gas/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 /* Check assumptions made in this file. */
38 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
39 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40
41 #ifdef DEBUG
42 #define DBG(x) printf x
43 #else
44 #define DBG(x)
45 #endif
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92
93 #define ZERO 0
94 #define ATREG 1
95 #define S0 16
96 #define S7 23
97 #define TREG 24
98 #define PIC_CALL_REG 25
99 #define KT0 26
100 #define KT1 27
101 #define GP 28
102 #define SP 29
103 #define FP 30
104 #define RA 31
105
106 #define ILLEGAL_REG (32)
107
108 #define AT mips_opts.at
109
110 extern int target_big_endian;
111
112 /* The name of the readonly data section. */
113 #define RDATA_SECTION_NAME ".rodata"
114
115 /* Ways in which an instruction can be "appended" to the output. */
116 enum append_method {
117 /* Just add it normally. */
118 APPEND_ADD,
119
120 /* Add it normally and then add a nop. */
121 APPEND_ADD_WITH_NOP,
122
123 /* Turn an instruction with a delay slot into a "compact" version. */
124 APPEND_ADD_COMPACT,
125
126 /* Insert the instruction before the last one. */
127 APPEND_SWAP
128 };
129
130 /* Information about an instruction, including its format, operands
131 and fixups. */
132 struct mips_cl_insn
133 {
134 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
135 const struct mips_opcode *insn_mo;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. If we have
139 decided to use an extended MIPS16 instruction, this includes the
140 extension. */
141 unsigned long insn_opcode;
142
143 /* The frag that contains the instruction. */
144 struct frag *frag;
145
146 /* The offset into FRAG of the first instruction byte. */
147 long where;
148
149 /* The relocs associated with the instruction, if any. */
150 fixS *fixp[3];
151
152 /* True if this entry cannot be moved from its current position. */
153 unsigned int fixed_p : 1;
154
155 /* True if this instruction occurred in a .set noreorder block. */
156 unsigned int noreorder_p : 1;
157
158 /* True for mips16 instructions that jump to an absolute address. */
159 unsigned int mips16_absolute_jump_p : 1;
160
161 /* True if this instruction is complete. */
162 unsigned int complete_p : 1;
163
164 /* True if this instruction is cleared from history by unconditional
165 branch. */
166 unsigned int cleared_p : 1;
167 };
168
169 /* The ABI to use. */
170 enum mips_abi_level
171 {
172 NO_ABI = 0,
173 O32_ABI,
174 O64_ABI,
175 N32_ABI,
176 N64_ABI,
177 EABI_ABI
178 };
179
180 /* MIPS ABI we are using for this output file. */
181 static enum mips_abi_level mips_abi = NO_ABI;
182
183 /* Whether or not we have code that can call pic code. */
184 int mips_abicalls = FALSE;
185
186 /* Whether or not we have code which can be put into a shared
187 library. */
188 static bfd_boolean mips_in_shared = TRUE;
189
190 /* This is the set of options which may be modified by the .set
191 pseudo-op. We use a struct so that .set push and .set pop are more
192 reliable. */
193
194 struct mips_set_options
195 {
196 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
197 if it has not been initialized. Changed by `.set mipsN', and the
198 -mipsN command line option, and the default CPU. */
199 int isa;
200 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
201 <asename>', by command line options, and based on the default
202 architecture. */
203 int ase;
204 /* Whether we are assembling for the mips16 processor. 0 if we are
205 not, 1 if we are, and -1 if the value has not been initialized.
206 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
207 -nomips16 command line options, and the default CPU. */
208 int mips16;
209 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
210 1 if we are, and -1 if the value has not been initialized. Changed
211 by `.set micromips' and `.set nomicromips', and the -mmicromips
212 and -mno-micromips command line options, and the default CPU. */
213 int micromips;
214 /* Non-zero if we should not reorder instructions. Changed by `.set
215 reorder' and `.set noreorder'. */
216 int noreorder;
217 /* Non-zero if we should not permit the register designated "assembler
218 temporary" to be used in instructions. The value is the register
219 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
220 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
221 unsigned int at;
222 /* Non-zero if we should warn when a macro instruction expands into
223 more than one machine instruction. Changed by `.set nomacro' and
224 `.set macro'. */
225 int warn_about_macros;
226 /* Non-zero if we should not move instructions. Changed by `.set
227 move', `.set volatile', `.set nomove', and `.set novolatile'. */
228 int nomove;
229 /* Non-zero if we should not optimize branches by moving the target
230 of the branch into the delay slot. Actually, we don't perform
231 this optimization anyhow. Changed by `.set bopt' and `.set
232 nobopt'. */
233 int nobopt;
234 /* Non-zero if we should not autoextend mips16 instructions.
235 Changed by `.set autoextend' and `.set noautoextend'. */
236 int noautoextend;
237 /* True if we should only emit 32-bit microMIPS instructions.
238 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
239 and -mno-insn32 command line options. */
240 bfd_boolean insn32;
241 /* Restrict general purpose registers and floating point registers
242 to 32 bit. This is initially determined when -mgp32 or -mfp32
243 is passed but can changed if the assembler code uses .set mipsN. */
244 int gp32;
245 int fp32;
246 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
247 command line option, and the default CPU. */
248 int arch;
249 /* True if ".set sym32" is in effect. */
250 bfd_boolean sym32;
251 /* True if floating-point operations are not allowed. Changed by .set
252 softfloat or .set hardfloat, by command line options -msoft-float or
253 -mhard-float. The default is false. */
254 bfd_boolean soft_float;
255
256 /* True if only single-precision floating-point operations are allowed.
257 Changed by .set singlefloat or .set doublefloat, command-line options
258 -msingle-float or -mdouble-float. The default is false. */
259 bfd_boolean single_float;
260 };
261
262 /* This is the struct we use to hold the current set of options. Note
263 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
264 -1 to indicate that they have not been initialized. */
265
266 /* True if -mgp32 was passed. */
267 static int file_mips_gp32 = -1;
268
269 /* True if -mfp32 was passed. */
270 static int file_mips_fp32 = -1;
271
272 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
273 static int file_mips_soft_float = 0;
274
275 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
276 static int file_mips_single_float = 0;
277
278 /* True if -mnan=2008, false if -mnan=legacy. */
279 static bfd_boolean mips_flag_nan2008 = FALSE;
280
281 static struct mips_set_options mips_opts =
282 {
283 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
284 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
285 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
286 /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
287 /* soft_float */ FALSE, /* single_float */ FALSE
288 };
289
290 /* The set of ASEs that were selected on the command line, either
291 explicitly via ASE options or implicitly through things like -march. */
292 static unsigned int file_ase;
293
294 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
295 static unsigned int file_ase_explicit;
296
297 /* These variables are filled in with the masks of registers used.
298 The object format code reads them and puts them in the appropriate
299 place. */
300 unsigned long mips_gprmask;
301 unsigned long mips_cprmask[4];
302
303 /* MIPS ISA we are using for this output file. */
304 static int file_mips_isa = ISA_UNKNOWN;
305
306 /* True if any MIPS16 code was produced. */
307 static int file_ase_mips16;
308
309 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
310 || mips_opts.isa == ISA_MIPS32R2 \
311 || mips_opts.isa == ISA_MIPS64 \
312 || mips_opts.isa == ISA_MIPS64R2)
313
314 /* True if any microMIPS code was produced. */
315 static int file_ase_micromips;
316
317 /* True if we want to create R_MIPS_JALR for jalr $25. */
318 #ifdef TE_IRIX
319 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
320 #else
321 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
322 because there's no place for any addend, the only acceptable
323 expression is a bare symbol. */
324 #define MIPS_JALR_HINT_P(EXPR) \
325 (!HAVE_IN_PLACE_ADDENDS \
326 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
327 #endif
328
329 /* The argument of the -march= flag. The architecture we are assembling. */
330 static int file_mips_arch = CPU_UNKNOWN;
331 static const char *mips_arch_string;
332
333 /* The argument of the -mtune= flag. The architecture for which we
334 are optimizing. */
335 static int mips_tune = CPU_UNKNOWN;
336 static const char *mips_tune_string;
337
338 /* True when generating 32-bit code for a 64-bit processor. */
339 static int mips_32bitmode = 0;
340
341 /* True if the given ABI requires 32-bit registers. */
342 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
343
344 /* Likewise 64-bit registers. */
345 #define ABI_NEEDS_64BIT_REGS(ABI) \
346 ((ABI) == N32_ABI \
347 || (ABI) == N64_ABI \
348 || (ABI) == O64_ABI)
349
350 /* Return true if ISA supports 64 bit wide gp registers. */
351 #define ISA_HAS_64BIT_REGS(ISA) \
352 ((ISA) == ISA_MIPS3 \
353 || (ISA) == ISA_MIPS4 \
354 || (ISA) == ISA_MIPS5 \
355 || (ISA) == ISA_MIPS64 \
356 || (ISA) == ISA_MIPS64R2)
357
358 /* Return true if ISA supports 64 bit wide float registers. */
359 #define ISA_HAS_64BIT_FPRS(ISA) \
360 ((ISA) == ISA_MIPS3 \
361 || (ISA) == ISA_MIPS4 \
362 || (ISA) == ISA_MIPS5 \
363 || (ISA) == ISA_MIPS32R2 \
364 || (ISA) == ISA_MIPS64 \
365 || (ISA) == ISA_MIPS64R2)
366
367 /* Return true if ISA supports 64-bit right rotate (dror et al.)
368 instructions. */
369 #define ISA_HAS_DROR(ISA) \
370 ((ISA) == ISA_MIPS64R2 \
371 || (mips_opts.micromips \
372 && ISA_HAS_64BIT_REGS (ISA)) \
373 )
374
375 /* Return true if ISA supports 32-bit right rotate (ror et al.)
376 instructions. */
377 #define ISA_HAS_ROR(ISA) \
378 ((ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64R2 \
380 || (mips_opts.ase & ASE_SMARTMIPS) \
381 || mips_opts.micromips \
382 )
383
384 /* Return true if ISA supports single-precision floats in odd registers. */
385 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
386 ((ISA) == ISA_MIPS32 \
387 || (ISA) == ISA_MIPS32R2 \
388 || (ISA) == ISA_MIPS64 \
389 || (ISA) == ISA_MIPS64R2)
390
391 /* Return true if ISA supports move to/from high part of a 64-bit
392 floating-point register. */
393 #define ISA_HAS_MXHC1(ISA) \
394 ((ISA) == ISA_MIPS32R2 \
395 || (ISA) == ISA_MIPS64R2)
396
397 #define HAVE_32BIT_GPRS \
398 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
399
400 #define HAVE_32BIT_FPRS \
401 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
402
403 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
404 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
405
406 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
407
408 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
409
410 /* True if relocations are stored in-place. */
411 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
412
413 /* The ABI-derived address size. */
414 #define HAVE_64BIT_ADDRESSES \
415 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
416 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
417
418 /* The size of symbolic constants (i.e., expressions of the form
419 "SYMBOL" or "SYMBOL + OFFSET"). */
420 #define HAVE_32BIT_SYMBOLS \
421 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
422 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
423
424 /* Addresses are loaded in different ways, depending on the address size
425 in use. The n32 ABI Documentation also mandates the use of additions
426 with overflow checking, but existing implementations don't follow it. */
427 #define ADDRESS_ADD_INSN \
428 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
429
430 #define ADDRESS_ADDI_INSN \
431 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
432
433 #define ADDRESS_LOAD_INSN \
434 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
435
436 #define ADDRESS_STORE_INSN \
437 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
438
439 /* Return true if the given CPU supports the MIPS16 ASE. */
440 #define CPU_HAS_MIPS16(cpu) \
441 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
442 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
443
444 /* Return true if the given CPU supports the microMIPS ASE. */
445 #define CPU_HAS_MICROMIPS(cpu) 0
446
447 /* True if CPU has a dror instruction. */
448 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
449
450 /* True if CPU has a ror instruction. */
451 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
452
453 /* True if CPU is in the Octeon family */
454 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
455
456 /* True if CPU has seq/sne and seqi/snei instructions. */
457 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
458
459 /* True, if CPU has support for ldc1 and sdc1. */
460 #define CPU_HAS_LDC1_SDC1(CPU) \
461 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
462
463 /* True if mflo and mfhi can be immediately followed by instructions
464 which write to the HI and LO registers.
465
466 According to MIPS specifications, MIPS ISAs I, II, and III need
467 (at least) two instructions between the reads of HI/LO and
468 instructions which write them, and later ISAs do not. Contradicting
469 the MIPS specifications, some MIPS IV processor user manuals (e.g.
470 the UM for the NEC Vr5000) document needing the instructions between
471 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
472 MIPS64 and later ISAs to have the interlocks, plus any specific
473 earlier-ISA CPUs for which CPU documentation declares that the
474 instructions are really interlocked. */
475 #define hilo_interlocks \
476 (mips_opts.isa == ISA_MIPS32 \
477 || mips_opts.isa == ISA_MIPS32R2 \
478 || mips_opts.isa == ISA_MIPS64 \
479 || mips_opts.isa == ISA_MIPS64R2 \
480 || mips_opts.arch == CPU_R4010 \
481 || mips_opts.arch == CPU_R5900 \
482 || mips_opts.arch == CPU_R10000 \
483 || mips_opts.arch == CPU_R12000 \
484 || mips_opts.arch == CPU_R14000 \
485 || mips_opts.arch == CPU_R16000 \
486 || mips_opts.arch == CPU_RM7000 \
487 || mips_opts.arch == CPU_VR5500 \
488 || mips_opts.micromips \
489 )
490
491 /* Whether the processor uses hardware interlocks to protect reads
492 from the GPRs after they are loaded from memory, and thus does not
493 require nops to be inserted. This applies to instructions marked
494 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
495 level I and microMIPS mode instructions are always interlocked. */
496 #define gpr_interlocks \
497 (mips_opts.isa != ISA_MIPS1 \
498 || mips_opts.arch == CPU_R3900 \
499 || mips_opts.arch == CPU_R5900 \
500 || mips_opts.micromips \
501 )
502
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III and microMIPS mode instructions are always
510 interlocked. */
511 /* Itbl support may require additional care here. */
512 #define cop_interlocks \
513 ((mips_opts.isa != ISA_MIPS1 \
514 && mips_opts.isa != ISA_MIPS2 \
515 && mips_opts.isa != ISA_MIPS3) \
516 || mips_opts.arch == CPU_R4300 \
517 || mips_opts.micromips \
518 )
519
520 /* Whether the processor uses hardware interlocks to protect reads
521 from coprocessor registers after they are loaded from memory, and
522 thus does not require nops to be inserted. This applies to
523 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
524 requires at MIPS ISA level I and microMIPS mode instructions are
525 always interlocked. */
526 #define cop_mem_interlocks \
527 (mips_opts.isa != ISA_MIPS1 \
528 || mips_opts.micromips \
529 )
530
531 /* Is this a mfhi or mflo instruction? */
532 #define MF_HILO_INSN(PINFO) \
533 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
534
535 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
536 has been selected. This implies, in particular, that addresses of text
537 labels have their LSB set. */
538 #define HAVE_CODE_COMPRESSION \
539 ((mips_opts.mips16 | mips_opts.micromips) != 0)
540
541 /* The minimum and maximum signed values that can be stored in a GPR. */
542 #define GPR_SMAX ((offsetT) (((valueT) 1 << (HAVE_64BIT_GPRS ? 63 : 31)) - 1))
543 #define GPR_SMIN (-GPR_SMAX - 1)
544
545 /* MIPS PIC level. */
546
547 enum mips_pic_level mips_pic;
548
549 /* 1 if we should generate 32 bit offsets from the $gp register in
550 SVR4_PIC mode. Currently has no meaning in other modes. */
551 static int mips_big_got = 0;
552
553 /* 1 if trap instructions should used for overflow rather than break
554 instructions. */
555 static int mips_trap = 0;
556
557 /* 1 if double width floating point constants should not be constructed
558 by assembling two single width halves into two single width floating
559 point registers which just happen to alias the double width destination
560 register. On some architectures this aliasing can be disabled by a bit
561 in the status register, and the setting of this bit cannot be determined
562 automatically at assemble time. */
563 static int mips_disable_float_construction;
564
565 /* Non-zero if any .set noreorder directives were used. */
566
567 static int mips_any_noreorder;
568
569 /* Non-zero if nops should be inserted when the register referenced in
570 an mfhi/mflo instruction is read in the next two instructions. */
571 static int mips_7000_hilo_fix;
572
573 /* The size of objects in the small data section. */
574 static unsigned int g_switch_value = 8;
575 /* Whether the -G option was used. */
576 static int g_switch_seen = 0;
577
578 #define N_RMASK 0xc4
579 #define N_VFP 0xd4
580
581 /* If we can determine in advance that GP optimization won't be
582 possible, we can skip the relaxation stuff that tries to produce
583 GP-relative references. This makes delay slot optimization work
584 better.
585
586 This function can only provide a guess, but it seems to work for
587 gcc output. It needs to guess right for gcc, otherwise gcc
588 will put what it thinks is a GP-relative instruction in a branch
589 delay slot.
590
591 I don't know if a fix is needed for the SVR4_PIC mode. I've only
592 fixed it for the non-PIC mode. KR 95/04/07 */
593 static int nopic_need_relax (symbolS *, int);
594
595 /* handle of the OPCODE hash table */
596 static struct hash_control *op_hash = NULL;
597
598 /* The opcode hash table we use for the mips16. */
599 static struct hash_control *mips16_op_hash = NULL;
600
601 /* The opcode hash table we use for the microMIPS ASE. */
602 static struct hash_control *micromips_op_hash = NULL;
603
604 /* This array holds the chars that always start a comment. If the
605 pre-processor is disabled, these aren't very useful */
606 const char comment_chars[] = "#";
607
608 /* This array holds the chars that only start a comment at the beginning of
609 a line. If the line seems to have the form '# 123 filename'
610 .line and .file directives will appear in the pre-processed output */
611 /* Note that input_file.c hand checks for '#' at the beginning of the
612 first line of the input file. This is because the compiler outputs
613 #NO_APP at the beginning of its output. */
614 /* Also note that C style comments are always supported. */
615 const char line_comment_chars[] = "#";
616
617 /* This array holds machine specific line separator characters. */
618 const char line_separator_chars[] = ";";
619
620 /* Chars that can be used to separate mant from exp in floating point nums */
621 const char EXP_CHARS[] = "eE";
622
623 /* Chars that mean this number is a floating point constant */
624 /* As in 0f12.456 */
625 /* or 0d1.2345e12 */
626 const char FLT_CHARS[] = "rRsSfFdDxXpP";
627
628 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
629 changed in read.c . Ideally it shouldn't have to know about it at all,
630 but nothing is ideal around here.
631 */
632
633 /* Types of printf format used for instruction-related error messages.
634 "I" means int ("%d") and "S" means string ("%s"). */
635 enum mips_insn_error_format {
636 ERR_FMT_PLAIN,
637 ERR_FMT_I,
638 ERR_FMT_SS,
639 };
640
641 /* Information about an error that was found while assembling the current
642 instruction. */
643 struct mips_insn_error {
644 /* We sometimes need to match an instruction against more than one
645 opcode table entry. Errors found during this matching are reported
646 against a particular syntactic argument rather than against the
647 instruction as a whole. We grade these messages so that errors
648 against argument N have a greater priority than an error against
649 any argument < N, since the former implies that arguments up to N
650 were acceptable and that the opcode entry was therefore a closer match.
651 If several matches report an error against the same argument,
652 we only use that error if it is the same in all cases.
653
654 min_argnum is the minimum argument number for which an error message
655 should be accepted. It is 0 if MSG is against the instruction as
656 a whole. */
657 int min_argnum;
658
659 /* The printf()-style message, including its format and arguments. */
660 enum mips_insn_error_format format;
661 const char *msg;
662 union {
663 int i;
664 const char *ss[2];
665 } u;
666 };
667
668 /* The error that should be reported for the current instruction. */
669 static struct mips_insn_error insn_error;
670
671 static int auto_align = 1;
672
673 /* When outputting SVR4 PIC code, the assembler needs to know the
674 offset in the stack frame from which to restore the $gp register.
675 This is set by the .cprestore pseudo-op, and saved in this
676 variable. */
677 static offsetT mips_cprestore_offset = -1;
678
679 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
680 more optimizations, it can use a register value instead of a memory-saved
681 offset and even an other register than $gp as global pointer. */
682 static offsetT mips_cpreturn_offset = -1;
683 static int mips_cpreturn_register = -1;
684 static int mips_gp_register = GP;
685 static int mips_gprel_offset = 0;
686
687 /* Whether mips_cprestore_offset has been set in the current function
688 (or whether it has already been warned about, if not). */
689 static int mips_cprestore_valid = 0;
690
691 /* This is the register which holds the stack frame, as set by the
692 .frame pseudo-op. This is needed to implement .cprestore. */
693 static int mips_frame_reg = SP;
694
695 /* Whether mips_frame_reg has been set in the current function
696 (or whether it has already been warned about, if not). */
697 static int mips_frame_reg_valid = 0;
698
699 /* To output NOP instructions correctly, we need to keep information
700 about the previous two instructions. */
701
702 /* Whether we are optimizing. The default value of 2 means to remove
703 unneeded NOPs and swap branch instructions when possible. A value
704 of 1 means to not swap branches. A value of 0 means to always
705 insert NOPs. */
706 static int mips_optimize = 2;
707
708 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
709 equivalent to seeing no -g option at all. */
710 static int mips_debug = 0;
711
712 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
713 #define MAX_VR4130_NOPS 4
714
715 /* The maximum number of NOPs needed to fill delay slots. */
716 #define MAX_DELAY_NOPS 2
717
718 /* The maximum number of NOPs needed for any purpose. */
719 #define MAX_NOPS 4
720
721 /* A list of previous instructions, with index 0 being the most recent.
722 We need to look back MAX_NOPS instructions when filling delay slots
723 or working around processor errata. We need to look back one
724 instruction further if we're thinking about using history[0] to
725 fill a branch delay slot. */
726 static struct mips_cl_insn history[1 + MAX_NOPS];
727
728 /* Arrays of operands for each instruction. */
729 #define MAX_OPERANDS 6
730 struct mips_operand_array {
731 const struct mips_operand *operand[MAX_OPERANDS];
732 };
733 static struct mips_operand_array *mips_operands;
734 static struct mips_operand_array *mips16_operands;
735 static struct mips_operand_array *micromips_operands;
736
737 /* Nop instructions used by emit_nop. */
738 static struct mips_cl_insn nop_insn;
739 static struct mips_cl_insn mips16_nop_insn;
740 static struct mips_cl_insn micromips_nop16_insn;
741 static struct mips_cl_insn micromips_nop32_insn;
742
743 /* The appropriate nop for the current mode. */
744 #define NOP_INSN (mips_opts.mips16 \
745 ? &mips16_nop_insn \
746 : (mips_opts.micromips \
747 ? (mips_opts.insn32 \
748 ? &micromips_nop32_insn \
749 : &micromips_nop16_insn) \
750 : &nop_insn))
751
752 /* The size of NOP_INSN in bytes. */
753 #define NOP_INSN_SIZE ((mips_opts.mips16 \
754 || (mips_opts.micromips && !mips_opts.insn32)) \
755 ? 2 : 4)
756
757 /* If this is set, it points to a frag holding nop instructions which
758 were inserted before the start of a noreorder section. If those
759 nops turn out to be unnecessary, the size of the frag can be
760 decreased. */
761 static fragS *prev_nop_frag;
762
763 /* The number of nop instructions we created in prev_nop_frag. */
764 static int prev_nop_frag_holds;
765
766 /* The number of nop instructions that we know we need in
767 prev_nop_frag. */
768 static int prev_nop_frag_required;
769
770 /* The number of instructions we've seen since prev_nop_frag. */
771 static int prev_nop_frag_since;
772
773 /* Relocations against symbols are sometimes done in two parts, with a HI
774 relocation and a LO relocation. Each relocation has only 16 bits of
775 space to store an addend. This means that in order for the linker to
776 handle carries correctly, it must be able to locate both the HI and
777 the LO relocation. This means that the relocations must appear in
778 order in the relocation table.
779
780 In order to implement this, we keep track of each unmatched HI
781 relocation. We then sort them so that they immediately precede the
782 corresponding LO relocation. */
783
784 struct mips_hi_fixup
785 {
786 /* Next HI fixup. */
787 struct mips_hi_fixup *next;
788 /* This fixup. */
789 fixS *fixp;
790 /* The section this fixup is in. */
791 segT seg;
792 };
793
794 /* The list of unmatched HI relocs. */
795
796 static struct mips_hi_fixup *mips_hi_fixup_list;
797
798 /* The frag containing the last explicit relocation operator.
799 Null if explicit relocations have not been used. */
800
801 static fragS *prev_reloc_op_frag;
802
803 /* Map mips16 register numbers to normal MIPS register numbers. */
804
805 static const unsigned int mips16_to_32_reg_map[] =
806 {
807 16, 17, 2, 3, 4, 5, 6, 7
808 };
809
810 /* Map microMIPS register numbers to normal MIPS register numbers. */
811
812 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
813
814 /* The microMIPS registers with type h. */
815 static const unsigned int micromips_to_32_reg_h_map1[] =
816 {
817 5, 5, 6, 4, 4, 4, 4, 4
818 };
819 static const unsigned int micromips_to_32_reg_h_map2[] =
820 {
821 6, 7, 7, 21, 22, 5, 6, 7
822 };
823
824 /* The microMIPS registers with type m. */
825 static const unsigned int micromips_to_32_reg_m_map[] =
826 {
827 0, 17, 2, 3, 16, 18, 19, 20
828 };
829
830 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
831
832 /* Classifies the kind of instructions we're interested in when
833 implementing -mfix-vr4120. */
834 enum fix_vr4120_class
835 {
836 FIX_VR4120_MACC,
837 FIX_VR4120_DMACC,
838 FIX_VR4120_MULT,
839 FIX_VR4120_DMULT,
840 FIX_VR4120_DIV,
841 FIX_VR4120_MTHILO,
842 NUM_FIX_VR4120_CLASSES
843 };
844
845 /* ...likewise -mfix-loongson2f-jump. */
846 static bfd_boolean mips_fix_loongson2f_jump;
847
848 /* ...likewise -mfix-loongson2f-nop. */
849 static bfd_boolean mips_fix_loongson2f_nop;
850
851 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
852 static bfd_boolean mips_fix_loongson2f;
853
854 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
855 there must be at least one other instruction between an instruction
856 of type X and an instruction of type Y. */
857 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
858
859 /* True if -mfix-vr4120 is in force. */
860 static int mips_fix_vr4120;
861
862 /* ...likewise -mfix-vr4130. */
863 static int mips_fix_vr4130;
864
865 /* ...likewise -mfix-24k. */
866 static int mips_fix_24k;
867
868 /* ...likewise -mfix-cn63xxp1 */
869 static bfd_boolean mips_fix_cn63xxp1;
870
871 /* We don't relax branches by default, since this causes us to expand
872 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
873 fail to compute the offset before expanding the macro to the most
874 efficient expansion. */
875
876 static int mips_relax_branch;
877 \f
878 /* The expansion of many macros depends on the type of symbol that
879 they refer to. For example, when generating position-dependent code,
880 a macro that refers to a symbol may have two different expansions,
881 one which uses GP-relative addresses and one which uses absolute
882 addresses. When generating SVR4-style PIC, a macro may have
883 different expansions for local and global symbols.
884
885 We handle these situations by generating both sequences and putting
886 them in variant frags. In position-dependent code, the first sequence
887 will be the GP-relative one and the second sequence will be the
888 absolute one. In SVR4 PIC, the first sequence will be for global
889 symbols and the second will be for local symbols.
890
891 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
892 SECOND are the lengths of the two sequences in bytes. These fields
893 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
894 the subtype has the following flags:
895
896 RELAX_USE_SECOND
897 Set if it has been decided that we should use the second
898 sequence instead of the first.
899
900 RELAX_SECOND_LONGER
901 Set in the first variant frag if the macro's second implementation
902 is longer than its first. This refers to the macro as a whole,
903 not an individual relaxation.
904
905 RELAX_NOMACRO
906 Set in the first variant frag if the macro appeared in a .set nomacro
907 block and if one alternative requires a warning but the other does not.
908
909 RELAX_DELAY_SLOT
910 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
911 delay slot.
912
913 RELAX_DELAY_SLOT_16BIT
914 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
915 16-bit instruction.
916
917 RELAX_DELAY_SLOT_SIZE_FIRST
918 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
919 the macro is of the wrong size for the branch delay slot.
920
921 RELAX_DELAY_SLOT_SIZE_SECOND
922 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
923 the macro is of the wrong size for the branch delay slot.
924
925 The frag's "opcode" points to the first fixup for relaxable code.
926
927 Relaxable macros are generated using a sequence such as:
928
929 relax_start (SYMBOL);
930 ... generate first expansion ...
931 relax_switch ();
932 ... generate second expansion ...
933 relax_end ();
934
935 The code and fixups for the unwanted alternative are discarded
936 by md_convert_frag. */
937 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
938
939 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
940 #define RELAX_SECOND(X) ((X) & 0xff)
941 #define RELAX_USE_SECOND 0x10000
942 #define RELAX_SECOND_LONGER 0x20000
943 #define RELAX_NOMACRO 0x40000
944 #define RELAX_DELAY_SLOT 0x80000
945 #define RELAX_DELAY_SLOT_16BIT 0x100000
946 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
947 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
948
949 /* Branch without likely bit. If label is out of range, we turn:
950
951 beq reg1, reg2, label
952 delay slot
953
954 into
955
956 bne reg1, reg2, 0f
957 nop
958 j label
959 0: delay slot
960
961 with the following opcode replacements:
962
963 beq <-> bne
964 blez <-> bgtz
965 bltz <-> bgez
966 bc1f <-> bc1t
967
968 bltzal <-> bgezal (with jal label instead of j label)
969
970 Even though keeping the delay slot instruction in the delay slot of
971 the branch would be more efficient, it would be very tricky to do
972 correctly, because we'd have to introduce a variable frag *after*
973 the delay slot instruction, and expand that instead. Let's do it
974 the easy way for now, even if the branch-not-taken case now costs
975 one additional instruction. Out-of-range branches are not supposed
976 to be common, anyway.
977
978 Branch likely. If label is out of range, we turn:
979
980 beql reg1, reg2, label
981 delay slot (annulled if branch not taken)
982
983 into
984
985 beql reg1, reg2, 1f
986 nop
987 beql $0, $0, 2f
988 nop
989 1: j[al] label
990 delay slot (executed only if branch taken)
991 2:
992
993 It would be possible to generate a shorter sequence by losing the
994 likely bit, generating something like:
995
996 bne reg1, reg2, 0f
997 nop
998 j[al] label
999 delay slot (executed only if branch taken)
1000 0:
1001
1002 beql -> bne
1003 bnel -> beq
1004 blezl -> bgtz
1005 bgtzl -> blez
1006 bltzl -> bgez
1007 bgezl -> bltz
1008 bc1fl -> bc1t
1009 bc1tl -> bc1f
1010
1011 bltzall -> bgezal (with jal label instead of j label)
1012 bgezall -> bltzal (ditto)
1013
1014
1015 but it's not clear that it would actually improve performance. */
1016 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1017 ((relax_substateT) \
1018 (0xc0000000 \
1019 | ((at) & 0x1f) \
1020 | ((toofar) ? 0x20 : 0) \
1021 | ((link) ? 0x40 : 0) \
1022 | ((likely) ? 0x80 : 0) \
1023 | ((uncond) ? 0x100 : 0)))
1024 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1025 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1026 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1027 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1028 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1029 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1030
1031 /* For mips16 code, we use an entirely different form of relaxation.
1032 mips16 supports two versions of most instructions which take
1033 immediate values: a small one which takes some small value, and a
1034 larger one which takes a 16 bit value. Since branches also follow
1035 this pattern, relaxing these values is required.
1036
1037 We can assemble both mips16 and normal MIPS code in a single
1038 object. Therefore, we need to support this type of relaxation at
1039 the same time that we support the relaxation described above. We
1040 use the high bit of the subtype field to distinguish these cases.
1041
1042 The information we store for this type of relaxation is the
1043 argument code found in the opcode file for this relocation, whether
1044 the user explicitly requested a small or extended form, and whether
1045 the relocation is in a jump or jal delay slot. That tells us the
1046 size of the value, and how it should be stored. We also store
1047 whether the fragment is considered to be extended or not. We also
1048 store whether this is known to be a branch to a different section,
1049 whether we have tried to relax this frag yet, and whether we have
1050 ever extended a PC relative fragment because of a shift count. */
1051 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1052 (0x80000000 \
1053 | ((type) & 0xff) \
1054 | ((small) ? 0x100 : 0) \
1055 | ((ext) ? 0x200 : 0) \
1056 | ((dslot) ? 0x400 : 0) \
1057 | ((jal_dslot) ? 0x800 : 0))
1058 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1059 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1060 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1061 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1062 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1063 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1064 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1065 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1066 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1067 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1068 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1069 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1070
1071 /* For microMIPS code, we use relaxation similar to one we use for
1072 MIPS16 code. Some instructions that take immediate values support
1073 two encodings: a small one which takes some small value, and a
1074 larger one which takes a 16 bit value. As some branches also follow
1075 this pattern, relaxing these values is required.
1076
1077 We can assemble both microMIPS and normal MIPS code in a single
1078 object. Therefore, we need to support this type of relaxation at
1079 the same time that we support the relaxation described above. We
1080 use one of the high bits of the subtype field to distinguish these
1081 cases.
1082
1083 The information we store for this type of relaxation is the argument
1084 code found in the opcode file for this relocation, the register
1085 selected as the assembler temporary, whether the branch is
1086 unconditional, whether it is compact, whether it stores the link
1087 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1088 branches to a sequence of instructions is enabled, and whether the
1089 displacement of a branch is too large to fit as an immediate argument
1090 of a 16-bit and a 32-bit branch, respectively. */
1091 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1092 relax32, toofar16, toofar32) \
1093 (0x40000000 \
1094 | ((type) & 0xff) \
1095 | (((at) & 0x1f) << 8) \
1096 | ((uncond) ? 0x2000 : 0) \
1097 | ((compact) ? 0x4000 : 0) \
1098 | ((link) ? 0x8000 : 0) \
1099 | ((relax32) ? 0x10000 : 0) \
1100 | ((toofar16) ? 0x20000 : 0) \
1101 | ((toofar32) ? 0x40000 : 0))
1102 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1103 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1104 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1105 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1106 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1107 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1108 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1109
1110 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1111 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1112 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1113 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1114 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1115 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1116
1117 /* Sign-extend 16-bit value X. */
1118 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1119
1120 /* Is the given value a sign-extended 32-bit value? */
1121 #define IS_SEXT_32BIT_NUM(x) \
1122 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1123 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1124
1125 /* Is the given value a sign-extended 16-bit value? */
1126 #define IS_SEXT_16BIT_NUM(x) \
1127 (((x) &~ (offsetT) 0x7fff) == 0 \
1128 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1129
1130 /* Is the given value a sign-extended 12-bit value? */
1131 #define IS_SEXT_12BIT_NUM(x) \
1132 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1133
1134 /* Is the given value a sign-extended 9-bit value? */
1135 #define IS_SEXT_9BIT_NUM(x) \
1136 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1137
1138 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1139 #define IS_ZEXT_32BIT_NUM(x) \
1140 (((x) &~ (offsetT) 0xffffffff) == 0 \
1141 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1142
1143 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1144 SHIFT places. */
1145 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1146 (((STRUCT) >> (SHIFT)) & (MASK))
1147
1148 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1149 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1150 (!(MICROMIPS) \
1151 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1152 : EXTRACT_BITS ((INSN).insn_opcode, \
1153 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1154 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1155 EXTRACT_BITS ((INSN).insn_opcode, \
1156 MIPS16OP_MASK_##FIELD, \
1157 MIPS16OP_SH_##FIELD)
1158
1159 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1160 #define MIPS16_EXTEND (0xf000U << 16)
1161 \f
1162 /* Whether or not we are emitting a branch-likely macro. */
1163 static bfd_boolean emit_branch_likely_macro = FALSE;
1164
1165 /* Global variables used when generating relaxable macros. See the
1166 comment above RELAX_ENCODE for more details about how relaxation
1167 is used. */
1168 static struct {
1169 /* 0 if we're not emitting a relaxable macro.
1170 1 if we're emitting the first of the two relaxation alternatives.
1171 2 if we're emitting the second alternative. */
1172 int sequence;
1173
1174 /* The first relaxable fixup in the current frag. (In other words,
1175 the first fixup that refers to relaxable code.) */
1176 fixS *first_fixup;
1177
1178 /* sizes[0] says how many bytes of the first alternative are stored in
1179 the current frag. Likewise sizes[1] for the second alternative. */
1180 unsigned int sizes[2];
1181
1182 /* The symbol on which the choice of sequence depends. */
1183 symbolS *symbol;
1184 } mips_relax;
1185 \f
1186 /* Global variables used to decide whether a macro needs a warning. */
1187 static struct {
1188 /* True if the macro is in a branch delay slot. */
1189 bfd_boolean delay_slot_p;
1190
1191 /* Set to the length in bytes required if the macro is in a delay slot
1192 that requires a specific length of instruction, otherwise zero. */
1193 unsigned int delay_slot_length;
1194
1195 /* For relaxable macros, sizes[0] is the length of the first alternative
1196 in bytes and sizes[1] is the length of the second alternative.
1197 For non-relaxable macros, both elements give the length of the
1198 macro in bytes. */
1199 unsigned int sizes[2];
1200
1201 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1202 instruction of the first alternative in bytes and first_insn_sizes[1]
1203 is the length of the first instruction of the second alternative.
1204 For non-relaxable macros, both elements give the length of the first
1205 instruction in bytes.
1206
1207 Set to zero if we haven't yet seen the first instruction. */
1208 unsigned int first_insn_sizes[2];
1209
1210 /* For relaxable macros, insns[0] is the number of instructions for the
1211 first alternative and insns[1] is the number of instructions for the
1212 second alternative.
1213
1214 For non-relaxable macros, both elements give the number of
1215 instructions for the macro. */
1216 unsigned int insns[2];
1217
1218 /* The first variant frag for this macro. */
1219 fragS *first_frag;
1220 } mips_macro_warning;
1221 \f
1222 /* Prototypes for static functions. */
1223
1224 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1225
1226 static void append_insn
1227 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1228 bfd_boolean expansionp);
1229 static void mips_no_prev_insn (void);
1230 static void macro_build (expressionS *, const char *, const char *, ...);
1231 static void mips16_macro_build
1232 (expressionS *, const char *, const char *, va_list *);
1233 static void load_register (int, expressionS *, int);
1234 static void macro_start (void);
1235 static void macro_end (void);
1236 static void macro (struct mips_cl_insn *ip, char *str);
1237 static void mips16_macro (struct mips_cl_insn * ip);
1238 static void mips_ip (char *str, struct mips_cl_insn * ip);
1239 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1240 static void mips16_immed
1241 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1242 unsigned int, unsigned long *);
1243 static size_t my_getSmallExpression
1244 (expressionS *, bfd_reloc_code_real_type *, char *);
1245 static void my_getExpression (expressionS *, char *);
1246 static void s_align (int);
1247 static void s_change_sec (int);
1248 static void s_change_section (int);
1249 static void s_cons (int);
1250 static void s_float_cons (int);
1251 static void s_mips_globl (int);
1252 static void s_option (int);
1253 static void s_mipsset (int);
1254 static void s_abicalls (int);
1255 static void s_cpload (int);
1256 static void s_cpsetup (int);
1257 static void s_cplocal (int);
1258 static void s_cprestore (int);
1259 static void s_cpreturn (int);
1260 static void s_dtprelword (int);
1261 static void s_dtpreldword (int);
1262 static void s_tprelword (int);
1263 static void s_tpreldword (int);
1264 static void s_gpvalue (int);
1265 static void s_gpword (int);
1266 static void s_gpdword (int);
1267 static void s_ehword (int);
1268 static void s_cpadd (int);
1269 static void s_insn (int);
1270 static void s_nan (int);
1271 static void md_obj_begin (void);
1272 static void md_obj_end (void);
1273 static void s_mips_ent (int);
1274 static void s_mips_end (int);
1275 static void s_mips_frame (int);
1276 static void s_mips_mask (int reg_type);
1277 static void s_mips_stab (int);
1278 static void s_mips_weakext (int);
1279 static void s_mips_file (int);
1280 static void s_mips_loc (int);
1281 static bfd_boolean pic_need_relax (symbolS *, asection *);
1282 static int relaxed_branch_length (fragS *, asection *, int);
1283 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1284 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1285
1286 /* Table and functions used to map between CPU/ISA names, and
1287 ISA levels, and CPU numbers. */
1288
1289 struct mips_cpu_info
1290 {
1291 const char *name; /* CPU or ISA name. */
1292 int flags; /* MIPS_CPU_* flags. */
1293 int ase; /* Set of ASEs implemented by the CPU. */
1294 int isa; /* ISA level. */
1295 int cpu; /* CPU number (default CPU if ISA). */
1296 };
1297
1298 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1299
1300 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1301 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1302 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1303 \f
1304 /* Command-line options. */
1305 const char *md_shortopts = "O::g::G:";
1306
1307 enum options
1308 {
1309 OPTION_MARCH = OPTION_MD_BASE,
1310 OPTION_MTUNE,
1311 OPTION_MIPS1,
1312 OPTION_MIPS2,
1313 OPTION_MIPS3,
1314 OPTION_MIPS4,
1315 OPTION_MIPS5,
1316 OPTION_MIPS32,
1317 OPTION_MIPS64,
1318 OPTION_MIPS32R2,
1319 OPTION_MIPS64R2,
1320 OPTION_MIPS16,
1321 OPTION_NO_MIPS16,
1322 OPTION_MIPS3D,
1323 OPTION_NO_MIPS3D,
1324 OPTION_MDMX,
1325 OPTION_NO_MDMX,
1326 OPTION_DSP,
1327 OPTION_NO_DSP,
1328 OPTION_MT,
1329 OPTION_NO_MT,
1330 OPTION_VIRT,
1331 OPTION_NO_VIRT,
1332 OPTION_SMARTMIPS,
1333 OPTION_NO_SMARTMIPS,
1334 OPTION_DSPR2,
1335 OPTION_NO_DSPR2,
1336 OPTION_EVA,
1337 OPTION_NO_EVA,
1338 OPTION_MICROMIPS,
1339 OPTION_NO_MICROMIPS,
1340 OPTION_MCU,
1341 OPTION_NO_MCU,
1342 OPTION_COMPAT_ARCH_BASE,
1343 OPTION_M4650,
1344 OPTION_NO_M4650,
1345 OPTION_M4010,
1346 OPTION_NO_M4010,
1347 OPTION_M4100,
1348 OPTION_NO_M4100,
1349 OPTION_M3900,
1350 OPTION_NO_M3900,
1351 OPTION_M7000_HILO_FIX,
1352 OPTION_MNO_7000_HILO_FIX,
1353 OPTION_FIX_24K,
1354 OPTION_NO_FIX_24K,
1355 OPTION_FIX_LOONGSON2F_JUMP,
1356 OPTION_NO_FIX_LOONGSON2F_JUMP,
1357 OPTION_FIX_LOONGSON2F_NOP,
1358 OPTION_NO_FIX_LOONGSON2F_NOP,
1359 OPTION_FIX_VR4120,
1360 OPTION_NO_FIX_VR4120,
1361 OPTION_FIX_VR4130,
1362 OPTION_NO_FIX_VR4130,
1363 OPTION_FIX_CN63XXP1,
1364 OPTION_NO_FIX_CN63XXP1,
1365 OPTION_TRAP,
1366 OPTION_BREAK,
1367 OPTION_EB,
1368 OPTION_EL,
1369 OPTION_FP32,
1370 OPTION_GP32,
1371 OPTION_CONSTRUCT_FLOATS,
1372 OPTION_NO_CONSTRUCT_FLOATS,
1373 OPTION_FP64,
1374 OPTION_GP64,
1375 OPTION_RELAX_BRANCH,
1376 OPTION_NO_RELAX_BRANCH,
1377 OPTION_INSN32,
1378 OPTION_NO_INSN32,
1379 OPTION_MSHARED,
1380 OPTION_MNO_SHARED,
1381 OPTION_MSYM32,
1382 OPTION_MNO_SYM32,
1383 OPTION_SOFT_FLOAT,
1384 OPTION_HARD_FLOAT,
1385 OPTION_SINGLE_FLOAT,
1386 OPTION_DOUBLE_FLOAT,
1387 OPTION_32,
1388 OPTION_CALL_SHARED,
1389 OPTION_CALL_NONPIC,
1390 OPTION_NON_SHARED,
1391 OPTION_XGOT,
1392 OPTION_MABI,
1393 OPTION_N32,
1394 OPTION_64,
1395 OPTION_MDEBUG,
1396 OPTION_NO_MDEBUG,
1397 OPTION_PDR,
1398 OPTION_NO_PDR,
1399 OPTION_MVXWORKS_PIC,
1400 OPTION_NAN,
1401 OPTION_END_OF_ENUM
1402 };
1403
1404 struct option md_longopts[] =
1405 {
1406 /* Options which specify architecture. */
1407 {"march", required_argument, NULL, OPTION_MARCH},
1408 {"mtune", required_argument, NULL, OPTION_MTUNE},
1409 {"mips0", no_argument, NULL, OPTION_MIPS1},
1410 {"mips1", no_argument, NULL, OPTION_MIPS1},
1411 {"mips2", no_argument, NULL, OPTION_MIPS2},
1412 {"mips3", no_argument, NULL, OPTION_MIPS3},
1413 {"mips4", no_argument, NULL, OPTION_MIPS4},
1414 {"mips5", no_argument, NULL, OPTION_MIPS5},
1415 {"mips32", no_argument, NULL, OPTION_MIPS32},
1416 {"mips64", no_argument, NULL, OPTION_MIPS64},
1417 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1418 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1419
1420 /* Options which specify Application Specific Extensions (ASEs). */
1421 {"mips16", no_argument, NULL, OPTION_MIPS16},
1422 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1423 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1424 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1425 {"mdmx", no_argument, NULL, OPTION_MDMX},
1426 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1427 {"mdsp", no_argument, NULL, OPTION_DSP},
1428 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1429 {"mmt", no_argument, NULL, OPTION_MT},
1430 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1431 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1432 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1433 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1434 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1435 {"meva", no_argument, NULL, OPTION_EVA},
1436 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1437 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1438 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1439 {"mmcu", no_argument, NULL, OPTION_MCU},
1440 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1441 {"mvirt", no_argument, NULL, OPTION_VIRT},
1442 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1443
1444 /* Old-style architecture options. Don't add more of these. */
1445 {"m4650", no_argument, NULL, OPTION_M4650},
1446 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1447 {"m4010", no_argument, NULL, OPTION_M4010},
1448 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1449 {"m4100", no_argument, NULL, OPTION_M4100},
1450 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1451 {"m3900", no_argument, NULL, OPTION_M3900},
1452 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1453
1454 /* Options which enable bug fixes. */
1455 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1456 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1457 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1458 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1459 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1460 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1461 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1462 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1463 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1464 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1465 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1466 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1467 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1468 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1469 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1470
1471 /* Miscellaneous options. */
1472 {"trap", no_argument, NULL, OPTION_TRAP},
1473 {"no-break", no_argument, NULL, OPTION_TRAP},
1474 {"break", no_argument, NULL, OPTION_BREAK},
1475 {"no-trap", no_argument, NULL, OPTION_BREAK},
1476 {"EB", no_argument, NULL, OPTION_EB},
1477 {"EL", no_argument, NULL, OPTION_EL},
1478 {"mfp32", no_argument, NULL, OPTION_FP32},
1479 {"mgp32", no_argument, NULL, OPTION_GP32},
1480 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1481 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1482 {"mfp64", no_argument, NULL, OPTION_FP64},
1483 {"mgp64", no_argument, NULL, OPTION_GP64},
1484 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1485 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1486 {"minsn32", no_argument, NULL, OPTION_INSN32},
1487 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1488 {"mshared", no_argument, NULL, OPTION_MSHARED},
1489 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1490 {"msym32", no_argument, NULL, OPTION_MSYM32},
1491 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1492 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1493 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1494 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1495 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1496
1497 /* Strictly speaking this next option is ELF specific,
1498 but we allow it for other ports as well in order to
1499 make testing easier. */
1500 {"32", no_argument, NULL, OPTION_32},
1501
1502 /* ELF-specific options. */
1503 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1504 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1505 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1506 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1507 {"xgot", no_argument, NULL, OPTION_XGOT},
1508 {"mabi", required_argument, NULL, OPTION_MABI},
1509 {"n32", no_argument, NULL, OPTION_N32},
1510 {"64", no_argument, NULL, OPTION_64},
1511 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1512 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1513 {"mpdr", no_argument, NULL, OPTION_PDR},
1514 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1515 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1516 {"mnan", required_argument, NULL, OPTION_NAN},
1517
1518 {NULL, no_argument, NULL, 0}
1519 };
1520 size_t md_longopts_size = sizeof (md_longopts);
1521 \f
1522 /* Information about either an Application Specific Extension or an
1523 optional architecture feature that, for simplicity, we treat in the
1524 same way as an ASE. */
1525 struct mips_ase
1526 {
1527 /* The name of the ASE, used in both the command-line and .set options. */
1528 const char *name;
1529
1530 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1531 and 64-bit architectures, the flags here refer to the subset that
1532 is available on both. */
1533 unsigned int flags;
1534
1535 /* The ASE_* flag used for instructions that are available on 64-bit
1536 architectures but that are not included in FLAGS. */
1537 unsigned int flags64;
1538
1539 /* The command-line options that turn the ASE on and off. */
1540 int option_on;
1541 int option_off;
1542
1543 /* The minimum required architecture revisions for MIPS32, MIPS64,
1544 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1545 int mips32_rev;
1546 int mips64_rev;
1547 int micromips32_rev;
1548 int micromips64_rev;
1549 };
1550
1551 /* A table of all supported ASEs. */
1552 static const struct mips_ase mips_ases[] = {
1553 { "dsp", ASE_DSP, ASE_DSP64,
1554 OPTION_DSP, OPTION_NO_DSP,
1555 2, 2, 2, 2 },
1556
1557 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1558 OPTION_DSPR2, OPTION_NO_DSPR2,
1559 2, 2, 2, 2 },
1560
1561 { "eva", ASE_EVA, 0,
1562 OPTION_EVA, OPTION_NO_EVA,
1563 2, 2, 2, 2 },
1564
1565 { "mcu", ASE_MCU, 0,
1566 OPTION_MCU, OPTION_NO_MCU,
1567 2, 2, 2, 2 },
1568
1569 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1570 { "mdmx", ASE_MDMX, 0,
1571 OPTION_MDMX, OPTION_NO_MDMX,
1572 -1, 1, -1, -1 },
1573
1574 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1575 { "mips3d", ASE_MIPS3D, 0,
1576 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1577 2, 1, -1, -1 },
1578
1579 { "mt", ASE_MT, 0,
1580 OPTION_MT, OPTION_NO_MT,
1581 2, 2, -1, -1 },
1582
1583 { "smartmips", ASE_SMARTMIPS, 0,
1584 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1585 1, -1, -1, -1 },
1586
1587 { "virt", ASE_VIRT, ASE_VIRT64,
1588 OPTION_VIRT, OPTION_NO_VIRT,
1589 2, 2, 2, 2 }
1590 };
1591
1592 /* The set of ASEs that require -mfp64. */
1593 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
1594
1595 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1596 static const unsigned int mips_ase_groups[] = {
1597 ASE_DSP | ASE_DSPR2
1598 };
1599 \f
1600 /* Pseudo-op table.
1601
1602 The following pseudo-ops from the Kane and Heinrich MIPS book
1603 should be defined here, but are currently unsupported: .alias,
1604 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1605
1606 The following pseudo-ops from the Kane and Heinrich MIPS book are
1607 specific to the type of debugging information being generated, and
1608 should be defined by the object format: .aent, .begin, .bend,
1609 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1610 .vreg.
1611
1612 The following pseudo-ops from the Kane and Heinrich MIPS book are
1613 not MIPS CPU specific, but are also not specific to the object file
1614 format. This file is probably the best place to define them, but
1615 they are not currently supported: .asm0, .endr, .lab, .struct. */
1616
1617 static const pseudo_typeS mips_pseudo_table[] =
1618 {
1619 /* MIPS specific pseudo-ops. */
1620 {"option", s_option, 0},
1621 {"set", s_mipsset, 0},
1622 {"rdata", s_change_sec, 'r'},
1623 {"sdata", s_change_sec, 's'},
1624 {"livereg", s_ignore, 0},
1625 {"abicalls", s_abicalls, 0},
1626 {"cpload", s_cpload, 0},
1627 {"cpsetup", s_cpsetup, 0},
1628 {"cplocal", s_cplocal, 0},
1629 {"cprestore", s_cprestore, 0},
1630 {"cpreturn", s_cpreturn, 0},
1631 {"dtprelword", s_dtprelword, 0},
1632 {"dtpreldword", s_dtpreldword, 0},
1633 {"tprelword", s_tprelword, 0},
1634 {"tpreldword", s_tpreldword, 0},
1635 {"gpvalue", s_gpvalue, 0},
1636 {"gpword", s_gpword, 0},
1637 {"gpdword", s_gpdword, 0},
1638 {"ehword", s_ehword, 0},
1639 {"cpadd", s_cpadd, 0},
1640 {"insn", s_insn, 0},
1641 {"nan", s_nan, 0},
1642
1643 /* Relatively generic pseudo-ops that happen to be used on MIPS
1644 chips. */
1645 {"asciiz", stringer, 8 + 1},
1646 {"bss", s_change_sec, 'b'},
1647 {"err", s_err, 0},
1648 {"half", s_cons, 1},
1649 {"dword", s_cons, 3},
1650 {"weakext", s_mips_weakext, 0},
1651 {"origin", s_org, 0},
1652 {"repeat", s_rept, 0},
1653
1654 /* For MIPS this is non-standard, but we define it for consistency. */
1655 {"sbss", s_change_sec, 'B'},
1656
1657 /* These pseudo-ops are defined in read.c, but must be overridden
1658 here for one reason or another. */
1659 {"align", s_align, 0},
1660 {"byte", s_cons, 0},
1661 {"data", s_change_sec, 'd'},
1662 {"double", s_float_cons, 'd'},
1663 {"float", s_float_cons, 'f'},
1664 {"globl", s_mips_globl, 0},
1665 {"global", s_mips_globl, 0},
1666 {"hword", s_cons, 1},
1667 {"int", s_cons, 2},
1668 {"long", s_cons, 2},
1669 {"octa", s_cons, 4},
1670 {"quad", s_cons, 3},
1671 {"section", s_change_section, 0},
1672 {"short", s_cons, 1},
1673 {"single", s_float_cons, 'f'},
1674 {"stabd", s_mips_stab, 'd'},
1675 {"stabn", s_mips_stab, 'n'},
1676 {"stabs", s_mips_stab, 's'},
1677 {"text", s_change_sec, 't'},
1678 {"word", s_cons, 2},
1679
1680 { "extern", ecoff_directive_extern, 0},
1681
1682 { NULL, NULL, 0 },
1683 };
1684
1685 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1686 {
1687 /* These pseudo-ops should be defined by the object file format.
1688 However, a.out doesn't support them, so we have versions here. */
1689 {"aent", s_mips_ent, 1},
1690 {"bgnb", s_ignore, 0},
1691 {"end", s_mips_end, 0},
1692 {"endb", s_ignore, 0},
1693 {"ent", s_mips_ent, 0},
1694 {"file", s_mips_file, 0},
1695 {"fmask", s_mips_mask, 'F'},
1696 {"frame", s_mips_frame, 0},
1697 {"loc", s_mips_loc, 0},
1698 {"mask", s_mips_mask, 'R'},
1699 {"verstamp", s_ignore, 0},
1700 { NULL, NULL, 0 },
1701 };
1702
1703 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1704 purpose of the `.dc.a' internal pseudo-op. */
1705
1706 int
1707 mips_address_bytes (void)
1708 {
1709 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1710 }
1711
1712 extern void pop_insert (const pseudo_typeS *);
1713
1714 void
1715 mips_pop_insert (void)
1716 {
1717 pop_insert (mips_pseudo_table);
1718 if (! ECOFF_DEBUGGING)
1719 pop_insert (mips_nonecoff_pseudo_table);
1720 }
1721 \f
1722 /* Symbols labelling the current insn. */
1723
1724 struct insn_label_list
1725 {
1726 struct insn_label_list *next;
1727 symbolS *label;
1728 };
1729
1730 static struct insn_label_list *free_insn_labels;
1731 #define label_list tc_segment_info_data.labels
1732
1733 static void mips_clear_insn_labels (void);
1734 static void mips_mark_labels (void);
1735 static void mips_compressed_mark_labels (void);
1736
1737 static inline void
1738 mips_clear_insn_labels (void)
1739 {
1740 register struct insn_label_list **pl;
1741 segment_info_type *si;
1742
1743 if (now_seg)
1744 {
1745 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1746 ;
1747
1748 si = seg_info (now_seg);
1749 *pl = si->label_list;
1750 si->label_list = NULL;
1751 }
1752 }
1753
1754 /* Mark instruction labels in MIPS16/microMIPS mode. */
1755
1756 static inline void
1757 mips_mark_labels (void)
1758 {
1759 if (HAVE_CODE_COMPRESSION)
1760 mips_compressed_mark_labels ();
1761 }
1762 \f
1763 static char *expr_end;
1764
1765 /* An expression in a macro instruction. This is set by mips_ip and
1766 mips16_ip and when populated is always an O_constant. */
1767
1768 static expressionS imm_expr;
1769
1770 /* The relocatable field in an instruction and the relocs associated
1771 with it. These variables are used for instructions like LUI and
1772 JAL as well as true offsets. They are also used for address
1773 operands in macros. */
1774
1775 static expressionS offset_expr;
1776 static bfd_reloc_code_real_type offset_reloc[3]
1777 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1778
1779 /* This is set to the resulting size of the instruction to be produced
1780 by mips16_ip if an explicit extension is used or by mips_ip if an
1781 explicit size is supplied. */
1782
1783 static unsigned int forced_insn_length;
1784
1785 /* True if we are assembling an instruction. All dot symbols defined during
1786 this time should be treated as code labels. */
1787
1788 static bfd_boolean mips_assembling_insn;
1789
1790 /* The pdr segment for per procedure frame/regmask info. Not used for
1791 ECOFF debugging. */
1792
1793 static segT pdr_seg;
1794
1795 /* The default target format to use. */
1796
1797 #if defined (TE_FreeBSD)
1798 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1799 #elif defined (TE_TMIPS)
1800 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1801 #else
1802 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1803 #endif
1804
1805 const char *
1806 mips_target_format (void)
1807 {
1808 switch (OUTPUT_FLAVOR)
1809 {
1810 case bfd_target_elf_flavour:
1811 #ifdef TE_VXWORKS
1812 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1813 return (target_big_endian
1814 ? "elf32-bigmips-vxworks"
1815 : "elf32-littlemips-vxworks");
1816 #endif
1817 return (target_big_endian
1818 ? (HAVE_64BIT_OBJECTS
1819 ? ELF_TARGET ("elf64-", "big")
1820 : (HAVE_NEWABI
1821 ? ELF_TARGET ("elf32-n", "big")
1822 : ELF_TARGET ("elf32-", "big")))
1823 : (HAVE_64BIT_OBJECTS
1824 ? ELF_TARGET ("elf64-", "little")
1825 : (HAVE_NEWABI
1826 ? ELF_TARGET ("elf32-n", "little")
1827 : ELF_TARGET ("elf32-", "little"))));
1828 default:
1829 abort ();
1830 return NULL;
1831 }
1832 }
1833
1834 /* Return the ISA revision that is currently in use, or 0 if we are
1835 generating code for MIPS V or below. */
1836
1837 static int
1838 mips_isa_rev (void)
1839 {
1840 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1841 return 2;
1842
1843 /* microMIPS implies revision 2 or above. */
1844 if (mips_opts.micromips)
1845 return 2;
1846
1847 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1848 return 1;
1849
1850 return 0;
1851 }
1852
1853 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1854
1855 static unsigned int
1856 mips_ase_mask (unsigned int flags)
1857 {
1858 unsigned int i;
1859
1860 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1861 if (flags & mips_ase_groups[i])
1862 flags |= mips_ase_groups[i];
1863 return flags;
1864 }
1865
1866 /* Check whether the current ISA supports ASE. Issue a warning if
1867 appropriate. */
1868
1869 static void
1870 mips_check_isa_supports_ase (const struct mips_ase *ase)
1871 {
1872 const char *base;
1873 int min_rev, size;
1874 static unsigned int warned_isa;
1875 static unsigned int warned_fp32;
1876
1877 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
1878 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
1879 else
1880 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
1881 if ((min_rev < 0 || mips_isa_rev () < min_rev)
1882 && (warned_isa & ase->flags) != ase->flags)
1883 {
1884 warned_isa |= ase->flags;
1885 base = mips_opts.micromips ? "microMIPS" : "MIPS";
1886 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
1887 if (min_rev < 0)
1888 as_warn (_("the %d-bit %s architecture does not support the"
1889 " `%s' extension"), size, base, ase->name);
1890 else
1891 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
1892 ase->name, base, size, min_rev);
1893 }
1894 if ((ase->flags & FP64_ASES)
1895 && mips_opts.fp32
1896 && (warned_fp32 & ase->flags) != ase->flags)
1897 {
1898 warned_fp32 |= ase->flags;
1899 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
1900 }
1901 }
1902
1903 /* Check all enabled ASEs to see whether they are supported by the
1904 chosen architecture. */
1905
1906 static void
1907 mips_check_isa_supports_ases (void)
1908 {
1909 unsigned int i, mask;
1910
1911 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1912 {
1913 mask = mips_ase_mask (mips_ases[i].flags);
1914 if ((mips_opts.ase & mask) == mips_ases[i].flags)
1915 mips_check_isa_supports_ase (&mips_ases[i]);
1916 }
1917 }
1918
1919 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
1920 that were affected. */
1921
1922 static unsigned int
1923 mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p)
1924 {
1925 unsigned int mask;
1926
1927 mask = mips_ase_mask (ase->flags);
1928 mips_opts.ase &= ~mask;
1929 if (enabled_p)
1930 mips_opts.ase |= ase->flags;
1931 return mask;
1932 }
1933
1934 /* Return the ASE called NAME, or null if none. */
1935
1936 static const struct mips_ase *
1937 mips_lookup_ase (const char *name)
1938 {
1939 unsigned int i;
1940
1941 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1942 if (strcmp (name, mips_ases[i].name) == 0)
1943 return &mips_ases[i];
1944 return NULL;
1945 }
1946
1947 /* Return the length of a microMIPS instruction in bytes. If bits of
1948 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1949 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1950 major opcode) will require further modifications to the opcode
1951 table. */
1952
1953 static inline unsigned int
1954 micromips_insn_length (const struct mips_opcode *mo)
1955 {
1956 return (mo->mask >> 16) == 0 ? 2 : 4;
1957 }
1958
1959 /* Return the length of MIPS16 instruction OPCODE. */
1960
1961 static inline unsigned int
1962 mips16_opcode_length (unsigned long opcode)
1963 {
1964 return (opcode >> 16) == 0 ? 2 : 4;
1965 }
1966
1967 /* Return the length of instruction INSN. */
1968
1969 static inline unsigned int
1970 insn_length (const struct mips_cl_insn *insn)
1971 {
1972 if (mips_opts.micromips)
1973 return micromips_insn_length (insn->insn_mo);
1974 else if (mips_opts.mips16)
1975 return mips16_opcode_length (insn->insn_opcode);
1976 else
1977 return 4;
1978 }
1979
1980 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1981
1982 static void
1983 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1984 {
1985 size_t i;
1986
1987 insn->insn_mo = mo;
1988 insn->insn_opcode = mo->match;
1989 insn->frag = NULL;
1990 insn->where = 0;
1991 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1992 insn->fixp[i] = NULL;
1993 insn->fixed_p = (mips_opts.noreorder > 0);
1994 insn->noreorder_p = (mips_opts.noreorder > 0);
1995 insn->mips16_absolute_jump_p = 0;
1996 insn->complete_p = 0;
1997 insn->cleared_p = 0;
1998 }
1999
2000 /* Get a list of all the operands in INSN. */
2001
2002 static const struct mips_operand_array *
2003 insn_operands (const struct mips_cl_insn *insn)
2004 {
2005 if (insn->insn_mo >= &mips_opcodes[0]
2006 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2007 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2008
2009 if (insn->insn_mo >= &mips16_opcodes[0]
2010 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2011 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2012
2013 if (insn->insn_mo >= &micromips_opcodes[0]
2014 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2015 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2016
2017 abort ();
2018 }
2019
2020 /* Get a description of operand OPNO of INSN. */
2021
2022 static const struct mips_operand *
2023 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2024 {
2025 const struct mips_operand_array *operands;
2026
2027 operands = insn_operands (insn);
2028 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2029 abort ();
2030 return operands->operand[opno];
2031 }
2032
2033 /* Install UVAL as the value of OPERAND in INSN. */
2034
2035 static inline void
2036 insn_insert_operand (struct mips_cl_insn *insn,
2037 const struct mips_operand *operand, unsigned int uval)
2038 {
2039 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2040 }
2041
2042 /* Extract the value of OPERAND from INSN. */
2043
2044 static inline unsigned
2045 insn_extract_operand (const struct mips_cl_insn *insn,
2046 const struct mips_operand *operand)
2047 {
2048 return mips_extract_operand (operand, insn->insn_opcode);
2049 }
2050
2051 /* Record the current MIPS16/microMIPS mode in now_seg. */
2052
2053 static void
2054 mips_record_compressed_mode (void)
2055 {
2056 segment_info_type *si;
2057
2058 si = seg_info (now_seg);
2059 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2060 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2061 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2062 si->tc_segment_info_data.micromips = mips_opts.micromips;
2063 }
2064
2065 /* Read a standard MIPS instruction from BUF. */
2066
2067 static unsigned long
2068 read_insn (char *buf)
2069 {
2070 if (target_big_endian)
2071 return bfd_getb32 ((bfd_byte *) buf);
2072 else
2073 return bfd_getl32 ((bfd_byte *) buf);
2074 }
2075
2076 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2077 the next byte. */
2078
2079 static char *
2080 write_insn (char *buf, unsigned int insn)
2081 {
2082 md_number_to_chars (buf, insn, 4);
2083 return buf + 4;
2084 }
2085
2086 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2087 has length LENGTH. */
2088
2089 static unsigned long
2090 read_compressed_insn (char *buf, unsigned int length)
2091 {
2092 unsigned long insn;
2093 unsigned int i;
2094
2095 insn = 0;
2096 for (i = 0; i < length; i += 2)
2097 {
2098 insn <<= 16;
2099 if (target_big_endian)
2100 insn |= bfd_getb16 ((char *) buf);
2101 else
2102 insn |= bfd_getl16 ((char *) buf);
2103 buf += 2;
2104 }
2105 return insn;
2106 }
2107
2108 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2109 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2110
2111 static char *
2112 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2113 {
2114 unsigned int i;
2115
2116 for (i = 0; i < length; i += 2)
2117 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2118 return buf + length;
2119 }
2120
2121 /* Install INSN at the location specified by its "frag" and "where" fields. */
2122
2123 static void
2124 install_insn (const struct mips_cl_insn *insn)
2125 {
2126 char *f = insn->frag->fr_literal + insn->where;
2127 if (HAVE_CODE_COMPRESSION)
2128 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2129 else
2130 write_insn (f, insn->insn_opcode);
2131 mips_record_compressed_mode ();
2132 }
2133
2134 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2135 and install the opcode in the new location. */
2136
2137 static void
2138 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2139 {
2140 size_t i;
2141
2142 insn->frag = frag;
2143 insn->where = where;
2144 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2145 if (insn->fixp[i] != NULL)
2146 {
2147 insn->fixp[i]->fx_frag = frag;
2148 insn->fixp[i]->fx_where = where;
2149 }
2150 install_insn (insn);
2151 }
2152
2153 /* Add INSN to the end of the output. */
2154
2155 static void
2156 add_fixed_insn (struct mips_cl_insn *insn)
2157 {
2158 char *f = frag_more (insn_length (insn));
2159 move_insn (insn, frag_now, f - frag_now->fr_literal);
2160 }
2161
2162 /* Start a variant frag and move INSN to the start of the variant part,
2163 marking it as fixed. The other arguments are as for frag_var. */
2164
2165 static void
2166 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2167 relax_substateT subtype, symbolS *symbol, offsetT offset)
2168 {
2169 frag_grow (max_chars);
2170 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2171 insn->fixed_p = 1;
2172 frag_var (rs_machine_dependent, max_chars, var,
2173 subtype, symbol, offset, NULL);
2174 }
2175
2176 /* Insert N copies of INSN into the history buffer, starting at
2177 position FIRST. Neither FIRST nor N need to be clipped. */
2178
2179 static void
2180 insert_into_history (unsigned int first, unsigned int n,
2181 const struct mips_cl_insn *insn)
2182 {
2183 if (mips_relax.sequence != 2)
2184 {
2185 unsigned int i;
2186
2187 for (i = ARRAY_SIZE (history); i-- > first;)
2188 if (i >= first + n)
2189 history[i] = history[i - n];
2190 else
2191 history[i] = *insn;
2192 }
2193 }
2194
2195 /* Clear the error in insn_error. */
2196
2197 static void
2198 clear_insn_error (void)
2199 {
2200 memset (&insn_error, 0, sizeof (insn_error));
2201 }
2202
2203 /* Possibly record error message MSG for the current instruction.
