787 mips_opts.fp = 64;
15788 }
15789 break;
15790 default:
15791 as_bad (_("unknown ISA level %s"), name + 4);
15792 break;
15793 }
15794 }
15795
15796 mips_check_options (&mips_opts, FALSE);
15797
15798 mips_check_isa_supports_ases ();
15799 *input_line_pointer = ch;
15800 demand_empty_rest_of_line ();
15801 }
15802
15803 /* Handle the .module pseudo-op. */
15804
15805 static void
15806 s_module (int ignore ATTRIBUTE_UNUSED)
15807 {
15808 char *name = input_line_pointer, ch;
15809
15810 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15811 ++input_line_pointer;
15812 ch = *input_line_pointer;
15813 *input_line_pointer = '\0';
15814
15815 if (!file_mips_opts_checked)
15816 {
15817 if (parse_code_option (name) == OPTION_TYPE_BAD)
15818 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15819
15820 /* Update module level settings from mips_opts. */
15821 file_mips_opts = mips_opts;
15822 }
15823 else
15824 as_bad (_(".module is not permitted after generating code"));
15825
15826 *input_line_pointer = ch;
15827 demand_empty_rest_of_line ();
15828 }
15829
15830 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15831 .option pic2. It means to generate SVR4 PIC calls. */
15832
15833 static void
15834 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15835 {
15836 mips_pic = SVR4_PIC;
15837 mips_abicalls = TRUE;
15838
15839 if (g_switch_seen && g_switch_value != 0)
15840 as_warn (_("-G may not be used with SVR4 PIC code"));
15841 g_switch_value = 0;
15842
15843 bfd_set_gp_size (stdoutput, 0);
15844 demand_empty_rest_of_line ();
15845 }
15846
15847 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15848 PIC code. It sets the $gp register for the function based on the
15849 function address, which is in the register named in the argument.
15850 This uses a relocation against _gp_disp, which is handled specially
15851 by the linker. The result is:
15852 lui $gp,%hi(_gp_disp)
15853 addiu $gp,$gp,%lo(_gp_disp)
15854 addu $gp,$gp,.cpload argument
15855 The .cpload argument is normally $25 == $t9.
15856
15857 The -mno-shared option changes this to:
15858 lui $gp,%hi(__gnu_local_gp)
15859 addiu $gp,$gp,%lo(__gnu_local_gp)
15860 and the argument is ignored. This saves an instruction, but the
15861 resulting code is not position independent; it uses an absolute
15862 address for __gnu_local_gp. Thus code assembled with -mno-shared
15863 can go into an ordinary executable, but not into a shared library. */
15864
15865 static void
15866 s_cpload (int ignore ATTRIBUTE_UNUSED)
15867 {
15868 expressionS ex;
15869 int reg;
15870 int in_shared;
15871
15872 file_mips_check_options ();
15873
15874 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15875 .cpload is ignored. */
15876 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15877 {
15878 s_ignore (0);
15879 return;
15880 }
15881
15882 if (mips_opts.mips16)
15883 {
15884 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15885 ignore_rest_of_line ();
15886 return;
15887 }
15888
15889 /* .cpload should be in a .set noreorder section. */
15890 if (mips_opts.noreorder == 0)
15891 as_warn (_(".cpload not in noreorder section"));
15892
15893 reg = tc_get_register (0);
15894
15895 /* If we need to produce a 64-bit address, we are better off using
15896 the default instruction sequence. */
15897 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15898
15899 ex.X_op = O_symbol;
15900 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15901 "__gnu_local_gp");
15902 ex.X_op_symbol = NULL;
15903 ex.X_add_number = 0;
15904
15905 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15906 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15907
15908 mips_mark_labels ();
15909 mips_assembling_insn = TRUE;
15910
15911 macro_start ();
15912 macro_build_lui (&ex, mips_gp_register);
15913 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15914 mips_gp_register, BFD_RELOC_LO16);
15915 if (in_shared)
15916 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15917 mips_gp_register, reg);
15918 macro_end ();
15919
15920 mips_assembling_insn = FALSE;
15921 demand_empty_rest_of_line ();
15922 }
15923
15924 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15925 .cpsetup $reg1, offset|$reg2, label
15926
15927 If offset is given, this results in:
15928 sd $gp, offset($sp)
15929 lui $gp, %hi(%neg(%gp_rel(label)))
15930 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15931 daddu $gp, $gp, $reg1
15932
15933 If $reg2 is given, this results in:
15934 or $reg2, $gp, $0
15935 lui $gp, %hi(%neg(%gp_rel(label)))
15936 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15937 daddu $gp, $gp, $reg1
15938 $reg1 is normally $25 == $t9.
15939
15940 The -mno-shared option replaces the last three instructions with
15941 lui $gp,%hi(_gp)
15942 addiu $gp,$gp,%lo(_gp) */
15943
15944 static void
15945 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15946 {
15947 expressionS ex_off;
15948 expressionS ex_sym;
15949 int reg1;
15950
15951 file_mips_check_options ();
15952
15953 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15954 We also need NewABI support. */
15955 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15956 {
15957 s_ignore (0);
15958 return;
15959 }
15960
15961 if (mips_opts.mips16)
15962 {
15963 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15964 ignore_rest_of_line ();
15965 return;
15966 }
15967
15968 reg1 = tc_get_register (0);
15969 SKIP_WHITESPACE ();
15970 if (*input_line_pointer != ',')
15971 {
15972 as_bad (_("missing argument separator ',' for .cpsetup"));
15973 return;
15974 }
15975 else
15976 ++input_line_pointer;
15977 SKIP_WHITESPACE ();
15978 if (*input_line_pointer == '$')
15979 {
15980 mips_cpreturn_register = tc_get_register (0);
15981 mips_cpreturn_offset = -1;
15982 }
15983 else
15984 {
15985 mips_cpreturn_offset = get_absolute_expression ();
15986 mips_cpreturn_register = -1;
15987 }
15988 SKIP_WHITESPACE ();
15989 if (*input_line_pointer != ',')
15990 {
15991 as_bad (_("missing argument separator ',' for .cpsetup"));
15992 return;
15993 }
15994 else
15995 ++input_line_pointer;
15996 SKIP_WHITESPACE ();
15997 expression (&ex_sym);
15998
15999 mips_mark_labels ();
16000 mips_assembling_insn = TRUE;
16001
16002 macro_start ();
16003 if (mips_cpreturn_register == -1)
16004 {
16005 ex_off.X_op = O_constant;
16006 ex_off.X_add_symbol = NULL;
16007 ex_off.X_op_symbol = NULL;
16008 ex_off.X_add_number = mips_cpreturn_offset;
16009
16010 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16011 BFD_RELOC_LO16, SP);
16012 }
16013 else
16014 move_register (mips_cpreturn_register, mips_gp_register);
16015
16016 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16017 {
16018 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16019 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16020 BFD_RELOC_HI16_S);
16021
16022 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16023 mips_gp_register, -1, BFD_RELOC_GPREL16,
16024 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16025
16026 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16027 mips_gp_register, reg1);
16028 }
16029 else
16030 {
16031 expressionS ex;
16032
16033 ex.X_op = O_symbol;
16034 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16035 ex.X_op_symbol = NULL;
16036 ex.X_add_number = 0;
16037
16038 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16039 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16040
16041 macro_build_lui (&ex, mips_gp_register);
16042 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16043 mips_gp_register, BFD_RELOC_LO16);
16044 }
16045
16046 macro_end ();
16047
16048 mips_assembling_insn = FALSE;
16049 demand_empty_rest_of_line ();
16050 }
16051
16052 static void
16053 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16054 {
16055 file_mips_check_options ();
16056
16057 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16058 .cplocal is ignored. */
16059 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16060 {
16061 s_ignore (0);
16062 return;
16063 }
16064
16065 if (mips_opts.mips16)
16066 {
16067 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16068 ignore_rest_of_line ();
16069 return;
16070 }
16071
16072 mips_gp_register = tc_get_register (0);
16073 demand_empty_rest_of_line ();
16074 }
16075
16076 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16077 offset from $sp. The offset is remembered, and after making a PIC
16078 call $gp is restored from that location. */
16079
16080 static void
16081 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16082 {
16083 expressionS ex;
16084
16085 file_mips_check_options ();
16086
16087 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16088 .cprestore is ignored. */
16089 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16090 {
16091 s_ignore (0);
16092 return;
16093 }
16094
16095 if (mips_opts.mips16)
16096 {
16097 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16098 ignore_rest_of_line ();
16099 return;
16100 }
16101
16102 mips_cprestore_offset = get_absolute_expression ();
16103 mips_cprestore_valid = 1;
16104
16105 ex.X_op = O_constant;
16106 ex.X_add_symbol = NULL;
16107 ex.X_op_symbol = NULL;
16108 ex.X_add_number = mips_cprestore_offset;
16109
16110 mips_mark_labels ();
16111 mips_assembling_insn = TRUE;
16112
16113 macro_start ();
16114 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16115 SP, HAVE_64BIT_ADDRESSES);
16116 macro_end ();
16117
16118 mips_assembling_insn = FALSE;
16119 demand_empty_rest_of_line ();
16120 }
16121
16122 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16123 was given in the preceding .cpsetup, it results in:
16124 ld $gp, offset($sp)
16125
16126 If a register $reg2 was given there, it results in:
16127 or $gp, $reg2, $0 */
16128
16129 static void
16130 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16131 {
16132 expressionS ex;
16133
16134 file_mips_check_options ();
16135
16136 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16137 We also need NewABI support. */
16138 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16139 {
16140 s_ignore (0);
16141 return;
16142 }
16143
16144 if (mips_opts.mips16)
16145 {
16146 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16147 ignore_rest_of_line ();
16148 return;
16149 }
16150
16151 mips_mark_labels ();
16152 mips_assembling_insn = TRUE;
16153
16154 macro_start ();
16155 if (mips_cpreturn_register == -1)
16156 {
16157 ex.X_op = O_constant;
16158 ex.X_add_symbol = NULL;
16159 ex.X_op_symbol = NULL;
16160 ex.X_add_number = mips_cpreturn_offset;
16161
16162 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16163 }
16164 else
16165 move_register (mips_gp_register, mips_cpreturn_register);
16166
16167 macro_end ();
16168
16169 mips_assembling_insn = FALSE;
16170 demand_empty_rest_of_line ();
16171 }
16172
16173 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16174 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16175 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16176 debug information or MIPS16 TLS. */
16177
16178 static void
16179 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16180 bfd_reloc_code_real_type rtype)
16181 {
16182 expressionS ex;
16183 char *p;
16184
16185 expression (&ex);
16186
16187 if (ex.X_op != O_symbol)
16188 {
16189 as_bad (_("unsupported use of %s"), dirstr);
16190 ignore_rest_of_line ();
16191 }
16192
16193 p = frag_more (bytes);
16194 md_number_to_chars (p, 0, bytes);
16195 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16196 demand_empty_rest_of_line ();
16197 mips_clear_insn_labels ();
16198 }
16199
16200 /* Handle .dtprelword. */
16201
16202 static void
16203 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16204 {
16205 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16206 }
16207
16208 /* Handle .dtpreldword. */
16209
16210 static void
16211 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16212 {
16213 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16214 }
16215
16216 /* Handle .tprelword. */
16217
16218 static void
16219 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16220 {
16221 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16222 }
16223
16224 /* Handle .tpreldword. */
16225
16226 static void
16227 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16228 {
16229 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16230 }
16231
16232 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16233 code. It sets the offset to use in gp_rel relocations. */
16234
16235 static void
16236 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16237 {
16238 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16239 We also need NewABI support. */
16240 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16241 {
16242 s_ignore (0);
16243 return;
16244 }
16245
16246 mips_gprel_offset = get_absolute_expression ();
16247
16248 demand_empty_rest_of_line ();
16249 }
16250
16251 /* Handle the .gpword pseudo-op. This is used when generating PIC
16252 code. It generates a 32 bit GP relative reloc. */
16253
16254 static void
16255 s_gpword (int ignore ATTRIBUTE_UNUSED)
16256 {
16257 segment_info_type *si;
16258 struct insn_label_list *l;
16259 expressionS ex;
16260 char *p;
16261
16262 /* When not generating PIC code, this is treated as .word. */
16263 if (mips_pic != SVR4_PIC)
