gas/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include "opcode/mips.h"
32 #include "itbl-ops.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35
36 #ifdef DEBUG
37 #define DBG(x) printf x
38 #else
39 #define DBG(x)
40 #endif
41
42 #ifdef OBJ_MAYBE_ELF
43 /* Clean up namespace so we can include obj-elf.h too. */
44 static int mips_output_flavor (void);
45 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
46 #undef OBJ_PROCESS_STAB
47 #undef OUTPUT_FLAVOR
48 #undef S_GET_ALIGN
49 #undef S_GET_SIZE
50 #undef S_SET_ALIGN
51 #undef S_SET_SIZE
52 #undef obj_frob_file
53 #undef obj_frob_file_after_relocs
54 #undef obj_frob_symbol
55 #undef obj_pop_insert
56 #undef obj_sec_sym_ok_for_reloc
57 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
58
59 #include "obj-elf.h"
60 /* Fix any of them that we actually care about. */
61 #undef OUTPUT_FLAVOR
62 #define OUTPUT_FLAVOR mips_output_flavor()
63 #endif
64
65 #if defined (OBJ_ELF)
66 #include "elf/mips.h"
67 #endif
68
69 #ifndef ECOFF_DEBUGGING
70 #define NO_ECOFF_DEBUGGING
71 #define ECOFF_DEBUGGING 0
72 #endif
73
74 int mips_flag_mdebug = -1;
75
76 /* Control generation of .pdr sections. Off by default on IRIX: the native
77 linker doesn't know about and discards them, but relocations against them
78 remain, leading to rld crashes. */
79 #ifdef TE_IRIX
80 int mips_flag_pdr = FALSE;
81 #else
82 int mips_flag_pdr = TRUE;
83 #endif
84
85 #include "ecoff.h"
86
87 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
88 static char *mips_regmask_frag;
89 #endif
90
91 #define ZERO 0
92 #define ATREG 1
93 #define TREG 24
94 #define PIC_CALL_REG 25
95 #define KT0 26
96 #define KT1 27
97 #define GP 28
98 #define SP 29
99 #define FP 30
100 #define RA 31
101
102 #define ILLEGAL_REG (32)
103
104 #define AT mips_opts.at
105
106 /* Allow override of standard little-endian ECOFF format. */
107
108 #ifndef ECOFF_LITTLE_FORMAT
109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
110 #endif
111
112 extern int target_big_endian;
113
114 /* The name of the readonly data section. */
115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
116 ? ".rdata" \
117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
118 ? ".rdata" \
119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
120 ? ".rodata" \
121 : (abort (), ""))
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* True if this is a mips16 instruction and if we want the extended
131 form of INSN_MO. */
132 bfd_boolean use_extend;
133
134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
135 unsigned short extend;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. */
139 unsigned long insn_opcode;
140
141 /* The frag that contains the instruction. */
142 struct frag *frag;
143
144 /* The offset into FRAG of the first instruction byte. */
145 long where;
146
147 /* The relocs associated with the instruction, if any. */
148 fixS *fixp[3];
149
150 /* True if this entry cannot be moved from its current position. */
151 unsigned int fixed_p : 1;
152
153 /* True if this instruction occurred in a .set noreorder block. */
154 unsigned int noreorder_p : 1;
155
156 /* True for mips16 instructions that jump to an absolute address. */
157 unsigned int mips16_absolute_jump_p : 1;
158 };
159
160 /* The ABI to use. */
161 enum mips_abi_level
162 {
163 NO_ABI = 0,
164 O32_ABI,
165 O64_ABI,
166 N32_ABI,
167 N64_ABI,
168 EABI_ABI
169 };
170
171 /* MIPS ABI we are using for this output file. */
172 static enum mips_abi_level mips_abi = NO_ABI;
173
174 /* Whether or not we have code that can call pic code. */
175 int mips_abicalls = FALSE;
176
177 /* Whether or not we have code which can be put into a shared
178 library. */
179 static bfd_boolean mips_in_shared = TRUE;
180
181 /* This is the set of options which may be modified by the .set
182 pseudo-op. We use a struct so that .set push and .set pop are more
183 reliable. */
184
185 struct mips_set_options
186 {
187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
188 if it has not been initialized. Changed by `.set mipsN', and the
189 -mipsN command line option, and the default CPU. */
190 int isa;
191 /* Enabled Application Specific Extensions (ASEs). These are set to -1
192 if they have not been initialized. Changed by `.set <asename>', by
193 command line options, and based on the default architecture. */
194 int ase_mips3d;
195 int ase_mdmx;
196 int ase_smartmips;
197 int ase_dsp;
198 int ase_dspr2;
199 int ase_mt;
200 /* Whether we are assembling for the mips16 processor. 0 if we are
201 not, 1 if we are, and -1 if the value has not been initialized.
202 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
203 -nomips16 command line options, and the default CPU. */
204 int mips16;
205 /* Non-zero if we should not reorder instructions. Changed by `.set
206 reorder' and `.set noreorder'. */
207 int noreorder;
208 /* Non-zero if we should not permit the register designated "assembler
209 temporary" to be used in instructions. The value is the register
210 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
211 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
212 unsigned int at;
213 /* Non-zero if we should warn when a macro instruction expands into
214 more than one machine instruction. Changed by `.set nomacro' and
215 `.set macro'. */
216 int warn_about_macros;
217 /* Non-zero if we should not move instructions. Changed by `.set
218 move', `.set volatile', `.set nomove', and `.set novolatile'. */
219 int nomove;
220 /* Non-zero if we should not optimize branches by moving the target
221 of the branch into the delay slot. Actually, we don't perform
222 this optimization anyhow. Changed by `.set bopt' and `.set
223 nobopt'. */
224 int nobopt;
225 /* Non-zero if we should not autoextend mips16 instructions.
226 Changed by `.set autoextend' and `.set noautoextend'. */
227 int noautoextend;
228 /* Restrict general purpose registers and floating point registers
229 to 32 bit. This is initially determined when -mgp32 or -mfp32
230 is passed but can changed if the assembler code uses .set mipsN. */
231 int gp32;
232 int fp32;
233 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
234 command line option, and the default CPU. */
235 int arch;
236 /* True if ".set sym32" is in effect. */
237 bfd_boolean sym32;
238 /* True if floating-point operations are not allowed. Changed by .set
239 softfloat or .set hardfloat, by command line options -msoft-float or
240 -mhard-float. The default is false. */
241 bfd_boolean soft_float;
242
243 /* True if only single-precision floating-point operations are allowed.
244 Changed by .set singlefloat or .set doublefloat, command-line options
245 -msingle-float or -mdouble-float. The default is false. */
246 bfd_boolean single_float;
247 };
248
249 /* This is the struct we use to hold the current set of options. Note
250 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
251 -1 to indicate that they have not been initialized. */
252
253 /* True if -mgp32 was passed. */
254 static int file_mips_gp32 = -1;
255
256 /* True if -mfp32 was passed. */
257 static int file_mips_fp32 = -1;
258
259 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
260 static int file_mips_soft_float = 0;
261
262 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
263 static int file_mips_single_float = 0;
264
265 static struct mips_set_options mips_opts =
266 {
267 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
268 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
269 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
270 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
271 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
272 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
273 };
274
275 /* These variables are filled in with the masks of registers used.
276 The object format code reads them and puts them in the appropriate
277 place. */
278 unsigned long mips_gprmask;
279 unsigned long mips_cprmask[4];
280
281 /* MIPS ISA we are using for this output file. */
282 static int file_mips_isa = ISA_UNKNOWN;
283
284 /* True if -mips16 was passed or implied by arguments passed on the
285 command line (e.g., by -march). */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if -mips3d was passed or implied by arguments passed on the
294 command line (e.g., by -march). */
295 static int file_ase_mips3d;
296
297 /* True if -mdmx was passed or implied by arguments passed on the
298 command line (e.g., by -march). */
299 static int file_ase_mdmx;
300
301 /* True if -msmartmips was passed or implied by arguments passed on the
302 command line (e.g., by -march). */
303 static int file_ase_smartmips;
304
305 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
306 || mips_opts.isa == ISA_MIPS32R2)
307
308 /* True if -mdsp was passed or implied by arguments passed on the
309 command line (e.g., by -march). */
310 static int file_ase_dsp;
311
312 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
313 || mips_opts.isa == ISA_MIPS64R2)
314
315 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
316
317 /* True if -mdspr2 was passed or implied by arguments passed on the
318 command line (e.g., by -march). */
319 static int file_ase_dspr2;
320
321 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
322 || mips_opts.isa == ISA_MIPS64R2)
323
324 /* True if -mmt was passed or implied by arguments passed on the
325 command line (e.g., by -march). */
326 static int file_ase_mt;
327
328 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
329 || mips_opts.isa == ISA_MIPS64R2)
330
331 /* The argument of the -march= flag. The architecture we are assembling. */
332 static int file_mips_arch = CPU_UNKNOWN;
333 static const char *mips_arch_string;
334
335 /* The argument of the -mtune= flag. The architecture for which we
336 are optimizing. */
337 static int mips_tune = CPU_UNKNOWN;
338 static const char *mips_tune_string;
339
340 /* True when generating 32-bit code for a 64-bit processor. */
341 static int mips_32bitmode = 0;
342
343 /* True if the given ABI requires 32-bit registers. */
344 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
345
346 /* Likewise 64-bit registers. */
347 #define ABI_NEEDS_64BIT_REGS(ABI) \
348 ((ABI) == N32_ABI \
349 || (ABI) == N64_ABI \
350 || (ABI) == O64_ABI)
351
352 /* Return true if ISA supports 64 bit wide gp registers. */
353 #define ISA_HAS_64BIT_REGS(ISA) \
354 ((ISA) == ISA_MIPS3 \
355 || (ISA) == ISA_MIPS4 \
356 || (ISA) == ISA_MIPS5 \
357 || (ISA) == ISA_MIPS64 \
358 || (ISA) == ISA_MIPS64R2)
359
360 /* Return true if ISA supports 64 bit wide float registers. */
361 #define ISA_HAS_64BIT_FPRS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS32R2 \
366 || (ISA) == ISA_MIPS64 \
367 || (ISA) == ISA_MIPS64R2)
368
369 /* Return true if ISA supports 64-bit right rotate (dror et al.)
370 instructions. */
371 #define ISA_HAS_DROR(ISA) \
372 ((ISA) == ISA_MIPS64R2)
373
374 /* Return true if ISA supports 32-bit right rotate (ror et al.)
375 instructions. */
376 #define ISA_HAS_ROR(ISA) \
377 ((ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64R2 \
379 || mips_opts.ase_smartmips)
380
381 /* Return true if ISA supports single-precision floats in odd registers. */
382 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
383 ((ISA) == ISA_MIPS32 \
384 || (ISA) == ISA_MIPS32R2 \
385 || (ISA) == ISA_MIPS64 \
386 || (ISA) == ISA_MIPS64R2)
387
388 /* Return true if ISA supports move to/from high part of a 64-bit
389 floating-point register. */
390 #define ISA_HAS_MXHC1(ISA) \
391 ((ISA) == ISA_MIPS32R2 \
392 || (ISA) == ISA_MIPS64R2)
393
394 #define HAVE_32BIT_GPRS \
395 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
396
397 #define HAVE_32BIT_FPRS \
398 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
399
400 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
401 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
402
403 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
404
405 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
406
407 /* True if relocations are stored in-place. */
408 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
409
410 /* The ABI-derived address size. */
411 #define HAVE_64BIT_ADDRESSES \
412 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
413 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
414
415 /* The size of symbolic constants (i.e., expressions of the form
416 "SYMBOL" or "SYMBOL + OFFSET"). */
417 #define HAVE_32BIT_SYMBOLS \
418 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
419 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
420
421 /* Addresses are loaded in different ways, depending on the address size
422 in use. The n32 ABI Documentation also mandates the use of additions
423 with overflow checking, but existing implementations don't follow it. */
424 #define ADDRESS_ADD_INSN \
425 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
426
427 #define ADDRESS_ADDI_INSN \
428 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
429
430 #define ADDRESS_LOAD_INSN \
431 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
432
433 #define ADDRESS_STORE_INSN \
434 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
435
436 /* Return true if the given CPU supports the MIPS16 ASE. */
437 #define CPU_HAS_MIPS16(cpu) \
438 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
439 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
440
441 /* True if CPU has a dror instruction. */
442 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
443
444 /* True if CPU has a ror instruction. */
445 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
446
447 /* True if CPU has seq/sne and seqi/snei instructions. */
448 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
449
450 /* True if CPU does not implement the all the coprocessor insns. For these
451 CPUs only those COP insns are accepted that are explicitly marked to be
452 available on the CPU. ISA membership for COP insns is ignored. */
453 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
454
455 /* True if mflo and mfhi can be immediately followed by instructions
456 which write to the HI and LO registers.
457
458 According to MIPS specifications, MIPS ISAs I, II, and III need
459 (at least) two instructions between the reads of HI/LO and
460 instructions which write them, and later ISAs do not. Contradicting
461 the MIPS specifications, some MIPS IV processor user manuals (e.g.
462 the UM for the NEC Vr5000) document needing the instructions between
463 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
464 MIPS64 and later ISAs to have the interlocks, plus any specific
465 earlier-ISA CPUs for which CPU documentation declares that the
466 instructions are really interlocked. */
467 #define hilo_interlocks \
468 (mips_opts.isa == ISA_MIPS32 \
469 || mips_opts.isa == ISA_MIPS32R2 \
470 || mips_opts.isa == ISA_MIPS64 \
471 || mips_opts.isa == ISA_MIPS64R2 \
472 || mips_opts.arch == CPU_R4010 \
473 || mips_opts.arch == CPU_R10000 \
474 || mips_opts.arch == CPU_R12000 \
475 || mips_opts.arch == CPU_R14000 \
476 || mips_opts.arch == CPU_R16000 \
477 || mips_opts.arch == CPU_RM7000 \
478 || mips_opts.arch == CPU_VR5500 \
479 )
480
481 /* Whether the processor uses hardware interlocks to protect reads
482 from the GPRs after they are loaded from memory, and thus does not
483 require nops to be inserted. This applies to instructions marked
484 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
485 level I. */
486 #define gpr_interlocks \
487 (mips_opts.isa != ISA_MIPS1 \
488 || mips_opts.arch == CPU_R3900)
489
490 /* Whether the processor uses hardware interlocks to avoid delays
491 required by coprocessor instructions, and thus does not require
492 nops to be inserted. This applies to instructions marked
493 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
494 between instructions marked INSN_WRITE_COND_CODE and ones marked
495 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
496 levels I, II, and III. */
497 /* Itbl support may require additional care here. */
498 #define cop_interlocks \
499 ((mips_opts.isa != ISA_MIPS1 \
500 && mips_opts.isa != ISA_MIPS2 \
501 && mips_opts.isa != ISA_MIPS3) \
502 || mips_opts.arch == CPU_R4300 \
503 )
504
505 /* Whether the processor uses hardware interlocks to protect reads
506 from coprocessor registers after they are loaded from memory, and
507 thus does not require nops to be inserted. This applies to
508 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
509 requires at MIPS ISA level I. */
510 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
511
512 /* Is this a mfhi or mflo instruction? */
513 #define MF_HILO_INSN(PINFO) \
514 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
515
516 /* Returns true for a (non floating-point) coprocessor instruction. Reading
517 or writing the condition code is only possible on the coprocessors and
518 these insns are not marked with INSN_COP. Thus for these insns use the
519 condition-code flags. */
520 #define COP_INSN(PINFO) \
521 (PINFO != INSN_MACRO \
522 && ((PINFO) & (FP_S | FP_D)) == 0 \
523 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
524
525 /* MIPS PIC level. */
526
527 enum mips_pic_level mips_pic;
528
529 /* 1 if we should generate 32 bit offsets from the $gp register in
530 SVR4_PIC mode. Currently has no meaning in other modes. */
531 static int mips_big_got = 0;
532
533 /* 1 if trap instructions should used for overflow rather than break
534 instructions. */
535 static int mips_trap = 0;
536
537 /* 1 if double width floating point constants should not be constructed
538 by assembling two single width halves into two single width floating
539 point registers which just happen to alias the double width destination
540 register. On some architectures this aliasing can be disabled by a bit
541 in the status register, and the setting of this bit cannot be determined
542 automatically at assemble time. */
543 static int mips_disable_float_construction;
544
545 /* Non-zero if any .set noreorder directives were used. */
546
547 static int mips_any_noreorder;
548
549 /* Non-zero if nops should be inserted when the register referenced in
550 an mfhi/mflo instruction is read in the next two instructions. */
551 static int mips_7000_hilo_fix;
552
553 /* The size of objects in the small data section. */
554 static unsigned int g_switch_value = 8;
555 /* Whether the -G option was used. */
556 static int g_switch_seen = 0;
557
558 #define N_RMASK 0xc4
559 #define N_VFP 0xd4
560
561 /* If we can determine in advance that GP optimization won't be
562 possible, we can skip the relaxation stuff that tries to produce
563 GP-relative references. This makes delay slot optimization work
564 better.