2204 If the error is about a particular argument, ARGNUM is the 1-based
2205 number of that argument, otherwise it is 0. FORMAT is the format
2206 of MSG. Return true if MSG was used, false if the current message
2207 was kept. */
2208
2209 static bfd_boolean
2210 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2211 const char *msg)
2212 {
2213 if (argnum == 0)
2214 {
2215 /* Give priority to errors against specific arguments, and to
2216 the first whole-instruction message. */
2217 if (insn_error.msg)
2218 return FALSE;
2219 }
2220 else
2221 {
2222 /* Keep insn_error if it is against a later argument. */
2223 if (argnum < insn_error.min_argnum)
2224 return FALSE;
2225
2226 /* If both errors are against the same argument but are different,
2227 give up on reporting a specific error for this argument.
2228 See the comment about mips_insn_error for details. */
2229 if (argnum == insn_error.min_argnum
2230 && insn_error.msg
2231 && strcmp (insn_error.msg, msg) != 0)
2232 {
2233 insn_error.msg = 0;
2234 insn_error.min_argnum += 1;
2235 return FALSE;
2236 }
2237 }
2238 insn_error.min_argnum = argnum;
2239 insn_error.format = format;
2240 insn_error.msg = msg;
2241 return TRUE;
2242 }
2243
2244 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2245 as for set_insn_error_format. */
2246
2247 static void
2248 set_insn_error (int argnum, const char *msg)
2249 {
2250 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2251 }
2252
2253 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2254 as for set_insn_error_format. */
2255
2256 static void
2257 set_insn_error_i (int argnum, const char *msg, int i)
2258 {
2259 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2260 insn_error.u.i = i;
2261 }
2262
2263 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2264 are as for set_insn_error_format. */
2265
2266 static void
2267 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2268 {
2269 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2270 {
2271 insn_error.u.ss[0] = s1;
2272 insn_error.u.ss[1] = s2;
2273 }
2274 }
2275
2276 /* Report the error in insn_error, which is against assembly code STR. */
2277
2278 static void
2279 report_insn_error (const char *str)
2280 {
2281 const char *msg;
2282
2283 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2284 switch (insn_error.format)
2285 {
2286 case ERR_FMT_PLAIN:
2287 as_bad (msg, str);
2288 break;
2289
2290 case ERR_FMT_I:
2291 as_bad (msg, insn_error.u.i, str);
2292 break;
2293
2294 case ERR_FMT_SS:
2295 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2296 break;
2297 }
2298 }
2299
2300 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2301 the idea is to make it obvious at a glance that each errata is
2302 included. */
2303
2304 static void
2305 init_vr4120_conflicts (void)
2306 {
2307 #define CONFLICT(FIRST, SECOND) \
2308 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2309
2310 /* Errata 21 - [D]DIV[U] after [D]MACC */
2311 CONFLICT (MACC, DIV);
2312 CONFLICT (DMACC, DIV);
2313
2314 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2315 CONFLICT (DMULT, DMULT);
2316 CONFLICT (DMULT, DMACC);
2317 CONFLICT (DMACC, DMULT);
2318 CONFLICT (DMACC, DMACC);
2319
2320 /* Errata 24 - MT{LO,HI} after [D]MACC */
2321 CONFLICT (MACC, MTHILO);
2322 CONFLICT (DMACC, MTHILO);
2323
2324 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2325 instruction is executed immediately after a MACC or DMACC
2326 instruction, the result of [either instruction] is incorrect." */
2327 CONFLICT (MACC, MULT);
2328 CONFLICT (MACC, DMULT);
2329 CONFLICT (DMACC, MULT);
2330 CONFLICT (DMACC, DMULT);
2331
2332 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2333 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2334 DDIV or DDIVU instruction, the result of the MACC or
2335 DMACC instruction is incorrect.". */
2336 CONFLICT (DMULT, MACC);
2337 CONFLICT (DMULT, DMACC);
2338 CONFLICT (DIV, MACC);
2339 CONFLICT (DIV, DMACC);
2340
2341 #undef CONFLICT
2342 }
2343
2344 struct regname {
2345 const char *name;
2346 unsigned int num;
2347 };
2348
2349 #define RNUM_MASK 0x00000ff
2350 #define RTYPE_MASK 0x0efff00
2351 #define RTYPE_NUM 0x0000100
2352 #define RTYPE_FPU 0x0000200
2353 #define RTYPE_FCC 0x0000400
2354 #define RTYPE_VEC 0x0000800
2355 #define RTYPE_GP 0x0001000
2356 #define RTYPE_CP0 0x0002000
2357 #define RTYPE_PC 0x0004000
2358 #define RTYPE_ACC 0x0008000
2359 #define RTYPE_CCC 0x0010000
2360 #define RTYPE_VI 0x0020000
2361 #define RTYPE_VF 0x0040000
2362 #define RTYPE_R5900_I 0x0080000
2363 #define RTYPE_R5900_Q 0x0100000
2364 #define RTYPE_R5900_R 0x0200000
2365 #define RTYPE_R5900_ACC 0x0400000
2366 #define RWARN 0x8000000
2367
2368 #define GENERIC_REGISTER_NUMBERS \
2369 {"$0", RTYPE_NUM | 0}, \
2370 {"$1", RTYPE_NUM | 1}, \
2371 {"$2", RTYPE_NUM | 2}, \
2372 {"$3", RTYPE_NUM | 3}, \
2373 {"$4", RTYPE_NUM | 4}, \
2374 {"$5", RTYPE_NUM | 5}, \
2375 {"$6", RTYPE_NUM | 6}, \
2376 {"$7", RTYPE_NUM | 7}, \
2377 {"$8", RTYPE_NUM | 8}, \
2378 {"$9", RTYPE_NUM | 9}, \
2379 {"$10", RTYPE_NUM | 10}, \
2380 {"$11", RTYPE_NUM | 11}, \
2381 {"$12", RTYPE_NUM | 12}, \
2382 {"$13", RTYPE_NUM | 13}, \
2383 {"$14", RTYPE_NUM | 14}, \
2384 {"$15", RTYPE_NUM | 15}, \
2385 {"$16", RTYPE_NUM | 16}, \
2386 {"$17", RTYPE_NUM | 17}, \
2387 {"$18", RTYPE_NUM | 18}, \
2388 {"$19", RTYPE_NUM | 19}, \
2389 {"$20", RTYPE_NUM | 20}, \
2390 {"$21", RTYPE_NUM | 21}, \
2391 {"$22", RTYPE_NUM | 22}, \
2392 {"$23", RTYPE_NUM | 23}, \
2393 {"$24", RTYPE_NUM | 24}, \
2394 {"$25", RTYPE_NUM | 25}, \
2395 {"$26", RTYPE_NUM | 26}, \
2396 {"$27", RTYPE_NUM | 27}, \
2397 {"$28", RTYPE_NUM | 28}, \
2398 {"$29", RTYPE_NUM | 29}, \
2399 {"$30", RTYPE_NUM | 30}, \
2400 {"$31", RTYPE_NUM | 31}
2401
2402 #define FPU_REGISTER_NAMES \
2403 {"$f0", RTYPE_FPU | 0}, \
2404 {"$f1", RTYPE_FPU | 1}, \
2405 {"$f2", RTYPE_FPU | 2}, \
2406 {"$f3", RTYPE_FPU | 3}, \
2407 {"$f4", RTYPE_FPU | 4}, \
2408 {"$f5", RTYPE_FPU | 5}, \
2409 {"$f6", RTYPE_FPU | 6}, \
2410 {"$f7", RTYPE_FPU | 7}, \
2411 {"$f8", RTYPE_FPU | 8}, \
2412 {"$f9", RTYPE_FPU | 9}, \
2413 {"$f10", RTYPE_FPU | 10}, \
2414 {"$f11", RTYPE_FPU | 11}, \
2415 {"$f12", RTYPE_FPU | 12}, \
2416 {"$f13", RTYPE_FPU | 13}, \
2417 {"$f14", RTYPE_FPU | 14}, \
2418 {"$f15", RTYPE_FPU | 15}, \
2419 {"$f16", RTYPE_FPU | 16}, \
2420 {"$f17", RTYPE_FPU | 17}, \
2421 {"$f18", RTYPE_FPU | 18}, \
2422 {"$f19", RTYPE_FPU | 19}, \
2423 {"$f20", RTYPE_FPU | 20}, \
2424 {"$f21", RTYPE_FPU | 21}, \
2425 {"$f22", RTYPE_FPU | 22}, \
2426 {"$f23", RTYPE_FPU | 23}, \
2427 {"$f24", RTYPE_FPU | 24}, \
2428 {"$f25", RTYPE_FPU | 25}, \
2429 {"$f26", RTYPE_FPU | 26}, \
2430 {"$f27", RTYPE_FPU | 27}, \
2431 {"$f28", RTYPE_FPU | 28}, \
2432 {"$f29", RTYPE_FPU | 29}, \
2433 {"$f30", RTYPE_FPU | 30}, \
2434 {"$f31", RTYPE_FPU | 31}
2435
2436 #define FPU_CONDITION_CODE_NAMES \
2437 {"$fcc0", RTYPE_FCC | 0}, \
2438 {"$fcc1", RTYPE_FCC | 1}, \
2439 {"$fcc2", RTYPE_FCC | 2}, \
2440 {"$fcc3", RTYPE_FCC | 3}, \
2441 {"$fcc4", RTYPE_FCC | 4}, \
2442 {"$fcc5", RTYPE_FCC | 5}, \
2443 {"$fcc6", RTYPE_FCC | 6}, \
2444 {"$fcc7", RTYPE_FCC | 7}
2445
2446 #define COPROC_CONDITION_CODE_NAMES \
2447 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2448 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2449 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2450 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2451 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2452 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2453 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2454 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2455
2456 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2457 {"$a4", RTYPE_GP | 8}, \
2458 {"$a5", RTYPE_GP | 9}, \
2459 {"$a6", RTYPE_GP | 10}, \
2460 {"$a7", RTYPE_GP | 11}, \
2461 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2462 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2463 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2464 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2465 {"$t0", RTYPE_GP | 12}, \
2466 {"$t1", RTYPE_GP | 13}, \
2467 {"$t2", RTYPE_GP | 14}, \
2468 {"$t3", RTYPE_GP | 15}
2469
2470 #define O32_SYMBOLIC_REGISTER_NAMES \
2471 {"$t0", RTYPE_GP | 8}, \
2472 {"$t1", RTYPE_GP | 9}, \
2473 {"$t2", RTYPE_GP | 10}, \
2474 {"$t3", RTYPE_GP | 11}, \
2475 {"$t4", RTYPE_GP | 12}, \
2476 {"$t5", RTYPE_GP | 13}, \
2477 {"$t6", RTYPE_GP | 14}, \
2478 {"$t7", RTYPE_GP | 15}, \
2479 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2480 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2481 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2482 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2483
2484 /* Remaining symbolic register names */
2485 #define SYMBOLIC_REGISTER_NAMES \
2486 {"$zero", RTYPE_GP | 0}, \
2487 {"$at", RTYPE_GP | 1}, \
2488 {"$AT", RTYPE_GP | 1}, \
2489 {"$v0", RTYPE_GP | 2}, \
2490 {"$v1", RTYPE_GP | 3}, \
2491 {"$a0", RTYPE_GP | 4}, \
2492 {"$a1", RTYPE_GP | 5}, \
2493 {"$a2", RTYPE_GP | 6}, \
2494 {"$a3", RTYPE_GP | 7}, \
2495 {"$s0", RTYPE_GP | 16}, \
2496 {"$s1", RTYPE_GP | 17}, \
2497 {"$s2", RTYPE_GP | 18}, \
2498 {"$s3", RTYPE_GP | 19}, \
2499 {"$s4", RTYPE_GP | 20}, \
2500 {"$s5", RTYPE_GP | 21}, \
2501 {"$s6", RTYPE_GP | 22}, \
2502 {"$s7", RTYPE_GP | 23}, \
2503 {"$t8", RTYPE_GP | 24}, \
2504 {"$t9", RTYPE_GP | 25}, \
2505 {"$k0", RTYPE_GP | 26}, \
2506 {"$kt0", RTYPE_GP | 26}, \
2507 {"$k1", RTYPE_GP | 27}, \
2508 {"$kt1", RTYPE_GP | 27}, \
2509 {"$gp", RTYPE_GP | 28}, \
2510 {"$sp", RTYPE_GP | 29}, \
2511 {"$s8", RTYPE_GP | 30}, \
2512 {"$fp", RTYPE_GP | 30}, \
2513 {"$ra", RTYPE_GP | 31}
2514
2515 #define MIPS16_SPECIAL_REGISTER_NAMES \
2516 {"$pc", RTYPE_PC | 0}
2517
2518 #define MDMX_VECTOR_REGISTER_NAMES \
2519 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2520 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2521 {"$v2", RTYPE_VEC | 2}, \
2522 {"$v3", RTYPE_VEC | 3}, \
2523 {"$v4", RTYPE_VEC | 4}, \
2524 {"$v5", RTYPE_VEC | 5}, \
2525 {"$v6", RTYPE_VEC | 6}, \
2526 {"$v7", RTYPE_VEC | 7}, \
2527 {"$v8", RTYPE_VEC | 8}, \
2528 {"$v9", RTYPE_VEC | 9}, \
2529 {"$v10", RTYPE_VEC | 10}, \
2530 {"$v11", RTYPE_VEC | 11}, \
2531 {"$v12", RTYPE_VEC | 12}, \
2532 {"$v13", RTYPE_VEC | 13}, \
2533 {"$v14", RTYPE_VEC | 14}, \
2534 {"$v15", RTYPE_VEC | 15}, \
2535 {"$v16", RTYPE_VEC | 16}, \
2536 {"$v17", RTYPE_VEC | 17}, \
2537 {"$v18", RTYPE_VEC | 18}, \
2538 {"$v19", RTYPE_VEC | 19}, \
2539 {"$v20", RTYPE_VEC | 20}, \
2540 {"$v21", RTYPE_VEC | 21}, \
2541 {"$v22", RTYPE_VEC | 22}, \
2542 {"$v23", RTYPE_VEC | 23}, \
2543 {"$v24", RTYPE_VEC | 24}, \
2544 {"$v25", RTYPE_VEC | 25}, \
2545 {"$v26", RTYPE_VEC | 26}, \
2546 {"$v27", RTYPE_VEC | 27}, \
2547 {"$v28", RTYPE_VEC | 28}, \
2548 {"$v29", RTYPE_VEC | 29}, \
2549 {"$v30", RTYPE_VEC | 30}, \
2550 {"$v31", RTYPE_VEC | 31}
2551
2552 #define R5900_I_NAMES \
2553 {"$I", RTYPE_R5900_I | 0}
2554
2555 #define R5900_Q_NAMES \
2556 {"$Q", RTYPE_R5900_Q | 0}
2557
2558 #define R5900_R_NAMES \
2559 {"$R", RTYPE_R5900_R | 0}
2560
2561 #define R5900_ACC_NAMES \
2562 {"$ACC", RTYPE_R5900_ACC | 0 }
2563
2564 #define MIPS_DSP_ACCUMULATOR_NAMES \
2565 {"$ac0", RTYPE_ACC | 0}, \
2566 {"$ac1", RTYPE_ACC | 1}, \
2567 {"$ac2", RTYPE_ACC | 2}, \
2568 {"$ac3", RTYPE_ACC | 3}
2569
2570 static const struct regname reg_names[] = {
2571 GENERIC_REGISTER_NUMBERS,
2572 FPU_REGISTER_NAMES,
2573 FPU_CONDITION_CODE_NAMES,
2574 COPROC_CONDITION_CODE_NAMES,
2575
2576 /* The $txx registers depends on the abi,
2577 these will be added later into the symbol table from
2578 one of the tables below once mips_abi is set after
2579 parsing of arguments from the command line. */
2580 SYMBOLIC_REGISTER_NAMES,
2581
2582 MIPS16_SPECIAL_REGISTER_NAMES,
2583 MDMX_VECTOR_REGISTER_NAMES,
2584 R5900_I_NAMES,
2585 R5900_Q_NAMES,
2586 R5900_R_NAMES,
2587 R5900_ACC_NAMES,
2588 MIPS_DSP_ACCUMULATOR_NAMES,
2589 {0, 0}
2590 };
2591
2592 static const struct regname reg_names_o32[] = {
2593 O32_SYMBOLIC_REGISTER_NAMES,
2594 {0, 0}
2595 };
2596
2597 static const struct regname reg_names_n32n64[] = {
2598 N32N64_SYMBOLIC_REGISTER_NAMES,
2599 {0, 0}
2600 };
2601
2602 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2603 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2604 of these register symbols, return the associated vector register,
2605 otherwise return SYMVAL itself. */
2606
2607 static unsigned int
2608 mips_prefer_vec_regno (unsigned int symval)
2609 {
2610 if ((symval & -2) == (RTYPE_GP | 2))
2611 return RTYPE_VEC | (symval & 1);
2612 return symval;
2613 }
2614
2615 /* Return true if string [S, E) is a valid register name, storing its
2616 symbol value in *SYMVAL_PTR if so. */
2617
2618 static bfd_boolean
2619 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2620 {
2621 char save_c;
2622 symbolS *symbol;
2623
2624 /* Terminate name. */
2625 save_c = *e;
2626 *e = '\0';
2627
2628 /* Look up the name. */
2629 symbol = symbol_find (s);
2630 *e = save_c;
2631
2632 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2633 return FALSE;
2634
2635 *symval_ptr = S_GET_VALUE (symbol);
2636 return TRUE;
2637 }
2638
2639 /* Return true if the string at *SPTR is a valid register name. Allow it
2640 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2641 is nonnull.
2642
2643 When returning true, move *SPTR past the register, store the
2644 register's symbol value in *SYMVAL_PTR and the channel mask in
2645 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2646 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2647 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2648
2649 static bfd_boolean
2650 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2651 unsigned int *channels_ptr)
2652 {
2653 char *s, *e, *m;
2654 const char *q;
2655 unsigned int channels, symval, bit;
2656
2657 /* Find end of name. */
2658 s = e = *sptr;
2659 if (is_name_beginner (*e))
2660 ++e;
2661 while (is_part_of_name (*e))
2662 ++e;
2663
2664 channels = 0;
2665 if (!mips_parse_register_1 (s, e, &symval))
2666 {
2667 if (!channels_ptr)
2668 return FALSE;
2669
2670 /* Eat characters from the end of the string that are valid
2671 channel suffixes. The preceding register must be $ACC or
2672 end with a digit, so there is no ambiguity. */
2673 bit = 1;
2674 m = e;
2675 for (q = "wzyx"; *q; q++, bit <<= 1)
2676 if (m > s && m[-1] == *q)
2677 {
2678 --m;
2679 channels |= bit;
2680 }
2681
2682 if (channels == 0
2683 || !mips_parse_register_1 (s, m, &symval)
2684 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2685 return FALSE;
2686 }
2687
2688 *sptr = e;
2689 *symval_ptr = symval;
2690 if (channels_ptr)
2691 *channels_ptr = channels;
2692 return TRUE;
2693 }
2694
2695 /* Check if SPTR points at a valid register specifier according to TYPES.
2696 If so, then return 1, advance S to consume the specifier and store
2697 the register's number in REGNOP, otherwise return 0. */
2698
2699 static int
2700 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2701 {
2702 unsigned int regno;
2703
2704 if (mips_parse_register (s, &regno, NULL))
2705 {
2706 if (types & RTYPE_VEC)
2707 regno = mips_prefer_vec_regno (regno);
2708 if (regno & types)
2709 regno &= RNUM_MASK;
2710 else
2711 regno = ~0;
2712 }
2713 else
2714 {
2715 if (types & RWARN)
2716 as_warn (_("unrecognized register name `%s'"), *s);
2717 regno = ~0;
2718 }
2719 if (regnop)
2720 *regnop = regno;
2721 return regno <= RNUM_MASK;
2722 }
2723
2724 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2725 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2726
2727 static char *
2728 mips_parse_vu0_channels (char *s, unsigned int *channels)
2729 {
2730 unsigned int i;
2731
2732 *channels = 0;
2733 for (i = 0; i < 4; i++)
2734 if (*s == "xyzw"[i])
2735 {
2736 *channels |= 1 << (3 - i);
2737 ++s;
2738 }
2739 return s;
2740 }
2741
2742 /* Token types for parsed operand lists. */
2743 enum mips_operand_token_type {
2744 /* A plain register, e.g. $f2. */
2745 OT_REG,
2746
2747 /* A 4-bit XYZW channel mask. */
2748 OT_CHANNELS,
2749
2750 /* An element of a vector, e.g. $v0[1]. */
2751 OT_REG_ELEMENT,
2752
2753 /* A continuous range of registers, e.g. $s0-$s4. */
2754 OT_REG_RANGE,
2755
2756 /* A (possibly relocated) expression. */
2757 OT_INTEGER,
2758
2759 /* A floating-point value. */
2760 OT_FLOAT,
2761
2762 /* A single character. This can be '(', ')' or ',', but '(' only appears
2763 before OT_REGs. */
2764 OT_CHAR,
2765
2766 /* A doubled character, either "--" or "++". */
2767 OT_DOUBLE_CHAR,
2768
2769 /* The end of the operand list. */
2770 OT_END
2771 };
2772
2773 /* A parsed operand token. */
2774 struct mips_operand_token
2775 {
2776 /* The type of token. */
2777 enum mips_operand_token_type type;
2778 union
2779 {
2780 /* The register symbol value for an OT_REG. */
2781 unsigned int regno;
2782
2783 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2784 unsigned int channels;
2785
2786 /* The register symbol value and index for an OT_REG_ELEMENT. */
2787 struct {
2788 unsigned int regno;
2789 addressT index;
2790 } reg_element;
2791
2792 /* The two register symbol values involved in an OT_REG_RANGE. */
2793 struct {
2794 unsigned int regno1;
2795 unsigned int regno2;
2796 } reg_range;
2797
2798 /* The value of an OT_INTEGER. The value is represented as an
2799 expression and the relocation operators that were applied to
2800 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2801 relocation operators were used. */
2802 struct {
2803 expressionS value;
2804 bfd_reloc_code_real_type relocs[3];
2805 } integer;
2806
2807 /* The binary data for an OT_FLOAT constant, and the number of bytes
2808 in the constant. */
2809 struct {
2810 unsigned char data[8];
2811 int length;
2812 } flt;
2813
2814 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2815 char ch;
2816 } u;
2817 };
2818
2819 /* An obstack used to construct lists of mips_operand_tokens. */
2820 static struct obstack mips_operand_tokens;
2821
2822 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2823
2824 static void
2825 mips_add_token (struct mips_operand_token *token,
2826 enum mips_operand_token_type type)
2827 {
2828 token->type = type;
2829 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2830 }
2831
2832 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2833 and OT_REG tokens for them if so, and return a pointer to the first
2834 unconsumed character. Return null otherwise. */
2835
2836 static char *
2837 mips_parse_base_start (char *s)
2838 {
2839 struct mips_operand_token token;
2840 unsigned int regno, channels;
2841 bfd_boolean decrement_p;
2842
2843 if (*s != '(')
2844 return 0;
2845
2846 ++s;
2847 SKIP_SPACE_TABS (s);
2848
2849 /* Only match "--" as part of a base expression. In other contexts "--X"
2850 is a double negative. */
2851 decrement_p = (s[0] == '-' && s[1] == '-');
2852 if (decrement_p)
2853 {
2854 s += 2;
2855 SKIP_SPACE_TABS (s);
2856 }
2857
2858 /* Allow a channel specifier because that leads to better error messages
2859 than treating something like "$vf0x++" as an expression. */
2860 if (!mips_parse_register (&s, &regno, &channels))
2861 return 0;
2862
2863 token.u.ch = '(';
2864 mips_add_token (&token, OT_CHAR);
2865
2866 if (decrement_p)
2867 {
2868 token.u.ch = '-';
2869 mips_add_token (&token, OT_DOUBLE_CHAR);
2870 }
2871
2872 token.u.regno = regno;
2873 mips_add_token (&token, OT_REG);
2874
2875 if (channels)
2876 {
2877 token.u.channels = channels;
2878 mips_add_token (&token, OT_CHANNELS);
2879 }
2880
2881 /* For consistency, only match "++" as part of base expressions too. */
2882 SKIP_SPACE_TABS (s);
2883 if (s[0] == '+' && s[1] == '+')
2884 {
2885 s += 2;
2886 token.u.ch = '+';
2887 mips_add_token (&token, OT_DOUBLE_CHAR);
2888 }
2889
2890 return s;
2891 }
2892
2893 /* Parse one or more tokens from S. Return a pointer to the first
2894 unconsumed character on success. Return null if an error was found
2895 and store the error text in insn_error. FLOAT_FORMAT is as for
2896 mips_parse_arguments. */
2897
2898 static char *
2899 mips_parse_argument_token (char *s, char float_format)
2900 {
2901 char *end, *save_in, *err;
2902 unsigned int regno1, regno2, channels;
2903 struct mips_operand_token token;
2904
2905 /* First look for "($reg", since we want to treat that as an
2906 OT_CHAR and OT_REG rather than an expression. */
2907 end = mips_parse_base_start (s);
2908 if (end)
2909 return end;
2910
2911 /* Handle other characters that end up as OT_CHARs. */
2912 if (*s == ')' || *s == ',')
2913 {
2914 token.u.ch = *s;
2915 mips_add_token (&token, OT_CHAR);
2916 ++s;
2917 return s;
2918 }
2919
2920 /* Handle tokens that start with a register. */
2921 if (mips_parse_register (&s, &regno1, &channels))
2922 {
2923 if (channels)
2924 {
2925 /* A register and a VU0 channel suffix. */
2926 token.u.regno = regno1;
2927 mips_add_token (&token, OT_REG);
2928
2929 token.u.channels = channels;
2930 mips_add_token (&token, OT_CHANNELS);
2931 return s;
2932 }
2933
2934 SKIP_SPACE_TABS (s);
2935 if (*s == '-')
2936 {
2937 /* A register range. */
2938 ++s;
2939 SKIP_SPACE_TABS (s);
2940 if (!mips_parse_register (&s, &regno2, NULL))
2941 {
2942 set_insn_error (0, _("invalid register range"));
2943 return 0;
2944 }
2945
2946 token.u.reg_range.regno1 = regno1;
2947 token.u.reg_range.regno2 = regno2;
2948 mips_add_token (&token, OT_REG_RANGE);
2949 return s;
2950 }
2951 else if (*s == '[')
2952 {
2953 /* A vector element. */
2954 expressionS element;
2955
2956 ++s;
2957 SKIP_SPACE_TABS (s);
2958 my_getExpression (&element, s);
2959 if (element.X_op != O_constant)
2960 {
2961 set_insn_error (0, _("vector element must be constant"));
2962 return 0;
2963 }
2964 s = expr_end;
2965 SKIP_SPACE_TABS (s);
2966 if (*s != ']')
2967 {
2968 set_insn_error (0, _("missing `]'"));
2969 return 0;
2970 }
2971 ++s;
2972
2973 token.u.reg_element.regno = regno1;
2974 token.u.reg_element.index = element.X_add_number;
2975 mips_add_token (&token, OT_REG_ELEMENT);
2976 return s;
2977 }
2978
2979 /* Looks like just a plain register. */
2980 token.u.regno = regno1;
2981 mips_add_token (&token, OT_REG);
2982 return s;
2983 }
2984
2985 if (float_format)
2986 {
2987 /* First try to treat expressions as floats. */
2988 save_in = input_line_pointer;
2989 input_line_pointer = s;
2990 err = md_atof (float_format, (char *) token.u.flt.data,
2991 &token.u.flt.length);
2992 end = input_line_pointer;
2993 input_line_pointer = save_in;
2994 if (err && *err)
2995 {
2996 set_insn_error (0, err);
2997 return 0;
2998 }
2999 if (s != end)
3000 {
3001 mips_add_token (&token, OT_FLOAT);
3002 return end;
3003 }
3004 }
3005
3006 /* Treat everything else as an integer expression. */
3007 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3008 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3009 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3010 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3011 s = expr_end;
3012 mips_add_token (&token, OT_INTEGER);
3013 return s;
3014 }
3015
3016 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3017 if expressions should be treated as 32-bit floating-point constants,
3018 'd' if they should be treated as 64-bit floating-point constants,
3019 or 0 if they should be treated as integer expressions (the usual case).
3020
3021 Return a list of tokens on success, otherwise return 0. The caller
3022 must obstack_free the list after use. */
3023
3024 static struct mips_operand_token *
3025 mips_parse_arguments (char *s, char float_format)
3026 {
3027 struct mips_operand_token token;
3028
3029 SKIP_SPACE_TABS (s);
3030 while (*s)
3031 {
3032 s = mips_parse_argument_token (s, float_format);
3033 if (!s)
3034 {
3035 obstack_free (&mips_operand_tokens,
3036 obstack_finish (&mips_operand_tokens));
3037 return 0;
3038 }
3039 SKIP_SPACE_TABS (s);
3040 }
3041 mips_add_token (&token, OT_END);
3042 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3043 }
3044
3045 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3046 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3047
3048 static bfd_boolean
3049 is_opcode_valid (const struct mips_opcode *mo)
3050 {
3051 int isa = mips_opts.isa;
3052 int ase = mips_opts.ase;
3053 int fp_s, fp_d;
3054 unsigned int i;
3055
3056 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3057 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3058 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3059 ase |= mips_ases[i].flags64;
3060
3061 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3062 return FALSE;
3063
3064 /* Check whether the instruction or macro requires single-precision or
3065 double-precision floating-point support. Note that this information is
3066 stored differently in the opcode table for insns and macros. */
3067 if (mo->pinfo == INSN_MACRO)
3068 {
3069 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3070 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3071 }
3072 else
3073 {
3074 fp_s = mo->pinfo & FP_S;
3075 fp_d = mo->pinfo & FP_D;
3076 }
3077
3078 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3079 return FALSE;
3080
3081 if (fp_s && mips_opts.soft_float)
3082 return FALSE;
3083
3084 return TRUE;
3085 }
3086
3087 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3088 selected ISA and architecture. */
3089
3090 static bfd_boolean
3091 is_opcode_valid_16 (const struct mips_opcode *mo)
3092 {
3093 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3094 }
3095
3096 /* Return TRUE if the size of the microMIPS opcode MO matches one
3097 explicitly requested. Always TRUE in the standard MIPS mode. */
3098
3099 static bfd_boolean
3100 is_size_valid (const struct mips_opcode *mo)
3101 {
3102 if (!mips_opts.micromips)
3103 return TRUE;
3104
3105 if (mips_opts.insn32)
3106 {
3107 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3108 return FALSE;
3109 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3110 return FALSE;
3111 }
3112 if (!forced_insn_length)
3113 return TRUE;
3114 if (mo->pinfo == INSN_MACRO)
3115 return FALSE;
3116 return forced_insn_length == micromips_insn_length (mo);
3117 }
3118
3119 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3120 of the preceding instruction. Always TRUE in the standard MIPS mode.
3121
3122 We don't accept macros in 16-bit delay slots to avoid a case where
3123 a macro expansion fails because it relies on a preceding 32-bit real
3124 instruction to have matched and does not handle the operands correctly.
3125 The only macros that may expand to 16-bit instructions are JAL that
3126 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3127 and BGT (that likewise cannot be placed in a delay slot) that decay to
3128 a NOP. In all these cases the macros precede any corresponding real
3129 instruction definitions in the opcode table, so they will match in the
3130 second pass where the size of the delay slot is ignored and therefore
3131 produce correct code. */
3132
3133 static bfd_boolean
3134 is_delay_slot_valid (const struct mips_opcode *mo)
3135 {
3136 if (!mips_opts.micromips)
3137 return TRUE;
3138
3139 if (mo->pinfo == INSN_MACRO)
3140 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3141 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3142 && micromips_insn_length (mo) != 4)
3143 return FALSE;
3144 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3145 && micromips_insn_length (mo) != 2)
3146 return FALSE;
3147
3148 return TRUE;
3149 }
3150
3151 /* For consistency checking, verify that all bits of OPCODE are specified
3152 either by the match/mask part of the instruction definition, or by the
3153 operand list. Also build up a list of operands in OPERANDS.
3154
3155 INSN_BITS says which bits of the instruction are significant.
3156 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3157 provides the mips_operand description of each operand. DECODE_OPERAND
3158 is null for MIPS16 instructions. */
3159
3160 static int
3161 validate_mips_insn (const struct mips_opcode *opcode,
3162 unsigned long insn_bits,
3163 const struct mips_operand *(*decode_operand) (const char *),
3164 struct mips_operand_array *operands)
3165 {
3166 const char *s;
3167 unsigned long used_bits, doubled, undefined, opno, mask;
3168 const struct mips_operand *operand;
3169
3170 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3171 if ((mask & opcode->match) != opcode->match)
3172 {
3173 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3174 opcode->name, opcode->args);
3175 return 0;
3176 }
3177 used_bits = 0;
3178 opno = 0;
3179 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3180 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3181 for (s = opcode->args; *s; ++s)
3182 switch (*s)
3183 {
3184 case ',':
3185 case '(':
3186 case ')':
3187 break;
3188
3189 case '#':
3190 s++;
3191 break;
3192
3193 default:
3194 if (!decode_operand)
3195 operand = decode_mips16_operand (*s, FALSE);
3196 else
3197 operand = decode_operand (s);
3198 if (!operand && opcode->pinfo != INSN_MACRO)
3199 {
3200 as_bad (_("internal: unknown operand type: %s %s"),
3201 opcode->name, opcode->args);
3202 return 0;
3203 }
3204 gas_assert (opno < MAX_OPERANDS);
3205 operands->operand[opno] = operand;
3206 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3207 {
3208 used_bits = mips_insert_operand (operand, used_bits, -1);
3209 if (operand->type == OP_MDMX_IMM_REG)
3210 /* Bit 5 is the format selector (OB vs QH). The opcode table
3211 has separate entries for each format. */
3212 used_bits &= ~(1 << (operand->lsb + 5));
3213 if (operand->type == OP_ENTRY_EXIT_LIST)
3214 used_bits &= ~(mask & 0x700);
3215 }
3216 /* Skip prefix characters. */
3217 if (decode_operand && (*s == '+' || *s == 'm'))
3218 ++s;
3219 opno += 1;
3220 break;
3221 }
3222 doubled = used_bits & mask & insn_bits;
3223 if (doubled)
3224 {
3225 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3226 " %s %s"), doubled, opcode->name, opcode->args);
3227 return 0;
3228 }
3229 used_bits |= mask;
3230 undefined = ~used_bits & insn_bits;
3231 if (opcode->pinfo != INSN_MACRO && undefined)
3232 {
3233 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3234 undefined, opcode->name, opcode->args);
3235 return 0;
3236 }
3237 used_bits &= ~insn_bits;
3238 if (used_bits)
3239 {
3240 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3241 used_bits, opcode->name, opcode->args);
3242 return 0;
3243 }
3244 return 1;
3245 }
3246
3247 /* The MIPS16 version of validate_mips_insn. */
3248
3249 static int
3250 validate_mips16_insn (const struct mips_opcode *opcode,
3251 struct mips_operand_array *operands)
3252 {
3253 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3254 {
3255 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3256 instruction. Use TMP to describe the full instruction. */
3257 struct mips_opcode tmp;
3258
3259 tmp = *opcode;
3260 tmp.match <<= 16;
3261 tmp.mask <<= 16;
3262 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3263 }
3264 return validate_mips_insn (opcode, 0xffff, 0, operands);
3265 }
3266
3267 /* The microMIPS version of validate_mips_insn. */
3268
3269 static int
3270 validate_micromips_insn (const struct mips_opcode *opc,
3271 struct mips_operand_array *operands)
3272 {
3273 unsigned long insn_bits;
3274 unsigned long major;
3275 unsigned int length;
3276
3277 if (opc->pinfo == INSN_MACRO)
3278 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3279 operands);
3280
3281 length = micromips_insn_length (opc);
3282 if (length != 2 && length != 4)
3283 {
3284 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3285 "%s %s"), length, opc->name, opc->args);
3286 return 0;
3287 }
3288 major = opc->match >> (10 + 8 * (length - 2));
3289 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3290 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3291 {
3292 as_bad (_("internal error: bad microMIPS opcode "
3293 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3294 return 0;
3295 }
3296
3297 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3298 insn_bits = 1 << 4 * length;
3299 insn_bits <<= 4 * length;
3300 insn_bits -= 1;
3301 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3302 operands);
3303 }
3304
3305 /* This function is called once, at assembler startup time. It should set up
3306 all the tables, etc. that the MD part of the assembler will need. */
3307
3308 void
3309 md_begin (void)
3310 {
3311 const char *retval = NULL;
3312 int i = 0;
3313 int broken = 0;
3314
3315 if (mips_pic != NO_PIC)
3316 {
3317 if (g_switch_seen && g_switch_value != 0)
3318 as_bad (_("-G may not be used in position-independent code"));
3319 g_switch_value = 0;
3320 }
3321
3322 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
3323 as_warn (_("could not set architecture and machine"));
3324
3325 op_hash = hash_new ();
3326
3327 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3328 for (i = 0; i < NUMOPCODES;)
3329 {
3330 const char *name = mips_opcodes[i].name;
3331
3332 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3333 if (retval != NULL)
3334 {
3335 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3336 mips_opcodes[i].name, retval);
3337 /* Probably a memory allocation problem? Give up now. */
3338 as_fatal (_("broken assembler, no assembly attempted"));
3339 }
3340 do
3341 {
3342 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3343 decode_mips_operand, &mips_operands[i]))
3344 broken = 1;
3345 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3346 {
3347 create_insn (&nop_insn, mips_opcodes + i);
3348 if (mips_fix_loongson2f_nop)
3349 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3350 nop_insn.fixed_p = 1;
3351 }
3352 ++i;
3353 }
3354 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3355 }
3356
3357 mips16_op_hash = hash_new ();
3358 mips16_operands = XCNEWVEC (struct mips_operand_array,
3359 bfd_mips16_num_opcodes);
3360
3361 i = 0;
3362 while (i < bfd_mips16_num_opcodes)
3363 {
3364 const char *name = mips16_opcodes[i].name;
3365
3366 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3367 if (retval != NULL)
3368 as_fatal (_("internal: can't hash `%s': %s"),
3369 mips16_opcodes[i].name, retval);
3370 do
3371 {
3372 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3373 broken = 1;
3374 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3375 {
3376 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3377 mips16_nop_insn.fixed_p = 1;
3378 }
3379 ++i;
3380 }
3381 while (i < bfd_mips16_num_opcodes
3382 && strcmp (mips16_opcodes[i].name, name) == 0);
3383 }
3384
3385 micromips_op_hash = hash_new ();
3386 micromips_operands = XCNEWVEC (struct mips_operand_array,
3387 bfd_micromips_num_opcodes);
3388
3389 i = 0;
3390 while (i < bfd_micromips_num_opcodes)
3391 {
3392 const char *name = micromips_opcodes[i].name;
3393
3394 retval = hash_insert (micromips_op_hash, name,
3395 (void *) &micromips_opcodes[i]);
3396 if (retval != NULL)
3397 as_fatal (_("internal: can't hash `%s': %s"),
3398 micromips_opcodes[i].name, retval);
3399 do
3400 {
3401 struct mips_cl_insn *micromips_nop_insn;
3402
3403 if (!validate_micromips_insn (&micromips_opcodes[i],
3404 &micromips_operands[i]))
3405 broken = 1;
3406
3407 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3408 {
3409 if (micromips_insn_length (micromips_opcodes + i) == 2)
3410 micromips_nop_insn = &micromips_nop16_insn;
3411 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3412 micromips_nop_insn = &micromips_nop32_insn;
3413 else
3414 continue;
3415
3416 if (micromips_nop_insn->insn_mo == NULL
3417 && strcmp (name, "nop") == 0)
3418 {
3419 create_insn (micromips_nop_insn, micromips_opcodes + i);
3420 micromips_nop_insn->fixed_p = 1;
3421 }
3422 }
3423 }
3424 while (++i < bfd_micromips_num_opcodes
3425 && strcmp (micromips_opcodes[i].name, name) == 0);
3426 }
3427
3428 if (broken)
3429 as_fatal (_("broken assembler, no assembly attempted"));
3430
3431 /* We add all the general register names to the symbol table. This
3432 helps us detect invalid uses of them. */
3433 for (i = 0; reg_names[i].name; i++)
3434 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3435 reg_names[i].num, /* & RNUM_MASK, */
3436 &zero_address_frag));
3437 if (HAVE_NEWABI)
3438 for (i = 0; reg_names_n32n64[i].name; i++)
3439 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3440 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3441 &zero_address_frag));
3442 else
3443 for (i = 0; reg_names_o32[i].name; i++)
3444 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3445 reg_names_o32[i].num, /* & RNUM_MASK, */
3446 &zero_address_frag));
3447
3448 for (i = 0; i < 32; i++)
3449 {
3450 char regname[7];
3451
3452 /* R5900 VU0 floating-point register. */
3453 regname[sizeof (rename) - 1] = 0;
3454 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3455 symbol_table_insert (symbol_new (regname, reg_section,
3456 RTYPE_VF | i, &zero_address_frag));
3457
3458 /* R5900 VU0 integer register. */
3459 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3460 symbol_table_insert (symbol_new (regname, reg_section,
3461 RTYPE_VI | i, &zero_address_frag));
3462
3463 }
3464
3465 obstack_init (&mips_operand_tokens);
3466
3467 mips_no_prev_insn ();
3468
3469 mips_gprmask = 0;
3470 mips_cprmask[0] = 0;
3471 mips_cprmask[1] = 0;
3472 mips_cprmask[2] = 0;
3473 mips_cprmask[3] = 0;
3474
3475 /* set the default alignment for the text section (2**2) */
3476 record_alignment (text_section, 2);
3477
3478 bfd_set_gp_size (stdoutput, g_switch_value);
3479
3480 /* On a native system other than VxWorks, sections must be aligned
3481 to 16 byte boundaries. When configured for an embedded ELF
3482 target, we don't bother. */
3483 if (strncmp (TARGET_OS, "elf", 3) != 0
3484 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3485 {
3486 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3487 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3488 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3489 }
3490
3491 /* Create a .reginfo section for register masks and a .mdebug
3492 section for debugging information. */
3493 {
3494 segT seg;
3495 subsegT subseg;
3496 flagword flags;
3497 segT sec;
3498
3499 seg = now_seg;
3500 subseg = now_subseg;
3501
3502 /* The ABI says this section should be loaded so that the
3503 running program can access it. However, we don't load it
3504 if we are configured for an embedded target */
3505 flags = SEC_READONLY | SEC_DATA;
3506 if (strncmp (TARGET_OS, "elf", 3) != 0)
3507 flags |= SEC_ALLOC | SEC_LOAD;
3508
3509 if (mips_abi != N64_ABI)
3510 {
3511 sec = subseg_new (".reginfo", (subsegT) 0);
3512
3513 bfd_set_section_flags (stdoutput, sec, flags);
3514 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3515
3516 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3517 }
3518 else
3519 {
3520 /* The 64-bit ABI uses a .MIPS.options section rather than
3521 .reginfo section. */
3522 sec = subseg_new (".MIPS.options", (subsegT) 0);
3523 bfd_set_section_flags (stdoutput, sec, flags);
3524 bfd_set_section_alignment (stdoutput, sec, 3);
3525
3526 /* Set up the option header. */
3527 {
3528 Elf_Internal_Options opthdr;
3529 char *f;
3530
3531 opthdr.kind = ODK_REGINFO;
3532 opthdr.size = (sizeof (Elf_External_Options)
3533 + sizeof (Elf64_External_RegInfo));
3534 opthdr.section = 0;
3535 opthdr.info = 0;
3536 f = frag_more (sizeof (Elf_External_Options));
3537 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3538 (Elf_External_Options *) f);
3539
3540 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3541 }
3542 }
3543
3544 if (ECOFF_DEBUGGING)
3545 {
3546 sec = subseg_new (".mdebug", (subsegT) 0);
3547 (void) bfd_set_section_flags (stdoutput, sec,
3548 SEC_HAS_CONTENTS | SEC_READONLY);
3549 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3550 }
3551 else if (mips_flag_pdr)
3552 {
3553 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3554 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3555 SEC_READONLY | SEC_RELOC
3556 | SEC_DEBUGGING);
3557 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3558 }
3559
3560 subseg_set (seg, subseg);
3561 }
3562
3563 if (! ECOFF_DEBUGGING)
3564 md_obj_begin ();
3565
3566 if (mips_fix_vr4120)
3567 init_vr4120_conflicts ();
3568 }
3569
3570 void
3571 md_mips_end (void)
3572 {
3573 mips_emit_delays ();
3574 if (! ECOFF_DEBUGGING)
3575 md_obj_end ();
3576 }
3577
3578 void
3579 md_assemble (char *str)
3580 {
3581 struct mips_cl_insn insn;
3582 bfd_reloc_code_real_type unused_reloc[3]
3583 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3584
3585 imm_expr.X_op = O_absent;
3586 offset_expr.X_op = O_absent;
3587 offset_reloc[0] = BFD_RELOC_UNUSED;
3588 offset_reloc[1] = BFD_RELOC_UNUSED;
3589 offset_reloc[2] = BFD_RELOC_UNUSED;
3590
3591 mips_mark_labels ();
3592 mips_assembling_insn = TRUE;
3593 clear_insn_error ();
3594
3595 if (mips_opts.mips16)
3596 mips16_ip (str, &insn);
3597 else
3598 {
3599 mips_ip (str, &insn);
3600 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
3601 str, insn.insn_opcode));
3602 }
3603
3604 if (insn_error.msg)
3605 report_insn_error (str);
3606 else if (insn.insn_mo->pinfo == INSN_MACRO)
3607 {
3608 macro_start ();
3609 if (mips_opts.mips16)
3610 mips16_macro (&insn);
3611 else
3612 macro (&insn, str);
3613 macro_end ();
3614 }
3615 else
3616 {
3617 if (offset_expr.X_op != O_absent)
3618 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
3619 else
3620 append_insn (&insn, NULL, unused_reloc, FALSE);
3621 }
3622
3623 mips_assembling_insn = FALSE;
3624 }
3625
3626 /* Convenience functions for abstracting away the differences between
3627 MIPS16 and non-MIPS16 relocations. */
3628
3629 static inline bfd_boolean
3630 mips16_reloc_p (bfd_reloc_code_real_type reloc)
3631 {
3632 switch (reloc)
3633 {
3634 case BFD_RELOC_MIPS16_JMP:
3635 case BFD_RELOC_MIPS16_GPREL:
3636 case BFD_RELOC_MIPS16_GOT16:
3637 case BFD_RELOC_MIPS16_CALL16:
3638 case BFD_RELOC_MIPS16_HI16_S:
3639 case BFD_RELOC_MIPS16_HI16:
3640 case BFD_RELOC_MIPS16_LO16:
3641 return TRUE;
3642
3643 default:
3644 return FALSE;
3645 }
3646 }
3647
3648 static inline bfd_boolean
3649 micromips_reloc_p (bfd_reloc_code_real_type reloc)
3650 {
3651 switch (reloc)
3652 {
3653 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3654 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3655 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3656 case BFD_RELOC_MICROMIPS_GPREL16:
3657 case BFD_RELOC_MICROMIPS_JMP:
3658 case BFD_RELOC_MICROMIPS_HI16:
3659 case BFD_RELOC_MICROMIPS_HI16_S:
3660 case BFD_RELOC_MICROMIPS_LO16:
3661 case BFD_RELOC_MICROMIPS_LITERAL:
3662 case BFD_RELOC_MICROMIPS_GOT16:
3663 case BFD_RELOC_MICROMIPS_CALL16:
3664 case BFD_RELOC_MICROMIPS_GOT_HI16:
3665 case BFD_RELOC_MICROMIPS_GOT_LO16:
3666 case BFD_RELOC_MICROMIPS_CALL_HI16:
3667 case BFD_RELOC_MICROMIPS_CALL_LO16:
3668 case BFD_RELOC_MICROMIPS_SUB:
3669 case BFD_RELOC_MICROMIPS_GOT_PAGE:
3670 case BFD_RELOC_MICROMIPS_GOT_OFST:
3671 case BFD_RELOC_MICROMIPS_GOT_DISP:
3672 case BFD_RELOC_MICROMIPS_HIGHEST:
3673 case BFD_RELOC_MICROMIPS_HIGHER:
3674 case BFD_RELOC_MICROMIPS_SCN_DISP:
3675 case BFD_RELOC_MICROMIPS_JALR:
3676 return TRUE;
3677
3678 default:
3679 return FALSE;
3680 }
3681 }
3682
3683 static inline bfd_boolean
3684 jmp_reloc_p (bfd_reloc_code_real_type reloc)
3685 {
3686 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
3687 }
3688
3689 static inline bfd_boolean
3690 got16_reloc_p (bfd_reloc_code_real_type reloc)
3691 {
3692 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
3693 || reloc == BFD_RELOC_MICROMIPS_GOT16);
3694 }
3695
3696 static inline bfd_boolean
3697 hi16_reloc_p (bfd_reloc_code_real_type reloc)
3698 {
3699 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
3700 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
3701 }
3702
3703 static inline bfd_boolean
3704 lo16_reloc_p (bfd_reloc_code_real_type reloc)
3705 {
3706 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
3707 || reloc == BFD_RELOC_MICROMIPS_LO16);
3708 }
3709
3710 static inline bfd_boolean
3711 jalr_reloc_p (bfd_reloc_code_real_type reloc)
3712 {
3713 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
3714 }
3715
3716 static inline bfd_boolean
3717 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
3718 {
3719 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
3720 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
3721 }
3722
3723 /* Return true if RELOC is a PC-relative relocation that does not have
3724 full address range. */
3725
3726 static inline bfd_boolean
3727 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
3728 {
3729 switch (reloc)
3730 {
3731 case BFD_RELOC_16_PCREL_S2:
3732 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3733 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3734 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3735 return TRUE;
3736
3737 case BFD_RELOC_32_PCREL:
3738 return HAVE_64BIT_ADDRESSES;
3739
3740 default:
3741 return FALSE;
3742 }
3743 }
3744
3745 /* Return true if the given relocation might need a matching %lo().
3746 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
3747 need a matching %lo() when applied to local symbols. */
3748
3749 static inline bfd_boolean
3750 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
3751 {
3752 return (HAVE_IN_PLACE_ADDENDS
3753 && (hi16_reloc_p (reloc)
3754 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
3755 all GOT16 relocations evaluate to "G". */
3756 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
3757 }
3758
3759 /* Return the type of %lo() reloc needed by RELOC, given that
3760 reloc_needs_lo_p. */
3761
3762 static inline bfd_reloc_code_real_type
3763 matching_lo_reloc (bfd_reloc_code_real_type reloc)
3764 {
3765 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
3766 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
3767 : BFD_RELOC_LO16));
3768 }
3769
3770 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
3771 relocation. */
3772
3773 static inline bfd_boolean
3774 fixup_has_matching_lo_p (fixS *fixp)
3775 {
3776 return (fixp->fx_next != NULL
3777 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
3778 && fixp->fx_addsy == fixp->fx_next->fx_addsy
3779 && fixp->fx_offset == fixp->fx_next->fx_offset);
3780 }
3781
3782 /* Move all labels in LABELS to the current insertion point. TEXT_P
3783 says whether the labels refer to text or data. */
3784
3785 static void
3786 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
3787 {
3788 struct insn_label_list *l;
3789 valueT val;
3790
3791 for (l = labels; l != NULL; l = l->next)
3792 {
3793 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
3794 symbol_set_frag (l->label, frag_now);
3795 val = (valueT) frag_now_fix ();
3796 /* MIPS16/microMIPS text labels are stored as odd. */
3797 if (text_p && HAVE_CODE_COMPRESSION)
3798 ++val;
3799 S_SET_VALUE (l->label, val);
3800 }
3801 }
3802
3803 /* Move all labels in insn_labels to the current insertion point
3804 and treat them as text labels. */
3805
3806 static void
3807 mips_move_text_labels (void)
3808 {
3809 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
3810 }
3811
3812 static bfd_boolean
3813 s_is_linkonce (symbolS *sym, segT from_seg)
3814 {
3815 bfd_boolean linkonce = FALSE;
3816 segT symseg = S_GET_SEGMENT (sym);
3817
3818 if (symseg != from_seg && !S_IS_LOCAL (sym))
3819 {
3820 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
3821 linkonce = TRUE;
3822 /* The GNU toolchain uses an extension for ELF: a section
3823 beginning with the magic string .gnu.linkonce is a
3824 linkonce section. */
3825 if (strncmp (segment_name (symseg), ".gnu.linkonce",
3826 sizeof ".gnu.linkonce" - 1) == 0)
3827 linkonce = TRUE;
3828 }
3829 return linkonce;
3830 }
3831
3832 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
3833 linker to handle them specially, such as generating jalx instructions
3834 when needed. We also make them odd for the duration of the assembly,
3835 in order to generate the right sort of code. We will make them even
3836 in the adjust_symtab routine, while leaving them marked. This is
3837 convenient for the debugger and the disassembler. The linker knows
3838 to make them odd again. */
3839
3840 static void
3841 mips_compressed_mark_label (symbolS *label)
3842 {
3843 gas_assert (HAVE_CODE_COMPRESSION);
3844
3845 if (mips_opts.mips16)
3846 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
3847 else
3848 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
3849 if ((S_GET_VALUE (label) & 1) == 0
3850 /* Don't adjust the address if the label is global or weak, or
3851 in a link-once section, since we'll be emitting symbol reloc
3852 references to it which will be patched up by the linker, and
3853 the final value of the symbol may or may not be MIPS16/microMIPS. */
3854 && !S_IS_WEAK (label)
3855 && !S_IS_EXTERNAL (label)
3856 && !s_is_linkonce (label, now_seg))
3857 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
3858 }
3859
3860 /* Mark preceding MIPS16 or microMIPS instruction labels. */
3861
3862 static void
3863 mips_compressed_mark_labels (void)
3864 {
3865 struct insn_label_list *l;
3866
3867 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
3868 mips_compressed_mark_label (l->label);
3869 }
3870
3871 /* End the current frag. Make it a variant frag and record the
3872 relaxation info. */
3873
3874 static void
3875 relax_close_frag (void)
3876 {
3877 mips_macro_warning.first_frag = frag_now;
3878 frag_var (rs_machine_dependent, 0, 0,
3879 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
3880 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
3881
3882 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
3883 mips_relax.first_fixup = 0;
3884 }
3885
3886 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
3887 See the comment above RELAX_ENCODE for more details. */
3888
3889 static void
3890 relax_start (symbolS *symbol)
3891 {
3892 gas_assert (mips_relax.sequence == 0);
3893 mips_relax.sequence = 1;
3894 mips_relax.symbol = symbol;
3895 }
3896
3897 /* Start generating the second version of a relaxable sequence.
3898 See the comment above RELAX_ENCODE for more details. */
3899
3900 static void
3901 relax_switch (void)
3902 {
3903 gas_assert (mips_relax.sequence == 1);
3904 mips_relax.sequence = 2;
3905 }
3906
3907 /* End the current relaxable sequence. */
3908
3909 static void
3910 relax_end (void)
3911 {
3912 gas_assert (mips_relax.sequence == 2);
3913 relax_close_frag ();
3914 mips_relax.sequence = 0;
3915 }
3916
3917 /* Return true if IP is a delayed branch or jump. */
3918
3919 static inline bfd_boolean
3920 delayed_branch_p (const struct mips_cl_insn *ip)
3921 {
3922 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3923 | INSN_COND_BRANCH_DELAY
3924 | INSN_COND_BRANCH_LIKELY)) != 0;
3925 }
3926
3927 /* Return true if IP is a compact branch or jump. */
3928
3929 static inline bfd_boolean
3930 compact_branch_p (const struct mips_cl_insn *ip)
3931 {
3932 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
3933 | INSN2_COND_BRANCH)) != 0;
3934 }
3935
3936 /* Return true if IP is an unconditional branch or jump. */
3937
3938 static inline bfd_boolean
3939 uncond_branch_p (const struct mips_cl_insn *ip)
3940 {
3941 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
3942 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
3943 }
3944
3945 /* Return true if IP is a branch-likely instruction. */
3946
3947 static inline bfd_boolean
3948 branch_likely_p (const struct mips_cl_insn *ip)
3949 {
3950 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
3951 }
3952
3953 /* Return the type of nop that should be used to fill the delay slot
3954 of delayed branch IP. */
3955
3956 static struct mips_cl_insn *
3957 get_delay_slot_nop (const struct mips_cl_insn *ip)
3958 {
3959 if (mips_opts.micromips
3960 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3961 return &micromips_nop32_insn;
3962 return NOP_INSN;
3963 }
3964
3965 /* Return a mask that has bit N set if OPCODE reads the register(s)
3966 in operand N. */
3967
3968 static unsigned int
3969 insn_read_mask (const struct mips_opcode *opcode)
3970 {
3971 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
3972 }
3973
3974 /* Return a mask that has bit N set if OPCODE writes to the register(s)
3975 in operand N. */
3976
3977 static unsigned int
3978 insn_write_mask (const struct mips_opcode *opcode)
3979 {
3980 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
3981 }
3982
3983 /* Return a mask of the registers specified by operand OPERAND of INSN.
3984 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
3985 is set. */
3986
3987 static unsigned int
3988 operand_reg_mask (const struct mips_cl_insn *insn,
3989 const struct mips_operand *operand,
3990 unsigned int type_mask)
3991 {
3992 unsigned int uval, vsel;
3993
3994 switch (operand->type)
3995 {
3996 case OP_INT:
3997 case OP_MAPPED_INT:
3998 case OP_MSB:
3999 case OP_PCREL:
4000 case OP_PERF_REG:
4001 case OP_ADDIUSP_INT:
4002 case OP_ENTRY_EXIT_LIST:
4003 case OP_REPEAT_DEST_REG:
4004 case OP_REPEAT_PREV_REG:
4005 case OP_PC:
4006 case OP_VU0_SUFFIX:
4007 case OP_VU0_MATCH_SUFFIX:
4008 abort ();
4009
4010 case OP_REG:
4011 case OP_OPTIONAL_REG:
4012 {
4013 const struct mips_reg_operand *reg_op;
4014
4015 reg_op = (const struct mips_reg_operand *) operand;
4016 if (!(type_mask & (1 << reg_op->reg_type)))
4017 return 0;
4018 uval = insn_extract_operand (insn, operand);
4019 return 1 << mips_decode_reg_operand (reg_op, uval);
4020 }
4021
4022 case OP_REG_PAIR:
4023 {
4024 const struct mips_reg_pair_operand *pair_op;
4025
4026 pair_op = (const struct mips_reg_pair_operand *) operand;
4027 if (!(type_mask & (1 << pair_op->reg_type)))
4028 return 0;
4029 uval = insn_extract_operand (insn, operand);
4030 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4031 }
4032
4033 case OP_CLO_CLZ_DEST:
4034 if (!(type_mask & (1 << OP_REG_GP)))
4035 return 0;
4036 uval = insn_extract_operand (insn, operand);
4037 return (1 << (uval & 31)) | (1 << (uval >> 5));
4038
4039 case OP_LWM_SWM_LIST:
4040 abort ();
4041
4042 case OP_SAVE_RESTORE_LIST:
4043 abort ();
4044
4045 case OP_MDMX_IMM_REG:
4046 if (!(type_mask & (1 << OP_REG_VEC)))
4047 return 0;
4048 uval = insn_extract_operand (insn, operand);
4049 vsel = uval >> 5;
4050 if ((vsel & 0x18) == 0x18)
4051 return 0;
4052 return 1 << (uval & 31);
4053 }
4054 abort ();
4055 }
4056
4057 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4058 where bit N of OPNO_MASK is set if operand N should be included.
4059 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4060 is set. */
4061
4062 static unsigned int
4063 insn_reg_mask (const struct mips_cl_insn *insn,
4064 unsigned int type_mask, unsigned int opno_mask)
4065 {
4066 unsigned int opno, reg_mask;
4067
4068 opno = 0;
4069 reg_mask = 0;
4070 while (opno_mask != 0)
4071 {
4072 if (opno_mask & 1)
4073 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4074 opno_mask >>= 1;
4075 opno += 1;
4076 }
4077 return reg_mask;
4078 }
4079
4080 /* Return the mask of core registers that IP reads. */
4081
4082 static unsigned int
4083 gpr_read_mask (const struct mips_cl_insn *ip)
4084 {
4085 unsigned long pinfo, pinfo2;
4086 unsigned int mask;
4087
4088 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4089 pinfo = ip->insn_mo->pinfo;
4090 pinfo2 = ip->insn_mo->pinfo2;
4091 if (pinfo & INSN_UDI)
4092 {
4093 /* UDI instructions have traditionally been assumed to read RS
4094 and RT. */
4095 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4096 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4097 }
4098 if (pinfo & INSN_READ_GPR_24)
4099 mask |= 1 << 24;
4100 if (pinfo2 & INSN2_READ_GPR_16)
4101 mask |= 1 << 16;
4102 if (pinfo2 & INSN2_READ_SP)
4103 mask |= 1 << SP;
4104 if (pinfo2 & INSN2_READ_GPR_31)
4105 mask |= 1 << 31;
4106 /* Don't include register 0. */
4107 return mask & ~1;
4108 }
4109
4110 /* Return the mask of core registers that IP writes. */
4111
4112 static unsigned int
4113 gpr_write_mask (const struct mips_cl_insn *ip)
4114 {
4115 unsigned long pinfo, pinfo2;
4116 unsigned int mask;
4117
4118 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4119 pinfo = ip->insn_mo->pinfo;
4120 pinfo2 = ip->insn_mo->pinfo2;
4121 if (pinfo & INSN_WRITE_GPR_24)
4122 mask |= 1 << 24;
4123 if (pinfo & INSN_WRITE_GPR_31)
4124 mask |= 1 << 31;
4125 if (pinfo & INSN_UDI)
4126 /* UDI instructions have traditionally been assumed to write to RD. */
4127 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4128 if (pinfo2 & INSN2_WRITE_SP)
4129 mask |= 1 << SP;
4130 /* Don't include register 0. */
4131 return mask & ~1;
4132 }
4133
4134 /* Return the mask of floating-point registers that IP reads. */
4135
4136 static unsigned int
4137 fpr_read_mask (const struct mips_cl_insn *ip)
4138 {
4139 unsigned long pinfo;
4140 unsigned int mask;
4141
4142 mask = insn_reg_mask (ip, (1 << OP_REG_FP) | (1 << OP_REG_VEC),
4143 insn_read_mask (ip->insn_mo));
4144 pinfo = ip->insn_mo->pinfo;
4145 /* Conservatively treat all operands to an FP_D instruction are doubles.
4146 (This is overly pessimistic for things like cvt.d.s.) */
4147 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
4148 mask |= mask << 1;
4149 return mask;
4150 }
4151
4152 /* Return the mask of floating-point registers that IP writes. */
4153
4154 static unsigned int
4155 fpr_write_mask (const struct mips_cl_insn *ip)
4156 {
4157 unsigned long pinfo;
4158 unsigned int mask;
4159
4160 mask = insn_reg_mask (ip, (1 << OP_REG_FP) | (1 << OP_REG_VEC),
4161 insn_write_mask (ip->insn_mo));
4162 pinfo = ip->insn_mo->pinfo;
4163 /* Conservatively treat all operands to an FP_D instruction are doubles.
4164 (This is overly pessimistic for things like cvt.s.d.) */
4165 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
4166 mask |= mask << 1;
4167 return mask;
4168 }
4169
4170 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4171 Check whether that is allowed. */
4172
4173 static bfd_boolean
4174 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4175 {
4176 const char *s = insn->name;
4177
4178 if (insn->pinfo == INSN_MACRO)
4179 /* Let a macro pass, we'll catch it later when it is expanded. */
4180 return TRUE;
4181
4182 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || mips_opts.arch == CPU_R5900)
4183 {
4184 /* Allow odd registers for single-precision ops. */
4185 switch (insn->pinfo & (FP_S | FP_D))
4186 {
4187 case FP_S:
4188 case 0:
4189 return TRUE;
4190 case FP_D:
4191 return FALSE;
4192 default:
4193 break;
4194 }
4195
4196 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4197 s = strchr (insn->name, '.');
4198 if (s != NULL && opnum == 2)
4199 s = strchr (s + 1, '.');
4200 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
4201 }
4202
4203 /* Single-precision coprocessor loads and moves are OK too. */
4204 if ((insn->pinfo & FP_S)
4205 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
4206 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
4207 return TRUE;
4208
4209 return FALSE;
4210 }
4211
4212 /* Information about an instruction argument that we're trying to match. */
4213 struct mips_arg_info
4214 {
4215 /* The instruction so far. */
4216 struct mips_cl_insn *insn;
4217
4218 /* The first unconsumed operand token. */
4219 struct mips_operand_token *token;
4220
4221 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4222 int opnum;
4223
4224 /* The 1-based argument number, for error reporting. This does not
4225 count elided optional registers, etc.. */
4226 int argnum;
4227
4228 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4229 unsigned int last_regno;
4230
4231 /* If the first operand was an OP_REG, this is the register that it
4232 specified, otherwise it is ILLEGAL_REG. */
4233 unsigned int dest_regno;
4234
4235 /* The value of the last OP_INT operand. Only used for OP_MSB,
4236 where it gives the lsb position. */
4237 unsigned int last_op_int;
4238
4239 /* If true, match routines should assume that no later instruction
4240 alternative matches and should therefore be as accomodating as
4241 possible. Match routines should not report errors if something
4242 is only invalid for !LAX_MATCH. */
4243 bfd_boolean lax_match;
4244
4245 /* True if a reference to the current AT register was seen. */
4246 bfd_boolean seen_at;
4247 };
4248
4249 /* Record that the argument is out of range. */
4250
4251 static void
4252 match_out_of_range (struct mips_arg_info *arg)
4253 {
4254 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4255 }
4256
4257 /* Record that the argument isn't constant but needs to be. */
4258
4259 static void
4260 match_not_constant (struct mips_arg_info *arg)
4261 {
4262 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4263 arg->argnum);
4264 }
4265
4266 /* Try to match an OT_CHAR token for character CH. Consume the token
4267 and return true on success, otherwise return false. */
4268
4269 static bfd_boolean
4270 match_char (struct mips_arg_info *arg, char ch)
4271 {
4272 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4273 {
4274 ++arg->token;
4275 if (ch == ',')
4276 arg->argnum += 1;
4277 return TRUE;
4278 }
4279 return FALSE;
4280 }
4281
4282 /* Try to get an expression from the next tokens in ARG. Consume the
4283 tokens and return true on success, storing the expression value in
4284 VALUE and relocation types in R. */
4285
4286 static bfd_boolean
4287 match_expression (struct mips_arg_info *arg, expressionS *value,
4288 bfd_reloc_code_real_type *r)
4289 {
4290 /* If the next token is a '(' that was parsed as being part of a base
4291 expression, assume we have an elided offset. The later match will fail
4292 if this turns out to be wrong. */
4293 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4294 {
4295 value->X_op = O_constant;
4296 value->X_add_number = 0;
4297 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4298 return TRUE;
4299 }
4300
4301 /* Reject register-based expressions such as "0+$2" and "(($2))".