16264 {
16265 s_cons (2);
16266 return;
16267 }
16268
16269 si = seg_info (now_seg);
16270 l = si->label_list;
16271 mips_emit_delays ();
16272 if (auto_align)
16273 mips_align (2, 0, l);
16274
16275 expression (&ex);
16276 mips_clear_insn_labels ();
16277
16278 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16279 {
16280 as_bad (_("unsupported use of .gpword"));
16281 ignore_rest_of_line ();
16282 }
16283
16284 p = frag_more (4);
16285 md_number_to_chars (p, 0, 4);
16286 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16287 BFD_RELOC_GPREL32);
16288
16289 demand_empty_rest_of_line ();
16290 }
16291
16292 static void
16293 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16294 {
16295 segment_info_type *si;
16296 struct insn_label_list *l;
16297 expressionS ex;
16298 char *p;
16299
16300 /* When not generating PIC code, this is treated as .dword. */
16301 if (mips_pic != SVR4_PIC)
16302 {
16303 s_cons (3);
16304 return;
16305 }
16306
16307 si = seg_info (now_seg);
16308 l = si->label_list;
16309 mips_emit_delays ();
16310 if (auto_align)
16311 mips_align (3, 0, l);
16312
16313 expression (&ex);
16314 mips_clear_insn_labels ();
16315
16316 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16317 {
16318 as_bad (_("unsupported use of .gpdword"));
16319 ignore_rest_of_line ();
16320 }
16321
16322 p = frag_more (8);
16323 md_number_to_chars (p, 0, 8);
16324 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16325 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16326
16327 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16328 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16329 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16330
16331 demand_empty_rest_of_line ();
16332 }
16333
16334 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16335 tables. It generates a R_MIPS_EH reloc. */
16336
16337 static void
16338 s_ehword (int ignore ATTRIBUTE_UNUSED)
16339 {
16340 expressionS ex;
16341 char *p;
16342
16343 mips_emit_delays ();
16344
16345 expression (&ex);
16346 mips_clear_insn_labels ();
16347
16348 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16349 {
16350 as_bad (_("unsupported use of .ehword"));
16351 ignore_rest_of_line ();
16352 }
16353
16354 p = frag_more (4);
16355 md_number_to_chars (p, 0, 4);
16356 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16357 BFD_RELOC_32_PCREL);
16358
16359 demand_empty_rest_of_line ();
16360 }
16361
16362 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16363 tables in SVR4 PIC code. */
16364
16365 static void
16366 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16367 {
16368 int reg;
16369
16370 file_mips_check_options ();
16371
16372 /* This is ignored when not generating SVR4 PIC code. */
16373 if (mips_pic != SVR4_PIC)
16374 {
16375 s_ignore (0);
16376 return;
16377 }
16378
16379 mips_mark_labels ();
16380 mips_assembling_insn = TRUE;
16381
16382 /* Add $gp to the register named as an argument. */
16383 macro_start ();
16384 reg = tc_get_register (0);
16385 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16386 macro_end ();
16387
16388 mips_assembling_insn = FALSE;
16389 demand_empty_rest_of_line ();
16390 }
16391
16392 /* Handle the .insn pseudo-op. This marks instruction labels in
16393 mips16/micromips mode. This permits the linker to handle them specially,
16394 such as generating jalx instructions when needed. We also make
16395 them odd for the duration of the assembly, in order to generate the
16396 right sort of code. We will make them even in the adjust_symtab
16397 routine, while leaving them marked. This is convenient for the
16398 debugger and the disassembler. The linker knows to make them odd
16399 again. */
16400
16401 static void
16402 s_insn (int ignore ATTRIBUTE_UNUSED)
16403 {
16404 file_mips_check_options ();
16405 file_ase_mips16 |= mips_opts.mips16;
16406 file_ase_micromips |= mips_opts.micromips;
16407
16408 mips_mark_labels ();
16409
16410 demand_empty_rest_of_line ();
16411 }
16412
16413 /* Handle the .nan pseudo-op. */
16414
16415 static void
16416 s_nan (int ignore ATTRIBUTE_UNUSED)
16417 {
16418 static const char str_legacy[] = "legacy";
16419 static const char str_2008[] = "2008";
16420 size_t i;
16421
16422 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16423
16424 if (i == sizeof (str_2008) - 1
16425 && memcmp (input_line_pointer, str_2008, i) == 0)
16426 mips_nan2008 = 1;
16427 else if (i == sizeof (str_legacy) - 1
16428 && memcmp (input_line_pointer, str_legacy, i) == 0)
16429 {
16430 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16431 mips_nan2008 = 0;
16432 else
16433 as_bad (_("`%s' does not support legacy NaN"),
16434 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16435 }
16436 else
16437 as_bad (_("bad .nan directive"));
16438
16439 input_line_pointer += i;
16440 demand_empty_rest_of_line ();
16441 }
16442
16443 /* Handle a .stab[snd] directive. Ideally these directives would be
16444 implemented in a transparent way, so that removing them would not
16445 have any effect on the generated instructions. However, s_stab
16446 internally changes the section, so in practice we need to decide
16447 now whether the preceding label marks compressed code. We do not
16448 support changing the compression mode of a label after a .stab*
16449 directive, such as in:
16450
16451 foo:
16452 .stabs ...
16453 .set mips16
16454
16455 so the current mode wins. */
16456
16457 static void
16458 s_mips_stab (int type)
16459 {
16460 mips_mark_labels ();
16461 s_stab (type);
16462 }
16463
16464 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16465
16466 static void
16467 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16468 {
16469 char *name;
16470 int c;
16471 symbolS *symbolP;
16472 expressionS exp;
16473
16474 c = get_symbol_name (&name);
16475 symbolP = symbol_find_or_make (name);
16476 S_SET_WEAK (symbolP);
16477 *input_line_pointer = c;
16478
16479 SKIP_WHITESPACE_AFTER_NAME ();
16480
16481 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16482 {
16483 if (S_IS_DEFINED (symbolP))
16484 {
16485 as_bad (_("ignoring attempt to redefine symbol %s"),
16486 S_GET_NAME (symbolP));
16487 ignore_rest_of_line ();
16488 return;
16489 }
16490
16491 if (*input_line_pointer == ',')
16492 {
16493 ++input_line_pointer;
16494 SKIP_WHITESPACE ();
16495 }
16496
16497 expression (&exp);
16498 if (exp.X_op != O_symbol)
16499 {
16500 as_bad (_("bad .weakext directive"));
16501 ignore_rest_of_line ();
16502 return;
16503 }
16504 symbol_set_value_expression (symbolP, &exp);
16505 }
16506
16507 demand_empty_rest_of_line ();
16508 }
16509
16510 /* Parse a register string into a number. Called from the ECOFF code
16511 to parse .frame. The argument is non-zero if this is the frame
16512 register, so that we can record it in mips_frame_reg. */
16513
16514 int
16515 tc_get_register (int frame)
16516 {
16517 unsigned int reg;
16518
16519 SKIP_WHITESPACE ();
16520 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16521 reg = 0;
16522 if (frame)
16523 {
16524 mips_frame_reg = reg != 0 ? reg : SP;
16525 mips_frame_reg_valid = 1;
16526 mips_cprestore_valid = 0;
16527 }
16528 return reg;
16529 }
16530
16531 valueT
16532 md_section_align (asection *seg, valueT addr)
16533 {
16534 int align = bfd_get_section_alignment (stdoutput, seg);
16535
16536 /* We don't need to align ELF sections to the full alignment.
16537 However, Irix 5 may prefer that we align them at least to a 16
16538 byte boundary. We don't bother to align the sections if we
16539 are targeted for an embedded system. */
16540 if (strncmp (TARGET_OS, "elf", 3) == 0)
16541 return addr;
16542 if (align > 4)
16543 align = 4;
16544
16545 return ((addr + (1 << align) - 1) & -(1 << align));
16546 }
16547
16548 /* Utility routine, called from above as well. If called while the
16549 input file is still being read, it's only an approximation. (For
16550 example, a symbol may later become defined which appeared to be
16551 undefined earlier.) */
16552
16553 static int
16554 nopic_need_relax (symbolS *sym, int before_relaxing)
16555 {
16556 if (sym == 0)
16557 return 0;
16558
16559 if (g_switch_value > 0)
16560 {
16561 const char *symname;
16562 int change;
16563
16564 /* Find out whether this symbol can be referenced off the $gp
16565 register. It can be if it is smaller than the -G size or if
16566 it is in the .sdata or .sbss section. Certain symbols can
16567 not be referenced off the $gp, although it appears as though
16568 they can. */
16569 symname = S_GET_NAME (sym);
16570 if (symname != (const char *) NULL
16571 && (strcmp (symname, "eprol") == 0
16572 || strcmp (symname, "etext") == 0
16573 || strcmp (symname, "_gp") == 0
16574 || strcmp (symname, "edata") == 0
16575 || strcmp (symname, "_fbss") == 0
16576 || strcmp (symname, "_fdata") == 0
16577 || strcmp (symname, "_ftext") == 0
16578 || strcmp (symname, "end") == 0
16579 || strcmp (symname, "_gp_disp") == 0))
16580 change = 1;
16581 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16582 && (0
16583 #ifndef NO_ECOFF_DEBUGGING
16584 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16585 && (symbol_get_obj (sym)->ecoff_extern_size
16586 <= g_switch_value))
16587 #endif
16588 /* We must defer this decision until after the whole
16589 file has been read, since there might be a .extern
16590 after the first use of this symbol. */
16591 || (before_relaxing
16592 #ifndef NO_ECOFF_DEBUGGING
16593 && symbol_get_obj (sym)->ecoff_extern_size == 0
16594 #endif
16595 && S_GET_VALUE (sym) == 0)
16596 || (S_GET_VALUE (sym) != 0
16597 && S_GET_VALUE (sym) <= g_switch_value)))
16598 change = 0;
16599 else
16600 {
16601 const char *segname;
16602
16603 segname = segment_name (S_GET_SEGMENT (sym));
16604 gas_assert (strcmp (segname, ".lit8") != 0
16605 && strcmp (segname, ".lit4") != 0);
16606 change = (strcmp (segname, ".sdata") != 0
16607 && strcmp (segname, ".sbss") != 0
16608 && strncmp (segname, ".sdata.", 7) != 0
16609 && strncmp (segname, ".sbss.", 6) != 0
16610 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16611 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16612 }
16613 return change;
16614 }
16615 else
16616 /* We are not optimizing for the $gp register. */
16617 return 1;
16618 }
16619
16620
16621 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16622
16623 static bfd_boolean
16624 pic_need_relax (symbolS *sym, asection *segtype)
16625 {
16626 asection *symsec;
16627
16628 /* Handle the case of a symbol equated to another symbol. */
16629 while (symbol_equated_reloc_p (sym))
16630 {
16631 symbolS *n;
16632
16633 /* It's possible to get a loop here in a badly written program. */
16634 n = symbol_get_value_expression (sym)->X_add_symbol;
16635 if (n == sym)
16636 break;
16637 sym = n;
16638 }
16639
16640 if (symbol_section_p (sym))
16641 return TRUE;
16642
16643 symsec = S_GET_SEGMENT (sym);
16644
16645 /* This must duplicate the test in adjust_reloc_syms. */
16646 return (!bfd_is_und_section (symsec)
16647 && !bfd_is_abs_section (symsec)
16648 && !bfd_is_com_section (symsec)
16649 && !s_is_linkonce (sym, segtype)
16650 /* A global or weak symbol is treated as external. */
16651 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16652 }
16653
16654
16655 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16656 extended opcode. SEC is the section the frag is in. */
16657
16658 static int
16659 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16660 {
16661 int type;
16662 const struct mips_int_operand *operand;
16663 offsetT val;
16664 segT symsec;
16665 fragS *sym_frag;
16666
16667 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16668 return 0;
16669 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16670 return 1;
16671
16672 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16673 operand = mips16_immed_operand (type, FALSE);
16674
16675 sym_frag = symbol_get_frag (fragp->fr_symbol);
16676 val = S_GET_VALUE (fragp->fr_symbol);
16677 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16678
16679 if (operand->root.type == OP_PCREL)
16680 {
16681 const struct mips_pcrel_operand *pcrel_op;
16682 addressT addr;
16683 offsetT maxtiny;
16684
16685 /* We won't have the section when we are called from
16686 mips_relax_frag. However, we will always have been called
16687 from md_estimate_size_before_relax first. If this is a
16688 branch to a different section, we mark it as such. If SEC is
16689 NULL, and the frag is not marked, then it must be a branch to
16690 the same section. */
16691 pcrel_op = (const struct mips_pcrel_operand *) operand;
16692 if (sec == NULL)
16693 {
16694 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16695 return 1;
16696 }
16697 else
16698 {
16699 /* Must have been called from md_estimate_size_before_relax. */
16700 if (symsec != sec)
16701 {
16702 fragp->fr_subtype =
16703 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16704
16705 /* FIXME: We should support this, and let the linker
16706 catch branches and loads that are out of range. */
16707 as_bad_where (fragp->fr_file, fragp->fr_line,
16708 _("unsupported PC relative reference to different section"));
16709
16710 return 1;
16711 }
16712 if (fragp != sym_frag && sym_frag->fr_address == 0)
16713 /* Assume non-extended on the first relaxation pass.