565
566 This function can only provide a guess, but it seems to work for
567 gcc output. It needs to guess right for gcc, otherwise gcc
568 will put what it thinks is a GP-relative instruction in a branch
569 delay slot.
570
571 I don't know if a fix is needed for the SVR4_PIC mode. I've only
572 fixed it for the non-PIC mode. KR 95/04/07 */
573 static int nopic_need_relax (symbolS *, int);
574
575 /* handle of the OPCODE hash table */
576 static struct hash_control *op_hash = NULL;
577
578 /* The opcode hash table we use for the mips16. */
579 static struct hash_control *mips16_op_hash = NULL;
580
581 /* This array holds the chars that always start a comment. If the
582 pre-processor is disabled, these aren't very useful */
583 const char comment_chars[] = "#";
584
585 /* This array holds the chars that only start a comment at the beginning of
586 a line. If the line seems to have the form '# 123 filename'
587 .line and .file directives will appear in the pre-processed output */
588 /* Note that input_file.c hand checks for '#' at the beginning of the
589 first line of the input file. This is because the compiler outputs
590 #NO_APP at the beginning of its output. */
591 /* Also note that C style comments are always supported. */
592 const char line_comment_chars[] = "#";
593
594 /* This array holds machine specific line separator characters. */
595 const char line_separator_chars[] = ";";
596
597 /* Chars that can be used to separate mant from exp in floating point nums */
598 const char EXP_CHARS[] = "eE";
599
600 /* Chars that mean this number is a floating point constant */
601 /* As in 0f12.456 */
602 /* or 0d1.2345e12 */
603 const char FLT_CHARS[] = "rRsSfFdDxXpP";
604
605 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
606 changed in read.c . Ideally it shouldn't have to know about it at all,
607 but nothing is ideal around here.
608 */
609
610 static char *insn_error;
611
612 static int auto_align = 1;
613
614 /* When outputting SVR4 PIC code, the assembler needs to know the
615 offset in the stack frame from which to restore the $gp register.
616 This is set by the .cprestore pseudo-op, and saved in this
617 variable. */
618 static offsetT mips_cprestore_offset = -1;
619
620 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
621 more optimizations, it can use a register value instead of a memory-saved
622 offset and even an other register than $gp as global pointer. */
623 static offsetT mips_cpreturn_offset = -1;
624 static int mips_cpreturn_register = -1;
625 static int mips_gp_register = GP;
626 static int mips_gprel_offset = 0;
627
628 /* Whether mips_cprestore_offset has been set in the current function
629 (or whether it has already been warned about, if not). */
630 static int mips_cprestore_valid = 0;
631
632 /* This is the register which holds the stack frame, as set by the
633 .frame pseudo-op. This is needed to implement .cprestore. */
634 static int mips_frame_reg = SP;
635
636 /* Whether mips_frame_reg has been set in the current function
637 (or whether it has already been warned about, if not). */
638 static int mips_frame_reg_valid = 0;
639
640 /* To output NOP instructions correctly, we need to keep information
641 about the previous two instructions. */
642
643 /* Whether we are optimizing. The default value of 2 means to remove
644 unneeded NOPs and swap branch instructions when possible. A value
645 of 1 means to not swap branches. A value of 0 means to always
646 insert NOPs. */
647 static int mips_optimize = 2;
648
649 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
650 equivalent to seeing no -g option at all. */
651 static int mips_debug = 0;
652
653 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
654 #define MAX_VR4130_NOPS 4
655
656 /* The maximum number of NOPs needed to fill delay slots. */
657 #define MAX_DELAY_NOPS 2
658
659 /* The maximum number of NOPs needed for any purpose. */
660 #define MAX_NOPS 4
661
662 /* A list of previous instructions, with index 0 being the most recent.
663 We need to look back MAX_NOPS instructions when filling delay slots
664 or working around processor errata. We need to look back one
665 instruction further if we're thinking about using history[0] to
666 fill a branch delay slot. */
667 static struct mips_cl_insn history[1 + MAX_NOPS];
668
669 /* Nop instructions used by emit_nop. */
670 static struct mips_cl_insn nop_insn, mips16_nop_insn;
671
672 /* The appropriate nop for the current mode. */
673 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
674
675 /* If this is set, it points to a frag holding nop instructions which
676 were inserted before the start of a noreorder section. If those
677 nops turn out to be unnecessary, the size of the frag can be
678 decreased. */
679 static fragS *prev_nop_frag;
680
681 /* The number of nop instructions we created in prev_nop_frag. */
682 static int prev_nop_frag_holds;
683
684 /* The number of nop instructions that we know we need in
685 prev_nop_frag. */
686 static int prev_nop_frag_required;
687
688 /* The number of instructions we've seen since prev_nop_frag. */
689 static int prev_nop_frag_since;
690
691 /* For ECOFF and ELF, relocations against symbols are done in two
692 parts, with a HI relocation and a LO relocation. Each relocation
693 has only 16 bits of space to store an addend. This means that in
694 order for the linker to handle carries correctly, it must be able
695 to locate both the HI and the LO relocation. This means that the
696 relocations must appear in order in the relocation table.
697
698 In order to implement this, we keep track of each unmatched HI
699 relocation. We then sort them so that they immediately precede the
700 corresponding LO relocation. */
701
702 struct mips_hi_fixup
703 {
704 /* Next HI fixup. */
705 struct mips_hi_fixup *next;
706 /* This fixup. */
707 fixS *fixp;
708 /* The section this fixup is in. */
709 segT seg;
710 };
711
712 /* The list of unmatched HI relocs. */
713
714 static struct mips_hi_fixup *mips_hi_fixup_list;
715
716 /* The frag containing the last explicit relocation operator.
717 Null if explicit relocations have not been used. */
718
719 static fragS *prev_reloc_op_frag;
720
721 /* Map normal MIPS register numbers to mips16 register numbers. */
722
723 #define X ILLEGAL_REG
724 static const int mips32_to_16_reg_map[] =
725 {
726 X, X, 2, 3, 4, 5, 6, 7,
727 X, X, X, X, X, X, X, X,
728 0, 1, X, X, X, X, X, X,
729 X, X, X, X, X, X, X, X
730 };
731 #undef X
732
733 /* Map mips16 register numbers to normal MIPS register numbers. */
734
735 static const unsigned int mips16_to_32_reg_map[] =
736 {
737 16, 17, 2, 3, 4, 5, 6, 7
738 };
739
740 /* Classifies the kind of instructions we're interested in when
741 implementing -mfix-vr4120. */
742 enum fix_vr4120_class {
743 FIX_VR4120_MACC,
744 FIX_VR4120_DMACC,
745 FIX_VR4120_MULT,
746 FIX_VR4120_DMULT,
747 FIX_VR4120_DIV,
748 FIX_VR4120_MTHILO,
749 NUM_FIX_VR4120_CLASSES
750 };
751
752 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
753 there must be at least one other instruction between an instruction
754 of type X and an instruction of type Y. */
755 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
756
757 /* True if -mfix-vr4120 is in force. */
758 static int mips_fix_vr4120;
759
760 /* ...likewise -mfix-vr4130. */
761 static int mips_fix_vr4130;
762
763 /* ...likewise -mfix-24k. */
764 static int mips_fix_24k;
765
766 /* We don't relax branches by default, since this causes us to expand
767 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
768 fail to compute the offset before expanding the macro to the most
769 efficient expansion. */
770
771 static int mips_relax_branch;
772 \f
773 /* The expansion of many macros depends on the type of symbol that
774 they refer to. For example, when generating position-dependent code,
775 a macro that refers to a symbol may have two different expansions,
776 one which uses GP-relative addresses and one which uses absolute
777 addresses. When generating SVR4-style PIC, a macro may have
778 different expansions for local and global symbols.
779
780 We handle these situations by generating both sequences and putting
781 them in variant frags. In position-dependent code, the first sequence
782 will be the GP-relative one and the second sequence will be the
783 absolute one. In SVR4 PIC, the first sequence will be for global
784 symbols and the second will be for local symbols.
785
786 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
787 SECOND are the lengths of the two sequences in bytes. These fields
788 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
789 the subtype has the following flags:
790
791 RELAX_USE_SECOND
792 Set if it has been decided that we should use the second
793 sequence instead of the first.
794
795 RELAX_SECOND_LONGER
796 Set in the first variant frag if the macro's second implementation
797 is longer than its first. This refers to the macro as a whole,
798 not an individual relaxation.
799
800 RELAX_NOMACRO
801 Set in the first variant frag if the macro appeared in a .set nomacro
802 block and if one alternative requires a warning but the other does not.
803
804 RELAX_DELAY_SLOT
805 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
806 delay slot.
807
808 The frag's "opcode" points to the first fixup for relaxable code.
809
810 Relaxable macros are generated using a sequence such as:
811
812 relax_start (SYMBOL);
813 ... generate first expansion ...
814 relax_switch ();
815 ... generate second expansion ...
816 relax_end ();
817
818 The code and fixups for the unwanted alternative are discarded
819 by md_convert_frag. */
820 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
821
822 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
823 #define RELAX_SECOND(X) ((X) & 0xff)
824 #define RELAX_USE_SECOND 0x10000
825 #define RELAX_SECOND_LONGER 0x20000
826 #define RELAX_NOMACRO 0x40000
827 #define RELAX_DELAY_SLOT 0x80000
828
829 /* Branch without likely bit. If label is out of range, we turn:
830
831 beq reg1, reg2, label
832 delay slot
833
834 into
835
836 bne reg1, reg2, 0f
837 nop
838 j label
839 0: delay slot
840
841 with the following opcode replacements:
842
843 beq <-> bne
844 blez <-> bgtz
845 bltz <-> bgez
846 bc1f <-> bc1t
847
848 bltzal <-> bgezal (with jal label instead of j label)
849
850 Even though keeping the delay slot instruction in the delay slot of
851 the branch would be more efficient, it would be very tricky to do
852 correctly, because we'd have to introduce a variable frag *after*
853 the delay slot instruction, and expand that instead. Let's do it
854 the easy way for now, even if the branch-not-taken case now costs
855 one additional instruction. Out-of-range branches are not supposed
856 to be common, anyway.
857
858 Branch likely. If label is out of range, we turn:
859
860 beql reg1, reg2, label
861 delay slot (annulled if branch not taken)
862
863 into
864
865 beql reg1, reg2, 1f
866 nop
867 beql $0, $0, 2f
868 nop
869 1: j[al] label
870 delay slot (executed only if branch taken)
871 2:
872
873 It would be possible to generate a shorter sequence by losing the
874 likely bit, generating something like:
875
876 bne reg1, reg2, 0f
877 nop
878 j[al] label
879 delay slot (executed only if branch taken)
880 0:
881
882 beql -> bne
883 bnel -> beq
884 blezl -> bgtz
885 bgtzl -> blez
886 bltzl -> bgez
887 bgezl -> bltz
888 bc1fl -> bc1t
889 bc1tl -> bc1f
890
891 bltzall -> bgezal (with jal label instead of j label)
892 bgezall -> bltzal (ditto)
893
894
895 but it's not clear that it would actually improve performance. */
896 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
897 ((relax_substateT) \
898 (0xc0000000 \
899 | ((toofar) ? 1 : 0) \
900 | ((link) ? 2 : 0) \
901 | ((likely) ? 4 : 0) \
902 | ((uncond) ? 8 : 0)))
903 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
904 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
905 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
906 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
907 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
908
909 /* For mips16 code, we use an entirely different form of relaxation.
910 mips16 supports two versions of most instructions which take
911 immediate values: a small one which takes some small value, and a
912 larger one which takes a 16 bit value. Since branches also follow
913 this pattern, relaxing these values is required.
914
915 We can assemble both mips16 and normal MIPS code in a single
916 object. Therefore, we need to support this type of relaxation at
917 the same time that we support the relaxation described above. We
918 use the high bit of the subtype field to distinguish these cases.
919
920 The information we store for this type of relaxation is the
921 argument code found in the opcode file for this relocation, whether
922 the user explicitly requested a small or extended form, and whether
923 the relocation is in a jump or jal delay slot. That tells us the
924 size of the value, and how it should be stored. We also store
925 whether the fragment is considered to be extended or not. We also
926 store whether this is known to be a branch to a different section,
927 whether we have tried to relax this frag yet, and whether we have
928 ever extended a PC relative fragment because of a shift count. */
929 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
930 (0x80000000 \
931 | ((type) & 0xff) \
932 | ((small) ? 0x100 : 0) \
933 | ((ext) ? 0x200 : 0) \
934 | ((dslot) ? 0x400 : 0) \
935 | ((jal_dslot) ? 0x800 : 0))
936 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
937 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
938 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
939 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
940 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
941 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
942 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
943 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
944 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
945 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
946 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
947 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
948
949 /* Is the given value a sign-extended 32-bit value? */
950 #define IS_SEXT_32BIT_NUM(x) \
951 (((x) &~ (offsetT) 0x7fffffff) == 0 \
952 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
953
954 /* Is the given value a sign-extended 16-bit value? */
955 #define IS_SEXT_16BIT_NUM(x) \
956 (((x) &~ (offsetT) 0x7fff) == 0 \
957 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
958
959 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
960 #define IS_ZEXT_32BIT_NUM(x) \
961 (((x) &~ (offsetT) 0xffffffff) == 0 \
962 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
963
964 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
965 VALUE << SHIFT. VALUE is evaluated exactly once. */
966 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
967 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
968 | (((VALUE) & (MASK)) << (SHIFT)))
969
970 /* Extract bits MASK << SHIFT from STRUCT and shift them right
971 SHIFT places. */
972 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
973 (((STRUCT) >> (SHIFT)) & (MASK))
974
975 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
976 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
977
978 include/opcode/mips.h specifies operand fields using the macros
979 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
980 with "MIPS16OP" instead of "OP". */
981 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
982 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
983 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
984 INSERT_BITS ((INSN).insn_opcode, VALUE, \
985 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
986
987 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
988 #define EXTRACT_OPERAND(FIELD, INSN) \
989 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
990 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
991 EXTRACT_BITS ((INSN).insn_opcode, \
992 MIPS16OP_MASK_##FIELD, \
993 MIPS16OP_SH_##FIELD)
994 \f
995 /* Global variables used when generating relaxable macros. See the
996 comment above RELAX_ENCODE for more details about how relaxation
997 is used. */
998 static struct {
999 /* 0 if we're not emitting a relaxable macro.
1000 1 if we're emitting the first of the two relaxation alternatives.