4302 For plain registers the default error seems more appropriate. */
4303 if (arg->token->type == OT_INTEGER
4304 && arg->token->u.integer.value.X_op == O_register)
4305 {
4306 set_insn_error (arg->argnum, _("register value used as expression"));
4307 return FALSE;
4308 }
4309
4310 if (arg->token->type == OT_INTEGER)
4311 {
4312 *value = arg->token->u.integer.value;
4313 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4314 ++arg->token;
4315 return TRUE;
4316 }
4317
4318 set_insn_error_i
4319 (arg->argnum, _("operand %d must be an immediate expression"),
4320 arg->argnum);
4321 return FALSE;
4322 }
4323
4324 /* Try to get a constant expression from the next tokens in ARG. Consume
4325 the tokens and return return true on success, storing the constant value
4326 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4327 error. */
4328
4329 static bfd_boolean
4330 match_const_int (struct mips_arg_info *arg, offsetT *value)
4331 {
4332 expressionS ex;
4333 bfd_reloc_code_real_type r[3];
4334
4335 if (!match_expression (arg, &ex, r))
4336 return FALSE;
4337
4338 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4339 *value = ex.X_add_number;
4340 else
4341 {
4342 match_not_constant (arg);
4343 return FALSE;
4344 }
4345 return TRUE;
4346 }
4347
4348 /* Return the RTYPE_* flags for a register operand of type TYPE that
4349 appears in instruction OPCODE. */
4350
4351 static unsigned int
4352 convert_reg_type (const struct mips_opcode *opcode,
4353 enum mips_reg_operand_type type)
4354 {
4355 switch (type)
4356 {
4357 case OP_REG_GP:
4358 return RTYPE_NUM | RTYPE_GP;
4359
4360 case OP_REG_FP:
4361 /* Allow vector register names for MDMX if the instruction is a 64-bit
4362 FPR load, store or move (including moves to and from GPRs). */
4363 if ((mips_opts.ase & ASE_MDMX)
4364 && (opcode->pinfo & FP_D)
4365 && (opcode->pinfo & (INSN_COPROC_MOVE_DELAY
4366 | INSN_COPROC_MEMORY_DELAY
4367 | INSN_LOAD_COPROC_DELAY
4368 | INSN_LOAD_MEMORY_DELAY
4369 | INSN_STORE_MEMORY)))
4370 return RTYPE_FPU | RTYPE_VEC;
4371 return RTYPE_FPU;
4372
4373 case OP_REG_CCC:
4374 if (opcode->pinfo & (FP_D | FP_S))
4375 return RTYPE_CCC | RTYPE_FCC;
4376 return RTYPE_CCC;
4377
4378 case OP_REG_VEC:
4379 if (opcode->membership & INSN_5400)
4380 return RTYPE_FPU;
4381 return RTYPE_FPU | RTYPE_VEC;
4382
4383 case OP_REG_ACC:
4384 return RTYPE_ACC;
4385
4386 case OP_REG_COPRO:
4387 if (opcode->name[strlen (opcode->name) - 1] == '0')
4388 return RTYPE_NUM | RTYPE_CP0;
4389 return RTYPE_NUM;
4390
4391 case OP_REG_HW:
4392 return RTYPE_NUM;
4393
4394 case OP_REG_VI:
4395 return RTYPE_NUM | RTYPE_VI;
4396
4397 case OP_REG_VF:
4398 return RTYPE_NUM | RTYPE_VF;
4399
4400 case OP_REG_R5900_I:
4401 return RTYPE_R5900_I;
4402
4403 case OP_REG_R5900_Q:
4404 return RTYPE_R5900_Q;
4405
4406 case OP_REG_R5900_R:
4407 return RTYPE_R5900_R;
4408
4409 case OP_REG_R5900_ACC:
4410 return RTYPE_R5900_ACC;
4411 }
4412 abort ();
4413 }
4414
4415 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4416
4417 static void
4418 check_regno (struct mips_arg_info *arg,
4419 enum mips_reg_operand_type type, unsigned int regno)
4420 {
4421 if (AT && type == OP_REG_GP && regno == AT)
4422 arg->seen_at = TRUE;
4423
4424 if (type == OP_REG_FP
4425 && (regno & 1) != 0
4426 && HAVE_32BIT_FPRS
4427 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4428 as_warn (_("float register should be even, was %d"), regno);
4429
4430 if (type == OP_REG_CCC)
4431 {
4432 const char *name;
4433 size_t length;
4434
4435 name = arg->insn->insn_mo->name;
4436 length = strlen (name);
4437 if ((regno & 1) != 0
4438 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4439 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4440 as_warn (_("condition code register should be even for %s, was %d"),
4441 name, regno);
4442
4443 if ((regno & 3) != 0
4444 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4445 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4446 name, regno);
4447 }
4448 }
4449
4450 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4451 a register of type TYPE. Return true on success, storing the register
4452 number in *REGNO and warning about any dubious uses. */
4453
4454 static bfd_boolean
4455 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4456 unsigned int symval, unsigned int *regno)
4457 {
4458 if (type == OP_REG_VEC)
4459 symval = mips_prefer_vec_regno (symval);
4460 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4461 return FALSE;
4462
4463 *regno = symval & RNUM_MASK;
4464 check_regno (arg, type, *regno);
4465 return TRUE;
4466 }
4467
4468 /* Try to interpret the next token in ARG as a register of type TYPE.
4469 Consume the token and return true on success, storing the register
4470 number in *REGNO. Return false on failure. */
4471
4472 static bfd_boolean
4473 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4474 unsigned int *regno)
4475 {
4476 if (arg->token->type == OT_REG
4477 && match_regno (arg, type, arg->token->u.regno, regno))
4478 {
4479 ++arg->token;
4480 return TRUE;
4481 }
4482 return FALSE;
4483 }
4484
4485 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4486 Consume the token and return true on success, storing the register numbers
4487 in *REGNO1 and *REGNO2. Return false on failure. */
4488
4489 static bfd_boolean
4490 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4491 unsigned int *regno1, unsigned int *regno2)
4492 {
4493 if (match_reg (arg, type, regno1))
4494 {
4495 *regno2 = *regno1;
4496 return TRUE;
4497 }
4498 if (arg->token->type == OT_REG_RANGE
4499 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4500 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4501 && *regno1 <= *regno2)
4502 {
4503 ++arg->token;
4504 return TRUE;
4505 }
4506 return FALSE;
4507 }
4508
4509 /* OP_INT matcher. */
4510
4511 static bfd_boolean
4512 match_int_operand (struct mips_arg_info *arg,
4513 const struct mips_operand *operand_base)
4514 {
4515 const struct mips_int_operand *operand;
4516 unsigned int uval;
4517 int min_val, max_val, factor;
4518 offsetT sval;
4519
4520 operand = (const struct mips_int_operand *) operand_base;
4521 factor = 1 << operand->shift;
4522 min_val = mips_int_operand_min (operand);
4523 max_val = mips_int_operand_max (operand);
4524
4525 if (operand_base->lsb == 0
4526 && operand_base->size == 16
4527 && operand->shift == 0
4528 && operand->bias == 0
4529 && (operand->max_val == 32767 || operand->max_val == 65535))
4530 {
4531 /* The operand can be relocated. */
4532 if (!match_expression (arg, &offset_expr, offset_reloc))
4533 return FALSE;
4534
4535 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4536 /* Relocation operators were used. Accept the arguent and
4537 leave the relocation value in offset_expr and offset_relocs
4538 for the caller to process. */
4539 return TRUE;
4540
4541 if (offset_expr.X_op != O_constant)
4542 {
4543 /* Accept non-constant operands if no later alternative matches,
4544 leaving it for the caller to process. */
4545 if (!arg->lax_match)
4546 return FALSE;
4547 offset_reloc[0] = BFD_RELOC_LO16;
4548 return TRUE;
4549 }
4550
4551 /* Clear the global state; we're going to install the operand
4552 ourselves. */
4553 sval = offset_expr.X_add_number;
4554 offset_expr.X_op = O_absent;
4555
4556 /* For compatibility with older assemblers, we accept
4557 0x8000-0xffff as signed 16-bit numbers when only
4558 signed numbers are allowed. */
4559 if (sval > max_val)
4560 {
4561 max_val = ((1 << operand_base->size) - 1) << operand->shift;
4562 if (!arg->lax_match && sval <= max_val)
4563 return FALSE;
4564 }
4565 }
4566 else
4567 {
4568 if (!match_const_int (arg, &sval))
4569 return FALSE;
4570 }
4571
4572 arg->last_op_int = sval;
4573
4574 if (sval < min_val || sval > max_val || sval % factor)
4575 {
4576 match_out_of_range (arg);
4577 return FALSE;
4578 }
4579
4580 uval = (unsigned int) sval >> operand->shift;
4581 uval -= operand->bias;
4582
4583 /* Handle -mfix-cn63xxp1. */
4584 if (arg->opnum == 1
4585 && mips_fix_cn63xxp1
4586 && !mips_opts.micromips
4587 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
4588 switch (uval)
4589 {
4590 case 5:
4591 case 25:
4592 case 26:
4593 case 27:
4594 case 28:
4595 case 29:
4596 case 30:
4597 case 31:
4598 /* These are ok. */
4599 break;
4600
4601 default:
4602 /* The rest must be changed to 28. */
4603 uval = 28;
4604 break;
4605 }
4606
4607 insn_insert_operand (arg->insn, operand_base, uval);
4608 return TRUE;
4609 }
4610
4611 /* OP_MAPPED_INT matcher. */
4612
4613 static bfd_boolean
4614 match_mapped_int_operand (struct mips_arg_info *arg,
4615 const struct mips_operand *operand_base)
4616 {
4617 const struct mips_mapped_int_operand *operand;
4618 unsigned int uval, num_vals;
4619 offsetT sval;
4620
4621 operand = (const struct mips_mapped_int_operand *) operand_base;
4622 if (!match_const_int (arg, &sval))
4623 return FALSE;
4624
4625 num_vals = 1 << operand_base->size;
4626 for (uval = 0; uval < num_vals; uval++)
4627 if (operand->int_map[uval] == sval)
4628 break;
4629 if (uval == num_vals)
4630 {
4631 match_out_of_range (arg);
4632 return FALSE;
4633 }
4634
4635 insn_insert_operand (arg->insn, operand_base, uval);
4636 return TRUE;
4637 }
4638
4639 /* OP_MSB matcher. */
4640
4641 static bfd_boolean
4642 match_msb_operand (struct mips_arg_info *arg,
4643 const struct mips_operand *operand_base)
4644 {
4645 const struct mips_msb_operand *operand;
4646 int min_val, max_val, max_high;
4647 offsetT size, sval, high;
4648
4649 operand = (const struct mips_msb_operand *) operand_base;
4650 min_val = operand->bias;
4651 max_val = min_val + (1 << operand_base->size) - 1;
4652 max_high = operand->opsize;
4653
4654 if (!match_const_int (arg, &size))
4655 return FALSE;
4656
4657 high = size + arg->last_op_int;
4658 sval = operand->add_lsb ? high : size;
4659
4660 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
4661 {
4662 match_out_of_range (arg);
4663 return FALSE;
4664 }
4665 insn_insert_operand (arg->insn, operand_base, sval - min_val);
4666 return TRUE;
4667 }
4668
4669 /* OP_REG matcher. */
4670
4671 static bfd_boolean
4672 match_reg_operand (struct mips_arg_info *arg,
4673 const struct mips_operand *operand_base)
4674 {
4675 const struct mips_reg_operand *operand;
4676 unsigned int regno, uval, num_vals;
4677
4678 operand = (const struct mips_reg_operand *) operand_base;
4679 if (!match_reg (arg, operand->reg_type, &regno))
4680 return FALSE;
4681
4682 if (operand->reg_map)
4683 {
4684 num_vals = 1 << operand->root.size;
4685 for (uval = 0; uval < num_vals; uval++)
4686 if (operand->reg_map[uval] == regno)
4687 break;
4688 if (num_vals == uval)
4689 return FALSE;
4690 }
4691 else
4692 uval = regno;
4693
4694 arg->last_regno = regno;
4695 if (arg->opnum == 1)
4696 arg->dest_regno = regno;
4697 insn_insert_operand (arg->insn, operand_base, uval);
4698 return TRUE;
4699 }
4700
4701 /* OP_REG_PAIR matcher. */
4702
4703 static bfd_boolean
4704 match_reg_pair_operand (struct mips_arg_info *arg,
4705 const struct mips_operand *operand_base)
4706 {
4707 const struct mips_reg_pair_operand *operand;
4708 unsigned int regno1, regno2, uval, num_vals;
4709
4710 operand = (const struct mips_reg_pair_operand *) operand_base;
4711 if (!match_reg (arg, operand->reg_type, &regno1)
4712 || !match_char (arg, ',')
4713 || !match_reg (arg, operand->reg_type, &regno2))
4714 return FALSE;
4715
4716 num_vals = 1 << operand_base->size;
4717 for (uval = 0; uval < num_vals; uval++)
4718 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
4719 break;
4720 if (uval == num_vals)
4721 return FALSE;
4722
4723 insn_insert_operand (arg->insn, operand_base, uval);
4724 return TRUE;
4725 }
4726
4727 /* OP_PCREL matcher. The caller chooses the relocation type. */
4728
4729 static bfd_boolean
4730 match_pcrel_operand (struct mips_arg_info *arg)
4731 {
4732 bfd_reloc_code_real_type r[3];
4733
4734 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
4735 }
4736
4737 /* OP_PERF_REG matcher. */
4738
4739 static bfd_boolean
4740 match_perf_reg_operand (struct mips_arg_info *arg,
4741 const struct mips_operand *operand)
4742 {
4743 offsetT sval;
4744
4745 if (!match_const_int (arg, &sval))
4746 return FALSE;
4747
4748 if (sval != 0
4749 && (sval != 1
4750 || (mips_opts.arch == CPU_R5900
4751 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
4752 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
4753 {
4754 set_insn_error (arg->argnum, _("invalid performance register"));
4755 return FALSE;
4756 }
4757
4758 insn_insert_operand (arg->insn, operand, sval);
4759 return TRUE;
4760 }
4761
4762 /* OP_ADDIUSP matcher. */
4763
4764 static bfd_boolean
4765 match_addiusp_operand (struct mips_arg_info *arg,
4766 const struct mips_operand *operand)
4767 {
4768 offsetT sval;
4769 unsigned int uval;
4770
4771 if (!match_const_int (arg, &sval))
4772 return FALSE;
4773
4774 if (sval % 4)
4775 {
4776 match_out_of_range (arg);
4777 return FALSE;
4778 }
4779
4780 sval /= 4;
4781 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
4782 {
4783 match_out_of_range (arg);
4784 return FALSE;
4785 }
4786
4787 uval = (unsigned int) sval;
4788 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
4789 insn_insert_operand (arg->insn, operand, uval);
4790 return TRUE;
4791 }
4792
4793 /* OP_CLO_CLZ_DEST matcher. */
4794
4795 static bfd_boolean
4796 match_clo_clz_dest_operand (struct mips_arg_info *arg,
4797 const struct mips_operand *operand)
4798 {
4799 unsigned int regno;
4800
4801 if (!match_reg (arg, OP_REG_GP, &regno))
4802 return FALSE;
4803
4804 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
4805 return TRUE;
4806 }
4807
4808 /* OP_LWM_SWM_LIST matcher. */
4809
4810 static bfd_boolean
4811 match_lwm_swm_list_operand (struct mips_arg_info *arg,
4812 const struct mips_operand *operand)
4813 {
4814 unsigned int reglist, sregs, ra, regno1, regno2;
4815 struct mips_arg_info reset;
4816
4817 reglist = 0;
4818 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4819 return FALSE;
4820 do
4821 {
4822 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
4823 {
4824 reglist |= 1 << FP;
4825 regno2 = S7;
4826 }
4827 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
4828 reset = *arg;
4829 }
4830 while (match_char (arg, ',')
4831 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
4832 *arg = reset;
4833
4834 if (operand->size == 2)
4835 {
4836 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
4837
4838 s0, ra
4839 s0, s1, ra, s2, s3
4840 s0-s2, ra
4841
4842 and any permutations of these. */
4843 if ((reglist & 0xfff1ffff) != 0x80010000)
4844 return FALSE;
4845
4846 sregs = (reglist >> 17) & 7;
4847 ra = 0;
4848 }
4849 else
4850 {
4851 /* The list must include at least one of ra and s0-sN,
4852 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
4853 which are $23 and $30 respectively.) E.g.:
4854
4855 ra
4856 s0
4857 ra, s0, s1, s2
4858 s0-s8
4859 s0-s5, ra
4860
4861 and any permutations of these. */
4862 if ((reglist & 0x3f00ffff) != 0)
4863 return FALSE;
4864
4865 ra = (reglist >> 27) & 0x10;
4866 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
4867 }
4868 sregs += 1;
4869 if ((sregs & -sregs) != sregs)
4870 return FALSE;
4871
4872 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
4873 return TRUE;
4874 }
4875
4876 /* OP_ENTRY_EXIT_LIST matcher. */
4877
4878 static unsigned int
4879 match_entry_exit_operand (struct mips_arg_info *arg,
4880 const struct mips_operand *operand)
4881 {
4882 unsigned int mask;
4883 bfd_boolean is_exit;
4884
4885 /* The format is the same for both ENTRY and EXIT, but the constraints
4886 are different. */
4887 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
4888 mask = (is_exit ? 7 << 3 : 0);
4889 do
4890 {
4891 unsigned int regno1, regno2;
4892 bfd_boolean is_freg;
4893
4894 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4895 is_freg = FALSE;
4896 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
4897 is_freg = TRUE;
4898 else
4899 return FALSE;
4900
4901 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
4902 {
4903 mask &= ~(7 << 3);
4904 mask |= (5 + regno2) << 3;
4905 }
4906 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
4907 mask |= (regno2 - 3) << 3;
4908 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
4909 mask |= (regno2 - 15) << 1;
4910 else if (regno1 == RA && regno2 == RA)
4911 mask |= 1;
4912 else
4913 return FALSE;
4914 }
4915 while (match_char (arg, ','));
4916
4917 insn_insert_operand (arg->insn, operand, mask);
4918 return TRUE;
4919 }
4920
4921 /* OP_SAVE_RESTORE_LIST matcher. */
4922
4923 static bfd_boolean
4924 match_save_restore_list_operand (struct mips_arg_info *arg)
4925 {
4926 unsigned int opcode, args, statics, sregs;
4927 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
4928 offsetT frame_size;
4929
4930 opcode = arg->insn->insn_opcode;
4931 frame_size = 0;
4932 num_frame_sizes = 0;
4933 args = 0;
4934 statics = 0;
4935 sregs = 0;
4936 do
4937 {
4938 unsigned int regno1, regno2;
4939
4940 if (arg->token->type == OT_INTEGER)
4941 {
4942 /* Handle the frame size. */
4943 if (!match_const_int (arg, &frame_size))
4944 return FALSE;
4945 num_frame_sizes += 1;
4946 }
4947 else
4948 {
4949 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4950 return FALSE;
4951
4952 while (regno1 <= regno2)
4953 {
4954 if (regno1 >= 4 && regno1 <= 7)
4955 {
4956 if (num_frame_sizes == 0)
4957 /* args $a0-$a3 */
4958 args |= 1 << (regno1 - 4);
4959 else
4960 /* statics $a0-$a3 */
4961 statics |= 1 << (regno1 - 4);
4962 }
4963 else if (regno1 >= 16 && regno1 <= 23)
4964 /* $s0-$s7 */
4965 sregs |= 1 << (regno1 - 16);
4966 else if (regno1 == 30)
4967 /* $s8 */
4968 sregs |= 1 << 8;
4969 else if (regno1 == 31)
4970 /* Add $ra to insn. */
4971 opcode |= 0x40;
4972 else
4973 return FALSE;
4974 regno1 += 1;
4975 if (regno1 == 24)
4976 regno1 = 30;
4977 }
4978 }
4979 }
4980 while (match_char (arg, ','));
4981
4982 /* Encode args/statics combination. */
4983 if (args & statics)
4984 return FALSE;
4985 else if (args == 0xf)
4986 /* All $a0-$a3 are args. */
4987 opcode |= MIPS16_ALL_ARGS << 16;
4988 else if (statics == 0xf)
4989 /* All $a0-$a3 are statics. */
4990 opcode |= MIPS16_ALL_STATICS << 16;
4991 else
4992 {
4993 /* Count arg registers. */
4994 num_args = 0;
4995 while (args & 0x1)
4996 {
4997 args >>= 1;
4998 num_args += 1;
4999 }
5000 if (args != 0)
5001 return FALSE;
5002
5003 /* Count static registers. */
5004 num_statics = 0;
5005 while (statics & 0x8)
5006 {
5007 statics = (statics << 1) & 0xf;
5008 num_statics += 1;
5009 }
5010 if (statics != 0)
5011 return FALSE;
5012
5013 /* Encode args/statics. */
5014 opcode |= ((num_args << 2) | num_statics) << 16;
5015 }
5016
5017 /* Encode $s0/$s1. */
5018 if (sregs & (1 << 0)) /* $s0 */
5019 opcode |= 0x20;
5020 if (sregs & (1 << 1)) /* $s1 */
5021 opcode |= 0x10;
5022 sregs >>= 2;
5023
5024 /* Encode $s2-$s8. */
5025 num_sregs = 0;
5026 while (sregs & 1)
5027 {
5028 sregs >>= 1;
5029 num_sregs += 1;
5030 }
5031 if (sregs != 0)
5032 return FALSE;
5033 opcode |= num_sregs << 24;
5034
5035 /* Encode frame size. */
5036 if (num_frame_sizes == 0)
5037 {
5038 set_insn_error (arg->argnum, _("missing frame size"));
5039 return FALSE;
5040 }
5041 if (num_frame_sizes > 1)
5042 {
5043 set_insn_error (arg->argnum, _("frame size specified twice"));
5044 return FALSE;
5045 }
5046 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5047 {
5048 set_insn_error (arg->argnum, _("invalid frame size"));
5049 return FALSE;
5050 }
5051 if (frame_size != 128 || (opcode >> 16) != 0)
5052 {
5053 frame_size /= 8;
5054 opcode |= (((frame_size & 0xf0) << 16)
5055 | (frame_size & 0x0f));
5056 }
5057
5058 /* Finally build the instruction. */
5059 if ((opcode >> 16) != 0 || frame_size == 0)
5060 opcode |= MIPS16_EXTEND;
5061 arg->insn->insn_opcode = opcode;
5062 return TRUE;
5063 }
5064
5065 /* OP_MDMX_IMM_REG matcher. */
5066
5067 static bfd_boolean
5068 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5069 const struct mips_operand *operand)
5070 {
5071 unsigned int regno, uval;
5072 bfd_boolean is_qh;
5073 const struct mips_opcode *opcode;
5074
5075 /* The mips_opcode records whether this is an octobyte or quadhalf
5076 instruction. Start out with that bit in place. */
5077 opcode = arg->insn->insn_mo;
5078 uval = mips_extract_operand (operand, opcode->match);
5079 is_qh = (uval != 0);
5080
5081 if (arg->token->type == OT_REG || arg->token->type == OT_REG_ELEMENT)
5082 {
5083 if ((opcode->membership & INSN_5400)
5084 && strcmp (opcode->name, "rzu.ob") == 0)
5085 {
5086 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5087 arg->argnum);
5088 return FALSE;
5089 }
5090
5091 /* Check whether this is a vector register or a broadcast of
5092 a single element. */
5093 if (arg->token->type == OT_REG_ELEMENT)
5094 {
5095 if (!match_regno (arg, OP_REG_VEC, arg->token->u.reg_element.regno,
5096 &regno))
5097 return FALSE;
5098 if (arg->token->u.reg_element.index > (is_qh ? 3 : 7))
5099 {
5100 set_insn_error (arg->argnum, _("invalid element selector"));
5101 return FALSE;
5102 }
5103 else
5104 uval |= arg->token->u.reg_element.index << (is_qh ? 2 : 1) << 5;
5105 }
5106 else
5107 {
5108 /* A full vector. */
5109 if ((opcode->membership & INSN_5400)
5110 && (strcmp (opcode->name, "sll.ob") == 0
5111 || strcmp (opcode->name, "srl.ob") == 0))
5112 {
5113 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5114 arg->argnum);
5115 return FALSE;
5116 }
5117
5118 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5119 return FALSE;
5120 if (is_qh)
5121 uval |= MDMX_FMTSEL_VEC_QH << 5;
5122 else
5123 uval |= MDMX_FMTSEL_VEC_OB << 5;
5124 }
5125 uval |= regno;
5126 ++arg->token;
5127 }
5128 else
5129 {
5130 offsetT sval;
5131
5132 if (!match_const_int (arg, &sval))
5133 return FALSE;
5134 if (sval < 0 || sval > 31)
5135 {
5136 match_out_of_range (arg);
5137 return FALSE;
5138 }
5139 uval |= (sval & 31);
5140 if (is_qh)
5141 uval |= MDMX_FMTSEL_IMM_QH << 5;
5142 else
5143 uval |= MDMX_FMTSEL_IMM_OB << 5;
5144 }
5145 insn_insert_operand (arg->insn, operand, uval);
5146 return TRUE;
5147 }
5148
5149 /* OP_PC matcher. */
5150
5151 static bfd_boolean
5152 match_pc_operand (struct mips_arg_info *arg)
5153 {
5154 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5155 {
5156 ++arg->token;
5157 return TRUE;
5158 }
5159 return FALSE;
5160 }
5161
5162 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5163 register that we need to match. */
5164
5165 static bfd_boolean
5166 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5167 {
5168 unsigned int regno;
5169
5170 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5171 }
5172
5173 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5174 the length of the value in bytes (4 for float, 8 for double) and
5175 USING_GPRS says whether the destination is a GPR rather than an FPR.
5176
5177 Return the constant in IMM and OFFSET as follows:
5178
5179 - If the constant should be loaded via memory, set IMM to O_absent and
5180 OFFSET to the memory address.
5181
5182 - Otherwise, if the constant should be loaded into two 32-bit registers,
5183 set IMM to the O_constant to load into the high register and OFFSET
5184 to the corresponding value for the low register.
5185
5186 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5187
5188 These constants only appear as the last operand in an instruction,
5189 and every instruction that accepts them in any variant accepts them
5190 in all variants. This means we don't have to worry about backing out
5191 any changes if the instruction does not match. We just match
5192 unconditionally and report an error if the constant is invalid. */
5193
5194 static bfd_boolean
5195 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5196 expressionS *offset, int length, bfd_boolean using_gprs)
5197 {
5198 char *p;
5199 segT seg, new_seg;
5200 subsegT subseg;
5201 const char *newname;
5202 unsigned char *data;
5203
5204 /* Where the constant is placed is based on how the MIPS assembler
5205 does things:
5206
5207 length == 4 && using_gprs -- immediate value only
5208 length == 8 && using_gprs -- .rdata or immediate value
5209 length == 4 && !using_gprs -- .lit4 or immediate value
5210 length == 8 && !using_gprs -- .lit8 or immediate value
5211
5212 The .lit4 and .lit8 sections are only used if permitted by the
5213 -G argument. */
5214 if (arg->token->type != OT_FLOAT)
5215 {
5216 set_insn_error (arg->argnum, _("floating-point expression required"));
5217 return FALSE;
5218 }
5219
5220 gas_assert (arg->token->u.flt.length == length);
5221 data = arg->token->u.flt.data;
5222 ++arg->token;
5223
5224 /* Handle 32-bit constants for which an immediate value is best. */
5225 if (length == 4
5226 && (using_gprs
5227 || g_switch_value < 4
5228 || (data[0] == 0 && data[1] == 0)
5229 || (data[2] == 0 && data[3] == 0)))
5230 {
5231 imm->X_op = O_constant;
5232 if (!target_big_endian)
5233 imm->X_add_number = bfd_getl32 (data);
5234 else
5235 imm->X_add_number = bfd_getb32 (data);
5236 offset->X_op = O_absent;
5237 return TRUE;
5238 }
5239
5240 /* Handle 64-bit constants for which an immediate value is best. */
5241 if (length == 8
5242 && !mips_disable_float_construction
5243 /* Constants can only be constructed in GPRs and copied
5244 to FPRs if the GPRs are at least as wide as the FPRs.
5245 Force the constant into memory if we are using 64-bit FPRs
5246 but the GPRs are only 32 bits wide. */
5247 /* ??? No longer true with the addition of MTHC1, but this
5248 is legacy code... */
5249 && (using_gprs || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
5250 && ((data[0] == 0 && data[1] == 0)
5251 || (data[2] == 0 && data[3] == 0))
5252 && ((data[4] == 0 && data[5] == 0)
5253 || (data[6] == 0 && data[7] == 0)))
5254 {
5255 /* The value is simple enough to load with a couple of instructions.
5256 If using 32-bit registers, set IMM to the high order 32 bits and
5257 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5258 64 bit constant. */
5259 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
5260 {
5261 imm->X_op = O_constant;
5262 offset->X_op = O_constant;
5263 if (!target_big_endian)
5264 {
5265 imm->X_add_number = bfd_getl32 (data + 4);
5266 offset->X_add_number = bfd_getl32 (data);
5267 }
5268 else
5269 {
5270 imm->X_add_number = bfd_getb32 (data);
5271 offset->X_add_number = bfd_getb32 (data + 4);
5272 }
5273 if (offset->X_add_number == 0)
5274 offset->X_op = O_absent;
5275 }
5276 else
5277 {
5278 imm->X_op = O_constant;
5279 if (!target_big_endian)
5280 imm->X_add_number = bfd_getl64 (data);
5281 else
5282 imm->X_add_number = bfd_getb64 (data);
5283 offset->X_op = O_absent;
5284 }
5285 return TRUE;
5286 }
5287
5288 /* Switch to the right section. */
5289 seg = now_seg;
5290 subseg = now_subseg;
5291 if (length == 4)
5292 {
5293 gas_assert (!using_gprs && g_switch_value >= 4);
5294 newname = ".lit4";
5295 }
5296 else
5297 {
5298 if (using_gprs || g_switch_value < 8)
5299 newname = RDATA_SECTION_NAME;
5300 else
5301 newname = ".lit8";
5302 }
5303
5304 new_seg = subseg_new (newname, (subsegT) 0);
5305 bfd_set_section_flags (stdoutput, new_seg,
5306 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5307 frag_align (length == 4 ? 2 : 3, 0, 0);
5308 if (strncmp (TARGET_OS, "elf", 3) != 0)
5309 record_alignment (new_seg, 4);
5310 else
5311 record_alignment (new_seg, length == 4 ? 2 : 3);
5312 if (seg == now_seg)
5313 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5314
5315 /* Set the argument to the current address in the section. */
5316 imm->X_op = O_absent;
5317 offset->X_op = O_symbol;
5318 offset->X_add_symbol = symbol_temp_new_now ();
5319 offset->X_add_number = 0;
5320
5321 /* Put the floating point number into the section. */
5322 p = frag_more (length);
5323 memcpy (p, data, length);
5324
5325 /* Switch back to the original section. */
5326 subseg_set (seg, subseg);
5327 return TRUE;
5328 }
5329
5330 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5331 them. */
5332
5333 static bfd_boolean
5334 match_vu0_suffix_operand (struct mips_arg_info *arg,
5335 const struct mips_operand *operand,
5336 bfd_boolean match_p)
5337 {
5338 unsigned int uval;
5339
5340 /* The operand can be an XYZW mask or a single 2-bit channel index
5341 (with X being 0). */
5342 gas_assert (operand->size == 2 || operand->size == 4);
5343
5344 /* The suffix can be omitted when it is already part of the opcode. */
5345 if (arg->token->type != OT_CHANNELS)
5346 return match_p;
5347
5348 uval = arg->token->u.channels;
5349 if (operand->size == 2)
5350 {
5351 /* Check that a single bit is set and convert it into a 2-bit index. */
5352 if ((uval & -uval) != uval)
5353 return FALSE;
5354 uval = 4 - ffs (uval);
5355 }
5356
5357 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5358 return FALSE;
5359
5360 ++arg->token;
5361 if (!match_p)
5362 insn_insert_operand (arg->insn, operand, uval);
5363 return TRUE;
5364 }
5365
5366 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5367 of the argument text if the match is successful, otherwise return null. */
5368
5369 static bfd_boolean
5370 match_operand (struct mips_arg_info *arg,
5371 const struct mips_operand *operand)
5372 {
5373 switch (operand->type)
5374 {
5375 case OP_INT:
5376 return match_int_operand (arg, operand);
5377
5378 case OP_MAPPED_INT:
5379 return match_mapped_int_operand (arg, operand);
5380
5381 case OP_MSB:
5382 return match_msb_operand (arg, operand);
5383
5384 case OP_REG:
5385 case OP_OPTIONAL_REG:
5386 return match_reg_operand (arg, operand);
5387
5388 case OP_REG_PAIR:
5389 return match_reg_pair_operand (arg, operand);
5390
5391 case OP_PCREL:
5392 return match_pcrel_operand (arg);
5393
5394 case OP_PERF_REG:
5395 return match_perf_reg_operand (arg, operand);
5396
5397 case OP_ADDIUSP_INT:
5398 return match_addiusp_operand (arg, operand);
5399
5400 case OP_CLO_CLZ_DEST:
5401 return match_clo_clz_dest_operand (arg, operand);
5402
5403 case OP_LWM_SWM_LIST:
5404 return match_lwm_swm_list_operand (arg, operand);
5405
5406 case OP_ENTRY_EXIT_LIST:
5407 return match_entry_exit_operand (arg, operand);
5408
5409 case OP_SAVE_RESTORE_LIST:
5410 return match_save_restore_list_operand (arg);
5411
5412 case OP_MDMX_IMM_REG:
5413 return match_mdmx_imm_reg_operand (arg, operand);
5414
5415 case OP_REPEAT_DEST_REG:
5416 return match_tied_reg_operand (arg, arg->dest_regno);
5417
5418 case OP_REPEAT_PREV_REG:
5419 return match_tied_reg_operand (arg, arg->last_regno);
5420
5421 case OP_PC:
5422 return match_pc_operand (arg);
5423
5424 case OP_VU0_SUFFIX:
5425 return match_vu0_suffix_operand (arg, operand, FALSE);
5426
5427 case OP_VU0_MATCH_SUFFIX:
5428 return match_vu0_suffix_operand (arg, operand, TRUE);
5429 }
5430 abort ();
5431 }
5432
5433 /* ARG is the state after successfully matching an instruction.
5434 Issue any queued-up warnings. */
5435
5436 static void
5437 check_completed_insn (struct mips_arg_info *arg)
5438 {
5439 if (arg->seen_at)
5440 {
5441 if (AT == ATREG)
5442 as_warn (_("used $at without \".set noat\""));
5443 else
5444 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
5445 }
5446 }
5447
5448 /* Return true if modifying general-purpose register REG needs a delay. */
5449
5450 static bfd_boolean
5451 reg_needs_delay (unsigned int reg)
5452 {
5453 unsigned long prev_pinfo;
5454
5455 prev_pinfo = history[0].insn_mo->pinfo;
5456 if (!mips_opts.noreorder
5457 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY) && !gpr_interlocks)
5458 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY) && !cop_interlocks))
5459 && (gpr_write_mask (&history[0]) & (1 << reg)))
5460 return TRUE;
5461
5462 return FALSE;
5463 }
5464
5465 /* Classify an instruction according to the FIX_VR4120_* enumeration.
5466 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
5467 by VR4120 errata. */
5468
5469 static unsigned int
5470 classify_vr4120_insn (const char *name)
5471 {
5472 if (strncmp (name, "macc", 4) == 0)
5473 return FIX_VR4120_MACC;
5474 if (strncmp (name, "dmacc", 5) == 0)
5475 return FIX_VR4120_DMACC;
5476 if (strncmp (name, "mult", 4) == 0)
5477 return FIX_VR4120_MULT;
5478 if (strncmp (name, "dmult", 5) == 0)
5479 return FIX_VR4120_DMULT;
5480 if (strstr (name, "div"))
5481 return FIX_VR4120_DIV;
5482 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
5483 return FIX_VR4120_MTHILO;
5484 return NUM_FIX_VR4120_CLASSES;
5485 }
5486
5487 #define INSN_ERET 0x42000018
5488 #define INSN_DERET 0x4200001f
5489
5490 /* Return the number of instructions that must separate INSN1 and INSN2,
5491 where INSN1 is the earlier instruction. Return the worst-case value
5492 for any INSN2 if INSN2 is null. */
5493
5494 static unsigned int
5495 insns_between (const struct mips_cl_insn *insn1,
5496 const struct mips_cl_insn *insn2)
5497 {
5498 unsigned long pinfo1, pinfo2;
5499 unsigned int mask;
5500
5501 /* If INFO2 is null, pessimistically assume that all flags are set for
5502 the second instruction. */
5503 pinfo1 = insn1->insn_mo->pinfo;
5504 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
5505
5506 /* For most targets, write-after-read dependencies on the HI and LO
5507 registers must be separated by at least two instructions. */
5508 if (!hilo_interlocks)
5509 {
5510 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
5511 return 2;
5512 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
5513 return 2;
5514 }
5515
5516 /* If we're working around r7000 errata, there must be two instructions
5517 between an mfhi or mflo and any instruction that uses the result. */
5518 if (mips_7000_hilo_fix
5519 && !mips_opts.micromips
5520 && MF_HILO_INSN (pinfo1)
5521 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
5522 return 2;
5523
5524 /* If we're working around 24K errata, one instruction is required
5525 if an ERET or DERET is followed by a branch instruction. */
5526 if (mips_fix_24k && !mips_opts.micromips)
5527 {
5528 if (insn1->insn_opcode == INSN_ERET
5529 || insn1->insn_opcode == INSN_DERET)
5530 {
5531 if (insn2 == NULL
5532 || insn2->insn_opcode == INSN_ERET
5533 || insn2->insn_opcode == INSN_DERET
5534 || delayed_branch_p (insn2))
5535 return 1;
5536 }
5537 }
5538
5539 /* If working around VR4120 errata, check for combinations that need
5540 a single intervening instruction. */
5541 if (mips_fix_vr4120 && !mips_opts.micromips)
5542 {
5543 unsigned int class1, class2;
5544
5545 class1 = classify_vr4120_insn (insn1->insn_mo->name);
5546 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
5547 {
5548 if (insn2 == NULL)
5549 return 1;
5550 class2 = classify_vr4120_insn (insn2->insn_mo->name);
5551 if (vr4120_conflicts[class1] & (1 << class2))
5552 return 1;
5553 }
5554 }
5555
5556 if (!HAVE_CODE_COMPRESSION)
5557 {
5558 /* Check for GPR or coprocessor load delays. All such delays
5559 are on the RT register. */
5560 /* Itbl support may require additional care here. */
5561 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
5562 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
5563 {
5564 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
5565 return 1;
5566 }
5567
5568 /* Check for generic coprocessor hazards.
5569
5570 This case is not handled very well. There is no special
5571 knowledge of CP0 handling, and the coprocessors other than
5572 the floating point unit are not distinguished at all. */
5573 /* Itbl support may require additional care here. FIXME!
5574 Need to modify this to include knowledge about
5575 user specified delays! */
5576 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
5577 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
5578 {
5579 /* Handle cases where INSN1 writes to a known general coprocessor
5580 register. There must be a one instruction delay before INSN2
5581 if INSN2 reads that register, otherwise no delay is needed. */
5582 mask = fpr_write_mask (insn1);
5583 if (mask != 0)
5584 {
5585 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
5586 return 1;
5587 }
5588 else
5589 {
5590 /* Read-after-write dependencies on the control registers
5591 require a two-instruction gap. */
5592 if ((pinfo1 & INSN_WRITE_COND_CODE)
5593 && (pinfo2 & INSN_READ_COND_CODE))
5594 return 2;
5595
5596 /* We don't know exactly what INSN1 does. If INSN2 is
5597 also a coprocessor instruction, assume there must be
5598 a one instruction gap. */
5599 if (pinfo2 & INSN_COP)
5600 return 1;
5601 }
5602 }
5603
5604 /* Check for read-after-write dependencies on the coprocessor
5605 control registers in cases where INSN1 does not need a general
5606 coprocessor delay. This means that INSN1 is a floating point
5607 comparison instruction. */
5608 /* Itbl support may require additional care here. */
5609 else if (!cop_interlocks
5610 && (pinfo1 & INSN_WRITE_COND_CODE)
5611 && (pinfo2 & INSN_READ_COND_CODE))
5612 return 1;
5613 }
5614
5615 return 0;
5616 }
5617
5618 /* Return the number of nops that would be needed to work around the
5619 VR4130 mflo/mfhi errata if instruction INSN immediately followed
5620 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
5621 that are contained within the first IGNORE instructions of HIST. */
5622
5623 static int
5624 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
5625 const struct mips_cl_insn *insn)
5626 {
5627 int i, j;
5628 unsigned int mask;
5629
5630 /* Check if the instruction writes to HI or LO. MTHI and MTLO
5631 are not affected by the errata. */
5632 if (insn != 0
5633 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
5634 || strcmp (insn->insn_mo->name, "mtlo") == 0
5635 || strcmp (insn->insn_mo->name, "mthi") == 0))
5636 return 0;
5637
5638 /* Search for the first MFLO or MFHI. */
5639 for (i = 0; i < MAX_VR4130_NOPS; i++)
5640 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
5641 {
5642 /* Extract the destination register. */
5643 mask = gpr_write_mask (&hist[i]);
5644
5645 /* No nops are needed if INSN reads that register. */
5646 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
5647 return 0;
5648
5649 /* ...or if any of the intervening instructions do. */
5650 for (j = 0; j < i; j++)
5651 if (gpr_read_mask (&hist[j]) & mask)
5652 return 0;
5653
5654 if (i >= ignore)
5655 return MAX_VR4130_NOPS - i;
5656 }
5657 return 0;
5658 }
5659
5660 #define BASE_REG_EQ(INSN1, INSN2) \
5661 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
5662 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
5663
5664 /* Return the minimum alignment for this store instruction. */
5665
5666 static int
5667 fix_24k_align_to (const struct mips_opcode *mo)
5668 {
5669 if (strcmp (mo->name, "sh") == 0)
5670 return 2;
5671
5672 if (strcmp (mo->name, "swc1") == 0
5673 || strcmp (mo->name, "swc2") == 0
5674 || strcmp (mo->name, "sw") == 0
5675 || strcmp (mo->name, "sc") == 0
5676 || strcmp (mo->name, "s.s") == 0)
5677 return 4;
5678
5679 if (strcmp (mo->name, "sdc1") == 0
5680 || strcmp (mo->name, "sdc2") == 0
5681 || strcmp (mo->name, "s.d") == 0)
5682 return 8;
5683
5684 /* sb, swl, swr */
5685 return 1;
5686 }
5687
5688 struct fix_24k_store_info
5689 {
5690 /* Immediate offset, if any, for this store instruction. */
5691 short off;
5692 /* Alignment required by this store instruction. */
5693 int align_to;
5694 /* True for register offsets. */
5695 int register_offset;
5696 };
5697
5698 /* Comparison function used by qsort. */
5699
5700 static int
5701 fix_24k_sort (const void *a, const void *b)
5702 {
5703 const struct fix_24k_store_info *pos1 = a;
5704 const struct fix_24k_store_info *pos2 = b;
5705
5706 return (pos1->off - pos2->off);
5707 }
5708
5709 /* INSN is a store instruction. Try to record the store information
5710 in STINFO. Return false if the information isn't known. */
5711
5712 static bfd_boolean
5713 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
5714 const struct mips_cl_insn *insn)
5715 {
5716 /* The instruction must have a known offset. */
5717 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
5718 return FALSE;
5719
5720 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
5721 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
5722 return TRUE;
5723 }
5724
5725 /* Return the number of nops that would be needed to work around the 24k
5726 "lost data on stores during refill" errata if instruction INSN
5727 immediately followed the 2 instructions described by HIST.
5728 Ignore hazards that are contained within the first IGNORE
5729 instructions of HIST.
5730
5731 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
5732 for the data cache refills and store data. The following describes
5733 the scenario where the store data could be lost.
5734
5735 * A data cache miss, due to either a load or a store, causing fill
5736 data to be supplied by the memory subsystem
5737 * The first three doublewords of fill data are returned and written
5738 into the cache
5739 * A sequence of four stores occurs in consecutive cycles around the
5740 final doubleword of the fill:
5741 * Store A
5742 * Store B
5743 * Store C
5744 * Zero, One or more instructions
5745 * Store D
5746
5747 The four stores A-D must be to different doublewords of the line that
5748 is being filled. The fourth instruction in the sequence above permits
5749 the fill of the final doubleword to be transferred from the FSB into
5750 the cache. In the sequence above, the stores may be either integer
5751 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
5752 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
5753 different doublewords on the line. If the floating point unit is
5754 running in 1:2 mode, it is not possible to create the sequence above
5755 using only floating point store instructions.
5756
5757 In this case, the cache line being filled is incorrectly marked
5758 invalid, thereby losing the data from any store to the line that
5759 occurs between the original miss and the completion of the five
5760 cycle sequence shown above.
5761
5762 The workarounds are:
5763
5764 * Run the data cache in write-through mode.
5765 * Insert a non-store instruction between
5766 Store A and Store B or Store B and Store C. */
5767
5768 static int
5769 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
5770 const struct mips_cl_insn *insn)
5771 {
5772 struct fix_24k_store_info pos[3];
5773 int align, i, base_offset;
5774
5775 if (ignore >= 2)
5776 return 0;
5777
5778 /* If the previous instruction wasn't a store, there's nothing to
5779 worry about. */
5780 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5781 return 0;
5782
5783 /* If the instructions after the previous one are unknown, we have
5784 to assume the worst. */
5785 if (!insn)
5786 return 1;
5787
5788 /* Check whether we are dealing with three consecutive stores. */
5789 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
5790 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5791 return 0;
5792
5793 /* If we don't know the relationship between the store addresses,
5794 assume the worst. */
5795 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
5796 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
5797 return 1;
5798
5799 if (!fix_24k_record_store_info (&pos[0], insn)
5800 || !fix_24k_record_store_info (&pos[1], &hist[0])
5801 || !fix_24k_record_store_info (&pos[2], &hist[1]))
5802 return 1;
5803
5804 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
5805
5806 /* Pick a value of ALIGN and X such that all offsets are adjusted by
5807 X bytes and such that the base register + X is known to be aligned
5808 to align bytes. */
5809
5810 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
5811 align = 8;
5812 else
5813 {
5814 align = pos[0].align_to;
5815 base_offset = pos[0].off;
5816 for (i = 1; i < 3; i++)
5817 if (align < pos[i].align_to)
5818 {
5819 align = pos[i].align_to;
5820 base_offset = pos[i].off;
5821 }
5822 for (i = 0; i < 3; i++)
5823 pos[i].off -= base_offset;
5824 }
5825
5826 pos[0].off &= ~align + 1;
5827 pos[1].off &= ~align + 1;
5828 pos[2].off &= ~align + 1;
5829
5830 /* If any two stores write to the same chunk, they also write to the
5831 same doubleword. The offsets are still sorted at this point. */
5832 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
5833 return 0;
5834
5835 /* A range of at least 9 bytes is needed for the stores to be in
5836 non-overlapping doublewords. */
5837 if (pos[2].off - pos[0].off <= 8)
5838 return 0;
5839
5840 if (pos[2].off - pos[1].off >= 24
5841 || pos[1].off - pos[0].off >= 24
5842 || pos[2].off - pos[0].off >= 32)
5843 return 0;
5844
5845 return 1;
5846 }
5847
5848 /* Return the number of nops that would be needed if instruction INSN
5849 immediately followed the MAX_NOPS instructions given by HIST,
5850 where HIST[0] is the most recent instruction. Ignore hazards
5851 between INSN and the first IGNORE instructions in HIST.
5852
5853 If INSN is null, return the worse-case number of nops for any
5854 instruction. */
5855
5856 static int
5857 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
5858 const struct mips_cl_insn *insn)
5859 {
5860 int i, nops, tmp_nops;
5861
5862 nops = 0;
5863 for (i = ignore; i < MAX_DELAY_NOPS; i++)
5864 {
5865 tmp_nops = insns_between (hist + i, insn) - i;
5866 if (tmp_nops > nops)
5867 nops = tmp_nops;
5868 }
5869
5870 if (mips_fix_vr4130 && !mips_opts.micromips)
5871 {
5872 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
5873 if (tmp_nops > nops)
5874 nops = tmp_nops;
5875 }
5876
5877 if (mips_fix_24k && !mips_opts.micromips)
5878 {
5879 tmp_nops = nops_for_24k (ignore, hist, insn);
5880 if (tmp_nops > nops)
5881 nops = tmp_nops;
5882 }
5883
5884 return nops;
5885 }
5886
5887 /* The variable arguments provide NUM_INSNS extra instructions that
5888 might be added to HIST. Return the largest number of nops that
5889 would be needed after the extended sequence, ignoring hazards
5890 in the first IGNORE instructions. */
5891
5892 static int
5893 nops_for_sequence (int num_insns, int ignore,
5894 const struct mips_cl_insn *hist, ...)
5895 {
5896 va_list args;
5897 struct mips_cl_insn buffer[MAX_NOPS];
5898 struct mips_cl_insn *cursor;
5899 int nops;
5900
5901 va_start (args, hist);
5902 cursor = buffer + num_insns;
5903 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
5904 while (cursor > buffer)
5905 *--cursor = *va_arg (args, const struct mips_cl_insn *);
5906
5907 nops = nops_for_insn (ignore, buffer, NULL);
5908 va_end (args);
5909 return nops;
5910 }
5911
5912 /* Like nops_for_insn, but if INSN is a branch, take into account the
5913 worst-case delay for the branch target. */
5914
5915 static int
5916 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
5917 const struct mips_cl_insn *insn)
5918 {
5919 int nops, tmp_nops;
5920
5921 nops = nops_for_insn (ignore, hist, insn);
5922 if (delayed_branch_p (insn))
5923 {
5924 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
5925 hist, insn, get_delay_slot_nop (insn));
5926 if (tmp_nops > nops)
5927 nops = tmp_nops;
5928 }
5929 else if (compact_branch_p (insn))
5930 {
5931 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
5932 if (tmp_nops > nops)
5933 nops = tmp_nops;
5934 }
5935 return nops;
5936 }
5937
5938 /* Fix NOP issue: Replace nops by "or at,at,zero". */
5939
5940 static void
5941 fix_loongson2f_nop (struct mips_cl_insn * ip)
5942 {
5943 gas_assert (!HAVE_CODE_COMPRESSION);
5944 if (strcmp (ip->insn_mo->name, "nop") == 0)
5945 ip->insn_opcode = LOONGSON2F_NOP_INSN;
5946 }
5947
5948 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
5949 jr target pc &= 'hffff_ffff_cfff_ffff. */
5950
5951 static void
5952 fix_loongson2f_jump (struct mips_cl_insn * ip)
5953 {
5954 gas_assert (!HAVE_CODE_COMPRESSION);
5955 if (strcmp (ip->insn_mo->name, "j") == 0
5956 || strcmp (ip->insn_mo->name, "jr") == 0
5957 || strcmp (ip->insn_mo->name, "jalr") == 0)
5958 {
5959 int sreg;
5960 expressionS ep;
5961
5962 if (! mips_opts.at)
5963 return;
5964
5965 sreg = EXTRACT_OPERAND (0, RS, *ip);
5966 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
5967 return;
5968
5969 ep.X_op = O_constant;
5970 ep.X_add_number = 0xcfff0000;
5971 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
5972 ep.X_add_number = 0xffff;
5973 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
5974 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
5975 }
5976 }
5977
5978 static void
5979 fix_loongson2f (struct mips_cl_insn * ip)
5980 {
5981 if (mips_fix_loongson2f_nop)
5982 fix_loongson2f_nop (ip);
5983
5984 if (mips_fix_loongson2f_jump)
5985 fix_loongson2f_jump (ip);
5986 }
5987
5988 /* IP is a branch that has a delay slot, and we need to fill it
5989 automatically. Return true if we can do that by swapping IP
5990 with the previous instruction.
5991 ADDRESS_EXPR is an operand of the instruction to be used with
5992 RELOC_TYPE. */
5993
5994 static bfd_boolean
5995 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
5996 bfd_reloc_code_real_type *reloc_type)
5997 {
5998 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
5999 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6000
6001 /* -O2 and above is required for this optimization. */
6002 if (mips_optimize < 2)
6003 return FALSE;
6004
6005 /* If we have seen .set volatile or .set nomove, don't optimize. */
6006 if (mips_opts.nomove)
6007 return FALSE;
6008
6009 /* We can't swap if the previous instruction's position is fixed. */
6010 if (history[0].fixed_p)
6011 return FALSE;
6012
6013 /* If the previous previous insn was in a .set noreorder, we can't
6014 swap. Actually, the MIPS assembler will swap in this situation.
6015 However, gcc configured -with-gnu-as will generate code like
6016
6017 .set noreorder
6018 lw $4,XXX
6019 .set reorder
6020 INSN
6021 bne $4,$0,foo
6022
6023 in which we can not swap the bne and INSN. If gcc is not configured
6024 -with-gnu-as, it does not output the .set pseudo-ops. */
6025 if (history[1].noreorder_p)
6026 return FALSE;
6027
6028 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6029 This means that the previous instruction was a 4-byte one anyhow. */
6030 if (mips_opts.mips16 && history[0].fixp[0])
6031 return FALSE;
6032
6033 /* If the branch is itself the target of a branch, we can not swap.
6034 We cheat on this; all we check for is whether there is a label on
6035 this instruction. If there are any branches to anything other than
6036 a label, users must use .set noreorder. */
6037 if (seg_info (now_seg)->label_list)
6038 return FALSE;
6039
6040 /* If the previous instruction is in a variant frag other than this
6041 branch's one, we cannot do the swap. This does not apply to
6042 MIPS16 code, which uses variant frags for different purposes. */
6043 if (!mips_opts.mips16
6044 && history[0].frag
6045 && history[0].frag->fr_type == rs_machine_dependent)
6046 return FALSE;
6047
6048 /* We do not swap with instructions that cannot architecturally
6049 be placed in a branch delay slot, such as SYNC or ERET. We
6050 also refrain from swapping with a trap instruction, since it
6051 complicates trap handlers to have the trap instruction be in
6052 a delay slot. */
6053 prev_pinfo = history[0].insn_mo->pinfo;
6054 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6055 return FALSE;
6056
6057 /* Check for conflicts between the branch and the instructions
6058 before the candidate delay slot. */
6059 if (nops_for_insn (0, history + 1, ip) > 0)
6060 return FALSE;
6061
6062 /* Check for conflicts between the swapped sequence and the
6063 target of the branch. */
6064 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6065 return FALSE;
6066
6067 /* If the branch reads a register that the previous
6068 instruction sets, we can not swap. */
6069 gpr_read = gpr_read_mask (ip);
6070 prev_gpr_write = gpr_write_mask (&history[0]);
6071 if (gpr_read & prev_gpr_write)
6072 return FALSE;
6073
6074 /* If the branch writes a register that the previous
6075 instruction sets, we can not swap. */
6076 gpr_write = gpr_write_mask (ip);
6077 if (gpr_write & prev_gpr_write)
6078 return FALSE;
6079
6080 /* If the branch writes a register that the previous
6081 instruction reads, we can not swap. */
6082 prev_gpr_read = gpr_read_mask (&history[0]);
6083 if (gpr_write & prev_gpr_read)
6084 return FALSE;
6085
6086 /* If one instruction sets a condition code and the
6087 other one uses a condition code, we can not swap. */
6088 pinfo = ip->insn_mo->pinfo;
6089 if ((pinfo & INSN_READ_COND_CODE)
6090 && (prev_pinfo & INSN_WRITE_COND_CODE))
6091 return FALSE;
6092 if ((pinfo & INSN_WRITE_COND_CODE)
6093 && (prev_pinfo & INSN_READ_COND_CODE))
6094 return FALSE;
6095
6096 /* If the previous instruction uses the PC, we can not swap. */
6097 prev_pinfo2 = history[0].insn_mo->pinfo2;
6098 if (prev_pinfo2 & INSN2_READ_PC)
6099 return FALSE;
6100
6101 /* If the previous instruction has an incorrect size for a fixed
6102 branch delay slot in microMIPS mode, we cannot swap. */
6103 pinfo2 = ip->insn_mo->pinfo2;
6104 if (mips_opts.micromips
6105 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6106 && insn_length (history) != 2)
6107 return FALSE;
6108 if (mips_opts.micromips
6109 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6110 && insn_length (history) != 4)
6111 return FALSE;
6112
6113 /* On R5900 short loops need to be fixed by inserting a nop in
6114 the branch delay slots.
6115 A short loop can be terminated too early. */
6116 if (mips_opts.arch == CPU_R5900
6117 /* Check if instruction has a parameter, ignore "j $31". */
6118 && (address_expr != NULL)
6119 /* Parameter must be 16 bit. */
6120 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6121 /* Branch to same segment. */
6122 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6123 /* Branch to same code fragment. */
6124 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6125 /* Can only calculate branch offset if value is known. */
6126 && symbol_constant_p(address_expr->X_add_symbol)
6127 /* Check if branch is really conditional. */
6128 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6129 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6130 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6131 {
6132 int distance;
6133 /* Check if loop is shorter than 6 instructions including
6134 branch and delay slot. */
6135 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6136 if (distance <= 20)
6137 {
6138 int i;
6139 int rv;
6140
6141 rv = FALSE;
6142 /* When the loop includes branches or jumps,
6143 it is not a short loop. */
6144 for (i = 0; i < (distance / 4); i++)
6145 {
6146 if ((history[i].cleared_p)
6147 || delayed_branch_p(&history[i]))
6148 {
6149 rv = TRUE;
6150 break;
6151 }
6152 }
6153 if (rv == FALSE)
6154 {
6155 /* Insert nop after branch to fix short loop. */
6156 return FALSE;
6157 }
6158 }
6159 }
6160
6161 return TRUE;
6162 }
6163
6164 /* Decide how we should add IP to the instruction stream.
6165 ADDRESS_EXPR is an operand of the instruction to be used with
6166 RELOC_TYPE. */
6167
6168 static enum append_method
6169 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6170 bfd_reloc_code_real_type *reloc_type)
6171 {
6172 /* The relaxed version of a macro sequence must be inherently
6173 hazard-free. */
6174 if (mips_relax.sequence == 2)
6175 return APPEND_ADD;
6176
6177 /* We must not dabble with instructions in a ".set norerorder" block. */
6178 if (mips_opts.noreorder)
6179 return APPEND_ADD;
6180
6181 /* Otherwise, it's our responsibility to fill branch delay slots. */
6182 if (delayed_branch_p (ip))
6183 {
6184 if (!branch_likely_p (ip)
6185 && can_swap_branch_p (ip, address_expr, reloc_type))
6186 return APPEND_SWAP;
6187
6188 if (mips_opts.mips16
6189 && ISA_SUPPORTS_MIPS16E
6190 && gpr_read_mask (ip) != 0)
6191 return APPEND_ADD_COMPACT;
6192
6193 return APPEND_ADD_WITH_NOP;
6194 }
6195
6196 return APPEND_ADD;
6197 }
6198
6199 /* IP is a MIPS16 instruction whose opcode we have just changed.
6200 Point IP->insn_mo to the new opcode's definition. */
6201
6202 static void
6203 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6204 {
6205 const struct mips_opcode *mo, *end;
6206
6207 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6208 for (mo = ip->insn_mo; mo < end; mo++)
6209 if ((ip->insn_opcode & mo->mask) == mo->match)
6210 {
6211 ip->insn_mo = mo;
6212 return;
6213 }
6214 abort ();
6215 }
6216
6217 /* For microMIPS macros, we need to generate a local number label
6218 as the target of branches. */
6219 #define MICROMIPS_LABEL_CHAR '\037'
6220 static unsigned long micromips_target_label;
6221 static char micromips_target_name[32];
6222
6223 static char *
6224 micromips_label_name (void)
6225 {
6226 char *p = micromips_target_name;
6227 char symbol_name_temporary[24];
6228 unsigned long l;
6229 int i;
6230
6231 if (*p)
6232 return p;
6233
6234 i = 0;
6235 l = micromips_target_label;
6236 #ifdef LOCAL_LABEL_PREFIX
6237 *p++ = LOCAL_LABEL_PREFIX;
6238 #endif
6239 *p++ = 'L';
6240 *p++ = MICROMIPS_LABEL_CHAR;
6241 do
6242 {
6243 symbol_name_temporary[i++] = l % 10 + '0';
6244 l /= 10;
6245 }
6246 while (l != 0);
6247 while (i > 0)
6248 *p++ = symbol_name_temporary[--i];
6249 *p = '\0';
6250
6251 return micromips_target_name;
6252 }
6253
6254 static void
6255 micromips_label_expr (expressionS *label_expr)
6256 {
6257 label_expr->X_op = O_symbol;
6258 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6259 label_expr->X_add_number = 0;
6260 }
6261
6262 static void
6263 micromips_label_inc (void)
6264 {
6265 micromips_target_label++;
6266 *micromips_target_name = '\0';
6267 }
6268
6269 static void
6270 micromips_add_label (void)
6271 {
6272 symbolS *s;
6273
6274 s = colon (micromips_label_name ());
6275 micromips_label_inc ();
6276 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6277 }
6278
6279 /* If assembling microMIPS code, then return the microMIPS reloc
6280 corresponding to the requested one if any. Otherwise return
6281 the reloc unchanged. */
6282
6283 static bfd_reloc_code_real_type
6284 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6285 {
6286 static const bfd_reloc_code_real_type relocs[][2] =
6287 {
6288 /* Keep sorted incrementally by the left-hand key. */
6289 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6290 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6291 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6292 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6293 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6294 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6295 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6296 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6297 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6298 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6299 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6300 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6301 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6302 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6303 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6304 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6305 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6306 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6307 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6308 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6309 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6310 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6311 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6312 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6313 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6314 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6315 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6316 };
6317 bfd_reloc_code_real_type r;
6318 size_t i;
6319
6320 if (!mips_opts.micromips)
6321 return reloc;
6322 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6323 {
6324 r = relocs[i][0];
6325 if (r > reloc)
6326 return reloc;
6327 if (r == reloc)
6328 return relocs[i][1];
6329 }
6330 return reloc;
6331 }
6332
6333 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6334 Return true on success, storing the resolved value in RESULT. */
6335
6336 static bfd_boolean
6337 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6338 offsetT *result)
6339 {
6340 switch (reloc)
6341 {
6342 case BFD_RELOC_MIPS_HIGHEST:
6343 case BFD_RELOC_MICROMIPS_HIGHEST:
6344 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6345 return TRUE;
6346
6347 case BFD_RELOC_MIPS_HIGHER:
6348 case BFD_RELOC_MICROMIPS_HIGHER:
6349 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6350 return TRUE;
6351
6352 case BFD_RELOC_HI16_S:
6353 case BFD_RELOC_MICROMIPS_HI16_S:
6354 case BFD_RELOC_MIPS16_HI16_S:
6355 *result = ((operand + 0x8000) >> 16) & 0xffff;
6356 return TRUE;
6357
6358 case BFD_RELOC_HI16:
6359 case BFD_RELOC_MICROMIPS_HI16:
6360 case BFD_RELOC_MIPS16_HI16:
6361 *result = (operand >> 16) & 0xffff;
6362 return TRUE;
6363
6364 case BFD_RELOC_LO16:
6365 case BFD_RELOC_MICROMIPS_LO16:
6366 case BFD_RELOC_MIPS16_LO16:
6367 *result = operand & 0xffff;
6368 return TRUE;
6369
6370 case BFD_RELOC_UNUSED:
6371 *result = operand;
6372 return TRUE;
6373
6374 default:
6375 return FALSE;
6376 }
6377 }
6378
6379 /* Output an instruction. IP is the instruction information.
6380 ADDRESS_EXPR is an operand of the instruction to be used with
6381 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6382 a macro expansion. */
6383
6384 static void
6385 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6386 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
6387 {
6388 unsigned long prev_pinfo2, pinfo;
6389 bfd_boolean relaxed_branch = FALSE;
6390 enum append_method method;
6391 bfd_boolean relax32;
6392 int branch_disp;
6393
6394 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
6395 fix_loongson2f (ip);
6396
6397 file_ase_mips16 |= mips_opts.mips16;
6398 file_ase_micromips |= mips_opts.micromips;
6399
6400 prev_pinfo2 = history[0].insn_mo->pinfo2;
6401 pinfo = ip->insn_mo->pinfo;
6402
6403 if (mips_opts.micromips
6404 && !expansionp
6405 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
6406 && micromips_insn_length (ip->insn_mo) != 2)
6407 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
6408 && micromips_insn_length (ip->insn_mo) != 4)))
6409 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
6410 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
6411
6412 if (address_expr == NULL)
6413 ip->complete_p = 1;
6414 else if (reloc_type[0] <= BFD_RELOC_UNUSED
6415 && reloc_type[1] == BFD_RELOC_UNUSED
6416 && reloc_type[2] == BFD_RELOC_UNUSED
6417 && address_expr->X_op == O_constant)
6418 {
6419 switch (*reloc_type)
6420 {
6421 case BFD_RELOC_MIPS_JMP:
6422 {
6423 int shift;
6424
6425 shift = mips_opts.micromips ? 1 : 2;
6426 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6427 as_bad (_("jump to misaligned address (0x%lx)"),
6428 (unsigned long) address_expr->X_add_number);
6429 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6430 & 0x3ffffff);
6431 ip->complete_p = 1;
6432 }
6433 break;
6434
6435 case BFD_RELOC_MIPS16_JMP:
6436 if ((address_expr->X_add_number & 3) != 0)
6437 as_bad (_("jump to misaligned address (0x%lx)"),
6438 (unsigned long) address_expr->X_add_number);
6439 ip->insn_opcode |=
6440 (((address_expr->X_add_number & 0x7c0000) << 3)
6441 | ((address_expr->X_add_number & 0xf800000) >> 7)
6442 | ((address_expr->X_add_number & 0x3fffc) >> 2));
6443 ip->complete_p = 1;
6444 break;
6445
6446 case BFD_RELOC_16_PCREL_S2:
6447 {
6448 int shift;
6449
6450 shift = mips_opts.micromips ? 1 : 2;
6451 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6452 as_bad (_("branch to misaligned address (0x%lx)"),
6453 (unsigned long) address_expr->X_add_number);
6454 if (!mips_relax_branch)
6455 {
6456 if ((address_expr->X_add_number + (1 << (shift + 15)))
6457 & ~((1 << (shift + 16)) - 1))
6458 as_bad (_("branch address range overflow (0x%lx)"),
6459 (unsigned long) address_expr->X_add_number);
6460 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6461 & 0xffff);
6462 }
6463 }
6464 break;
6465
6466 default:
6467 {
6468 offsetT value;
6469
6470 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
6471 &value))
6472 {
6473 ip->insn_opcode |= value & 0xffff;
6474 ip->complete_p = 1;
6475 }
6476 }
6477 break;
6478 }
6479 }
6480
6481 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
6482 {
6483 /* There are a lot of optimizations we could do that we don't.