16714 The address we have calculated will be bogus if this is
16715 a forward branch to another frag, as the forward frag
16716 will have fr_address == 0. */
16717 return 0;
16718 }
16719
16720 /* In this case, we know for sure that the symbol fragment is in
16721 the same section. If the relax_marker of the symbol fragment
16722 differs from the relax_marker of this fragment, we have not
16723 yet adjusted the symbol fragment fr_address. We want to add
16724 in STRETCH in order to get a better estimate of the address.
16725 This particularly matters because of the shift bits. */
16726 if (stretch != 0
16727 && sym_frag->relax_marker != fragp->relax_marker)
16728 {
16729 fragS *f;
16730
16731 /* Adjust stretch for any alignment frag. Note that if have
16732 been expanding the earlier code, the symbol may be
16733 defined in what appears to be an earlier frag. FIXME:
16734 This doesn't handle the fr_subtype field, which specifies
16735 a maximum number of bytes to skip when doing an
16736 alignment. */
16737 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16738 {
16739 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16740 {
16741 if (stretch < 0)
16742 stretch = - ((- stretch)
16743 & ~ ((1 << (int) f->fr_offset) - 1));
16744 else
16745 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16746 if (stretch == 0)
16747 break;
16748 }
16749 }
16750 if (f != NULL)
16751 val += stretch;
16752 }
16753
16754 addr = fragp->fr_address + fragp->fr_fix;
16755
16756 /* The base address rules are complicated. The base address of
16757 a branch is the following instruction. The base address of a
16758 PC relative load or add is the instruction itself, but if it
16759 is in a delay slot (in which case it can not be extended) use
16760 the address of the instruction whose delay slot it is in. */
16761 if (pcrel_op->include_isa_bit)
16762 {
16763 addr += 2;
16764
16765 /* If we are currently assuming that this frag should be
16766 extended, then, the current address is two bytes
16767 higher. */
16768 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16769 addr += 2;
16770
16771 /* Ignore the low bit in the target, since it will be set
16772 for a text label. */
16773 val &= -2;
16774 }
16775 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16776 addr -= 4;
16777 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16778 addr -= 2;
16779
16780 val -= addr & -(1 << pcrel_op->align_log2);
16781
16782 /* If any of the shifted bits are set, we must use an extended
16783 opcode. If the address depends on the size of this
16784 instruction, this can lead to a loop, so we arrange to always
16785 use an extended opcode. We only check this when we are in
16786 the main relaxation loop, when SEC is NULL. */
16787 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16788 {
16789 fragp->fr_subtype =
16790 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16791 return 1;
16792 }
16793
16794 /* If we are about to mark a frag as extended because the value
16795 is precisely the next value above maxtiny, then there is a
16796 chance of an infinite loop as in the following code:
16797 la $4,foo
16798 .skip 1020
16799 .align 2
16800 foo:
16801 In this case when the la is extended, foo is 0x3fc bytes
16802 away, so the la can be shrunk, but then foo is 0x400 away, so
16803 the la must be extended. To avoid this loop, we mark the
16804 frag as extended if it was small, and is about to become
16805 extended with the next value above maxtiny. */
16806 maxtiny = mips_int_operand_max (operand);
16807 if (val == maxtiny + (1 << operand->shift)
16808 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16809 && sec == NULL)
16810 {
16811 fragp->fr_subtype =
16812 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16813 return 1;
16814 }
16815 }
16816 else if (symsec != absolute_section && sec != NULL)
16817 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16818
16819 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16820 }
16821
16822 /* Compute the length of a branch sequence, and adjust the
16823 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16824 worst-case length is computed, with UPDATE being used to indicate
16825 whether an unconditional (-1), branch-likely (+1) or regular (0)
16826 branch is to be computed. */
16827 static int
16828 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16829 {
16830 bfd_boolean toofar;
16831 int length;
16832
16833 if (fragp
16834 && S_IS_DEFINED (fragp->fr_symbol)
16835 && !S_IS_WEAK (fragp->fr_symbol)
16836 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16837 {
16838 addressT addr;
16839 offsetT val;
16840
16841 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16842
16843 addr = fragp->fr_address + fragp->fr_fix + 4;
16844
16845 val -= addr;
16846
16847 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16848 }
16849 else
16850 /* If the symbol is not defined or it's in a different segment,
16851 we emit the long sequence. */
16852 toofar = TRUE;
16853
16854 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16855 fragp->fr_subtype
16856 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16857 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16858 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16859 RELAX_BRANCH_LINK (fragp->fr_subtype),
16860 toofar);
16861
16862 length = 4;
16863 if (toofar)
16864 {
16865 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16866 length += 8;
16867
16868 if (mips_pic != NO_PIC)
16869 {
16870 /* Additional space for PIC loading of target address. */
16871 length += 8;
16872 if (mips_opts.isa == ISA_MIPS1)
16873 /* Additional space for $at-stabilizing nop. */
16874 length += 4;
16875 }
16876
16877 /* If branch is conditional. */
16878 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16879 length += 8;
16880 }
16881
16882 return length;
16883 }
16884
16885 /* Compute the length of a branch sequence, and adjust the
16886 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16887 worst-case length is computed, with UPDATE being used to indicate
16888 whether an unconditional (-1), or regular (0) branch is to be
16889 computed. */
16890
16891 static int
16892 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16893 {
16894 bfd_boolean toofar;
16895 int length;
16896
16897 if (fragp
16898 && S_IS_DEFINED (fragp->fr_symbol)
16899 && !S_IS_WEAK (fragp->fr_symbol)
16900 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16901 {
16902 addressT addr;
16903 offsetT val;
16904
16905 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16906 /* Ignore the low bit in the target, since it will be set
16907 for a text label. */
16908 if ((val & 1) != 0)
16909 --val;
16910
16911 addr = fragp->fr_address + fragp->fr_fix + 4;
16912
16913 val -= addr;
16914
16915 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16916 }
16917 else
16918 /* If the symbol is not defined or it's in a different segment,
16919 we emit the long sequence. */
16920 toofar = TRUE;
16921
16922 if (fragp && update
16923 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16924 fragp->fr_subtype = (toofar
16925 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16926 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16927
16928 length = 4;
16929 if (toofar)
16930 {
16931 bfd_boolean compact_known = fragp != NULL;
16932 bfd_boolean compact = FALSE;
16933 bfd_boolean uncond;
16934
16935 if (compact_known)
16936 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16937 if (fragp)
16938 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16939 else
16940 uncond = update < 0;
16941
16942 /* If label is out of range, we turn branch <br>:
16943
16944 <br> label # 4 bytes
16945 0:
16946
16947 into:
16948
16949 j label # 4 bytes
16950 nop # 2 bytes if compact && !PIC
16951 0:
16952 */
16953 if (mips_pic == NO_PIC && (!compact_known || compact))
16954 length += 2;
16955
16956 /* If assembling PIC code, we further turn:
16957
16958 j label # 4 bytes
16959
16960 into:
16961
16962 lw/ld at, %got(label)(gp) # 4 bytes
16963 d/addiu at, %lo(label) # 4 bytes
16964 jr/c at # 2 bytes
16965 */
16966 if (mips_pic != NO_PIC)
16967 length += 6;
16968
16969 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16970
16971 <brneg> 0f # 4 bytes
16972 nop # 2 bytes if !compact
16973 */
16974 if (!uncond)
16975 length += (compact_known && compact) ? 4 : 6;
16976 }
16977
16978 return length;
16979 }
16980
16981 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16982 bit accordingly. */
16983
16984 static int
16985 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16986 {
16987 bfd_boolean toofar;
16988
16989 if (fragp
16990 && S_IS_DEFINED (fragp->fr_symbol)
16991 && !S_IS_WEAK (fragp->fr_symbol)
16992 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16993 {
16994 addressT addr;
16995 offsetT val;
16996 int type;
16997
16998 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16999 /* Ignore the low bit in the target, since it will be set
17000 for a text label. */
17001 if ((val & 1) != 0)
17002 --val;
17003
17004 /* Assume this is a 2-byte branch. */
17005 addr = fragp->fr_address + fragp->fr_fix + 2;
17006
17007 /* We try to avoid the infinite loop by not adding 2 more bytes for
17008 long branches. */
17009
17010 val -= addr;
17011
17012 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17013 if (type == 'D')
17014 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17015 else if (type == 'E')
17016 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17017 else
17018 abort ();
17019 }
17020 else
17021 /* If the symbol is not defined or it's in a different segment,
17022 we emit a normal 32-bit branch. */
17023 toofar = TRUE;
17024
17025 if (fragp && update
17026 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17027 fragp->fr_subtype
17028 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17029 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17030
17031 if (toofar)
17032 return 4;
17033
17034 return 2;
17035 }
17036
17037 /* Estimate the size of a frag before relaxing. Unless this is the
17038 mips16, we are not really relaxing here, and the final size is
17039 encoded in the subtype information. For the mips16, we have to
17040 decide whether we are using an extended opcode or not. */
17041
17042 int
17043 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17044 {
17045 int change;
17046
17047 if (RELAX_BRANCH_P (fragp->fr_subtype))
17048 {
17049
17050 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17051
17052 return fragp->fr_var;
17053 }
17054
17055 if (RELAX_MIPS16_P (fragp->fr_subtype))
17056 /* We don't want to modify the EXTENDED bit here; it might get us
17057 into infinite loops. We change it only in mips_relax_frag(). */
17058 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17059
17060 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17061 {
17062 int length = 4;
17063
17064 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17065 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17066 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17067 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17068 fragp->fr_var = length;
17069
17070 return length;
17071 }
17072
17073 if (mips_pic == NO_PIC)
17074 change = nopic_need_relax (fragp->fr_symbol, 0);
17075 else if (mips_pic == SVR4_PIC)
17076 change = pic_need_relax (fragp->fr_symbol, segtype);
17077 else if (mips_pic == VXWORKS_PIC)
17078 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17079 change = 0;
17080 else
17081 abort ();
17082
17083 if (change)
17084 {
17085 fragp->fr_subtype |= RELAX_USE_SECOND;
17086 return -RELAX_FIRST (fragp->fr_subtype);
17087 }
17088 else
17089 return -RELAX_SECOND (fragp->fr_subtype);
17090 }
17091
17092 /* This is called to see whether a reloc against a defined symbol
17093 should be converted into a reloc against a section. */
17094
17095 int
17096 mips_fix_adjustable (fixS *fixp)
17097 {
17098 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17099 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17100 return 0;
17101
17102 if (fixp->fx_addsy == NULL)
17103 return 1;
17104
17105 /* Allow relocs used for EH tables. */
17106 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17107 return 1;
17108
17109 /* If symbol SYM is in a mergeable section, relocations of the form
17110 SYM + 0 can usually be made section-relative. The mergeable data
17111 is then identified by the section offset rather than by the symbol.