1001 2 if we're emitting the second alternative. */
1002 int sequence;
1003
1004 /* The first relaxable fixup in the current frag. (In other words,
1005 the first fixup that refers to relaxable code.) */
1006 fixS *first_fixup;
1007
1008 /* sizes[0] says how many bytes of the first alternative are stored in
1009 the current frag. Likewise sizes[1] for the second alternative. */
1010 unsigned int sizes[2];
1011
1012 /* The symbol on which the choice of sequence depends. */
1013 symbolS *symbol;
1014 } mips_relax;
1015 \f
1016 /* Global variables used to decide whether a macro needs a warning. */
1017 static struct {
1018 /* True if the macro is in a branch delay slot. */
1019 bfd_boolean delay_slot_p;
1020
1021 /* For relaxable macros, sizes[0] is the length of the first alternative
1022 in bytes and sizes[1] is the length of the second alternative.
1023 For non-relaxable macros, both elements give the length of the
1024 macro in bytes. */
1025 unsigned int sizes[2];
1026
1027 /* The first variant frag for this macro. */
1028 fragS *first_frag;
1029 } mips_macro_warning;
1030 \f
1031 /* Prototypes for static functions. */
1032
1033 #define internalError() \
1034 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1035
1036 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1037
1038 static void append_insn
1039 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
1040 static void mips_no_prev_insn (void);
1041 static void mips16_macro_build
1042 (expressionS *, const char *, const char *, va_list);
1043 static void load_register (int, expressionS *, int);
1044 static void macro_start (void);
1045 static void macro_end (void);
1046 static void macro (struct mips_cl_insn * ip);
1047 static void mips16_macro (struct mips_cl_insn * ip);
1048 #ifdef LOSING_COMPILER
1049 static void macro2 (struct mips_cl_insn * ip);
1050 #endif
1051 static void mips_ip (char *str, struct mips_cl_insn * ip);
1052 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1053 static void mips16_immed
1054 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1055 unsigned long *, bfd_boolean *, unsigned short *);
1056 static size_t my_getSmallExpression
1057 (expressionS *, bfd_reloc_code_real_type *, char *);
1058 static void my_getExpression (expressionS *, char *);
1059 static void s_align (int);
1060 static void s_change_sec (int);
1061 static void s_change_section (int);
1062 static void s_cons (int);
1063 static void s_float_cons (int);
1064 static void s_mips_globl (int);
1065 static void s_option (int);
1066 static void s_mipsset (int);
1067 static void s_abicalls (int);
1068 static void s_cpload (int);
1069 static void s_cpsetup (int);
1070 static void s_cplocal (int);
1071 static void s_cprestore (int);
1072 static void s_cpreturn (int);
1073 static void s_dtprelword (int);
1074 static void s_dtpreldword (int);
1075 static void s_gpvalue (int);
1076 static void s_gpword (int);
1077 static void s_gpdword (int);
1078 static void s_cpadd (int);
1079 static void s_insn (int);
1080 static void md_obj_begin (void);
1081 static void md_obj_end (void);
1082 static void s_mips_ent (int);
1083 static void s_mips_end (int);
1084 static void s_mips_frame (int);
1085 static void s_mips_mask (int reg_type);
1086 static void s_mips_stab (int);
1087 static void s_mips_weakext (int);
1088 static void s_mips_file (int);
1089 static void s_mips_loc (int);
1090 static bfd_boolean pic_need_relax (symbolS *, asection *);
1091 static int relaxed_branch_length (fragS *, asection *, int);
1092 static int validate_mips_insn (const struct mips_opcode *);
1093
1094 /* Table and functions used to map between CPU/ISA names, and
1095 ISA levels, and CPU numbers. */
1096
1097 struct mips_cpu_info
1098 {
1099 const char *name; /* CPU or ISA name. */
1100 int flags; /* ASEs available, or ISA flag. */
1101 int isa; /* ISA level. */
1102 int cpu; /* CPU number (default CPU if ISA). */
1103 };
1104
1105 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1106 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1107 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1108 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1109 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1110 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1111 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1112
1113 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1114 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1115 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1116 \f
1117 /* Pseudo-op table.
1118
1119 The following pseudo-ops from the Kane and Heinrich MIPS book
1120 should be defined here, but are currently unsupported: .alias,
1121 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1122
1123 The following pseudo-ops from the Kane and Heinrich MIPS book are
1124 specific to the type of debugging information being generated, and
1125 should be defined by the object format: .aent, .begin, .bend,
1126 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1127 .vreg.
1128
1129 The following pseudo-ops from the Kane and Heinrich MIPS book are
1130 not MIPS CPU specific, but are also not specific to the object file
1131 format. This file is probably the best place to define them, but
1132 they are not currently supported: .asm0, .endr, .lab, .struct. */
1133
1134 static const pseudo_typeS mips_pseudo_table[] =
1135 {
1136 /* MIPS specific pseudo-ops. */
1137 {"option", s_option, 0},
1138 {"set", s_mipsset, 0},
1139 {"rdata", s_change_sec, 'r'},
1140 {"sdata", s_change_sec, 's'},
1141 {"livereg", s_ignore, 0},
1142 {"abicalls", s_abicalls, 0},
1143 {"cpload", s_cpload, 0},
1144 {"cpsetup", s_cpsetup, 0},
1145 {"cplocal", s_cplocal, 0},
1146 {"cprestore", s_cprestore, 0},
1147 {"cpreturn", s_cpreturn, 0},
1148 {"dtprelword", s_dtprelword, 0},
1149 {"dtpreldword", s_dtpreldword, 0},
1150 {"gpvalue", s_gpvalue, 0},
1151 {"gpword", s_gpword, 0},
1152 {"gpdword", s_gpdword, 0},
1153 {"cpadd", s_cpadd, 0},
1154 {"insn", s_insn, 0},
1155
1156 /* Relatively generic pseudo-ops that happen to be used on MIPS
1157 chips. */
1158 {"asciiz", stringer, 8 + 1},
1159 {"bss", s_change_sec, 'b'},
1160 {"err", s_err, 0},
1161 {"half", s_cons, 1},
1162 {"dword", s_cons, 3},
1163 {"weakext", s_mips_weakext, 0},
1164 {"origin", s_org, 0},
1165 {"repeat", s_rept, 0},
1166
1167 /* These pseudo-ops are defined in read.c, but must be overridden
1168 here for one reason or another. */
1169 {"align", s_align, 0},
1170 {"byte", s_cons, 0},
1171 {"data", s_change_sec, 'd'},
1172 {"double", s_float_cons, 'd'},
1173 {"float", s_float_cons, 'f'},
1174 {"globl", s_mips_globl, 0},
1175 {"global", s_mips_globl, 0},
1176 {"hword", s_cons, 1},
1177 {"int", s_cons, 2},
1178 {"long", s_cons, 2},
1179 {"octa", s_cons, 4},
1180 {"quad", s_cons, 3},
1181 {"section", s_change_section, 0},
1182 {"short", s_cons, 1},
1183 {"single", s_float_cons, 'f'},
1184 {"stabn", s_mips_stab, 'n'},
1185 {"text", s_change_sec, 't'},
1186 {"word", s_cons, 2},
1187
1188 { "extern", ecoff_directive_extern, 0},
1189
1190 { NULL, NULL, 0 },
1191 };
1192
1193 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1194 {
1195 /* These pseudo-ops should be defined by the object file format.
1196 However, a.out doesn't support them, so we have versions here. */
1197 {"aent", s_mips_ent, 1},
1198 {"bgnb", s_ignore, 0},
1199 {"end", s_mips_end, 0},
1200 {"endb", s_ignore, 0},
1201 {"ent", s_mips_ent, 0},
1202 {"file", s_mips_file, 0},
1203 {"fmask", s_mips_mask, 'F'},
1204 {"frame", s_mips_frame, 0},
1205 {"loc", s_mips_loc, 0},
1206 {"mask", s_mips_mask, 'R'},
1207 {"verstamp", s_ignore, 0},
1208 { NULL, NULL, 0 },
1209 };
1210
1211 extern void pop_insert (const pseudo_typeS *);
1212
1213 void
1214 mips_pop_insert (void)
1215 {
1216 pop_insert (mips_pseudo_table);
1217 if (! ECOFF_DEBUGGING)
1218 pop_insert (mips_nonecoff_pseudo_table);
1219 }
1220 \f
1221 /* Symbols labelling the current insn. */
1222
1223 struct insn_label_list
1224 {
1225 struct insn_label_list *next;
1226 symbolS *label;
1227 };
1228
1229 static struct insn_label_list *free_insn_labels;
1230 #define label_list tc_segment_info_data.labels
1231
1232 static void mips_clear_insn_labels (void);
1233
1234 static inline void
1235 mips_clear_insn_labels (void)
1236 {
1237 register struct insn_label_list **pl;
1238 segment_info_type *si;
1239
1240 if (now_seg)
1241 {
1242 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1243 ;
1244
1245 si = seg_info (now_seg);
1246 *pl = si->label_list;
1247 si->label_list = NULL;
1248 }
1249 }
1250
1251 \f
1252 static char *expr_end;
1253
1254 /* Expressions which appear in instructions. These are set by
1255 mips_ip. */
1256
1257 static expressionS imm_expr;
1258 static expressionS imm2_expr;
1259 static expressionS offset_expr;
1260
1261 /* Relocs associated with imm_expr and offset_expr. */
1262
1263 static bfd_reloc_code_real_type imm_reloc[3]
1264 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1265 static bfd_reloc_code_real_type offset_reloc[3]
1266 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1267
1268 /* These are set by mips16_ip if an explicit extension is used. */
1269
1270 static bfd_boolean mips16_small, mips16_ext;
1271
1272 #ifdef OBJ_ELF
1273 /* The pdr segment for per procedure frame/regmask info. Not used for
1274 ECOFF debugging. */
1275
1276 static segT pdr_seg;
1277 #endif
1278
1279 /* The default target format to use. */
1280
1281 const char *
1282 mips_target_format (void)
1283 {
1284 switch (OUTPUT_FLAVOR)
1285 {
1286 case bfd_target_ecoff_flavour:
1287 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1288 case bfd_target_coff_flavour:
1289 return "pe-mips";
1290 case bfd_target_elf_flavour:
1291 #ifdef TE_VXWORKS
1292 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1293 return (target_big_endian
1294 ? "elf32-bigmips-vxworks"
1295 : "elf32-littlemips-vxworks");
1296 #endif
1297 #ifdef TE_TMIPS
1298 /* This is traditional mips. */
1299 return (target_big_endian
1300 ? (HAVE_64BIT_OBJECTS
1301 ? "elf64-tradbigmips"
1302 : (HAVE_NEWABI
1303 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1304 : (HAVE_64BIT_OBJECTS
1305 ? "elf64-tradlittlemips"
1306 : (HAVE_NEWABI
1307 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1308 #else
1309 return (target_big_endian
1310 ? (HAVE_64BIT_OBJECTS
1311 ? "elf64-bigmips"
1312 : (HAVE_NEWABI
1313 ? "elf32-nbigmips" : "elf32-bigmips"))
1314 : (HAVE_64BIT_OBJECTS
1315 ? "elf64-littlemips"
1316 : (HAVE_NEWABI
1317 ? "elf32-nlittlemips" : "elf32-littlemips")));
1318 #endif
1319 default:
1320 abort ();
1321 return NULL;
1322 }
1323 }
1324
1325 /* Return the length of instruction INSN. */
1326
1327 static inline unsigned int
1328 insn_length (const struct mips_cl_insn *insn)
1329 {
1330 if (!mips_opts.mips16)
1331 return 4;
1332 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1333 }
1334
1335 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1336
1337 static void
1338 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1339 {
1340 size_t i;
1341
1342 insn->insn_mo = mo;
1343 insn->use_extend = FALSE;
1344 insn->extend = 0;
1345 insn->insn_opcode = mo->match;
1346 insn->frag = NULL;
1347 insn->where = 0;
1348 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1349 insn->fixp[i] = NULL;
1350 insn->fixed_p = (mips_opts.noreorder > 0);
1351 insn->noreorder_p = (mips_opts.noreorder > 0);
1352 insn->mips16_absolute_jump_p = 0;
1353 }
1354
1355 /* Record the current MIPS16 mode in now_seg. */
1356
1357 static void
1358 mips_record_mips16_mode (void)
1359 {
1360 segment_info_type *si;
1361
1362 si = seg_info (now_seg);
1363 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1364 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1365 }
1366
1367 /* Install INSN at the location specified by its "frag" and "where" fields. */
1368
1369 static void
1370 install_insn (const struct mips_cl_insn *insn)
1371 {
1372 char *f = insn->frag->fr_literal + insn->where;
1373 if (!mips_opts.mips16)
1374 md_number_to_chars (f, insn->insn_opcode, 4);
1375 else if (insn->mips16_absolute_jump_p)
1376 {
1377 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1378 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1379 }
1380 else
1381 {
1382 if (insn->use_extend)
1383 {
1384 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1385 f += 2;
1386 }
1387 md_number_to_chars (f, insn->insn_opcode, 2);
1388 }
1389 mips_record_mips16_mode ();
1390 }
1391