6484 In particular, we do not, in general, reorder instructions.
6485 If you use gcc with optimization, it will reorder
6486 instructions and generally do much more optimization then we
6487 do here; repeating all that work in the assembler would only
6488 benefit hand written assembly code, and does not seem worth
6489 it. */
6490 int nops = (mips_optimize == 0
6491 ? nops_for_insn (0, history, NULL)
6492 : nops_for_insn_or_target (0, history, ip));
6493 if (nops > 0)
6494 {
6495 fragS *old_frag;
6496 unsigned long old_frag_offset;
6497 int i;
6498
6499 old_frag = frag_now;
6500 old_frag_offset = frag_now_fix ();
6501
6502 for (i = 0; i < nops; i++)
6503 add_fixed_insn (NOP_INSN);
6504 insert_into_history (0, nops, NOP_INSN);
6505
6506 if (listing)
6507 {
6508 listing_prev_line ();
6509 /* We may be at the start of a variant frag. In case we
6510 are, make sure there is enough space for the frag
6511 after the frags created by listing_prev_line. The
6512 argument to frag_grow here must be at least as large
6513 as the argument to all other calls to frag_grow in
6514 this file. We don't have to worry about being in the
6515 middle of a variant frag, because the variants insert
6516 all needed nop instructions themselves. */
6517 frag_grow (40);
6518 }
6519
6520 mips_move_text_labels ();
6521
6522 #ifndef NO_ECOFF_DEBUGGING
6523 if (ECOFF_DEBUGGING)
6524 ecoff_fix_loc (old_frag, old_frag_offset);
6525 #endif
6526 }
6527 }
6528 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
6529 {
6530 int nops;
6531
6532 /* Work out how many nops in prev_nop_frag are needed by IP,
6533 ignoring hazards generated by the first prev_nop_frag_since
6534 instructions. */
6535 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
6536 gas_assert (nops <= prev_nop_frag_holds);
6537
6538 /* Enforce NOPS as a minimum. */
6539 if (nops > prev_nop_frag_required)
6540 prev_nop_frag_required = nops;
6541
6542 if (prev_nop_frag_holds == prev_nop_frag_required)
6543 {
6544 /* Settle for the current number of nops. Update the history
6545 accordingly (for the benefit of any future .set reorder code). */
6546 prev_nop_frag = NULL;
6547 insert_into_history (prev_nop_frag_since,
6548 prev_nop_frag_holds, NOP_INSN);
6549 }
6550 else
6551 {
6552 /* Allow this instruction to replace one of the nops that was
6553 tentatively added to prev_nop_frag. */
6554 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
6555 prev_nop_frag_holds--;
6556 prev_nop_frag_since++;
6557 }
6558 }
6559
6560 method = get_append_method (ip, address_expr, reloc_type);
6561 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
6562
6563 dwarf2_emit_insn (0);
6564 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
6565 so "move" the instruction address accordingly.
6566
6567 Also, it doesn't seem appropriate for the assembler to reorder .loc
6568 entries. If this instruction is a branch that we are going to swap
6569 with the previous instruction, the two instructions should be
6570 treated as a unit, and the debug information for both instructions
6571 should refer to the start of the branch sequence. Using the
6572 current position is certainly wrong when swapping a 32-bit branch
6573 and a 16-bit delay slot, since the current position would then be
6574 in the middle of a branch. */
6575 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
6576
6577 relax32 = (mips_relax_branch
6578 /* Don't try branch relaxation within .set nomacro, or within
6579 .set noat if we use $at for PIC computations. If it turns
6580 out that the branch was out-of-range, we'll get an error. */
6581 && !mips_opts.warn_about_macros
6582 && (mips_opts.at || mips_pic == NO_PIC)
6583 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
6584 as they have no complementing branches. */
6585 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
6586
6587 if (!HAVE_CODE_COMPRESSION
6588 && address_expr
6589 && relax32
6590 && *reloc_type == BFD_RELOC_16_PCREL_S2
6591 && delayed_branch_p (ip))
6592 {
6593 relaxed_branch = TRUE;
6594 add_relaxed_insn (ip, (relaxed_branch_length
6595 (NULL, NULL,
6596 uncond_branch_p (ip) ? -1
6597 : branch_likely_p (ip) ? 1
6598 : 0)), 4,
6599 RELAX_BRANCH_ENCODE
6600 (AT,
6601 uncond_branch_p (ip),
6602 branch_likely_p (ip),
6603 pinfo & INSN_WRITE_GPR_31,
6604 0),
6605 address_expr->X_add_symbol,
6606 address_expr->X_add_number);
6607 *reloc_type = BFD_RELOC_UNUSED;
6608 }
6609 else if (mips_opts.micromips
6610 && address_expr
6611 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
6612 || *reloc_type > BFD_RELOC_UNUSED)
6613 && (delayed_branch_p (ip) || compact_branch_p (ip))
6614 /* Don't try branch relaxation when users specify
6615 16-bit/32-bit instructions. */
6616 && !forced_insn_length)
6617 {
6618 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
6619 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
6620 int uncond = uncond_branch_p (ip) ? -1 : 0;
6621 int compact = compact_branch_p (ip);
6622 int al = pinfo & INSN_WRITE_GPR_31;
6623 int length32;
6624
6625 gas_assert (address_expr != NULL);
6626 gas_assert (!mips_relax.sequence);
6627
6628 relaxed_branch = TRUE;
6629 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
6630 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
6631 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
6632 relax32, 0, 0),
6633 address_expr->X_add_symbol,
6634 address_expr->X_add_number);
6635 *reloc_type = BFD_RELOC_UNUSED;
6636 }
6637 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
6638 {
6639 /* We need to set up a variant frag. */
6640 gas_assert (address_expr != NULL);
6641 add_relaxed_insn (ip, 4, 0,
6642 RELAX_MIPS16_ENCODE
6643 (*reloc_type - BFD_RELOC_UNUSED,
6644 forced_insn_length == 2, forced_insn_length == 4,
6645 delayed_branch_p (&history[0]),
6646 history[0].mips16_absolute_jump_p),
6647 make_expr_symbol (address_expr), 0);
6648 }
6649 else if (mips_opts.mips16 && insn_length (ip) == 2)
6650 {
6651 if (!delayed_branch_p (ip))
6652 /* Make sure there is enough room to swap this instruction with
6653 a following jump instruction. */
6654 frag_grow (6);
6655 add_fixed_insn (ip);
6656 }
6657 else
6658 {
6659 if (mips_opts.mips16
6660 && mips_opts.noreorder
6661 && delayed_branch_p (&history[0]))
6662 as_warn (_("extended instruction in delay slot"));
6663
6664 if (mips_relax.sequence)
6665 {
6666 /* If we've reached the end of this frag, turn it into a variant
6667 frag and record the information for the instructions we've
6668 written so far. */
6669 if (frag_room () < 4)
6670 relax_close_frag ();
6671 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
6672 }
6673
6674 if (mips_relax.sequence != 2)
6675 {
6676 if (mips_macro_warning.first_insn_sizes[0] == 0)
6677 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
6678 mips_macro_warning.sizes[0] += insn_length (ip);
6679 mips_macro_warning.insns[0]++;
6680 }
6681 if (mips_relax.sequence != 1)
6682 {
6683 if (mips_macro_warning.first_insn_sizes[1] == 0)
6684 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
6685 mips_macro_warning.sizes[1] += insn_length (ip);
6686 mips_macro_warning.insns[1]++;
6687 }
6688
6689 if (mips_opts.mips16)
6690 {
6691 ip->fixed_p = 1;
6692 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
6693 }
6694 add_fixed_insn (ip);
6695 }
6696
6697 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
6698 {
6699 bfd_reloc_code_real_type final_type[3];
6700 reloc_howto_type *howto0;
6701 reloc_howto_type *howto;
6702 int i;
6703
6704 /* Perform any necessary conversion to microMIPS relocations
6705 and find out how many relocations there actually are. */
6706 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
6707 final_type[i] = micromips_map_reloc (reloc_type[i]);
6708
6709 /* In a compound relocation, it is the final (outermost)
6710 operator that determines the relocated field. */
6711 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
6712 if (!howto)
6713 abort ();
6714
6715 if (i > 1)
6716 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
6717 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
6718 bfd_get_reloc_size (howto),
6719 address_expr,
6720 howto0 && howto0->pc_relative,
6721 final_type[0]);
6722
6723 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
6724 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
6725 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
6726
6727 /* These relocations can have an addend that won't fit in
6728 4 octets for 64bit assembly. */
6729 if (HAVE_64BIT_GPRS
6730 && ! howto->partial_inplace
6731 && (reloc_type[0] == BFD_RELOC_16
6732 || reloc_type[0] == BFD_RELOC_32
6733 || reloc_type[0] == BFD_RELOC_MIPS_JMP
6734 || reloc_type[0] == BFD_RELOC_GPREL16
6735 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
6736 || reloc_type[0] == BFD_RELOC_GPREL32
6737 || reloc_type[0] == BFD_RELOC_64
6738 || reloc_type[0] == BFD_RELOC_CTOR
6739 || reloc_type[0] == BFD_RELOC_MIPS_SUB
6740 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
6741 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
6742 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
6743 || reloc_type[0] == BFD_RELOC_MIPS_REL16
6744 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
6745 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
6746 || hi16_reloc_p (reloc_type[0])
6747 || lo16_reloc_p (reloc_type[0])))
6748 ip->fixp[0]->fx_no_overflow = 1;
6749
6750 /* These relocations can have an addend that won't fit in 2 octets. */
6751 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
6752 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
6753 ip->fixp[0]->fx_no_overflow = 1;
6754
6755 if (mips_relax.sequence)
6756 {
6757 if (mips_relax.first_fixup == 0)
6758 mips_relax.first_fixup = ip->fixp[0];
6759 }
6760 else if (reloc_needs_lo_p (*reloc_type))
6761 {
6762 struct mips_hi_fixup *hi_fixup;
6763
6764 /* Reuse the last entry if it already has a matching %lo. */
6765 hi_fixup = mips_hi_fixup_list;
6766 if (hi_fixup == 0
6767 || !fixup_has_matching_lo_p (hi_fixup->fixp))
6768 {
6769 hi_fixup = ((struct mips_hi_fixup *)
6770 xmalloc (sizeof (struct mips_hi_fixup)));
6771 hi_fixup->next = mips_hi_fixup_list;
6772 mips_hi_fixup_list = hi_fixup;
6773 }
6774 hi_fixup->fixp = ip->fixp[0];
6775 hi_fixup->seg = now_seg;
6776 }
6777
6778 /* Add fixups for the second and third relocations, if given.
6779 Note that the ABI allows the second relocation to be
6780 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
6781 moment we only use RSS_UNDEF, but we could add support
6782 for the others if it ever becomes necessary. */
6783 for (i = 1; i < 3; i++)
6784 if (reloc_type[i] != BFD_RELOC_UNUSED)
6785 {
6786 ip->fixp[i] = fix_new (ip->frag, ip->where,
6787 ip->fixp[0]->fx_size, NULL, 0,
6788 FALSE, final_type[i]);
6789
6790 /* Use fx_tcbit to mark compound relocs. */
6791 ip->fixp[0]->fx_tcbit = 1;
6792 ip->fixp[i]->fx_tcbit = 1;
6793 }
6794 }
6795 install_insn (ip);
6796
6797 /* Update the register mask information. */
6798 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
6799 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
6800
6801 switch (method)
6802 {
6803 case APPEND_ADD:
6804 insert_into_history (0, 1, ip);
6805 break;
6806
6807 case APPEND_ADD_WITH_NOP:
6808 {
6809 struct mips_cl_insn *nop;
6810
6811 insert_into_history (0, 1, ip);
6812 nop = get_delay_slot_nop (ip);
6813 add_fixed_insn (nop);
6814 insert_into_history (0, 1, nop);
6815 if (mips_relax.sequence)
6816 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
6817 }
6818 break;
6819
6820 case APPEND_ADD_COMPACT:
6821 /* Convert MIPS16 jr/jalr into a "compact" jump. */
6822 gas_assert (mips_opts.mips16);
6823 ip->insn_opcode |= 0x0080;
6824 find_altered_mips16_opcode (ip);
6825 install_insn (ip);
6826 insert_into_history (0, 1, ip);
6827 break;
6828
6829 case APPEND_SWAP:
6830 {
6831 struct mips_cl_insn delay = history[0];
6832 if (mips_opts.mips16)
6833 {
6834 know (delay.frag == ip->frag);
6835 move_insn (ip, delay.frag, delay.where);
6836 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
6837 }
6838 else if (relaxed_branch || delay.frag != ip->frag)
6839 {
6840 /* Add the delay slot instruction to the end of the
6841 current frag and shrink the fixed part of the
6842 original frag. If the branch occupies the tail of
6843 the latter, move it backwards to cover the gap. */
6844 delay.frag->fr_fix -= branch_disp;
6845 if (delay.frag == ip->frag)
6846 move_insn (ip, ip->frag, ip->where - branch_disp);
6847 add_fixed_insn (&delay);
6848 }
6849 else
6850 {
6851 move_insn (&delay, ip->frag,
6852 ip->where - branch_disp + insn_length (ip));
6853 move_insn (ip, history[0].frag, history[0].where);
6854 }
6855 history[0] = *ip;
6856 delay.fixed_p = 1;
6857 insert_into_history (0, 1, &delay);
6858 }
6859 break;
6860 }
6861
6862 /* If we have just completed an unconditional branch, clear the history. */
6863 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
6864 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
6865 {
6866 unsigned int i;
6867
6868 mips_no_prev_insn ();
6869
6870 for (i = 0; i < ARRAY_SIZE (history); i++)
6871 history[i].cleared_p = 1;
6872 }
6873
6874 /* We need to emit a label at the end of branch-likely macros. */
6875 if (emit_branch_likely_macro)
6876 {
6877 emit_branch_likely_macro = FALSE;
6878 micromips_add_label ();
6879 }
6880
6881 /* We just output an insn, so the next one doesn't have a label. */
6882 mips_clear_insn_labels ();
6883 }
6884
6885 /* Forget that there was any previous instruction or label.
6886 When BRANCH is true, the branch history is also flushed. */
6887
6888 static void
6889 mips_no_prev_insn (void)
6890 {
6891 prev_nop_frag = NULL;
6892 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
6893 mips_clear_insn_labels ();
6894 }
6895
6896 /* This function must be called before we emit something other than
6897 instructions. It is like mips_no_prev_insn except that it inserts
6898 any NOPS that might be needed by previous instructions. */
6899
6900 void
6901 mips_emit_delays (void)
6902 {
6903 if (! mips_opts.noreorder)
6904 {
6905 int nops = nops_for_insn (0, history, NULL);
6906 if (nops > 0)
6907 {
6908 while (nops-- > 0)
6909 add_fixed_insn (NOP_INSN);
6910 mips_move_text_labels ();
6911 }
6912 }
6913 mips_no_prev_insn ();
6914 }
6915
6916 /* Start a (possibly nested) noreorder block. */
6917
6918 static void
6919 start_noreorder (void)
6920 {
6921 if (mips_opts.noreorder == 0)
6922 {
6923 unsigned int i;
6924 int nops;
6925
6926 /* None of the instructions before the .set noreorder can be moved. */
6927 for (i = 0; i < ARRAY_SIZE (history); i++)
6928 history[i].fixed_p = 1;
6929
6930 /* Insert any nops that might be needed between the .set noreorder
6931 block and the previous instructions. We will later remove any
6932 nops that turn out not to be needed. */
6933 nops = nops_for_insn (0, history, NULL);
6934 if (nops > 0)
6935 {
6936 if (mips_optimize != 0)
6937 {
6938 /* Record the frag which holds the nop instructions, so
6939 that we can remove them if we don't need them. */
6940 frag_grow (nops * NOP_INSN_SIZE);
6941 prev_nop_frag = frag_now;
6942 prev_nop_frag_holds = nops;
6943 prev_nop_frag_required = 0;
6944 prev_nop_frag_since = 0;
6945 }
6946
6947 for (; nops > 0; --nops)
6948 add_fixed_insn (NOP_INSN);
6949
6950 /* Move on to a new frag, so that it is safe to simply
6951 decrease the size of prev_nop_frag. */
6952 frag_wane (frag_now);
6953 frag_new (0);
6954 mips_move_text_labels ();
6955 }
6956 mips_mark_labels ();
6957 mips_clear_insn_labels ();
6958 }
6959 mips_opts.noreorder++;
6960 mips_any_noreorder = 1;
6961 }
6962
6963 /* End a nested noreorder block. */
6964
6965 static void
6966 end_noreorder (void)
6967 {
6968 mips_opts.noreorder--;
6969 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
6970 {
6971 /* Commit to inserting prev_nop_frag_required nops and go back to
6972 handling nop insertion the .set reorder way. */
6973 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
6974 * NOP_INSN_SIZE);
6975 insert_into_history (prev_nop_frag_since,
6976 prev_nop_frag_required, NOP_INSN);
6977 prev_nop_frag = NULL;
6978 }
6979 }
6980
6981 /* Sign-extend 32-bit mode constants that have bit 31 set and all
6982 higher bits unset. */
6983
6984 static void
6985 normalize_constant_expr (expressionS *ex)
6986 {
6987 if (ex->X_op == O_constant
6988 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
6989 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
6990 - 0x80000000);
6991 }
6992
6993 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
6994 all higher bits unset. */
6995
6996 static void
6997 normalize_address_expr (expressionS *ex)
6998 {
6999 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7000 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7001 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7002 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7003 - 0x80000000);
7004 }
7005
7006 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7007 Return true if the match was successful.
7008
7009 OPCODE_EXTRA is a value that should be ORed into the opcode
7010 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7011 there are more alternatives after OPCODE and SOFT_MATCH is
7012 as for mips_arg_info. */
7013
7014 static bfd_boolean
7015 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7016 struct mips_operand_token *tokens, unsigned int opcode_extra,
7017 bfd_boolean lax_match, bfd_boolean complete_p)
7018 {
7019 const char *args;
7020 struct mips_arg_info arg;
7021 const struct mips_operand *operand;
7022 char c;
7023
7024 imm_expr.X_op = O_absent;
7025 offset_expr.X_op = O_absent;
7026 offset_reloc[0] = BFD_RELOC_UNUSED;
7027 offset_reloc[1] = BFD_RELOC_UNUSED;
7028 offset_reloc[2] = BFD_RELOC_UNUSED;
7029
7030 create_insn (insn, opcode);
7031 /* When no opcode suffix is specified, assume ".xyzw". */
7032 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7033 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7034 else
7035 insn->insn_opcode |= opcode_extra;
7036 memset (&arg, 0, sizeof (arg));
7037 arg.insn = insn;
7038 arg.token = tokens;
7039 arg.argnum = 1;
7040 arg.last_regno = ILLEGAL_REG;
7041 arg.dest_regno = ILLEGAL_REG;
7042 arg.lax_match = lax_match;
7043 for (args = opcode->args;; ++args)
7044 {
7045 if (arg.token->type == OT_END)
7046 {
7047 /* Handle unary instructions in which only one operand is given.
7048 The source is then the same as the destination. */
7049 if (arg.opnum == 1 && *args == ',')
7050 {
7051 operand = (mips_opts.micromips
7052 ? decode_micromips_operand (args + 1)
7053 : decode_mips_operand (args + 1));
7054 if (operand && mips_optional_operand_p (operand))
7055 {
7056 arg.token = tokens;
7057 arg.argnum = 1;
7058 continue;
7059 }
7060 }
7061
7062 /* Treat elided base registers as $0. */
7063 if (strcmp (args, "(b)") == 0)
7064 args += 3;
7065
7066 if (args[0] == '+')
7067 switch (args[1])
7068 {
7069 case 'K':
7070 case 'N':
7071 /* The register suffix is optional. */
7072 args += 2;
7073 break;
7074 }
7075
7076 /* Fail the match if there were too few operands. */
7077 if (*args)
7078 return FALSE;
7079
7080 /* Successful match. */
7081 if (!complete_p)
7082 return TRUE;
7083 clear_insn_error ();
7084 if (arg.dest_regno == arg.last_regno
7085 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7086 {
7087 if (arg.opnum == 2)
7088 set_insn_error
7089 (0, _("source and destination must be different"));
7090 else if (arg.last_regno == 31)
7091 set_insn_error
7092 (0, _("a destination register must be supplied"));
7093 }
7094 check_completed_insn (&arg);
7095 return TRUE;
7096 }
7097
7098 /* Fail the match if the line has too many operands. */
7099 if (*args == 0)
7100 return FALSE;
7101
7102 /* Handle characters that need to match exactly. */
7103 if (*args == '(' || *args == ')' || *args == ',')
7104 {
7105 if (match_char (&arg, *args))
7106 continue;
7107 return FALSE;
7108 }
7109 if (*args == '#')
7110 {
7111 ++args;
7112 if (arg.token->type == OT_DOUBLE_CHAR
7113 && arg.token->u.ch == *args)
7114 {
7115 ++arg.token;
7116 continue;
7117 }
7118 return FALSE;
7119 }
7120
7121 /* Handle special macro operands. Work out the properties of
7122 other operands. */
7123 arg.opnum += 1;
7124 switch (*args)
7125 {
7126 case '+':
7127 switch (args[1])
7128 {
7129 case 'i':
7130 *offset_reloc = BFD_RELOC_MIPS_JMP;
7131 break;
7132 }
7133 break;
7134
7135 case 'I':
7136 if (!match_const_int (&arg, &imm_expr.X_add_number))
7137 return FALSE;
7138 imm_expr.X_op = O_constant;
7139 if (HAVE_32BIT_GPRS)
7140 normalize_constant_expr (&imm_expr);
7141 continue;
7142
7143 case 'A':
7144 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7145 {
7146 /* Assume that the offset has been elided and that what
7147 we saw was a base register. The match will fail later
7148 if that assumption turns out to be wrong. */
7149 offset_expr.X_op = O_constant;
7150 offset_expr.X_add_number = 0;
7151 }
7152 else
7153 {
7154 if (!match_expression (&arg, &offset_expr, offset_reloc))
7155 return FALSE;
7156 normalize_address_expr (&offset_expr);
7157 }
7158 continue;
7159
7160 case 'F':
7161 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7162 8, TRUE))
7163 return FALSE;
7164 continue;
7165
7166 case 'L':
7167 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7168 8, FALSE))
7169 return FALSE;
7170 continue;
7171
7172 case 'f':
7173 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7174 4, TRUE))
7175 return FALSE;
7176 continue;
7177
7178 case 'l':
7179 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7180 4, FALSE))
7181 return FALSE;
7182 continue;
7183
7184 case 'p':
7185 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7186 break;
7187
7188 case 'a':
7189 *offset_reloc = BFD_RELOC_MIPS_JMP;
7190 break;
7191
7192 case 'm':
7193 gas_assert (mips_opts.micromips);
7194 c = args[1];
7195 switch (c)
7196 {
7197 case 'D':
7198 case 'E':
7199 if (!forced_insn_length)
7200 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7201 else if (c == 'D')
7202 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7203 else
7204 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7205 break;
7206 }
7207 break;
7208 }
7209
7210 operand = (mips_opts.micromips
7211 ? decode_micromips_operand (args)
7212 : decode_mips_operand (args));
7213 if (!operand)
7214 abort ();
7215
7216 /* Skip prefixes. */
7217 if (*args == '+' || *args == 'm')
7218 args++;
7219
7220 if (mips_optional_operand_p (operand)
7221 && args[1] == ','
7222 && (arg.token[0].type != OT_REG
7223 || arg.token[1].type == OT_END))
7224 {
7225 /* Assume that the register has been elided and is the
7226 same as the first operand. */
7227 arg.token = tokens;
7228 arg.argnum = 1;
7229 }
7230
7231 if (!match_operand (&arg, operand))
7232 return FALSE;
7233 }
7234 }
7235
7236 /* Like match_insn, but for MIPS16. */
7237
7238 static bfd_boolean
7239 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7240 struct mips_operand_token *tokens)
7241 {
7242 const char *args;
7243 const struct mips_operand *operand;
7244 const struct mips_operand *ext_operand;
7245 struct mips_arg_info arg;
7246 int relax_char;
7247
7248 create_insn (insn, opcode);
7249 imm_expr.X_op = O_absent;
7250 offset_expr.X_op = O_absent;
7251 offset_reloc[0] = BFD_RELOC_UNUSED;
7252 offset_reloc[1] = BFD_RELOC_UNUSED;
7253 offset_reloc[2] = BFD_RELOC_UNUSED;
7254 relax_char = 0;
7255
7256 memset (&arg, 0, sizeof (arg));
7257 arg.insn = insn;
7258 arg.token = tokens;
7259 arg.argnum = 1;
7260 arg.last_regno = ILLEGAL_REG;
7261 arg.dest_regno = ILLEGAL_REG;
7262 relax_char = 0;
7263 for (args = opcode->args;; ++args)
7264 {
7265 int c;
7266
7267 if (arg.token->type == OT_END)
7268 {
7269 offsetT value;
7270
7271 /* Handle unary instructions in which only one operand is given.
7272 The source is then the same as the destination. */
7273 if (arg.opnum == 1 && *args == ',')
7274 {
7275 operand = decode_mips16_operand (args[1], FALSE);
7276 if (operand && mips_optional_operand_p (operand))
7277 {
7278 arg.token = tokens;
7279 arg.argnum = 1;
7280 continue;
7281 }
7282 }
7283
7284 /* Fail the match if there were too few operands. */
7285 if (*args)
7286 return FALSE;
7287
7288 /* Successful match. Stuff the immediate value in now, if
7289 we can. */
7290 clear_insn_error ();
7291 if (opcode->pinfo == INSN_MACRO)
7292 {
7293 gas_assert (relax_char == 0 || relax_char == 'p');
7294 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7295 }
7296 else if (relax_char
7297 && offset_expr.X_op == O_constant
7298 && calculate_reloc (*offset_reloc,
7299 offset_expr.X_add_number,
7300 &value))
7301 {
7302 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7303 forced_insn_length, &insn->insn_opcode);
7304 offset_expr.X_op = O_absent;
7305 *offset_reloc = BFD_RELOC_UNUSED;
7306 }
7307 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7308 {
7309 if (forced_insn_length == 2)
7310 set_insn_error (0, _("invalid unextended operand value"));
7311 forced_insn_length = 4;
7312 insn->insn_opcode |= MIPS16_EXTEND;
7313 }
7314 else if (relax_char)
7315 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7316
7317 check_completed_insn (&arg);
7318 return TRUE;
7319 }
7320
7321 /* Fail the match if the line has too many operands. */
7322 if (*args == 0)
7323 return FALSE;
7324
7325 /* Handle characters that need to match exactly. */
7326 if (*args == '(' || *args == ')' || *args == ',')
7327 {
7328 if (match_char (&arg, *args))
7329 continue;
7330 return FALSE;
7331 }
7332
7333 arg.opnum += 1;
7334 c = *args;
7335 switch (c)
7336 {
7337 case 'p':
7338 case 'q':
7339 case 'A':
7340 case 'B':
7341 case 'E':
7342 relax_char = c;
7343 break;
7344
7345 case 'I':
7346 if (!match_const_int (&arg, &imm_expr.X_add_number))
7347 return FALSE;
7348 imm_expr.X_op = O_constant;
7349 if (HAVE_32BIT_GPRS)
7350 normalize_constant_expr (&imm_expr);
7351 continue;
7352
7353 case 'a':
7354 case 'i':
7355 *offset_reloc = BFD_RELOC_MIPS16_JMP;
7356 insn->insn_opcode <<= 16;
7357 break;
7358 }
7359
7360 operand = decode_mips16_operand (c, FALSE);
7361 if (!operand)
7362 abort ();
7363
7364 /* '6' is a special case. It is used for BREAK and SDBBP,
7365 whose operands are only meaningful to the software that decodes
7366 them. This means that there is no architectural reason why
7367 they cannot be prefixed by EXTEND, but in practice,
7368 exception handlers will only look at the instruction
7369 itself. We therefore allow '6' to be extended when
7370 disassembling but not when assembling. */
7371 if (operand->type != OP_PCREL && c != '6')
7372 {
7373 ext_operand = decode_mips16_operand (c, TRUE);
7374 if (operand != ext_operand)
7375 {
7376 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7377 {
7378 offset_expr.X_op = O_constant;
7379 offset_expr.X_add_number = 0;
7380 relax_char = c;
7381 continue;
7382 }
7383
7384 /* We need the OT_INTEGER check because some MIPS16
7385 immediate variants are listed before the register ones. */
7386 if (arg.token->type != OT_INTEGER
7387 || !match_expression (&arg, &offset_expr, offset_reloc))
7388 return FALSE;
7389
7390 /* '8' is used for SLTI(U) and has traditionally not
7391 been allowed to take relocation operators. */
7392 if (offset_reloc[0] != BFD_RELOC_UNUSED
7393 && (ext_operand->size != 16 || c == '8'))
7394 return FALSE;
7395
7396 relax_char = c;
7397 continue;
7398 }
7399 }
7400
7401 if (mips_optional_operand_p (operand)
7402 && args[1] == ','
7403 && (arg.token[0].type != OT_REG
7404 || arg.token[1].type == OT_END))
7405 {
7406 /* Assume that the register has been elided and is the
7407 same as the first operand. */
7408 arg.token = tokens;
7409 arg.argnum = 1;
7410 }
7411
7412 if (!match_operand (&arg, operand))
7413 return FALSE;
7414 }
7415 }
7416
7417 /* Record that the current instruction is invalid for the current ISA. */
7418
7419 static void
7420 match_invalid_for_isa (void)
7421 {
7422 set_insn_error_ss
7423 (0, _("opcode not supported on this processor: %s (%s)"),
7424 mips_cpu_info_from_arch (mips_opts.arch)->name,
7425 mips_cpu_info_from_isa (mips_opts.isa)->name);
7426 }
7427
7428 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
7429 Return true if a definite match or failure was found, storing any match
7430 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
7431 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
7432 tried and failed to match under normal conditions and now want to try a
7433 more relaxed match. */
7434
7435 static bfd_boolean
7436 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
7437 const struct mips_opcode *past, struct mips_operand_token *tokens,
7438 int opcode_extra, bfd_boolean lax_match)
7439 {
7440 const struct mips_opcode *opcode;
7441 const struct mips_opcode *invalid_delay_slot;
7442 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
7443
7444 /* Search for a match, ignoring alternatives that don't satisfy the
7445 current ISA or forced_length. */
7446 invalid_delay_slot = 0;
7447 seen_valid_for_isa = FALSE;
7448 seen_valid_for_size = FALSE;
7449 opcode = first;
7450 do
7451 {
7452 gas_assert (strcmp (opcode->name, first->name) == 0);
7453 if (is_opcode_valid (opcode))
7454 {
7455 seen_valid_for_isa = TRUE;
7456 if (is_size_valid (opcode))
7457 {
7458 bfd_boolean delay_slot_ok;
7459
7460 seen_valid_for_size = TRUE;
7461 delay_slot_ok = is_delay_slot_valid (opcode);
7462 if (match_insn (insn, opcode, tokens, opcode_extra,
7463 lax_match, delay_slot_ok))
7464 {
7465 if (!delay_slot_ok)
7466 {
7467 if (!invalid_delay_slot)
7468 invalid_delay_slot = opcode;
7469 }
7470 else
7471 return TRUE;
7472 }
7473 }
7474 }
7475 ++opcode;
7476 }
7477 while (opcode < past && strcmp (opcode->name, first->name) == 0);
7478
7479 /* If the only matches we found had the wrong length for the delay slot,
7480 pick the first such match. We'll issue an appropriate warning later. */
7481 if (invalid_delay_slot)
7482 {
7483 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
7484 lax_match, TRUE))
7485 return TRUE;
7486 abort ();
7487 }
7488
7489 /* Handle the case where we didn't try to match an instruction because
7490 all the alternatives were incompatible with the current ISA. */
7491 if (!seen_valid_for_isa)
7492 {
7493 match_invalid_for_isa ();
7494 return TRUE;
7495 }
7496
7497 /* Handle the case where we didn't try to match an instruction because
7498 all the alternatives were of the wrong size. */
7499 if (!seen_valid_for_size)
7500 {
7501 if (mips_opts.insn32)
7502 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
7503 else
7504 set_insn_error_i
7505 (0, _("unrecognized %d-bit version of microMIPS opcode"),
7506 8 * forced_insn_length);
7507 return TRUE;
7508 }
7509
7510 return FALSE;
7511 }
7512
7513 /* Like match_insns, but for MIPS16. */
7514
7515 static bfd_boolean
7516 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
7517 struct mips_operand_token *tokens)
7518 {
7519 const struct mips_opcode *opcode;
7520 bfd_boolean seen_valid_for_isa;
7521
7522 /* Search for a match, ignoring alternatives that don't satisfy the
7523 current ISA. There are no separate entries for extended forms so
7524 we deal with forced_length later. */
7525 seen_valid_for_isa = FALSE;
7526 opcode = first;
7527 do
7528 {
7529 gas_assert (strcmp (opcode->name, first->name) == 0);
7530 if (is_opcode_valid_16 (opcode))
7531 {
7532 seen_valid_for_isa = TRUE;
7533 if (match_mips16_insn (insn, opcode, tokens))
7534 return TRUE;
7535 }
7536 ++opcode;
7537 }
7538 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
7539 && strcmp (opcode->name, first->name) == 0);
7540
7541 /* Handle the case where we didn't try to match an instruction because
7542 all the alternatives were incompatible with the current ISA. */
7543 if (!seen_valid_for_isa)
7544 {
7545 match_invalid_for_isa ();
7546 return TRUE;
7547 }
7548
7549 return FALSE;
7550 }
7551
7552 /* Set up global variables for the start of a new macro. */
7553
7554 static void
7555 macro_start (void)
7556 {
7557 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
7558 memset (&mips_macro_warning.first_insn_sizes, 0,
7559 sizeof (mips_macro_warning.first_insn_sizes));
7560 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
7561 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
7562 && delayed_branch_p (&history[0]));
7563 switch (history[0].insn_mo->pinfo2
7564 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
7565 {
7566 case INSN2_BRANCH_DELAY_32BIT:
7567 mips_macro_warning.delay_slot_length = 4;
7568 break;
7569 case INSN2_BRANCH_DELAY_16BIT:
7570 mips_macro_warning.delay_slot_length = 2;
7571 break;
7572 default:
7573 mips_macro_warning.delay_slot_length = 0;
7574 break;
7575 }
7576 mips_macro_warning.first_frag = NULL;
7577 }
7578
7579 /* Given that a macro is longer than one instruction or of the wrong size,
7580 return the appropriate warning for it. Return null if no warning is
7581 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
7582 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
7583 and RELAX_NOMACRO. */
7584
7585 static const char *
7586 macro_warning (relax_substateT subtype)
7587 {
7588 if (subtype & RELAX_DELAY_SLOT)
7589 return _("macro instruction expanded into multiple instructions"
7590 " in a branch delay slot");
7591 else if (subtype & RELAX_NOMACRO)
7592 return _("macro instruction expanded into multiple instructions");
7593 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
7594 | RELAX_DELAY_SLOT_SIZE_SECOND))
7595 return ((subtype & RELAX_DELAY_SLOT_16BIT)
7596 ? _("macro instruction expanded into a wrong size instruction"
7597 " in a 16-bit branch delay slot")
7598 : _("macro instruction expanded into a wrong size instruction"
7599 " in a 32-bit branch delay slot"));
7600 else
7601 return 0;
7602 }
7603
7604 /* Finish up a macro. Emit warnings as appropriate. */
7605
7606 static void
7607 macro_end (void)
7608 {
7609 /* Relaxation warning flags. */
7610 relax_substateT subtype = 0;
7611
7612 /* Check delay slot size requirements. */
7613 if (mips_macro_warning.delay_slot_length == 2)
7614 subtype |= RELAX_DELAY_SLOT_16BIT;
7615 if (mips_macro_warning.delay_slot_length != 0)
7616 {
7617 if (mips_macro_warning.delay_slot_length
7618 != mips_macro_warning.first_insn_sizes[0])
7619 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
7620 if (mips_macro_warning.delay_slot_length
7621 != mips_macro_warning.first_insn_sizes[1])
7622 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
7623 }
7624
7625 /* Check instruction count requirements. */
7626 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
7627 {
7628 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
7629 subtype |= RELAX_SECOND_LONGER;
7630 if (mips_opts.warn_about_macros)
7631 subtype |= RELAX_NOMACRO;
7632 if (mips_macro_warning.delay_slot_p)
7633 subtype |= RELAX_DELAY_SLOT;
7634 }
7635
7636 /* If both alternatives fail to fill a delay slot correctly,
7637 emit the warning now. */
7638 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
7639 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
7640 {
7641 relax_substateT s;
7642 const char *msg;
7643
7644 s = subtype & (RELAX_DELAY_SLOT_16BIT
7645 | RELAX_DELAY_SLOT_SIZE_FIRST
7646 | RELAX_DELAY_SLOT_SIZE_SECOND);
7647 msg = macro_warning (s);
7648 if (msg != NULL)
7649 as_warn ("%s", msg);
7650 subtype &= ~s;
7651 }
7652
7653 /* If both implementations are longer than 1 instruction, then emit the
7654 warning now. */
7655 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
7656 {
7657 relax_substateT s;
7658 const char *msg;
7659
7660 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
7661 msg = macro_warning (s);
7662 if (msg != NULL)
7663 as_warn ("%s", msg);
7664 subtype &= ~s;
7665 }
7666
7667 /* If any flags still set, then one implementation might need a warning
7668 and the other either will need one of a different kind or none at all.
7669 Pass any remaining flags over to relaxation. */
7670 if (mips_macro_warning.first_frag != NULL)
7671 mips_macro_warning.first_frag->fr_subtype |= subtype;
7672 }
7673
7674 /* Instruction operand formats used in macros that vary between
7675 standard MIPS and microMIPS code. */
7676
7677 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
7678 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
7679 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
7680 static const char * const lui_fmt[2] = { "t,u", "s,u" };
7681 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
7682 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
7683 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
7684 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
7685
7686 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7687 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
7688 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
7689 #define LUI_FMT (lui_fmt[mips_opts.micromips])
7690 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7691 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
7692 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
7693 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
7694
7695 /* Read a macro's relocation codes from *ARGS and store them in *R.
7696 The first argument in *ARGS will be either the code for a single
7697 relocation or -1 followed by the three codes that make up a
7698 composite relocation. */
7699
7700 static void
7701 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
7702 {
7703 int i, next;
7704
7705 next = va_arg (*args, int);
7706 if (next >= 0)
7707 r[0] = (bfd_reloc_code_real_type) next;
7708 else
7709 {
7710 for (i = 0; i < 3; i++)
7711 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
7712 /* This function is only used for 16-bit relocation fields.
7713 To make the macro code simpler, treat an unrelocated value
7714 in the same way as BFD_RELOC_LO16. */
7715 if (r[0] == BFD_RELOC_UNUSED)
7716 r[0] = BFD_RELOC_LO16;
7717 }
7718 }
7719
7720 /* Build an instruction created by a macro expansion. This is passed
7721 a pointer to the count of instructions created so far, an
7722 expression, the name of the instruction to build, an operand format
7723 string, and corresponding arguments. */
7724
7725 static void
7726 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
7727 {
7728 const struct mips_opcode *mo = NULL;
7729 bfd_reloc_code_real_type r[3];
7730 const struct mips_opcode *amo;
7731 const struct mips_operand *operand;
7732 struct hash_control *hash;
7733 struct mips_cl_insn insn;
7734 va_list args;
7735 unsigned int uval;
7736
7737 va_start (args, fmt);
7738
7739 if (mips_opts.mips16)
7740 {
7741 mips16_macro_build (ep, name, fmt, &args);
7742 va_end (args);
7743 return;
7744 }
7745
7746 r[0] = BFD_RELOC_UNUSED;
7747 r[1] = BFD_RELOC_UNUSED;
7748 r[2] = BFD_RELOC_UNUSED;
7749 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
7750 amo = (struct mips_opcode *) hash_find (hash, name);
7751 gas_assert (amo);
7752 gas_assert (strcmp (name, amo->name) == 0);
7753
7754 do
7755 {
7756 /* Search until we get a match for NAME. It is assumed here that
7757 macros will never generate MDMX, MIPS-3D, or MT instructions.
7758 We try to match an instruction that fulfils the branch delay
7759 slot instruction length requirement (if any) of the previous
7760 instruction. While doing this we record the first instruction
7761 seen that matches all the other conditions and use it anyway
7762 if the requirement cannot be met; we will issue an appropriate
7763 warning later on. */
7764 if (strcmp (fmt, amo->args) == 0
7765 && amo->pinfo != INSN_MACRO
7766 && is_opcode_valid (amo)
7767 && is_size_valid (amo))
7768 {
7769 if (is_delay_slot_valid (amo))
7770 {
7771 mo = amo;
7772 break;
7773 }
7774 else if (!mo)
7775 mo = amo;
7776 }
7777
7778 ++amo;
7779 gas_assert (amo->name);
7780 }
7781 while (strcmp (name, amo->name) == 0);
7782
7783 gas_assert (mo);
7784 create_insn (&insn, mo);
7785 for (; *fmt; ++fmt)
7786 {
7787 switch (*fmt)
7788 {
7789 case ',':
7790 case '(':
7791 case ')':
7792 case 'z':
7793 break;
7794
7795 case 'i':
7796 case 'j':
7797 macro_read_relocs (&args, r);
7798 gas_assert (*r == BFD_RELOC_GPREL16
7799 || *r == BFD_RELOC_MIPS_HIGHER
7800 || *r == BFD_RELOC_HI16_S
7801 || *r == BFD_RELOC_LO16
7802 || *r == BFD_RELOC_MIPS_GOT_OFST);
7803 break;
7804
7805 case 'o':
7806 macro_read_relocs (&args, r);
7807 break;
7808
7809 case 'u':
7810 macro_read_relocs (&args, r);
7811 gas_assert (ep != NULL
7812 && (ep->X_op == O_constant
7813 || (ep->X_op == O_symbol
7814 && (*r == BFD_RELOC_MIPS_HIGHEST
7815 || *r == BFD_RELOC_HI16_S
7816 || *r == BFD_RELOC_HI16
7817 || *r == BFD_RELOC_GPREL16
7818 || *r == BFD_RELOC_MIPS_GOT_HI16
7819 || *r == BFD_RELOC_MIPS_CALL_HI16))));
7820 break;
7821
7822 case 'p':
7823 gas_assert (ep != NULL);
7824
7825 /*
7826 * This allows macro() to pass an immediate expression for
7827 * creating short branches without creating a symbol.
7828 *
7829 * We don't allow branch relaxation for these branches, as
7830 * they should only appear in ".set nomacro" anyway.
7831 */
7832 if (ep->X_op == O_constant)
7833 {
7834 /* For microMIPS we always use relocations for branches.
7835 So we should not resolve immediate values. */
7836 gas_assert (!mips_opts.micromips);
7837
7838 if ((ep->X_add_number & 3) != 0)
7839 as_bad (_("branch to misaligned address (0x%lx)"),
7840 (unsigned long) ep->X_add_number);
7841 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
7842 as_bad (_("branch address range overflow (0x%lx)"),
7843 (unsigned long) ep->X_add_number);
7844 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
7845 ep = NULL;
7846 }
7847 else
7848 *r = BFD_RELOC_16_PCREL_S2;
7849 break;
7850
7851 case 'a':
7852 gas_assert (ep != NULL);
7853 *r = BFD_RELOC_MIPS_JMP;
7854 break;
7855
7856 default:
7857 operand = (mips_opts.micromips
7858 ? decode_micromips_operand (fmt)
7859 : decode_mips_operand (fmt));
7860 if (!operand)
7861 abort ();
7862
7863 uval = va_arg (args, int);
7864 if (operand->type == OP_CLO_CLZ_DEST)
7865 uval |= (uval << 5);
7866 insn_insert_operand (&insn, operand, uval);
7867
7868 if (*fmt == '+' || *fmt == 'm')
7869 ++fmt;
7870 break;
7871 }
7872 }
7873 va_end (args);
7874 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
7875
7876 append_insn (&insn, ep, r, TRUE);
7877 }
7878
7879 static void
7880 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
7881 va_list *args)
7882 {
7883 struct mips_opcode *mo;
7884 struct mips_cl_insn insn;
7885 const struct mips_operand *operand;
7886 bfd_reloc_code_real_type r[3]
7887 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
7888
7889 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
7890 gas_assert (mo);
7891 gas_assert (strcmp (name, mo->name) == 0);
7892
7893 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
7894 {
7895 ++mo;
7896 gas_assert (mo->name);
7897 gas_assert (strcmp (name, mo->name) == 0);
7898 }
7899
7900 create_insn (&insn, mo);
7901 for (; *fmt; ++fmt)
7902 {
7903 int c;
7904
7905 c = *fmt;
7906 switch (c)
7907 {
7908 case ',':
7909 case '(':
7910 case ')':
7911 break;
7912
7913 case '0':
7914 case 'S':
7915 case 'P':
7916 case 'R':
7917 break;
7918
7919 case '<':
7920 case '>':
7921 case '4':
7922 case '5':
7923 case 'H':
7924 case 'W':
7925 case 'D':
7926 case 'j':
7927 case '8':
7928 case 'V':
7929 case 'C':
7930 case 'U':
7931 case 'k':
7932 case 'K':
7933 case 'p':
7934 case 'q':
7935 {
7936 offsetT value;
7937
7938 gas_assert (ep != NULL);
7939
7940 if (ep->X_op != O_constant)
7941 *r = (int) BFD_RELOC_UNUSED + c;
7942 else if (calculate_reloc (*r, ep->X_add_number, &value))
7943 {
7944 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
7945 ep = NULL;
7946 *r = BFD_RELOC_UNUSED;
7947 }
7948 }
7949 break;
7950
7951 default:
7952 operand = decode_mips16_operand (c, FALSE);
7953 if (!operand)
7954 abort ();
7955
7956 insn_insert_operand (&insn, operand, va_arg (*args, int));
7957 break;
7958 }
7959 }
7960
7961 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
7962
7963 append_insn (&insn, ep, r, TRUE);
7964 }
7965
7966 /*
7967 * Generate a "jalr" instruction with a relocation hint to the called
7968 * function. This occurs in NewABI PIC code.
7969 */
7970 static void
7971 macro_build_jalr (expressionS *ep, int cprestore)
7972 {
7973 static const bfd_reloc_code_real_type jalr_relocs[2]
7974 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
7975 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
7976 const char *jalr;
7977 char *f = NULL;
7978
7979 if (MIPS_JALR_HINT_P (ep))
7980 {
7981 frag_grow (8);
7982 f = frag_more (0);
7983 }
7984 if (mips_opts.micromips)
7985 {
7986 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
7987 ? "jalr" : "jalrs");
7988 if (MIPS_JALR_HINT_P (ep)
7989 || mips_opts.insn32
7990 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7991 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
7992 else
7993 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
7994 }
7995 else
7996 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
7997 if (MIPS_JALR_HINT_P (ep))
7998 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
7999 }
8000
8001 /*
8002 * Generate a "lui" instruction.
8003 */
8004 static void
8005 macro_build_lui (expressionS *ep, int regnum)
8006 {
8007 gas_assert (! mips_opts.mips16);
8008
8009 if (ep->X_op != O_constant)
8010 {
8011 gas_assert (ep->X_op == O_symbol);
8012 /* _gp_disp is a special case, used from s_cpload.
8013 __gnu_local_gp is used if mips_no_shared. */
8014 gas_assert (mips_pic == NO_PIC
8015 || (! HAVE_NEWABI
8016 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8017 || (! mips_in_shared
8018 && strcmp (S_GET_NAME (ep->X_add_symbol),
8019 "__gnu_local_gp") == 0));
8020 }
8021
8022 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8023 }
8024
8025 /* Generate a sequence of instructions to do a load or store from a constant
8026 offset off of a base register (breg) into/from a target register (treg),
8027 using AT if necessary. */
8028 static void
8029 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8030 int treg, int breg, int dbl)
8031 {
8032 gas_assert (ep->X_op == O_constant);
8033
8034 /* Sign-extending 32-bit constants makes their handling easier. */
8035 if (!dbl)
8036 normalize_constant_expr (ep);
8037
8038 /* Right now, this routine can only handle signed 32-bit constants. */
8039 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8040 as_warn (_("operand overflow"));
8041
8042 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8043 {
8044 /* Signed 16-bit offset will fit in the op. Easy! */
8045 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8046 }
8047 else
8048 {
8049 /* 32-bit offset, need multiple instructions and AT, like:
8050 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8051 addu $tempreg,$tempreg,$breg
8052 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8053 to handle the complete offset. */
8054 macro_build_lui (ep, AT);
8055 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8056 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8057
8058 if (!mips_opts.at)
8059 as_bad (_("macro used $at after \".set noat\""));
8060 }
8061 }
8062
8063 /* set_at()
8064 * Generates code to set the $at register to true (one)
8065 * if reg is less than the immediate expression.
8066 */
8067 static void
8068 set_at (int reg, int unsignedp)
8069 {
8070 if (imm_expr.X_add_number >= -0x8000
8071 && imm_expr.X_add_number < 0x8000)
8072 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8073 AT, reg, BFD_RELOC_LO16);
8074 else
8075 {
8076 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8077 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8078 }
8079 }
8080
8081 /* Count the leading zeroes by performing a binary chop. This is a
8082 bulky bit of source, but performance is a LOT better for the
8083 majority of values than a simple loop to count the bits:
8084 for (lcnt = 0; (lcnt < 32); lcnt++)
8085 if ((v) & (1 << (31 - lcnt)))
8086 break;
8087 However it is not code size friendly, and the gain will drop a bit
8088 on certain cached systems.
8089 */
8090 #define COUNT_TOP_ZEROES(v) \
8091 (((v) & ~0xffff) == 0 \
8092 ? ((v) & ~0xff) == 0 \
8093 ? ((v) & ~0xf) == 0 \
8094 ? ((v) & ~0x3) == 0 \
8095 ? ((v) & ~0x1) == 0 \
8096 ? !(v) \
8097 ? 32 \
8098 : 31 \
8099 : 30 \
8100 : ((v) & ~0x7) == 0 \
8101 ? 29 \
8102 : 28 \
8103 : ((v) & ~0x3f) == 0 \
8104 ? ((v) & ~0x1f) == 0 \
8105 ? 27 \
8106 : 26 \
8107 : ((v) & ~0x7f) == 0 \
8108 ? 25 \
8109 : 24 \
8110 : ((v) & ~0xfff) == 0 \
8111 ? ((v) & ~0x3ff) == 0 \
8112 ? ((v) & ~0x1ff) == 0 \
8113 ? 23 \
8114 : 22 \
8115 : ((v) & ~0x7ff) == 0 \
8116 ? 21 \
8117 : 20 \
8118 : ((v) & ~0x3fff) == 0 \
8119 ? ((v) & ~0x1fff) == 0 \
8120 ? 19 \
8121 : 18 \
8122 : ((v) & ~0x7fff) == 0 \
8123 ? 17 \
8124 : 16 \
8125 : ((v) & ~0xffffff) == 0 \
8126 ? ((v) & ~0xfffff) == 0 \
8127 ? ((v) & ~0x3ffff) == 0 \
8128 ? ((v) & ~0x1ffff) == 0 \
8129 ? 15 \
8130 : 14 \
8131 : ((v) & ~0x7ffff) == 0 \
8132 ? 13 \
8133 : 12 \
8134 : ((v) & ~0x3fffff) == 0 \
8135 ? ((v) & ~0x1fffff) == 0 \
8136 ? 11 \
8137 : 10 \
8138 : ((v) & ~0x7fffff) == 0 \
8139 ? 9 \
8140 : 8 \
8141 : ((v) & ~0xfffffff) == 0 \
8142 ? ((v) & ~0x3ffffff) == 0 \
8143 ? ((v) & ~0x1ffffff) == 0 \
8144 ? 7 \
8145 : 6 \
8146 : ((v) & ~0x7ffffff) == 0 \
8147 ? 5 \
8148 : 4 \
8149 : ((v) & ~0x3fffffff) == 0 \
8150 ? ((v) & ~0x1fffffff) == 0 \
8151 ? 3 \
8152 : 2 \
8153 : ((v) & ~0x7fffffff) == 0 \
8154 ? 1 \
8155 : 0)
8156
8157 /* load_register()
8158 * This routine generates the least number of instructions necessary to load
8159 * an absolute expression value into a register.
8160 */
8161 static void
8162 load_register (int reg, expressionS *ep, int dbl)
8163 {
8164 int freg;
8165 expressionS hi32, lo32;
8166
8167 if (ep->X_op != O_big)
8168 {
8169 gas_assert (ep->X_op == O_constant);
8170
8171 /* Sign-extending 32-bit constants makes their handling easier. */
8172 if (!dbl)
8173 normalize_constant_expr (ep);
8174
8175 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8176 {
8177 /* We can handle 16 bit signed values with an addiu to
8178 $zero. No need to ever use daddiu here, since $zero and
8179 the result are always correct in 32 bit mode. */
8180 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8181 return;
8182 }
8183 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8184 {
8185 /* We can handle 16 bit unsigned values with an ori to
8186 $zero. */
8187 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8188 return;
8189 }
8190 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8191 {
8192 /* 32 bit values require an lui. */
8193 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8194 if ((ep->X_add_number & 0xffff) != 0)
8195 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8196 return;
8197 }
8198 }
8199
8200 /* The value is larger than 32 bits. */
8201
8202 if (!dbl || HAVE_32BIT_GPRS)
8203 {
8204 char value[32];
8205
8206 sprintf_vma (value, ep->X_add_number);
8207 as_bad (_("number (0x%s) larger than 32 bits"), value);
8208 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8209 return;
8210 }
8211
8212 if (ep->X_op != O_big)
8213 {
8214 hi32 = *ep;
8215 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8216 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8217 hi32.X_add_number &= 0xffffffff;
8218 lo32 = *ep;
8219 lo32.X_add_number &= 0xffffffff;
8220 }
8221 else
8222 {
8223 gas_assert (ep->X_add_number > 2);
8224 if (ep->X_add_number == 3)
8225 generic_bignum[3] = 0;
8226 else if (ep->X_add_number > 4)
8227 as_bad (_("number larger than 64 bits"));
8228 lo32.X_op = O_constant;
8229 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8230 hi32.X_op = O_constant;
8231 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8232 }
8233
8234 if (hi32.X_add_number == 0)
8235 freg = 0;
8236 else
8237 {
8238 int shift, bit;
8239 unsigned long hi, lo;
8240
8241 if (hi32.X_add_number == (offsetT) 0xffffffff)
8242 {
8243 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8244 {
8245 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8246 return;
8247 }
8248 if (lo32.X_add_number & 0x80000000)
8249 {
8250 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8251 if (lo32.X_add_number & 0xffff)
8252 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8253 return;
8254 }
8255 }
8256
8257 /* Check for 16bit shifted constant. We know that hi32 is
8258 non-zero, so start the mask on the first bit of the hi32
8259 value. */
8260 shift = 17;
8261 do
8262 {
8263 unsigned long himask, lomask;
8264
8265 if (shift < 32)
8266 {
8267 himask = 0xffff >> (32 - shift);
8268 lomask = (0xffff << shift) & 0xffffffff;
8269 }
8270 else
8271 {
8272 himask = 0xffff << (shift - 32);
8273 lomask = 0;
8274 }
8275 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8276 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8277 {
8278 expressionS tmp;
8279
8280 tmp.X_op = O_constant;
8281 if (shift < 32)
8282 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8283 | (lo32.X_add_number >> shift));
8284 else
8285 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8286 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8287 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8288 reg, reg, (shift >= 32) ? shift - 32 : shift);
8289 return;
8290 }
8291 ++shift;
8292 }
8293 while (shift <= (64 - 16));
8294
8295 /* Find the bit number of the lowest one bit, and store the
8296 shifted value in hi/lo. */
8297 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8298 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8299 if (lo != 0)
8300 {
8301 bit = 0;
8302 while ((lo & 1) == 0)
8303 {
8304 lo >>= 1;
8305 ++bit;
8306 }
8307 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8308 hi >>= bit;
8309 }
8310 else
8311 {
8312 bit = 32;
8313 while ((hi & 1) == 0)
8314 {
8315 hi >>= 1;
8316 ++bit;
8317 }
8318 lo = hi;
8319 hi = 0;
8320 }
8321
8322 /* Optimize if the shifted value is a (power of 2) - 1. */
8323 if ((hi == 0 && ((lo + 1) & lo) == 0)
8324 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
8325 {
8326 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
8327 if (shift != 0)
8328 {
8329 expressionS tmp;
8330
8331 /* This instruction will set the register to be all
8332 ones. */
8333 tmp.X_op = O_constant;
8334 tmp.X_add_number = (offsetT) -1;
8335 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8336 if (bit != 0)
8337 {
8338 bit += shift;
8339 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8340 reg, reg, (bit >= 32) ? bit - 32 : bit);
8341 }
8342 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
8343 reg, reg, (shift >= 32) ? shift - 32 : shift);
8344 return;
8345 }
8346 }
8347
8348 /* Sign extend hi32 before calling load_register, because we can
8349 generally get better code when we load a sign extended value. */
8350 if ((hi32.X_add_number & 0x80000000) != 0)
8351 hi32.X_add_number |= ~(offsetT) 0xffffffff;
8352 load_register (reg, &hi32, 0);
8353 freg = reg;
8354 }
8355 if ((lo32.X_add_number & 0xffff0000) == 0)
8356 {
8357 if (freg != 0)
8358 {
8359 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
8360 freg = reg;
8361 }
8362 }
8363 else
8364 {
8365 expressionS mid16;
8366
8367 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
8368 {
8369 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8370 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
8371 return;
8372 }
8373
8374 if (freg != 0)
8375 {
8376 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
8377 freg = reg;
8378 }
8379 mid16 = lo32;
8380 mid16.X_add_number >>= 16;
8381 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
8382 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8383 freg = reg;
8384 }
8385 if ((lo32.X_add_number & 0xffff) != 0)
8386 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
8387 }
8388
8389 static inline void
8390 load_delay_nop (void)
8391 {
8392 if (!gpr_interlocks)
8393 macro_build (NULL, "nop", "");
8394 }
8395
8396 /* Load an address into a register. */
8397
8398 static void
8399 load_address (int reg, expressionS *ep, int *used_at)
8400 {
8401 if (ep->X_op != O_constant
8402 && ep->X_op != O_symbol)
8403 {
8404 as_bad (_("expression too complex"));
8405 ep->X_op = O_constant;
8406 }
8407
8408 if (ep->X_op == O_constant)
8409 {
8410 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
8411 return;
8412 }
8413
8414 if (mips_pic == NO_PIC)
8415 {
8416 /* If this is a reference to a GP relative symbol, we want
8417 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
8418 Otherwise we want
8419 lui $reg,<sym> (BFD_RELOC_HI16_S)
8420 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8421 If we have an addend, we always use the latter form.
8422
8423 With 64bit address space and a usable $at we want
8424 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8425 lui $at,<sym> (BFD_RELOC_HI16_S)
8426 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8427 daddiu $at,<sym> (BFD_RELOC_LO16)
8428 dsll32 $reg,0
8429 daddu $reg,$reg,$at
8430
8431 If $at is already in use, we use a path which is suboptimal
8432 on superscalar processors.
8433 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8434 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
8435 dsll $reg,16
8436 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
8437 dsll $reg,16
8438 daddiu $reg,<sym> (BFD_RELOC_LO16)
8439
8440 For GP relative symbols in 64bit address space we can use
8441 the same sequence as in 32bit address space. */
8442 if (HAVE_64BIT_SYMBOLS)
8443 {
8444 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
8445 && !nopic_need_relax (ep->X_add_symbol, 1))
8446 {
8447 relax_start (ep->X_add_symbol);
8448 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
8449 mips_gp_register, BFD_RELOC_GPREL16);
8450 relax_switch ();
8451 }
8452
8453 if (*used_at == 0 && mips_opts.at)
8454 {
8455 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
8456 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
8457 macro_build (ep, "daddiu", "t,r,j", reg, reg,
8458 BFD_RELOC_MIPS_HIGHER);
8459 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
8460 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
8461 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
8462 *used_at = 1;
8463 }
8464 else
8465 {
8466 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
8467 macro_build (ep, "daddiu", "t,r,j", reg, reg,
8468 BFD_RELOC_MIPS_HIGHER);
8469 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8470 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
8471 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
8472 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
8473 }
8474
8475 if (mips_relax.sequence)
8476 relax_end ();
8477 }
8478 else
8479 {
8480 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
8481 && !nopic_need_relax (ep->X_add_symbol, 1))
8482 {
8483 relax_start (ep->X_add_symbol);
8484 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
8485 mips_gp_register, BFD_RELOC_GPREL16);
8486 relax_switch ();
8487 }
8488 macro_build_lui (ep, reg);
8489 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
8490 reg, reg, BFD_RELOC_LO16);
8491 if (mips_relax.sequence)
8492 relax_end ();
8493 }
8494 }
8495 else if (!mips_big_got)
8496 {
8497 expressionS ex;
8498
8499 /* If this is a reference to an external symbol, we want
8500 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8501 Otherwise we want
8502 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8503 nop
8504 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8505 If there is a constant, it must be added in after.
8506
8507 If we have NewABI, we want
8508 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
8509 unless we're referencing a global symbol with a non-zero
8510 offset, in which case cst must be added separately. */
8511 if (HAVE_NEWABI)
8512 {
8513 if (ep->X_add_number)
8514 {
8515 ex.X_add_number = ep->X_add_number;
8516 ep->X_add_number = 0;
8517 relax_start (ep->X_add_symbol);
8518 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8519 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
8520 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8521 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8522 ex.X_op = O_constant;
8523 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
8524 reg, reg, BFD_RELOC_LO16);
8525 ep->X_add_number = ex.X_add_number;
8526 relax_switch ();
8527 }
8528 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8529 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
8530 if (mips_relax.sequence)
8531 relax_end ();
8532 }
8533 else
8534 {
8535 ex.X_add_number = ep->X_add_number;
8536 ep->X_add_number = 0;
8537 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8538 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8539 load_delay_nop ();
8540 relax_start (ep->X_add_symbol);
8541 relax_switch ();
8542 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8543 BFD_RELOC_LO16);
8544 relax_end ();
8545
8546 if (ex.X_add_number != 0)
8547 {
8548 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8549 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8550 ex.X_op = O_constant;
8551 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
8552 reg, reg, BFD_RELOC_LO16);
8553 }
8554 }
8555 }
8556 else if (mips_big_got)
8557 {
8558 expressionS ex;
8559
8560 /* This is the large GOT case. If this is a reference to an
8561 external symbol, we want
8562 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8563 addu $reg,$reg,$gp
8564 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
8565
8566 Otherwise, for a reference to a local symbol in old ABI, we want
8567 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8568 nop
8569 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
8570 If there is a constant, it must be added in after.
8571
8572 In the NewABI, for local symbols, with or without offsets, we want:
8573 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8574 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
8575 */
8576 if (HAVE_NEWABI)
8577 {
8578 ex.X_add_number = ep->X_add_number;
8579 ep->X_add_number = 0;
8580 relax_start (ep->X_add_symbol);
8581 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
8582 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8583 reg, reg, mips_gp_register);
8584 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
8585 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
8586 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8587 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8588 else if (ex.X_add_number)
8589 {
8590 ex.X_op = O_constant;
8591 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8592 BFD_RELOC_LO16);
8593 }
8594
8595 ep->X_add_number = ex.X_add_number;
8596 relax_switch ();
8597 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8598 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8599 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8600 BFD_RELOC_MIPS_GOT_OFST);
8601 relax_end ();
8602 }
8603 else
8604 {
8605 ex.X_add_number = ep->X_add_number;
8606 ep->X_add_number = 0;
8607 relax_start (ep->X_add_symbol);
8608 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
8609 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8610 reg, reg, mips_gp_register);
8611 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
8612 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
8613 relax_switch ();
8614 if (reg_needs_delay (mips_gp_register))
8615 {
8616 /* We need a nop before loading from $gp. This special
8617 check is required because the lui which starts the main
8618 instruction stream does not refer to $gp, and so will not
8619 insert the nop which may be required. */
8620 macro_build (NULL, "nop", "");
8621 }
8622 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
8623 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8624 load_delay_nop ();
8625 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8626 BFD_RELOC_LO16);
8627 relax_end ();
8628
8629 if (ex.X_add_number != 0)
8630 {
8631 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
8632 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8633 ex.X_op = O_constant;
8634 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
8635 BFD_RELOC_LO16);
8636 }
8637 }
8638 }
8639 else
8640 abort ();
8641
8642 if (!mips_opts.at && *used_at == 1)
8643 as_bad (_("macro used $at after \".set noat\""));
8644 }
8645
8646 /* Move the contents of register SOURCE into register DEST. */
8647
8648 static void
8649 move_register (int dest, int source)
8650 {
8651 /* Prefer to use a 16-bit microMIPS instruction unless the previous
8652 instruction specifically requires a 32-bit one. */
8653 if (mips_opts.micromips
8654 && !mips_opts.insn32
8655 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8656 macro_build (NULL, "move", "mp,mj", dest, source);
8657 else
8658 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
8659 dest, source, 0);
8660 }
8661
8662 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
8663 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
8664 The two alternatives are:
8665
8666 Global symbol Local sybmol
8667 ------------- ------------
8668 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
8669 ... ...
8670 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
8671
8672 load_got_offset emits the first instruction and add_got_offset
8673 emits the second for a 16-bit offset or add_got_offset_hilo emits
8674 a sequence to add a 32-bit offset using a scratch register. */
8675
8676 static void
8677 load_got_offset (int dest, expressionS *local)
8678 {
8679 expressionS global;
8680
8681 global = *local;
8682 global.X_add_number = 0;
8683
8684 relax_start (local->X_add_symbol);
8685 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
8686 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8687 relax_switch ();
8688 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
8689 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8690 relax_end ();
8691 }
8692
8693 static void
8694 add_got_offset (int dest, expressionS *local)
8695 {
8696 expressionS global;
8697
8698 global.X_op = O_constant;
8699 global.X_op_symbol = NULL;
8700 global.X_add_symbol = NULL;
8701 global.X_add_number = local->X_add_number;
8702
8703 relax_start (local->X_add_symbol);
8704 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
8705 dest, dest, BFD_RELOC_LO16);
8706 relax_switch ();
8707 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
8708 relax_end ();
8709 }
8710
8711 static void
8712 add_got_offset_hilo (int dest, expressionS *local, int tmp)
8713 {
8714 expressionS global;
8715 int hold_mips_optimize;
8716
8717 global.X_op = O_constant;
8718 global.X_op_symbol = NULL;
8719 global.X_add_symbol = NULL;
8720 global.X_add_number = local->X_add_number;
8721
8722 relax_start (local->X_add_symbol);
8723 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
8724 relax_switch ();
8725 /* Set mips_optimize around the lui instruction to avoid
8726 inserting an unnecessary nop after the lw. */
8727 hold_mips_optimize = mips_optimize;
8728 mips_optimize = 2;
8729 macro_build_lui (&global, tmp);
8730 mips_optimize = hold_mips_optimize;
8731 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
8732 relax_end ();
8733
8734 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
8735 }
8736
8737 /* Emit a sequence of instructions to emulate a branch likely operation.
8738 BR is an ordinary branch corresponding to one to be emulated. BRNEG
8739 is its complementing branch with the original condition negated.