17112
17113 However, if we're generating REL LO16 relocations, the offset is split
17114 between the LO16 and parterning high part relocation. The linker will
17115 need to recalculate the complete offset in order to correctly identify
17116 the merge data.
17117
17118 The linker has traditionally not looked for the parterning high part
17119 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17120 placed anywhere. Rather than break backwards compatibility by changing
17121 this, it seems better not to force the issue, and instead keep the
17122 original symbol. This will work with either linker behavior. */
17123 if ((lo16_reloc_p (fixp->fx_r_type)
17124 || reloc_needs_lo_p (fixp->fx_r_type))
17125 && HAVE_IN_PLACE_ADDENDS
17126 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17127 return 0;
17128
17129 /* There is no place to store an in-place offset for JALR relocations.
17130 Likewise an in-range offset of limited PC-relative relocations may
17131 overflow the in-place relocatable field if recalculated against the
17132 start address of the symbol's containing section.
17133
17134 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17135 section relative to allow linker relaxations to be performed later on. */
17136 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17137 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17138 || jalr_reloc_p (fixp->fx_r_type)))
17139 return 0;
17140
17141 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17142 to a floating-point stub. The same is true for non-R_MIPS16_26
17143 relocations against MIPS16 functions; in this case, the stub becomes
17144 the function's canonical address.
17145
17146 Floating-point stubs are stored in unique .mips16.call.* or
17147 .mips16.fn.* sections. If a stub T for function F is in section S,
17148 the first relocation in section S must be against F; this is how the
17149 linker determines the target function. All relocations that might
17150 resolve to T must also be against F. We therefore have the following
17151 restrictions, which are given in an intentionally-redundant way:
17152
17153 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17154 symbols.
17155
17156 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17157 if that stub might be used.
17158
17159 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17160 symbols.
17161
17162 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17163 that stub might be used.
17164
17165 There is a further restriction:
17166
17167 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17168 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17169 targets with in-place addends; the relocation field cannot
17170 encode the low bit.
17171
17172 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17173 against a MIPS16 symbol. We deal with (5) by by not reducing any
17174 such relocations on REL targets.
17175
17176 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17177 relocation against some symbol R, no relocation against R may be
17178 reduced. (Note that this deals with (2) as well as (1) because
17179 relocations against global symbols will never be reduced on ELF
17180 targets.) This approach is a little simpler than trying to detect
17181 stub sections, and gives the "all or nothing" per-symbol consistency
17182 that we have for MIPS16 symbols. */
17183 if (fixp->fx_subsy == NULL
17184 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17185 || *symbol_get_tc (fixp->fx_addsy)
17186 || (HAVE_IN_PLACE_ADDENDS
17187 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17188 && jmp_reloc_p (fixp->fx_r_type))))
17189 return 0;
17190
17191 return 1;
17192 }
17193
17194 /* Translate internal representation of relocation info to BFD target
17195 format. */
17196
17197 arelent **
17198 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17199 {
17200 static arelent *retval[4];
17201 arelent *reloc;
17202 bfd_reloc_code_real_type code;
17203
17204 memset (retval, 0, sizeof(retval));
17205 reloc = retval[0] = XCNEW (arelent);
17206 reloc->sym_ptr_ptr = XNEW (asymbol *);
17207 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17208 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17209
17210 if (fixp->fx_pcrel)
17211 {
17212 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17213 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17214 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17215 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17216 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17217 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17218 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17219 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17220 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17221 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17222 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17223
17224 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17225 Relocations want only the symbol offset. */
17226 reloc->addend = fixp->fx_addnumber + reloc->address;
17227 }
17228 else
17229 reloc->addend = fixp->fx_addnumber;
17230
17231 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17232 entry to be used in the relocation's section offset. */
17233 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17234 {
17235 reloc->address = reloc->addend;
17236 reloc->addend = 0;
17237 }
17238
17239 code = fixp->fx_r_type;
17240
17241 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17242 if (reloc->howto == NULL)
17243 {
17244 as_bad_where (fixp->fx_file, fixp->fx_line,
17245 _("cannot represent %s relocation in this object file"
17246 " format"),
17247 bfd_get_reloc_code_name (code));
17248 retval[0] = NULL;
17249 }
17250
17251 return retval;
17252 }
17253
17254 /* Relax a machine dependent frag. This returns the amount by which
17255 the current size of the frag should change. */
17256
17257 int
17258 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17259 {
17260 if (RELAX_BRANCH_P (fragp->fr_subtype))
17261 {
17262 offsetT old_var = fragp->fr_var;
17263
17264 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17265
17266 return fragp->fr_var - old_var;
17267 }
17268
17269 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17270 {
17271 offsetT old_var = fragp->fr_var;
17272 offsetT new_var = 4;
17273
17274 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17275 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17276 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17277 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17278 fragp->fr_var = new_var;
17279
17280 return new_var - old_var;
17281 }
17282
17283 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17284 return 0;
17285
17286 if (mips16_extended_frag (fragp, NULL, stretch))
17287 {
17288 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17289 return 0;
17290 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17291 return 2;
17292 }
17293 else
17294 {
17295 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17296 return 0;
17297 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17298 return -2;
17299 }
17300
17301 return 0;
17302 }
17303
17304 /* Convert a machine dependent frag. */
17305
17306 void
17307 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17308 {
17309 if (RELAX_BRANCH_P (fragp->fr_subtype))
17310 {
17311 char *buf;
17312 unsigned long insn;
17313 expressionS exp;
17314 fixS *fixp;
17315
17316 buf = fragp->fr_literal + fragp->fr_fix;
17317 insn = read_insn (buf);
17318
17319 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17320 {
17321 /* We generate a fixup instead of applying it right now
17322 because, if there are linker relaxations, we're going to
17323 need the relocations. */
17324 exp.X_op = O_symbol;
17325 exp.X_add_symbol = fragp->fr_symbol;
17326 exp.X_add_number = fragp->fr_offset;
17327
17328 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17329 BFD_RELOC_16_PCREL_S2);
17330 fixp->fx_file = fragp->fr_file;
17331 fixp->fx_line = fragp->fr_line;
17332
17333 buf = write_insn (buf, insn);
17334 }
17335 else
17336 {
17337 int i;
17338
17339 as_warn_where (fragp->fr_file, fragp->fr_line,
17340 _("relaxed out-of-range branch into a jump"));
17341
17342 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17343 goto uncond;
17344
17345 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17346 {
17347 /* Reverse the branch. */
17348 switch ((insn >> 28) & 0xf)
17349 {
17350 case 4:
17351 if ((insn & 0xff000000) == 0x47000000
17352 || (insn & 0xff600000) == 0x45600000)
17353 {
17354 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17355 reversed by tweaking bit 23. */
17356 insn ^= 0x00800000;
17357 }
17358 else
17359 {
17360 /* bc[0-3][tf]l? instructions can have the condition
17361 reversed by tweaking a single TF bit, and their
17362 opcodes all have 0x4???????. */
17363 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17364 insn ^= 0x00010000;
17365 }
17366 break;
17367
17368 case 0:
17369 /* bltz 0x04000000 bgez 0x04010000
17370 bltzal 0x04100000 bgezal 0x04110000 */
17371 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17372 insn ^= 0x00010000;
17373 break;
17374
17375 case 1:
17376 /* beq 0x10000000 bne 0x14000000
17377 blez 0x18000000 bgtz 0x1c000000 */
17378 insn ^= 0x04000000;
17379 break;
17380
17381 default:
17382 abort ();
17383 }
17384 }
17385
17386 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17387 {
17388 /* Clear the and-link bit. */
17389 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17390
17391 /* bltzal 0x04100000 bgezal 0x04110000
17392 bltzall 0x04120000 bgezall 0x04130000 */
17393 insn &= ~0x00100000;
17394 }
17395
17396 /* Branch over the branch (if the branch was likely) or the
17397 full jump (not likely case). Compute the offset from the
17398 current instruction to branch to. */
17399 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17400 i = 16;
17401 else
17402 {
17403 /* How many bytes in instructions we've already emitted? */
17404 i = buf - fragp->fr_literal - fragp->fr_fix;
17405 /* How many bytes in instructions from here to the end? */
17406 i = fragp->fr_var - i;
17407 }
17408 /* Convert to instruction count. */
17409 i >>= 2;
17410 /* Branch counts from the next instruction. */
17411 i--;
17412 insn |= i;
17413 /* Branch over the jump. */
17414 buf = write_insn (buf, insn);
17415
17416 /* nop */
17417 buf = write_insn (buf, 0);
17418
17419 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17420 {
17421 /* beql $0, $0, 2f */
17422 insn = 0x50000000;
17423 /* Compute the PC offset from the current instruction to
17424 the end of the variable frag. */
17425 /* How many bytes in instructions we've already emitted? */
17426 i = buf - fragp->fr_literal - fragp->fr_fix;
17427 /* How many bytes in instructions from here to the end? */
17428 i = fragp->fr_var - i;
17429 /* Convert to instruction count. */
17430 i >>= 2;
17431 /* Don't decrement i, because we want to branch over the
17432 delay slot. */
17433 insn |= i;
17434
17435 buf = write_insn (buf, insn);
17436 buf = write_insn (buf, 0);
17437 }
17438
17439 uncond:
17440 if (mips_pic == NO_PIC)
17441 {
17442 /* j or jal. */
17443 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17444 ? 0x0c000000 : 0x08000000);
17445 exp.X_op = O_symbol;
17446 exp.X_add_symbol = fragp->fr_symbol;
17447 exp.X_add_number = fragp->fr_offset;
17448
17449 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17450 FALSE, BFD_RELOC_MIPS_JMP);
17451 fixp->fx_file = fragp->fr_file;
17452 fixp->fx_line = fragp->fr_line;
17453
17454 buf = write_insn (buf, insn);
17455 }
17456 else
17457 {
17458 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17459
17460 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17461 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17462 insn |= at << OP_SH_RT;
17463 exp.X_op = O_symbol;
17464 exp.X_add_symbol = fragp->fr_symbol;
17465 exp.X_add_number = fragp->fr_offset;
17466
17467 if (fragp->fr_offset)
17468 {
17469 exp.X_add_symbol = make_expr_symbol (&exp);
17470 exp.X_add_number = 0;
17471 }
17472
17473 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17474 FALSE, BFD_RELOC_MIPS_GOT16);
17475 fixp->fx_file = fragp->fr_file;
17476 fixp->fx_line = fragp->fr_line;
17477
17478 buf = write_insn (buf, insn);
17479
17480 if (mips_opts.isa == ISA_MIPS1)
17481 /* nop */
17482 buf = write_insn (buf, 0);
17483
17484 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17485 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17486 insn |= at << OP_SH_RS | at << OP_SH_RT;
17487
17488 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17489 FALSE, BFD_RELOC_LO16);
17490 fixp->fx_file = fragp->fr_file;