1392 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1393 and install the opcode in the new location. */
1394
1395 static void
1396 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1397 {
1398 size_t i;
1399
1400 insn->frag = frag;
1401 insn->where = where;
1402 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1403 if (insn->fixp[i] != NULL)
1404 {
1405 insn->fixp[i]->fx_frag = frag;
1406 insn->fixp[i]->fx_where = where;
1407 }
1408 install_insn (insn);
1409 }
1410
1411 /* Add INSN to the end of the output. */
1412
1413 static void
1414 add_fixed_insn (struct mips_cl_insn *insn)
1415 {
1416 char *f = frag_more (insn_length (insn));
1417 move_insn (insn, frag_now, f - frag_now->fr_literal);
1418 }
1419
1420 /* Start a variant frag and move INSN to the start of the variant part,
1421 marking it as fixed. The other arguments are as for frag_var. */
1422
1423 static void
1424 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1425 relax_substateT subtype, symbolS *symbol, offsetT offset)
1426 {
1427 frag_grow (max_chars);
1428 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1429 insn->fixed_p = 1;
1430 frag_var (rs_machine_dependent, max_chars, var,
1431 subtype, symbol, offset, NULL);
1432 }
1433
1434 /* Insert N copies of INSN into the history buffer, starting at
1435 position FIRST. Neither FIRST nor N need to be clipped. */
1436
1437 static void
1438 insert_into_history (unsigned int first, unsigned int n,
1439 const struct mips_cl_insn *insn)
1440 {
1441 if (mips_relax.sequence != 2)
1442 {
1443 unsigned int i;
1444
1445 for (i = ARRAY_SIZE (history); i-- > first;)
1446 if (i >= first + n)
1447 history[i] = history[i - n];
1448 else
1449 history[i] = *insn;
1450 }
1451 }
1452
1453 /* Emit a nop instruction, recording it in the history buffer. */
1454
1455 static void
1456 emit_nop (void)
1457 {
1458 add_fixed_insn (NOP_INSN);
1459 insert_into_history (0, 1, NOP_INSN);
1460 }
1461
1462 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1463 the idea is to make it obvious at a glance that each errata is
1464 included. */
1465
1466 static void
1467 init_vr4120_conflicts (void)
1468 {
1469 #define CONFLICT(FIRST, SECOND) \
1470 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1471
1472 /* Errata 21 - [D]DIV[U] after [D]MACC */
1473 CONFLICT (MACC, DIV);
1474 CONFLICT (DMACC, DIV);
1475
1476 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1477 CONFLICT (DMULT, DMULT);
1478 CONFLICT (DMULT, DMACC);
1479 CONFLICT (DMACC, DMULT);
1480 CONFLICT (DMACC, DMACC);
1481
1482 /* Errata 24 - MT{LO,HI} after [D]MACC */
1483 CONFLICT (MACC, MTHILO);
1484 CONFLICT (DMACC, MTHILO);
1485
1486 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1487 instruction is executed immediately after a MACC or DMACC
1488 instruction, the result of [either instruction] is incorrect." */
1489 CONFLICT (MACC, MULT);
1490 CONFLICT (MACC, DMULT);
1491 CONFLICT (DMACC, MULT);
1492 CONFLICT (DMACC, DMULT);
1493
1494 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1495 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1496 DDIV or DDIVU instruction, the result of the MACC or
1497 DMACC instruction is incorrect.". */
1498 CONFLICT (DMULT, MACC);
1499 CONFLICT (DMULT, DMACC);
1500 CONFLICT (DIV, MACC);
1501 CONFLICT (DIV, DMACC);
1502
1503 #undef CONFLICT
1504 }
1505
1506 struct regname {
1507 const char *name;
1508 unsigned int num;
1509 };
1510
1511 #define RTYPE_MASK 0x1ff00
1512 #define RTYPE_NUM 0x00100
1513 #define RTYPE_FPU 0x00200
1514 #define RTYPE_FCC 0x00400
1515 #define RTYPE_VEC 0x00800
1516 #define RTYPE_GP 0x01000
1517 #define RTYPE_CP0 0x02000
1518 #define RTYPE_PC 0x04000
1519 #define RTYPE_ACC 0x08000
1520 #define RTYPE_CCC 0x10000
1521 #define RNUM_MASK 0x000ff
1522 #define RWARN 0x80000
1523
1524 #define GENERIC_REGISTER_NUMBERS \
1525 {"$0", RTYPE_NUM | 0}, \
1526 {"$1", RTYPE_NUM | 1}, \
1527 {"$2", RTYPE_NUM | 2}, \
1528 {"$3", RTYPE_NUM | 3}, \
1529 {"$4", RTYPE_NUM | 4}, \
1530 {"$5", RTYPE_NUM | 5}, \
1531 {"$6", RTYPE_NUM | 6}, \
1532 {"$7", RTYPE_NUM | 7}, \
1533 {"$8", RTYPE_NUM | 8}, \
1534 {"$9", RTYPE_NUM | 9}, \
1535 {"$10", RTYPE_NUM | 10}, \
1536 {"$11", RTYPE_NUM | 11}, \
1537 {"$12", RTYPE_NUM | 12}, \
1538 {"$13", RTYPE_NUM | 13}, \
1539 {"$14", RTYPE_NUM | 14}, \
1540 {"$15", RTYPE_NUM | 15}, \
1541 {"$16", RTYPE_NUM | 16}, \
1542 {"$17", RTYPE_NUM | 17}, \
1543 {"$18", RTYPE_NUM | 18}, \
1544 {"$19", RTYPE_NUM | 19}, \
1545 {"$20", RTYPE_NUM | 20}, \
1546 {"$21", RTYPE_NUM | 21}, \
1547 {"$22", RTYPE_NUM | 22}, \
1548 {"$23", RTYPE_NUM | 23}, \
1549 {"$24", RTYPE_NUM | 24}, \
1550 {"$25", RTYPE_NUM | 25}, \
1551 {"$26", RTYPE_NUM | 26}, \
1552 {"$27", RTYPE_NUM | 27}, \
1553 {"$28", RTYPE_NUM | 28}, \
1554 {"$29", RTYPE_NUM | 29}, \
1555 {"$30", RTYPE_NUM | 30}, \
1556 {"$31", RTYPE_NUM | 31}
1557
1558 #define FPU_REGISTER_NAMES \
1559 {"$f0", RTYPE_FPU | 0}, \
1560 {"$f1", RTYPE_FPU | 1}, \
1561 {"$f2", RTYPE_FPU | 2}, \
1562 {"$f3", RTYPE_FPU | 3}, \
1563 {"$f4", RTYPE_FPU | 4}, \
1564 {"$f5", RTYPE_FPU | 5}, \
1565 {"$f6", RTYPE_FPU | 6}, \
1566 {"$f7", RTYPE_FPU | 7}, \
1567 {"$f8", RTYPE_FPU | 8}, \
1568 {"$f9", RTYPE_FPU | 9}, \
1569 {"$f10", RTYPE_FPU | 10}, \
1570 {"$f11", RTYPE_FPU | 11}, \
1571 {"$f12", RTYPE_FPU | 12}, \
1572 {"$f13", RTYPE_FPU | 13}, \
1573 {"$f14", RTYPE_FPU | 14}, \
1574 {"$f15", RTYPE_FPU | 15}, \
1575 {"$f16", RTYPE_FPU | 16}, \
1576 {"$f17", RTYPE_FPU | 17}, \
1577 {"$f18", RTYPE_FPU | 18}, \
1578 {"$f19", RTYPE_FPU | 19}, \
1579 {"$f20", RTYPE_FPU | 20}, \
1580 {"$f21", RTYPE_FPU | 21}, \
1581 {"$f22", RTYPE_FPU | 22}, \
1582 {"$f23", RTYPE_FPU | 23}, \
1583 {"$f24", RTYPE_FPU | 24}, \
1584 {"$f25", RTYPE_FPU | 25}, \
1585 {"$f26", RTYPE_FPU | 26}, \
1586 {"$f27", RTYPE_FPU | 27}, \
1587 {"$f28", RTYPE_FPU | 28}, \
1588 {"$f29", RTYPE_FPU | 29}, \
1589 {"$f30", RTYPE_FPU | 30}, \
1590 {"$f31", RTYPE_FPU | 31}
1591
1592 #define FPU_CONDITION_CODE_NAMES \
1593 {"$fcc0", RTYPE_FCC | 0}, \
1594 {"$fcc1", RTYPE_FCC | 1}, \
1595 {"$fcc2", RTYPE_FCC | 2}, \
1596 {"$fcc3", RTYPE_FCC | 3}, \
1597 {"$fcc4", RTYPE_FCC | 4}, \
1598 {"$fcc5", RTYPE_FCC | 5}, \
1599 {"$fcc6", RTYPE_FCC | 6}, \
1600 {"$fcc7", RTYPE_FCC | 7}
1601
1602 #define COPROC_CONDITION_CODE_NAMES \
1603 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1604 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1605 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1606 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1607 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1608 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1609 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1610 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1611
1612 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1613 {"$a4", RTYPE_GP | 8}, \
1614 {"$a5", RTYPE_GP | 9}, \
1615 {"$a6", RTYPE_GP | 10}, \
1616 {"$a7", RTYPE_GP | 11}, \
1617 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1618 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1619 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1620 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1621 {"$t0", RTYPE_GP | 12}, \
1622 {"$t1", RTYPE_GP | 13}, \
1623 {"$t2", RTYPE_GP | 14}, \
1624 {"$t3", RTYPE_GP | 15}
1625
1626 #define O32_SYMBOLIC_REGISTER_NAMES \
1627 {"$t0", RTYPE_GP | 8}, \
1628 {"$t1", RTYPE_GP | 9}, \
1629 {"$t2", RTYPE_GP | 10}, \
1630 {"$t3", RTYPE_GP | 11}, \
1631 {"$t4", RTYPE_GP | 12}, \
1632 {"$t5", RTYPE_GP | 13}, \
1633 {"$t6", RTYPE_GP | 14}, \
1634 {"$t7", RTYPE_GP | 15}, \
1635 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1636 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1637 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1638 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1639
1640 /* Remaining symbolic register names */
1641 #define SYMBOLIC_REGISTER_NAMES \
1642 {"$zero", RTYPE_GP | 0}, \
1643 {"$at", RTYPE_GP | 1}, \
1644 {"$AT", RTYPE_GP | 1}, \
1645 {"$v0", RTYPE_GP | 2}, \
1646 {"$v1", RTYPE_GP | 3}, \
1647 {"$a0", RTYPE_GP | 4}, \
1648 {"$a1", RTYPE_GP | 5}, \
1649 {"$a2", RTYPE_GP | 6}, \
1650 {"$a3", RTYPE_GP | 7}, \
1651 {"$s0", RTYPE_GP | 16}, \
1652 {"$s1", RTYPE_GP | 17}, \
1653 {"$s2", RTYPE_GP | 18}, \
1654 {"$s3", RTYPE_GP | 19}, \
1655 {"$s4", RTYPE_GP | 20}, \
1656 {"$s5", RTYPE_GP | 21}, \
1657 {"$s6", RTYPE_GP | 22}, \
1658 {"$s7", RTYPE_GP | 23}, \
1659 {"$t8", RTYPE_GP | 24}, \
1660 {"$t9", RTYPE_GP | 25}, \
1661 {"$k0", RTYPE_GP | 26}, \
1662 {"$kt0", RTYPE_GP | 26}, \
1663 {"$k1", RTYPE_GP | 27}, \
1664 {"$kt1", RTYPE_GP | 27}, \
1665 {"$gp", RTYPE_GP | 28}, \
1666 {"$sp", RTYPE_GP | 29}, \
1667 {"$s8", RTYPE_GP | 30}, \
1668 {"$fp", RTYPE_GP | 30}, \
1669 {"$ra", RTYPE_GP | 31}
1670
1671 #define MIPS16_SPECIAL_REGISTER_NAMES \
1672 {"$pc", RTYPE_PC | 0}
1673
1674 #define MDMX_VECTOR_REGISTER_NAMES \
1675 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1676 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1677 {"$v2", RTYPE_VEC | 2}, \
1678 {"$v3", RTYPE_VEC | 3}, \
1679 {"$v4", RTYPE_VEC | 4}, \
1680 {"$v5", RTYPE_VEC | 5}, \
1681 {"$v6", RTYPE_VEC | 6}, \
1682 {"$v7", RTYPE_VEC | 7}, \
1683 {"$v8", RTYPE_VEC | 8}, \
1684 {"$v9", RTYPE_VEC | 9}, \
1685 {"$v10", RTYPE_VEC | 10}, \
1686 {"$v11", RTYPE_VEC | 11}, \
1687 {"$v12", RTYPE_VEC | 12}, \
1688 {"$v13", RTYPE_VEC | 13}, \
1689 {"$v14", RTYPE_VEC | 14}, \
1690 {"$v15", RTYPE_VEC | 15}, \
1691 {"$v16", RTYPE_VEC | 16}, \
1692 {"$v17", RTYPE_VEC | 17}, \
1693 {"$v18", RTYPE_VEC | 18}, \
1694 {"$v19", RTYPE_VEC | 19}, \
1695 {"$v20", RTYPE_VEC | 20}, \
1696 {"$v21", RTYPE_VEC | 21}, \
1697 {"$v22", RTYPE_VEC | 22}, \
1698 {"$v23", RTYPE_VEC | 23}, \
1699 {"$v24", RTYPE_VEC | 24}, \
1700 {"$v25", RTYPE_VEC | 25}, \
1701 {"$v26", RTYPE_VEC | 26}, \
1702 {"$v27", RTYPE_VEC | 27}, \
1703 {"$v28", RTYPE_VEC | 28}, \
1704 {"$v29", RTYPE_VEC | 29}, \
1705 {"$v30", RTYPE_VEC | 30}, \
1706 {"$v31", RTYPE_VEC | 31}
1707
1708 #define MIPS_DSP_ACCUMULATOR_NAMES \
1709 {"$ac0", RTYPE_ACC | 0}, \
1710 {"$ac1", RTYPE_ACC | 1}, \
1711 {"$ac2", RTYPE_ACC | 2}, \
1712 {"$ac3", RTYPE_ACC | 3}
1713
1714 static const struct regname reg_names[] = {
1715 GENERIC_REGISTER_NUMBERS,
1716 FPU_REGISTER_NAMES,
1717 FPU_CONDITION_CODE_NAMES,
1718 COPROC_CONDITION_CODE_NAMES,
1719
1720 /* The $txx registers depends on the abi,
1721 these will be added later into the symbol table from
1722 one of the tables below once mips_abi is set after
1723 parsing of arguments from the command line. */
1724 SYMBOLIC_REGISTER_NAMES,
1725
1726 MIPS16_SPECIAL_REGISTER_NAMES,
1727 MDMX_VECTOR_REGISTER_NAMES,
1728 MIPS_DSP_ACCUMULATOR_NAMES,
1729 {0, 0}
1730 };
1731
1732 static const struct regname reg_names_o32[] = {
1733 O32_SYMBOLIC_REGISTER_NAMES,
1734 {0, 0}
1735 };
1736
1737 static const struct regname reg_names_n32n64[] = {
1738 N32N64_SYMBOLIC_REGISTER_NAMES,
1739 {0, 0}
1740 };
1741
1742 static int
1743 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1744 {
1745 symbolS *symbolP;
1746 char *e;
1747 char save_c;
1748 int reg = -1;
1749
1750 /* Find end of name. */
1751 e = *s;
1752 if (is_name_beginner (*e))
1753 ++e;
1754 while (is_part_of_name (*e))
1755 ++e;
1756
1757 /* Terminate name. */
1758 save_c = *e;
1759 *e = '\0';
1760
1761 /* Look for a register symbol. */
1762 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1763 {
1764 int r = S_GET_VALUE (symbolP);
1765 if (r & types)
1766 reg = r & RNUM_MASK;
1767 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1768 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1769 reg = (r & RNUM_MASK) - 2;
1770 }
1771 /* Else see if this is a register defined in an itbl entry. */
1772 else if ((types & RTYPE_GP) && itbl_have_entries)
1773 {
1774 char *n = *s;
1775 unsigned long r;
1776
1777 if (*n == '$')
1778 ++n;
1779 if (itbl_get_reg_val (n, &r))
1780 reg = r & RNUM_MASK;
1781 }
1782
1783 /* Advance to next token if a register was recognised. */
1784 if (reg >= 0)
1785 *s = e;
1786 else if (types & RWARN)
1787 as_warn ("Unrecognized register name `%s'", *s);
1788
1789 *e = save_c;
1790 if (regnop)
1791 *regnop = reg;
1792 return reg >= 0;
1793 }
1794
1795 #define INSN_ERET 0x42000018
1796 #define INSN_DERET 0x4200001f
1797
1798 /* Implement the ERET/DERET Errata for MIPS 24k.
1799
1800 If an ERET/DERET is encountered in a noreorder block,
1801 warn if the ERET/DERET is followed by a branch instruction.
1802 Also warn if the ERET/DERET is the last instruction in the
1803 noreorder block.