8740 CALL is set if the original branch specified the link operation.
8741 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
8742
8743 Code like this is produced in the noreorder mode:
8744
8745 BRNEG <args>, 1f
8746 nop
8747 b <sym>
8748 delay slot (executed only if branch taken)
8749 1:
8750
8751 or, if CALL is set:
8752
8753 BRNEG <args>, 1f
8754 nop
8755 bal <sym>
8756 delay slot (executed only if branch taken)
8757 1:
8758
8759 In the reorder mode the delay slot would be filled with a nop anyway,
8760 so code produced is simply:
8761
8762 BR <args>, <sym>
8763 nop
8764
8765 This function is used when producing code for the microMIPS ASE that
8766 does not implement branch likely instructions in hardware. */
8767
8768 static void
8769 macro_build_branch_likely (const char *br, const char *brneg,
8770 int call, expressionS *ep, const char *fmt,
8771 unsigned int sreg, unsigned int treg)
8772 {
8773 int noreorder = mips_opts.noreorder;
8774 expressionS expr1;
8775
8776 gas_assert (mips_opts.micromips);
8777 start_noreorder ();
8778 if (noreorder)
8779 {
8780 micromips_label_expr (&expr1);
8781 macro_build (&expr1, brneg, fmt, sreg, treg);
8782 macro_build (NULL, "nop", "");
8783 macro_build (ep, call ? "bal" : "b", "p");
8784
8785 /* Set to true so that append_insn adds a label. */
8786 emit_branch_likely_macro = TRUE;
8787 }
8788 else
8789 {
8790 macro_build (ep, br, fmt, sreg, treg);
8791 macro_build (NULL, "nop", "");
8792 }
8793 end_noreorder ();
8794 }
8795
8796 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
8797 the condition code tested. EP specifies the branch target. */
8798
8799 static void
8800 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
8801 {
8802 const int call = 0;
8803 const char *brneg;
8804 const char *br;
8805
8806 switch (type)
8807 {
8808 case M_BC1FL:
8809 br = "bc1f";
8810 brneg = "bc1t";
8811 break;
8812 case M_BC1TL:
8813 br = "bc1t";
8814 brneg = "bc1f";
8815 break;
8816 case M_BC2FL:
8817 br = "bc2f";
8818 brneg = "bc2t";
8819 break;
8820 case M_BC2TL:
8821 br = "bc2t";
8822 brneg = "bc2f";
8823 break;
8824 default:
8825 abort ();
8826 }
8827 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
8828 }
8829
8830 /* Emit a two-argument branch macro specified by TYPE, using SREG as
8831 the register tested. EP specifies the branch target. */
8832
8833 static void
8834 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
8835 {
8836 const char *brneg = NULL;
8837 const char *br;
8838 int call = 0;
8839
8840 switch (type)
8841 {
8842 case M_BGEZ:
8843 br = "bgez";
8844 break;
8845 case M_BGEZL:
8846 br = mips_opts.micromips ? "bgez" : "bgezl";
8847 brneg = "bltz";
8848 break;
8849 case M_BGEZALL:
8850 gas_assert (mips_opts.micromips);
8851 br = mips_opts.insn32 ? "bgezal" : "bgezals";
8852 brneg = "bltz";
8853 call = 1;
8854 break;
8855 case M_BGTZ:
8856 br = "bgtz";
8857 break;
8858 case M_BGTZL:
8859 br = mips_opts.micromips ? "bgtz" : "bgtzl";
8860 brneg = "blez";
8861 break;
8862 case M_BLEZ:
8863 br = "blez";
8864 break;
8865 case M_BLEZL:
8866 br = mips_opts.micromips ? "blez" : "blezl";
8867 brneg = "bgtz";
8868 break;
8869 case M_BLTZ:
8870 br = "bltz";
8871 break;
8872 case M_BLTZL:
8873 br = mips_opts.micromips ? "bltz" : "bltzl";
8874 brneg = "bgez";
8875 break;
8876 case M_BLTZALL:
8877 gas_assert (mips_opts.micromips);
8878 br = mips_opts.insn32 ? "bltzal" : "bltzals";
8879 brneg = "bgez";
8880 call = 1;
8881 break;
8882 default:
8883 abort ();
8884 }
8885 if (mips_opts.micromips && brneg)
8886 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
8887 else
8888 macro_build (ep, br, "s,p", sreg);
8889 }
8890
8891 /* Emit a three-argument branch macro specified by TYPE, using SREG and
8892 TREG as the registers tested. EP specifies the branch target. */
8893
8894 static void
8895 macro_build_branch_rsrt (int type, expressionS *ep,
8896 unsigned int sreg, unsigned int treg)
8897 {
8898 const char *brneg = NULL;
8899 const int call = 0;
8900 const char *br;
8901
8902 switch (type)
8903 {
8904 case M_BEQ:
8905 case M_BEQ_I:
8906 br = "beq";
8907 break;
8908 case M_BEQL:
8909 case M_BEQL_I:
8910 br = mips_opts.micromips ? "beq" : "beql";
8911 brneg = "bne";
8912 break;
8913 case M_BNE:
8914 case M_BNE_I:
8915 br = "bne";
8916 break;
8917 case M_BNEL:
8918 case M_BNEL_I:
8919 br = mips_opts.micromips ? "bne" : "bnel";
8920 brneg = "beq";
8921 break;
8922 default:
8923 abort ();
8924 }
8925 if (mips_opts.micromips && brneg)
8926 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
8927 else
8928 macro_build (ep, br, "s,t,p", sreg, treg);
8929 }
8930
8931 /* Return the high part that should be loaded in order to make the low
8932 part of VALUE accessible using an offset of OFFBITS bits. */
8933
8934 static offsetT
8935 offset_high_part (offsetT value, unsigned int offbits)
8936 {
8937 offsetT bias;
8938 addressT low_mask;
8939
8940 if (offbits == 0)
8941 return value;
8942 bias = 1 << (offbits - 1);
8943 low_mask = bias * 2 - 1;
8944 return (value + bias) & ~low_mask;
8945 }
8946
8947 /* Return true if the value stored in offset_expr and offset_reloc
8948 fits into a signed offset of OFFBITS bits. RANGE is the maximum
8949 amount that the caller wants to add without inducing overflow
8950 and ALIGN is the known alignment of the value in bytes. */
8951
8952 static bfd_boolean
8953 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
8954 {
8955 if (offbits == 16)
8956 {
8957 /* Accept any relocation operator if overflow isn't a concern. */
8958 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
8959 return TRUE;
8960
8961 /* These relocations are guaranteed not to overflow in correct links. */
8962 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
8963 || gprel16_reloc_p (*offset_reloc))
8964 return TRUE;
8965 }
8966 if (offset_expr.X_op == O_constant
8967 && offset_high_part (offset_expr.X_add_number, offbits) == 0
8968 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
8969 return TRUE;
8970 return FALSE;
8971 }
8972
8973 /*
8974 * Build macros
8975 * This routine implements the seemingly endless macro or synthesized
8976 * instructions and addressing modes in the mips assembly language. Many
8977 * of these macros are simple and are similar to each other. These could
8978 * probably be handled by some kind of table or grammar approach instead of
8979 * this verbose method. Others are not simple macros but are more like
8980 * optimizing code generation.
8981 * One interesting optimization is when several store macros appear
8982 * consecutively that would load AT with the upper half of the same address.
8983 * The ensuing load upper instructions are ommited. This implies some kind
8984 * of global optimization. We currently only optimize within a single macro.
8985 * For many of the load and store macros if the address is specified as a
8986 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
8987 * first load register 'at' with zero and use it as the base register. The
8988 * mips assembler simply uses register $zero. Just one tiny optimization
8989 * we're missing.
8990 */
8991 static void
8992 macro (struct mips_cl_insn *ip, char *str)
8993 {
8994 const struct mips_operand_array *operands;
8995 unsigned int breg, i;
8996 unsigned int tempreg;
8997 int mask;
8998 int used_at = 0;
8999 expressionS label_expr;
9000 expressionS expr1;
9001 expressionS *ep;
9002 const char *s;
9003 const char *s2;
9004 const char *fmt;
9005 int likely = 0;
9006 int coproc = 0;
9007 int offbits = 16;
9008 int call = 0;
9009 int jals = 0;
9010 int dbl = 0;
9011 int imm = 0;
9012 int ust = 0;
9013 int lp = 0;
9014 bfd_boolean large_offset;
9015 int off;
9016 int hold_mips_optimize;
9017 unsigned int align;
9018 unsigned int op[MAX_OPERANDS];
9019
9020 gas_assert (! mips_opts.mips16);
9021
9022 operands = insn_operands (ip);
9023 for (i = 0; i < MAX_OPERANDS; i++)
9024 if (operands->operand[i])
9025 op[i] = insn_extract_operand (ip, operands->operand[i]);
9026 else
9027 op[i] = -1;
9028
9029 mask = ip->insn_mo->mask;
9030
9031 label_expr.X_op = O_constant;
9032 label_expr.X_op_symbol = NULL;
9033 label_expr.X_add_symbol = NULL;
9034 label_expr.X_add_number = 0;
9035
9036 expr1.X_op = O_constant;
9037 expr1.X_op_symbol = NULL;
9038 expr1.X_add_symbol = NULL;
9039 expr1.X_add_number = 1;
9040 align = 1;
9041
9042 switch (mask)
9043 {
9044 case M_DABS:
9045 dbl = 1;
9046 case M_ABS:
9047 /* bgez $a0,1f
9048 move v0,$a0
9049 sub v0,$zero,$a0
9050 1:
9051 */
9052
9053 start_noreorder ();
9054
9055 if (mips_opts.micromips)
9056 micromips_label_expr (&label_expr);
9057 else
9058 label_expr.X_add_number = 8;
9059 macro_build (&label_expr, "bgez", "s,p", op[1]);
9060 if (op[0] == op[1])
9061 macro_build (NULL, "nop", "");
9062 else
9063 move_register (op[0], op[1]);
9064 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9065 if (mips_opts.micromips)
9066 micromips_add_label ();
9067
9068 end_noreorder ();
9069 break;
9070
9071 case M_ADD_I:
9072 s = "addi";
9073 s2 = "add";
9074 goto do_addi;
9075 case M_ADDU_I:
9076 s = "addiu";
9077 s2 = "addu";
9078 goto do_addi;
9079 case M_DADD_I:
9080 dbl = 1;
9081 s = "daddi";
9082 s2 = "dadd";
9083 if (!mips_opts.micromips)
9084 goto do_addi;
9085 if (imm_expr.X_add_number >= -0x200
9086 && imm_expr.X_add_number < 0x200)
9087 {
9088 macro_build (NULL, s, "t,r,.", op[0], op[1],
9089 (int) imm_expr.X_add_number);
9090 break;
9091 }
9092 goto do_addi_i;
9093 case M_DADDU_I:
9094 dbl = 1;
9095 s = "daddiu";
9096 s2 = "daddu";
9097 do_addi:
9098 if (imm_expr.X_add_number >= -0x8000
9099 && imm_expr.X_add_number < 0x8000)
9100 {
9101 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9102 break;
9103 }
9104 do_addi_i:
9105 used_at = 1;
9106 load_register (AT, &imm_expr, dbl);
9107 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9108 break;
9109
9110 case M_AND_I:
9111 s = "andi";
9112 s2 = "and";
9113 goto do_bit;
9114 case M_OR_I:
9115 s = "ori";
9116 s2 = "or";
9117 goto do_bit;
9118 case M_NOR_I:
9119 s = "";
9120 s2 = "nor";
9121 goto do_bit;
9122 case M_XOR_I:
9123 s = "xori";
9124 s2 = "xor";
9125 do_bit:
9126 if (imm_expr.X_add_number >= 0
9127 && imm_expr.X_add_number < 0x10000)
9128 {
9129 if (mask != M_NOR_I)
9130 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9131 else
9132 {
9133 macro_build (&imm_expr, "ori", "t,r,i",
9134 op[0], op[1], BFD_RELOC_LO16);
9135 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9136 }
9137 break;
9138 }
9139
9140 used_at = 1;
9141 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9142 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9143 break;
9144
9145 case M_BALIGN:
9146 switch (imm_expr.X_add_number)
9147 {
9148 case 0:
9149 macro_build (NULL, "nop", "");
9150 break;
9151 case 2:
9152 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9153 break;
9154 case 1:
9155 case 3:
9156 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9157 (int) imm_expr.X_add_number);
9158 break;
9159 default:
9160 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9161 (unsigned long) imm_expr.X_add_number);
9162 break;
9163 }
9164 break;
9165
9166 case M_BC1FL:
9167 case M_BC1TL:
9168 case M_BC2FL:
9169 case M_BC2TL:
9170 gas_assert (mips_opts.micromips);
9171 macro_build_branch_ccl (mask, &offset_expr,
9172 EXTRACT_OPERAND (1, BCC, *ip));
9173 break;
9174
9175 case M_BEQ_I:
9176 case M_BEQL_I:
9177 case M_BNE_I:
9178 case M_BNEL_I:
9179 if (imm_expr.X_add_number == 0)
9180 op[1] = 0;
9181 else
9182 {
9183 op[1] = AT;
9184 used_at = 1;
9185 load_register (op[1], &imm_expr, HAVE_64BIT_GPRS);
9186 }
9187 /* Fall through. */
9188 case M_BEQL:
9189 case M_BNEL:
9190 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9191 break;
9192
9193 case M_BGEL:
9194 likely = 1;
9195 case M_BGE:
9196 if (op[1] == 0)
9197 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9198 else if (op[0] == 0)
9199 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9200 else
9201 {
9202 used_at = 1;
9203 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9204 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9205 &offset_expr, AT, ZERO);
9206 }
9207 break;
9208
9209 case M_BGEZL:
9210 case M_BGEZALL:
9211 case M_BGTZL:
9212 case M_BLEZL:
9213 case M_BLTZL:
9214 case M_BLTZALL:
9215 macro_build_branch_rs (mask, &offset_expr, op[0]);
9216 break;
9217
9218 case M_BGTL_I:
9219 likely = 1;
9220 case M_BGT_I:
9221 /* Check for > max integer. */
9222 if (imm_expr.X_add_number >= GPR_SMAX)
9223 {
9224 do_false:
9225 /* Result is always false. */
9226 if (! likely)
9227 macro_build (NULL, "nop", "");
9228 else
9229 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9230 break;
9231 }
9232 ++imm_expr.X_add_number;
9233 /* FALLTHROUGH */
9234 case M_BGE_I:
9235 case M_BGEL_I:
9236 if (mask == M_BGEL_I)
9237 likely = 1;
9238 if (imm_expr.X_add_number == 0)
9239 {
9240 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9241 &offset_expr, op[0]);
9242 break;
9243 }
9244 if (imm_expr.X_add_number == 1)
9245 {
9246 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9247 &offset_expr, op[0]);
9248 break;
9249 }
9250 if (imm_expr.X_add_number <= GPR_SMIN)
9251 {
9252 do_true:
9253 /* result is always true */
9254 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9255 macro_build (&offset_expr, "b", "p");
9256 break;
9257 }
9258 used_at = 1;
9259 set_at (op[0], 0);
9260 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9261 &offset_expr, AT, ZERO);
9262 break;
9263
9264 case M_BGEUL:
9265 likely = 1;
9266 case M_BGEU:
9267 if (op[1] == 0)
9268 goto do_true;
9269 else if (op[0] == 0)
9270 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9271 &offset_expr, ZERO, op[1]);
9272 else
9273 {
9274 used_at = 1;
9275 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9276 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9277 &offset_expr, AT, ZERO);
9278 }
9279 break;
9280
9281 case M_BGTUL_I:
9282 likely = 1;
9283 case M_BGTU_I:
9284 if (op[0] == 0
9285 || (HAVE_32BIT_GPRS
9286 && imm_expr.X_add_number == -1))
9287 goto do_false;
9288 ++imm_expr.X_add_number;
9289 /* FALLTHROUGH */
9290 case M_BGEU_I:
9291 case M_BGEUL_I:
9292 if (mask == M_BGEUL_I)
9293 likely = 1;
9294 if (imm_expr.X_add_number == 0)
9295 goto do_true;
9296 else if (imm_expr.X_add_number == 1)
9297 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9298 &offset_expr, op[0], ZERO);
9299 else
9300 {
9301 used_at = 1;
9302 set_at (op[0], 1);
9303 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9304 &offset_expr, AT, ZERO);
9305 }
9306 break;
9307
9308 case M_BGTL:
9309 likely = 1;
9310 case M_BGT:
9311 if (op[1] == 0)
9312 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9313 else if (op[0] == 0)
9314 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9315 else
9316 {
9317 used_at = 1;
9318 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9319 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9320 &offset_expr, AT, ZERO);
9321 }
9322 break;
9323
9324 case M_BGTUL:
9325 likely = 1;
9326 case M_BGTU:
9327 if (op[1] == 0)
9328 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9329 &offset_expr, op[0], ZERO);
9330 else if (op[0] == 0)
9331 goto do_false;
9332 else
9333 {
9334 used_at = 1;
9335 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
9336 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9337 &offset_expr, AT, ZERO);
9338 }
9339 break;
9340
9341 case M_BLEL:
9342 likely = 1;
9343 case M_BLE:
9344 if (op[1] == 0)
9345 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
9346 else if (op[0] == 0)
9347 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
9348 else
9349 {
9350 used_at = 1;
9351 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9352 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9353 &offset_expr, AT, ZERO);
9354 }
9355 break;
9356
9357 case M_BLEL_I:
9358 likely = 1;
9359 case M_BLE_I:
9360 if (imm_expr.X_add_number >= GPR_SMAX)
9361 goto do_true;
9362 ++imm_expr.X_add_number;
9363 /* FALLTHROUGH */
9364 case M_BLT_I:
9365 case M_BLTL_I:
9366 if (mask == M_BLTL_I)
9367 likely = 1;
9368 if (imm_expr.X_add_number == 0)
9369 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
9370 else if (imm_expr.X_add_number == 1)
9371 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
9372 else
9373 {
9374 used_at = 1;
9375 set_at (op[0], 0);
9376 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9377 &offset_expr, AT, ZERO);
9378 }
9379 break;
9380
9381 case M_BLEUL:
9382 likely = 1;
9383 case M_BLEU:
9384 if (op[1] == 0)
9385 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9386 &offset_expr, op[0], ZERO);
9387 else if (op[0] == 0)
9388 goto do_true;
9389 else
9390 {
9391 used_at = 1;
9392 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
9393 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9394 &offset_expr, AT, ZERO);
9395 }
9396 break;
9397
9398 case M_BLEUL_I:
9399 likely = 1;
9400 case M_BLEU_I:
9401 if (op[0] == 0
9402 || (HAVE_32BIT_GPRS
9403 && imm_expr.X_add_number == -1))
9404 goto do_true;
9405 ++imm_expr.X_add_number;
9406 /* FALLTHROUGH */
9407 case M_BLTU_I:
9408 case M_BLTUL_I:
9409 if (mask == M_BLTUL_I)
9410 likely = 1;
9411 if (imm_expr.X_add_number == 0)
9412 goto do_false;
9413 else if (imm_expr.X_add_number == 1)
9414 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9415 &offset_expr, op[0], ZERO);
9416 else
9417 {
9418 used_at = 1;
9419 set_at (op[0], 1);
9420 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9421 &offset_expr, AT, ZERO);
9422 }
9423 break;
9424
9425 case M_BLTL:
9426 likely = 1;
9427 case M_BLT:
9428 if (op[1] == 0)
9429 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
9430 else if (op[0] == 0)
9431 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
9432 else
9433 {
9434 used_at = 1;
9435 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9436 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9437 &offset_expr, AT, ZERO);
9438 }
9439 break;
9440
9441 case M_BLTUL:
9442 likely = 1;
9443 case M_BLTU:
9444 if (op[1] == 0)
9445 goto do_false;
9446 else if (op[0] == 0)
9447 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9448 &offset_expr, ZERO, op[1]);
9449 else
9450 {
9451 used_at = 1;
9452 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9453 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9454 &offset_expr, AT, ZERO);
9455 }
9456 break;
9457
9458 case M_DDIV_3:
9459 dbl = 1;
9460 case M_DIV_3:
9461 s = "mflo";
9462 goto do_div3;
9463 case M_DREM_3:
9464 dbl = 1;
9465 case M_REM_3:
9466 s = "mfhi";
9467 do_div3:
9468 if (op[2] == 0)
9469 {
9470 as_warn (_("divide by zero"));
9471 if (mips_trap)
9472 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
9473 else
9474 macro_build (NULL, "break", BRK_FMT, 7);
9475 break;
9476 }
9477
9478 start_noreorder ();
9479 if (mips_trap)
9480 {
9481 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
9482 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
9483 }
9484 else
9485 {
9486 if (mips_opts.micromips)
9487 micromips_label_expr (&label_expr);
9488 else
9489 label_expr.X_add_number = 8;
9490 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
9491 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
9492 macro_build (NULL, "break", BRK_FMT, 7);
9493 if (mips_opts.micromips)
9494 micromips_add_label ();
9495 }
9496 expr1.X_add_number = -1;
9497 used_at = 1;
9498 load_register (AT, &expr1, dbl);
9499 if (mips_opts.micromips)
9500 micromips_label_expr (&label_expr);
9501 else
9502 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
9503 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
9504 if (dbl)
9505 {
9506 expr1.X_add_number = 1;
9507 load_register (AT, &expr1, dbl);
9508 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
9509 }
9510 else
9511 {
9512 expr1.X_add_number = 0x80000000;
9513 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
9514 }
9515 if (mips_trap)
9516 {
9517 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
9518 /* We want to close the noreorder block as soon as possible, so
9519 that later insns are available for delay slot filling. */
9520 end_noreorder ();
9521 }
9522 else
9523 {
9524 if (mips_opts.micromips)
9525 micromips_label_expr (&label_expr);
9526 else
9527 label_expr.X_add_number = 8;
9528 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
9529 macro_build (NULL, "nop", "");
9530
9531 /* We want to close the noreorder block as soon as possible, so
9532 that later insns are available for delay slot filling. */
9533 end_noreorder ();
9534
9535 macro_build (NULL, "break", BRK_FMT, 6);
9536 }
9537 if (mips_opts.micromips)
9538 micromips_add_label ();
9539 macro_build (NULL, s, MFHL_FMT, op[0]);
9540 break;
9541
9542 case M_DIV_3I:
9543 s = "div";
9544 s2 = "mflo";
9545 goto do_divi;
9546 case M_DIVU_3I:
9547 s = "divu";
9548 s2 = "mflo";
9549 goto do_divi;
9550 case M_REM_3I:
9551 s = "div";
9552 s2 = "mfhi";
9553 goto do_divi;
9554 case M_REMU_3I:
9555 s = "divu";
9556 s2 = "mfhi";
9557 goto do_divi;
9558 case M_DDIV_3I:
9559 dbl = 1;
9560 s = "ddiv";
9561 s2 = "mflo";
9562 goto do_divi;
9563 case M_DDIVU_3I:
9564 dbl = 1;
9565 s = "ddivu";
9566 s2 = "mflo";
9567 goto do_divi;
9568 case M_DREM_3I:
9569 dbl = 1;
9570 s = "ddiv";
9571 s2 = "mfhi";
9572 goto do_divi;
9573 case M_DREMU_3I:
9574 dbl = 1;
9575 s = "ddivu";
9576 s2 = "mfhi";
9577 do_divi:
9578 if (imm_expr.X_add_number == 0)
9579 {
9580 as_warn (_("divide by zero"));
9581 if (mips_trap)
9582 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
9583 else
9584 macro_build (NULL, "break", BRK_FMT, 7);
9585 break;
9586 }
9587 if (imm_expr.X_add_number == 1)
9588 {
9589 if (strcmp (s2, "mflo") == 0)
9590 move_register (op[0], op[1]);
9591 else
9592 move_register (op[0], ZERO);
9593 break;
9594 }
9595 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
9596 {
9597 if (strcmp (s2, "mflo") == 0)
9598 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
9599 else
9600 move_register (op[0], ZERO);
9601 break;
9602 }
9603
9604 used_at = 1;
9605 load_register (AT, &imm_expr, dbl);
9606 macro_build (NULL, s, "z,s,t", op[1], AT);
9607 macro_build (NULL, s2, MFHL_FMT, op[0]);
9608 break;
9609
9610 case M_DIVU_3:
9611 s = "divu";
9612 s2 = "mflo";
9613 goto do_divu3;
9614 case M_REMU_3:
9615 s = "divu";
9616 s2 = "mfhi";
9617 goto do_divu3;
9618 case M_DDIVU_3:
9619 s = "ddivu";
9620 s2 = "mflo";
9621 goto do_divu3;
9622 case M_DREMU_3:
9623 s = "ddivu";
9624 s2 = "mfhi";
9625 do_divu3:
9626 start_noreorder ();
9627 if (mips_trap)
9628 {
9629 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
9630 macro_build (NULL, s, "z,s,t", op[1], op[2]);
9631 /* We want to close the noreorder block as soon as possible, so
9632 that later insns are available for delay slot filling. */
9633 end_noreorder ();
9634 }
9635 else
9636 {
9637 if (mips_opts.micromips)
9638 micromips_label_expr (&label_expr);
9639 else
9640 label_expr.X_add_number = 8;
9641 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
9642 macro_build (NULL, s, "z,s,t", op[1], op[2]);
9643
9644 /* We want to close the noreorder block as soon as possible, so
9645 that later insns are available for delay slot filling. */
9646 end_noreorder ();
9647 macro_build (NULL, "break", BRK_FMT, 7);
9648 if (mips_opts.micromips)
9649 micromips_add_label ();
9650 }
9651 macro_build (NULL, s2, MFHL_FMT, op[0]);
9652 break;
9653
9654 case M_DLCA_AB:
9655 dbl = 1;
9656 case M_LCA_AB:
9657 call = 1;
9658 goto do_la;
9659 case M_DLA_AB:
9660 dbl = 1;
9661 case M_LA_AB:
9662 do_la:
9663 /* Load the address of a symbol into a register. If breg is not
9664 zero, we then add a base register to it. */
9665
9666 breg = op[2];
9667 if (dbl && HAVE_32BIT_GPRS)
9668 as_warn (_("dla used to load 32-bit register"));
9669
9670 if (!dbl && HAVE_64BIT_OBJECTS)
9671 as_warn (_("la used to load 64-bit address"));
9672
9673 if (small_offset_p (0, align, 16))
9674 {
9675 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
9676 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
9677 break;
9678 }
9679
9680 if (mips_opts.at && (op[0] == breg))
9681 {
9682 tempreg = AT;
9683 used_at = 1;
9684 }
9685 else
9686 tempreg = op[0];
9687
9688 if (offset_expr.X_op != O_symbol
9689 && offset_expr.X_op != O_constant)
9690 {
9691 as_bad (_("expression too complex"));
9692 offset_expr.X_op = O_constant;
9693 }
9694
9695 if (offset_expr.X_op == O_constant)
9696 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
9697 else if (mips_pic == NO_PIC)
9698 {
9699 /* If this is a reference to a GP relative symbol, we want
9700 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
9701 Otherwise we want
9702 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
9703 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9704 If we have a constant, we need two instructions anyhow,
9705 so we may as well always use the latter form.
9706
9707 With 64bit address space and a usable $at we want
9708 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9709 lui $at,<sym> (BFD_RELOC_HI16_S)
9710 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9711 daddiu $at,<sym> (BFD_RELOC_LO16)
9712 dsll32 $tempreg,0
9713 daddu $tempreg,$tempreg,$at
9714
9715 If $at is already in use, we use a path which is suboptimal
9716 on superscalar processors.
9717 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9718 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
9719 dsll $tempreg,16
9720 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
9721 dsll $tempreg,16
9722 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
9723
9724 For GP relative symbols in 64bit address space we can use
9725 the same sequence as in 32bit address space. */
9726 if (HAVE_64BIT_SYMBOLS)
9727 {
9728 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9729 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9730 {
9731 relax_start (offset_expr.X_add_symbol);
9732 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9733 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
9734 relax_switch ();
9735 }
9736
9737 if (used_at == 0 && mips_opts.at)
9738 {
9739 macro_build (&offset_expr, "lui", LUI_FMT,
9740 tempreg, BFD_RELOC_MIPS_HIGHEST);
9741 macro_build (&offset_expr, "lui", LUI_FMT,
9742 AT, BFD_RELOC_HI16_S);
9743 macro_build (&offset_expr, "daddiu", "t,r,j",
9744 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
9745 macro_build (&offset_expr, "daddiu", "t,r,j",
9746 AT, AT, BFD_RELOC_LO16);
9747 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
9748 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
9749 used_at = 1;
9750 }
9751 else
9752 {
9753 macro_build (&offset_expr, "lui", LUI_FMT,
9754 tempreg, BFD_RELOC_MIPS_HIGHEST);
9755 macro_build (&offset_expr, "daddiu", "t,r,j",
9756 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
9757 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
9758 macro_build (&offset_expr, "daddiu", "t,r,j",
9759 tempreg, tempreg, BFD_RELOC_HI16_S);
9760 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
9761 macro_build (&offset_expr, "daddiu", "t,r,j",
9762 tempreg, tempreg, BFD_RELOC_LO16);
9763 }
9764
9765 if (mips_relax.sequence)
9766 relax_end ();
9767 }
9768 else
9769 {
9770 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9771 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9772 {
9773 relax_start (offset_expr.X_add_symbol);
9774 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9775 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
9776 relax_switch ();
9777 }
9778 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
9779 as_bad (_("offset too large"));
9780 macro_build_lui (&offset_expr, tempreg);
9781 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9782 tempreg, tempreg, BFD_RELOC_LO16);
9783 if (mips_relax.sequence)
9784 relax_end ();
9785 }
9786 }
9787 else if (!mips_big_got && !HAVE_NEWABI)
9788 {
9789 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9790
9791 /* If this is a reference to an external symbol, and there
9792 is no constant, we want
9793 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9794 or for lca or if tempreg is PIC_CALL_REG
9795 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9796 For a local symbol, we want
9797 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9798 nop
9799 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9800
9801 If we have a small constant, and this is a reference to
9802 an external symbol, we want
9803 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9804 nop
9805 addiu $tempreg,$tempreg,<constant>
9806 For a local symbol, we want the same instruction
9807 sequence, but we output a BFD_RELOC_LO16 reloc on the
9808 addiu instruction.
9809
9810 If we have a large constant, and this is a reference to
9811 an external symbol, we want
9812 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9813 lui $at,<hiconstant>
9814 addiu $at,$at,<loconstant>
9815 addu $tempreg,$tempreg,$at
9816 For a local symbol, we want the same instruction
9817 sequence, but we output a BFD_RELOC_LO16 reloc on the
9818 addiu instruction.
9819 */
9820
9821 if (offset_expr.X_add_number == 0)
9822 {
9823 if (mips_pic == SVR4_PIC
9824 && breg == 0
9825 && (call || tempreg == PIC_CALL_REG))
9826 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
9827
9828 relax_start (offset_expr.X_add_symbol);
9829 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9830 lw_reloc_type, mips_gp_register);
9831 if (breg != 0)
9832 {
9833 /* We're going to put in an addu instruction using
9834 tempreg, so we may as well insert the nop right
9835 now. */
9836 load_delay_nop ();
9837 }
9838 relax_switch ();
9839 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9840 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
9841 load_delay_nop ();
9842 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9843 tempreg, tempreg, BFD_RELOC_LO16);
9844 relax_end ();
9845 /* FIXME: If breg == 0, and the next instruction uses
9846 $tempreg, then if this variant case is used an extra
9847 nop will be generated. */
9848 }
9849 else if (offset_expr.X_add_number >= -0x8000
9850 && offset_expr.X_add_number < 0x8000)
9851 {
9852 load_got_offset (tempreg, &offset_expr);
9853 load_delay_nop ();
9854 add_got_offset (tempreg, &offset_expr);
9855 }
9856 else
9857 {
9858 expr1.X_add_number = offset_expr.X_add_number;
9859 offset_expr.X_add_number =
9860 SEXT_16BIT (offset_expr.X_add_number);
9861 load_got_offset (tempreg, &offset_expr);
9862 offset_expr.X_add_number = expr1.X_add_number;
9863 /* If we are going to add in a base register, and the
9864 target register and the base register are the same,
9865 then we are using AT as a temporary register. Since
9866 we want to load the constant into AT, we add our
9867 current AT (from the global offset table) and the
9868 register into the register now, and pretend we were
9869 not using a base register. */
9870 if (breg == op[0])
9871 {
9872 load_delay_nop ();
9873 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9874 op[0], AT, breg);
9875 breg = 0;
9876 tempreg = op[0];
9877 }
9878 add_got_offset_hilo (tempreg, &offset_expr, AT);
9879 used_at = 1;
9880 }
9881 }
9882 else if (!mips_big_got && HAVE_NEWABI)
9883 {
9884 int add_breg_early = 0;
9885
9886 /* If this is a reference to an external, and there is no
9887 constant, or local symbol (*), with or without a
9888 constant, we want
9889 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9890 or for lca or if tempreg is PIC_CALL_REG
9891 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9892
9893 If we have a small constant, and this is a reference to
9894 an external symbol, we want
9895 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9896 addiu $tempreg,$tempreg,<constant>
9897
9898 If we have a large constant, and this is a reference to
9899 an external symbol, we want
9900 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9901 lui $at,<hiconstant>
9902 addiu $at,$at,<loconstant>
9903 addu $tempreg,$tempreg,$at
9904
9905 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
9906 local symbols, even though it introduces an additional
9907 instruction. */
9908
9909 if (offset_expr.X_add_number)
9910 {
9911 expr1.X_add_number = offset_expr.X_add_number;
9912 offset_expr.X_add_number = 0;
9913
9914 relax_start (offset_expr.X_add_symbol);
9915 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9916 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9917
9918 if (expr1.X_add_number >= -0x8000
9919 && expr1.X_add_number < 0x8000)
9920 {
9921 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
9922 tempreg, tempreg, BFD_RELOC_LO16);
9923 }
9924 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
9925 {
9926 unsigned int dreg;
9927
9928 /* If we are going to add in a base register, and the
9929 target register and the base register are the same,
9930 then we are using AT as a temporary register. Since
9931 we want to load the constant into AT, we add our
9932 current AT (from the global offset table) and the
9933 register into the register now, and pretend we were
9934 not using a base register. */
9935 if (breg != op[0])
9936 dreg = tempreg;
9937 else
9938 {
9939 gas_assert (tempreg == AT);
9940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9941 op[0], AT, breg);
9942 dreg = op[0];
9943 add_breg_early = 1;
9944 }
9945
9946 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
9947 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9948 dreg, dreg, AT);
9949
9950 used_at = 1;
9951 }
9952 else
9953 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
9954
9955 relax_switch ();
9956 offset_expr.X_add_number = expr1.X_add_number;
9957
9958 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9959 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9960 if (add_breg_early)
9961 {
9962 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9963 op[0], tempreg, breg);
9964 breg = 0;
9965 tempreg = op[0];
9966 }
9967 relax_end ();
9968 }
9969 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
9970 {
9971 relax_start (offset_expr.X_add_symbol);
9972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9973 BFD_RELOC_MIPS_CALL16, mips_gp_register);
9974 relax_switch ();
9975 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9976 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9977 relax_end ();
9978 }
9979 else
9980 {
9981 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9982 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9983 }
9984 }
9985 else if (mips_big_got && !HAVE_NEWABI)
9986 {
9987 int gpdelay;
9988 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
9989 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
9990 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9991
9992 /* This is the large GOT case. If this is a reference to an
9993 external symbol, and there is no constant, we want
9994 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9995 addu $tempreg,$tempreg,$gp
9996 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9997 or for lca or if tempreg is PIC_CALL_REG
9998 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
9999 addu $tempreg,$tempreg,$gp
10000 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10001 For a local symbol, we want
10002 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10003 nop
10004 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10005
10006 If we have a small constant, and this is a reference to
10007 an external symbol, we want
10008 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10009 addu $tempreg,$tempreg,$gp
10010 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10011 nop
10012 addiu $tempreg,$tempreg,<constant>
10013 For a local symbol, we want
10014 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10015 nop
10016 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10017
10018 If we have a large constant, and this is a reference to
10019 an external symbol, we want
10020 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10021 addu $tempreg,$tempreg,$gp
10022 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10023 lui $at,<hiconstant>
10024 addiu $at,$at,<loconstant>
10025 addu $tempreg,$tempreg,$at
10026 For a local symbol, we want
10027 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10028 lui $at,<hiconstant>
10029 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10030 addu $tempreg,$tempreg,$at
10031 */
10032
10033 expr1.X_add_number = offset_expr.X_add_number;
10034 offset_expr.X_add_number = 0;
10035 relax_start (offset_expr.X_add_symbol);
10036 gpdelay = reg_needs_delay (mips_gp_register);
10037 if (expr1.X_add_number == 0 && breg == 0
10038 && (call || tempreg == PIC_CALL_REG))
10039 {
10040 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10041 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10042 }
10043 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10044 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10045 tempreg, tempreg, mips_gp_register);
10046 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10047 tempreg, lw_reloc_type, tempreg);
10048 if (expr1.X_add_number == 0)
10049 {
10050 if (breg != 0)
10051 {
10052 /* We're going to put in an addu instruction using
10053 tempreg, so we may as well insert the nop right
10054 now. */
10055 load_delay_nop ();
10056 }
10057 }
10058 else if (expr1.X_add_number >= -0x8000
10059 && expr1.X_add_number < 0x8000)
10060 {
10061 load_delay_nop ();
10062 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10063 tempreg, tempreg, BFD_RELOC_LO16);
10064 }
10065 else
10066 {
10067 unsigned int dreg;
10068
10069 /* If we are going to add in a base register, and the
10070 target register and the base register are the same,
10071 then we are using AT as a temporary register. Since
10072 we want to load the constant into AT, we add our
10073 current AT (from the global offset table) and the
10074 register into the register now, and pretend we were
10075 not using a base register. */
10076 if (breg != op[0])
10077 dreg = tempreg;
10078 else
10079 {
10080 gas_assert (tempreg == AT);
10081 load_delay_nop ();
10082 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10083 op[0], AT, breg);
10084 dreg = op[0];
10085 }
10086
10087 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10088 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10089
10090 used_at = 1;
10091 }
10092 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10093 relax_switch ();
10094
10095 if (gpdelay)
10096 {
10097 /* This is needed because this instruction uses $gp, but
10098 the first instruction on the main stream does not. */
10099 macro_build (NULL, "nop", "");
10100 }
10101
10102 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10103 local_reloc_type, mips_gp_register);
10104 if (expr1.X_add_number >= -0x8000
10105 && expr1.X_add_number < 0x8000)
10106 {
10107 load_delay_nop ();
10108 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10109 tempreg, tempreg, BFD_RELOC_LO16);
10110 /* FIXME: If add_number is 0, and there was no base
10111 register, the external symbol case ended with a load,
10112 so if the symbol turns out to not be external, and
10113 the next instruction uses tempreg, an unnecessary nop
10114 will be inserted. */
10115 }
10116 else
10117 {
10118 if (breg == op[0])
10119 {
10120 /* We must add in the base register now, as in the
10121 external symbol case. */
10122 gas_assert (tempreg == AT);
10123 load_delay_nop ();
10124 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10125 op[0], AT, breg);
10126 tempreg = op[0];
10127 /* We set breg to 0 because we have arranged to add
10128 it in in both cases. */
10129 breg = 0;
10130 }
10131
10132 macro_build_lui (&expr1, AT);
10133 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10134 AT, AT, BFD_RELOC_LO16);
10135 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10136 tempreg, tempreg, AT);
10137 used_at = 1;
10138 }
10139 relax_end ();
10140 }
10141 else if (mips_big_got && HAVE_NEWABI)
10142 {
10143 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10144 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10145 int add_breg_early = 0;
10146
10147 /* This is the large GOT case. If this is a reference to an
10148 external symbol, and there is no constant, we want
10149 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10150 add $tempreg,$tempreg,$gp
10151 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10152 or for lca or if tempreg is PIC_CALL_REG
10153 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10154 add $tempreg,$tempreg,$gp
10155 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10156
10157 If we have a small constant, and this is a reference to
10158 an external symbol, we want
10159 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10160 add $tempreg,$tempreg,$gp
10161 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10162 addi $tempreg,$tempreg,<constant>
10163
10164 If we have a large constant, and this is a reference to
10165 an external symbol, we want
10166 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10167 addu $tempreg,$tempreg,$gp
10168 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10169 lui $at,<hiconstant>
10170 addi $at,$at,<loconstant>
10171 add $tempreg,$tempreg,$at
10172
10173 If we have NewABI, and we know it's a local symbol, we want
10174 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10175 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10176 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10177
10178 relax_start (offset_expr.X_add_symbol);
10179
10180 expr1.X_add_number = offset_expr.X_add_number;
10181 offset_expr.X_add_number = 0;
10182
10183 if (expr1.X_add_number == 0 && breg == 0
10184 && (call || tempreg == PIC_CALL_REG))
10185 {
10186 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10187 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10188 }
10189 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10191 tempreg, tempreg, mips_gp_register);
10192 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10193 tempreg, lw_reloc_type, tempreg);
10194
10195 if (expr1.X_add_number == 0)
10196 ;
10197 else if (expr1.X_add_number >= -0x8000
10198 && expr1.X_add_number < 0x8000)
10199 {
10200 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10201 tempreg, tempreg, BFD_RELOC_LO16);
10202 }
10203 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10204 {
10205 unsigned int dreg;
10206
10207 /* If we are going to add in a base register, and the
10208 target register and the base register are the same,
10209 then we are using AT as a temporary register. Since
10210 we want to load the constant into AT, we add our
10211 current AT (from the global offset table) and the
10212 register into the register now, and pretend we were
10213 not using a base register. */
10214 if (breg != op[0])
10215 dreg = tempreg;
10216 else
10217 {
10218 gas_assert (tempreg == AT);
10219 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10220 op[0], AT, breg);
10221 dreg = op[0];
10222 add_breg_early = 1;
10223 }
10224
10225 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10226 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10227
10228 used_at = 1;
10229 }
10230 else
10231 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10232
10233 relax_switch ();
10234 offset_expr.X_add_number = expr1.X_add_number;
10235 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10236 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10237 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10238 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10239 if (add_breg_early)
10240 {
10241 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10242 op[0], tempreg, breg);
10243 breg = 0;
10244 tempreg = op[0];
10245 }
10246 relax_end ();
10247 }
10248 else
10249 abort ();
10250
10251 if (breg != 0)
10252 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10253 break;
10254
10255 case M_MSGSND:
10256 gas_assert (!mips_opts.micromips);
10257 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10258 break;
10259
10260 case M_MSGLD:
10261 gas_assert (!mips_opts.micromips);
10262 macro_build (NULL, "c2", "C", 0x02);
10263 break;
10264
10265 case M_MSGLD_T:
10266 gas_assert (!mips_opts.micromips);
10267 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10268 break;
10269
10270 case M_MSGWAIT:
10271 gas_assert (!mips_opts.micromips);
10272 macro_build (NULL, "c2", "C", 3);
10273 break;
10274
10275 case M_MSGWAIT_T:
10276 gas_assert (!mips_opts.micromips);
10277 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10278 break;
10279
10280 case M_J_A:
10281 /* The j instruction may not be used in PIC code, since it
10282 requires an absolute address. We convert it to a b
10283 instruction. */
10284 if (mips_pic == NO_PIC)
10285 macro_build (&offset_expr, "j", "a");
10286 else
10287 macro_build (&offset_expr, "b", "p");
10288 break;
10289
10290 /* The jal instructions must be handled as macros because when
10291 generating PIC code they expand to multi-instruction
10292 sequences. Normally they are simple instructions. */
10293 case M_JALS_1:
10294 op[1] = op[0];
10295 op[0] = RA;
10296 /* Fall through. */
10297 case M_JALS_2:
10298 gas_assert (mips_opts.micromips);
10299 if (mips_opts.insn32)
10300 {
10301 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10302 break;
10303 }
10304 jals = 1;
10305 goto jal;
10306 case M_JAL_1:
10307 op[1] = op[0];
10308 op[0] = RA;
10309 /* Fall through. */
10310 case M_JAL_2:
10311 jal:
10312 if (mips_pic == NO_PIC)
10313 {
10314 s = jals ? "jalrs" : "jalr";
10315 if (mips_opts.micromips
10316 && !mips_opts.insn32
10317 && op[0] == RA
10318 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10319 macro_build (NULL, s, "mj", op[1]);
10320 else
10321 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10322 }
10323 else
10324 {
10325 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10326 && mips_cprestore_offset >= 0);
10327
10328 if (op[1] != PIC_CALL_REG)
10329 as_warn (_("MIPS PIC call to register other than $25"));
10330
10331 s = ((mips_opts.micromips
10332 && !mips_opts.insn32
10333 && (!mips_opts.noreorder || cprestore))
10334 ? "jalrs" : "jalr");
10335 if (mips_opts.micromips
10336 && !mips_opts.insn32
10337 && op[0] == RA
10338 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10339 macro_build (NULL, s, "mj", op[1]);
10340 else
10341 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10342 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
10343 {
10344 if (mips_cprestore_offset < 0)
10345 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10346 else
10347 {
10348 if (!mips_frame_reg_valid)
10349 {
10350 as_warn (_("no .frame pseudo-op used in PIC code"));
10351 /* Quiet this warning. */
10352 mips_frame_reg_valid = 1;
10353 }
10354 if (!mips_cprestore_valid)
10355 {
10356 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10357 /* Quiet this warning. */
10358 mips_cprestore_valid = 1;
10359 }
10360 if (mips_opts.noreorder)
10361 macro_build (NULL, "nop", "");
10362 expr1.X_add_number = mips_cprestore_offset;
10363 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
10364 mips_gp_register,
10365 mips_frame_reg,
10366 HAVE_64BIT_ADDRESSES);
10367 }
10368 }
10369 }
10370
10371 break;
10372
10373 case M_JALS_A:
10374 gas_assert (mips_opts.micromips);
10375 if (mips_opts.insn32)
10376 {
10377 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10378 break;
10379 }
10380 jals = 1;
10381 /* Fall through. */
10382 case M_JAL_A:
10383 if (mips_pic == NO_PIC)
10384 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
10385 else if (mips_pic == SVR4_PIC)
10386 {
10387 /* If this is a reference to an external symbol, and we are
10388 using a small GOT, we want
10389 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10390 nop
10391 jalr $ra,$25
10392 nop
10393 lw $gp,cprestore($sp)
10394 The cprestore value is set using the .cprestore
10395 pseudo-op. If we are using a big GOT, we want
10396 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10397 addu $25,$25,$gp
10398 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
10399 nop
10400 jalr $ra,$25
10401 nop
10402 lw $gp,cprestore($sp)
10403 If the symbol is not external, we want
10404 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10405 nop
10406 addiu $25,$25,<sym> (BFD_RELOC_LO16)
10407 jalr $ra,$25
10408 nop
10409 lw $gp,cprestore($sp)
10410
10411 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
10412 sequences above, minus nops, unless the symbol is local,
10413 which enables us to use GOT_PAGE/GOT_OFST (big got) or
10414 GOT_DISP. */
10415 if (HAVE_NEWABI)
10416 {
10417 if (!mips_big_got)
10418 {
10419 relax_start (offset_expr.X_add_symbol);
10420 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10421 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
10422 mips_gp_register);
10423 relax_switch ();
10424 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10425 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
10426 mips_gp_register);
10427 relax_end ();
10428 }
10429 else
10430 {
10431 relax_start (offset_expr.X_add_symbol);
10432 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
10433 BFD_RELOC_MIPS_CALL_HI16);
10434 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
10435 PIC_CALL_REG, mips_gp_register);
10436 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10437 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
10438 PIC_CALL_REG);
10439 relax_switch ();
10440 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10441 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
10442 mips_gp_register);
10443 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10444 PIC_CALL_REG, PIC_CALL_REG,
10445 BFD_RELOC_MIPS_GOT_OFST);
10446 relax_end ();
10447 }
10448
10449 macro_build_jalr (&offset_expr, 0);
10450 }
10451 else
10452 {
10453 relax_start (offset_expr.X_add_symbol);
10454 if (!mips_big_got)
10455 {
10456 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10457 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
10458 mips_gp_register);
10459 load_delay_nop ();
10460 relax_switch ();
10461 }
10462 else
10463 {
10464 int gpdelay;
10465
10466 gpdelay = reg_needs_delay (mips_gp_register);
10467 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
10468 BFD_RELOC_MIPS_CALL_HI16);
10469 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
10470 PIC_CALL_REG, mips_gp_register);
10471 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10472 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
10473 PIC_CALL_REG);
10474 load_delay_nop ();
10475 relax_switch ();
10476 if (gpdelay)
10477 macro_build (NULL, "nop", "");
10478 }
10479 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10480 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
10481 mips_gp_register);
10482 load_delay_nop ();
10483 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10484 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
10485 relax_end ();
10486 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
10487
10488 if (mips_cprestore_offset < 0)
10489 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10490 else
10491 {
10492 if (!mips_frame_reg_valid)
10493 {
10494 as_warn (_("no .frame pseudo-op used in PIC code"));
10495 /* Quiet this warning. */
10496 mips_frame_reg_valid = 1;
10497 }
10498 if (!mips_cprestore_valid)
10499 {
10500 as_warn (_("no .cprestore pseudo-op used in PIC code"));
10501 /* Quiet this warning. */
10502 mips_cprestore_valid = 1;
10503 }
10504 if (mips_opts.noreorder)
10505 macro_build (NULL, "nop", "");
10506 expr1.X_add_number = mips_cprestore_offset;
10507 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
10508 mips_gp_register,
10509 mips_frame_reg,
10510 HAVE_64BIT_ADDRESSES);
10511 }
10512 }
10513 }
10514 else if (mips_pic == VXWORKS_PIC)
10515 as_bad (_("non-PIC jump used in PIC library"));
10516 else
10517 abort ();
10518
10519 break;
10520
10521 case M_LBUE_AB:
10522 s = "lbue";
10523 fmt = "t,+j(b)";
10524 offbits = 9;
10525 goto ld_st;
10526 case M_LHUE_AB:
10527 s = "lhue";
10528 fmt = "t,+j(b)";
10529 offbits = 9;
10530 goto ld_st;
10531 case M_LBE_AB:
10532 s = "lbe";
10533 fmt = "t,+j(b)";
10534 offbits = 9;
10535 goto ld_st;
10536 case M_LHE_AB:
10537 s = "lhe";
10538 fmt = "t,+j(b)";
10539 offbits = 9;
10540 goto ld_st;
10541 case M_LLE_AB:
10542 s = "lle";
10543 fmt = "t,+j(b)";
10544 offbits = 9;
10545 goto ld_st;
10546 case M_LWE_AB:
10547 s = "lwe";
10548 fmt = "t,+j(b)";
10549 offbits = 9;
10550 goto ld_st;
10551 case M_LWLE_AB:
10552 s = "lwle";
10553 fmt = "t,+j(b)";
10554 offbits = 9;
10555 goto ld_st;
10556 case M_LWRE_AB:
10557 s = "lwre";
10558 fmt = "t,+j(b)";
10559 offbits = 9;
10560 goto ld_st;
10561 case M_SBE_AB:
10562 s = "sbe";
10563 fmt = "t,+j(b)";
10564 offbits = 9;
10565 goto ld_st;
10566 case M_SCE_AB:
10567 s = "sce";
10568 fmt = "t,+j(b)";
10569 offbits = 9;
10570 goto ld_st;
10571 case M_SHE_AB:
10572 s = "she";
10573 fmt = "t,+j(b)";
10574 offbits = 9;
10575 goto ld_st;
10576 case M_SWE_AB:
10577 s = "swe";
10578 fmt = "t,+j(b)";
10579 offbits = 9;
10580 goto ld_st;
10581 case M_SWLE_AB:
10582 s = "swle";
10583 fmt = "t,+j(b)";
10584 offbits = 9;
10585 goto ld_st;
10586 case M_SWRE_AB:
10587 s = "swre";
10588 fmt = "t,+j(b)";
10589 offbits = 9;
10590 goto ld_st;
10591 case M_ACLR_AB:
10592 s = "aclr";
10593 fmt = "\\,~(b)";
10594 offbits = 12;
10595 goto ld_st;
10596 case M_ASET_AB:
10597 s = "aset";
10598 fmt = "\\,~(b)";
10599 offbits = 12;
10600 goto ld_st;
10601 case M_LB_AB:
10602 s = "lb";
10603 fmt = "t,o(b)";
10604 goto ld;
10605 case M_LBU_AB:
10606 s = "lbu";
10607 fmt = "t,o(b)";
10608 goto ld;
10609 case M_LH_AB:
10610 s = "lh";
10611 fmt = "t,o(b)";
10612 goto ld;
10613 case M_LHU_AB:
10614 s = "lhu";
10615 fmt = "t,o(b)";
10616 goto ld;
10617 case M_LW_AB:
10618 s = "lw";
10619 fmt = "t,o(b)";
10620 goto ld;
10621 case M_LWC0_AB:
10622 gas_assert (!mips_opts.micromips);
10623 s = "lwc0";
10624 fmt = "E,o(b)";
10625 /* Itbl support may require additional care here. */
10626 coproc = 1;
10627 goto ld_st;
10628 case M_LWC1_AB:
10629 s = "lwc1";
10630 fmt = "T,o(b)";
10631 /* Itbl support may require additional care here. */
10632 coproc = 1;
10633 goto ld_st;
10634 case M_LWC2_AB:
10635 s = "lwc2";
10636 fmt = COP12_FMT;
10637 offbits = (mips_opts.micromips ? 12 : 16);
10638 /* Itbl support may require additional care here. */
10639 coproc = 1;
10640 goto ld_st;
10641 case M_LWC3_AB:
10642 gas_assert (!mips_opts.micromips);
10643 s = "lwc3";
10644 fmt = "E,o(b)";
10645 /* Itbl support may require additional care here. */
10646 coproc = 1;
10647 goto ld_st;
10648 case M_LWL_AB:
10649 s = "lwl";
10650 fmt = MEM12_FMT;
10651 offbits = (mips_opts.micromips ? 12 : 16);
10652 goto ld_st;
10653 case M_LWR_AB:
10654 s = "lwr";
10655 fmt = MEM12_FMT;
10656 offbits = (mips_opts.micromips ? 12 : 16);
10657 goto ld_st;
10658 case M_LDC1_AB:
10659 s = "ldc1";
10660 fmt = "T,o(b)";
10661 /* Itbl support may require additional care here. */
10662 coproc = 1;
10663 goto ld_st;
10664 case M_LDC2_AB:
10665 s = "ldc2";
10666 fmt = COP12_FMT;
10667 offbits = (mips_opts.micromips ? 12 : 16);
10668 /* Itbl support may require additional care here. */
10669 coproc = 1;
10670 goto ld_st;
10671 case M_LQC2_AB:
10672 s = "lqc2";
10673 fmt = "+7,o(b)";
10674 /* Itbl support may require additional care here. */
10675 coproc = 1;
10676 goto ld_st;
10677 case M_LDC3_AB:
10678 s = "ldc3";
10679 fmt = "E,o(b)";
10680 /* Itbl support may require additional care here. */
10681 coproc = 1;
10682 goto ld_st;
10683 case M_LDL_AB:
10684 s = "ldl";
10685 fmt = MEM12_FMT;
10686 offbits = (mips_opts.micromips ? 12 : 16);
10687 goto ld_st;
10688 case M_LDR_AB:
10689 s = "ldr";
10690 fmt = MEM12_FMT;
10691 offbits = (mips_opts.micromips ? 12 : 16);
10692 goto ld_st;
10693 case M_LL_AB:
10694 s = "ll";
10695 fmt = MEM12_FMT;
10696 offbits = (mips_opts.micromips ? 12 : 16);
10697 goto ld;
10698 case M_LLD_AB:
10699 s = "lld";
10700 fmt = MEM12_FMT;
10701 offbits = (mips_opts.micromips ? 12 : 16);
10702 goto ld;
10703 case M_LWU_AB:
10704 s = "lwu";
10705 fmt = MEM12_FMT;
10706 offbits = (mips_opts.micromips ? 12 : 16);
10707 goto ld;
10708 case M_LWP_AB:
10709 gas_assert (mips_opts.micromips);
10710 s = "lwp";
10711 fmt = "t,~(b)";
10712 offbits = 12;
10713 lp = 1;
10714 goto ld;
10715 case M_LDP_AB:
10716 gas_assert (mips_opts.micromips);
10717 s = "ldp";
10718 fmt = "t,~(b)";
10719 offbits = 12;
10720 lp = 1;
10721 goto ld;
10722 case M_LWM_AB:
10723 gas_assert (mips_opts.micromips);
10724 s = "lwm";
10725 fmt = "n,~(b)";
10726 offbits = 12;
10727 goto ld_st;
10728 case M_LDM_AB:
10729 gas_assert (mips_opts.micromips);
10730 s = "ldm";
10731 fmt = "n,~(b)";
10732 offbits = 12;
10733 goto ld_st;
10734
10735 ld:
10736 /* We don't want to use $0 as tempreg. */
10737 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
10738 goto ld_st;
10739 else
10740 tempreg = op[0] + lp;
10741 goto ld_noat;
10742
10743 case M_SB_AB:
10744 s = "sb";
10745 fmt = "t,o(b)";
10746 goto ld_st;
10747 case M_SH_AB:
10748 s = "sh";
10749 fmt = "t,o(b)";
10750 goto ld_st;
10751 case M_SW_AB:
10752 s = "sw";
10753 fmt = "t,o(b)";
10754 goto ld_st;
10755 case M_SWC0_AB:
10756 gas_assert (!mips_opts.micromips);
10757 s = "swc0";
10758 fmt = "E,o(b)";
10759 /* Itbl support may require additional care here. */
10760 coproc = 1;
10761 goto ld_st;
10762 case M_SWC1_AB:
10763 s = "swc1";
10764 fmt = "T,o(b)";
10765 /* Itbl support may require additional care here. */
10766 coproc = 1;
10767 goto ld_st;
10768 case M_SWC2_AB:
10769 s = "swc2";
10770 fmt = COP12_FMT;
10771 offbits = (mips_opts.micromips ? 12 : 16);
10772 /* Itbl support may require additional care here. */
10773 coproc = 1;
10774 goto ld_st;
10775 case M_SWC3_AB:
10776 gas_assert (!mips_opts.micromips);
10777 s = "swc3";
10778 fmt = "E,o(b)";
10779 /* Itbl support may require additional care here. */
10780 coproc = 1;
10781 goto ld_st;
10782 case M_SWL_AB:
10783 s = "swl";
10784 fmt = MEM12_FMT;
10785 offbits = (mips_opts.micromips ? 12 : 16);
10786 goto ld_st;
10787 case M_SWR_AB:
10788 s = "swr";
10789 fmt = MEM12_FMT;
10790 offbits = (mips_opts.micromips ? 12 : 16);
10791 goto ld_st;
10792 case M_SC_AB:
10793 s = "sc";
10794 fmt = MEM12_FMT;
10795 offbits = (mips_opts.micromips ? 12 : 16);
10796 goto ld_st;
10797 case M_SCD_AB:
10798 s = "scd";
10799 fmt = MEM12_FMT;
10800 offbits = (mips_opts.micromips ? 12 : 16);
10801 goto ld_st;
10802 case M_CACHE_AB:
10803 s = "cache";
10804 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
10805 offbits = (mips_opts.micromips ? 12 : 16);
10806 goto ld_st;
10807 case M_CACHEE_AB:
10808 s = "cachee";
10809 fmt = "k,+j(b)";
10810 offbits = 9;
10811 goto ld_st;
10812 case M_PREF_AB:
10813 s = "pref";
10814 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
10815 offbits = (mips_opts.micromips ? 12 : 16);
10816 goto ld_st;
10817 case M_PREFE_AB:
10818 s = "prefe";
10819 fmt = "k,+j(b)";
10820 offbits = 9;
10821 goto ld_st;
10822 case M_SDC1_AB:
10823 s = "sdc1";
10824 fmt = "T,o(b)";
10825 coproc = 1;
10826 /* Itbl support may require additional care here. */
10827 goto ld_st;
10828 case M_SDC2_AB:
10829 s = "sdc2";
10830 fmt = COP12_FMT;
10831 offbits = (mips_opts.micromips ? 12 : 16);
10832 /* Itbl support may require additional care here. */
10833 coproc = 1;
10834 goto ld_st;
10835 case M_SQC2_AB:
10836 s = "sqc2";
10837 fmt = "+7,o(b)";
10838 /* Itbl support may require additional care here. */
10839 coproc = 1;
10840 goto ld_st;
10841 case M_SDC3_AB:
10842 gas_assert (!mips_opts.micromips);
10843 s = "sdc3";
10844 fmt = "E,o(b)";
10845 /* Itbl support may require additional care here. */
10846 coproc = 1;
10847 goto ld_st;
10848 case M_SDL_AB:
10849 s = "sdl";
10850 fmt = MEM12_FMT;
10851 offbits = (mips_opts.micromips ? 12 : 16);
10852 goto ld_st;
10853 case M_SDR_AB:
10854 s = "sdr";
10855 fmt = MEM12_FMT;
10856 offbits = (mips_opts.micromips ? 12 : 16);
10857 goto ld_st;
10858 case M_SWP_AB:
10859 gas_assert (mips_opts.micromips);
10860 s = "swp";
10861 fmt = "t,~(b)";
10862 offbits = 12;
10863 goto ld_st;
10864 case M_SDP_AB:
10865 gas_assert (mips_opts.micromips);
10866 s = "sdp";
10867 fmt = "t,~(b)";
10868 offbits = 12;
10869 goto ld_st;
10870 case M_SWM_AB:
10871 gas_assert (mips_opts.micromips);
10872 s = "swm";
10873 fmt = "n,~(b)";
10874 offbits = 12;
10875 goto ld_st;
10876 case M_SDM_AB:
10877 gas_assert (mips_opts.micromips);
10878 s = "sdm";
10879 fmt = "n,~(b)";
10880 offbits = 12;
10881
10882 ld_st:
10883 tempreg = AT;
10884 ld_noat:
10885 breg = op[2];
10886 if (small_offset_p (0, align, 16))
10887 {
10888 /* The first case exists for M_LD_AB and M_SD_AB, which are
10889 macros for o32 but which should act like normal instructions
10890 otherwise. */
10891 if (offbits == 16)
10892 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
10893 offset_reloc[1], offset_reloc[2], breg);
10894 else if (small_offset_p (0, align, offbits))
10895 {
10896 if (offbits == 0)
10897 macro_build (NULL, s, fmt, op[0], breg);
10898 else
10899 macro_build (NULL, s, fmt, op[0],
10900 (int) offset_expr.X_add_number, breg);
10901 }
10902 else
10903 {
10904 if (tempreg == AT)
10905 used_at = 1;
10906 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10907 tempreg, breg, -1, offset_reloc[0],
10908 offset_reloc[1], offset_reloc[2]);
10909 if (offbits == 0)
10910 macro_build (NULL, s, fmt, op[0], tempreg);
10911 else
10912 macro_build (NULL, s, fmt, op[0], 0, tempreg);
10913 }
10914 break;
10915 }
10916
10917 if (tempreg == AT)
10918 used_at = 1;
10919
10920 if (offset_expr.X_op != O_constant
10921 && offset_expr.X_op != O_symbol)
10922 {
10923 as_bad (_("expression too complex"));
10924 offset_expr.X_op = O_constant;
10925 }
10926
10927 if (HAVE_32BIT_ADDRESSES
10928 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10929 {
10930 char value [32];
10931
10932 sprintf_vma (value, offset_expr.X_add_number);
10933 as_bad (_("number (0x%s) larger than 32 bits"), value);
10934 }
10935
10936 /* A constant expression in PIC code can be handled just as it
10937 is in non PIC code. */
10938 if (offset_expr.X_op == O_constant)
10939 {
10940 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
10941 offbits == 0 ? 16 : offbits);
10942 offset_expr.X_add_number -= expr1.X_add_number;
10943
10944 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
10945 if (breg != 0)
10946 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10947 tempreg, tempreg, breg);
10948 if (offbits == 0)
10949 {
10950 if (offset_expr.X_add_number != 0)
10951 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
10952 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
10953 macro_build (NULL, s, fmt, op[0], tempreg);
10954 }
10955 else if (offbits == 16)
10956 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
10957 else
10958 macro_build (NULL, s, fmt, op[0],
10959 (int) offset_expr.X_add_number, tempreg);
10960 }
10961 else if (offbits != 16)
10962 {
10963 /* The offset field is too narrow to be used for a low-part
10964 relocation, so load the whole address into the auxillary
10965 register. */
10966 load_address (tempreg, &offset_expr, &used_at);
10967 if (breg != 0)
10968 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10969 tempreg, tempreg, breg);
10970 if (offbits == 0)
10971 macro_build (NULL, s, fmt, op[0], tempreg);
10972 else
10973 macro_build (NULL, s, fmt, op[0], 0, tempreg);
10974 }
10975 else if (mips_pic == NO_PIC)
10976 {
10977 /* If this is a reference to a GP relative symbol, and there
10978 is no base register, we want
10979 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
10980 Otherwise, if there is no base register, we want
10981 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10982 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
10983 If we have a constant, we need two instructions anyhow,
10984 so we always use the latter form.
10985
10986 If we have a base register, and this is a reference to a
10987 GP relative symbol, we want
10988 addu $tempreg,$breg,$gp
10989 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
10990 Otherwise we want
10991 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10992 addu $tempreg,$tempreg,$breg
10993 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
10994 With a constant we always use the latter case.
10995
10996 With 64bit address space and no base register and $at usable,
10997 we want
10998 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10999 lui $at,<sym> (BFD_RELOC_HI16_S)
11000 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11001 dsll32 $tempreg,0
11002 daddu $tempreg,$at
11003 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11004 If we have a base register, we want
11005 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11006 lui $at,<sym> (BFD_RELOC_HI16_S)
11007 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11008 daddu $at,$breg
11009 dsll32 $tempreg,0
11010 daddu $tempreg,$at
11011 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11012
11013 Without $at we can't generate the optimal path for superscalar
11014 processors here since this would require two temporary registers.