17491 fixp->fx_line = fragp->fr_line;
17492
17493 buf = write_insn (buf, insn);
17494
17495 /* j(al)r $at. */
17496 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17497 insn = 0x0000f809;
17498 else
17499 insn = 0x00000008;
17500 insn |= at << OP_SH_RS;
17501
17502 buf = write_insn (buf, insn);
17503 }
17504 }
17505
17506 fragp->fr_fix += fragp->fr_var;
17507 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17508 return;
17509 }
17510
17511 /* Relax microMIPS branches. */
17512 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17513 {
17514 char *buf = fragp->fr_literal + fragp->fr_fix;
17515 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17516 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17517 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17518 bfd_boolean short_ds;
17519 unsigned long insn;
17520 expressionS exp;
17521 fixS *fixp;
17522
17523 exp.X_op = O_symbol;
17524 exp.X_add_symbol = fragp->fr_symbol;
17525 exp.X_add_number = fragp->fr_offset;
17526
17527 fragp->fr_fix += fragp->fr_var;
17528
17529 /* Handle 16-bit branches that fit or are forced to fit. */
17530 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17531 {
17532 /* We generate a fixup instead of applying it right now,
17533 because if there is linker relaxation, we're going to
17534 need the relocations. */
17535 if (type == 'D')
17536 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17537 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17538 else if (type == 'E')
17539 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17540 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17541 else
17542 abort ();
17543
17544 fixp->fx_file = fragp->fr_file;
17545 fixp->fx_line = fragp->fr_line;
17546
17547 /* These relocations can have an addend that won't fit in
17548 2 octets. */
17549 fixp->fx_no_overflow = 1;
17550
17551 return;
17552 }
17553
17554 /* Handle 32-bit branches that fit or are forced to fit. */
17555 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17556 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17557 {
17558 /* We generate a fixup instead of applying it right now,
17559 because if there is linker relaxation, we're going to
17560 need the relocations. */
17561 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17562 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17563 fixp->fx_file = fragp->fr_file;
17564 fixp->fx_line = fragp->fr_line;
17565
17566 if (type == 0)
17567 return;
17568 }
17569
17570 /* Relax 16-bit branches to 32-bit branches. */
17571 if (type != 0)
17572 {
17573 insn = read_compressed_insn (buf, 2);
17574
17575 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17576 insn = 0x94000000; /* beq */
17577 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17578 {
17579 unsigned long regno;
17580
17581 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17582 regno = micromips_to_32_reg_d_map [regno];
17583 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17584 insn |= regno << MICROMIPSOP_SH_RS;
17585 }
17586 else
17587 abort ();
17588
17589 /* Nothing else to do, just write it out. */
17590 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17591 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17592 {
17593 buf = write_compressed_insn (buf, insn, 4);
17594 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17595 return;
17596 }
17597 }
17598 else
17599 insn = read_compressed_insn (buf, 4);
17600
17601 /* Relax 32-bit branches to a sequence of instructions. */
17602 as_warn_where (fragp->fr_file, fragp->fr_line,
17603 _("relaxed out-of-range branch into a jump"));
17604
17605 /* Set the short-delay-slot bit. */
17606 short_ds = al && (insn & 0x02000000) != 0;
17607
17608 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17609 {
17610 symbolS *l;
17611
17612 /* Reverse the branch. */
17613 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17614 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17615 insn ^= 0x20000000;
17616 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17617 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17618 || (insn & 0xffe00000) == 0x40800000 /* blez */
17619 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17620 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17621 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17622 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17623 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17624 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17625 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17626 insn ^= 0x00400000;
17627 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17628 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17629 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17630 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17631 insn ^= 0x00200000;
17632 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17633 BNZ.df */
17634 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17635 BNZ.V */
17636 insn ^= 0x00800000;
17637 else
17638 abort ();
17639
17640 if (al)
17641 {
17642 /* Clear the and-link and short-delay-slot bits. */
17643 gas_assert ((insn & 0xfda00000) == 0x40200000);
17644
17645 /* bltzal 0x40200000 bgezal 0x40600000 */
17646 /* bltzals 0x42200000 bgezals 0x42600000 */
17647 insn &= ~0x02200000;
17648 }
17649
17650 /* Make a label at the end for use with the branch. */
17651 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17652 micromips_label_inc ();
17653 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17654
17655 /* Refer to it. */
17656 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17657 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17658 fixp->fx_file = fragp->fr_file;
17659 fixp->fx_line = fragp->fr_line;
17660
17661 /* Branch over the jump. */
17662 buf = write_compressed_insn (buf, insn, 4);
17663 if (!compact)
17664 /* nop */
17665 buf = write_compressed_insn (buf, 0x0c00, 2);
17666 }
17667
17668 if (mips_pic == NO_PIC)
17669 {
17670 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17671
17672 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17673 insn = al ? jal : 0xd4000000;
17674
17675 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17676 BFD_RELOC_MICROMIPS_JMP);
17677 fixp->fx_file = fragp->fr_file;
17678 fixp->fx_line = fragp->fr_line;
17679
17680 buf = write_compressed_insn (buf, insn, 4);
17681 if (compact)
17682 /* nop */
17683 buf = write_compressed_insn (buf, 0x0c00, 2);
17684 }
17685 else
17686 {
17687 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17688 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17689 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17690
17691 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17692 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17693 insn |= at << MICROMIPSOP_SH_RT;
17694
17695 if (exp.X_add_number)
17696 {
17697 exp.X_add_symbol = make_expr_symbol (&exp);
17698 exp.X_add_number = 0;
17699 }
17700
17701 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17702 BFD_RELOC_MICROMIPS_GOT16);
17703 fixp->fx_file = fragp->fr_file;
17704 fixp->fx_line = fragp->fr_line;
17705
17706 buf = write_compressed_insn (buf, insn, 4);
17707
17708 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17709 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17710 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17711
17712 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17713 BFD_RELOC_MICROMIPS_LO16);
17714 fixp->fx_file = fragp->fr_file;
17715 fixp->fx_line = fragp->fr_line;
17716
17717 buf = write_compressed_insn (buf, insn, 4);
17718
17719 /* jr/jrc/jalr/jalrs $at */
17720 insn = al ? jalr : jr;
17721 insn |= at << MICROMIPSOP_SH_MJ;
17722
17723 buf = write_compressed_insn (buf, insn, 2);
17724 }
17725
17726 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17727 return;
17728 }
17729
17730 if (RELAX_MIPS16_P (fragp->fr_subtype))
17731 {
17732 int type;
17733 const struct mips_int_operand *operand;
17734 offsetT val;
17735 char *buf;
17736 unsigned int user_length, length;
17737 unsigned long insn;
17738 bfd_boolean ext;
17739
17740 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17741 operand = mips16_immed_operand (type, FALSE);
17742
17743 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17744 val = resolve_symbol_value (fragp->fr_symbol);
17745 if (operand->root.type == OP_PCREL)
17746 {
17747 const struct mips_pcrel_operand *pcrel_op;
17748 addressT addr;
17749
17750 pcrel_op = (const struct mips_pcrel_operand *) operand;
17751 addr = fragp->fr_address + fragp->fr_fix;
17752
17753 /* The rules for the base address of a PC relative reloc are
17754 complicated; see mips16_extended_frag. */
17755 if (pcrel_op->include_isa_bit)
17756 {
17757 addr += 2;
17758 if (ext)
17759 addr += 2;
17760 /* Ignore the low bit in the target, since it will be
17761 set for a text label. */
17762 val &= -2;
17763 }
17764 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17765 addr -= 4;
17766 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17767 addr -= 2;
17768
17769 addr &= -(1 << pcrel_op->align_log2);
17770 val -= addr;
17771
17772 /* Make sure the section winds up with the alignment we have
17773 assumed. */
17774 if (operand->shift > 0)
17775 record_alignment (asec, operand->shift);
17776 }
17777
17778 if (ext
17779 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17780 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17781 as_warn_where (fragp->fr_file, fragp->fr_line,
17782 _("extended instruction in delay slot"));
17783
17784 buf = fragp->fr_literal + fragp->fr_fix;
17785
17786 insn = read_compressed_insn (buf, 2);
17787 if (ext)
17788 insn |= MIPS16_EXTEND;
17789
17790 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17791 user_length = 4;
17792 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17793 user_length = 2;
17794 else
17795 user_length = 0;
17796
17797 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17798 BFD_RELOC_UNUSED, val, user_length, &insn);
17799
17800 length = (ext ? 4 : 2);
17801 gas_assert (mips16_opcode_length (insn) == length);
17802 write_compressed_insn (buf, insn, length);
17803 fragp->fr_fix += length;
17804 }
17805 else
17806 {
17807 relax_substateT subtype = fragp->fr_subtype;
17808 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17809 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17810 int first, second;
17811 fixS *fixp;
17812
17813 first = RELAX_FIRST (subtype);
17814 second = RELAX_SECOND (subtype);
17815 fixp = (fixS *) fragp->fr_opcode;
17816
17817 /* If the delay slot chosen does not match the size of the instruction,
17818 then emit a warning. */
17819 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17820 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17821 {
17822 relax_substateT s;
17823 const char *msg;
17824
17825 s = subtype & (RELAX_DELAY_SLOT_16BIT
17826 | RELAX_DELAY_SLOT_SIZE_FIRST
17827 | RELAX_DELAY_SLOT_SIZE_SECOND);
17828 msg = macro_warning (s);
17829 if (msg != NULL)
17830 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17831 subtype &= ~s;
17832 }
17833
17834 /* Possibly emit a warning if we've chosen the longer option. */
17835 if (use_second == second_longer)
17836 {
17837 relax_substateT s;
17838 const char *msg;
17839
17840 s = (subtype
17841 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17842 msg = macro_warning (s);
17843 if (msg != NULL)
17844 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17845 subtype &= ~s;
17846 }
17847
17848 /* Go through all the fixups for the first sequence. Disable them
17849 (by marking them as done) if we're going to use the second
17850 sequence instead. */
17851 while (fixp
17852 && fixp->fx_frag == fragp
17853 && fixp->fx_where < fragp->fr_fix - second)
17854 {
17855 if (subtype & RELAX_USE_SECOND)
17856 fixp->fx_done = 1;
17857 fixp = fixp->fx_next;
17858 }
17859
17860 /* Go through the fixups for the second sequence. Disable them if
17861 we're going to use the first sequence, otherwise adjust their
17862 addresses to account for the relaxation. */
17863 while (fixp && fixp->fx_frag == fragp)
17864 {
17865 if (subtype & RELAX_USE_SECOND)
17866 fixp->fx_where -= first;
17867 else
17868 fixp->fx_done = 1;
17869 fixp = fixp->fx_next;
17870 }
17871
17872 /* Now modify the frag contents. */
17873 if (subtype & RELAX_USE_SECOND)
17874 {
17875 char *start;
17876
17877 start = fragp->fr_literal + fragp->fr_fix - first - second;
17878 memmove (start, start + first, second);
17879 fragp->fr_fix -= first;
17880 }
17881 else
17882 fragp->fr_fix -= second;
17883 }
17884 }
17885
17886 /* This function is called after the relocs have been generated.