1804
1805 IF an ERET/DERET is in a reorder block and is followed by a
1806 branch instruction, insert a nop. */
1807
1808 static void
1809 check_for_24k_errata (struct mips_cl_insn *insn, int eret_ndx)
1810 {
1811 bfd_boolean next_insn_is_branch = FALSE;
1812
1813 /* eret_ndx will be -1 for the last instruction in a section
1814 and the ERET/DERET will be in insn, not history. */
1815 if (insn
1816 && eret_ndx == -1
1817 && (insn->insn_opcode == INSN_ERET
1818 || insn->insn_opcode == INSN_DERET)
1819 && insn->noreorder_p)
1820 {
1821 as_warn (_("ERET and DERET must be followed by a NOP on the 24K."));
1822 return;
1823 }
1824
1825 if (history[eret_ndx].insn_opcode != INSN_ERET
1826 && history[eret_ndx].insn_opcode != INSN_DERET)
1827 return;
1828
1829 if (!insn)
1830 {
1831 if (history[eret_ndx].noreorder_p)
1832 as_warn (_("ERET and DERET must be followed by a NOP on the 24K."));
1833 return;
1834 }
1835
1836 next_insn_is_branch = ((insn->insn_opcode == INSN_ERET)
1837 || (insn->insn_opcode == INSN_DERET)
1838 || (insn->insn_mo->pinfo
1839 & (INSN_UNCOND_BRANCH_DELAY
1840 | INSN_COND_BRANCH_DELAY
1841 | INSN_COND_BRANCH_LIKELY)));
1842
1843 if (next_insn_is_branch && history[eret_ndx].noreorder_p)
1844 {
1845 as_warn (_("ERET and DERET must be followed by a NOP on the 24K."));
1846 return;
1847 }
1848
1849 /* Emit nop if the next instruction is a branch. */
1850 if (next_insn_is_branch)
1851 {
1852 long nop_where, br_where;
1853 struct frag *nop_frag, *br_frag;
1854 struct mips_cl_insn br_insn, nop_insn;
1855
1856 emit_nop ();
1857
1858 nop_insn = history[eret_ndx - 1];
1859 nop_frag = history[eret_ndx - 1].frag;
1860 nop_where = history[eret_ndx - 1].where;
1861
1862 br_insn = history[eret_ndx];
1863 br_frag = history[eret_ndx].frag;
1864 br_where = history[eret_ndx].where;
1865
1866 move_insn (&nop_insn, br_frag, br_where);
1867 move_insn (&br_insn, nop_frag, nop_where);
1868
1869 history[eret_ndx-1] = br_insn;
1870 history[eret_ndx] = nop_insn;
1871 }
1872 }
1873
1874 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1875 architecture. If EXPANSIONP is TRUE then this check is done while
1876 expanding a macro. Use is_opcode_valid_16 for MIPS16 opcodes. */
1877
1878 static bfd_boolean
1879 is_opcode_valid (const struct mips_opcode *mo, bfd_boolean expansionp)
1880 {
1881 int isa = mips_opts.isa;
1882 int fp_s, fp_d;
1883
1884 if (mips_opts.ase_mdmx)
1885 isa |= INSN_MDMX;
1886 if (mips_opts.ase_dsp)
1887 isa |= INSN_DSP;
1888 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1889 isa |= INSN_DSP64;
1890 if (mips_opts.ase_dspr2)
1891 isa |= INSN_DSPR2;
1892 if (mips_opts.ase_mt)
1893 isa |= INSN_MT;
1894 if (mips_opts.ase_mips3d)
1895 isa |= INSN_MIPS3D;
1896 if (mips_opts.ase_smartmips)
1897 isa |= INSN_SMARTMIPS;
1898
1899 /* For user code we don't check for mips_opts.mips16 since we want
1900 to allow jalx if -mips16 was specified on the command line. */
1901 if (expansionp ? mips_opts.mips16 : file_ase_mips16)
1902 isa |= INSN_MIPS16;
1903
1904 /* Don't accept instructions based on the ISA if the CPU does not implement
1905 all the coprocessor insns. */
1906 if (NO_ISA_COP (mips_opts.arch)
1907 && COP_INSN (mo->pinfo))
1908 isa = 0;
1909
1910 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1911 return FALSE;
1912
1913 /* Check whether the instruction or macro requires single-precision or
1914 double-precision floating-point support. Note that this information is
1915 stored differently in the opcode table for insns and macros. */
1916 if (mo->pinfo == INSN_MACRO)
1917 {
1918 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1919 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1920 }
1921 else
1922 {
1923 fp_s = mo->pinfo & FP_S;
1924 fp_d = mo->pinfo & FP_D;
1925 }
1926
1927 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1928 return FALSE;
1929
1930 if (fp_s && mips_opts.soft_float)
1931 return FALSE;
1932
1933 return TRUE;
1934 }
1935
1936 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1937 selected ISA and architecture. */
1938
1939 static bfd_boolean
1940 is_opcode_valid_16 (const struct mips_opcode *mo)
1941 {
1942 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1943 }
1944
1945 /* This function is called once, at assembler startup time. It should set up
1946 all the tables, etc. that the MD part of the assembler will need. */
1947
1948 void
1949 md_begin (void)
1950 {
1951 const char *retval = NULL;
1952 int i = 0;
1953 int broken = 0;
1954
1955 if (mips_pic != NO_PIC)
1956 {
1957 if (g_switch_seen && g_switch_value != 0)
1958 as_bad (_("-G may not be used in position-independent code"));
1959 g_switch_value = 0;
1960 }
1961
1962 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1963 as_warn (_("Could not set architecture and machine"));
1964
1965 op_hash = hash_new ();
1966
1967 for (i = 0; i < NUMOPCODES;)
1968 {
1969 const char *name = mips_opcodes[i].name;
1970
1971 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1972 if (retval != NULL)
1973 {
1974 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1975 mips_opcodes[i].name, retval);
1976 /* Probably a memory allocation problem? Give up now. */
1977 as_fatal (_("Broken assembler. No assembly attempted."));
1978 }
1979 do
1980 {
1981 if (mips_opcodes[i].pinfo != INSN_MACRO)
1982 {
1983 if (!validate_mips_insn (&mips_opcodes[i]))
1984 broken = 1;
1985 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1986 {
1987 create_insn (&nop_insn, mips_opcodes + i);
1988 nop_insn.fixed_p = 1;
1989 }
1990 }
1991 ++i;
1992 }
1993 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1994 }
1995
1996 mips16_op_hash = hash_new ();
1997
1998 i = 0;
1999 while (i < bfd_mips16_num_opcodes)
2000 {
2001 const char *name = mips16_opcodes[i].name;
2002
2003 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
2004 if (retval != NULL)
2005 as_fatal (_("internal: can't hash `%s': %s"),
2006 mips16_opcodes[i].name, retval);
2007 do
2008 {
2009 if (mips16_opcodes[i].pinfo != INSN_MACRO
2010 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
2011 != mips16_opcodes[i].match))
2012 {
2013 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
2014 mips16_opcodes[i].name, mips16_opcodes[i].args);
2015 broken = 1;
2016 }
2017 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2018 {
2019 create_insn (&mips16_nop_insn, mips16_opcodes + i);
2020 mips16_nop_insn.fixed_p = 1;
2021 }
2022 ++i;
2023 }
2024 while (i < bfd_mips16_num_opcodes
2025 && strcmp (mips16_opcodes[i].name, name) == 0);
2026 }
2027
2028 if (broken)
2029 as_fatal (_("Broken assembler. No assembly attempted."));
2030
2031 /* We add all the general register names to the symbol table. This
2032 helps us detect invalid uses of them. */
2033 for (i = 0; reg_names[i].name; i++)
2034 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
2035 reg_names[i].num, /* & RNUM_MASK, */
2036 &zero_address_frag));
2037 if (HAVE_NEWABI)
2038 for (i = 0; reg_names_n32n64[i].name; i++)
2039 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
2040 reg_names_n32n64[i].num, /* & RNUM_MASK, */
2041 &zero_address_frag));
2042 else
2043 for (i = 0; reg_names_o32[i].name; i++)
2044 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2045 reg_names_o32[i].num, /* & RNUM_MASK, */
2046 &zero_address_frag));
2047
2048 mips_no_prev_insn ();
2049
2050 mips_gprmask = 0;
2051 mips_cprmask[0] = 0;
2052 mips_cprmask[1] = 0;
2053 mips_cprmask[2] = 0;
2054 mips_cprmask[3] = 0;
2055
2056 /* set the default alignment for the text section (2**2) */
2057 record_alignment (text_section, 2);
2058
2059 bfd_set_gp_size (stdoutput, g_switch_value);
2060
2061 #ifdef OBJ_ELF
2062 if (IS_ELF)
2063 {
2064 /* On a native system other than VxWorks, sections must be aligned
2065 to 16 byte boundaries. When configured for an embedded ELF
2066 target, we don't bother. */
2067 if (strncmp (TARGET_OS, "elf", 3) != 0
2068 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2069 {
2070 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2071 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2072 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2073 }
2074
2075 /* Create a .reginfo section for register masks and a .mdebug
2076 section for debugging information. */
2077 {
2078 segT seg;
2079 subsegT subseg;
2080 flagword flags;
2081 segT sec;
2082
2083 seg = now_seg;
2084 subseg = now_subseg;
2085
2086 /* The ABI says this section should be loaded so that the
2087 running program can access it. However, we don't load it
2088 if we are configured for an embedded target */
2089 flags = SEC_READONLY | SEC_DATA;
2090 if (strncmp (TARGET_OS, "elf", 3) != 0)
2091 flags |= SEC_ALLOC | SEC_LOAD;
2092
2093 if (mips_abi != N64_ABI)
2094 {
2095 sec = subseg_new (".reginfo", (subsegT) 0);
2096
2097 bfd_set_section_flags (stdoutput, sec, flags);
2098 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2099
2100 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2101 }
2102 else
2103 {
2104 /* The 64-bit ABI uses a .MIPS.options section rather than
2105 .reginfo section. */
2106 sec = subseg_new (".MIPS.options", (subsegT) 0);
2107 bfd_set_section_flags (stdoutput, sec, flags);
2108 bfd_set_section_alignment (stdoutput, sec, 3);
2109
2110 /* Set up the option header. */
2111 {
2112 Elf_Internal_Options opthdr;
2113 char *f;
2114
2115 opthdr.kind = ODK_REGINFO;
2116 opthdr.size = (sizeof (Elf_External_Options)
2117 + sizeof (Elf64_External_RegInfo));
2118 opthdr.section = 0;
2119 opthdr.info = 0;
2120 f = frag_more (sizeof (Elf_External_Options));
2121 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2122 (Elf_External_Options *) f);
2123
2124 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2125 }
2126 }
2127
2128 if (ECOFF_DEBUGGING)
2129 {
2130 sec = subseg_new (".mdebug", (subsegT) 0);
2131 (void) bfd_set_section_flags (stdoutput, sec,
2132 SEC_HAS_CONTENTS | SEC_READONLY);
2133 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2134 }
2135 else if (mips_flag_pdr)
2136 {
2137 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2138 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2139 SEC_READONLY | SEC_RELOC
2140 | SEC_DEBUGGING);
2141 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2142 }
2143
2144 subseg_set (seg, subseg);
2145 }
2146 }
2147 #endif /* OBJ_ELF */
2148
2149 if (! ECOFF_DEBUGGING)
2150 md_obj_begin ();
2151
2152 if (mips_fix_vr4120)
2153 init_vr4120_conflicts ();
2154 }
2155
2156 void
2157 md_mips_end (void)
2158 {
2159 if (mips_fix_24k)
2160 check_for_24k_errata ((struct mips_cl_insn *) &history[0], -1);
2161
2162 if (! ECOFF_DEBUGGING)
2163 md_obj_end ();
2164 }
2165
2166 void
2167 md_assemble (char *str)
2168 {
2169 struct mips_cl_insn insn;
2170 bfd_reloc_code_real_type unused_reloc[3]
2171 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2172
2173 imm_expr.X_op = O_absent;
2174 imm2_expr.X_op = O_absent;
2175 offset_expr.X_op = O_absent;
2176 imm_reloc[0] = BFD_RELOC_UNUSED;
2177 imm_reloc[1] = BFD_RELOC_UNUSED;
2178 imm_reloc[2] = BFD_RELOC_UNUSED;
2179 offset_reloc[0] = BFD_RELOC_UNUSED;
2180 offset_reloc[1] = BFD_RELOC_UNUSED;
2181 offset_reloc[2] = BFD_RELOC_UNUSED;
2182
2183 if (mips_opts.mips16)
2184 mips16_ip (str, &insn);
2185 else
2186 {
2187 mips_ip (str, &insn);
2188 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2189 str, insn.insn_opcode));
2190 }
2191
2192 if (insn_error)
2193 {
2194 as_bad ("%s `%s'", insn_error, str);
2195 return;
2196 }
2197
2198 if (insn.insn_mo->pinfo == INSN_MACRO)
2199 {
2200 macro_start ();
2201 if (mips_opts.mips16)
2202 mips16_macro (&insn);
2203 else
2204 macro (&insn);
2205 macro_end ();
2206 }
2207 else
2208 {
2209 if (imm_expr.X_op != O_absent)
2210 append_insn (&insn, &imm_expr, imm_reloc);
2211 else if (offset_expr.X_op != O_absent)
2212 append_insn (&insn, &offset_expr, offset_reloc);
2213 else
2214 append_insn (&insn, NULL, unused_reloc);
2215 }
2216 }
2217
2218 /* Convenience functions for abstracting away the differences between
2219 MIPS16 and non-MIPS16 relocations. */
2220
2221 static inline bfd_boolean
2222 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2223 {
2224 switch (reloc)
2225 {
2226 case BFD_RELOC_MIPS16_JMP:
2227 case BFD_RELOC_MIPS16_GPREL:
2228 case BFD_RELOC_MIPS16_GOT16:
2229 case BFD_RELOC_MIPS16_CALL16:
2230 case BFD_RELOC_MIPS16_HI16_S:
2231 case BFD_RELOC_MIPS16_HI16:
2232 case BFD_RELOC_MIPS16_LO16:
2233 return TRUE;
2234
2235 default:
2236 return FALSE;
2237 }
2238 }
2239
2240 static inline bfd_boolean
2241 got16_reloc_p (bfd_reloc_code_real_type reloc)
2242 {
2243 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2244 }
2245
2246 static inline bfd_boolean
2247 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2248 {
2249 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2250 }
2251
2252 static inline bfd_boolean
2253 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2254 {
2255 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2256 }
2257
2258 /* Return true if the given relocation might need a matching %lo().
2259 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2260 need a matching %lo() when applied to local symbols. */
2261
2262 static inline bfd_boolean
2263 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2264 {
2265 return (HAVE_IN_PLACE_ADDENDS
2266 && (hi16_reloc_p (reloc)
2267 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2268 all GOT16 relocations evaluate to "G". */
2269 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2270 }
2271
2272 /* Return the type of %lo() reloc needed by RELOC, given that
2273 reloc_needs_lo_p. */
2274
2275 static inline bfd_reloc_code_real_type
2276 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2277 {
2278 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2279 }
2280
2281 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2282 relocation. */
2283
2284 static inline bfd_boolean
2285 fixup_has_matching_lo_p (fixS *fixp)
2286 {
2287 return (fixp->fx_next != NULL
2288 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2289 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2290 && fixp->fx_offset == fixp->fx_next->fx_offset);
2291 }
2292
2293 /* See whether instruction IP reads register REG. CLASS is the type
2294 of register. */
2295
2296 static int
2297 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2298 enum mips_regclass class)
2299 {
2300 if (class == MIPS16_REG)
2301 {
2302 assert (mips_opts.mips16);
2303 reg = mips16_to_32_reg_map[reg];
2304 class = MIPS_GR_REG;
2305 }
2306
2307 /* Don't report on general register ZERO, since it never changes. */
2308 if (class == MIPS_GR_REG && reg == ZERO)
2309 return 0;
2310
2311 if (class == MIPS_FP_REG)
2312 {
2313 assert (! mips_opts.mips16);
2314 /* If we are called with either $f0 or $f1, we must check $f0.