11015 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11016 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11017 dsll $tempreg,16
11018 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11019 dsll $tempreg,16
11020 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11021 If we have a base register, we want
11022 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11023 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11024 dsll $tempreg,16
11025 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11026 dsll $tempreg,16
11027 daddu $tempreg,$tempreg,$breg
11028 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11029
11030 For GP relative symbols in 64bit address space we can use
11031 the same sequence as in 32bit address space. */
11032 if (HAVE_64BIT_SYMBOLS)
11033 {
11034 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11035 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11036 {
11037 relax_start (offset_expr.X_add_symbol);
11038 if (breg == 0)
11039 {
11040 macro_build (&offset_expr, s, fmt, op[0],
11041 BFD_RELOC_GPREL16, mips_gp_register);
11042 }
11043 else
11044 {
11045 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11046 tempreg, breg, mips_gp_register);
11047 macro_build (&offset_expr, s, fmt, op[0],
11048 BFD_RELOC_GPREL16, tempreg);
11049 }
11050 relax_switch ();
11051 }
11052
11053 if (used_at == 0 && mips_opts.at)
11054 {
11055 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11056 BFD_RELOC_MIPS_HIGHEST);
11057 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11058 BFD_RELOC_HI16_S);
11059 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11060 tempreg, BFD_RELOC_MIPS_HIGHER);
11061 if (breg != 0)
11062 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11063 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11064 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11065 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11066 tempreg);
11067 used_at = 1;
11068 }
11069 else
11070 {
11071 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11072 BFD_RELOC_MIPS_HIGHEST);
11073 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11074 tempreg, BFD_RELOC_MIPS_HIGHER);
11075 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11076 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11077 tempreg, BFD_RELOC_HI16_S);
11078 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11079 if (breg != 0)
11080 macro_build (NULL, "daddu", "d,v,t",
11081 tempreg, tempreg, breg);
11082 macro_build (&offset_expr, s, fmt, op[0],
11083 BFD_RELOC_LO16, tempreg);
11084 }
11085
11086 if (mips_relax.sequence)
11087 relax_end ();
11088 break;
11089 }
11090
11091 if (breg == 0)
11092 {
11093 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11094 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11095 {
11096 relax_start (offset_expr.X_add_symbol);
11097 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11098 mips_gp_register);
11099 relax_switch ();
11100 }
11101 macro_build_lui (&offset_expr, tempreg);
11102 macro_build (&offset_expr, s, fmt, op[0],
11103 BFD_RELOC_LO16, tempreg);
11104 if (mips_relax.sequence)
11105 relax_end ();
11106 }
11107 else
11108 {
11109 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11110 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11111 {
11112 relax_start (offset_expr.X_add_symbol);
11113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11114 tempreg, breg, mips_gp_register);
11115 macro_build (&offset_expr, s, fmt, op[0],
11116 BFD_RELOC_GPREL16, tempreg);
11117 relax_switch ();
11118 }
11119 macro_build_lui (&offset_expr, tempreg);
11120 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11121 tempreg, tempreg, breg);
11122 macro_build (&offset_expr, s, fmt, op[0],
11123 BFD_RELOC_LO16, tempreg);
11124 if (mips_relax.sequence)
11125 relax_end ();
11126 }
11127 }
11128 else if (!mips_big_got)
11129 {
11130 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11131
11132 /* If this is a reference to an external symbol, we want
11133 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11134 nop
11135 <op> op[0],0($tempreg)
11136 Otherwise we want
11137 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11138 nop
11139 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11140 <op> op[0],0($tempreg)
11141
11142 For NewABI, we want
11143 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11144 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11145
11146 If there is a base register, we add it to $tempreg before
11147 the <op>. If there is a constant, we stick it in the
11148 <op> instruction. We don't handle constants larger than
11149 16 bits, because we have no way to load the upper 16 bits
11150 (actually, we could handle them for the subset of cases
11151 in which we are not using $at). */
11152 gas_assert (offset_expr.X_op == O_symbol);
11153 if (HAVE_NEWABI)
11154 {
11155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11156 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11157 if (breg != 0)
11158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11159 tempreg, tempreg, breg);
11160 macro_build (&offset_expr, s, fmt, op[0],
11161 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11162 break;
11163 }
11164 expr1.X_add_number = offset_expr.X_add_number;
11165 offset_expr.X_add_number = 0;
11166 if (expr1.X_add_number < -0x8000
11167 || expr1.X_add_number >= 0x8000)
11168 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11169 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11170 lw_reloc_type, mips_gp_register);
11171 load_delay_nop ();
11172 relax_start (offset_expr.X_add_symbol);
11173 relax_switch ();
11174 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11175 tempreg, BFD_RELOC_LO16);
11176 relax_end ();
11177 if (breg != 0)
11178 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11179 tempreg, tempreg, breg);
11180 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11181 }
11182 else if (mips_big_got && !HAVE_NEWABI)
11183 {
11184 int gpdelay;
11185
11186 /* If this is a reference to an external symbol, we want
11187 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11188 addu $tempreg,$tempreg,$gp
11189 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11190 <op> op[0],0($tempreg)
11191 Otherwise we want
11192 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11193 nop
11194 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11195 <op> op[0],0($tempreg)
11196 If there is a base register, we add it to $tempreg before
11197 the <op>. If there is a constant, we stick it in the
11198 <op> instruction. We don't handle constants larger than
11199 16 bits, because we have no way to load the upper 16 bits
11200 (actually, we could handle them for the subset of cases
11201 in which we are not using $at). */
11202 gas_assert (offset_expr.X_op == O_symbol);
11203 expr1.X_add_number = offset_expr.X_add_number;
11204 offset_expr.X_add_number = 0;
11205 if (expr1.X_add_number < -0x8000
11206 || expr1.X_add_number >= 0x8000)
11207 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11208 gpdelay = reg_needs_delay (mips_gp_register);
11209 relax_start (offset_expr.X_add_symbol);
11210 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11211 BFD_RELOC_MIPS_GOT_HI16);
11212 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11213 mips_gp_register);
11214 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11215 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11216 relax_switch ();
11217 if (gpdelay)
11218 macro_build (NULL, "nop", "");
11219 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11220 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11221 load_delay_nop ();
11222 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11223 tempreg, BFD_RELOC_LO16);
11224 relax_end ();
11225
11226 if (breg != 0)
11227 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11228 tempreg, tempreg, breg);
11229 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11230 }
11231 else if (mips_big_got && HAVE_NEWABI)
11232 {
11233 /* If this is a reference to an external symbol, we want
11234 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11235 add $tempreg,$tempreg,$gp
11236 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11237 <op> op[0],<ofst>($tempreg)
11238 Otherwise, for local symbols, we want:
11239 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11240 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11241 gas_assert (offset_expr.X_op == O_symbol);
11242 expr1.X_add_number = offset_expr.X_add_number;
11243 offset_expr.X_add_number = 0;
11244 if (expr1.X_add_number < -0x8000
11245 || expr1.X_add_number >= 0x8000)
11246 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11247 relax_start (offset_expr.X_add_symbol);
11248 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11249 BFD_RELOC_MIPS_GOT_HI16);
11250 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11251 mips_gp_register);
11252 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11253 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11254 if (breg != 0)
11255 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11256 tempreg, tempreg, breg);
11257 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11258
11259 relax_switch ();
11260 offset_expr.X_add_number = expr1.X_add_number;
11261 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11262 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11263 if (breg != 0)
11264 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11265 tempreg, tempreg, breg);
11266 macro_build (&offset_expr, s, fmt, op[0],
11267 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11268 relax_end ();
11269 }
11270 else
11271 abort ();
11272
11273 break;
11274
11275 case M_JRADDIUSP:
11276 gas_assert (mips_opts.micromips);
11277 gas_assert (mips_opts.insn32);
11278 start_noreorder ();
11279 macro_build (NULL, "jr", "s", RA);
11280 expr1.X_add_number = op[0] << 2;
11281 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11282 end_noreorder ();
11283 break;
11284
11285 case M_JRC:
11286 gas_assert (mips_opts.micromips);
11287 gas_assert (mips_opts.insn32);
11288 macro_build (NULL, "jr", "s", op[0]);
11289 if (mips_opts.noreorder)
11290 macro_build (NULL, "nop", "");
11291 break;
11292
11293 case M_LI:
11294 case M_LI_S:
11295 load_register (op[0], &imm_expr, 0);
11296 break;
11297
11298 case M_DLI:
11299 load_register (op[0], &imm_expr, 1);
11300 break;
11301
11302 case M_LI_SS:
11303 if (imm_expr.X_op == O_constant)
11304 {
11305 used_at = 1;
11306 load_register (AT, &imm_expr, 0);
11307 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
11308 break;
11309 }
11310 else
11311 {
11312 gas_assert (imm_expr.X_op == O_absent
11313 && offset_expr.X_op == O_symbol
11314 && strcmp (segment_name (S_GET_SEGMENT
11315 (offset_expr.X_add_symbol)),
11316 ".lit4") == 0
11317 && offset_expr.X_add_number == 0);
11318 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
11319 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
11320 break;
11321 }
11322
11323 case M_LI_D:
11324 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
11325 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
11326 order 32 bits of the value and the low order 32 bits are either
11327 zero or in OFFSET_EXPR. */
11328 if (imm_expr.X_op == O_constant)
11329 {
11330 if (HAVE_64BIT_GPRS)
11331 load_register (op[0], &imm_expr, 1);
11332 else
11333 {
11334 int hreg, lreg;
11335
11336 if (target_big_endian)
11337 {
11338 hreg = op[0];
11339 lreg = op[0] + 1;
11340 }
11341 else
11342 {
11343 hreg = op[0] + 1;
11344 lreg = op[0];
11345 }
11346
11347 if (hreg <= 31)
11348 load_register (hreg, &imm_expr, 0);
11349 if (lreg <= 31)
11350 {
11351 if (offset_expr.X_op == O_absent)
11352 move_register (lreg, 0);
11353 else
11354 {
11355 gas_assert (offset_expr.X_op == O_constant);
11356 load_register (lreg, &offset_expr, 0);
11357 }
11358 }
11359 }
11360 break;
11361 }
11362 gas_assert (imm_expr.X_op == O_absent);
11363
11364 /* We know that sym is in the .rdata section. First we get the
11365 upper 16 bits of the address. */
11366 if (mips_pic == NO_PIC)
11367 {
11368 macro_build_lui (&offset_expr, AT);
11369 used_at = 1;
11370 }
11371 else
11372 {
11373 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11374 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11375 used_at = 1;
11376 }
11377
11378 /* Now we load the register(s). */
11379 if (HAVE_64BIT_GPRS)
11380 {
11381 used_at = 1;
11382 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
11383 BFD_RELOC_LO16, AT);
11384 }
11385 else
11386 {
11387 used_at = 1;
11388 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
11389 BFD_RELOC_LO16, AT);
11390 if (op[0] != RA)
11391 {
11392 /* FIXME: How in the world do we deal with the possible
11393 overflow here? */
11394 offset_expr.X_add_number += 4;
11395 macro_build (&offset_expr, "lw", "t,o(b)",
11396 op[0] + 1, BFD_RELOC_LO16, AT);
11397 }
11398 }
11399 break;
11400
11401 case M_LI_DD:
11402 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
11403 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
11404 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
11405 the value and the low order 32 bits are either zero or in
11406 OFFSET_EXPR. */
11407 if (imm_expr.X_op == O_constant)
11408 {
11409 used_at = 1;
11410 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
11411 if (HAVE_64BIT_FPRS)
11412 {
11413 gas_assert (HAVE_64BIT_GPRS);
11414 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
11415 }
11416 else
11417 {
11418 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
11419 if (offset_expr.X_op == O_absent)
11420 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
11421 else
11422 {
11423 gas_assert (offset_expr.X_op == O_constant);
11424 load_register (AT, &offset_expr, 0);
11425 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
11426 }
11427 }
11428 break;
11429 }
11430
11431 gas_assert (imm_expr.X_op == O_absent
11432 && offset_expr.X_op == O_symbol
11433 && offset_expr.X_add_number == 0);
11434 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
11435 if (strcmp (s, ".lit8") == 0)
11436 {
11437 op[2] = mips_gp_register;
11438 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
11439 offset_reloc[1] = BFD_RELOC_UNUSED;
11440 offset_reloc[2] = BFD_RELOC_UNUSED;
11441 }
11442 else
11443 {
11444 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
11445 used_at = 1;
11446 if (mips_pic != NO_PIC)
11447 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11448 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11449 else
11450 {
11451 /* FIXME: This won't work for a 64 bit address. */
11452 macro_build_lui (&offset_expr, AT);
11453 }
11454
11455 op[2] = AT;
11456 offset_reloc[0] = BFD_RELOC_LO16;
11457 offset_reloc[1] = BFD_RELOC_UNUSED;
11458 offset_reloc[2] = BFD_RELOC_UNUSED;
11459 }
11460 align = 8;
11461 /* Fall through */
11462
11463 case M_L_DAB:
11464 /*
11465 * The MIPS assembler seems to check for X_add_number not
11466 * being double aligned and generating:
11467 * lui at,%hi(foo+1)
11468 * addu at,at,v1
11469 * addiu at,at,%lo(foo+1)
11470 * lwc1 f2,0(at)
11471 * lwc1 f3,4(at)
11472 * But, the resulting address is the same after relocation so why
11473 * generate the extra instruction?
11474 */
11475 /* Itbl support may require additional care here. */
11476 coproc = 1;
11477 fmt = "T,o(b)";
11478 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
11479 {
11480 s = "ldc1";
11481 goto ld_st;
11482 }
11483 s = "lwc1";
11484 goto ldd_std;
11485
11486 case M_S_DAB:
11487 gas_assert (!mips_opts.micromips);
11488 /* Itbl support may require additional care here. */
11489 coproc = 1;
11490 fmt = "T,o(b)";
11491 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
11492 {
11493 s = "sdc1";
11494 goto ld_st;
11495 }
11496 s = "swc1";
11497 goto ldd_std;
11498
11499 case M_LQ_AB:
11500 fmt = "t,o(b)";
11501 s = "lq";
11502 goto ld;
11503
11504 case M_SQ_AB:
11505 fmt = "t,o(b)";
11506 s = "sq";
11507 goto ld_st;
11508
11509 case M_LD_AB:
11510 fmt = "t,o(b)";
11511 if (HAVE_64BIT_GPRS)
11512 {
11513 s = "ld";
11514 goto ld;
11515 }
11516 s = "lw";
11517 goto ldd_std;
11518
11519 case M_SD_AB:
11520 fmt = "t,o(b)";
11521 if (HAVE_64BIT_GPRS)
11522 {
11523 s = "sd";
11524 goto ld_st;
11525 }
11526 s = "sw";
11527
11528 ldd_std:
11529 /* Even on a big endian machine $fn comes before $fn+1. We have
11530 to adjust when loading from memory. We set coproc if we must
11531 load $fn+1 first. */
11532 /* Itbl support may require additional care here. */
11533 if (!target_big_endian)
11534 coproc = 0;
11535
11536 breg = op[2];
11537 if (small_offset_p (0, align, 16))
11538 {
11539 ep = &offset_expr;
11540 if (!small_offset_p (4, align, 16))
11541 {
11542 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
11543 -1, offset_reloc[0], offset_reloc[1],
11544 offset_reloc[2]);
11545 expr1.X_add_number = 0;
11546 ep = &expr1;
11547 breg = AT;
11548 used_at = 1;
11549 offset_reloc[0] = BFD_RELOC_LO16;
11550 offset_reloc[1] = BFD_RELOC_UNUSED;
11551 offset_reloc[2] = BFD_RELOC_UNUSED;
11552 }
11553 if (strcmp (s, "lw") == 0 && op[0] == breg)
11554 {
11555 ep->X_add_number += 4;
11556 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
11557 offset_reloc[1], offset_reloc[2], breg);
11558 ep->X_add_number -= 4;
11559 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
11560 offset_reloc[1], offset_reloc[2], breg);
11561 }
11562 else
11563 {
11564 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
11565 offset_reloc[0], offset_reloc[1], offset_reloc[2],
11566 breg);
11567 ep->X_add_number += 4;
11568 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
11569 offset_reloc[0], offset_reloc[1], offset_reloc[2],
11570 breg);
11571 }
11572 break;
11573 }
11574
11575 if (offset_expr.X_op != O_symbol
11576 && offset_expr.X_op != O_constant)
11577 {
11578 as_bad (_("expression too complex"));
11579 offset_expr.X_op = O_constant;
11580 }
11581
11582 if (HAVE_32BIT_ADDRESSES
11583 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11584 {
11585 char value [32];
11586
11587 sprintf_vma (value, offset_expr.X_add_number);
11588 as_bad (_("number (0x%s) larger than 32 bits"), value);
11589 }
11590
11591 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
11592 {
11593 /* If this is a reference to a GP relative symbol, we want
11594 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11595 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
11596 If we have a base register, we use this
11597 addu $at,$breg,$gp
11598 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
11599 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
11600 If this is not a GP relative symbol, we want
11601 lui $at,<sym> (BFD_RELOC_HI16_S)
11602 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11603 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11604 If there is a base register, we add it to $at after the
11605 lui instruction. If there is a constant, we always use
11606 the last case. */
11607 if (offset_expr.X_op == O_symbol
11608 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11609 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11610 {
11611 relax_start (offset_expr.X_add_symbol);
11612 if (breg == 0)
11613 {
11614 tempreg = mips_gp_register;
11615 }
11616 else
11617 {
11618 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11619 AT, breg, mips_gp_register);
11620 tempreg = AT;
11621 used_at = 1;
11622 }
11623
11624 /* Itbl support may require additional care here. */
11625 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11626 BFD_RELOC_GPREL16, tempreg);
11627 offset_expr.X_add_number += 4;
11628
11629 /* Set mips_optimize to 2 to avoid inserting an
11630 undesired nop. */
11631 hold_mips_optimize = mips_optimize;
11632 mips_optimize = 2;
11633 /* Itbl support may require additional care here. */
11634 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11635 BFD_RELOC_GPREL16, tempreg);
11636 mips_optimize = hold_mips_optimize;
11637
11638 relax_switch ();
11639
11640 offset_expr.X_add_number -= 4;
11641 }
11642 used_at = 1;
11643 if (offset_high_part (offset_expr.X_add_number, 16)
11644 != offset_high_part (offset_expr.X_add_number + 4, 16))
11645 {
11646 load_address (AT, &offset_expr, &used_at);
11647 offset_expr.X_op = O_constant;
11648 offset_expr.X_add_number = 0;
11649 }
11650 else
11651 macro_build_lui (&offset_expr, AT);
11652 if (breg != 0)
11653 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11654 /* Itbl support may require additional care here. */
11655 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11656 BFD_RELOC_LO16, AT);
11657 /* FIXME: How do we handle overflow here? */
11658 offset_expr.X_add_number += 4;
11659 /* Itbl support may require additional care here. */
11660 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11661 BFD_RELOC_LO16, AT);
11662 if (mips_relax.sequence)
11663 relax_end ();
11664 }
11665 else if (!mips_big_got)
11666 {
11667 /* If this is a reference to an external symbol, we want
11668 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11669 nop
11670 <op> op[0],0($at)
11671 <op> op[0]+1,4($at)
11672 Otherwise we want
11673 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11674 nop
11675 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11676 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11677 If there is a base register we add it to $at before the
11678 lwc1 instructions. If there is a constant we include it
11679 in the lwc1 instructions. */
11680 used_at = 1;
11681 expr1.X_add_number = offset_expr.X_add_number;
11682 if (expr1.X_add_number < -0x8000
11683 || expr1.X_add_number >= 0x8000 - 4)
11684 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11685 load_got_offset (AT, &offset_expr);
11686 load_delay_nop ();
11687 if (breg != 0)
11688 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11689
11690 /* Set mips_optimize to 2 to avoid inserting an undesired
11691 nop. */
11692 hold_mips_optimize = mips_optimize;
11693 mips_optimize = 2;
11694
11695 /* Itbl support may require additional care here. */
11696 relax_start (offset_expr.X_add_symbol);
11697 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
11698 BFD_RELOC_LO16, AT);
11699 expr1.X_add_number += 4;
11700 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
11701 BFD_RELOC_LO16, AT);
11702 relax_switch ();
11703 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11704 BFD_RELOC_LO16, AT);
11705 offset_expr.X_add_number += 4;
11706 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11707 BFD_RELOC_LO16, AT);
11708 relax_end ();
11709
11710 mips_optimize = hold_mips_optimize;
11711 }
11712 else if (mips_big_got)
11713 {
11714 int gpdelay;
11715
11716 /* If this is a reference to an external symbol, we want
11717 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11718 addu $at,$at,$gp
11719 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
11720 nop
11721 <op> op[0],0($at)
11722 <op> op[0]+1,4($at)
11723 Otherwise we want
11724 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11725 nop
11726 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
11727 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
11728 If there is a base register we add it to $at before the
11729 lwc1 instructions. If there is a constant we include it
11730 in the lwc1 instructions. */
11731 used_at = 1;
11732 expr1.X_add_number = offset_expr.X_add_number;
11733 offset_expr.X_add_number = 0;
11734 if (expr1.X_add_number < -0x8000
11735 || expr1.X_add_number >= 0x8000 - 4)
11736 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11737 gpdelay = reg_needs_delay (mips_gp_register);
11738 relax_start (offset_expr.X_add_symbol);
11739 macro_build (&offset_expr, "lui", LUI_FMT,
11740 AT, BFD_RELOC_MIPS_GOT_HI16);
11741 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11742 AT, AT, mips_gp_register);
11743 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11744 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
11745 load_delay_nop ();
11746 if (breg != 0)
11747 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11748 /* Itbl support may require additional care here. */
11749 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
11750 BFD_RELOC_LO16, AT);
11751 expr1.X_add_number += 4;
11752
11753 /* Set mips_optimize to 2 to avoid inserting an undesired
11754 nop. */
11755 hold_mips_optimize = mips_optimize;
11756 mips_optimize = 2;
11757 /* Itbl support may require additional care here. */
11758 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
11759 BFD_RELOC_LO16, AT);
11760 mips_optimize = hold_mips_optimize;
11761 expr1.X_add_number -= 4;
11762
11763 relax_switch ();
11764 offset_expr.X_add_number = expr1.X_add_number;
11765 if (gpdelay)
11766 macro_build (NULL, "nop", "");
11767 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
11768 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11769 load_delay_nop ();
11770 if (breg != 0)
11771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
11772 /* Itbl support may require additional care here. */
11773 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
11774 BFD_RELOC_LO16, AT);
11775 offset_expr.X_add_number += 4;
11776
11777 /* Set mips_optimize to 2 to avoid inserting an undesired
11778 nop. */
11779 hold_mips_optimize = mips_optimize;
11780 mips_optimize = 2;
11781 /* Itbl support may require additional care here. */
11782 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
11783 BFD_RELOC_LO16, AT);
11784 mips_optimize = hold_mips_optimize;
11785 relax_end ();
11786 }
11787 else
11788 abort ();
11789
11790 break;
11791
11792 case M_SAA_AB:
11793 s = "saa";
11794 offbits = 0;
11795 fmt = "t,(b)";
11796 goto ld_st;
11797 case M_SAAD_AB:
11798 s = "saad";
11799 offbits = 0;
11800 fmt = "t,(b)";
11801 goto ld_st;
11802
11803 /* New code added to support COPZ instructions.
11804 This code builds table entries out of the macros in mip_opcodes.
11805 R4000 uses interlocks to handle coproc delays.
11806 Other chips (like the R3000) require nops to be inserted for delays.
11807
11808 FIXME: Currently, we require that the user handle delays.
11809 In order to fill delay slots for non-interlocked chips,
11810 we must have a way to specify delays based on the coprocessor.
11811 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
11812 What are the side-effects of the cop instruction?
11813 What cache support might we have and what are its effects?
11814 Both coprocessor & memory require delays. how long???
11815 What registers are read/set/modified?
11816
11817 If an itbl is provided to interpret cop instructions,
11818 this knowledge can be encoded in the itbl spec. */
11819
11820 case M_COP0:
11821 s = "c0";
11822 goto copz;
11823 case M_COP1:
11824 s = "c1";
11825 goto copz;
11826 case M_COP2:
11827 s = "c2";
11828 goto copz;
11829 case M_COP3:
11830 s = "c3";
11831 copz:
11832 gas_assert (!mips_opts.micromips);
11833 /* For now we just do C (same as Cz). The parameter will be
11834 stored in insn_opcode by mips_ip. */
11835 macro_build (NULL, s, "C", (int) ip->insn_opcode);
11836 break;
11837
11838 case M_MOVE:
11839 move_register (op[0], op[1]);
11840 break;
11841
11842 case M_MOVEP:
11843 gas_assert (mips_opts.micromips);
11844 gas_assert (mips_opts.insn32);
11845 move_register (micromips_to_32_reg_h_map1[op[0]],
11846 micromips_to_32_reg_m_map[op[1]]);
11847 move_register (micromips_to_32_reg_h_map2[op[0]],
11848 micromips_to_32_reg_n_map[op[2]]);
11849 break;
11850
11851 case M_DMUL:
11852 dbl = 1;
11853 case M_MUL:
11854 if (mips_opts.arch == CPU_R5900)
11855 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
11856 op[2]);
11857 else
11858 {
11859 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
11860 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
11861 }
11862 break;
11863
11864 case M_DMUL_I:
11865 dbl = 1;
11866 case M_MUL_I:
11867 /* The MIPS assembler some times generates shifts and adds. I'm
11868 not trying to be that fancy. GCC should do this for us
11869 anyway. */
11870 used_at = 1;
11871 load_register (AT, &imm_expr, dbl);
11872 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
11873 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
11874 break;
11875
11876 case M_DMULO_I:
11877 dbl = 1;
11878 case M_MULO_I:
11879 imm = 1;
11880 goto do_mulo;
11881
11882 case M_DMULO:
11883 dbl = 1;
11884 case M_MULO:
11885 do_mulo:
11886 start_noreorder ();
11887 used_at = 1;
11888 if (imm)
11889 load_register (AT, &imm_expr, dbl);
11890 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
11891 op[1], imm ? AT : op[2]);
11892 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
11893 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
11894 macro_build (NULL, "mfhi", MFHL_FMT, AT);
11895 if (mips_trap)
11896 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
11897 else
11898 {
11899 if (mips_opts.micromips)
11900 micromips_label_expr (&label_expr);
11901 else
11902 label_expr.X_add_number = 8;
11903 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
11904 macro_build (NULL, "nop", "");
11905 macro_build (NULL, "break", BRK_FMT, 6);
11906 if (mips_opts.micromips)
11907 micromips_add_label ();
11908 }
11909 end_noreorder ();
11910 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
11911 break;
11912
11913 case M_DMULOU_I:
11914 dbl = 1;
11915 case M_MULOU_I:
11916 imm = 1;
11917 goto do_mulou;
11918
11919 case M_DMULOU:
11920 dbl = 1;
11921 case M_MULOU:
11922 do_mulou:
11923 start_noreorder ();
11924 used_at = 1;
11925 if (imm)
11926 load_register (AT, &imm_expr, dbl);
11927 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
11928 op[1], imm ? AT : op[2]);
11929 macro_build (NULL, "mfhi", MFHL_FMT, AT);
11930 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
11931 if (mips_trap)
11932 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
11933 else
11934 {
11935 if (mips_opts.micromips)
11936 micromips_label_expr (&label_expr);
11937 else
11938 label_expr.X_add_number = 8;
11939 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
11940 macro_build (NULL, "nop", "");
11941 macro_build (NULL, "break", BRK_FMT, 6);
11942 if (mips_opts.micromips)
11943 micromips_add_label ();
11944 }
11945 end_noreorder ();
11946 break;
11947
11948 case M_DROL:
11949 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
11950 {
11951 if (op[0] == op[1])
11952 {
11953 tempreg = AT;
11954 used_at = 1;
11955 }
11956 else
11957 tempreg = op[0];
11958 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
11959 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
11960 break;
11961 }
11962 used_at = 1;
11963 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
11964 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
11965 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
11966 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
11967 break;
11968
11969 case M_ROL:
11970 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
11971 {
11972 if (op[0] == op[1])
11973 {
11974 tempreg = AT;
11975 used_at = 1;
11976 }
11977 else
11978 tempreg = op[0];
11979 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
11980 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
11981 break;
11982 }
11983 used_at = 1;
11984 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
11985 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
11986 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
11987 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
11988 break;
11989
11990 case M_DROL_I:
11991 {
11992 unsigned int rot;
11993 char *l;
11994 char *rr;
11995
11996 rot = imm_expr.X_add_number & 0x3f;
11997 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
11998 {
11999 rot = (64 - rot) & 0x3f;
12000 if (rot >= 32)
12001 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12002 else
12003 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12004 break;
12005 }
12006 if (rot == 0)
12007 {
12008 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12009 break;
12010 }
12011 l = (rot < 0x20) ? "dsll" : "dsll32";
12012 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12013 rot &= 0x1f;
12014 used_at = 1;
12015 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12016 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12017 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12018 }
12019 break;
12020
12021 case M_ROL_I:
12022 {
12023 unsigned int rot;
12024
12025 rot = imm_expr.X_add_number & 0x1f;
12026 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12027 {
12028 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12029 (32 - rot) & 0x1f);
12030 break;
12031 }
12032 if (rot == 0)
12033 {
12034 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12035 break;
12036 }
12037 used_at = 1;
12038 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12039 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12040 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12041 }
12042 break;
12043
12044 case M_DROR:
12045 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12046 {
12047 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12048 break;
12049 }
12050 used_at = 1;
12051 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12052 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12053 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12054 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12055 break;
12056
12057 case M_ROR:
12058 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12059 {
12060 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12061 break;
12062 }
12063 used_at = 1;
12064 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12065 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12066 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12067 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12068 break;
12069
12070 case M_DROR_I:
12071 {
12072 unsigned int rot;
12073 char *l;
12074 char *rr;
12075
12076 rot = imm_expr.X_add_number & 0x3f;
12077 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12078 {
12079 if (rot >= 32)
12080 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12081 else
12082 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12083 break;
12084 }
12085 if (rot == 0)
12086 {
12087 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12088 break;
12089 }
12090 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12091 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12092 rot &= 0x1f;
12093 used_at = 1;
12094 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12095 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12096 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12097 }
12098 break;
12099
12100 case M_ROR_I:
12101 {
12102 unsigned int rot;
12103
12104 rot = imm_expr.X_add_number & 0x1f;
12105 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12106 {
12107 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12108 break;
12109 }
12110 if (rot == 0)
12111 {
12112 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12113 break;
12114 }
12115 used_at = 1;
12116 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12117 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12118 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12119 }
12120 break;
12121
12122 case M_SEQ:
12123 if (op[1] == 0)
12124 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12125 else if (op[2] == 0)
12126 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12127 else
12128 {
12129 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12130 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12131 }
12132 break;
12133
12134 case M_SEQ_I:
12135 if (imm_expr.X_add_number == 0)
12136 {
12137 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12138 break;
12139 }
12140 if (op[1] == 0)
12141 {
12142 as_warn (_("instruction %s: result is always false"),
12143 ip->insn_mo->name);
12144 move_register (op[0], 0);
12145 break;
12146 }
12147 if (CPU_HAS_SEQ (mips_opts.arch)
12148 && -512 <= imm_expr.X_add_number
12149 && imm_expr.X_add_number < 512)
12150 {
12151 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12152 (int) imm_expr.X_add_number);
12153 break;
12154 }
12155 if (imm_expr.X_add_number >= 0
12156 && imm_expr.X_add_number < 0x10000)
12157 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12158 else if (imm_expr.X_add_number > -0x8000
12159 && imm_expr.X_add_number < 0)
12160 {
12161 imm_expr.X_add_number = -imm_expr.X_add_number;
12162 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
12163 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12164 }
12165 else if (CPU_HAS_SEQ (mips_opts.arch))
12166 {
12167 used_at = 1;
12168 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12169 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12170 break;
12171 }
12172 else
12173 {
12174 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12175 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12176 used_at = 1;
12177 }
12178 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12179 break;
12180
12181 case M_SGE: /* X >= Y <==> not (X < Y) */
12182 s = "slt";
12183 goto sge;
12184 case M_SGEU:
12185 s = "sltu";
12186 sge:
12187 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12188 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12189 break;
12190
12191 case M_SGE_I: /* X >= I <==> not (X < I) */
12192 case M_SGEU_I:
12193 if (imm_expr.X_add_number >= -0x8000
12194 && imm_expr.X_add_number < 0x8000)
12195 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12196 op[0], op[1], BFD_RELOC_LO16);
12197 else
12198 {
12199 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12200 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12201 op[0], op[1], AT);
12202 used_at = 1;
12203 }
12204 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12205 break;
12206
12207 case M_SGT: /* X > Y <==> Y < X */
12208 s = "slt";
12209 goto sgt;
12210 case M_SGTU:
12211 s = "sltu";
12212 sgt:
12213 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12214 break;
12215
12216 case M_SGT_I: /* X > I <==> I < X */
12217 s = "slt";
12218 goto sgti;
12219 case M_SGTU_I:
12220 s = "sltu";
12221 sgti:
12222 used_at = 1;
12223 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12224 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12225 break;
12226
12227 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12228 s = "slt";
12229 goto sle;
12230 case M_SLEU:
12231 s = "sltu";
12232 sle:
12233 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12234 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12235 break;
12236
12237 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12238 s = "slt";
12239 goto slei;
12240 case M_SLEU_I:
12241 s = "sltu";
12242 slei:
12243 used_at = 1;
12244 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12245 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12246 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12247 break;
12248
12249 case M_SLT_I:
12250 if (imm_expr.X_add_number >= -0x8000
12251 && imm_expr.X_add_number < 0x8000)
12252 {
12253 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12254 BFD_RELOC_LO16);
12255 break;
12256 }
12257 used_at = 1;
12258 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12259 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12260 break;
12261
12262 case M_SLTU_I:
12263 if (imm_expr.X_add_number >= -0x8000
12264 && imm_expr.X_add_number < 0x8000)
12265 {
12266 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12267 BFD_RELOC_LO16);
12268 break;
12269 }
12270 used_at = 1;
12271 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12272 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12273 break;
12274
12275 case M_SNE:
12276 if (op[1] == 0)
12277 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12278 else if (op[2] == 0)
12279 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12280 else
12281 {
12282 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12283 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12284 }
12285 break;
12286
12287 case M_SNE_I:
12288 if (imm_expr.X_add_number == 0)
12289 {
12290 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12291 break;
12292 }
12293 if (op[1] == 0)
12294 {
12295 as_warn (_("instruction %s: result is always true"),
12296 ip->insn_mo->name);
12297 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
12298 op[0], 0, BFD_RELOC_LO16);
12299 break;
12300 }
12301 if (CPU_HAS_SEQ (mips_opts.arch)
12302 && -512 <= imm_expr.X_add_number
12303 && imm_expr.X_add_number < 512)
12304 {
12305 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
12306 (int) imm_expr.X_add_number);
12307 break;
12308 }
12309 if (imm_expr.X_add_number >= 0
12310 && imm_expr.X_add_number < 0x10000)
12311 {
12312 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
12313 BFD_RELOC_LO16);
12314 }
12315 else if (imm_expr.X_add_number > -0x8000
12316 && imm_expr.X_add_number < 0)
12317 {
12318 imm_expr.X_add_number = -imm_expr.X_add_number;
12319 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
12320 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12321 }
12322 else if (CPU_HAS_SEQ (mips_opts.arch))
12323 {
12324 used_at = 1;
12325 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12326 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
12327 break;
12328 }
12329 else
12330 {
12331 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12332 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12333 used_at = 1;
12334 }
12335 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12336 break;
12337
12338 case M_SUB_I:
12339 s = "addi";
12340 s2 = "sub";
12341 goto do_subi;
12342 case M_SUBU_I:
12343 s = "addiu";
12344 s2 = "subu";
12345 goto do_subi;
12346 case M_DSUB_I:
12347 dbl = 1;
12348 s = "daddi";
12349 s2 = "dsub";
12350 if (!mips_opts.micromips)
12351 goto do_subi;
12352 if (imm_expr.X_add_number > -0x200
12353 && imm_expr.X_add_number <= 0x200)
12354 {
12355 macro_build (NULL, s, "t,r,.", op[0], op[1],
12356 (int) -imm_expr.X_add_number);
12357 break;
12358 }
12359 goto do_subi_i;
12360 case M_DSUBU_I:
12361 dbl = 1;
12362 s = "daddiu";
12363 s2 = "dsubu";
12364 do_subi:
12365 if (imm_expr.X_add_number > -0x8000
12366 && imm_expr.X_add_number <= 0x8000)
12367 {
12368 imm_expr.X_add_number = -imm_expr.X_add_number;
12369 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12370 break;
12371 }
12372 do_subi_i:
12373 used_at = 1;
12374 load_register (AT, &imm_expr, dbl);
12375 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
12376 break;
12377
12378 case M_TEQ_I:
12379 s = "teq";
12380 goto trap;
12381 case M_TGE_I:
12382 s = "tge";
12383 goto trap;
12384 case M_TGEU_I:
12385 s = "tgeu";
12386 goto trap;
12387 case M_TLT_I:
12388 s = "tlt";
12389 goto trap;
12390 case M_TLTU_I:
12391 s = "tltu";
12392 goto trap;
12393 case M_TNE_I:
12394 s = "tne";
12395 trap:
12396 used_at = 1;
12397 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
12398 macro_build (NULL, s, "s,t", op[0], AT);
12399 break;
12400
12401 case M_TRUNCWS:
12402 case M_TRUNCWD:
12403 gas_assert (!mips_opts.micromips);
12404 gas_assert (mips_opts.isa == ISA_MIPS1);
12405 used_at = 1;
12406
12407 /*
12408 * Is the double cfc1 instruction a bug in the mips assembler;
12409 * or is there a reason for it?
12410 */
12411 start_noreorder ();
12412 macro_build (NULL, "cfc1", "t,G", op[2], RA);
12413 macro_build (NULL, "cfc1", "t,G", op[2], RA);
12414 macro_build (NULL, "nop", "");
12415 expr1.X_add_number = 3;
12416 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
12417 expr1.X_add_number = 2;
12418 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
12419 macro_build (NULL, "ctc1", "t,G", AT, RA);
12420 macro_build (NULL, "nop", "");
12421 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
12422 op[0], op[1]);
12423 macro_build (NULL, "ctc1", "t,G", op[2], RA);
12424 macro_build (NULL, "nop", "");
12425 end_noreorder ();
12426 break;
12427
12428 case M_ULH_AB:
12429 s = "lb";
12430 s2 = "lbu";
12431 off = 1;
12432 goto uld_st;
12433 case M_ULHU_AB:
12434 s = "lbu";
12435 s2 = "lbu";
12436 off = 1;
12437 goto uld_st;
12438 case M_ULW_AB:
12439 s = "lwl";
12440 s2 = "lwr";
12441 offbits = (mips_opts.micromips ? 12 : 16);
12442 off = 3;
12443 goto uld_st;
12444 case M_ULD_AB:
12445 s = "ldl";
12446 s2 = "ldr";
12447 offbits = (mips_opts.micromips ? 12 : 16);
12448 off = 7;
12449 goto uld_st;
12450 case M_USH_AB:
12451 s = "sb";
12452 s2 = "sb";
12453 off = 1;
12454 ust = 1;
12455 goto uld_st;
12456 case M_USW_AB:
12457 s = "swl";
12458 s2 = "swr";
12459 offbits = (mips_opts.micromips ? 12 : 16);
12460 off = 3;
12461 ust = 1;
12462 goto uld_st;
12463 case M_USD_AB:
12464 s = "sdl";
12465 s2 = "sdr";
12466 offbits = (mips_opts.micromips ? 12 : 16);
12467 off = 7;
12468 ust = 1;
12469
12470 uld_st:
12471 breg = op[2];
12472 large_offset = !small_offset_p (off, align, offbits);
12473 ep = &offset_expr;
12474 expr1.X_add_number = 0;
12475 if (large_offset)
12476 {
12477 used_at = 1;
12478 tempreg = AT;
12479 if (small_offset_p (0, align, 16))
12480 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
12481 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
12482 else
12483 {
12484 load_address (tempreg, ep, &used_at);
12485 if (breg != 0)
12486 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12487 tempreg, tempreg, breg);
12488 }
12489 offset_reloc[0] = BFD_RELOC_LO16;
12490 offset_reloc[1] = BFD_RELOC_UNUSED;
12491 offset_reloc[2] = BFD_RELOC_UNUSED;
12492 breg = tempreg;
12493 tempreg = op[0];
12494 ep = &expr1;
12495 }
12496 else if (!ust && op[0] == breg)
12497 {
12498 used_at = 1;
12499 tempreg = AT;
12500 }
12501 else
12502 tempreg = op[0];
12503
12504 if (off == 1)
12505 goto ulh_sh;
12506
12507 if (!target_big_endian)
12508 ep->X_add_number += off;
12509 if (offbits == 12)
12510 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
12511 else
12512 macro_build (ep, s, "t,o(b)", tempreg, -1,
12513 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12514
12515 if (!target_big_endian)
12516 ep->X_add_number -= off;
12517 else
12518 ep->X_add_number += off;
12519 if (offbits == 12)
12520 macro_build (NULL, s2, "t,~(b)",
12521 tempreg, (int) ep->X_add_number, breg);
12522 else
12523 macro_build (ep, s2, "t,o(b)", tempreg, -1,
12524 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12525
12526 /* If necessary, move the result in tempreg to the final destination. */
12527 if (!ust && op[0] != tempreg)
12528 {
12529 /* Protect second load's delay slot. */
12530 load_delay_nop ();
12531 move_register (op[0], tempreg);
12532 }
12533 break;
12534
12535 ulh_sh:
12536 used_at = 1;
12537 if (target_big_endian == ust)
12538 ep->X_add_number += off;
12539 tempreg = ust || large_offset ? op[0] : AT;
12540 macro_build (ep, s, "t,o(b)", tempreg, -1,
12541 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12542
12543 /* For halfword transfers we need a temporary register to shuffle
12544 bytes. Unfortunately for M_USH_A we have none available before
12545 the next store as AT holds the base address. We deal with this
12546 case by clobbering TREG and then restoring it as with ULH. */
12547 tempreg = ust == large_offset ? op[0] : AT;
12548 if (ust)
12549 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
12550
12551 if (target_big_endian == ust)
12552 ep->X_add_number -= off;
12553 else
12554 ep->X_add_number += off;
12555 macro_build (ep, s2, "t,o(b)", tempreg, -1,
12556 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
12557
12558 /* For M_USH_A re-retrieve the LSB. */
12559 if (ust && large_offset)
12560 {
12561 if (target_big_endian)
12562 ep->X_add_number += off;
12563 else
12564 ep->X_add_number -= off;
12565 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
12566 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
12567 }
12568 /* For ULH and M_USH_A OR the LSB in. */
12569 if (!ust || large_offset)
12570 {
12571 tempreg = !large_offset ? AT : op[0];
12572 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
12573 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12574 }
12575 break;
12576
12577 default:
12578 /* FIXME: Check if this is one of the itbl macros, since they
12579 are added dynamically. */
12580 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
12581 break;
12582 }
12583 if (!mips_opts.at && used_at)
12584 as_bad (_("macro used $at after \".set noat\""));
12585 }
12586
12587 /* Implement macros in mips16 mode. */
12588
12589 static void
12590 mips16_macro (struct mips_cl_insn *ip)
12591 {
12592 const struct mips_operand_array *operands;
12593 int mask;
12594 int tmp;
12595 expressionS expr1;
12596 int dbl;
12597 const char *s, *s2, *s3;
12598 unsigned int op[MAX_OPERANDS];
12599 unsigned int i;
12600
12601 mask = ip->insn_mo->mask;
12602
12603 operands = insn_operands (ip);
12604 for (i = 0; i < MAX_OPERANDS; i++)
12605 if (operands->operand[i])
12606 op[i] = insn_extract_operand (ip, operands->operand[i]);
12607 else
12608 op[i] = -1;
12609
12610 expr1.X_op = O_constant;
12611 expr1.X_op_symbol = NULL;
12612 expr1.X_add_symbol = NULL;
12613 expr1.X_add_number = 1;
12614
12615 dbl = 0;
12616
12617 switch (mask)
12618 {
12619 default:
12620 abort ();
12621
12622 case M_DDIV_3:
12623 dbl = 1;
12624 case M_DIV_3:
12625 s = "mflo";
12626 goto do_div3;
12627 case M_DREM_3:
12628 dbl = 1;
12629 case M_REM_3:
12630 s = "mfhi";
12631 do_div3:
12632 start_noreorder ();
12633 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
12634 expr1.X_add_number = 2;
12635 macro_build (&expr1, "bnez", "x,p", op[2]);
12636 macro_build (NULL, "break", "6", 7);
12637
12638 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
12639 since that causes an overflow. We should do that as well,
12640 but I don't see how to do the comparisons without a temporary
12641 register. */
12642 end_noreorder ();
12643 macro_build (NULL, s, "x", op[0]);
12644 break;
12645
12646 case M_DIVU_3:
12647 s = "divu";
12648 s2 = "mflo";
12649 goto do_divu3;
12650 case M_REMU_3:
12651 s = "divu";
12652 s2 = "mfhi";
12653 goto do_divu3;
12654 case M_DDIVU_3:
12655 s = "ddivu";
12656 s2 = "mflo";
12657 goto do_divu3;
12658 case M_DREMU_3:
12659 s = "ddivu";
12660 s2 = "mfhi";
12661 do_divu3:
12662 start_noreorder ();
12663 macro_build (NULL, s, "0,x,y", op[1], op[2]);
12664 expr1.X_add_number = 2;
12665 macro_build (&expr1, "bnez", "x,p", op[2]);
12666 macro_build (NULL, "break", "6", 7);
12667 end_noreorder ();
12668 macro_build (NULL, s2, "x", op[0]);
12669 break;
12670
12671 case M_DMUL:
12672 dbl = 1;
12673 case M_MUL:
12674 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
12675 macro_build (NULL, "mflo", "x", op[0]);
12676 break;
12677
12678 case M_DSUBU_I:
12679 dbl = 1;
12680 goto do_subu;
12681 case M_SUBU_I:
12682 do_subu:
12683 imm_expr.X_add_number = -imm_expr.X_add_number;
12684 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
12685 break;
12686
12687 case M_SUBU_I_2:
12688 imm_expr.X_add_number = -imm_expr.X_add_number;
12689 macro_build (&imm_expr, "addiu", "x,k", op[0]);
12690 break;
12691
12692 case M_DSUBU_I_2:
12693 imm_expr.X_add_number = -imm_expr.X_add_number;
12694 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
12695 break;
12696
12697 case M_BEQ:
12698 s = "cmp";
12699 s2 = "bteqz";
12700 goto do_branch;
12701 case M_BNE:
12702 s = "cmp";
12703 s2 = "btnez";
12704 goto do_branch;
12705 case M_BLT:
12706 s = "slt";
12707 s2 = "btnez";
12708 goto do_branch;
12709 case M_BLTU:
12710 s = "sltu";
12711 s2 = "btnez";
12712 goto do_branch;
12713 case M_BLE:
12714 s = "slt";
12715 s2 = "bteqz";
12716 goto do_reverse_branch;
12717 case M_BLEU:
12718 s = "sltu";
12719 s2 = "bteqz";
12720 goto do_reverse_branch;
12721 case M_BGE:
12722 s = "slt";
12723 s2 = "bteqz";
12724 goto do_branch;
12725 case M_BGEU:
12726 s = "sltu";
12727 s2 = "bteqz";
12728 goto do_branch;
12729 case M_BGT:
12730 s = "slt";
12731 s2 = "btnez";
12732 goto do_reverse_branch;
12733 case M_BGTU:
12734 s = "sltu";
12735 s2 = "btnez";
12736
12737 do_reverse_branch:
12738 tmp = op[1];
12739 op[1] = op[0];
12740 op[0] = tmp;
12741
12742 do_branch:
12743 macro_build (NULL, s, "x,y", op[0], op[1]);
12744 macro_build (&offset_expr, s2, "p");
12745 break;
12746
12747 case M_BEQ_I:
12748 s = "cmpi";
12749 s2 = "bteqz";
12750 s3 = "x,U";
12751 goto do_branch_i;
12752 case M_BNE_I:
12753 s = "cmpi";
12754 s2 = "btnez";
12755 s3 = "x,U";
12756 goto do_branch_i;
12757 case M_BLT_I:
12758 s = "slti";
12759 s2 = "btnez";
12760 s3 = "x,8";
12761 goto do_branch_i;
12762 case M_BLTU_I:
12763 s = "sltiu";
12764 s2 = "btnez";
12765 s3 = "x,8";
12766 goto do_branch_i;
12767 case M_BLE_I:
12768 s = "slti";
12769 s2 = "btnez";
12770 s3 = "x,8";
12771 goto do_addone_branch_i;
12772 case M_BLEU_I:
12773 s = "sltiu";
12774 s2 = "btnez";
12775 s3 = "x,8";
12776 goto do_addone_branch_i;
12777 case M_BGE_I:
12778 s = "slti";
12779 s2 = "bteqz";
12780 s3 = "x,8";
12781 goto do_branch_i;
12782 case M_BGEU_I:
12783 s = "sltiu";
12784 s2 = "bteqz";
12785 s3 = "x,8";
12786 goto do_branch_i;
12787 case M_BGT_I:
12788 s = "slti";
12789 s2 = "bteqz";
12790 s3 = "x,8";
12791 goto do_addone_branch_i;
12792 case M_BGTU_I:
12793 s = "sltiu";
12794 s2 = "bteqz";
12795 s3 = "x,8";
12796
12797 do_addone_branch_i:
12798 ++imm_expr.X_add_number;
12799
12800 do_branch_i:
12801 macro_build (&imm_expr, s, s3, op[0]);
12802 macro_build (&offset_expr, s2, "p");
12803 break;
12804
12805 case M_ABS:
12806 expr1.X_add_number = 0;
12807 macro_build (&expr1, "slti", "x,8", op[1]);
12808 if (op[0] != op[1])
12809 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
12810 expr1.X_add_number = 2;
12811 macro_build (&expr1, "bteqz", "p");
12812 macro_build (NULL, "neg", "x,w", op[0], op[0]);
12813 break;
12814 }
12815 }
12816
12817 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
12818 opcode bits in *OPCODE_EXTRA. */
12819
12820 static struct mips_opcode *
12821 mips_lookup_insn (struct hash_control *hash, const char *start,
12822 ssize_t length, unsigned int *opcode_extra)
12823 {
12824 char *name, *dot, *p;
12825 unsigned int mask, suffix;
12826 ssize_t opend;
12827 struct mips_opcode *insn;
12828
12829 /* Make a copy of the instruction so that we can fiddle with it. */
12830 name = alloca (length + 1);
12831 memcpy (name, start, length);
12832 name[length] = '\0';
12833
12834 /* Look up the instruction as-is. */
12835 insn = (struct mips_opcode *) hash_find (hash, name);
12836 if (insn)
12837 return insn;
12838
12839 dot = strchr (name, '.');
12840 if (dot && dot[1])
12841 {
12842 /* Try to interpret the text after the dot as a VU0 channel suffix. */
12843 p = mips_parse_vu0_channels (dot + 1, &mask);
12844 if (*p == 0 && mask != 0)
12845 {
12846 *dot = 0;
12847 insn = (struct mips_opcode *) hash_find (hash, name);
12848 *dot = '.';
12849 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
12850 {
12851 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
12852 return insn;
12853 }
12854 }
12855 }
12856
12857 if (mips_opts.micromips)
12858 {
12859 /* See if there's an instruction size override suffix,
12860 either `16' or `32', at the end of the mnemonic proper,
12861 that defines the operation, i.e. before the first `.'
12862 character if any. Strip it and retry. */
12863 opend = dot != NULL ? dot - name : length;
12864 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
12865 suffix = 2;
12866 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
12867 suffix = 4;
12868 else
12869 suffix = 0;
12870 if (suffix)
12871 {
12872 memcpy (name + opend - 2, name + opend, length - opend + 1);
12873 insn = (struct mips_opcode *) hash_find (hash, name);
12874 if (insn)
12875 {
12876 forced_insn_length = suffix;
12877 return insn;
12878 }
12879 }
12880 }
12881
12882 return NULL;
12883 }
12884
12885 /* Assemble an instruction into its binary format. If the instruction
12886 is a macro, set imm_expr and offset_expr to the values associated
12887 with "I" and "A" operands respectively. Otherwise store the value
12888 of the relocatable field (if any) in offset_expr. In both cases
12889 set offset_reloc to the relocation operators applied to offset_expr. */
12890
12891 static void
12892 mips_ip (char *str, struct mips_cl_insn *insn)
12893 {
12894 const struct mips_opcode *first, *past;
12895 struct hash_control *hash;
12896 char format;
12897 size_t end;
12898 struct mips_operand_token *tokens;
12899 unsigned int opcode_extra;
12900
12901 if (mips_opts.micromips)
12902 {
12903 hash = micromips_op_hash;
12904 past = &micromips_opcodes[bfd_micromips_num_opcodes];
12905 }
12906 else
12907 {
12908 hash = op_hash;
12909 past = &mips_opcodes[NUMOPCODES];
12910 }
12911 forced_insn_length = 0;
12912 opcode_extra = 0;
12913
12914 /* We first try to match an instruction up to a space or to the end. */
12915 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
12916 continue;
12917
12918 first = mips_lookup_insn (hash, str, end, &opcode_extra);
12919 if (first == NULL)
12920 {
12921 set_insn_error (0, _("unrecognized opcode"));
12922 return;
12923 }
12924
12925 if (strcmp (first->name, "li.s") == 0)
12926 format = 'f';
12927 else if (strcmp (first->name, "li.d") == 0)
12928 format = 'd';
12929 else
12930 format = 0;
12931 tokens = mips_parse_arguments (str + end, format);
12932 if (!tokens)
12933 return;
12934
12935 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
12936 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
12937 set_insn_error (0, _("invalid operands"));
12938
12939 obstack_free (&mips_operand_tokens, tokens);
12940 }
12941
12942 /* As for mips_ip, but used when assembling MIPS16 code.
12943 Also set forced_insn_length to the resulting instruction size in
12944 bytes if the user explicitly requested a small or extended instruction. */
12945
12946 static void
12947 mips16_ip (char *str, struct mips_cl_insn *insn)
12948 {
12949 char *end, *s, c;
12950 struct mips_opcode *first;
12951 struct mips_operand_token *tokens;
12952
12953 forced_insn_length = 0;
12954
12955 for (s = str; ISLOWER (*s); ++s)
12956 ;
12957 end = s;
12958 c = *end;
12959 switch (c)
12960 {
12961 case '\0':
12962 break;
12963
12964 case ' ':
12965 s++;
12966 break;
12967
12968 case '.':
12969 if (s[1] == 't' && s[2] == ' ')
12970 {
12971 forced_insn_length = 2;
12972 s += 3;
12973 break;
12974 }
12975 else if (s[1] == 'e' && s[2] == ' ')
12976 {
12977 forced_insn_length = 4;
12978 s += 3;
12979 break;
12980 }
12981 /* Fall through. */
12982 default:
12983 set_insn_error (0, _("unrecognized opcode"));
12984 return;
12985 }
12986
12987 if (mips_opts.noautoextend && !forced_insn_length)
12988 forced_insn_length = 2;
12989
12990 *end = 0;
12991 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
12992 *end = c;
12993
12994 if (!first)
12995 {
12996 set_insn_error (0, _("unrecognized opcode"));
12997 return;
12998 }
12999
13000 tokens = mips_parse_arguments (s, 0);
13001 if (!tokens)
13002 return;
13003
13004 if (!match_mips16_insns (insn, first, tokens))
13005 set_insn_error (0, _("invalid operands"));
13006
13007 obstack_free (&mips_operand_tokens, tokens);
13008 }
13009
13010 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13011 NBITS is the number of significant bits in VAL. */
13012
13013 static unsigned long
13014 mips16_immed_extend (offsetT val, unsigned int nbits)
13015 {
13016 int extval;
13017 if (nbits == 16)
13018 {
13019 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13020 val &= 0x1f;
13021 }
13022 else if (nbits == 15)
13023 {
13024 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13025 val &= 0xf;
13026 }
13027 else
13028 {
13029 extval = ((val & 0x1f) << 6) | (val & 0x20);
13030 val = 0;
13031 }
13032 return (extval << 16) | val;
13033 }
13034
13035 /* Like decode_mips16_operand, but require the operand to be defined and
13036 require it to be an integer. */
13037
13038 static const struct mips_int_operand *
13039 mips16_immed_operand (int type, bfd_boolean extended_p)
13040 {
13041 const struct mips_operand *operand;
13042
13043 operand = decode_mips16_operand (type, extended_p);
13044 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13045 abort ();
13046 return (const struct mips_int_operand *) operand;
13047 }
13048
13049 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13050
13051 static bfd_boolean
13052 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13053 bfd_reloc_code_real_type reloc, offsetT sval)
13054 {
13055 int min_val, max_val;
13056
13057 min_val = mips_int_operand_min (operand);
13058 max_val = mips_int_operand_max (operand);
13059 if (reloc != BFD_RELOC_UNUSED)
13060 {
13061 if (min_val < 0)
13062 sval = SEXT_16BIT (sval);
13063 else
13064 sval &= 0xffff;
13065 }
13066
13067 return (sval >= min_val
13068 && sval <= max_val
13069 && (sval & ((1 << operand->shift) - 1)) == 0);
13070 }
13071
13072 /* Install immediate value VAL into MIPS16 instruction *INSN,
13073 extending it if necessary. The instruction in *INSN may
13074 already be extended.
13075
13076 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13077 if none. In the former case, VAL is a 16-bit number with no
13078 defined signedness.
13079
13080 TYPE is the type of the immediate field. USER_INSN_LENGTH
13081 is the length that the user requested, or 0 if none. */
13082
13083 static void
13084 mips16_immed (char *file, unsigned int line, int type,
13085 bfd_reloc_code_real_type reloc, offsetT val,
13086 unsigned int user_insn_length, unsigned long *insn)
13087 {
13088 const struct mips_int_operand *operand;
13089 unsigned int uval, length;
13090
13091 operand = mips16_immed_operand (type, FALSE);
13092 if (!mips16_immed_in_range_p (operand, reloc, val))
13093 {
13094 /* We need an extended instruction. */
13095 if (user_insn_length == 2)
13096 as_bad_where (file, line, _("invalid unextended operand value"));
13097 else
13098 *insn |= MIPS16_EXTEND;
13099 }
13100 else if (user_insn_length == 4)
13101 {
13102 /* The operand doesn't force an unextended instruction to be extended.
13103 Warn if the user wanted an extended instruction anyway. */
13104 *insn |= MIPS16_EXTEND;
13105 as_warn_where (file, line,
13106 _("extended operand requested but not required"));
13107 }
13108
13109 length = mips16_opcode_length (*insn);
13110 if (length == 4)
13111 {
13112 operand = mips16_immed_operand (type, TRUE);
13113 if (!mips16_immed_in_range_p (operand, reloc, val))
13114 as_bad_where (file, line,
13115 _("operand value out of range for instruction"));
13116 }
13117 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13118 if (length == 2)
13119 *insn = mips_insert_operand (&operand->root, *insn, uval);
13120 else
13121 *insn |= mips16_immed_extend (uval, operand->root.size);
13122 }
13123 \f
13124 struct percent_op_match
13125 {
13126 const char *str;
13127 bfd_reloc_code_real_type reloc;
13128 };
13129
13130 static const struct percent_op_match mips_percent_op[] =
13131 {
13132 {"%lo", BFD_RELOC_LO16},
13133 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13134 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13135 {"%call16", BFD_RELOC_MIPS_CALL16},
13136 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13137 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13138 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13139 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13140 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13141 {"%got", BFD_RELOC_MIPS_GOT16},
13142 {"%gp_rel", BFD_RELOC_GPREL16},
13143 {"%half", BFD_RELOC_16},
13144 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13145 {"%higher", BFD_RELOC_MIPS_HIGHER},
13146 {"%neg", BFD_RELOC_MIPS_SUB},
13147 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13148 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13149 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13150 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13151 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13152 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13153 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13154 {"%hi", BFD_RELOC_HI16_S}
13155 };
13156
13157 static const struct percent_op_match mips16_percent_op[] =
13158 {
13159 {"%lo", BFD_RELOC_MIPS16_LO16},
13160 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13161 {"%got", BFD_RELOC_MIPS16_GOT16},
13162 {"%call16", BFD_RELOC_MIPS16_CALL16},
13163 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13164 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13165 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13166 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13167 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13168 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13169 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13170 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13171 };
13172
13173
13174 /* Return true if *STR points to a relocation operator. When returning true,
13175 move *STR over the operator and store its relocation code in *RELOC.
13176 Leave both *STR and *RELOC alone when returning false. */
13177
13178 static bfd_boolean
13179 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13180 {
13181 const struct percent_op_match *percent_op;
13182 size_t limit, i;
13183
13184 if (mips_opts.mips16)
13185 {
13186 percent_op = mips16_percent_op;
13187 limit = ARRAY_SIZE (mips16_percent_op);
13188 }
13189 else
13190 {
13191 percent_op = mips_percent_op;
13192 limit = ARRAY_SIZE (mips_percent_op);
13193 }
13194
13195 for (i = 0; i < limit; i++)
13196 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13197 {
13198 int len = strlen (percent_op[i].str);
13199
13200 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13201 continue;
13202
13203 *str += strlen (percent_op[i].str);
13204 *reloc = percent_op[i].reloc;
13205
13206 /* Check whether the output BFD supports this relocation.
13207 If not, issue an error and fall back on something safe. */
13208 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13209 {
13210 as_bad (_("relocation %s isn't supported by the current ABI"),
13211 percent_op[i].str);
13212 *reloc = BFD_RELOC_UNUSED;
13213 }
13214 return TRUE;
13215 }
13216 return FALSE;
13217 }
13218
13219
13220 /* Parse string STR as a 16-bit relocatable operand. Store the
13221 expression in *EP and the relocations in the array starting
13222 at RELOC. Return the number of relocation operators used.
13223
13224 On exit, EXPR_END points to the first character after the expression. */
13225
13226 static size_t
13227 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13228 char *str)
13229 {
13230 bfd_reloc_code_real_type reversed_reloc[3];
13231 size_t reloc_index, i;
13232 int crux_depth, str_depth;
13233 char *crux;
13234
13235 /* Search for the start of the main expression, recoding relocations
13236 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13237 of the main expression and with CRUX_DEPTH containing the number
13238 of open brackets at that point. */
13239 reloc_index = -1;
13240 str_depth = 0;
13241 do
13242 {
13243 reloc_index++;
13244 crux = str;
13245 crux_depth = str_depth;
13246
13247 /* Skip over whitespace and brackets, keeping count of the number
13248 of brackets. */
13249 while (*str == ' ' || *str == '\t' || *str == '(')
13250 if (*str++ == '(')
13251 str_depth++;
13252 }
13253 while (*str == '%'
13254 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13255 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13256
13257 my_getExpression (ep, crux);
13258 str = expr_end;
13259
13260 /* Match every open bracket. */
13261 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13262 if (*str++ == ')')
13263 crux_depth--;
13264
13265 if (crux_depth > 0)
13266 as_bad (_("unclosed '('"));
13267
13268 expr_end = str;
13269
13270 if (reloc_index != 0)
13271 {
13272 prev_reloc_op_frag = frag_now;
13273 for (i = 0; i < reloc_index; i++)
13274 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13275 }
13276
13277 return reloc_index;
13278 }
13279
13280 static void
13281 my_getExpression (expressionS *ep, char *str)
13282 {
13283 char *save_in;
13284
13285 save_in = input_line_pointer;
13286 input_line_pointer = str;
13287 expression (ep);
13288 expr_end = input_line_pointer;
13289 input_line_pointer = save_in;
13290 }
13291
13292 char *
13293 md_atof (int type, char *litP, int *sizeP)
13294 {
13295 return ieee_md_atof (type, litP, sizeP, target_big_endian);
13296 }
13297
13298 void
13299 md_number_to_chars (char *buf, valueT val, int n)
13300 {
13301 if (target_big_endian)
13302 number_to_chars_bigendian (buf, val, n);
13303 else
13304 number_to_chars_littleendian (buf, val, n);
13305 }
13306 \f
13307 static int support_64bit_objects(void)
13308 {
13309 const char **list, **l;
13310 int yes;
13311
13312 list = bfd_target_list ();
13313 for (l = list; *l != NULL; l++)
13314 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
13315 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
13316 break;
13317 yes = (*l != NULL);
13318 free (list);
13319 return yes;
13320 }
13321
13322 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
13323 NEW_VALUE. Warn if another value was already specified. Note:
13324 we have to defer parsing the -march and -mtune arguments in order
13325 to handle 'from-abi' correctly, since the ABI might be specified
13326 in a later argument. */
13327
13328 static void
13329 mips_set_option_string (const char **string_ptr, const char *new_value)
13330 {
13331 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
13332 as_warn (_("a different %s was already specified, is now %s"),
13333 string_ptr == &mips_arch_string ? "-march" : "-mtune",
13334 new_value);
13335
13336 *string_ptr = new_value;
13337 }
13338
13339 int
13340 md_parse_option (int c, char *arg)
13341 {
13342 unsigned int i;
13343
13344 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
13345 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
13346 {
13347 file_ase_explicit |= mips_set_ase (&mips_ases[i],
13348 c == mips_ases[i].option_on);
13349 return 1;
13350 }
13351
13352 switch (c)
13353 {
13354 case OPTION_CONSTRUCT_FLOATS:
13355 mips_disable_float_construction = 0;
13356 break;
13357
13358 case OPTION_NO_CONSTRUCT_FLOATS:
13359 mips_disable_float_construction = 1;
13360 break;
13361
13362 case OPTION_TRAP:
13363 mips_trap = 1;
13364 break;
13365
13366 case OPTION_BREAK:
13367 mips_trap = 0;
13368 break;
13369
13370 case OPTION_EB:
13371 target_big_endian = 1;
13372 break;
13373
13374 case OPTION_EL:
13375 target_big_endian = 0;
13376 break;
13377
13378 case 'O':
13379 if (arg == NULL)
13380 mips_optimize = 1;
13381 else if (arg[0] == '0')
13382 mips_optimize = 0;
13383 else if (arg[0] == '1')
13384 mips_optimize = 1;
13385 else
13386 mips_optimize = 2;
13387 break;
13388
13389 case 'g':
13390 if (arg == NULL)
13391 mips_debug = 2;
13392 else
13393 mips_debug = atoi (arg);
13394 break;
13395
13396 case OPTION_MIPS1:
13397 file_mips_isa = ISA_MIPS1;
13398 break;
13399
13400 case OPTION_MIPS2:
13401 file_mips_isa = ISA_MIPS2;
13402 break;
13403
13404 case OPTION_MIPS3:
13405 file_mips_isa = ISA_MIPS3;
13406 break;
13407
13408 case OPTION_MIPS4:
13409 file_mips_isa = ISA_MIPS4;
13410 break;
13411
13412 case OPTION_MIPS5:
13413 file_mips_isa = ISA_MIPS5;
13414 break;
13415
13416 case OPTION_MIPS32:
13417 file_mips_isa = ISA_MIPS32;
13418 break;
13419
13420 case OPTION_MIPS32R2:
13421 file_mips_isa = ISA_MIPS32R2;
13422 break;
13423
13424 case OPTION_MIPS64R2:
13425 file_mips_isa = ISA_MIPS64R2;
13426 break;
13427
13428 case OPTION_MIPS64:
13429 file_mips_isa = ISA_MIPS64;
13430 break;
13431
13432 case OPTION_MTUNE:
13433 mips_set_option_string (&mips_tune_string, arg);
13434 break;
13435
13436 case OPTION_MARCH:
13437 mips_set_option_string (&mips_arch_string, arg);
13438 break;
13439
13440 case OPTION_M4650:
13441 mips_set_option_string (&mips_arch_string, "4650");
13442 mips_set_option_string (&mips_tune_string, "4650");
13443 break;
13444
13445 case OPTION_NO_M4650:
13446 break;
13447
13448 case OPTION_M4010:
13449 mips_set_option_string (&mips_arch_string, "4010");
13450 mips_set_option_string (&mips_tune_string, "4010");
13451 break;
13452
13453 case OPTION_NO_M4010:
13454 break;
13455
13456 case OPTION_M4100:
13457 mips_set_option_string (&mips_arch_string, "4100");
13458 mips_set_option_string (&mips_tune_string, "4100");
13459 break;
13460
13461 case OPTION_NO_M4100:
13462 break;
13463
13464 case OPTION_M3900:
13465 mips_set_option_string (&mips_arch_string, "3900");
13466 mips_set_option_string (&mips_tune_string, "3900");
13467 break;
13468
13469 case OPTION_NO_M3900:
13470 break;
13471
13472 case OPTION_MICROMIPS:
13473 if (mips_opts.mips16 == 1)
13474 {
13475 as_bad (_("-mmicromips cannot be used with -mips16"));
13476 return 0;
13477 }
13478 mips_opts.micromips = 1;
13479 mips_no_prev_insn ();
13480 break;
13481
13482 case OPTION_NO_MICROMIPS:
13483 mips_opts.micromips = 0;
13484 mips_no_prev_insn ();
13485 break;
13486
13487 case OPTION_MIPS16:
13488 if (mips_opts.micromips == 1)
13489 {
13490 as_bad (_("-mips16 cannot be used with -micromips"));
13491 return 0;
13492 }
13493 mips_opts.mips16 = 1;
13494 mips_no_prev_insn ();
13495 break;
13496
13497 case OPTION_NO_MIPS16:
13498 mips_opts.mips16 = 0;
13499 mips_no_prev_insn ();
13500 break;
13501
13502 case OPTION_FIX_24K:
13503 mips_fix_24k = 1;
13504 break;
13505
13506 case OPTION_NO_FIX_24K:
13507 mips_fix_24k = 0;
13508 break;
13509
13510 case OPTION_FIX_LOONGSON2F_JUMP:
13511 mips_fix_loongson2f_jump = TRUE;
13512 break;
13513
13514 case OPTION_NO_FIX_LOONGSON2F_JUMP:
13515 mips_fix_loongson2f_jump = FALSE;
13516 break;
13517
13518 case OPTION_FIX_LOONGSON2F_NOP:
13519 mips_fix_loongson2f_nop = TRUE;
13520 break;
13521
13522 case OPTION_NO_FIX_LOONGSON2F_NOP:
13523 mips_fix_loongson2f_nop = FALSE;
13524 break;
13525
13526 case OPTION_FIX_VR4120:
13527 mips_fix_vr4120 = 1;
13528 break;
13529
13530 case OPTION_NO_FIX_VR4120:
13531 mips_fix_vr4120 = 0;
13532 break;
13533
13534 case OPTION_FIX_VR4130:
13535 mips_fix_vr4130 = 1;
13536 break;
13537
13538 case OPTION_NO_FIX_VR4130:
13539 mips_fix_vr4130 = 0;
13540 break;
13541
13542 case OPTION_FIX_CN63XXP1:
13543 mips_fix_cn63xxp1 = TRUE;
13544 break;
13545
13546 case OPTION_NO_FIX_CN63XXP1:
13547 mips_fix_cn63xxp1 = FALSE;
13548 break;
13549
13550 case OPTION_RELAX_BRANCH:
13551 mips_relax_branch = 1;
13552 break;
13553
13554 case OPTION_NO_RELAX_BRANCH:
13555 mips_relax_branch = 0;
13556 break;
13557
13558 case OPTION_INSN32:
13559 mips_opts.insn32 = TRUE;
13560 break;
13561
13562 case OPTION_NO_INSN32:
13563 mips_opts.insn32 = FALSE;
13564 break;
13565
13566 case OPTION_MSHARED:
13567 mips_in_shared = TRUE;
13568 break;
13569
13570 case OPTION_MNO_SHARED:
13571 mips_in_shared = FALSE;
13572 break;
13573
13574 case OPTION_MSYM32:
13575 mips_opts.sym32 = TRUE;
13576 break;
13577
13578 case OPTION_MNO_SYM32:
13579 mips_opts.sym32 = FALSE;
13580 break;
13581
13582 /* When generating ELF code, we permit -KPIC and -call_shared to
13583 select SVR4_PIC, and -non_shared to select no PIC. This is
13584 intended to be compatible with Irix 5. */
13585 case OPTION_CALL_SHARED:
13586 mips_pic = SVR4_PIC;
13587 mips_abicalls = TRUE;
13588 break;
13589
13590 case OPTION_CALL_NONPIC:
13591 mips_pic = NO_PIC;
13592 mips_abicalls = TRUE;
13593 break;
13594
13595 case OPTION_NON_SHARED:
13596 mips_pic = NO_PIC;
13597 mips_abicalls = FALSE;
13598 break;
13599
13600 /* The -xgot option tells the assembler to use 32 bit offsets
13601 when accessing the got in SVR4_PIC mode. It is for Irix
13602 compatibility. */
13603 case OPTION_XGOT:
13604 mips_big_got = 1;
13605 break;
13606
13607 case 'G':
13608 g_switch_value = atoi (arg);
13609 g_switch_seen = 1;
13610 break;
13611
13612 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
13613 and -mabi=64. */
13614 case OPTION_32:
13615 mips_abi = O32_ABI;
13616 break;
13617
13618 case OPTION_N32:
13619 mips_abi = N32_ABI;
13620 break;
13621
13622 case OPTION_64:
13623 mips_abi = N64_ABI;
13624 if (!support_64bit_objects())
13625 as_fatal (_("no compiled in support for 64 bit object file format"));
13626 break;
13627
13628 case OPTION_GP32:
13629 file_mips_gp32 = 1;
13630 break;
13631
13632 case OPTION_GP64:
13633 file_mips_gp32 = 0;
13634 break;
13635
13636 case OPTION_FP32:
13637 file_mips_fp32 = 1;
13638 break;
13639
13640 case OPTION_FP64:
13641 file_mips_fp32 = 0;
13642 break;
13643
13644 case OPTION_SINGLE_FLOAT:
13645 file_mips_single_float = 1;
13646 break;
13647
13648 case OPTION_DOUBLE_FLOAT:
13649 file_mips_single_float = 0;
13650 break;
13651
13652 case OPTION_SOFT_FLOAT:
13653 file_mips_soft_float = 1;
13654 break;
13655
13656 case OPTION_HARD_FLOAT:
13657 file_mips_soft_float = 0;
13658 break;
13659
13660 case OPTION_MABI:
13661 if (strcmp (arg, "32") == 0)
13662 mips_abi = O32_ABI;
13663 else if (strcmp (arg, "o64") == 0)
13664 mips_abi = O64_ABI;
13665 else if (strcmp (arg, "n32") == 0)
13666 mips_abi = N32_ABI;
13667 else if (strcmp (arg, "64") == 0)
13668 {
13669 mips_abi = N64_ABI;
13670 if (! support_64bit_objects())
13671 as_fatal (_("no compiled in support for 64 bit object file "
13672 "format"));
13673 }
13674 else if (strcmp (arg, "eabi") == 0)
13675 mips_abi = EABI_ABI;
13676 else
13677 {
13678 as_fatal (_("invalid abi -mabi=%s"), arg);
13679 return 0;
13680 }
13681 break;
13682
13683 case OPTION_M7000_HILO_FIX:
13684 mips_7000_hilo_fix = TRUE;
13685 break;
13686
13687 case OPTION_MNO_7000_HILO_FIX:
13688 mips_7000_hilo_fix = FALSE;
13689 break;
13690
13691 case OPTION_MDEBUG:
13692 mips_flag_mdebug = TRUE;
13693 break;
13694
13695 case OPTION_NO_MDEBUG:
13696 mips_flag_mdebug = FALSE;
13697 break;
13698
13699 case OPTION_PDR:
13700 mips_flag_pdr = TRUE;
13701 break;
13702
13703 case OPTION_NO_PDR:
13704 mips_flag_pdr = FALSE;
13705 break;
13706
13707 case OPTION_MVXWORKS_PIC:
13708 mips_pic = VXWORKS_PIC;
13709 break;
13710
13711 case OPTION_NAN:
13712 if (strcmp (arg, "2008") == 0)
13713 mips_flag_nan2008 = TRUE;
13714 else if (strcmp (arg, "legacy") == 0)
13715 mips_flag_nan2008 = FALSE;
13716 else
13717 {
13718 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
13719 return 0;
13720 }
13721 break;
13722
13723 default:
13724 return 0;
13725 }
13726
13727 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
13728
13729 return 1;
13730 }
13731 \f
13732 /* Set up globals to generate code for the ISA or processor
13733 described by INFO. */
13734
13735 static void
13736 mips_set_architecture (const struct mips_cpu_info *info)
13737 {
13738 if (info != 0)
13739 {
13740 file_mips_arch = info->cpu;
13741 mips_opts.arch = info->cpu;
13742 mips_opts.isa = info->isa;
13743 }
13744 }
13745
13746
13747 /* Likewise for tuning. */
13748
13749 static void
13750 mips_set_tune (const struct mips_cpu_info *info)
13751 {
13752 if (info != 0)
13753 mips_tune = info->cpu;
13754 }
13755
13756
13757 void
13758 mips_after_parse_args (void)
13759 {
13760 const struct mips_cpu_info *arch_info = 0;
13761 const struct mips_cpu_info *tune_info = 0;
13762
13763 /* GP relative stuff not working for PE */
13764 if (strncmp (TARGET_OS, "pe", 2) == 0)
13765 {
13766 if (g_switch_seen && g_switch_value != 0)
13767 as_bad (_("-G not supported in this configuration"));
13768 g_switch_value = 0;
13769 }
13770
13771 if (mips_abi == NO_ABI)
13772 mips_abi = MIPS_DEFAULT_ABI;
13773
13774 /* The following code determines the architecture and register size.