17887 We've been storing mips16 text labels as odd. Here we convert them
17888 back to even for the convenience of the debugger. */
17889
17890 void
17891 mips_frob_file_after_relocs (void)
17892 {
17893 asymbol **syms;
17894 unsigned int count, i;
17895
17896 syms = bfd_get_outsymbols (stdoutput);
17897 count = bfd_get_symcount (stdoutput);
17898 for (i = 0; i < count; i++, syms++)
17899 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17900 && ((*syms)->value & 1) != 0)
17901 {
17902 (*syms)->value &= ~1;
17903 /* If the symbol has an odd size, it was probably computed
17904 incorrectly, so adjust that as well. */
17905 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17906 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17907 }
17908 }
17909
17910 /* This function is called whenever a label is defined, including fake
17911 labels instantiated off the dot special symbol. It is used when
17912 handling branch delays; if a branch has a label, we assume we cannot
17913 move it. This also bumps the value of the symbol by 1 in compressed
17914 code. */
17915
17916 static void
17917 mips_record_label (symbolS *sym)
17918 {
17919 segment_info_type *si = seg_info (now_seg);
17920 struct insn_label_list *l;
17921
17922 if (free_insn_labels == NULL)
17923 l = XNEW (struct insn_label_list);
17924 else
17925 {
17926 l = free_insn_labels;
17927 free_insn_labels = l->next;
17928 }
17929
17930 l->label = sym;
17931 l->next = si->label_list;
17932 si->label_list = l;
17933 }
17934
17935 /* This function is called as tc_frob_label() whenever a label is defined
17936 and adds a DWARF-2 record we only want for true labels. */
17937
17938 void
17939 mips_define_label (symbolS *sym)
17940 {
17941 mips_record_label (sym);
17942 dwarf2_emit_label (sym);
17943 }
17944
17945 /* This function is called by tc_new_dot_label whenever a new dot symbol
17946 is defined. */
17947
17948 void
17949 mips_add_dot_label (symbolS *sym)
17950 {
17951 mips_record_label (sym);
17952 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17953 mips_compressed_mark_label (sym);
17954 }
17955 \f
17956 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17957 static unsigned int
17958 mips_convert_ase_flags (int ase)
17959 {
17960 unsigned int ext_ases = 0;
17961
17962 if (ase & ASE_DSP)
17963 ext_ases |= AFL_ASE_DSP;
17964 if (ase & ASE_DSPR2)
17965 ext_ases |= AFL_ASE_DSPR2;
17966 if (ase & ASE_DSPR3)
17967 ext_ases |= AFL_ASE_DSPR3;
17968 if (ase & ASE_EVA)
17969 ext_ases |= AFL_ASE_EVA;
17970 if (ase & ASE_MCU)
17971 ext_ases |= AFL_ASE_MCU;
17972 if (ase & ASE_MDMX)
17973 ext_ases |= AFL_ASE_MDMX;
17974 if (ase & ASE_MIPS3D)
17975 ext_ases |= AFL_ASE_MIPS3D;
17976 if (ase & ASE_MT)
17977 ext_ases |= AFL_ASE_MT;
17978 if (ase & ASE_SMARTMIPS)
17979 ext_ases |= AFL_ASE_SMARTMIPS;
17980 if (ase & ASE_VIRT)
17981 ext_ases |= AFL_ASE_VIRT;
17982 if (ase & ASE_MSA)
17983 ext_ases |= AFL_ASE_MSA;
17984 if (ase & ASE_XPA)
17985 ext_ases |= AFL_ASE_XPA;
17986
17987 return ext_ases;
17988 }
17989 /* Some special processing for a MIPS ELF file. */
17990
17991 void
17992 mips_elf_final_processing (void)
17993 {
17994 int fpabi;
17995 Elf_Internal_ABIFlags_v0 flags;
17996
17997 flags.version = 0;
17998 flags.isa_rev = 0;
17999 switch (file_mips_opts.isa)
18000 {
18001 case INSN_ISA1:
18002 flags.isa_level = 1;
18003 break;
18004 case INSN_ISA2:
18005 flags.isa_level = 2;
18006 break;
18007 case INSN_ISA3:
18008 flags.isa_level = 3;
18009 break;
18010 case INSN_ISA4:
18011 flags.isa_level = 4;
18012 break;
18013 case INSN_ISA5:
18014 flags.isa_level = 5;
18015 break;
18016 case INSN_ISA32:
18017 flags.isa_level = 32;
18018 flags.isa_rev = 1;
18019 break;
18020 case INSN_ISA32R2:
18021 flags.isa_level = 32;
18022 flags.isa_rev = 2;
18023 break;
18024 case INSN_ISA32R3:
18025 flags.isa_level = 32;
18026 flags.isa_rev = 3;
18027 break;
18028 case INSN_ISA32R5:
18029 flags.isa_level = 32;
18030 flags.isa_rev = 5;
18031 break;
18032 case INSN_ISA32R6:
18033 flags.isa_level = 32;
18034 flags.isa_rev = 6;
18035 break;
18036 case INSN_ISA64:
18037 flags.isa_level = 64;
18038 flags.isa_rev = 1;
18039 break;
18040 case INSN_ISA64R2:
18041 flags.isa_level = 64;
18042 flags.isa_rev = 2;
18043 break;
18044 case INSN_ISA64R3:
18045 flags.isa_level = 64;
18046 flags.isa_rev = 3;
18047 break;
18048 case INSN_ISA64R5:
18049 flags.isa_level = 64;
18050 flags.isa_rev = 5;
18051 break;
18052 case INSN_ISA64R6:
18053 flags.isa_level = 64;
18054 flags.isa_rev = 6;
18055 break;
18056 }
18057
18058 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18059 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18060 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18061 : (file_mips_opts.fp == 64) ? AFL_REG_64
18062 : AFL_REG_32;
18063 flags.cpr2_size = AFL_REG_NONE;
18064 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18065 Tag_GNU_MIPS_ABI_FP);
18066 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18067 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18068 if (file_ase_mips16)
18069 flags.ases |= AFL_ASE_MIPS16;
18070 if (file_ase_micromips)
18071 flags.ases |= AFL_ASE_MICROMIPS;
18072 flags.flags1 = 0;
18073 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18074 || file_mips_opts.fp == 64)
18075 && file_mips_opts.oddspreg)
18076 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18077 flags.flags2 = 0;
18078
18079 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18080 ((Elf_External_ABIFlags_v0 *)
18081 mips_flags_frag));
18082
18083 /* Write out the register information. */
18084 if (mips_abi != N64_ABI)
18085 {
18086 Elf32_RegInfo s;
18087
18088 s.ri_gprmask = mips_gprmask;
18089 s.ri_cprmask[0] = mips_cprmask[0];
18090 s.ri_cprmask[1] = mips_cprmask[1];
18091 s.ri_cprmask[2] = mips_cprmask[2];
18092 s.ri_cprmask[3] = mips_cprmask[3];
18093 /* The gp_value field is set by the MIPS ELF backend. */
18094
18095 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18096 ((Elf32_External_RegInfo *)
18097 mips_regmask_frag));
18098 }
18099 else
18100 {
18101 Elf64_Internal_RegInfo s;
18102
18103 s.ri_gprmask = mips_gprmask;
18104 s.ri_pad = 0;
18105 s.ri_cprmask[0] = mips_cprmask[0];
18106 s.ri_cprmask[1] = mips_cprmask[1];
18107 s.ri_cprmask[2] = mips_cprmask[2];
18108 s.ri_cprmask[3] = mips_cprmask[3];
18109 /* The gp_value field is set by the MIPS ELF backend. */
18110
18111 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18112 ((Elf64_External_RegInfo *)
18113 mips_regmask_frag));
18114 }
18115
18116 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18117 sort of BFD interface for this. */
18118 if (mips_any_noreorder)
18119 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18120 if (mips_pic != NO_PIC)
18121 {
18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18123 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18124 }
18125 if (mips_abicalls)
18126 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18127
18128 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18129 defined at present; this might need to change in future. */
18130 if (file_ase_mips16)
18131 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18132 if (file_ase_micromips)
18133 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18134 if (file_mips_opts.ase & ASE_MDMX)
18135 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18136
18137 /* Set the MIPS ELF ABI flags. */
18138 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18139 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18140 else if (mips_abi == O64_ABI)
18141 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18142 else if (mips_abi == EABI_ABI)
18143 {
18144 if (file_mips_opts.gp == 64)
18145 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18146 else
18147 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18148 }
18149 else if (mips_abi == N32_ABI)
18150 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18151
18152 /* Nothing to do for N64_ABI. */
18153
18154 if (mips_32bitmode)
18155 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18156
18157 if (mips_nan2008 == 1)
18158 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18159
18160 /* 32 bit code with 64 bit FP registers. */
18161 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18162 Tag_GNU_MIPS_ABI_FP);
18163 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18164 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18165 }
18166 \f
18167 typedef struct proc {
18168 symbolS *func_sym;
18169 symbolS *func_end_sym;
18170 unsigned long reg_mask;
18171 unsigned long reg_offset;
18172 unsigned long fpreg_mask;
18173 unsigned long fpreg_offset;
18174 unsigned long frame_offset;
18175 unsigned long frame_reg;
18176 unsigned long pc_reg;
18177 } procS;
18178
18179 static procS cur_proc;
18180 static procS *cur_proc_ptr;
18181 static int numprocs;
18182
18183 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18184 as "2", and a normal nop as "0". */
18185
18186 #define NOP_OPCODE_MIPS 0
18187 #define NOP_OPCODE_MIPS16 1
18188 #define NOP_OPCODE_MICROMIPS 2
18189
18190 char
18191 mips_nop_opcode (void)
18192 {
18193 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18194 return NOP_OPCODE_MICROMIPS;
18195 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18196 return NOP_OPCODE_MIPS16;
18197 else
18198 return NOP_OPCODE_MIPS;
18199 }
18200
18201 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18202 32-bit microMIPS NOPs here (if applicable). */
18203
18204 void
18205 mips_handle_align (fragS *fragp)
18206 {
18207 char nop_opcode;
18208 char *p;
18209 int bytes, size, excess;
18210 valueT opcode;
18211
18212 if (fragp->fr_type != rs_align_code)
18213 return;
18214
18215 p = fragp->fr_literal + fragp->fr_fix;
18216 nop_opcode = *p;
18217 switch (nop_opcode)
18218 {
18219 case NOP_OPCODE_MICROMIPS:
18220 opcode = micromips_nop32_insn.insn_opcode;
18221 size = 4;
18222 break;
18223 case NOP_OPCODE_MIPS16:
18224 opcode = mips16_nop_insn.insn_opcode;
18225 size = 2;
18226 break;
18227 case NOP_OPCODE_MIPS:
18228 default:
18229 opcode = nop_insn.insn_opcode;
18230 size = 4;
18231 break;
18232 }
18233
18234 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18235 excess = bytes % size;
18236
18237 /* Handle the leading part if we're not inserting a whole number of
18238 instructions, and make it the end of the fixed part of the frag.