2315 This is not optimal, because it will introduce an unnecessary
2316 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2317 need to distinguish reading both $f0 and $f1 or just one of
2318 them. Note that we don't have to check the other way,
2319 because there is no instruction that sets both $f0 and $f1
2320 and requires a delay. */
2321 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2322 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2323 == (reg &~ (unsigned) 1)))
2324 return 1;
2325 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2326 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2327 == (reg &~ (unsigned) 1)))
2328 return 1;
2329 }
2330 else if (! mips_opts.mips16)
2331 {
2332 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2333 && EXTRACT_OPERAND (RS, *ip) == reg)
2334 return 1;
2335 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2336 && EXTRACT_OPERAND (RT, *ip) == reg)
2337 return 1;
2338 }
2339 else
2340 {
2341 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2342 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2343 return 1;
2344 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2345 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2346 return 1;
2347 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2348 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2349 == reg))
2350 return 1;
2351 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2352 return 1;
2353 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2354 return 1;
2355 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2356 return 1;
2357 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2358 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2359 return 1;
2360 }
2361
2362 return 0;
2363 }
2364
2365 /* This function returns true if modifying a register requires a
2366 delay. */
2367
2368 static int
2369 reg_needs_delay (unsigned int reg)
2370 {
2371 unsigned long prev_pinfo;
2372
2373 prev_pinfo = history[0].insn_mo->pinfo;
2374 if (! mips_opts.noreorder
2375 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2376 && ! gpr_interlocks)
2377 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2378 && ! cop_interlocks)))
2379 {
2380 /* A load from a coprocessor or from memory. All load delays
2381 delay the use of general register rt for one instruction. */
2382 /* Itbl support may require additional care here. */
2383 know (prev_pinfo & INSN_WRITE_GPR_T);
2384 if (reg == EXTRACT_OPERAND (RT, history[0]))
2385 return 1;
2386 }
2387
2388 return 0;
2389 }
2390
2391 /* Move all labels in insn_labels to the current insertion point. */
2392
2393 static void
2394 mips_move_labels (void)
2395 {
2396 segment_info_type *si = seg_info (now_seg);
2397 struct insn_label_list *l;
2398 valueT val;
2399
2400 for (l = si->label_list; l != NULL; l = l->next)
2401 {
2402 assert (S_GET_SEGMENT (l->label) == now_seg);
2403 symbol_set_frag (l->label, frag_now);
2404 val = (valueT) frag_now_fix ();
2405 /* mips16 text labels are stored as odd. */
2406 if (mips_opts.mips16)
2407 ++val;
2408 S_SET_VALUE (l->label, val);
2409 }
2410 }
2411
2412 static bfd_boolean
2413 s_is_linkonce (symbolS *sym, segT from_seg)
2414 {
2415 bfd_boolean linkonce = FALSE;
2416 segT symseg = S_GET_SEGMENT (sym);
2417
2418 if (symseg != from_seg && !S_IS_LOCAL (sym))
2419 {
2420 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2421 linkonce = TRUE;
2422 #ifdef OBJ_ELF
2423 /* The GNU toolchain uses an extension for ELF: a section
2424 beginning with the magic string .gnu.linkonce is a
2425 linkonce section. */
2426 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2427 sizeof ".gnu.linkonce" - 1) == 0)
2428 linkonce = TRUE;
2429 #endif
2430 }
2431 return linkonce;
2432 }
2433
2434 /* Mark instruction labels in mips16 mode. This permits the linker to
2435 handle them specially, such as generating jalx instructions when
2436 needed. We also make them odd for the duration of the assembly, in
2437 order to generate the right sort of code. We will make them even
2438 in the adjust_symtab routine, while leaving them marked. This is
2439 convenient for the debugger and the disassembler. The linker knows
2440 to make them odd again. */
2441
2442 static void
2443 mips16_mark_labels (void)
2444 {
2445 segment_info_type *si = seg_info (now_seg);
2446 struct insn_label_list *l;
2447
2448 if (!mips_opts.mips16)
2449 return;
2450
2451 for (l = si->label_list; l != NULL; l = l->next)
2452 {
2453 symbolS *label = l->label;
2454
2455 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2456 if (IS_ELF)
2457 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2458 #endif
2459 if ((S_GET_VALUE (label) & 1) == 0
2460 /* Don't adjust the address if the label is global or weak, or
2461 in a link-once section, since we'll be emitting symbol reloc
2462 references to it which will be patched up by the linker, and
2463 the final value of the symbol may or may not be MIPS16. */
2464 && ! S_IS_WEAK (label)
2465 && ! S_IS_EXTERNAL (label)
2466 && ! s_is_linkonce (label, now_seg))
2467 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2468 }
2469 }
2470
2471 /* End the current frag. Make it a variant frag and record the
2472 relaxation info. */
2473
2474 static void
2475 relax_close_frag (void)
2476 {
2477 mips_macro_warning.first_frag = frag_now;
2478 frag_var (rs_machine_dependent, 0, 0,
2479 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2480 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2481
2482 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2483 mips_relax.first_fixup = 0;
2484 }
2485
2486 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2487 See the comment above RELAX_ENCODE for more details. */
2488
2489 static void
2490 relax_start (symbolS *symbol)
2491 {
2492 assert (mips_relax.sequence == 0);
2493 mips_relax.sequence = 1;
2494 mips_relax.symbol = symbol;
2495 }
2496
2497 /* Start generating the second version of a relaxable sequence.
2498 See the comment above RELAX_ENCODE for more details. */
2499
2500 static void
2501 relax_switch (void)
2502 {
2503 assert (mips_relax.sequence == 1);
2504 mips_relax.sequence = 2;
2505 }
2506
2507 /* End the current relaxable sequence. */
2508
2509 static void
2510 relax_end (void)
2511 {
2512 assert (mips_relax.sequence == 2);
2513 relax_close_frag ();
2514 mips_relax.sequence = 0;
2515 }
2516
2517 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2518 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2519 by VR4120 errata. */
2520
2521 static unsigned int
2522 classify_vr4120_insn (const char *name)
2523 {
2524 if (strncmp (name, "macc", 4) == 0)
2525 return FIX_VR4120_MACC;
2526 if (strncmp (name, "dmacc", 5) == 0)
2527 return FIX_VR4120_DMACC;
2528 if (strncmp (name, "mult", 4) == 0)
2529 return FIX_VR4120_MULT;
2530 if (strncmp (name, "dmult", 5) == 0)
2531 return FIX_VR4120_DMULT;
2532 if (strstr (name, "div"))
2533 return FIX_VR4120_DIV;
2534 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2535 return FIX_VR4120_MTHILO;
2536 return NUM_FIX_VR4120_CLASSES;
2537 }
2538
2539 /* Return the number of instructions that must separate INSN1 and INSN2,
2540 where INSN1 is the earlier instruction. Return the worst-case value
2541 for any INSN2 if INSN2 is null. */
2542
2543 static unsigned int
2544 insns_between (const struct mips_cl_insn *insn1,
2545 const struct mips_cl_insn *insn2)
2546 {
2547 unsigned long pinfo1, pinfo2;
2548
2549 /* This function needs to know which pinfo flags are set for INSN2
2550 and which registers INSN2 uses. The former is stored in PINFO2 and
2551 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2552 will have every flag set and INSN2_USES_REG will always return true. */
2553 pinfo1 = insn1->insn_mo->pinfo;
2554 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2555
2556 #define INSN2_USES_REG(REG, CLASS) \
2557 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2558
2559 /* For most targets, write-after-read dependencies on the HI and LO
2560 registers must be separated by at least two instructions. */
2561 if (!hilo_interlocks)
2562 {
2563 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2564 return 2;
2565 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2566 return 2;
2567 }
2568
2569 /* If we're working around r7000 errata, there must be two instructions
2570 between an mfhi or mflo and any instruction that uses the result. */
2571 if (mips_7000_hilo_fix
2572 && MF_HILO_INSN (pinfo1)
2573 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2574 return 2;
2575
2576 /* If working around VR4120 errata, check for combinations that need
2577 a single intervening instruction. */
2578 if (mips_fix_vr4120)
2579 {
2580 unsigned int class1, class2;
2581
2582 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2583 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2584 {
2585 if (insn2 == NULL)
2586 return 1;
2587 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2588 if (vr4120_conflicts[class1] & (1 << class2))
2589 return 1;
2590 }
2591 }
2592
2593 if (!mips_opts.mips16)
2594 {
2595 /* Check for GPR or coprocessor load delays. All such delays
2596 are on the RT register. */
2597 /* Itbl support may require additional care here. */
2598 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2599 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2600 {
2601 know (pinfo1 & INSN_WRITE_GPR_T);
2602 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2603 return 1;
2604 }
2605
2606 /* Check for generic coprocessor hazards.
2607
2608 This case is not handled very well. There is no special
2609 knowledge of CP0 handling, and the coprocessors other than
2610 the floating point unit are not distinguished at all. */
2611 /* Itbl support may require additional care here. FIXME!
2612 Need to modify this to include knowledge about
2613 user specified delays! */
2614 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2615 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2616 {
2617 /* Handle cases where INSN1 writes to a known general coprocessor
2618 register. There must be a one instruction delay before INSN2
2619 if INSN2 reads that register, otherwise no delay is needed. */
2620 if (pinfo1 & INSN_WRITE_FPR_T)
2621 {
2622 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2623 return 1;
2624 }
2625 else if (pinfo1 & INSN_WRITE_FPR_S)
2626 {
2627 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2628 return 1;
2629 }
2630 else
2631 {
2632 /* Read-after-write dependencies on the control registers
2633 require a two-instruction gap. */
2634 if ((pinfo1 & INSN_WRITE_COND_CODE)
2635 && (pinfo2 & INSN_READ_COND_CODE))
2636 return 2;
2637
2638 /* We don't know exactly what INSN1 does. If INSN2 is
2639 also a coprocessor instruction, assume there must be
2640 a one instruction gap. */
2641 if (pinfo2 & INSN_COP)
2642 return 1;
2643 }
2644 }
2645
2646 /* Check for read-after-write dependencies on the coprocessor
2647 control registers in cases where INSN1 does not need a general
2648 coprocessor delay. This means that INSN1 is a floating point
2649 comparison instruction. */
2650 /* Itbl support may require additional care here. */
2651 else if (!cop_interlocks
2652 && (pinfo1 & INSN_WRITE_COND_CODE)
2653 && (pinfo2 & INSN_READ_COND_CODE))
2654 return 1;
2655 }
2656
2657 #undef INSN2_USES_REG
2658
2659 return 0;
2660 }
2661
2662 /* Return the number of nops that would be needed to work around the
2663 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2664 the MAX_VR4130_NOPS instructions described by HISTORY. */
2665
2666 static int
2667 nops_for_vr4130 (const struct mips_cl_insn *history,
2668 const struct mips_cl_insn *insn)
2669 {
2670 int i, j, reg;
2671
2672 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2673 are not affected by the errata. */
2674 if (insn != 0
2675 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2676 || strcmp (insn->insn_mo->name, "mtlo") == 0
2677 || strcmp (insn->insn_mo->name, "mthi") == 0))
2678 return 0;
2679
2680 /* Search for the first MFLO or MFHI. */
2681 for (i = 0; i < MAX_VR4130_NOPS; i++)
2682 if (MF_HILO_INSN (history[i].insn_mo->pinfo))
2683 {
2684 /* Extract the destination register. */
2685 if (mips_opts.mips16)
2686 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])];
2687 else
2688 reg = EXTRACT_OPERAND (RD, history[i]);
2689
2690 /* No nops are needed if INSN reads that register. */
2691 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2692 return 0;
2693
2694 /* ...or if any of the intervening instructions do. */
2695 for (j = 0; j < i; j++)
2696 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG))
2697 return 0;
2698
2699 return MAX_VR4130_NOPS - i;
2700 }
2701 return 0;
2702 }
2703
2704 /* Return the number of nops that would be needed if instruction INSN
2705 immediately followed the MAX_NOPS instructions given by HISTORY,
2706 where HISTORY[0] is the most recent instruction. If INSN is null,
2707 return the worse-case number of nops for any instruction. */
2708
2709 static int
2710 nops_for_insn (const struct mips_cl_insn *history,
2711 const struct mips_cl_insn *insn)
2712 {
2713 int i, nops, tmp_nops;
2714
2715 nops = 0;
2716 for (i = 0; i < MAX_DELAY_NOPS; i++)
2717 {
2718 tmp_nops = insns_between (history + i, insn) - i;
2719 if (tmp_nops > nops)
2720 nops = tmp_nops;
2721 }
2722
2723 if (mips_fix_vr4130)
2724 {
2725 tmp_nops = nops_for_vr4130 (history, insn);
2726 if (tmp_nops > nops)
2727 nops = tmp_nops;
2728 }
2729
2730 return nops;
2731 }
2732
2733 /* The variable arguments provide NUM_INSNS extra instructions that
2734 might be added to HISTORY. Return the largest number of nops that
2735 would be needed after the extended sequence. */
2736
2737 static int
2738 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...)
2739 {
2740 va_list args;
2741 struct mips_cl_insn buffer[MAX_NOPS];
2742 struct mips_cl_insn *cursor;
2743 int nops;
2744
2745 va_start (args, history);
2746 cursor = buffer + num_insns;
2747 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor));
2748 while (cursor > buffer)
2749 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2750
2751 nops = nops_for_insn (buffer, NULL);
2752 va_end (args);
2753 return nops;
2754 }
2755
2756 /* Like nops_for_insn, but if INSN is a branch, take into account the
2757 worst-case delay for the branch target. */
2758
2759 static int
2760 nops_for_insn_or_target (const struct mips_cl_insn *history,
2761 const struct mips_cl_insn *insn)
2762 {
2763 int nops, tmp_nops;
2764
2765 nops = nops_for_insn (history, insn);
2766 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2767 | INSN_COND_BRANCH_DELAY
2768 | INSN_COND_BRANCH_LIKELY))
2769 {
2770 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN);
2771 if (tmp_nops > nops)
2772 nops = tmp_nops;
2773 }
2774 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH))
2775 {
2776 tmp_nops = nops_for_sequence (1, history, insn);
2777 if (tmp_nops > nops)
2778 nops = tmp_nops;
2779 }
2780 return nops;
2781 }
2782
2783 /* Output an instruction. IP is the instruction information.
2784 ADDRESS_EXPR is an operand of the instruction to be used with
2785 RELOC_TYPE. */
2786
2787 static void
2788 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2789 bfd_reloc_code_real_type *reloc_type)
2790 {
2791 unsigned long prev_pinfo, pinfo;
2792 int hndx_24k = 0;
2793 relax_stateT prev_insn_frag_type = 0;
2794 bfd_boolean relaxed_branch = FALSE;
2795 segment_info_type *si = seg_info (now_seg);
2796
2797 /* Mark instruction labels in mips16 mode. */
2798 mips16_mark_labels ();
2799
2800 prev_pinfo = history[0].insn_mo->pinfo;
2801 pinfo = ip->insn_mo->pinfo;
2802
2803 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2804 {
2805 /* There are a lot of optimizations we could do that we don't.