13775 Similar code was added to GCC 3.3 (see override_options() in
13776 config/mips/mips.c). The GAS and GCC code should be kept in sync
13777 as much as possible. */
13778
13779 if (mips_arch_string != 0)
13780 arch_info = mips_parse_cpu ("-march", mips_arch_string);
13781
13782 if (file_mips_isa != ISA_UNKNOWN)
13783 {
13784 /* Handle -mipsN. At this point, file_mips_isa contains the
13785 ISA level specified by -mipsN, while arch_info->isa contains
13786 the -march selection (if any). */
13787 if (arch_info != 0)
13788 {
13789 /* -march takes precedence over -mipsN, since it is more descriptive.
13790 There's no harm in specifying both as long as the ISA levels
13791 are the same. */
13792 if (file_mips_isa != arch_info->isa)
13793 as_bad (_("-%s conflicts with the other architecture options,"
13794 " which imply -%s"),
13795 mips_cpu_info_from_isa (file_mips_isa)->name,
13796 mips_cpu_info_from_isa (arch_info->isa)->name);
13797 }
13798 else
13799 arch_info = mips_cpu_info_from_isa (file_mips_isa);
13800 }
13801
13802 if (arch_info == 0)
13803 {
13804 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
13805 gas_assert (arch_info);
13806 }
13807
13808 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
13809 as_bad (_("-march=%s is not compatible with the selected ABI"),
13810 arch_info->name);
13811
13812 mips_set_architecture (arch_info);
13813
13814 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
13815 if (mips_tune_string != 0)
13816 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
13817
13818 if (tune_info == 0)
13819 mips_set_tune (arch_info);
13820 else
13821 mips_set_tune (tune_info);
13822
13823 if (file_mips_gp32 >= 0)
13824 {
13825 /* The user specified the size of the integer registers. Make sure
13826 it agrees with the ABI and ISA. */
13827 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
13828 as_bad (_("-mgp64 used with a 32-bit processor"));
13829 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
13830 as_bad (_("-mgp32 used with a 64-bit ABI"));
13831 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
13832 as_bad (_("-mgp64 used with a 32-bit ABI"));
13833 }
13834 else
13835 {
13836 /* Infer the integer register size from the ABI and processor.
13837 Restrict ourselves to 32-bit registers if that's all the
13838 processor has, or if the ABI cannot handle 64-bit registers. */
13839 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
13840 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
13841 }
13842
13843 switch (file_mips_fp32)
13844 {
13845 default:
13846 case -1:
13847 /* No user specified float register size.
13848 ??? GAS treats single-float processors as though they had 64-bit
13849 float registers (although it complains when double-precision
13850 instructions are used). As things stand, saying they have 32-bit
13851 registers would lead to spurious "register must be even" messages.
13852 So here we assume float registers are never smaller than the
13853 integer ones. */
13854 if (file_mips_gp32 == 0)
13855 /* 64-bit integer registers implies 64-bit float registers. */
13856 file_mips_fp32 = 0;
13857 else if ((mips_opts.ase & FP64_ASES)
13858 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
13859 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
13860 file_mips_fp32 = 0;
13861 else
13862 /* 32-bit float registers. */
13863 file_mips_fp32 = 1;
13864 break;
13865
13866 /* The user specified the size of the float registers. Check if it
13867 agrees with the ABI and ISA. */
13868 case 0:
13869 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13870 as_bad (_("-mfp64 used with a 32-bit fpu"));
13871 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
13872 && !ISA_HAS_MXHC1 (mips_opts.isa))
13873 as_warn (_("-mfp64 used with a 32-bit ABI"));
13874 break;
13875 case 1:
13876 if (ABI_NEEDS_64BIT_REGS (mips_abi))
13877 as_warn (_("-mfp32 used with a 64-bit ABI"));
13878 break;
13879 }
13880
13881 /* End of GCC-shared inference code. */
13882
13883 /* This flag is set when we have a 64-bit capable CPU but use only
13884 32-bit wide registers. Note that EABI does not use it. */
13885 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
13886 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
13887 || mips_abi == O32_ABI))
13888 mips_32bitmode = 1;
13889
13890 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
13891 as_bad (_("trap exception not supported at ISA 1"));
13892
13893 /* If the selected architecture includes support for ASEs, enable
13894 generation of code for them. */
13895 if (mips_opts.mips16 == -1)
13896 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
13897 if (mips_opts.micromips == -1)
13898 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
13899
13900 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
13901 ASEs from being selected implicitly. */
13902 if (file_mips_fp32 == 1)
13903 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
13904
13905 /* If the user didn't explicitly select or deselect a particular ASE,
13906 use the default setting for the CPU. */
13907 mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
13908
13909 file_mips_isa = mips_opts.isa;
13910 file_ase = mips_opts.ase;
13911 mips_opts.gp32 = file_mips_gp32;
13912 mips_opts.fp32 = file_mips_fp32;
13913 mips_opts.soft_float = file_mips_soft_float;
13914 mips_opts.single_float = file_mips_single_float;
13915
13916 mips_check_isa_supports_ases ();
13917
13918 if (mips_flag_mdebug < 0)
13919 mips_flag_mdebug = 0;
13920 }
13921 \f
13922 void
13923 mips_init_after_args (void)
13924 {
13925 /* initialize opcodes */
13926 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
13927 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
13928 }
13929
13930 long
13931 md_pcrel_from (fixS *fixP)
13932 {
13933 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
13934 switch (fixP->fx_r_type)
13935 {
13936 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
13937 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
13938 /* Return the address of the delay slot. */
13939 return addr + 2;
13940
13941 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
13942 case BFD_RELOC_MICROMIPS_JMP:
13943 case BFD_RELOC_16_PCREL_S2:
13944 case BFD_RELOC_MIPS_JMP:
13945 /* Return the address of the delay slot. */
13946 return addr + 4;
13947
13948 case BFD_RELOC_32_PCREL:
13949 return addr;
13950
13951 default:
13952 /* We have no relocation type for PC relative MIPS16 instructions. */
13953 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
13954 as_bad_where (fixP->fx_file, fixP->fx_line,
13955 _("PC relative MIPS16 instruction references"
13956 " a different section"));
13957 return addr;
13958 }
13959 }
13960
13961 /* This is called before the symbol table is processed. In order to
13962 work with gcc when using mips-tfile, we must keep all local labels.
13963 However, in other cases, we want to discard them. If we were
13964 called with -g, but we didn't see any debugging information, it may
13965 mean that gcc is smuggling debugging information through to
13966 mips-tfile, in which case we must generate all local labels. */
13967
13968 void
13969 mips_frob_file_before_adjust (void)
13970 {
13971 #ifndef NO_ECOFF_DEBUGGING
13972 if (ECOFF_DEBUGGING
13973 && mips_debug != 0
13974 && ! ecoff_debugging_seen)
13975 flag_keep_locals = 1;
13976 #endif
13977 }
13978
13979 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
13980 the corresponding LO16 reloc. This is called before md_apply_fix and
13981 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
13982 relocation operators.
13983
13984 For our purposes, a %lo() expression matches a %got() or %hi()
13985 expression if:
13986
13987 (a) it refers to the same symbol; and
13988 (b) the offset applied in the %lo() expression is no lower than
13989 the offset applied in the %got() or %hi().
13990
13991 (b) allows us to cope with code like:
13992
13993 lui $4,%hi(foo)
13994 lh $4,%lo(foo+2)($4)
13995
13996 ...which is legal on RELA targets, and has a well-defined behaviour
13997 if the user knows that adding 2 to "foo" will not induce a carry to
13998 the high 16 bits.
13999
14000 When several %lo()s match a particular %got() or %hi(), we use the
14001 following rules to distinguish them:
14002
14003 (1) %lo()s with smaller offsets are a better match than %lo()s with
14004 higher offsets.
14005
14006 (2) %lo()s with no matching %got() or %hi() are better than those
14007 that already have a matching %got() or %hi().
14008
14009 (3) later %lo()s are better than earlier %lo()s.
14010
14011 These rules are applied in order.
14012
14013 (1) means, among other things, that %lo()s with identical offsets are
14014 chosen if they exist.
14015
14016 (2) means that we won't associate several high-part relocations with
14017 the same low-part relocation unless there's no alternative. Having
14018 several high parts for the same low part is a GNU extension; this rule
14019 allows careful users to avoid it.
14020
14021 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14022 with the last high-part relocation being at the front of the list.
14023 It therefore makes sense to choose the last matching low-part
14024 relocation, all other things being equal. It's also easier
14025 to code that way. */
14026
14027 void
14028 mips_frob_file (void)
14029 {
14030 struct mips_hi_fixup *l;
14031 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14032
14033 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14034 {
14035 segment_info_type *seginfo;
14036 bfd_boolean matched_lo_p;
14037 fixS **hi_pos, **lo_pos, **pos;
14038
14039 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14040
14041 /* If a GOT16 relocation turns out to be against a global symbol,
14042 there isn't supposed to be a matching LO. Ignore %gots against
14043 constants; we'll report an error for those later. */
14044 if (got16_reloc_p (l->fixp->fx_r_type)
14045 && !(l->fixp->fx_addsy
14046 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14047 continue;
14048
14049 /* Check quickly whether the next fixup happens to be a matching %lo. */
14050 if (fixup_has_matching_lo_p (l->fixp))
14051 continue;
14052
14053 seginfo = seg_info (l->seg);
14054
14055 /* Set HI_POS to the position of this relocation in the chain.
14056 Set LO_POS to the position of the chosen low-part relocation.
14057 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14058 relocation that matches an immediately-preceding high-part
14059 relocation. */
14060 hi_pos = NULL;
14061 lo_pos = NULL;
14062 matched_lo_p = FALSE;
14063 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14064
14065 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14066 {
14067 if (*pos == l->fixp)
14068 hi_pos = pos;
14069
14070 if ((*pos)->fx_r_type == looking_for_rtype
14071 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14072 && (*pos)->fx_offset >= l->fixp->fx_offset
14073 && (lo_pos == NULL
14074 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14075 || (!matched_lo_p
14076 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14077 lo_pos = pos;
14078
14079 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14080 && fixup_has_matching_lo_p (*pos));
14081 }
14082
14083 /* If we found a match, remove the high-part relocation from its
14084 current position and insert it before the low-part relocation.
14085 Make the offsets match so that fixup_has_matching_lo_p()
14086 will return true.
14087
14088 We don't warn about unmatched high-part relocations since some
14089 versions of gcc have been known to emit dead "lui ...%hi(...)"
14090 instructions. */
14091 if (lo_pos != NULL)
14092 {
14093 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14094 if (l->fixp->fx_next != *lo_pos)
14095 {
14096 *hi_pos = l->fixp->fx_next;
14097 l->fixp->fx_next = *lo_pos;
14098 *lo_pos = l->fixp;
14099 }
14100 }
14101 }
14102 }
14103
14104 int
14105 mips_force_relocation (fixS *fixp)
14106 {
14107 if (generic_force_reloc (fixp))
14108 return 1;
14109
14110 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14111 so that the linker relaxation can update targets. */
14112 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14113 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14114 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14115 return 1;
14116
14117 return 0;
14118 }
14119
14120 /* Read the instruction associated with RELOC from BUF. */
14121
14122 static unsigned int
14123 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14124 {
14125 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14126 return read_compressed_insn (buf, 4);
14127 else
14128 return read_insn (buf);
14129 }
14130
14131 /* Write instruction INSN to BUF, given that it has been relocated
14132 by RELOC. */
14133
14134 static void
14135 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14136 unsigned long insn)
14137 {
14138 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14139 write_compressed_insn (buf, insn, 4);
14140 else
14141 write_insn (buf, insn);
14142 }
14143
14144 /* Apply a fixup to the object file. */
14145
14146 void
14147 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14148 {
14149 char *buf;
14150 unsigned long insn;
14151 reloc_howto_type *howto;
14152
14153 /* We ignore generic BFD relocations we don't know about. */
14154 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14155 if (! howto)
14156 return;
14157
14158 gas_assert (fixP->fx_size == 2
14159 || fixP->fx_size == 4
14160 || fixP->fx_r_type == BFD_RELOC_16
14161 || fixP->fx_r_type == BFD_RELOC_64
14162 || fixP->fx_r_type == BFD_RELOC_CTOR
14163 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14164 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14165 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14166 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14167 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
14168
14169 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14170
14171 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
14172 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14173 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14174 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
14175 || fixP->fx_r_type == BFD_RELOC_32_PCREL);
14176
14177 /* Don't treat parts of a composite relocation as done. There are two
14178 reasons for this:
14179
14180 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14181 should nevertheless be emitted if the first part is.
14182
14183 (2) In normal usage, composite relocations are never assembly-time
14184 constants. The easiest way of dealing with the pathological
14185 exceptions is to generate a relocation against STN_UNDEF and
14186 leave everything up to the linker. */
14187 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14188 fixP->fx_done = 1;
14189
14190 switch (fixP->fx_r_type)
14191 {
14192 case BFD_RELOC_MIPS_TLS_GD:
14193 case BFD_RELOC_MIPS_TLS_LDM:
14194 case BFD_RELOC_MIPS_TLS_DTPREL32:
14195 case BFD_RELOC_MIPS_TLS_DTPREL64:
14196 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14197 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14198 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14199 case BFD_RELOC_MIPS_TLS_TPREL32:
14200 case BFD_RELOC_MIPS_TLS_TPREL64:
14201 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14202 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14203 case BFD_RELOC_MICROMIPS_TLS_GD:
14204 case BFD_RELOC_MICROMIPS_TLS_LDM:
14205 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14206 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14207 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14208 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14209 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14210 case BFD_RELOC_MIPS16_TLS_GD:
14211 case BFD_RELOC_MIPS16_TLS_LDM:
14212 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14213 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14214 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14215 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14216 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14217 if (!fixP->fx_addsy)
14218 {
14219 as_bad_where (fixP->fx_file, fixP->fx_line,
14220 _("TLS relocation against a constant"));
14221 break;
14222 }
14223 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14224 /* fall through */
14225
14226 case BFD_RELOC_MIPS_JMP:
14227 case BFD_RELOC_MIPS_SHIFT5:
14228 case BFD_RELOC_MIPS_SHIFT6:
14229 case BFD_RELOC_MIPS_GOT_DISP:
14230 case BFD_RELOC_MIPS_GOT_PAGE:
14231 case BFD_RELOC_MIPS_GOT_OFST:
14232 case BFD_RELOC_MIPS_SUB:
14233 case BFD_RELOC_MIPS_INSERT_A:
14234 case BFD_RELOC_MIPS_INSERT_B:
14235 case BFD_RELOC_MIPS_DELETE:
14236 case BFD_RELOC_MIPS_HIGHEST:
14237 case BFD_RELOC_MIPS_HIGHER:
14238 case BFD_RELOC_MIPS_SCN_DISP:
14239 case BFD_RELOC_MIPS_REL16:
14240 case BFD_RELOC_MIPS_RELGOT:
14241 case BFD_RELOC_MIPS_JALR:
14242 case BFD_RELOC_HI16:
14243 case BFD_RELOC_HI16_S:
14244 case BFD_RELOC_LO16:
14245 case BFD_RELOC_GPREL16:
14246 case BFD_RELOC_MIPS_LITERAL:
14247 case BFD_RELOC_MIPS_CALL16:
14248 case BFD_RELOC_MIPS_GOT16:
14249 case BFD_RELOC_GPREL32:
14250 case BFD_RELOC_MIPS_GOT_HI16:
14251 case BFD_RELOC_MIPS_GOT_LO16:
14252 case BFD_RELOC_MIPS_CALL_HI16:
14253 case BFD_RELOC_MIPS_CALL_LO16:
14254 case BFD_RELOC_MIPS16_GPREL:
14255 case BFD_RELOC_MIPS16_GOT16:
14256 case BFD_RELOC_MIPS16_CALL16:
14257 case BFD_RELOC_MIPS16_HI16:
14258 case BFD_RELOC_MIPS16_HI16_S:
14259 case BFD_RELOC_MIPS16_LO16:
14260 case BFD_RELOC_MIPS16_JMP:
14261 case BFD_RELOC_MICROMIPS_JMP:
14262 case BFD_RELOC_MICROMIPS_GOT_DISP:
14263 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14264 case BFD_RELOC_MICROMIPS_GOT_OFST:
14265 case BFD_RELOC_MICROMIPS_SUB:
14266 case BFD_RELOC_MICROMIPS_HIGHEST:
14267 case BFD_RELOC_MICROMIPS_HIGHER:
14268 case BFD_RELOC_MICROMIPS_SCN_DISP:
14269 case BFD_RELOC_MICROMIPS_JALR:
14270 case BFD_RELOC_MICROMIPS_HI16:
14271 case BFD_RELOC_MICROMIPS_HI16_S:
14272 case BFD_RELOC_MICROMIPS_LO16:
14273 case BFD_RELOC_MICROMIPS_GPREL16:
14274 case BFD_RELOC_MICROMIPS_LITERAL:
14275 case BFD_RELOC_MICROMIPS_CALL16:
14276 case BFD_RELOC_MICROMIPS_GOT16:
14277 case BFD_RELOC_MICROMIPS_GOT_HI16:
14278 case BFD_RELOC_MICROMIPS_GOT_LO16:
14279 case BFD_RELOC_MICROMIPS_CALL_HI16:
14280 case BFD_RELOC_MICROMIPS_CALL_LO16:
14281 case BFD_RELOC_MIPS_EH:
14282 if (fixP->fx_done)
14283 {
14284 offsetT value;
14285
14286 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14287 {
14288 insn = read_reloc_insn (buf, fixP->fx_r_type);
14289 if (mips16_reloc_p (fixP->fx_r_type))
14290 insn |= mips16_immed_extend (value, 16);
14291 else
14292 insn |= (value & 0xffff);
14293 write_reloc_insn (buf, fixP->fx_r_type, insn);
14294 }
14295 else
14296 as_bad_where (fixP->fx_file, fixP->fx_line,
14297 _("unsupported constant in relocation"));
14298 }
14299 break;
14300
14301 case BFD_RELOC_64:
14302 /* This is handled like BFD_RELOC_32, but we output a sign
14303 extended value if we are only 32 bits. */
14304 if (fixP->fx_done)
14305 {
14306 if (8 <= sizeof (valueT))
14307 md_number_to_chars (buf, *valP, 8);
14308 else
14309 {
14310 valueT hiv;
14311
14312 if ((*valP & 0x80000000) != 0)
14313 hiv = 0xffffffff;
14314 else
14315 hiv = 0;
14316 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14317 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14318 }
14319 }
14320 break;
14321
14322 case BFD_RELOC_RVA:
14323 case BFD_RELOC_32:
14324 case BFD_RELOC_32_PCREL:
14325 case BFD_RELOC_16:
14326 /* If we are deleting this reloc entry, we must fill in the
14327 value now. This can happen if we have a .word which is not
14328 resolved when it appears but is later defined. */
14329 if (fixP->fx_done)
14330 md_number_to_chars (buf, *valP, fixP->fx_size);
14331 break;
14332
14333 case BFD_RELOC_16_PCREL_S2:
14334 if ((*valP & 0x3) != 0)
14335 as_bad_where (fixP->fx_file, fixP->fx_line,
14336 _("branch to misaligned address (%lx)"), (long) *valP);
14337
14338 /* We need to save the bits in the instruction since fixup_segment()
14339 might be deleting the relocation entry (i.e., a branch within
14340 the current segment). */
14341 if (! fixP->fx_done)
14342 break;
14343
14344 /* Update old instruction data. */
14345 insn = read_insn (buf);
14346
14347 if (*valP + 0x20000 <= 0x3ffff)
14348 {
14349 insn |= (*valP >> 2) & 0xffff;
14350 write_insn (buf, insn);
14351 }
14352 else if (mips_pic == NO_PIC
14353 && fixP->fx_done
14354 && fixP->fx_frag->fr_address >= text_section->vma
14355 && (fixP->fx_frag->fr_address
14356 < text_section->vma + bfd_get_section_size (text_section))
14357 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
14358 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
14359 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
14360 {
14361 /* The branch offset is too large. If this is an
14362 unconditional branch, and we are not generating PIC code,
14363 we can convert it to an absolute jump instruction. */
14364 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
14365 insn = 0x0c000000; /* jal */
14366 else
14367 insn = 0x08000000; /* j */
14368 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
14369 fixP->fx_done = 0;
14370 fixP->fx_addsy = section_symbol (text_section);
14371 *valP += md_pcrel_from (fixP);
14372 write_insn (buf, insn);
14373 }
14374 else
14375 {
14376 /* If we got here, we have branch-relaxation disabled,
14377 and there's nothing we can do to fix this instruction
14378 without turning it into a longer sequence. */
14379 as_bad_where (fixP->fx_file, fixP->fx_line,
14380 _("branch out of range"));
14381 }
14382 break;
14383
14384 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14385 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14386 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14387 /* We adjust the offset back to even. */
14388 if ((*valP & 0x1) != 0)
14389 --(*valP);
14390
14391 if (! fixP->fx_done)
14392 break;
14393
14394 /* Should never visit here, because we keep the relocation. */
14395 abort ();
14396 break;
14397
14398 case BFD_RELOC_VTABLE_INHERIT:
14399 fixP->fx_done = 0;
14400 if (fixP->fx_addsy
14401 && !S_IS_DEFINED (fixP->fx_addsy)
14402 && !S_IS_WEAK (fixP->fx_addsy))
14403 S_SET_WEAK (fixP->fx_addsy);
14404 break;
14405
14406 case BFD_RELOC_VTABLE_ENTRY:
14407 fixP->fx_done = 0;
14408 break;
14409
14410 default:
14411 abort ();
14412 }
14413
14414 /* Remember value for tc_gen_reloc. */
14415 fixP->fx_addnumber = *valP;
14416 }
14417
14418 static symbolS *
14419 get_symbol (void)
14420 {
14421 int c;
14422 char *name;
14423 symbolS *p;
14424
14425 name = input_line_pointer;
14426 c = get_symbol_end ();
14427 p = (symbolS *) symbol_find_or_make (name);
14428 *input_line_pointer = c;
14429 return p;
14430 }
14431
14432 /* Align the current frag to a given power of two. If a particular
14433 fill byte should be used, FILL points to an integer that contains
14434 that byte, otherwise FILL is null.
14435
14436 This function used to have the comment:
14437
14438 The MIPS assembler also automatically adjusts any preceding label.
14439
14440 The implementation therefore applied the adjustment to a maximum of
14441 one label. However, other label adjustments are applied to batches
14442 of labels, and adjusting just one caused problems when new labels
14443 were added for the sake of debugging or unwind information.
14444 We therefore adjust all preceding labels (given as LABELS) instead. */
14445
14446 static void
14447 mips_align (int to, int *fill, struct insn_label_list *labels)
14448 {
14449 mips_emit_delays ();
14450 mips_record_compressed_mode ();
14451 if (fill == NULL && subseg_text_p (now_seg))
14452 frag_align_code (to, 0);
14453 else
14454 frag_align (to, fill ? *fill : 0, 0);
14455 record_alignment (now_seg, to);
14456 mips_move_labels (labels, FALSE);
14457 }
14458
14459 /* Align to a given power of two. .align 0 turns off the automatic
14460 alignment used by the data creating pseudo-ops. */
14461
14462 static void
14463 s_align (int x ATTRIBUTE_UNUSED)
14464 {
14465 int temp, fill_value, *fill_ptr;
14466 long max_alignment = 28;
14467
14468 /* o Note that the assembler pulls down any immediately preceding label
14469 to the aligned address.
14470 o It's not documented but auto alignment is reinstated by
14471 a .align pseudo instruction.
14472 o Note also that after auto alignment is turned off the mips assembler
14473 issues an error on attempt to assemble an improperly aligned data item.
14474 We don't. */
14475
14476 temp = get_absolute_expression ();
14477 if (temp > max_alignment)
14478 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
14479 else if (temp < 0)
14480 {
14481 as_warn (_("alignment negative, 0 assumed"));
14482 temp = 0;
14483 }
14484 if (*input_line_pointer == ',')
14485 {
14486 ++input_line_pointer;
14487 fill_value = get_absolute_expression ();
14488 fill_ptr = &fill_value;
14489 }
14490 else
14491 fill_ptr = 0;
14492 if (temp)
14493 {
14494 segment_info_type *si = seg_info (now_seg);
14495 struct insn_label_list *l = si->label_list;
14496 /* Auto alignment should be switched on by next section change. */
14497 auto_align = 1;
14498 mips_align (temp, fill_ptr, l);
14499 }
14500 else
14501 {
14502 auto_align = 0;
14503 }
14504
14505 demand_empty_rest_of_line ();
14506 }
14507
14508 static void
14509 s_change_sec (int sec)
14510 {
14511 segT seg;
14512
14513 /* The ELF backend needs to know that we are changing sections, so
14514 that .previous works correctly. We could do something like check
14515 for an obj_section_change_hook macro, but that might be confusing
14516 as it would not be appropriate to use it in the section changing
14517 functions in read.c, since obj-elf.c intercepts those. FIXME:
14518 This should be cleaner, somehow. */
14519 obj_elf_section_change_hook ();
14520
14521 mips_emit_delays ();
14522
14523 switch (sec)
14524 {
14525 case 't':
14526 s_text (0);
14527 break;
14528 case 'd':
14529 s_data (0);
14530 break;
14531 case 'b':
14532 subseg_set (bss_section, (subsegT) get_absolute_expression ());
14533 demand_empty_rest_of_line ();
14534 break;
14535
14536 case 'r':
14537 seg = subseg_new (RDATA_SECTION_NAME,
14538 (subsegT) get_absolute_expression ());
14539 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
14540 | SEC_READONLY | SEC_RELOC
14541 | SEC_DATA));
14542 if (strncmp (TARGET_OS, "elf", 3) != 0)
14543 record_alignment (seg, 4);
14544 demand_empty_rest_of_line ();
14545 break;
14546
14547 case 's':
14548 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
14549 bfd_set_section_flags (stdoutput, seg,
14550 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
14551 if (strncmp (TARGET_OS, "elf", 3) != 0)
14552 record_alignment (seg, 4);
14553 demand_empty_rest_of_line ();
14554 break;
14555
14556 case 'B':
14557 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
14558 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
14559 if (strncmp (TARGET_OS, "elf", 3) != 0)
14560 record_alignment (seg, 4);
14561 demand_empty_rest_of_line ();
14562 break;
14563 }
14564
14565 auto_align = 1;
14566 }
14567
14568 void
14569 s_change_section (int ignore ATTRIBUTE_UNUSED)
14570 {
14571 char *section_name;
14572 char c;
14573 char next_c = 0;
14574 int section_type;
14575 int section_flag;
14576 int section_entry_size;
14577 int section_alignment;
14578
14579 section_name = input_line_pointer;
14580 c = get_symbol_end ();
14581 if (c)
14582 next_c = *(input_line_pointer + 1);
14583
14584 /* Do we have .section Name<,"flags">? */
14585 if (c != ',' || (c == ',' && next_c == '"'))
14586 {
14587 /* just after name is now '\0'. */
14588 *input_line_pointer = c;
14589 input_line_pointer = section_name;
14590 obj_elf_section (ignore);
14591 return;
14592 }
14593 input_line_pointer++;
14594
14595 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
14596 if (c == ',')
14597 section_type = get_absolute_expression ();
14598 else
14599 section_type = 0;
14600 if (*input_line_pointer++ == ',')
14601 section_flag = get_absolute_expression ();
14602 else
14603 section_flag = 0;
14604 if (*input_line_pointer++ == ',')
14605 section_entry_size = get_absolute_expression ();
14606 else
14607 section_entry_size = 0;
14608 if (*input_line_pointer++ == ',')
14609 section_alignment = get_absolute_expression ();
14610 else
14611 section_alignment = 0;
14612 /* FIXME: really ignore? */
14613 (void) section_alignment;
14614
14615 section_name = xstrdup (section_name);
14616
14617 /* When using the generic form of .section (as implemented by obj-elf.c),
14618 there's no way to set the section type to SHT_MIPS_DWARF. Users have
14619 traditionally had to fall back on the more common @progbits instead.
14620
14621 There's nothing really harmful in this, since bfd will correct
14622 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
14623 means that, for backwards compatibility, the special_section entries
14624 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
14625
14626 Even so, we shouldn't force users of the MIPS .section syntax to
14627 incorrectly label the sections as SHT_PROGBITS. The best compromise
14628 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
14629 generic type-checking code. */
14630 if (section_type == SHT_MIPS_DWARF)
14631 section_type = SHT_PROGBITS;
14632
14633 obj_elf_change_section (section_name, section_type, section_flag,
14634 section_entry_size, 0, 0, 0);
14635
14636 if (now_seg->name != section_name)
14637 free (section_name);
14638 }
14639
14640 void
14641 mips_enable_auto_align (void)
14642 {
14643 auto_align = 1;
14644 }
14645
14646 static void
14647 s_cons (int log_size)
14648 {
14649 segment_info_type *si = seg_info (now_seg);
14650 struct insn_label_list *l = si->label_list;
14651
14652 mips_emit_delays ();
14653 if (log_size > 0 && auto_align)
14654 mips_align (log_size, 0, l);
14655 cons (1 << log_size);
14656 mips_clear_insn_labels ();
14657 }
14658
14659 static void
14660 s_float_cons (int type)
14661 {
14662 segment_info_type *si = seg_info (now_seg);
14663 struct insn_label_list *l = si->label_list;
14664
14665 mips_emit_delays ();
14666
14667 if (auto_align)
14668 {
14669 if (type == 'd')
14670 mips_align (3, 0, l);
14671 else
14672 mips_align (2, 0, l);
14673 }
14674
14675 float_cons (type);
14676 mips_clear_insn_labels ();
14677 }
14678
14679 /* Handle .globl. We need to override it because on Irix 5 you are
14680 permitted to say
14681 .globl foo .text
14682 where foo is an undefined symbol, to mean that foo should be
14683 considered to be the address of a function. */
14684
14685 static void
14686 s_mips_globl (int x ATTRIBUTE_UNUSED)
14687 {
14688 char *name;
14689 int c;
14690 symbolS *symbolP;
14691 flagword flag;
14692
14693 do
14694 {
14695 name = input_line_pointer;
14696 c = get_symbol_end ();
14697 symbolP = symbol_find_or_make (name);
14698 S_SET_EXTERNAL (symbolP);
14699
14700 *input_line_pointer = c;
14701 SKIP_WHITESPACE ();
14702
14703 /* On Irix 5, every global symbol that is not explicitly labelled as
14704 being a function is apparently labelled as being an object. */
14705 flag = BSF_OBJECT;
14706
14707 if (!is_end_of_line[(unsigned char) *input_line_pointer]
14708 && (*input_line_pointer != ','))
14709 {
14710 char *secname;
14711 asection *sec;
14712
14713 secname = input_line_pointer;
14714 c = get_symbol_end ();
14715 sec = bfd_get_section_by_name (stdoutput, secname);
14716 if (sec == NULL)
14717 as_bad (_("%s: no such section"), secname);
14718 *input_line_pointer = c;
14719
14720 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
14721 flag = BSF_FUNCTION;
14722 }
14723
14724 symbol_get_bfdsym (symbolP)->flags |= flag;
14725
14726 c = *input_line_pointer;
14727 if (c == ',')
14728 {
14729 input_line_pointer++;
14730 SKIP_WHITESPACE ();
14731 if (is_end_of_line[(unsigned char) *input_line_pointer])
14732 c = '\n';
14733 }
14734 }
14735 while (c == ',');
14736
14737 demand_empty_rest_of_line ();
14738 }
14739
14740 static void
14741 s_option (int x ATTRIBUTE_UNUSED)
14742 {
14743 char *opt;
14744 char c;
14745
14746 opt = input_line_pointer;
14747 c = get_symbol_end ();
14748
14749 if (*opt == 'O')
14750 {
14751 /* FIXME: What does this mean? */
14752 }
14753 else if (strncmp (opt, "pic", 3) == 0)
14754 {
14755 int i;
14756
14757 i = atoi (opt + 3);
14758 if (i == 0)
14759 mips_pic = NO_PIC;
14760 else if (i == 2)
14761 {
14762 mips_pic = SVR4_PIC;
14763 mips_abicalls = TRUE;
14764 }
14765 else
14766 as_bad (_(".option pic%d not supported"), i);
14767
14768 if (mips_pic == SVR4_PIC)
14769 {
14770 if (g_switch_seen && g_switch_value != 0)
14771 as_warn (_("-G may not be used with SVR4 PIC code"));
14772 g_switch_value = 0;
14773 bfd_set_gp_size (stdoutput, 0);
14774 }
14775 }
14776 else
14777 as_warn (_("unrecognized option \"%s\""), opt);
14778
14779 *input_line_pointer = c;
14780 demand_empty_rest_of_line ();
14781 }
14782
14783 /* This structure is used to hold a stack of .set values. */
14784
14785 struct mips_option_stack
14786 {
14787 struct mips_option_stack *next;
14788 struct mips_set_options options;
14789 };
14790
14791 static struct mips_option_stack *mips_opts_stack;
14792
14793 /* Handle the .set pseudo-op. */
14794
14795 static void
14796 s_mipsset (int x ATTRIBUTE_UNUSED)
14797 {
14798 char *name = input_line_pointer, ch;
14799 const struct mips_ase *ase;
14800
14801 while (!is_end_of_line[(unsigned char) *input_line_pointer])
14802 ++input_line_pointer;
14803 ch = *input_line_pointer;
14804 *input_line_pointer = '\0';
14805
14806 if (strcmp (name, "reorder") == 0)
14807 {
14808 if (mips_opts.noreorder)
14809 end_noreorder ();
14810 }
14811 else if (strcmp (name, "noreorder") == 0)
14812 {
14813 if (!mips_opts.noreorder)
14814 start_noreorder ();
14815 }
14816 else if (strncmp (name, "at=", 3) == 0)
14817 {
14818 char *s = name + 3;
14819
14820 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
14821 as_bad (_("unrecognized register name `%s'"), s);
14822 }
14823 else if (strcmp (name, "at") == 0)
14824 {
14825 mips_opts.at = ATREG;
14826 }
14827 else if (strcmp (name, "noat") == 0)
14828 {
14829 mips_opts.at = ZERO;
14830 }
14831 else if (strcmp (name, "macro") == 0)
14832 {
14833 mips_opts.warn_about_macros = 0;
14834 }
14835 else if (strcmp (name, "nomacro") == 0)
14836 {
14837 if (mips_opts.noreorder == 0)
14838 as_bad (_("`noreorder' must be set before `nomacro'"));
14839 mips_opts.warn_about_macros = 1;
14840 }
14841 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
14842 {
14843 mips_opts.nomove = 0;
14844 }
14845 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
14846 {
14847 mips_opts.nomove = 1;
14848 }
14849 else if (strcmp (name, "bopt") == 0)
14850 {
14851 mips_opts.nobopt = 0;
14852 }
14853 else if (strcmp (name, "nobopt") == 0)
14854 {
14855 mips_opts.nobopt = 1;
14856 }
14857 else if (strcmp (name, "gp=default") == 0)
14858 mips_opts.gp32 = file_mips_gp32;
14859 else if (strcmp (name, "gp=32") == 0)
14860 mips_opts.gp32 = 1;
14861 else if (strcmp (name, "gp=64") == 0)
14862 {
14863 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
14864 as_warn (_("%s isa does not support 64-bit registers"),
14865 mips_cpu_info_from_isa (mips_opts.isa)->name);
14866 mips_opts.gp32 = 0;
14867 }
14868 else if (strcmp (name, "fp=default") == 0)
14869 mips_opts.fp32 = file_mips_fp32;
14870 else if (strcmp (name, "fp=32") == 0)
14871 mips_opts.fp32 = 1;
14872 else if (strcmp (name, "fp=64") == 0)
14873 {
14874 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
14875 as_warn (_("%s isa does not support 64-bit floating point registers"),
14876 mips_cpu_info_from_isa (mips_opts.isa)->name);
14877 mips_opts.fp32 = 0;
14878 }
14879 else if (strcmp (name, "softfloat") == 0)
14880 mips_opts.soft_float = 1;
14881 else if (strcmp (name, "hardfloat") == 0)
14882 mips_opts.soft_float = 0;
14883 else if (strcmp (name, "singlefloat") == 0)
14884 mips_opts.single_float = 1;
14885 else if (strcmp (name, "doublefloat") == 0)
14886 mips_opts.single_float = 0;
14887 else if (strcmp (name, "mips16") == 0
14888 || strcmp (name, "MIPS-16") == 0)
14889 {
14890 if (mips_opts.micromips == 1)
14891 as_fatal (_("`mips16' cannot be used with `micromips'"));
14892 mips_opts.mips16 = 1;
14893 }
14894 else if (strcmp (name, "nomips16") == 0
14895 || strcmp (name, "noMIPS-16") == 0)
14896 mips_opts.mips16 = 0;
14897 else if (strcmp (name, "micromips") == 0)
14898 {
14899 if (mips_opts.mips16 == 1)
14900 as_fatal (_("`micromips' cannot be used with `mips16'"));
14901 mips_opts.micromips = 1;
14902 }
14903 else if (strcmp (name, "nomicromips") == 0)
14904 mips_opts.micromips = 0;
14905 else if (name[0] == 'n'
14906 && name[1] == 'o'
14907 && (ase = mips_lookup_ase (name + 2)))
14908 mips_set_ase (ase, FALSE);
14909 else if ((ase = mips_lookup_ase (name)))
14910 mips_set_ase (ase, TRUE);
14911 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
14912 {
14913 int reset = 0;
14914
14915 /* Permit the user to change the ISA and architecture on the fly.
14916 Needless to say, misuse can cause serious problems. */
14917 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
14918 {
14919 reset = 1;
14920 mips_opts.isa = file_mips_isa;
14921 mips_opts.arch = file_mips_arch;
14922 }
14923 else if (strncmp (name, "arch=", 5) == 0)
14924 {
14925 const struct mips_cpu_info *p;
14926
14927 p = mips_parse_cpu("internal use", name + 5);
14928 if (!p)
14929 as_bad (_("unknown architecture %s"), name + 5);
14930 else
14931 {
14932 mips_opts.arch = p->cpu;
14933 mips_opts.isa = p->isa;
14934 }
14935 }
14936 else if (strncmp (name, "mips", 4) == 0)
14937 {
14938 const struct mips_cpu_info *p;
14939
14940 p = mips_parse_cpu("internal use", name);
14941 if (!p)
14942 as_bad (_("unknown ISA level %s"), name + 4);
14943 else
14944 {
14945 mips_opts.arch = p->cpu;
14946 mips_opts.isa = p->isa;
14947 }
14948 }
14949 else
14950 as_bad (_("unknown ISA or architecture %s"), name);
14951
14952 switch (mips_opts.isa)
14953 {
14954 case 0:
14955 break;
14956 case ISA_MIPS1:
14957 case ISA_MIPS2:
14958 case ISA_MIPS32:
14959 case ISA_MIPS32R2:
14960 mips_opts.gp32 = 1;
14961 mips_opts.fp32 = 1;
14962 break;
14963 case ISA_MIPS3:
14964 case ISA_MIPS4:
14965 case ISA_MIPS5:
14966 case ISA_MIPS64:
14967 case ISA_MIPS64R2:
14968 mips_opts.gp32 = 0;
14969 if (mips_opts.arch == CPU_R5900)
14970 {
14971 mips_opts.fp32 = 1;
14972 }
14973 else
14974 {
14975 mips_opts.fp32 = 0;
14976 }
14977 break;
14978 default:
14979 as_bad (_("unknown ISA level %s"), name + 4);
14980 break;
14981 }
14982 if (reset)
14983 {
14984 mips_opts.gp32 = file_mips_gp32;
14985 mips_opts.fp32 = file_mips_fp32;
14986 }
14987 }
14988 else if (strcmp (name, "autoextend") == 0)
14989 mips_opts.noautoextend = 0;
14990 else if (strcmp (name, "noautoextend") == 0)
14991 mips_opts.noautoextend = 1;
14992 else if (strcmp (name, "insn32") == 0)
14993 mips_opts.insn32 = TRUE;
14994 else if (strcmp (name, "noinsn32") == 0)
14995 mips_opts.insn32 = FALSE;
14996 else if (strcmp (name, "push") == 0)
14997 {
14998 struct mips_option_stack *s;
14999
15000 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15001 s->next = mips_opts_stack;
15002 s->options = mips_opts;
15003 mips_opts_stack = s;
15004 }
15005 else if (strcmp (name, "pop") == 0)
15006 {
15007 struct mips_option_stack *s;
15008
15009 s = mips_opts_stack;
15010 if (s == NULL)
15011 as_bad (_(".set pop with no .set push"));
15012 else
15013 {
15014 /* If we're changing the reorder mode we need to handle
15015 delay slots correctly. */
15016 if (s->options.noreorder && ! mips_opts.noreorder)
15017 start_noreorder ();
15018 else if (! s->options.noreorder && mips_opts.noreorder)
15019 end_noreorder ();
15020
15021 mips_opts = s->options;
15022 mips_opts_stack = s->next;
15023 free (s);
15024 }
15025 }
15026 else if (strcmp (name, "sym32") == 0)
15027 mips_opts.sym32 = TRUE;
15028 else if (strcmp (name, "nosym32") == 0)
15029 mips_opts.sym32 = FALSE;
15030 else if (strchr (name, ','))
15031 {
15032 /* Generic ".set" directive; use the generic handler. */
15033 *input_line_pointer = ch;
15034 input_line_pointer = name;
15035 s_set (0);
15036 return;
15037 }
15038 else
15039 {
15040 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15041 }
15042 mips_check_isa_supports_ases ();
15043 *input_line_pointer = ch;
15044 demand_empty_rest_of_line ();
15045 }
15046
15047 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15048 .option pic2. It means to generate SVR4 PIC calls. */
15049
15050 static void
15051 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15052 {
15053 mips_pic = SVR4_PIC;
15054 mips_abicalls = TRUE;
15055
15056 if (g_switch_seen && g_switch_value != 0)
15057 as_warn (_("-G may not be used with SVR4 PIC code"));
15058 g_switch_value = 0;
15059
15060 bfd_set_gp_size (stdoutput, 0);
15061 demand_empty_rest_of_line ();
15062 }
15063
15064 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15065 PIC code. It sets the $gp register for the function based on the
15066 function address, which is in the register named in the argument.
15067 This uses a relocation against _gp_disp, which is handled specially
15068 by the linker. The result is:
15069 lui $gp,%hi(_gp_disp)
15070 addiu $gp,$gp,%lo(_gp_disp)
15071 addu $gp,$gp,.cpload argument
15072 The .cpload argument is normally $25 == $t9.
15073
15074 The -mno-shared option changes this to:
15075 lui $gp,%hi(__gnu_local_gp)
15076 addiu $gp,$gp,%lo(__gnu_local_gp)
15077 and the argument is ignored. This saves an instruction, but the
15078 resulting code is not position independent; it uses an absolute
15079 address for __gnu_local_gp. Thus code assembled with -mno-shared
15080 can go into an ordinary executable, but not into a shared library. */
15081
15082 static void
15083 s_cpload (int ignore ATTRIBUTE_UNUSED)
15084 {
15085 expressionS ex;
15086 int reg;
15087 int in_shared;
15088
15089 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15090 .cpload is ignored. */
15091 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15092 {
15093 s_ignore (0);
15094 return;
15095 }
15096
15097 if (mips_opts.mips16)
15098 {
15099 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15100 ignore_rest_of_line ();
15101 return;
15102 }
15103
15104 /* .cpload should be in a .set noreorder section. */
15105 if (mips_opts.noreorder == 0)
15106 as_warn (_(".cpload not in noreorder section"));
15107
15108 reg = tc_get_register (0);
15109
15110 /* If we need to produce a 64-bit address, we are better off using
15111 the default instruction sequence. */
15112 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15113
15114 ex.X_op = O_symbol;
15115 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15116 "__gnu_local_gp");
15117 ex.X_op_symbol = NULL;
15118 ex.X_add_number = 0;
15119
15120 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15121 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15122
15123 mips_mark_labels ();
15124 mips_assembling_insn = TRUE;
15125
15126 macro_start ();
15127 macro_build_lui (&ex, mips_gp_register);
15128 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15129 mips_gp_register, BFD_RELOC_LO16);
15130 if (in_shared)
15131 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15132 mips_gp_register, reg);
15133 macro_end ();
15134
15135 mips_assembling_insn = FALSE;
15136 demand_empty_rest_of_line ();
15137 }
15138
15139 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15140 .cpsetup $reg1, offset|$reg2, label
15141
15142 If offset is given, this results in:
15143 sd $gp, offset($sp)
15144 lui $gp, %hi(%neg(%gp_rel(label)))
15145 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15146 daddu $gp, $gp, $reg1
15147
15148 If $reg2 is given, this results in:
15149 daddu $reg2, $gp, $0
15150 lui $gp, %hi(%neg(%gp_rel(label)))
15151 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15152 daddu $gp, $gp, $reg1
15153 $reg1 is normally $25 == $t9.
15154
15155 The -mno-shared option replaces the last three instructions with
15156 lui $gp,%hi(_gp)
15157 addiu $gp,$gp,%lo(_gp) */
15158
15159 static void
15160 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15161 {
15162 expressionS ex_off;
15163 expressionS ex_sym;
15164 int reg1;
15165
15166 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15167 We also need NewABI support. */
15168 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15169 {
15170 s_ignore (0);
15171 return;
15172 }
15173
15174 if (mips_opts.mips16)
15175 {
15176 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15177 ignore_rest_of_line ();
15178 return;
15179 }
15180
15181 reg1 = tc_get_register (0);
15182 SKIP_WHITESPACE ();
15183 if (*input_line_pointer != ',')
15184 {
15185 as_bad (_("missing argument separator ',' for .cpsetup"));
15186 return;
15187 }
15188 else
15189 ++input_line_pointer;
15190 SKIP_WHITESPACE ();
15191 if (*input_line_pointer == '$')
15192 {
15193 mips_cpreturn_register = tc_get_register (0);
15194 mips_cpreturn_offset = -1;
15195 }
15196 else
15197 {
15198 mips_cpreturn_offset = get_absolute_expression ();
15199 mips_cpreturn_register = -1;
15200 }
15201 SKIP_WHITESPACE ();
15202 if (*input_line_pointer != ',')
15203 {
15204 as_bad (_("missing argument separator ',' for .cpsetup"));
15205 return;
15206 }
15207 else
15208 ++input_line_pointer;
15209 SKIP_WHITESPACE ();
15210 expression (&ex_sym);
15211
15212 mips_mark_labels ();
15213 mips_assembling_insn = TRUE;
15214
15215 macro_start ();
15216 if (mips_cpreturn_register == -1)
15217 {
15218 ex_off.X_op = O_constant;
15219 ex_off.X_add_symbol = NULL;
15220 ex_off.X_op_symbol = NULL;
15221 ex_off.X_add_number = mips_cpreturn_offset;
15222
15223 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15224 BFD_RELOC_LO16, SP);
15225 }
15226 else
15227 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
15228 mips_gp_register, 0);
15229
15230 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15231 {
15232 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15233 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15234 BFD_RELOC_HI16_S);
15235
15236 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15237 mips_gp_register, -1, BFD_RELOC_GPREL16,
15238 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15239
15240 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15241 mips_gp_register, reg1);
15242 }
15243 else
15244 {
15245 expressionS ex;
15246
15247 ex.X_op = O_symbol;
15248 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
15249 ex.X_op_symbol = NULL;
15250 ex.X_add_number = 0;
15251
15252 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15253 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15254
15255 macro_build_lui (&ex, mips_gp_register);
15256 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15257 mips_gp_register, BFD_RELOC_LO16);
15258 }
15259
15260 macro_end ();
15261
15262 mips_assembling_insn = FALSE;
15263 demand_empty_rest_of_line ();
15264 }
15265
15266 static void
15267 s_cplocal (int ignore ATTRIBUTE_UNUSED)
15268 {
15269 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
15270 .cplocal is ignored. */
15271 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15272 {
15273 s_ignore (0);
15274 return;
15275 }
15276
15277 if (mips_opts.mips16)
15278 {
15279 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
15280 ignore_rest_of_line ();
15281 return;
15282 }
15283
15284 mips_gp_register = tc_get_register (0);
15285 demand_empty_rest_of_line ();
15286 }
15287
15288 /* Handle the .cprestore pseudo-op. This stores $gp into a given
15289 offset from $sp. The offset is remembered, and after making a PIC
15290 call $gp is restored from that location. */
15291
15292 static void
15293 s_cprestore (int ignore ATTRIBUTE_UNUSED)
15294 {
15295 expressionS ex;
15296
15297 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15298 .cprestore is ignored. */
15299 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15300 {
15301 s_ignore (0);
15302 return;
15303 }
15304
15305 if (mips_opts.mips16)
15306 {
15307 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
15308 ignore_rest_of_line ();
15309 return;
15310 }
15311
15312 mips_cprestore_offset = get_absolute_expression ();
15313 mips_cprestore_valid = 1;
15314
15315 ex.X_op = O_constant;
15316 ex.X_add_symbol = NULL;
15317 ex.X_op_symbol = NULL;
15318 ex.X_add_number = mips_cprestore_offset;
15319
15320 mips_mark_labels ();
15321 mips_assembling_insn = TRUE;
15322
15323 macro_start ();
15324 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
15325 SP, HAVE_64BIT_ADDRESSES);
15326 macro_end ();
15327
15328 mips_assembling_insn = FALSE;
15329 demand_empty_rest_of_line ();
15330 }
15331
15332 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
15333 was given in the preceding .cpsetup, it results in:
15334 ld $gp, offset($sp)
15335
15336 If a register $reg2 was given there, it results in:
15337 daddu $gp, $reg2, $0 */
15338
15339 static void
15340 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
15341 {
15342 expressionS ex;
15343
15344 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
15345 We also need NewABI support. */
15346 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15347 {
15348 s_ignore (0);
15349 return;
15350 }
15351
15352 if (mips_opts.mips16)
15353 {
15354 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
15355 ignore_rest_of_line ();
15356 return;
15357 }
15358
15359 mips_mark_labels ();
15360 mips_assembling_insn = TRUE;
15361
15362 macro_start ();
15363 if (mips_cpreturn_register == -1)
15364 {
15365 ex.X_op = O_constant;
15366 ex.X_add_symbol = NULL;
15367 ex.X_op_symbol = NULL;
15368 ex.X_add_number = mips_cpreturn_offset;
15369
15370 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
15371 }
15372 else
15373 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
15374 mips_cpreturn_register, 0);
15375 macro_end ();
15376
15377 mips_assembling_insn = FALSE;
15378 demand_empty_rest_of_line ();
15379 }
15380
15381 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
15382 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
15383 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
15384 debug information or MIPS16 TLS. */
15385
15386 static void
15387 s_tls_rel_directive (const size_t bytes, const char *dirstr,
15388 bfd_reloc_code_real_type rtype)
15389 {
15390 expressionS ex;
15391 char *p;
15392
15393 expression (&ex);
15394
15395 if (ex.X_op != O_symbol)
15396 {
15397 as_bad (_("unsupported use of %s"), dirstr);
15398 ignore_rest_of_line ();
15399 }
15400
15401 p = frag_more (bytes);
15402 md_number_to_chars (p, 0, bytes);
15403 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
15404 demand_empty_rest_of_line ();
15405 mips_clear_insn_labels ();
15406 }
15407
15408 /* Handle .dtprelword. */
15409
15410 static void
15411 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
15412 {
15413 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
15414 }
15415
15416 /* Handle .dtpreldword. */
15417
15418 static void
15419 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
15420 {
15421 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
15422 }
15423
15424 /* Handle .tprelword. */
15425
15426 static void
15427 s_tprelword (int ignore ATTRIBUTE_UNUSED)
15428 {
15429 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
15430 }
15431
15432 /* Handle .tpreldword. */
15433
15434 static void
15435 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
15436 {
15437 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
15438 }
15439
15440 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
15441 code. It sets the offset to use in gp_rel relocations. */
15442
15443 static void
15444 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
15445 {
15446 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
15447 We also need NewABI support. */
15448 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15449 {
15450 s_ignore (0);
15451 return;
15452 }
15453
15454 mips_gprel_offset = get_absolute_expression ();
15455
15456 demand_empty_rest_of_line ();
15457 }
15458
15459 /* Handle the .gpword pseudo-op. This is used when generating PIC
15460 code. It generates a 32 bit GP relative reloc. */
15461
15462 static void
15463 s_gpword (int ignore ATTRIBUTE_UNUSED)
15464 {
15465 segment_info_type *si;
15466 struct insn_label_list *l;
15467 expressionS ex;
15468 char *p;
15469
15470 /* When not generating PIC code, this is treated as .word. */
15471 if (mips_pic != SVR4_PIC)
15472 {
15473 s_cons (2);
15474 return;
15475 }
15476
15477 si = seg_info (now_seg);
15478 l = si->label_list;
15479 mips_emit_delays ();
15480 if (auto_align)
15481 mips_align (2, 0, l);
15482
15483 expression (&ex);
15484 mips_clear_insn_labels ();
15485
15486 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15487 {
15488 as_bad (_("unsupported use of .gpword"));
15489 ignore_rest_of_line ();
15490 }
15491
15492 p = frag_more (4);
15493 md_number_to_chars (p, 0, 4);
15494 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15495 BFD_RELOC_GPREL32);
15496
15497 demand_empty_rest_of_line ();
15498 }
15499
15500 static void
15501 s_gpdword (int ignore ATTRIBUTE_UNUSED)
15502 {
15503 segment_info_type *si;
15504 struct insn_label_list *l;
15505 expressionS ex;
15506 char *p;
15507
15508 /* When not generating PIC code, this is treated as .dword. */
15509 if (mips_pic != SVR4_PIC)
15510 {
15511 s_cons (3);
15512 return;
15513 }
15514
15515 si = seg_info (now_seg);
15516 l = si->label_list;
15517 mips_emit_delays ();
15518 if (auto_align)
15519 mips_align (3, 0, l);
15520
15521 expression (&ex);
15522 mips_clear_insn_labels ();
15523
15524 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15525 {
15526 as_bad (_("unsupported use of .gpdword"));
15527 ignore_rest_of_line ();
15528 }
15529
15530 p = frag_more (8);
15531 md_number_to_chars (p, 0, 8);
15532 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15533 BFD_RELOC_GPREL32)->fx_tcbit = 1;
15534
15535 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
15536 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
15537 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
15538
15539 demand_empty_rest_of_line ();
15540 }
15541
15542 /* Handle the .ehword pseudo-op. This is used when generating unwinding
15543 tables. It generates a R_MIPS_EH reloc. */
15544
15545 static void
15546 s_ehword (int ignore ATTRIBUTE_UNUSED)
15547 {
15548 expressionS ex;
15549 char *p;
15550
15551 mips_emit_delays ();
15552
15553 expression (&ex);
15554 mips_clear_insn_labels ();
15555
15556 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15557 {
15558 as_bad (_("unsupported use of .ehword"));
15559 ignore_rest_of_line ();
15560 }
15561
15562 p = frag_more (4);
15563 md_number_to_chars (p, 0, 4);
15564 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15565 BFD_RELOC_MIPS_EH);
15566
15567 demand_empty_rest_of_line ();
15568 }
15569
15570 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
15571 tables in SVR4 PIC code. */
15572
15573 static void
15574 s_cpadd (int ignore ATTRIBUTE_UNUSED)
15575 {
15576 int reg;
15577
15578 /* This is ignored when not generating SVR4 PIC code. */
15579 if (mips_pic != SVR4_PIC)
15580 {
15581 s_ignore (0);
15582 return;
15583 }
15584
15585 mips_mark_labels ();
15586 mips_assembling_insn = TRUE;
15587
15588 /* Add $gp to the register named as an argument. */
15589 macro_start ();
15590 reg = tc_get_register (0);
15591 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
15592 macro_end ();
15593
15594 mips_assembling_insn = FALSE;
15595 demand_empty_rest_of_line ();
15596 }
15597
15598 /* Handle the .insn pseudo-op. This marks instruction labels in
15599 mips16/micromips mode. This permits the linker to handle them specially,
15600 such as generating jalx instructions when needed. We also make
15601 them odd for the duration of the assembly, in order to generate the
15602 right sort of code. We will make them even in the adjust_symtab
15603 routine, while leaving them marked. This is convenient for the
15604 debugger and the disassembler. The linker knows to make them odd
15605 again. */
15606
15607 static void
15608 s_insn (int ignore ATTRIBUTE_UNUSED)
15609 {
15610 mips_mark_labels ();
15611
15612 demand_empty_rest_of_line ();
15613 }
15614
15615 /* Handle the .nan pseudo-op. */
15616
15617 static void
15618 s_nan (int ignore ATTRIBUTE_UNUSED)
15619 {
15620 static const char str_legacy[] = "legacy";
15621 static const char str_2008[] = "2008";
15622 size_t i;
15623
15624 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
15625
15626 if (i == sizeof (str_2008) - 1
15627 && memcmp (input_line_pointer, str_2008, i) == 0)
15628 mips_flag_nan2008 = TRUE;
15629 else if (i == sizeof (str_legacy) - 1
15630 && memcmp (input_line_pointer, str_legacy, i) == 0)
15631 mips_flag_nan2008 = FALSE;
15632 else
15633 as_bad (_("bad .nan directive"));
15634
15635 input_line_pointer += i;
15636 demand_empty_rest_of_line ();
15637 }
15638
15639 /* Handle a .stab[snd] directive. Ideally these directives would be
15640 implemented in a transparent way, so that removing them would not
15641 have any effect on the generated instructions. However, s_stab
15642 internally changes the section, so in practice we need to decide
15643 now whether the preceding label marks compressed code. We do not
15644 support changing the compression mode of a label after a .stab*
15645 directive, such as in:
15646
15647 foo:
15648 .stabs ...
15649 .set mips16
15650
15651 so the current mode wins. */
15652
15653 static void
15654 s_mips_stab (int type)
15655 {
15656 mips_mark_labels ();
15657 s_stab (type);
15658 }
15659
15660 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
15661
15662 static void
15663 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
15664 {
15665 char *name;
15666 int c;
15667 symbolS *symbolP;
15668 expressionS exp;
15669
15670 name = input_line_pointer;
15671 c = get_symbol_end ();
15672 symbolP = symbol_find_or_make (name);
15673 S_SET_WEAK (symbolP);
15674 *input_line_pointer = c;
15675
15676 SKIP_WHITESPACE ();
15677
15678 if (! is_end_of_line[(unsigned char) *input_line_pointer])
15679 {
15680 if (S_IS_DEFINED (symbolP))
15681 {
15682 as_bad (_("ignoring attempt to redefine symbol %s"),
15683 S_GET_NAME (symbolP));
15684 ignore_rest_of_line ();
15685 return;
15686 }
15687
15688 if (*input_line_pointer == ',')
15689 {
15690 ++input_line_pointer;
15691 SKIP_WHITESPACE ();
15692 }
15693
15694 expression (&exp);
15695 if (exp.X_op != O_symbol)
15696 {
15697 as_bad (_("bad .weakext directive"));
15698 ignore_rest_of_line ();
15699 return;
15700 }
15701 symbol_set_value_expression (symbolP, &exp);
15702 }
15703
15704 demand_empty_rest_of_line ();
15705 }
15706
15707 /* Parse a register string into a number. Called from the ECOFF code
15708 to parse .frame. The argument is non-zero if this is the frame
15709 register, so that we can record it in mips_frame_reg. */
15710
15711 int
15712 tc_get_register (int frame)
15713 {
15714 unsigned int reg;
15715
15716 SKIP_WHITESPACE ();
15717 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
15718 reg = 0;
15719 if (frame)
15720 {
15721 mips_frame_reg = reg != 0 ? reg : SP;
15722 mips_frame_reg_valid = 1;
15723 mips_cprestore_valid = 0;
15724 }
15725 return reg;
15726 }
15727
15728 valueT
15729 md_section_align (asection *seg, valueT addr)
15730 {
15731 int align = bfd_get_section_alignment (stdoutput, seg);
15732
15733 /* We don't need to align ELF sections to the full alignment.