18239 Try to fit in a short microMIPS NOP if applicable and possible,
18240 and use zeroes otherwise. */
18241 gas_assert (excess < 4);
18242 fragp->fr_fix += excess;
18243 switch (excess)
18244 {
18245 case 3:
18246 *p++ = '\0';
18247 /* Fall through. */
18248 case 2:
18249 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18250 {
18251 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18252 break;
18253 }
18254 *p++ = '\0';
18255 /* Fall through. */
18256 case 1:
18257 *p++ = '\0';
18258 /* Fall through. */
18259 case 0:
18260 break;
18261 }
18262
18263 md_number_to_chars (p, opcode, size);
18264 fragp->fr_var = size;
18265 }
18266
18267 static long
18268 get_number (void)
18269 {
18270 int negative = 0;
18271 long val = 0;
18272
18273 if (*input_line_pointer == '-')
18274 {
18275 ++input_line_pointer;
18276 negative = 1;
18277 }
18278 if (!ISDIGIT (*input_line_pointer))
18279 as_bad (_("expected simple number"));
18280 if (input_line_pointer[0] == '0')
18281 {
18282 if (input_line_pointer[1] == 'x')
18283 {
18284 input_line_pointer += 2;
18285 while (ISXDIGIT (*input_line_pointer))
18286 {
18287 val <<= 4;
18288 val |= hex_value (*input_line_pointer++);
18289 }
18290 return negative ? -val : val;
18291 }
18292 else
18293 {
18294 ++input_line_pointer;
18295 while (ISDIGIT (*input_line_pointer))
18296 {
18297 val <<= 3;
18298 val |= *input_line_pointer++ - '0';
18299 }
18300 return negative ? -val : val;
18301 }
18302 }
18303 if (!ISDIGIT (*input_line_pointer))
18304 {
18305 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18306 *input_line_pointer, *input_line_pointer);
18307 as_warn (_("invalid number"));
18308 return -1;
18309 }
18310 while (ISDIGIT (*input_line_pointer))
18311 {
18312 val *= 10;
18313 val += *input_line_pointer++ - '0';
18314 }
18315 return negative ? -val : val;
18316 }
18317
18318 /* The .file directive; just like the usual .file directive, but there
18319 is an initial number which is the ECOFF file index. In the non-ECOFF
18320 case .file implies DWARF-2. */
18321
18322 static void
18323 s_mips_file (int x ATTRIBUTE_UNUSED)
18324 {
18325 static int first_file_directive = 0;
18326
18327 if (ECOFF_DEBUGGING)
18328 {
18329 get_number ();
18330 s_app_file (0);
18331 }
18332 else
18333 {
18334 char *filename;
18335
18336 filename = dwarf2_directive_file (0);
18337
18338 /* Versions of GCC up to 3.1 start files with a ".file"
18339 directive even for stabs output. Make sure that this
18340 ".file" is handled. Note that you need a version of GCC
18341 after 3.1 in order to support DWARF-2 on MIPS. */
18342 if (filename != NULL && ! first_file_directive)
18343 {
18344 (void) new_logical_line (filename, -1);
18345 s_app_file_string (filename, 0);
18346 }
18347 first_file_directive = 1;
18348 }
18349 }
18350
18351 /* The .loc directive, implying DWARF-2. */
18352
18353 static void
18354 s_mips_loc (int x ATTRIBUTE_UNUSED)
18355 {
18356 if (!ECOFF_DEBUGGING)
18357 dwarf2_directive_loc (0);
18358 }
18359
18360 /* The .end directive. */
18361
18362 static void
18363 s_mips_end (int x ATTRIBUTE_UNUSED)
18364 {
18365 symbolS *p;
18366
18367 /* Following functions need their own .frame and .cprestore directives. */
18368 mips_frame_reg_valid = 0;
18369 mips_cprestore_valid = 0;
18370
18371 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18372 {
18373 p = get_symbol ();
18374 demand_empty_rest_of_line ();
18375 }
18376 else
18377 p = NULL;
18378
18379 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18380 as_warn (_(".end not in text section"));
18381
18382 if (!cur_proc_ptr)
18383 {
18384 as_warn (_(".end directive without a preceding .ent directive"));
18385 demand_empty_rest_of_line ();
18386 return;
18387 }
18388
18389 if (p != NULL)
18390 {
18391 gas_assert (S_GET_NAME (p));
18392 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18393 as_warn (_(".end symbol does not match .ent symbol"));
18394
18395 if (debug_type == DEBUG_STABS)
18396 stabs_generate_asm_endfunc (S_GET_NAME (p),
18397 S_GET_NAME (p));
18398 }
18399 else
18400 as_warn (_(".end directive missing or unknown symbol"));
18401
18402 /* Create an expression to calculate the size of the function. */
18403 if (p && cur_proc_ptr)
18404 {
18405 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18406 expressionS *exp = XNEW (expressionS);
18407
18408 obj->size = exp;
18409 exp->X_op = O_subtract;
18410 exp->X_add_symbol = symbol_temp_new_now ();
18411 exp->X_op_symbol = p;
18412 exp->X_add_number = 0;
18413
18414 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18415 }
18416
18417 /* Generate a .pdr section. */
18418 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18419 {
18420 segT saved_seg = now_seg;
18421 subsegT saved_subseg = now_subseg;
18422 expressionS exp;
18423 char *fragp;
18424
18425 #ifdef md_flush_pending_output
18426 md_flush_pending_output ();
18427 #endif
18428
18429 gas_assert (pdr_seg);
18430 subseg_set (pdr_seg, 0);
18431
18432 /* Write the symbol. */
18433 exp.X_op = O_symbol;
18434 exp.X_add_symbol = p;
18435 exp.X_add_number = 0;
18436 emit_expr (&exp, 4);
18437
18438 fragp = frag_more (7 * 4);
18439
18440 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18441 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18442 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18443 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18444 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18445 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18446 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18447
18448 subseg_set (saved_seg, saved_subseg);
18449 }
18450
18451 cur_proc_ptr = NULL;
18452 }
18453
18454 /* The .aent and .ent directives. */
18455
18456 static void
18457 s_mips_ent (int aent)
18458 {
18459 symbolS *symbolP;
18460
18461 symbolP = get_symbol ();
18462 if (*input_line_pointer == ',')
18463 ++input_line_pointer;
18464 SKIP_WHITESPACE ();
18465 if (ISDIGIT (*input_line_pointer)
18466 || *input_line_pointer == '-')
18467 get_number ();
18468
18469 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18470 as_warn (_(".ent or .aent not in text section"));
18471
18472 if (!aent && cur_proc_ptr)
18473 as_warn (_("missing .end"));
18474
18475 if (!aent)
18476 {
18477 /* This function needs its own .frame and .cprestore directives. */
18478 mips_frame_reg_valid = 0;
18479 mips_cprestore_valid = 0;
18480
18481 cur_proc_ptr = &cur_proc;
18482 memset (cur_proc_ptr, '\0', sizeof (procS));
18483
18484 cur_proc_ptr->func_sym = symbolP;
18485
18486 ++numprocs;
18487
18488 if (debug_type == DEBUG_STABS)
18489 stabs_generate_asm_func (S_GET_NAME (symbolP),
18490 S_GET_NAME (symbolP));
18491 }
18492
18493 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18494
18495 demand_empty_rest_of_line ();
18496 }
18497
18498 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18499 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18500 s_mips_frame is used so that we can set the PDR information correctly.
18501 We can't use the ecoff routines because they make reference to the ecoff
18502 symbol table (in the mdebug section). */
18503
18504 static void
18505 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18506 {
18507 if (ECOFF_DEBUGGING)
18508 s_ignore (ignore);
18509 else
18510 {
18511 long val;
18512
18513 if (cur_proc_ptr == (procS *) NULL)
18514 {
18515 as_warn (_(".frame outside of .ent"));
18516 demand_empty_rest_of_line ();
18517 return;
18518 }
18519
18520 cur_proc_ptr->frame_reg = tc_get_register (1);
18521
18522 SKIP_WHITESPACE ();
18523 if (*input_line_pointer++ != ','
18524 || get_absolute_expression_and_terminator (&val) != ',')
18525 {
18526 as_warn (_("bad .frame directive"));
18527 --input_line_pointer;
18528 demand_empty_rest_of_line ();
18529 return;
18530 }
18531
18532 cur_proc_ptr->frame_offset = val;
18533 cur_proc_ptr->pc_reg = tc_get_register (0);
18534
18535 demand_empty_rest_of_line ();
18536 }
18537 }
18538
18539 /* The .fmask and .mask directives. If the mdebug section is present
18540 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18541 embedded targets, s_mips_mask is used so that we can set the PDR
18542 information correctly. We can't use the ecoff routines because they
18543 make reference to the ecoff symbol table (in the mdebug section). */
18544
18545 static void
18546 s_mips_mask (int reg_type)
18547 {
18548 if (ECOFF_DEBUGGING)
18549 s_ignore (reg_type);
18550 else
18551 {
18552 long mask, off;
18553
18554 if (cur_proc_ptr == (procS *) NULL)
18555 {
18556 as_warn (_(".mask/.fmask outside of .ent"));
18557 demand_empty_rest_of_line ();
18558 return;
18559 }
18560
18561 if (get_absolute_expression_and_terminator (&mask) != ',')
18562 {
18563 as_warn (_("bad .mask/.fmask directive"));
18564 --input_line_pointer;
18565 demand_empty_rest_of_line ();
18566 return;
18567 }
18568
18569 off = get_absolute_expression ();
18570
18571 if (reg_type == 'F')
18572 {
18573 cur_proc_ptr->fpreg_mask = mask;
18574 cur_proc_ptr->fpreg_offset = off;
18575 }
18576 else
18577 {
18578 cur_proc_ptr->reg_mask = mask;
18579 cur_proc_ptr->reg_offset = off;
18580 }
18581
18582 demand_empty_rest_of_line ();
18583 }
18584 }
18585
18586 /* A table describing all the processors gas knows about. Names are
18587 matched in the order listed.
18588
18589 To ease comparison, please keep this table in the same order as
18590 gcc's mips_cpu_info_table[]. */
18591 static const struct mips_cpu_info mips_cpu_info_table[] =
18592 {
18593 /* Entries for generic ISAs */
18594 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18595 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18596 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18597 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18598 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18599 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18600 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18601 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18602 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18603 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18604 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18605 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18606 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18607 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18608 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18609
18610 /* MIPS I */
18611 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18612 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18613 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18614
18615 /* MIPS II */
18616 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18617
18618 /* MIPS III */
18619 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18620 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18621 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18622 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18623 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18624 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18625 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18626 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18627 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18628 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18629 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18630 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18631 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18632 /* ST Microelectronics Loongson 2E and 2F cores */
18633 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18634 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18635
18636 /* MIPS IV */
18637 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18638 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18639 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18640 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18641 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18642 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18643 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18644 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18645 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18646 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18647 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18648 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18649 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18650 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18651 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18652
18653 /* MIPS 32 */
18654 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18655 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18656 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18657 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18658
18659 /* MIPS 32 Release 2 */
18660 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18665 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18669 ISA_MIPS32R2, CPU_MIPS32R2 },
18670 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18671 ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18674 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 /* Deprecated forms of the above. */
18677 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18678 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18679 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18680 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18681 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18682 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18683 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18684 /* Deprecated forms of the above. */
18685 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18686 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18687 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18688 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18689 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18690 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18691 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18692 /* Deprecated forms of the above. */
18693 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18694 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18695 /* 34Kn is a 34kc without DSP. */
18696 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18697 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18698 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18699 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18700 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18701 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18702 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18703 /* Deprecated forms of the above. */
18704 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18705 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18706 /* 1004K cores are multiprocessor versions of the 34K. */
18707 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18708 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18709 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18710 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18711 /* interaptiv is the new name for 1004kf */
18712 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18713 /* M5100 family */
18714 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18715 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18716 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18717 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18718
18719 /* MIPS 64 */
18720 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18721 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18722 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18723 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18724
18725 /* Broadcom SB-1 CPU core */
18726 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18727 /* Broadcom SB-1A CPU core */
18728 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18729
18730 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18731
18732 /* MIPS 64 Release 2 */
18733
18734 /* Cavium Networks Octeon CPU core */
18735 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18736 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18737 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18738 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18739
18740 /* RMI Xlr */
18741 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18742
18743 /* Broadcom XLP.
18744 XLP is mostly like XLR, with the prominent exception that it is
18745 MIPS64R2 rather than MIPS64. */
18746 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18747
18748 /* i6400. */
18749 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18750
18751 /* End marker */
18752 { NULL, 0, 0, 0, 0 }
18753 };
18754
18755
18756 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18757 with a final "000" replaced by "k". Ignore case.
18758
18759 Note: this function is shared between GCC and GAS. */
18760
18761 static bfd_boolean
18762 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18763 {
18764 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18765 given++, canonical++;
18766
18767 return ((*given == 0 && *canonical == 0)
18768 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18769 }
18770
18771
18772 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18773 CPU name. We've traditionally allowed a lot of variation here.
18774
18775 Note: this function is shared between GCC and GAS. */
18776
18777 static bfd_boolean
18778 mips_matching_cpu_name_p (const char *canonical, const char *given)
18779 {
18780 /* First see if the name matches exactly, or with a final "000"
18781 turned into "k". */
18782 if (mips_strict_matching_cpu_name_p (canonical, given))
18783 return TRUE;
18784
18785 /* If not, try comparing based on numerical designation alone.
18786 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18787 if (TOLOWER (*given) == 'r')
18788 given++;
18789 if (!ISDIGIT (*given))
18790 return FALSE;
18791
18792 /* Skip over some well-known prefixes in the canonical name,
18793 hoping to find a number there too. */
18794 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18795 canonical += 2;
18796 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18797 canonical += 2;
18798 else if (TOLOWER (canonical[0]) == 'r')
18799 canonical += 1;
18800
18801 return mips_strict_matching_cpu_name_p (canonical, given);
18802 }
18803
18804
18805 /* Parse an option that takes the name of a processor as its argument.