2806 In particular, we do not, in general, reorder instructions.
2807 If you use gcc with optimization, it will reorder
2808 instructions and generally do much more optimization then we
2809 do here; repeating all that work in the assembler would only
2810 benefit hand written assembly code, and does not seem worth
2811 it. */
2812 int nops = (mips_optimize == 0
2813 ? nops_for_insn (history, NULL)
2814 : nops_for_insn_or_target (history, ip));
2815 if (nops > 0)
2816 {
2817 fragS *old_frag;
2818 unsigned long old_frag_offset;
2819 int i;
2820
2821 old_frag = frag_now;
2822 old_frag_offset = frag_now_fix ();
2823
2824 for (i = 0; i < nops; i++)
2825 emit_nop ();
2826
2827 if (listing)
2828 {
2829 listing_prev_line ();
2830 /* We may be at the start of a variant frag. In case we
2831 are, make sure there is enough space for the frag
2832 after the frags created by listing_prev_line. The
2833 argument to frag_grow here must be at least as large
2834 as the argument to all other calls to frag_grow in
2835 this file. We don't have to worry about being in the
2836 middle of a variant frag, because the variants insert
2837 all needed nop instructions themselves. */
2838 frag_grow (40);
2839 }
2840
2841 mips_move_labels ();
2842
2843 #ifndef NO_ECOFF_DEBUGGING
2844 if (ECOFF_DEBUGGING)
2845 ecoff_fix_loc (old_frag, old_frag_offset);
2846 #endif
2847 }
2848 }
2849 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2850 {
2851 /* Work out how many nops in prev_nop_frag are needed by IP. */
2852 int nops = nops_for_insn_or_target (history, ip);
2853 assert (nops <= prev_nop_frag_holds);
2854
2855 /* Enforce NOPS as a minimum. */
2856 if (nops > prev_nop_frag_required)
2857 prev_nop_frag_required = nops;
2858
2859 if (prev_nop_frag_holds == prev_nop_frag_required)
2860 {
2861 /* Settle for the current number of nops. Update the history
2862 accordingly (for the benefit of any future .set reorder code). */
2863 prev_nop_frag = NULL;
2864 insert_into_history (prev_nop_frag_since,
2865 prev_nop_frag_holds, NOP_INSN);
2866 }
2867 else
2868 {
2869 /* Allow this instruction to replace one of the nops that was
2870 tentatively added to prev_nop_frag. */
2871 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2872 prev_nop_frag_holds--;
2873 prev_nop_frag_since++;
2874 }
2875 }
2876
2877 #ifdef OBJ_ELF
2878 /* The value passed to dwarf2_emit_insn is the distance between
2879 the beginning of the current instruction and the address that
2880 should be recorded in the debug tables. For MIPS16 debug info
2881 we want to use ISA-encoded addresses, so we pass -1 for an
2882 address higher by one than the current. */
2883 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2884 #endif
2885
2886 /* Record the frag type before frag_var. */
2887 if (history[0].frag)
2888 prev_insn_frag_type = history[0].frag->fr_type;
2889
2890 if (address_expr
2891 && *reloc_type == BFD_RELOC_16_PCREL_S2
2892 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2893 || pinfo & INSN_COND_BRANCH_LIKELY)
2894 && mips_relax_branch
2895 /* Don't try branch relaxation within .set nomacro, or within
2896 .set noat if we use $at for PIC computations. If it turns
2897 out that the branch was out-of-range, we'll get an error. */
2898 && !mips_opts.warn_about_macros
2899 && (mips_opts.at || mips_pic == NO_PIC)
2900 && !mips_opts.mips16)
2901 {
2902 relaxed_branch = TRUE;
2903 add_relaxed_insn (ip, (relaxed_branch_length
2904 (NULL, NULL,
2905 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2906 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2907 : 0)), 4,
2908 RELAX_BRANCH_ENCODE
2909 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2910 pinfo & INSN_COND_BRANCH_LIKELY,
2911 pinfo & INSN_WRITE_GPR_31,
2912 0),
2913 address_expr->X_add_symbol,
2914 address_expr->X_add_number);
2915 *reloc_type = BFD_RELOC_UNUSED;
2916 }
2917 else if (*reloc_type > BFD_RELOC_UNUSED)
2918 {
2919 /* We need to set up a variant frag. */
2920 assert (mips_opts.mips16 && address_expr != NULL);
2921 add_relaxed_insn (ip, 4, 0,
2922 RELAX_MIPS16_ENCODE
2923 (*reloc_type - BFD_RELOC_UNUSED,
2924 mips16_small, mips16_ext,
2925 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2926 history[0].mips16_absolute_jump_p),
2927 make_expr_symbol (address_expr), 0);
2928 }
2929 else if (mips_opts.mips16
2930 && ! ip->use_extend
2931 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2932 {
2933 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2934 /* Make sure there is enough room to swap this instruction with
2935 a following jump instruction. */
2936 frag_grow (6);
2937 add_fixed_insn (ip);
2938 }
2939 else
2940 {
2941 if (mips_opts.mips16
2942 && mips_opts.noreorder
2943 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2944 as_warn (_("extended instruction in delay slot"));
2945
2946 if (mips_relax.sequence)
2947 {
2948 /* If we've reached the end of this frag, turn it into a variant
2949 frag and record the information for the instructions we've
2950 written so far. */
2951 if (frag_room () < 4)
2952 relax_close_frag ();
2953 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2954 }
2955
2956 if (mips_relax.sequence != 2)
2957 mips_macro_warning.sizes[0] += 4;
2958 if (mips_relax.sequence != 1)
2959 mips_macro_warning.sizes[1] += 4;
2960
2961 if (mips_opts.mips16)
2962 {
2963 ip->fixed_p = 1;
2964 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2965 }
2966 add_fixed_insn (ip);
2967 }
2968
2969 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2970 {
2971 if (address_expr->X_op == O_constant)
2972 {
2973 unsigned int tmp;
2974
2975 switch (*reloc_type)
2976 {
2977 case BFD_RELOC_32:
2978 ip->insn_opcode |= address_expr->X_add_number;
2979 break;
2980
2981 case BFD_RELOC_MIPS_HIGHEST:
2982 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2983 ip->insn_opcode |= tmp & 0xffff;
2984 break;
2985
2986 case BFD_RELOC_MIPS_HIGHER:
2987 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2988 ip->insn_opcode |= tmp & 0xffff;
2989 break;
2990
2991 case BFD_RELOC_HI16_S:
2992 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2993 ip->insn_opcode |= tmp & 0xffff;
2994 break;
2995
2996 case BFD_RELOC_HI16:
2997 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2998 break;
2999
3000 case BFD_RELOC_UNUSED:
3001 case BFD_RELOC_LO16:
3002 case BFD_RELOC_MIPS_GOT_DISP:
3003 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3004 break;
3005
3006 case BFD_RELOC_MIPS_JMP:
3007 if ((address_expr->X_add_number & 3) != 0)
3008 as_bad (_("jump to misaligned address (0x%lx)"),
3009 (unsigned long) address_expr->X_add_number);
3010 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3011 break;
3012
3013 case BFD_RELOC_MIPS16_JMP:
3014 if ((address_expr->X_add_number & 3) != 0)
3015 as_bad (_("jump to misaligned address (0x%lx)"),
3016 (unsigned long) address_expr->X_add_number);
3017 ip->insn_opcode |=
3018 (((address_expr->X_add_number & 0x7c0000) << 3)
3019 | ((address_expr->X_add_number & 0xf800000) >> 7)
3020 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3021 break;
3022
3023 case BFD_RELOC_16_PCREL_S2:
3024 if ((address_expr->X_add_number & 3) != 0)
3025 as_bad (_("branch to misaligned address (0x%lx)"),
3026 (unsigned long) address_expr->X_add_number);
3027 if (mips_relax_branch)
3028 goto need_reloc;
3029 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3030 as_bad (_("branch address range overflow (0x%lx)"),
3031 (unsigned long) address_expr->X_add_number);
3032 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3033 break;
3034
3035 default:
3036 internalError ();
3037 }
3038 }
3039 else if (*reloc_type < BFD_RELOC_UNUSED)
3040 need_reloc:
3041 {
3042 reloc_howto_type *howto;
3043 int i;
3044
3045 /* In a compound relocation, it is the final (outermost)
3046 operator that determines the relocated field. */
3047 for (i = 1; i < 3; i++)
3048 if (reloc_type[i] == BFD_RELOC_UNUSED)
3049 break;
3050
3051 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3052 if (howto == NULL)
3053 {
3054 /* To reproduce this failure try assembling gas/testsuites/
3055 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3056 assembler. */
3057 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3058 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3059 }
3060
3061 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3062 bfd_get_reloc_size (howto),
3063 address_expr,
3064 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3065 reloc_type[0]);
3066
3067 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3068 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3069 && ip->fixp[0]->fx_addsy)
3070 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3071
3072 /* These relocations can have an addend that won't fit in
3073 4 octets for 64bit assembly. */
3074 if (HAVE_64BIT_GPRS
3075 && ! howto->partial_inplace
3076 && (reloc_type[0] == BFD_RELOC_16
3077 || reloc_type[0] == BFD_RELOC_32
3078 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3079 || reloc_type[0] == BFD_RELOC_GPREL16
3080 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3081 || reloc_type[0] == BFD_RELOC_GPREL32
3082 || reloc_type[0] == BFD_RELOC_64
3083 || reloc_type[0] == BFD_RELOC_CTOR
3084 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3085 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3086 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3087 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3088 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3089 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3090 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3091 || hi16_reloc_p (reloc_type[0])
3092 || lo16_reloc_p (reloc_type[0])))
3093 ip->fixp[0]->fx_no_overflow = 1;
3094
3095 if (mips_relax.sequence)
3096 {
3097 if (mips_relax.first_fixup == 0)
3098 mips_relax.first_fixup = ip->fixp[0];
3099 }
3100 else if (reloc_needs_lo_p (*reloc_type))
3101 {
3102 struct mips_hi_fixup *hi_fixup;
3103
3104 /* Reuse the last entry if it already has a matching %lo. */
3105 hi_fixup = mips_hi_fixup_list;
3106 if (hi_fixup == 0
3107 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3108 {
3109 hi_fixup = ((struct mips_hi_fixup *)
3110 xmalloc (sizeof (struct mips_hi_fixup)));
3111 hi_fixup->next = mips_hi_fixup_list;
3112 mips_hi_fixup_list = hi_fixup;
3113 }
3114 hi_fixup->fixp = ip->fixp[0];
3115 hi_fixup->seg = now_seg;
3116 }
3117
3118 /* Add fixups for the second and third relocations, if given.
3119 Note that the ABI allows the second relocation to be
3120 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3121 moment we only use RSS_UNDEF, but we could add support
3122 for the others if it ever becomes necessary. */
3123 for (i = 1; i < 3; i++)
3124 if (reloc_type[i] != BFD_RELOC_UNUSED)
3125 {
3126 ip->fixp[i] = fix_new (ip->frag, ip->where,
3127 ip->fixp[0]->fx_size, NULL, 0,
3128 FALSE, reloc_type[i]);
3129
3130 /* Use fx_tcbit to mark compound relocs. */
3131 ip->fixp[0]->fx_tcbit = 1;
3132 ip->fixp[i]->fx_tcbit = 1;
3133 }
3134 }
3135 }
3136 install_insn (ip);
3137
3138 /* Update the register mask information. */
3139 if (! mips_opts.mips16)
3140 {
3141 if (pinfo & INSN_WRITE_GPR_D)
3142 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3143 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3144 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3145 if (pinfo & INSN_READ_GPR_S)
3146 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3147 if (pinfo & INSN_WRITE_GPR_31)
3148 mips_gprmask |= 1 << RA;
3149 if (pinfo & INSN_WRITE_FPR_D)
3150 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3151 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3152 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3153 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3154 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3155 if ((pinfo & INSN_READ_FPR_R) != 0)
3156 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3157 if (pinfo & INSN_COP)
3158 {
3159 /* We don't keep enough information to sort these cases out.
3160 The itbl support does keep this information however, although
3161 we currently don't support itbl fprmats as part of the cop
3162 instruction. May want to add this support in the future. */
3163 }
3164 /* Never set the bit for $0, which is always zero. */
3165 mips_gprmask &= ~1 << 0;
3166 }
3167 else
3168 {
3169 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3170 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3171 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3172 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3173 if (pinfo & MIPS16_INSN_WRITE_Z)
3174 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3175 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3176 mips_gprmask |= 1 << TREG;
3177 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3178 mips_gprmask |= 1 << SP;
3179 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3180 mips_gprmask |= 1 << RA;
3181 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3182 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3183 if (pinfo & MIPS16_INSN_READ_Z)
3184 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3185 if (pinfo & MIPS16_INSN_READ_GPR_X)
3186 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3187 }
3188
3189 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3190 {
3191 /* Filling the branch delay slot is more complex. We try to
3192 switch the branch with the previous instruction, which we can
3193 do if the previous instruction does not set up a condition
3194 that the branch tests and if the branch is not itself the
3195 target of any branch. */
3196 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3197 || (pinfo & INSN_COND_BRANCH_DELAY))
3198 {
3199 if (mips_optimize < 2
3200 /* If we have seen .set volatile or .set nomove, don't
3201 optimize. */
3202 || mips_opts.nomove != 0
3203 /* We can't swap if the previous instruction's position
3204 is fixed. */
3205 || history[0].fixed_p
3206 /* If the previous previous insn was in a .set
3207 noreorder, we can't swap. Actually, the MIPS
3208 assembler will swap in this situation. However, gcc
3209 configured -with-gnu-as will generate code like
3210 .set noreorder
3211 lw $4,XXX
3212 .set reorder
3213 INSN
3214 bne $4,$0,foo
3215 in which we can not swap the bne and INSN. If gcc is
3216 not configured -with-gnu-as, it does not output the
3217 .set pseudo-ops. */
3218 || history[1].noreorder_p
3219 /* If the branch is itself the target of a branch, we
3220 can not swap. We cheat on this; all we check for is
3221 whether there is a label on this instruction. If
3222 there are any branches to anything other than a
3223 label, users must use .set noreorder. */
3224 || si->label_list != NULL
3225 /* If the previous instruction is in a variant frag
3226 other than this branch's one, we cannot do the swap.