15734 However, Irix 5 may prefer that we align them at least to a 16
15735 byte boundary. We don't bother to align the sections if we
15736 are targeted for an embedded system. */
15737 if (strncmp (TARGET_OS, "elf", 3) == 0)
15738 return addr;
15739 if (align > 4)
15740 align = 4;
15741
15742 return ((addr + (1 << align) - 1) & (-1 << align));
15743 }
15744
15745 /* Utility routine, called from above as well. If called while the
15746 input file is still being read, it's only an approximation. (For
15747 example, a symbol may later become defined which appeared to be
15748 undefined earlier.) */
15749
15750 static int
15751 nopic_need_relax (symbolS *sym, int before_relaxing)
15752 {
15753 if (sym == 0)
15754 return 0;
15755
15756 if (g_switch_value > 0)
15757 {
15758 const char *symname;
15759 int change;
15760
15761 /* Find out whether this symbol can be referenced off the $gp
15762 register. It can be if it is smaller than the -G size or if
15763 it is in the .sdata or .sbss section. Certain symbols can
15764 not be referenced off the $gp, although it appears as though
15765 they can. */
15766 symname = S_GET_NAME (sym);
15767 if (symname != (const char *) NULL
15768 && (strcmp (symname, "eprol") == 0
15769 || strcmp (symname, "etext") == 0
15770 || strcmp (symname, "_gp") == 0
15771 || strcmp (symname, "edata") == 0
15772 || strcmp (symname, "_fbss") == 0
15773 || strcmp (symname, "_fdata") == 0
15774 || strcmp (symname, "_ftext") == 0
15775 || strcmp (symname, "end") == 0
15776 || strcmp (symname, "_gp_disp") == 0))
15777 change = 1;
15778 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
15779 && (0
15780 #ifndef NO_ECOFF_DEBUGGING
15781 || (symbol_get_obj (sym)->ecoff_extern_size != 0
15782 && (symbol_get_obj (sym)->ecoff_extern_size
15783 <= g_switch_value))
15784 #endif
15785 /* We must defer this decision until after the whole
15786 file has been read, since there might be a .extern
15787 after the first use of this symbol. */
15788 || (before_relaxing
15789 #ifndef NO_ECOFF_DEBUGGING
15790 && symbol_get_obj (sym)->ecoff_extern_size == 0
15791 #endif
15792 && S_GET_VALUE (sym) == 0)
15793 || (S_GET_VALUE (sym) != 0
15794 && S_GET_VALUE (sym) <= g_switch_value)))
15795 change = 0;
15796 else
15797 {
15798 const char *segname;
15799
15800 segname = segment_name (S_GET_SEGMENT (sym));
15801 gas_assert (strcmp (segname, ".lit8") != 0
15802 && strcmp (segname, ".lit4") != 0);
15803 change = (strcmp (segname, ".sdata") != 0
15804 && strcmp (segname, ".sbss") != 0
15805 && strncmp (segname, ".sdata.", 7) != 0
15806 && strncmp (segname, ".sbss.", 6) != 0
15807 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
15808 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
15809 }
15810 return change;
15811 }
15812 else
15813 /* We are not optimizing for the $gp register. */
15814 return 1;
15815 }
15816
15817
15818 /* Return true if the given symbol should be considered local for SVR4 PIC. */
15819
15820 static bfd_boolean
15821 pic_need_relax (symbolS *sym, asection *segtype)
15822 {
15823 asection *symsec;
15824
15825 /* Handle the case of a symbol equated to another symbol. */
15826 while (symbol_equated_reloc_p (sym))
15827 {
15828 symbolS *n;
15829
15830 /* It's possible to get a loop here in a badly written program. */
15831 n = symbol_get_value_expression (sym)->X_add_symbol;
15832 if (n == sym)
15833 break;
15834 sym = n;
15835 }
15836
15837 if (symbol_section_p (sym))
15838 return TRUE;
15839
15840 symsec = S_GET_SEGMENT (sym);
15841
15842 /* This must duplicate the test in adjust_reloc_syms. */
15843 return (!bfd_is_und_section (symsec)
15844 && !bfd_is_abs_section (symsec)
15845 && !bfd_is_com_section (symsec)
15846 && !s_is_linkonce (sym, segtype)
15847 /* A global or weak symbol is treated as external. */
15848 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
15849 }
15850
15851
15852 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
15853 extended opcode. SEC is the section the frag is in. */
15854
15855 static int
15856 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
15857 {
15858 int type;
15859 const struct mips_int_operand *operand;
15860 offsetT val;
15861 segT symsec;
15862 fragS *sym_frag;
15863
15864 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
15865 return 0;
15866 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
15867 return 1;
15868
15869 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
15870 operand = mips16_immed_operand (type, FALSE);
15871
15872 sym_frag = symbol_get_frag (fragp->fr_symbol);
15873 val = S_GET_VALUE (fragp->fr_symbol);
15874 symsec = S_GET_SEGMENT (fragp->fr_symbol);
15875
15876 if (operand->root.type == OP_PCREL)
15877 {
15878 const struct mips_pcrel_operand *pcrel_op;
15879 addressT addr;
15880 offsetT maxtiny;
15881
15882 /* We won't have the section when we are called from
15883 mips_relax_frag. However, we will always have been called
15884 from md_estimate_size_before_relax first. If this is a
15885 branch to a different section, we mark it as such. If SEC is
15886 NULL, and the frag is not marked, then it must be a branch to
15887 the same section. */
15888 pcrel_op = (const struct mips_pcrel_operand *) operand;
15889 if (sec == NULL)
15890 {
15891 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
15892 return 1;
15893 }
15894 else
15895 {
15896 /* Must have been called from md_estimate_size_before_relax. */
15897 if (symsec != sec)
15898 {
15899 fragp->fr_subtype =
15900 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15901
15902 /* FIXME: We should support this, and let the linker
15903 catch branches and loads that are out of range. */
15904 as_bad_where (fragp->fr_file, fragp->fr_line,
15905 _("unsupported PC relative reference to different section"));
15906
15907 return 1;
15908 }
15909 if (fragp != sym_frag && sym_frag->fr_address == 0)
15910 /* Assume non-extended on the first relaxation pass.
15911 The address we have calculated will be bogus if this is
15912 a forward branch to another frag, as the forward frag
15913 will have fr_address == 0. */
15914 return 0;
15915 }
15916
15917 /* In this case, we know for sure that the symbol fragment is in
15918 the same section. If the relax_marker of the symbol fragment
15919 differs from the relax_marker of this fragment, we have not
15920 yet adjusted the symbol fragment fr_address. We want to add
15921 in STRETCH in order to get a better estimate of the address.
15922 This particularly matters because of the shift bits. */
15923 if (stretch != 0
15924 && sym_frag->relax_marker != fragp->relax_marker)
15925 {
15926 fragS *f;
15927
15928 /* Adjust stretch for any alignment frag. Note that if have
15929 been expanding the earlier code, the symbol may be
15930 defined in what appears to be an earlier frag. FIXME:
15931 This doesn't handle the fr_subtype field, which specifies
15932 a maximum number of bytes to skip when doing an
15933 alignment. */
15934 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
15935 {
15936 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
15937 {
15938 if (stretch < 0)
15939 stretch = - ((- stretch)
15940 & ~ ((1 << (int) f->fr_offset) - 1));
15941 else
15942 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
15943 if (stretch == 0)
15944 break;
15945 }
15946 }
15947 if (f != NULL)
15948 val += stretch;
15949 }
15950
15951 addr = fragp->fr_address + fragp->fr_fix;
15952
15953 /* The base address rules are complicated. The base address of
15954 a branch is the following instruction. The base address of a
15955 PC relative load or add is the instruction itself, but if it
15956 is in a delay slot (in which case it can not be extended) use
15957 the address of the instruction whose delay slot it is in. */
15958 if (pcrel_op->include_isa_bit)
15959 {
15960 addr += 2;
15961
15962 /* If we are currently assuming that this frag should be
15963 extended, then, the current address is two bytes
15964 higher. */
15965 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
15966 addr += 2;
15967
15968 /* Ignore the low bit in the target, since it will be set
15969 for a text label. */
15970 val &= -2;
15971 }
15972 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
15973 addr -= 4;
15974 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
15975 addr -= 2;
15976
15977 val -= addr & -(1 << pcrel_op->align_log2);
15978
15979 /* If any of the shifted bits are set, we must use an extended
15980 opcode. If the address depends on the size of this
15981 instruction, this can lead to a loop, so we arrange to always
15982 use an extended opcode. We only check this when we are in
15983 the main relaxation loop, when SEC is NULL. */
15984 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
15985 {
15986 fragp->fr_subtype =
15987 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15988 return 1;
15989 }
15990
15991 /* If we are about to mark a frag as extended because the value
15992 is precisely the next value above maxtiny, then there is a
15993 chance of an infinite loop as in the following code:
15994 la $4,foo
15995 .skip 1020
15996 .align 2
15997 foo:
15998 In this case when the la is extended, foo is 0x3fc bytes
15999 away, so the la can be shrunk, but then foo is 0x400 away, so
16000 the la must be extended. To avoid this loop, we mark the
16001 frag as extended if it was small, and is about to become
16002 extended with the next value above maxtiny. */
16003 maxtiny = mips_int_operand_max (operand);
16004 if (val == maxtiny + (1 << operand->shift)
16005 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16006 && sec == NULL)
16007 {
16008 fragp->fr_subtype =
16009 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16010 return 1;
16011 }
16012 }
16013 else if (symsec != absolute_section && sec != NULL)
16014 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16015
16016 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16017 }
16018
16019 /* Compute the length of a branch sequence, and adjust the
16020 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16021 worst-case length is computed, with UPDATE being used to indicate
16022 whether an unconditional (-1), branch-likely (+1) or regular (0)
16023 branch is to be computed. */
16024 static int
16025 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16026 {
16027 bfd_boolean toofar;
16028 int length;
16029
16030 if (fragp
16031 && S_IS_DEFINED (fragp->fr_symbol)
16032 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16033 {
16034 addressT addr;
16035 offsetT val;
16036
16037 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16038
16039 addr = fragp->fr_address + fragp->fr_fix + 4;
16040
16041 val -= addr;
16042
16043 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16044 }
16045 else if (fragp)
16046 /* If the symbol is not defined or it's in a different segment,
16047 assume the user knows what's going on and emit a short
16048 branch. */
16049 toofar = FALSE;
16050 else
16051 toofar = TRUE;
16052
16053 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16054 fragp->fr_subtype
16055 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16056 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16057 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16058 RELAX_BRANCH_LINK (fragp->fr_subtype),
16059 toofar);
16060
16061 length = 4;
16062 if (toofar)
16063 {
16064 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16065 length += 8;
16066
16067 if (mips_pic != NO_PIC)
16068 {
16069 /* Additional space for PIC loading of target address. */
16070 length += 8;
16071 if (mips_opts.isa == ISA_MIPS1)
16072 /* Additional space for $at-stabilizing nop. */
16073 length += 4;
16074 }
16075
16076 /* If branch is conditional. */
16077 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16078 length += 8;
16079 }
16080
16081 return length;
16082 }
16083
16084 /* Compute the length of a branch sequence, and adjust the
16085 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16086 worst-case length is computed, with UPDATE being used to indicate
16087 whether an unconditional (-1), or regular (0) branch is to be
16088 computed. */
16089
16090 static int
16091 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16092 {
16093 bfd_boolean toofar;
16094 int length;
16095
16096 if (fragp
16097 && S_IS_DEFINED (fragp->fr_symbol)
16098 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16099 {
16100 addressT addr;
16101 offsetT val;
16102
16103 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16104 /* Ignore the low bit in the target, since it will be set
16105 for a text label. */
16106 if ((val & 1) != 0)
16107 --val;
16108
16109 addr = fragp->fr_address + fragp->fr_fix + 4;
16110
16111 val -= addr;
16112
16113 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16114 }
16115 else if (fragp)
16116 /* If the symbol is not defined or it's in a different segment,
16117 assume the user knows what's going on and emit a short
16118 branch. */
16119 toofar = FALSE;
16120 else
16121 toofar = TRUE;
16122
16123 if (fragp && update
16124 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16125 fragp->fr_subtype = (toofar
16126 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16127 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16128
16129 length = 4;
16130 if (toofar)
16131 {
16132 bfd_boolean compact_known = fragp != NULL;
16133 bfd_boolean compact = FALSE;
16134 bfd_boolean uncond;
16135
16136 if (compact_known)
16137 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16138 if (fragp)
16139 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16140 else
16141 uncond = update < 0;
16142
16143 /* If label is out of range, we turn branch <br>:
16144
16145 <br> label # 4 bytes
16146 0:
16147
16148 into:
16149
16150 j label # 4 bytes
16151 nop # 2 bytes if compact && !PIC
16152 0:
16153 */
16154 if (mips_pic == NO_PIC && (!compact_known || compact))
16155 length += 2;
16156
16157 /* If assembling PIC code, we further turn:
16158
16159 j label # 4 bytes
16160
16161 into:
16162
16163 lw/ld at, %got(label)(gp) # 4 bytes
16164 d/addiu at, %lo(label) # 4 bytes
16165 jr/c at # 2 bytes
16166 */
16167 if (mips_pic != NO_PIC)
16168 length += 6;
16169
16170 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16171
16172 <brneg> 0f # 4 bytes
16173 nop # 2 bytes if !compact
16174 */
16175 if (!uncond)
16176 length += (compact_known && compact) ? 4 : 6;
16177 }
16178
16179 return length;
16180 }
16181
16182 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16183 bit accordingly. */
16184
16185 static int
16186 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16187 {
16188 bfd_boolean toofar;
16189
16190 if (fragp
16191 && S_IS_DEFINED (fragp->fr_symbol)
16192 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16193 {
16194 addressT addr;
16195 offsetT val;
16196 int type;
16197
16198 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16199 /* Ignore the low bit in the target, since it will be set
16200 for a text label. */
16201 if ((val & 1) != 0)
16202 --val;
16203
16204 /* Assume this is a 2-byte branch. */
16205 addr = fragp->fr_address + fragp->fr_fix + 2;
16206
16207 /* We try to avoid the infinite loop by not adding 2 more bytes for
16208 long branches. */
16209
16210 val -= addr;
16211
16212 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16213 if (type == 'D')
16214 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16215 else if (type == 'E')
16216 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16217 else
16218 abort ();
16219 }
16220 else
16221 /* If the symbol is not defined or it's in a different segment,
16222 we emit a normal 32-bit branch. */
16223 toofar = TRUE;
16224
16225 if (fragp && update
16226 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16227 fragp->fr_subtype
16228 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16229 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16230
16231 if (toofar)
16232 return 4;
16233
16234 return 2;
16235 }
16236
16237 /* Estimate the size of a frag before relaxing. Unless this is the
16238 mips16, we are not really relaxing here, and the final size is
16239 encoded in the subtype information. For the mips16, we have to
16240 decide whether we are using an extended opcode or not. */
16241
16242 int
16243 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
16244 {
16245 int change;
16246
16247 if (RELAX_BRANCH_P (fragp->fr_subtype))
16248 {
16249
16250 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
16251
16252 return fragp->fr_var;
16253 }
16254
16255 if (RELAX_MIPS16_P (fragp->fr_subtype))
16256 /* We don't want to modify the EXTENDED bit here; it might get us
16257 into infinite loops. We change it only in mips_relax_frag(). */
16258 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
16259
16260 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16261 {
16262 int length = 4;
16263
16264 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16265 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
16266 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16267 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
16268 fragp->fr_var = length;
16269
16270 return length;
16271 }
16272
16273 if (mips_pic == NO_PIC)
16274 change = nopic_need_relax (fragp->fr_symbol, 0);
16275 else if (mips_pic == SVR4_PIC)
16276 change = pic_need_relax (fragp->fr_symbol, segtype);
16277 else if (mips_pic == VXWORKS_PIC)
16278 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
16279 change = 0;
16280 else
16281 abort ();
16282
16283 if (change)
16284 {
16285 fragp->fr_subtype |= RELAX_USE_SECOND;
16286 return -RELAX_FIRST (fragp->fr_subtype);
16287 }
16288 else
16289 return -RELAX_SECOND (fragp->fr_subtype);
16290 }
16291
16292 /* This is called to see whether a reloc against a defined symbol
16293 should be converted into a reloc against a section. */
16294
16295 int
16296 mips_fix_adjustable (fixS *fixp)
16297 {
16298 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
16299 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16300 return 0;
16301
16302 if (fixp->fx_addsy == NULL)
16303 return 1;
16304
16305 /* If symbol SYM is in a mergeable section, relocations of the form
16306 SYM + 0 can usually be made section-relative. The mergeable data
16307 is then identified by the section offset rather than by the symbol.
16308
16309 However, if we're generating REL LO16 relocations, the offset is split
16310 between the LO16 and parterning high part relocation. The linker will
16311 need to recalculate the complete offset in order to correctly identify
16312 the merge data.
16313
16314 The linker has traditionally not looked for the parterning high part
16315 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
16316 placed anywhere. Rather than break backwards compatibility by changing
16317 this, it seems better not to force the issue, and instead keep the
16318 original symbol. This will work with either linker behavior. */
16319 if ((lo16_reloc_p (fixp->fx_r_type)
16320 || reloc_needs_lo_p (fixp->fx_r_type))
16321 && HAVE_IN_PLACE_ADDENDS
16322 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
16323 return 0;
16324
16325 /* There is no place to store an in-place offset for JALR relocations.
16326 Likewise an in-range offset of limited PC-relative relocations may
16327 overflow the in-place relocatable field if recalculated against the
16328 start address of the symbol's containing section. */
16329 if (HAVE_IN_PLACE_ADDENDS
16330 && (limited_pcrel_reloc_p (fixp->fx_r_type)
16331 || jalr_reloc_p (fixp->fx_r_type)))
16332 return 0;
16333
16334 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
16335 to a floating-point stub. The same is true for non-R_MIPS16_26
16336 relocations against MIPS16 functions; in this case, the stub becomes
16337 the function's canonical address.
16338
16339 Floating-point stubs are stored in unique .mips16.call.* or
16340 .mips16.fn.* sections. If a stub T for function F is in section S,
16341 the first relocation in section S must be against F; this is how the
16342 linker determines the target function. All relocations that might
16343 resolve to T must also be against F. We therefore have the following
16344 restrictions, which are given in an intentionally-redundant way:
16345
16346 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
16347 symbols.
16348
16349 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
16350 if that stub might be used.
16351
16352 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
16353 symbols.
16354
16355 4. We cannot reduce a stub's relocations against MIPS16 symbols if
16356 that stub might be used.
16357
16358 There is a further restriction:
16359
16360 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
16361 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
16362 targets with in-place addends; the relocation field cannot
16363 encode the low bit.
16364
16365 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
16366 against a MIPS16 symbol. We deal with (5) by by not reducing any
16367 such relocations on REL targets.
16368
16369 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
16370 relocation against some symbol R, no relocation against R may be
16371 reduced. (Note that this deals with (2) as well as (1) because
16372 relocations against global symbols will never be reduced on ELF
16373 targets.) This approach is a little simpler than trying to detect
16374 stub sections, and gives the "all or nothing" per-symbol consistency
16375 that we have for MIPS16 symbols. */
16376 if (fixp->fx_subsy == NULL
16377 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
16378 || *symbol_get_tc (fixp->fx_addsy)
16379 || (HAVE_IN_PLACE_ADDENDS
16380 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
16381 && jmp_reloc_p (fixp->fx_r_type))))
16382 return 0;
16383
16384 return 1;
16385 }
16386
16387 /* Translate internal representation of relocation info to BFD target
16388 format. */
16389
16390 arelent **
16391 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
16392 {
16393 static arelent *retval[4];
16394 arelent *reloc;
16395 bfd_reloc_code_real_type code;
16396
16397 memset (retval, 0, sizeof(retval));
16398 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
16399 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
16400 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
16401 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
16402
16403 if (fixp->fx_pcrel)
16404 {
16405 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
16406 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
16407 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
16408 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
16409 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
16410
16411 /* At this point, fx_addnumber is "symbol offset - pcrel address".
16412 Relocations want only the symbol offset. */
16413 reloc->addend = fixp->fx_addnumber + reloc->address;
16414 }
16415 else
16416 reloc->addend = fixp->fx_addnumber;
16417
16418 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
16419 entry to be used in the relocation's section offset. */
16420 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16421 {
16422 reloc->address = reloc->addend;
16423 reloc->addend = 0;
16424 }
16425
16426 code = fixp->fx_r_type;
16427
16428 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
16429 if (reloc->howto == NULL)
16430 {
16431 as_bad_where (fixp->fx_file, fixp->fx_line,
16432 _("cannot represent %s relocation in this object file"
16433 " format"),
16434 bfd_get_reloc_code_name (code));
16435 retval[0] = NULL;
16436 }
16437
16438 return retval;
16439 }
16440
16441 /* Relax a machine dependent frag. This returns the amount by which
16442 the current size of the frag should change. */
16443
16444 int
16445 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
16446 {
16447 if (RELAX_BRANCH_P (fragp->fr_subtype))
16448 {
16449 offsetT old_var = fragp->fr_var;
16450
16451 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
16452
16453 return fragp->fr_var - old_var;
16454 }
16455
16456 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16457 {
16458 offsetT old_var = fragp->fr_var;
16459 offsetT new_var = 4;
16460
16461 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16462 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
16463 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16464 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
16465 fragp->fr_var = new_var;
16466
16467 return new_var - old_var;
16468 }
16469
16470 if (! RELAX_MIPS16_P (fragp->fr_subtype))
16471 return 0;
16472
16473 if (mips16_extended_frag (fragp, NULL, stretch))
16474 {
16475 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16476 return 0;
16477 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
16478 return 2;
16479 }
16480 else
16481 {
16482 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16483 return 0;
16484 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
16485 return -2;
16486 }
16487
16488 return 0;
16489 }
16490
16491 /* Convert a machine dependent frag. */
16492
16493 void
16494 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
16495 {
16496 if (RELAX_BRANCH_P (fragp->fr_subtype))
16497 {
16498 char *buf;
16499 unsigned long insn;
16500 expressionS exp;
16501 fixS *fixp;
16502
16503 buf = fragp->fr_literal + fragp->fr_fix;
16504 insn = read_insn (buf);
16505
16506 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16507 {
16508 /* We generate a fixup instead of applying it right now
16509 because, if there are linker relaxations, we're going to
16510 need the relocations. */
16511 exp.X_op = O_symbol;
16512 exp.X_add_symbol = fragp->fr_symbol;
16513 exp.X_add_number = fragp->fr_offset;
16514
16515 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16516 BFD_RELOC_16_PCREL_S2);
16517 fixp->fx_file = fragp->fr_file;
16518 fixp->fx_line = fragp->fr_line;
16519
16520 buf = write_insn (buf, insn);
16521 }
16522 else
16523 {
16524 int i;
16525
16526 as_warn_where (fragp->fr_file, fragp->fr_line,
16527 _("relaxed out-of-range branch into a jump"));
16528
16529 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
16530 goto uncond;
16531
16532 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16533 {
16534 /* Reverse the branch. */
16535 switch ((insn >> 28) & 0xf)
16536 {
16537 case 4:
16538 /* bc[0-3][tf]l? instructions can have the condition
16539 reversed by tweaking a single TF bit, and their
16540 opcodes all have 0x4???????. */
16541 gas_assert ((insn & 0xf3e00000) == 0x41000000);
16542 insn ^= 0x00010000;
16543 break;
16544
16545 case 0:
16546 /* bltz 0x04000000 bgez 0x04010000
16547 bltzal 0x04100000 bgezal 0x04110000 */
16548 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
16549 insn ^= 0x00010000;
16550 break;
16551
16552 case 1:
16553 /* beq 0x10000000 bne 0x14000000
16554 blez 0x18000000 bgtz 0x1c000000 */
16555 insn ^= 0x04000000;
16556 break;
16557
16558 default:
16559 abort ();
16560 }
16561 }
16562
16563 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16564 {
16565 /* Clear the and-link bit. */
16566 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
16567
16568 /* bltzal 0x04100000 bgezal 0x04110000
16569 bltzall 0x04120000 bgezall 0x04130000 */
16570 insn &= ~0x00100000;
16571 }
16572
16573 /* Branch over the branch (if the branch was likely) or the
16574 full jump (not likely case). Compute the offset from the
16575 current instruction to branch to. */
16576 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16577 i = 16;
16578 else
16579 {
16580 /* How many bytes in instructions we've already emitted? */
16581 i = buf - fragp->fr_literal - fragp->fr_fix;
16582 /* How many bytes in instructions from here to the end? */
16583 i = fragp->fr_var - i;
16584 }
16585 /* Convert to instruction count. */
16586 i >>= 2;
16587 /* Branch counts from the next instruction. */
16588 i--;
16589 insn |= i;
16590 /* Branch over the jump. */
16591 buf = write_insn (buf, insn);
16592
16593 /* nop */
16594 buf = write_insn (buf, 0);
16595
16596 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16597 {
16598 /* beql $0, $0, 2f */
16599 insn = 0x50000000;
16600 /* Compute the PC offset from the current instruction to
16601 the end of the variable frag. */
16602 /* How many bytes in instructions we've already emitted? */
16603 i = buf - fragp->fr_literal - fragp->fr_fix;
16604 /* How many bytes in instructions from here to the end? */
16605 i = fragp->fr_var - i;
16606 /* Convert to instruction count. */
16607 i >>= 2;
16608 /* Don't decrement i, because we want to branch over the
16609 delay slot. */
16610 insn |= i;
16611
16612 buf = write_insn (buf, insn);
16613 buf = write_insn (buf, 0);
16614 }
16615
16616 uncond:
16617 if (mips_pic == NO_PIC)
16618 {
16619 /* j or jal. */
16620 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
16621 ? 0x0c000000 : 0x08000000);
16622 exp.X_op = O_symbol;
16623 exp.X_add_symbol = fragp->fr_symbol;
16624 exp.X_add_number = fragp->fr_offset;
16625
16626 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16627 FALSE, BFD_RELOC_MIPS_JMP);
16628 fixp->fx_file = fragp->fr_file;
16629 fixp->fx_line = fragp->fr_line;
16630
16631 buf = write_insn (buf, insn);
16632 }
16633 else
16634 {
16635 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
16636
16637 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
16638 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
16639 insn |= at << OP_SH_RT;
16640 exp.X_op = O_symbol;
16641 exp.X_add_symbol = fragp->fr_symbol;
16642 exp.X_add_number = fragp->fr_offset;
16643
16644 if (fragp->fr_offset)
16645 {
16646 exp.X_add_symbol = make_expr_symbol (&exp);
16647 exp.X_add_number = 0;
16648 }
16649
16650 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16651 FALSE, BFD_RELOC_MIPS_GOT16);
16652 fixp->fx_file = fragp->fr_file;
16653 fixp->fx_line = fragp->fr_line;
16654
16655 buf = write_insn (buf, insn);
16656
16657 if (mips_opts.isa == ISA_MIPS1)
16658 /* nop */
16659 buf = write_insn (buf, 0);
16660
16661 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
16662 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
16663 insn |= at << OP_SH_RS | at << OP_SH_RT;
16664
16665 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16666 FALSE, BFD_RELOC_LO16);
16667 fixp->fx_file = fragp->fr_file;
16668 fixp->fx_line = fragp->fr_line;
16669
16670 buf = write_insn (buf, insn);
16671
16672 /* j(al)r $at. */
16673 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16674 insn = 0x0000f809;
16675 else
16676 insn = 0x00000008;
16677 insn |= at << OP_SH_RS;
16678
16679 buf = write_insn (buf, insn);
16680 }
16681 }
16682
16683 fragp->fr_fix += fragp->fr_var;
16684 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16685 return;
16686 }
16687
16688 /* Relax microMIPS branches. */
16689 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16690 {
16691 char *buf = fragp->fr_literal + fragp->fr_fix;
16692 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16693 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
16694 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16695 bfd_boolean short_ds;
16696 unsigned long insn;
16697 expressionS exp;
16698 fixS *fixp;
16699
16700 exp.X_op = O_symbol;
16701 exp.X_add_symbol = fragp->fr_symbol;
16702 exp.X_add_number = fragp->fr_offset;
16703
16704 fragp->fr_fix += fragp->fr_var;
16705
16706 /* Handle 16-bit branches that fit or are forced to fit. */
16707 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16708 {
16709 /* We generate a fixup instead of applying it right now,
16710 because if there is linker relaxation, we're going to
16711 need the relocations. */
16712 if (type == 'D')
16713 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
16714 BFD_RELOC_MICROMIPS_10_PCREL_S1);
16715 else if (type == 'E')
16716 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
16717 BFD_RELOC_MICROMIPS_7_PCREL_S1);
16718 else
16719 abort ();
16720
16721 fixp->fx_file = fragp->fr_file;
16722 fixp->fx_line = fragp->fr_line;
16723
16724 /* These relocations can have an addend that won't fit in
16725 2 octets. */
16726 fixp->fx_no_overflow = 1;
16727
16728 return;
16729 }
16730
16731 /* Handle 32-bit branches that fit or are forced to fit. */
16732 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16733 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16734 {
16735 /* We generate a fixup instead of applying it right now,
16736 because if there is linker relaxation, we're going to
16737 need the relocations. */
16738 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16739 BFD_RELOC_MICROMIPS_16_PCREL_S1);
16740 fixp->fx_file = fragp->fr_file;
16741 fixp->fx_line = fragp->fr_line;
16742
16743 if (type == 0)
16744 return;
16745 }
16746
16747 /* Relax 16-bit branches to 32-bit branches. */
16748 if (type != 0)
16749 {
16750 insn = read_compressed_insn (buf, 2);
16751
16752 if ((insn & 0xfc00) == 0xcc00) /* b16 */
16753 insn = 0x94000000; /* beq */
16754 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
16755 {
16756 unsigned long regno;
16757
16758 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
16759 regno = micromips_to_32_reg_d_map [regno];
16760 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
16761 insn |= regno << MICROMIPSOP_SH_RS;
16762 }
16763 else
16764 abort ();
16765
16766 /* Nothing else to do, just write it out. */
16767 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16768 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16769 {
16770 buf = write_compressed_insn (buf, insn, 4);
16771 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16772 return;
16773 }
16774 }
16775 else
16776 insn = read_compressed_insn (buf, 4);
16777
16778 /* Relax 32-bit branches to a sequence of instructions. */
16779 as_warn_where (fragp->fr_file, fragp->fr_line,
16780 _("relaxed out-of-range branch into a jump"));
16781
16782 /* Set the short-delay-slot bit. */
16783 short_ds = al && (insn & 0x02000000) != 0;
16784
16785 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
16786 {
16787 symbolS *l;
16788
16789 /* Reverse the branch. */
16790 if ((insn & 0xfc000000) == 0x94000000 /* beq */
16791 || (insn & 0xfc000000) == 0xb4000000) /* bne */
16792 insn ^= 0x20000000;
16793 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
16794 || (insn & 0xffe00000) == 0x40400000 /* bgez */
16795 || (insn & 0xffe00000) == 0x40800000 /* blez */
16796 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
16797 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
16798 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
16799 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
16800 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
16801 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
16802 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
16803 insn ^= 0x00400000;
16804 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
16805 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
16806 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
16807 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
16808 insn ^= 0x00200000;
16809 else
16810 abort ();
16811
16812 if (al)
16813 {
16814 /* Clear the and-link and short-delay-slot bits. */
16815 gas_assert ((insn & 0xfda00000) == 0x40200000);
16816
16817 /* bltzal 0x40200000 bgezal 0x40600000 */
16818 /* bltzals 0x42200000 bgezals 0x42600000 */
16819 insn &= ~0x02200000;
16820 }
16821
16822 /* Make a label at the end for use with the branch. */
16823 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
16824 micromips_label_inc ();
16825 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
16826
16827 /* Refer to it. */
16828 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
16829 BFD_RELOC_MICROMIPS_16_PCREL_S1);
16830 fixp->fx_file = fragp->fr_file;
16831 fixp->fx_line = fragp->fr_line;
16832
16833 /* Branch over the jump. */
16834 buf = write_compressed_insn (buf, insn, 4);
16835 if (!compact)
16836 /* nop */
16837 buf = write_compressed_insn (buf, 0x0c00, 2);
16838 }
16839
16840 if (mips_pic == NO_PIC)
16841 {
16842 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
16843
16844 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
16845 insn = al ? jal : 0xd4000000;
16846
16847 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16848 BFD_RELOC_MICROMIPS_JMP);
16849 fixp->fx_file = fragp->fr_file;
16850 fixp->fx_line = fragp->fr_line;
16851
16852 buf = write_compressed_insn (buf, insn, 4);
16853 if (compact)
16854 /* nop */
16855 buf = write_compressed_insn (buf, 0x0c00, 2);
16856 }
16857 else
16858 {
16859 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
16860 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
16861 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
16862
16863 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
16864 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
16865 insn |= at << MICROMIPSOP_SH_RT;
16866
16867 if (exp.X_add_number)
16868 {
16869 exp.X_add_symbol = make_expr_symbol (&exp);
16870 exp.X_add_number = 0;
16871 }
16872
16873 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16874 BFD_RELOC_MICROMIPS_GOT16);
16875 fixp->fx_file = fragp->fr_file;
16876 fixp->fx_line = fragp->fr_line;
16877
16878 buf = write_compressed_insn (buf, insn, 4);
16879
16880 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
16881 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
16882 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
16883
16884 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16885 BFD_RELOC_MICROMIPS_LO16);
16886 fixp->fx_file = fragp->fr_file;
16887 fixp->fx_line = fragp->fr_line;
16888
16889 buf = write_compressed_insn (buf, insn, 4);
16890
16891 /* jr/jrc/jalr/jalrs $at */
16892 insn = al ? jalr : jr;
16893 insn |= at << MICROMIPSOP_SH_MJ;
16894
16895 buf = write_compressed_insn (buf, insn, 2);
16896 }
16897
16898 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16899 return;
16900 }
16901
16902 if (RELAX_MIPS16_P (fragp->fr_subtype))
16903 {
16904 int type;
16905 const struct mips_int_operand *operand;
16906 offsetT val;
16907 char *buf;
16908 unsigned int user_length, length;
16909 unsigned long insn;
16910 bfd_boolean ext;
16911
16912 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16913 operand = mips16_immed_operand (type, FALSE);
16914
16915 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
16916 val = resolve_symbol_value (fragp->fr_symbol);
16917 if (operand->root.type == OP_PCREL)
16918 {
16919 const struct mips_pcrel_operand *pcrel_op;
16920 addressT addr;
16921
16922 pcrel_op = (const struct mips_pcrel_operand *) operand;
16923 addr = fragp->fr_address + fragp->fr_fix;
16924
16925 /* The rules for the base address of a PC relative reloc are
16926 complicated; see mips16_extended_frag. */
16927 if (pcrel_op->include_isa_bit)
16928 {
16929 addr += 2;
16930 if (ext)
16931 addr += 2;
16932 /* Ignore the low bit in the target, since it will be
16933 set for a text label. */
16934 val &= -2;
16935 }
16936 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16937 addr -= 4;
16938 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16939 addr -= 2;
16940
16941 addr &= -(1 << pcrel_op->align_log2);
16942 val -= addr;
16943
16944 /* Make sure the section winds up with the alignment we have
16945 assumed. */
16946 if (operand->shift > 0)
16947 record_alignment (asec, operand->shift);
16948 }
16949
16950 if (ext
16951 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
16952 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
16953 as_warn_where (fragp->fr_file, fragp->fr_line,
16954 _("extended instruction in delay slot"));
16955
16956 buf = fragp->fr_literal + fragp->fr_fix;
16957
16958 insn = read_compressed_insn (buf, 2);
16959 if (ext)
16960 insn |= MIPS16_EXTEND;
16961
16962 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16963 user_length = 4;
16964 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16965 user_length = 2;
16966 else
16967 user_length = 0;
16968
16969 mips16_immed (fragp->fr_file, fragp->fr_line, type,
16970 BFD_RELOC_UNUSED, val, user_length, &insn);
16971
16972 length = (ext ? 4 : 2);
16973 gas_assert (mips16_opcode_length (insn) == length);
16974 write_compressed_insn (buf, insn, length);
16975 fragp->fr_fix += length;
16976 }
16977 else
16978 {
16979 relax_substateT subtype = fragp->fr_subtype;
16980 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
16981 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
16982 int first, second;
16983 fixS *fixp;
16984
16985 first = RELAX_FIRST (subtype);
16986 second = RELAX_SECOND (subtype);
16987 fixp = (fixS *) fragp->fr_opcode;
16988
16989 /* If the delay slot chosen does not match the size of the instruction,
16990 then emit a warning. */
16991 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
16992 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
16993 {
16994 relax_substateT s;
16995 const char *msg;
16996
16997 s = subtype & (RELAX_DELAY_SLOT_16BIT
16998 | RELAX_DELAY_SLOT_SIZE_FIRST
16999 | RELAX_DELAY_SLOT_SIZE_SECOND);
17000 msg = macro_warning (s);
17001 if (msg != NULL)
17002 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17003 subtype &= ~s;
17004 }
17005
17006 /* Possibly emit a warning if we've chosen the longer option. */
17007 if (use_second == second_longer)
17008 {
17009 relax_substateT s;
17010 const char *msg;
17011
17012 s = (subtype
17013 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17014 msg = macro_warning (s);
17015 if (msg != NULL)
17016 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17017 subtype &= ~s;
17018 }
17019
17020 /* Go through all the fixups for the first sequence. Disable them
17021 (by marking them as done) if we're going to use the second
17022 sequence instead. */
17023 while (fixp
17024 && fixp->fx_frag == fragp
17025 && fixp->fx_where < fragp->fr_fix - second)
17026 {
17027 if (subtype & RELAX_USE_SECOND)
17028 fixp->fx_done = 1;
17029 fixp = fixp->fx_next;
17030 }
17031
17032 /* Go through the fixups for the second sequence. Disable them if
17033 we're going to use the first sequence, otherwise adjust their
17034 addresses to account for the relaxation. */
17035 while (fixp && fixp->fx_frag == fragp)
17036 {
17037 if (subtype & RELAX_USE_SECOND)
17038 fixp->fx_where -= first;
17039 else
17040 fixp->fx_done = 1;
17041 fixp = fixp->fx_next;
17042 }
17043
17044 /* Now modify the frag contents. */
17045 if (subtype & RELAX_USE_SECOND)
17046 {
17047 char *start;
17048
17049 start = fragp->fr_literal + fragp->fr_fix - first - second;
17050 memmove (start, start + first, second);
17051 fragp->fr_fix -= first;
17052 }
17053 else
17054 fragp->fr_fix -= second;
17055 }
17056 }
17057
17058 /* This function is called after the relocs have been generated.
17059 We've been storing mips16 text labels as odd. Here we convert them
17060 back to even for the convenience of the debugger. */
17061
17062 void
17063 mips_frob_file_after_relocs (void)
17064 {
17065 asymbol **syms;
17066 unsigned int count, i;
17067
17068 syms = bfd_get_outsymbols (stdoutput);
17069 count = bfd_get_symcount (stdoutput);
17070 for (i = 0; i < count; i++, syms++)
17071 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17072 && ((*syms)->value & 1) != 0)
17073 {
17074 (*syms)->value &= ~1;
17075 /* If the symbol has an odd size, it was probably computed
17076 incorrectly, so adjust that as well. */
17077 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17078 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17079 }
17080 }
17081
17082 /* This function is called whenever a label is defined, including fake
17083 labels instantiated off the dot special symbol. It is used when
17084 handling branch delays; if a branch has a label, we assume we cannot
17085 move it. This also bumps the value of the symbol by 1 in compressed
17086 code. */
17087
17088 static void
17089 mips_record_label (symbolS *sym)
17090 {
17091 segment_info_type *si = seg_info (now_seg);
17092 struct insn_label_list *l;
17093
17094 if (free_insn_labels == NULL)
17095 l = (struct insn_label_list *) xmalloc (sizeof *l);
17096 else
17097 {
17098 l = free_insn_labels;
17099 free_insn_labels = l->next;
17100 }
17101
17102 l->label = sym;
17103 l->next = si->label_list;
17104 si->label_list = l;
17105 }
17106
17107 /* This function is called as tc_frob_label() whenever a label is defined
17108 and adds a DWARF-2 record we only want for true labels. */
17109
17110 void
17111 mips_define_label (symbolS *sym)
17112 {
17113 mips_record_label (sym);
17114 dwarf2_emit_label (sym);
17115 }
17116
17117 /* This function is called by tc_new_dot_label whenever a new dot symbol
17118 is defined. */
17119
17120 void
17121 mips_add_dot_label (symbolS *sym)
17122 {
17123 mips_record_label (sym);
17124 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17125 mips_compressed_mark_label (sym);
17126 }
17127 \f
17128 /* Some special processing for a MIPS ELF file. */
17129
17130 void
17131 mips_elf_final_processing (void)
17132 {
17133 /* Write out the register information. */
17134 if (mips_abi != N64_ABI)
17135 {
17136 Elf32_RegInfo s;
17137
17138 s.ri_gprmask = mips_gprmask;
17139 s.ri_cprmask[0] = mips_cprmask[0];
17140 s.ri_cprmask[1] = mips_cprmask[1];
17141 s.ri_cprmask[2] = mips_cprmask[2];
17142 s.ri_cprmask[3] = mips_cprmask[3];
17143 /* The gp_value field is set by the MIPS ELF backend. */
17144
17145 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
17146 ((Elf32_External_RegInfo *)
17147 mips_regmask_frag));
17148 }
17149 else
17150 {
17151 Elf64_Internal_RegInfo s;
17152
17153 s.ri_gprmask = mips_gprmask;
17154 s.ri_pad = 0;
17155 s.ri_cprmask[0] = mips_cprmask[0];
17156 s.ri_cprmask[1] = mips_cprmask[1];
17157 s.ri_cprmask[2] = mips_cprmask[2];
17158 s.ri_cprmask[3] = mips_cprmask[3];
17159 /* The gp_value field is set by the MIPS ELF backend. */
17160
17161 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
17162 ((Elf64_External_RegInfo *)
17163 mips_regmask_frag));
17164 }
17165
17166 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
17167 sort of BFD interface for this. */
17168 if (mips_any_noreorder)
17169 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
17170 if (mips_pic != NO_PIC)
17171 {
17172 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
17173 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17174 }
17175 if (mips_abicalls)
17176 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17177
17178 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
17179 defined at present; this might need to change in future. */
17180 if (file_ase_mips16)
17181 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
17182 if (file_ase_micromips)
17183 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
17184 if (file_ase & ASE_MDMX)
17185 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
17186
17187 /* Set the MIPS ELF ABI flags. */
17188 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
17189 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
17190 else if (mips_abi == O64_ABI)
17191 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
17192 else if (mips_abi == EABI_ABI)
17193 {
17194 if (!file_mips_gp32)
17195 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
17196 else
17197 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
17198 }
17199 else if (mips_abi == N32_ABI)
17200 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
17201
17202 /* Nothing to do for N64_ABI. */
17203
17204 if (mips_32bitmode)
17205 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
17206
17207 if (mips_flag_nan2008)
17208 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
17209
17210 #if 0 /* XXX FIXME */
17211 /* 32 bit code with 64 bit FP registers. */
17212 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
17213 elf_elfheader (stdoutput)->e_flags |= ???;
17214 #endif
17215 }
17216 \f
17217 typedef struct proc {
17218 symbolS *func_sym;
17219 symbolS *func_end_sym;
17220 unsigned long reg_mask;
17221 unsigned long reg_offset;
17222 unsigned long fpreg_mask;
17223 unsigned long fpreg_offset;
17224 unsigned long frame_offset;
17225 unsigned long frame_reg;
17226 unsigned long pc_reg;
17227 } procS;
17228
17229 static procS cur_proc;
17230 static procS *cur_proc_ptr;
17231 static int numprocs;
17232
17233 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
17234 as "2", and a normal nop as "0". */
17235
17236 #define NOP_OPCODE_MIPS 0
17237 #define NOP_OPCODE_MIPS16 1
17238 #define NOP_OPCODE_MICROMIPS 2
17239
17240 char
17241 mips_nop_opcode (void)
17242 {
17243 if (seg_info (now_seg)->tc_segment_info_data.micromips)
17244 return NOP_OPCODE_MICROMIPS;
17245 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
17246 return NOP_OPCODE_MIPS16;
17247 else
17248 return NOP_OPCODE_MIPS;
17249 }
17250
17251 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
17252 32-bit microMIPS NOPs here (if applicable). */
17253
17254 void
17255 mips_handle_align (fragS *fragp)
17256 {
17257 char nop_opcode;
17258 char *p;
17259 int bytes, size, excess;
17260 valueT opcode;
17261
17262 if (fragp->fr_type != rs_align_code)
17263 return;
17264
17265 p = fragp->fr_literal + fragp->fr_fix;
17266 nop_opcode = *p;
17267 switch (nop_opcode)
17268 {
17269 case NOP_OPCODE_MICROMIPS:
17270 opcode = micromips_nop32_insn.insn_opcode;
17271 size = 4;
17272 break;
17273 case NOP_OPCODE_MIPS16:
17274 opcode = mips16_nop_insn.insn_opcode;
17275 size = 2;
17276 break;
17277 case NOP_OPCODE_MIPS:
17278 default:
17279 opcode = nop_insn.insn_opcode;
17280 size = 4;
17281 break;
17282 }
17283
17284 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
17285 excess = bytes % size;
17286
17287 /* Handle the leading part if we're not inserting a whole number of
17288 instructions, and make it the end of the fixed part of the frag.
17289 Try to fit in a short microMIPS NOP if applicable and possible,
17290 and use zeroes otherwise. */
17291 gas_assert (excess < 4);
17292 fragp->fr_fix += excess;
17293 switch (excess)
17294 {
17295 case 3:
17296 *p++ = '\0';
17297 /* Fall through. */
17298 case 2:
17299 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
17300 {
17301 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
17302 break;
17303 }
17304 *p++ = '\0';
17305 /* Fall through. */
17306 case 1:
17307 *p++ = '\0';
17308 /* Fall through. */
17309 case 0:
17310 break;
17311 }
17312
17313 md_number_to_chars (p, opcode, size);
17314 fragp->fr_var = size;
17315 }
17316
17317 static void
17318 md_obj_begin (void)
17319 {
17320 }
17321
17322 static void
17323 md_obj_end (void)
17324 {
17325 /* Check for premature end, nesting errors, etc. */
17326 if (cur_proc_ptr)
17327 as_warn (_("missing .end at end of assembly"));
17328 }
17329
17330 static long
17331 get_number (void)
17332 {
17333 int negative = 0;
17334 long val = 0;
17335
17336 if (*input_line_pointer == '-')
17337 {
17338 ++input_line_pointer;
17339 negative = 1;
17340 }
17341 if (!ISDIGIT (*input_line_pointer))
17342 as_bad (_("expected simple number"));
17343 if (input_line_pointer[0] == '0')
17344 {
17345 if (input_line_pointer[1] == 'x')
17346 {
17347 input_line_pointer += 2;
17348 while (ISXDIGIT (*input_line_pointer))
17349 {
17350 val <<= 4;
17351 val |= hex_value (*input_line_pointer++);
17352 }
17353 return negative ? -val : val;
17354 }
17355 else
17356 {
17357 ++input_line_pointer;
17358 while (ISDIGIT (*input_line_pointer))
17359 {
17360 val <<= 3;
17361 val |= *input_line_pointer++ - '0';
17362 }
17363 return negative ? -val : val;
17364 }
17365 }
17366 if (!ISDIGIT (*input_line_pointer))
17367 {
17368 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
17369 *input_line_pointer, *input_line_pointer);
17370 as_warn (_("invalid number"));
17371 return -1;
17372 }
17373 while (ISDIGIT (*input_line_pointer))
17374 {
17375 val *= 10;
17376 val += *input_line_pointer++ - '0';
17377 }
17378 return negative ? -val : val;
17379 }
17380
17381 /* The .file directive; just like the usual .file directive, but there
17382 is an initial number which is the ECOFF file index. In the non-ECOFF
17383 case .file implies DWARF-2. */
17384
17385 static void
17386 s_mips_file (int x ATTRIBUTE_UNUSED)
17387 {
17388 static int first_file_directive = 0;
17389
17390 if (ECOFF_DEBUGGING)
17391 {
17392 get_number ();
17393 s_app_file (0);
17394 }
17395 else
17396 {
17397 char *filename;
17398
17399 filename = dwarf2_directive_file (0);
17400
17401 /* Versions of GCC up to 3.1 start files with a ".file"
17402 directive even for stabs output. Make sure that this
17403 ".file" is handled. Note that you need a version of GCC
17404 after 3.1 in order to support DWARF-2 on MIPS. */
17405 if (filename != NULL && ! first_file_directive)
17406 {
17407 (void) new_logical_line (filename, -1);
17408 s_app_file_string (filename, 0);
17409 }
17410 first_file_directive = 1;
17411 }
17412 }
17413
17414 /* The .loc directive, implying DWARF-2. */
17415
17416 static void
17417 s_mips_loc (int x ATTRIBUTE_UNUSED)
17418 {
17419 if (!ECOFF_DEBUGGING)
17420 dwarf2_directive_loc (0);
17421 }
17422
17423 /* The .end directive. */
17424
17425 static void
17426 s_mips_end (int x ATTRIBUTE_UNUSED)
17427 {
17428 symbolS *p;
17429
17430 /* Following functions need their own .frame and .cprestore directives. */
17431 mips_frame_reg_valid = 0;
17432 mips_cprestore_valid = 0;
17433
17434 if (!is_end_of_line[(unsigned char) *input_line_pointer])
17435 {
17436 p = get_symbol ();
17437 demand_empty_rest_of_line ();
17438 }
17439 else
17440 p = NULL;
17441
17442 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
17443 as_warn (_(".end not in text section"));
17444
17445 if (!cur_proc_ptr)
17446 {
17447 as_warn (_(".end directive without a preceding .ent directive"));
17448 demand_empty_rest_of_line ();
17449 return;
17450 }
17451
17452 if (p != NULL)
17453 {
17454 gas_assert (S_GET_NAME (p));
17455 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
17456 as_warn (_(".end symbol does not match .ent symbol"));
17457
17458 if (debug_type == DEBUG_STABS)
17459 stabs_generate_asm_endfunc (S_GET_NAME (p),
17460 S_GET_NAME (p));
17461 }
17462 else
17463 as_warn (_(".end directive missing or unknown symbol"));
17464
17465 /* Create an expression to calculate the size of the function. */
17466 if (p && cur_proc_ptr)
17467 {
17468 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
17469 expressionS *exp = xmalloc (sizeof (expressionS));
17470
17471 obj->size = exp;
17472 exp->X_op = O_subtract;
17473 exp->X_add_symbol = symbol_temp_new_now ();
17474 exp->X_op_symbol = p;
17475 exp->X_add_number = 0;
17476
17477 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
17478 }
17479
17480 /* Generate a .pdr section. */
17481 if (!ECOFF_DEBUGGING && mips_flag_pdr)
17482 {
17483 segT saved_seg = now_seg;
17484 subsegT saved_subseg = now_subseg;
17485 expressionS exp;
17486 char *fragp;
17487
17488 #ifdef md_flush_pending_output
17489 md_flush_pending_output ();
17490 #endif
17491
17492 gas_assert (pdr_seg);
17493 subseg_set (pdr_seg, 0);
17494
17495 /* Write the symbol. */
17496 exp.X_op = O_symbol;
17497 exp.X_add_symbol = p;
17498 exp.X_add_number = 0;
17499 emit_expr (&exp, 4);
17500
17501 fragp = frag_more (7 * 4);
17502
17503 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
17504 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
17505 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
17506 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
17507 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
17508 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
17509 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
17510
17511 subseg_set (saved_seg, saved_subseg);
17512 }
17513
17514 cur_proc_ptr = NULL;
17515 }
17516
17517 /* The .aent and .ent directives. */
17518
17519 static void
17520 s_mips_ent (int aent)
17521 {
17522 symbolS *symbolP;
17523
17524 symbolP = get_symbol ();
17525 if (*input_line_pointer == ',')
17526 ++input_line_pointer;
17527 SKIP_WHITESPACE ();
17528 if (ISDIGIT (*input_line_pointer)
17529 || *input_line_pointer == '-')
17530 get_number ();
17531
17532 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
17533 as_warn (_(".ent or .aent not in text section"));
17534
17535 if (!aent && cur_proc_ptr)
17536 as_warn (_("missing .end"));
17537
17538 if (!aent)
17539 {
17540 /* This function needs its own .frame and .cprestore directives. */
17541 mips_frame_reg_valid = 0;
17542 mips_cprestore_valid = 0;
17543
17544 cur_proc_ptr = &cur_proc;
17545 memset (cur_proc_ptr, '\0', sizeof (procS));
17546
17547 cur_proc_ptr->func_sym = symbolP;
17548
17549 ++numprocs;
17550
17551 if (debug_type == DEBUG_STABS)
17552 stabs_generate_asm_func (S_GET_NAME (symbolP),
17553 S_GET_NAME (symbolP));
17554 }
17555
17556 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
17557
17558 demand_empty_rest_of_line ();
17559 }
17560
17561 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
17562 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
17563 s_mips_frame is used so that we can set the PDR information correctly.
17564 We can't use the ecoff routines because they make reference to the ecoff
17565 symbol table (in the mdebug section). */
17566
17567 static void
17568 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
17569 {
17570 if (ECOFF_DEBUGGING)
17571 s_ignore (ignore);
17572 else
17573 {
17574 long val;
17575
17576 if (cur_proc_ptr == (procS *) NULL)
17577 {
17578 as_warn (_(".frame outside of .ent"));
17579 demand_empty_rest_of_line ();
17580 return;
17581 }
17582
17583 cur_proc_ptr->frame_reg = tc_get_register (1);
17584
17585 SKIP_WHITESPACE ();
17586 if (*input_line_pointer++ != ','
17587 || get_absolute_expression_and_terminator (&val) != ',')
17588 {
17589 as_warn (_("bad .frame directive"));
17590 --input_line_pointer;
17591 demand_empty_rest_of_line ();
17592 return;
17593 }
17594
17595 cur_proc_ptr->frame_offset = val;
17596 cur_proc_ptr->pc_reg = tc_get_register (0);
17597
17598 demand_empty_rest_of_line ();
17599 }
17600 }
17601
17602 /* The .fmask and .mask directives. If the mdebug section is present
17603 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
17604 embedded targets, s_mips_mask is used so that we can set the PDR
17605 information correctly. We can't use the ecoff routines because they
17606 make reference to the ecoff symbol table (in the mdebug section). */
17607
17608 static void
17609 s_mips_mask (int reg_type)
17610 {
17611 if (ECOFF_DEBUGGING)
17612 s_ignore (reg_type);
17613 else
17614 {
17615 long mask, off;
17616
17617 if (cur_proc_ptr == (procS *) NULL)
17618 {
17619 as_warn (_(".mask/.fmask outside of .ent"));
17620 demand_empty_rest_of_line ();
17621 return;
17622 }
17623
17624 if (get_absolute_expression_and_terminator (&mask) != ',')
17625 {
17626 as_warn (_("bad .mask/.fmask directive"));
17627 --input_line_pointer;
17628 demand_empty_rest_of_line ();
17629 return;
17630 }
17631
17632 off = get_absolute_expression ();
17633
17634 if (reg_type == 'F')
17635 {
17636 cur_proc_ptr->fpreg_mask = mask;
17637 cur_proc_ptr->fpreg_offset = off;
17638 }
17639 else
17640 {
17641 cur_proc_ptr->reg_mask = mask;
17642 cur_proc_ptr->reg_offset = off;
17643 }
17644
17645 demand_empty_rest_of_line ();
17646 }
17647 }
17648
17649 /* A table describing all the processors gas knows about. Names are
17650 matched in the order listed.
17651
17652 To ease comparison, please keep this table in the same order as
17653 gcc's mips_cpu_info_table[]. */
17654 static const struct mips_cpu_info mips_cpu_info_table[] =
17655 {
17656 /* Entries for generic ISAs */
17657 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
17658 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
17659 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
17660 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
17661 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
17662 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
17663 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17664 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
17665 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
17666
17667 /* MIPS I */
17668 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
17669 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
17670 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
17671
17672 /* MIPS II */
17673 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
17674
17675 /* MIPS III */
17676 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
17677 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
17678 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
17679 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
17680 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
17681 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
17682 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
17683 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
17684 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
17685 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
17686 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
17687 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
17688 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
17689 /* ST Microelectronics Loongson 2E and 2F cores */
17690 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
17691 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
17692
17693 /* MIPS IV */
17694 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
17695 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
17696 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
17697 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
17698 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
17699 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
17700 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
17701 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
17702 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
17703 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
17704 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
17705 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
17706 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
17707 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
17708 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
17709
17710 /* MIPS 32 */
17711 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17712 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17713 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17714 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
17715
17716 /* MIPS 32 Release 2 */
17717 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17718 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17719 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17720 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
17721 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17722 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17723 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17724 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17725 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17726 ISA_MIPS32R2, CPU_MIPS32R2 },
17727 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17728 ISA_MIPS32R2, CPU_MIPS32R2 },
17729 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17730 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17731 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17732 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17733 /* Deprecated forms of the above. */
17734 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17735 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17736 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
17737 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17738 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17739 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17740 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17741 /* Deprecated forms of the above. */
17742 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17743 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17744 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
17745 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17746 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17747 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17748 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17749 /* Deprecated forms of the above. */
17750 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17751 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17752 /* 34Kn is a 34kc without DSP. */
17753 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17754 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
17755 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17756 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17757 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17758 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17759 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17760 /* Deprecated forms of the above. */
17761 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17762 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17763 /* 1004K cores are multiprocessor versions of the 34K. */
17764 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17765 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17766 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17767 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17768
17769 /* MIPS 64 */
17770 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17771 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17772 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17773 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17774
17775 /* Broadcom SB-1 CPU core */
17776 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
17777 /* Broadcom SB-1A CPU core */
17778 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
17779
17780 { "loongson3a", 0, 0, ISA_MIPS64, CPU_LOONGSON_3A },
17781
17782 /* MIPS 64 Release 2 */
17783
17784 /* Cavium Networks Octeon CPU core */
17785 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
17786 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
17787 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
17788
17789 /* RMI Xlr */
17790 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
17791
17792 /* Broadcom XLP.
17793 XLP is mostly like XLR, with the prominent exception that it is
17794 MIPS64R2 rather than MIPS64. */
17795 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
17796
17797 /* End marker */
17798 { NULL, 0, 0, 0, 0 }
17799 };
17800
17801
17802 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
17803 with a final "000" replaced by "k". Ignore case.
17804
17805 Note: this function is shared between GCC and GAS. */
17806
17807 static bfd_boolean
17808 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
17809 {
17810 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
17811 given++, canonical++;
17812
17813 return ((*given == 0 && *canonical == 0)
17814 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
17815 }
17816
17817
17818 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
17819 CPU name. We've traditionally allowed a lot of variation here.
17820
17821 Note: this function is shared between GCC and GAS. */
17822
17823 static bfd_boolean
17824 mips_matching_cpu_name_p (const char *canonical, const char *given)
17825 {
17826 /* First see if the name matches exactly, or with a final "000"
17827 turned into "k". */
17828 if (mips_strict_matching_cpu_name_p (canonical, given))
17829 return TRUE;
17830
17831 /* If not, try comparing based on numerical designation alone.
17832 See if GIVEN is an unadorned number, or 'r' followed by a number. */
17833 if (TOLOWER (*given) == 'r')
17834 given++;
17835 if (!ISDIGIT (*given))
17836 return FALSE;
17837
17838 /* Skip over some well-known prefixes in the canonical name,
17839 hoping to find a number there too. */
17840 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
17841 canonical += 2;
17842 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
17843 canonical += 2;
17844 else if (TOLOWER (canonical[0]) == 'r')
17845 canonical += 1;
17846
17847 return mips_strict_matching_cpu_name_p (canonical, given);
17848 }
17849
17850
17851 /* Parse an option that takes the name of a processor as its argument.
17852 OPTION is the name of the option and CPU_STRING is the argument.
17853 Return the corresponding processor enumeration if the CPU_STRING is
17854 recognized, otherwise report an error and return null.
17855
17856 A similar function exists in GCC. */
17857
17858 static const struct mips_cpu_info *
17859 mips_parse_cpu (const char *option, const char *cpu_string)
17860 {
17861 const struct mips_cpu_info *p;
17862
17863 /* 'from-abi' selects the most compatible architecture for the given
17864 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
17865 EABIs, we have to decide whether we're using the 32-bit or 64-bit
17866 version. Look first at the -mgp options, if given, otherwise base
17867 the choice on MIPS_DEFAULT_64BIT.
17868
17869 Treat NO_ABI like the EABIs. One reason to do this is that the
17870 plain 'mips' and 'mips64' configs have 'from-abi' as their default
17871 architecture. This code picks MIPS I for 'mips' and MIPS III for
17872 'mips64', just as we did in the days before 'from-abi'. */
17873 if (strcasecmp (cpu_string, "from-abi") == 0)
17874 {
17875 if (ABI_NEEDS_32BIT_REGS (mips_abi))
17876 return mips_cpu_info_from_isa (ISA_MIPS1);
17877
17878 if (ABI_NEEDS_64BIT_REGS (mips_abi))
17879 return mips_cpu_info_from_isa (ISA_MIPS3);
17880
17881 if (file_mips_gp32 >= 0)
17882 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
17883
17884 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
17885 ? ISA_MIPS3
17886 : ISA_MIPS1);
17887 }
17888
17889 /* 'default' has traditionally been a no-op. Probably not very useful. */
17890 if (strcasecmp (cpu_string, "default") == 0)
17891 return 0;
17892
17893 for (p = mips_cpu_info_table; p->name != 0; p++)
17894 if (mips_matching_cpu_name_p (p->name, cpu_string))
17895 return p;
17896
17897 as_bad (_("bad value (%s) for %s"), cpu_string, option);
17898 return 0;
17899 }
17900
17901 /* Return the canonical processor information for ISA (a member of the
17902 ISA_MIPS* enumeration). */
17903
17904 static const struct mips_cpu_info *
17905 mips_cpu_info_from_isa (int isa)
17906 {
17907 int i;
17908
17909 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
17910 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
17911 && isa == mips_cpu_info_table[i].isa)
17912 return (&mips_cpu_info_table[i]);
17913
17914 return NULL;
17915 }
17916
17917 static const struct mips_cpu_info *
17918 mips_cpu_info_from_arch (int arch)
17919 {
17920 int i;
17921
17922 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
17923 if (arch == mips_cpu_info_table[i].cpu)
17924 return (&mips_cpu_info_table[i]);
17925
17926 return NULL;
17927 }
17928 \f
17929 static void
17930 show (FILE *stream, const char *string, int *col_p, int *first_p)
17931 {
17932 if (*first_p)
17933 {
17934 fprintf (stream, "%24s", "");
17935 *col_p = 24;
17936 }
17937 else
17938 {
17939 fprintf (stream, ", ");
17940 *col_p += 2;
17941 }
17942
17943 if (*col_p + strlen (string) > 72)
17944 {
17945 fprintf (stream, "\n%24s", "");
17946 *col_p = 24;
17947 }
17948
17949 fprintf (stream, "%s", string);
17950 *col_p += strlen (string);
17951
17952 *first_p = 0;
17953 }
17954
17955 void
17956 md_show_usage (FILE *stream)
17957 {
17958 int column, first;
17959 size_t i;
17960
17961 fprintf (stream, _("\
17962 MIPS options:\n\
17963 -EB generate big endian output\n\
17964 -EL generate little endian output\n\
17965 -g, -g2 do not remove unneeded NOPs or swap branches\n\
17966 -G NUM allow referencing objects up to NUM bytes\n\
17967 implicitly with the gp register [default 8]\n"));
17968 fprintf (stream, _("\
17969 -mips1 generate MIPS ISA I instructions\n\
17970 -mips2 generate MIPS ISA II instructions\n\
17971 -mips3 generate MIPS ISA III instructions\n\
17972 -mips4 generate MIPS ISA IV instructions\n\
17973 -mips5 generate MIPS ISA V instructions\n\
17974 -mips32 generate MIPS32 ISA instructions\n\
17975 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
17976 -mips64 generate MIPS64 ISA instructions\n\
17977 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
17978 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
17979
17980 first = 1;
17981
17982 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
17983 show (stream, mips_cpu_info_table[i].name, &column, &first);
17984 show (stream, "from-abi", &column, &first);
17985 fputc ('\n', stream);
17986
17987 fprintf (stream, _("\
17988 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
17989 -no-mCPU don't generate code specific to CPU.\n\
17990 For -mCPU and -no-mCPU, CPU must be one of:\n"));
17991
17992 first = 1;
17993
17994 show (stream, "3900", &column, &first);
17995 show (stream, "4010", &column, &first);
17996 show (stream, "4100", &column, &first);
17997 show (stream, "4650", &column, &first);
17998 fputc ('\n', stream);
17999
18000 fprintf (stream, _("\
18001 -mips16 generate mips16 instructions\n\
18002 -no-mips16 do not generate mips16 instructions\n"));
18003 fprintf (stream, _("\
18004 -mmicromips generate microMIPS instructions\n\
18005 -mno-micromips do not generate microMIPS instructions\n"));
18006 fprintf (stream, _("\
18007 -msmartmips generate smartmips instructions\n\
18008 -mno-smartmips do not generate smartmips instructions\n"));
18009 fprintf (stream, _("\
18010 -mdsp generate DSP instructions\n\
18011 -mno-dsp do not generate DSP instructions\n"));
18012 fprintf (stream, _("\
18013 -mdspr2 generate DSP R2 instructions\n\
18014 -mno-dspr2 do not generate DSP R2 instructions\n"));
18015 fprintf (stream, _("\
18016 -mmt generate MT instructions\n\
18017 -mno-mt do not generate MT instructions\n"));
18018 fprintf (stream, _("\
18019 -mmcu generate MCU instructions\n\
18020 -mno-mcu do not generate MCU instructions\n"));
18021 fprintf (stream, _("\
18022 -mvirt generate Virtualization instructions\n\
18023 -mno-virt do not generate Virtualization instructions\n"));
18024 fprintf (stream, _("\
18025 -minsn32 only generate 32-bit microMIPS instructions\n\
18026 -mno-insn32 generate all microMIPS instructions\n"));
18027 fprintf (stream, _("\
18028 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18029 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18030 -mfix-vr4120 work around certain VR4120 errata\n\
18031 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18032 -mfix-24k insert a nop after ERET and DERET instructions\n\
18033 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18034 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18035 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18036 -msym32 assume all symbols have 32-bit values\n\
18037 -O0 remove unneeded NOPs, do not swap branches\n\
18038 -O remove unneeded NOPs and swap branches\n\
18039 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18040 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18041 fprintf (stream, _("\
18042 -mhard-float allow floating-point instructions\n\
18043 -msoft-float do not allow floating-point instructions\n\
18044 -msingle-float only allow 32-bit floating-point operations\n\
18045 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18046 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18047 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18048 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18049
18050 first = 1;
18051
18052 show (stream, "legacy", &column, &first);
18053 show (stream, "2008", &column, &first);
18054
18055 fputc ('\n', stream);
18056
18057 fprintf (stream, _("\
18058 -KPIC, -call_shared generate SVR4 position independent code\n\
18059 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18060 -mvxworks-pic generate VxWorks position independent code\n\
18061 -non_shared do not generate code that can operate with DSOs\n\
18062 -xgot assume a 32 bit GOT\n\
18063 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18064 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18065 position dependent (non shared) code\n\
18066 -mabi=ABI create ABI conformant object file for:\n"));
18067
18068 first = 1;
18069
18070 show (stream, "32", &column, &first);
18071 show (stream, "o64", &column, &first);
18072 show (stream, "n32", &column, &first);
18073 show (stream, "64", &column, &first);
18074 show (stream, "eabi", &column, &first);
18075
18076 fputc ('\n', stream);
18077
18078 fprintf (stream, _("\
18079 -32 create o32 ABI object file (default)\n\
18080 -n32 create n32 ABI object file\n\
18081 -64 create 64 ABI object file\n"));
18082 }
18083
18084 #ifdef TE_IRIX
18085 enum dwarf2_format
18086 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
18087 {
18088 if (HAVE_64BIT_SYMBOLS)
18089 return dwarf2_format_64bit_irix;
18090 else
18091 return dwarf2_format_32bit;
18092 }
18093 #endif
18094
18095 int
18096 mips_dwarf2_addr_size (void)
18097 {
18098 if (HAVE_64BIT_OBJECTS)
18099 return 8;
18100 else
18101 return 4;
18102 }
18103
18104 /* Standard calling conventions leave the CFA at SP on entry. */
18105 void
18106 mips_cfi_frame_initial_instructions (void)
18107 {
18108 cfi_add_CFA_def_cfa_register (SP);
18109 }
18110
18111 int
18112 tc_mips_regname_to_dw2regnum (char *regname)
18113 {
18114 unsigned int regnum = -1;
18115 unsigned int reg;
18116
18117 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
18118 regnum = reg;
18119
18120 return regnum;
18121 }
This page took 0.635293 seconds and 5 git commands to generate.