18806 OPTION is the name of the option and CPU_STRING is the argument.
18807 Return the corresponding processor enumeration if the CPU_STRING is
18808 recognized, otherwise report an error and return null.
18809
18810 A similar function exists in GCC. */
18811
18812 static const struct mips_cpu_info *
18813 mips_parse_cpu (const char *option, const char *cpu_string)
18814 {
18815 const struct mips_cpu_info *p;
18816
18817 /* 'from-abi' selects the most compatible architecture for the given
18818 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18819 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18820 version. Look first at the -mgp options, if given, otherwise base
18821 the choice on MIPS_DEFAULT_64BIT.
18822
18823 Treat NO_ABI like the EABIs. One reason to do this is that the
18824 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18825 architecture. This code picks MIPS I for 'mips' and MIPS III for
18826 'mips64', just as we did in the days before 'from-abi'. */
18827 if (strcasecmp (cpu_string, "from-abi") == 0)
18828 {
18829 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18830 return mips_cpu_info_from_isa (ISA_MIPS1);
18831
18832 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18833 return mips_cpu_info_from_isa (ISA_MIPS3);
18834
18835 if (file_mips_opts.gp >= 0)
18836 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18837 ? ISA_MIPS1 : ISA_MIPS3);
18838
18839 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18840 ? ISA_MIPS3
18841 : ISA_MIPS1);
18842 }
18843
18844 /* 'default' has traditionally been a no-op. Probably not very useful. */
18845 if (strcasecmp (cpu_string, "default") == 0)
18846 return 0;
18847
18848 for (p = mips_cpu_info_table; p->name != 0; p++)
18849 if (mips_matching_cpu_name_p (p->name, cpu_string))
18850 return p;
18851
18852 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18853 return 0;
18854 }
18855
18856 /* Return the canonical processor information for ISA (a member of the
18857 ISA_MIPS* enumeration). */
18858
18859 static const struct mips_cpu_info *
18860 mips_cpu_info_from_isa (int isa)
18861 {
18862 int i;
18863
18864 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18865 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18866 && isa == mips_cpu_info_table[i].isa)
18867 return (&mips_cpu_info_table[i]);
18868
18869 return NULL;
18870 }
18871
18872 static const struct mips_cpu_info *
18873 mips_cpu_info_from_arch (int arch)
18874 {
18875 int i;
18876
18877 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18878 if (arch == mips_cpu_info_table[i].cpu)
18879 return (&mips_cpu_info_table[i]);
18880
18881 return NULL;
18882 }
18883 \f
18884 static void
18885 show (FILE *stream, const char *string, int *col_p, int *first_p)
18886 {
18887 if (*first_p)
18888 {
18889 fprintf (stream, "%24s", "");
18890 *col_p = 24;
18891 }
18892 else
18893 {
18894 fprintf (stream, ", ");
18895 *col_p += 2;
18896 }
18897
18898 if (*col_p + strlen (string) > 72)
18899 {
18900 fprintf (stream, "\n%24s", "");
18901 *col_p = 24;
18902 }
18903
18904 fprintf (stream, "%s", string);
18905 *col_p += strlen (string);
18906
18907 *first_p = 0;
18908 }
18909
18910 void
18911 md_show_usage (FILE *stream)
18912 {
18913 int column, first;
18914 size_t i;
18915
18916 fprintf (stream, _("\
18917 MIPS options:\n\
18918 -EB generate big endian output\n\
18919 -EL generate little endian output\n\
18920 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18921 -G NUM allow referencing objects up to NUM bytes\n\
18922 implicitly with the gp register [default 8]\n"));
18923 fprintf (stream, _("\
18924 -mips1 generate MIPS ISA I instructions\n\
18925 -mips2 generate MIPS ISA II instructions\n\
18926 -mips3 generate MIPS ISA III instructions\n\
18927 -mips4 generate MIPS ISA IV instructions\n\
18928 -mips5 generate MIPS ISA V instructions\n\
18929 -mips32 generate MIPS32 ISA instructions\n\
18930 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18931 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18932 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18933 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18934 -mips64 generate MIPS64 ISA instructions\n\
18935 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18936 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18937 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18938 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18939 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18940
18941 first = 1;
18942
18943 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18944 show (stream, mips_cpu_info_table[i].name, &column, &first);
18945 show (stream, "from-abi", &column, &first);
18946 fputc ('\n', stream);
18947
18948 fprintf (stream, _("\
18949 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18950 -no-mCPU don't generate code specific to CPU.\n\
18951 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18952
18953 first = 1;
18954
18955 show (stream, "3900", &column, &first);
18956 show (stream, "4010", &column, &first);
18957 show (stream, "4100", &column, &first);
18958 show (stream, "4650", &column, &first);
18959 fputc ('\n', stream);
18960
18961 fprintf (stream, _("\
18962 -mips16 generate mips16 instructions\n\
18963 -no-mips16 do not generate mips16 instructions\n"));
18964 fprintf (stream, _("\
18965 -mmicromips generate microMIPS instructions\n\
18966 -mno-micromips do not generate microMIPS instructions\n"));
18967 fprintf (stream, _("\
18968 -msmartmips generate smartmips instructions\n\
18969 -mno-smartmips do not generate smartmips instructions\n"));
18970 fprintf (stream, _("\
18971 -mdsp generate DSP instructions\n\
18972 -mno-dsp do not generate DSP instructions\n"));
18973 fprintf (stream, _("\
18974 -mdspr2 generate DSP R2 instructions\n\
18975 -mno-dspr2 do not generate DSP R2 instructions\n"));
18976 fprintf (stream, _("\
18977 -mdspr3 generate DSP R3 instructions\n\
18978 -mno-dspr3 do not generate DSP R3 instructions\n"));
18979 fprintf (stream, _("\
18980 -mmt generate MT instructions\n\
18981 -mno-mt do not generate MT instructions\n"));
18982 fprintf (stream, _("\
18983 -mmcu generate MCU instructions\n\
18984 -mno-mcu do not generate MCU instructions\n"));
18985 fprintf (stream, _("\
18986 -mmsa generate MSA instructions\n\
18987 -mno-msa do not generate MSA instructions\n"));
18988 fprintf (stream, _("\
18989 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18990 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18991 fprintf (stream, _("\
18992 -mvirt generate Virtualization instructions\n\
18993 -mno-virt do not generate Virtualization instructions\n"));
18994 fprintf (stream, _("\
18995 -minsn32 only generate 32-bit microMIPS instructions\n\
18996 -mno-insn32 generate all microMIPS instructions\n"));
18997 fprintf (stream, _("\
18998 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18999 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19000 -mfix-vr4120 work around certain VR4120 errata\n\
19001 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19002 -mfix-24k insert a nop after ERET and DERET instructions\n\
19003 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19004 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19005 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19006 -msym32 assume all symbols have 32-bit values\n\
19007 -O0 remove unneeded NOPs, do not swap branches\n\
19008 -O remove unneeded NOPs and swap branches\n\
19009 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19010 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19011 fprintf (stream, _("\
19012 -mhard-float allow floating-point instructions\n\
19013 -msoft-float do not allow floating-point instructions\n\
19014 -msingle-float only allow 32-bit floating-point operations\n\
19015 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19016 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19017 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19018 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19019
19020 first = 1;
19021
19022 show (stream, "legacy", &column, &first);
19023 show (stream, "2008", &column, &first);
19024
19025 fputc ('\n', stream);
19026
19027 fprintf (stream, _("\
19028 -KPIC, -call_shared generate SVR4 position independent code\n\
19029 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19030 -mvxworks-pic generate VxWorks position independent code\n\
19031 -non_shared do not generate code that can operate with DSOs\n\
19032 -xgot assume a 32 bit GOT\n\
19033 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19034 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19035 position dependent (non shared) code\n\
19036 -mabi=ABI create ABI conformant object file for:\n"));
19037
19038 first = 1;
19039
19040 show (stream, "32", &column, &first);
19041 show (stream, "o64", &column, &first);
19042 show (stream, "n32", &column, &first);
19043 show (stream, "64", &column, &first);
19044 show (stream, "eabi", &column, &first);
19045
19046 fputc ('\n', stream);
19047
19048 fprintf (stream, _("\
19049 -32 create o32 ABI object file (default)\n\
19050 -n32 create n32 ABI object file\n\
19051 -64 create 64 ABI object file\n"));
19052 }
19053
19054 #ifdef TE_IRIX
19055 enum dwarf2_format
19056 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19057 {
19058 if (HAVE_64BIT_SYMBOLS)
19059 return dwarf2_format_64bit_irix;
19060 else
19061 return dwarf2_format_32bit;
19062 }
19063 #endif
19064
19065 int
19066 mips_dwarf2_addr_size (void)
19067 {
19068 if (HAVE_64BIT_OBJECTS)
19069 return 8;
19070 else
19071 return 4;
19072 }
19073
19074 /* Standard calling conventions leave the CFA at SP on entry. */
19075 void
19076 mips_cfi_frame_initial_instructions (void)
19077 {
19078 cfi_add_CFA_def_cfa_register (SP);
19079 }
19080
19081 int
19082 tc_mips_regname_to_dw2regnum (char *regname)
19083 {
19084 unsigned int regnum = -1;
19085 unsigned int reg;
19086
19087 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19088 regnum = reg;
19089
19090 return regnum;
19091 }
19092
19093 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19094 Given a symbolic attribute NAME, return the proper integer value.
19095 Returns -1 if the attribute is not known. */
19096
19097 int
19098 mips_convert_symbolic_attribute (const char *name)
19099 {
19100 static const struct
19101 {
19102 const char * name;
19103 const int tag;
19104 }
19105 attribute_table[] =
19106 {
19107 #define T(tag) {#tag, tag}
19108 T (Tag_GNU_MIPS_ABI_FP),
19109 T (Tag_GNU_MIPS_ABI_MSA),
19110 #undef T
19111 };
19112 unsigned int i;
19113
19114 if (name == NULL)
19115 return -1;
19116
19117 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19118 if (streq (name, attribute_table[i].name))
19119 return attribute_table[i].tag;
19120
19121 return -1;
19122 }
19123
19124 void
19125 md_mips_end (void)
19126 {
19127 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19128
19129 mips_emit_delays ();
19130 if (cur_proc_ptr)
19131 as_warn (_("missing .end at end of assembly"));
19132
19133 /* Just in case no code was emitted, do the consistency check. */
19134 file_mips_check_options ();
19135
19136 /* Set a floating-point ABI if the user did not. */
19137 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19138 {
19139 /* Perform consistency checks on the floating-point ABI. */
19140 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19141 Tag_GNU_MIPS_ABI_FP);
19142 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19143 check_fpabi (fpabi);
19144 }
19145 else
19146 {
19147 /* Soft-float gets precedence over single-float, the two options should
19148 not be used together so this should not matter. */
19149 if (file_mips_opts.soft_float == 1)
19150 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19151 /* Single-float gets precedence over all double_float cases. */
19152 else if (file_mips_opts.single_float == 1)
19153 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19154 else
19155 {
19156 switch (file_mips_opts.fp)
19157 {
19158 case 32:
19159 if (file_mips_opts.gp == 32)
19160 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19161 break;
19162 case 0:
19163 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19164 break;
19165 case 64:
19166 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19167 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19168 else if (file_mips_opts.gp == 32)
19169 fpabi = Val_GNU_MIPS_ABI_FP_64;
19170 else
19171 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19172 break;
19173 }
19174 }
19175
19176 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19177 Tag_GNU_MIPS_ABI_FP, fpabi);
19178 }
19179 }
19180
19181 /* Returns the relocation type required for a particular CFI encoding. */
19182
19183 bfd_reloc_code_real_type
19184 mips_cfi_reloc_for_encoding (int encoding)
19185 {
19186 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19187 return BFD_RELOC_32_PCREL;
19188 else return BFD_RELOC_NONE;
19189 }
This page took 0.449017 seconds and 5 git commands to generate.