3227 This does not apply to the mips16, which uses variant
3228 frags for different purposes. */
3229 || (! mips_opts.mips16
3230 && prev_insn_frag_type == rs_machine_dependent)
3231 /* Check for conflicts between the branch and the instructions
3232 before the candidate delay slot. */
3233 || nops_for_insn (history + 1, ip) > 0
3234 /* Check for conflicts between the swapped sequence and the
3235 target of the branch. */
3236 || nops_for_sequence (2, history + 1, ip, history) > 0
3237 /* We do not swap with a trap instruction, since it
3238 complicates trap handlers to have the trap
3239 instruction be in a delay slot. */
3240 || (prev_pinfo & INSN_TRAP)
3241 /* If the branch reads a register that the previous
3242 instruction sets, we can not swap. */
3243 || (! mips_opts.mips16
3244 && (prev_pinfo & INSN_WRITE_GPR_T)
3245 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3246 MIPS_GR_REG))
3247 || (! mips_opts.mips16
3248 && (prev_pinfo & INSN_WRITE_GPR_D)
3249 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3250 MIPS_GR_REG))
3251 || (mips_opts.mips16
3252 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3253 && (insn_uses_reg
3254 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3255 MIPS16_REG)))
3256 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3257 && (insn_uses_reg
3258 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3259 MIPS16_REG)))
3260 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3261 && (insn_uses_reg
3262 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3263 MIPS16_REG)))
3264 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3265 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3266 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3267 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3268 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3269 && insn_uses_reg (ip,
3270 MIPS16OP_EXTRACT_REG32R
3271 (history[0].insn_opcode),
3272 MIPS_GR_REG))))
3273 /* If the branch writes a register that the previous
3274 instruction sets, we can not swap (we know that
3275 branches write only to RD or to $31). */
3276 || (! mips_opts.mips16
3277 && (prev_pinfo & INSN_WRITE_GPR_T)
3278 && (((pinfo & INSN_WRITE_GPR_D)
3279 && (EXTRACT_OPERAND (RT, history[0])
3280 == EXTRACT_OPERAND (RD, *ip)))
3281 || ((pinfo & INSN_WRITE_GPR_31)
3282 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3283 || (! mips_opts.mips16
3284 && (prev_pinfo & INSN_WRITE_GPR_D)
3285 && (((pinfo & INSN_WRITE_GPR_D)
3286 && (EXTRACT_OPERAND (RD, history[0])
3287 == EXTRACT_OPERAND (RD, *ip)))
3288 || ((pinfo & INSN_WRITE_GPR_31)
3289 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3290 || (mips_opts.mips16
3291 && (pinfo & MIPS16_INSN_WRITE_31)
3292 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3293 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3294 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3295 == RA))))
3296 /* If the branch writes a register that the previous
3297 instruction reads, we can not swap (we know that
3298 branches only write to RD or to $31). */
3299 || (! mips_opts.mips16
3300 && (pinfo & INSN_WRITE_GPR_D)
3301 && insn_uses_reg (&history[0],
3302 EXTRACT_OPERAND (RD, *ip),
3303 MIPS_GR_REG))
3304 || (! mips_opts.mips16
3305 && (pinfo & INSN_WRITE_GPR_31)
3306 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3307 || (mips_opts.mips16
3308 && (pinfo & MIPS16_INSN_WRITE_31)
3309 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3310 /* If one instruction sets a condition code and the
3311 other one uses a condition code, we can not swap. */
3312 || ((pinfo & INSN_READ_COND_CODE)
3313 && (prev_pinfo & INSN_WRITE_COND_CODE))
3314 || ((pinfo & INSN_WRITE_COND_CODE)
3315 && (prev_pinfo & INSN_READ_COND_CODE))
3316 /* If the previous instruction uses the PC, we can not
3317 swap. */
3318 || (mips_opts.mips16
3319 && (prev_pinfo & MIPS16_INSN_READ_PC))
3320 /* If the previous instruction had a fixup in mips16
3321 mode, we can not swap. This normally means that the
3322 previous instruction was a 4 byte branch anyhow. */
3323 || (mips_opts.mips16 && history[0].fixp[0])
3324 /* If the previous instruction is a sync, sync.l, or
3325 sync.p, we can not swap. */
3326 || (prev_pinfo & INSN_SYNC)
3327 /* If the previous instruction is an ERET or
3328 DERET, avoid the swap. */
3329 || (history[0].insn_opcode == INSN_ERET)
3330 || (history[0].insn_opcode == INSN_DERET))
3331 {
3332 if (mips_opts.mips16
3333 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3334 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3335 && ISA_SUPPORTS_MIPS16E)
3336 {
3337 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3338 ip->insn_opcode |= 0x0080;
3339 install_insn (ip);
3340 insert_into_history (0, 1, ip);
3341 }
3342 else
3343 {
3344 /* We could do even better for unconditional branches to
3345 portions of this object file; we could pick up the
3346 instruction at the destination, put it in the delay
3347 slot, and bump the destination address. */
3348 insert_into_history (0, 1, ip);
3349 emit_nop ();
3350 if (mips_fix_24k)
3351 hndx_24k++;
3352 }
3353
3354 if (mips_relax.sequence)
3355 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3356 }
3357 else
3358 {
3359 /* It looks like we can actually do the swap. */
3360 struct mips_cl_insn delay = history[0];
3361 if (mips_opts.mips16)
3362 {
3363 know (delay.frag == ip->frag);
3364 move_insn (ip, delay.frag, delay.where);
3365 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3366 }
3367 else if (relaxed_branch)
3368 {
3369 /* Add the delay slot instruction to the end of the
3370 current frag and shrink the fixed part of the
3371 original frag. If the branch occupies the tail of
3372 the latter, move it backwards to cover the gap. */
3373 delay.frag->fr_fix -= 4;
3374 if (delay.frag == ip->frag)
3375 move_insn (ip, ip->frag, ip->where - 4);
3376 add_fixed_insn (&delay);
3377 }
3378 else
3379 {
3380 move_insn (&delay, ip->frag, ip->where);
3381 move_insn (ip, history[0].frag, history[0].where);
3382 }
3383 history[0] = *ip;
3384 delay.fixed_p = 1;
3385 insert_into_history (0, 1, &delay);
3386 }
3387
3388 /* If that was an unconditional branch, forget the previous
3389 insn information. */
3390 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3391 {
3392 /* Check for eret/deret before clearing history. */
3393 if (mips_fix_24k)
3394 check_for_24k_errata (
3395 (struct mips_cl_insn *) &history[hndx_24k],
3396 hndx_24k+1);
3397 mips_no_prev_insn ();
3398 }
3399 }
3400 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3401 {
3402 /* We don't yet optimize a branch likely. What we should do
3403 is look at the target, copy the instruction found there
3404 into the delay slot, and increment the branch to jump to
3405 the next instruction. */
3406 insert_into_history (0, 1, ip);
3407 emit_nop ();
3408 if (mips_fix_24k)
3409 hndx_24k++;
3410 }
3411 else
3412 insert_into_history (0, 1, ip);
3413 }
3414 else
3415 insert_into_history (0, 1, ip);
3416
3417 if (mips_fix_24k)
3418 check_for_24k_errata ((struct mips_cl_insn *) &history[hndx_24k],
3419 hndx_24k+1);
3420
3421 /* We just output an insn, so the next one doesn't have a label. */
3422 mips_clear_insn_labels ();
3423 }
3424
3425 /* Forget that there was any previous instruction or label. */
3426
3427 static void
3428 mips_no_prev_insn (void)
3429 {
3430 prev_nop_frag = NULL;
3431 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3432 mips_clear_insn_labels ();
3433 }
3434
3435 /* This function must be called before we emit something other than
3436 instructions. It is like mips_no_prev_insn except that it inserts
3437 any NOPS that might be needed by previous instructions. */
3438
3439 void
3440 mips_emit_delays (void)
3441 {
3442 if (! mips_opts.noreorder)
3443 {
3444 int nops = nops_for_insn (history, NULL);
3445 if (nops > 0)
3446 {
3447 while (nops-- > 0)
3448 add_fixed_insn (NOP_INSN);
3449 mips_move_labels ();
3450 }
3451 }
3452 mips_no_prev_insn ();
3453 }
3454
3455 /* Start a (possibly nested) noreorder block. */
3456
3457 static void
3458 start_noreorder (void)
3459 {
3460 if (mips_opts.noreorder == 0)
3461 {
3462 unsigned int i;
3463 int nops;
3464
3465 /* None of the instructions before the .set noreorder can be moved. */
3466 for (i = 0; i < ARRAY_SIZE (history); i++)
3467 history[i].fixed_p = 1;
3468
3469 /* Insert any nops that might be needed between the .set noreorder
3470 block and the previous instructions. We will later remove any
3471 nops that turn out not to be needed. */
3472 nops = nops_for_insn (history, NULL);
3473 if (nops > 0)
3474 {
3475 if (mips_optimize != 0)
3476 {
3477 /* Record the frag which holds the nop instructions, so
3478 that we can remove them if we don't need them. */
3479 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3480 prev_nop_frag = frag_now;
3481 prev_nop_frag_holds = nops;
3482 prev_nop_frag_required = 0;
3483 prev_nop_frag_since = 0;
3484 }
3485
3486 for (; nops > 0; --nops)
3487 add_fixed_insn (NOP_INSN);
3488
3489 /* Move on to a new frag, so that it is safe to simply
3490 decrease the size of prev_nop_frag. */
3491 frag_wane (frag_now);
3492 frag_new (0);
3493 mips_move_labels ();
3494 }
3495 mips16_mark_labels ();
3496 mips_clear_insn_labels ();
3497 }
3498 mips_opts.noreorder++;
3499 mips_any_noreorder = 1;
3500 }
3501
3502 /* End a nested noreorder block. */
3503
3504 static void
3505 end_noreorder (void)
3506 {
3507 if (mips_fix_24k)
3508 check_for_24k_errata (NULL, 0);
3509
3510 mips_opts.noreorder--;
3511 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3512 {
3513 /* Commit to inserting prev_nop_frag_required nops and go back to
3514 handling nop insertion the .set reorder way. */
3515 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3516 * (mips_opts.mips16 ? 2 : 4));
3517 insert_into_history (prev_nop_frag_since,
3518 prev_nop_frag_required, NOP_INSN);
3519 prev_nop_frag = NULL;
3520 }
3521 }
3522
3523 /* Set up global variables for the start of a new macro. */
3524
3525 static void
3526 macro_start (void)
3527 {
3528 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3529 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3530 && (history[0].insn_mo->pinfo
3531 & (INSN_UNCOND_BRANCH_DELAY
3532 | INSN_COND_BRANCH_DELAY
3533 | INSN_COND_BRANCH_LIKELY)) != 0);
3534 }
3535
3536 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3537 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3538 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3539
3540 static const char *
3541 macro_warning (relax_substateT subtype)
3542 {
3543 if (subtype & RELAX_DELAY_SLOT)
3544 return _("Macro instruction expanded into multiple instructions"
3545 " in a branch delay slot");
3546 else if (subtype & RELAX_NOMACRO)
3547 return _("Macro instruction expanded into multiple instructions");
3548 else
3549 return 0;
3550 }
3551
3552 /* Finish up a macro. Emit warnings as appropriate. */
3553
3554 static void
3555 macro_end (void)
3556 {
3557 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3558 {
3559 relax_substateT subtype;
3560
3561 /* Set up the relaxation warning flags. */
3562 subtype = 0;
3563 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3564 subtype |= RELAX_SECOND_LONGER;
3565 if (mips_opts.warn_about_macros)
3566 subtype |= RELAX_NOMACRO;
3567 if (mips_macro_warning.delay_slot_p)
3568 subtype |= RELAX_DELAY_SLOT;
3569
3570 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3571 {
3572 /* Either the macro has a single implementation or both
3573 implementations are longer than 4 bytes. Emit the
3574 warning now. */
3575 const char *msg = macro_warning (subtype);
3576 if (msg != 0)
3577 as_warn ("%s", msg);
3578 }
3579 else
3580 {
3581 /* One implementation might need a warning but the other
3582 definitely doesn't. */
3583 mips_macro_warning.first_frag->fr_subtype |= subtype;
3584 }
3585 }
3586 }
3587
3588 /* Read a macro's relocation codes from *ARGS and store them in *R.
3589 The first argument in *ARGS will be either the code for a single
3590 relocation or -1 followed by the three codes that make up a
3591 composite relocation. */
3592
3593 static void
3594 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3595 {
3596 int i, next;
3597
3598 next = va_arg (*args, int);
3599 if (next >= 0)
3600 r[0] = (bfd_reloc_code_real_type) next;
3601 else
3602 for (i = 0; i < 3; i++)
3603 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3604 }
3605
3606 /* Build an instruction created by a macro expansion. This is passed
3607 a pointer to the count of instructions created so far, an
3608 expression, the name of the instruction to build, an operand format
3609 string, and corresponding arguments. */
3610
3611 static void
3612 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3613 {
3614 const struct mips_opcode *mo;
3615 struct mips_cl_insn insn;
3616 bfd_reloc_code_real_type r[3];
3617 va_list args;
3618
3619 va_start (args, fmt);
3620
3621 if (mips_opts.mips16)
3622 {
3623 mips16_macro_build (ep, name, fmt, args);
3624 va_end (args);
3625 return;
3626 }
3627
3628 r[0] = BFD_RELOC_UNUSED;
3629 r[1] = BFD_RELOC_UNUSED;
3630 r[2] = BFD_RELOC_UNUSED;
3631 mo = (struct mips_opcode *) hash_find (op_hash, name);
3632 assert (mo);
3633 assert (strcmp (name, mo->name) == 0);
3634
3635 while (1)
3636 {
3637 /* Search until we get a match for NAME. It is assumed here that
3638 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3639 if (strcmp (fmt, mo->args) == 0
3640 && mo->pinfo != INSN_MACRO
3641 && is_opcode_valid (mo, TRUE))
3642 break;
3643
3644 ++mo;
3645 assert (mo->name);
3646 assert (strcmp (name, mo->name) == 0);
3647 }
3648
3649 create_insn (&insn, mo);
3650 for (;;)
3651 {
3652 switch (*fmt++)
3653 {
3654 case '\0':
3655 break;
3656
3657 case ',':
3658 case '(':
3659 case ')':
3660 continue;
3661
3662 case '+':
3663 switch (*fmt++)
3664 {
3665 case 'A':
3666 case 'E':
3667 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3668 continue;
3669
3670 case 'B':
3671 case 'F':
3672 /* Note that in the macro case, these arguments are already
3673 in MSB form. (When handling the instruction in the
3674 non-macro case, these arguments are sizes from which
3675 MSB values must be calculated.) */
3676 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3677 continue;
3678
3679 case 'C':
3680 case 'G':
3681 case 'H':
3682 /* Note that in the macro case, these arguments are already
3683 in MSBD form. (When handling the instruction in the
3684 non-macro case, these arguments are sizes from which
3685 MSBD values must be calculated.) */
3686 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3687 continue;
3688
3689 case 'Q':
3690 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3691 continue;
3692
3693 default:
3694 internalError ();
3695 }
3696 continue;
3697
3698 case '2':
3699 INSERT_OPERAND (BP, insn, va_arg (args, int));
3700 continue;
3701
3702 case 't':
3703 case 'w':
3704 case 'E':
3705 INSERT_OPERAND (RT, insn, va_arg (args, int));
3706 continue;
3707
3708 case 'c':
3709 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3710 continue;
3711
3712 case 'T':
3713 case 'W':
3714 INSERT_OPERAND (FT, insn, va_arg (args, int));
3715 continue;
3716
3717 case 'd':
3718 case 'G':
3719 case 'K':
3720 INSERT_OPERAND (RD, insn, va_arg (args, int));
3721 continue;
3722
3723 case 'U':
3724 {
3725 int tmp = va_arg (args, int);
3726
3727 INSERT_OPERAND (RT, insn, tmp);
3728 INSERT_OPERAND (RD, insn, tmp);
3729 continue;
3730 }
3731
3732 case 'V':
3733 case 'S':
3734 INSERT_OPERAND (FS, insn, va_arg (args, int));
3735 continue;
3736
3737 case 'z':
3738 continue;
3739
3740 case '<':
3741 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3742 continue;
3743
3744 case 'D':
3745 INSERT_OPERAND (FD, insn, va_arg (args, int));
3746 continue;
3747
3748 case 'B':
3749 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3750 continue;
3751
3752 case 'J':
3753 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3754 continue;
3755
3756 case 'q':
3757 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3758 continue;
3759
3760 case 'b':
3761 case 's':
3762 case 'r':
3763 case 'v':
3764 INSERT_OPERAND (RS, insn, va_arg (args, int));
3765 continue;
3766
3767 case 'i':
3768 case 'j':
3769 case 'o':
3770 macro_read_relocs (&args, r);
3771 assert (*r == BFD_RELOC_GPREL16
3772 || *r == BFD_RELOC_MIPS_LITERAL
3773 || *r == BFD_RELOC_MIPS_HIGHER
3774 || *r == BFD_RELOC_HI16_S
3775 || *r == BFD_RELOC_LO16
3776 || *r == BFD_RELOC_MIPS_GOT16
3777 || *r == BFD_RELOC_MIPS_CALL16
3778 || *r == BFD_RELOC_MIPS_GOT_DISP
3779 || *r == BFD_RELOC_MIPS_GOT_PAGE
3780 || *r == BFD_RELOC_MIPS_GOT_OFST
3781 || *r == BFD_RELOC_MIPS_GOT_LO16
3782 || *r == BFD_RELOC_MIPS_CALL_LO16);
3783 continue;
3784
3785 case 'u':
3786 macro_read_relocs (&args, r);
3787 assert (ep != NULL
3788 && (ep->X_op == O_constant
3789 || (ep->X_op == O_symbol
3790 && (*r == BFD_RELOC_MIPS_HIGHEST
3791 || *r == BFD_RELOC_HI16_S
3792 || *r == BFD_RELOC_HI16
3793 || *r == BFD_RELOC_GPREL16
3794 || *r == BFD_RELOC_MIPS_GOT_HI16
3795 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3796 continue;
3797
3798 case 'p':
3799 assert (ep != NULL);
3800
3801 /*
3802 * This allows macro() to pass an immediate expression for
3803 * creating short branches without creating a symbol.
3804 *
3805 * We don't allow branch relaxation for these branches, as
3806 * they should only appear in ".set nomacro" anyway.
3807 */
3808 if (ep->X_op == O_constant)
3809 {
3810 if ((ep->X_add_number & 3) != 0)
3811 as_bad (_("branch to misaligned address (0x%lx)"),
3812 (unsigned long) ep->X_add_number);
3813 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3814 as_bad (_("branch address range overflow (0x%lx)"),
3815 (unsigned long) ep->X_add_number);
3816 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3817 ep = NULL;
3818 }
3819 else
3820 *r = BFD_RELOC_16_PCREL_S2;
3821 continue;
3822
3823 case 'a':
3824 assert (ep != NULL);
3825 *r = BFD_RELOC_MIPS_JMP;
3826 continue;
3827
3828 case 'C':
3829 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3830 continue;
3831
3832 case 'k':
3833 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3834 continue;
3835
3836 default:
3837 internalError ();
3838 }
3839 break;
3840 }
3841 va_end (args);
3842 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3843
3844 append_insn (&insn, ep, r);
3845 }
3846
3847 static void
3848 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3849 va_list args)
3850 {
3851 struct mips_opcode *mo;
3852 struct mips_cl_insn insn;
3853 bfd_reloc_code_real_type r[3]
3854 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3855
3856 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3857 assert (mo);
3858 assert (strcmp (name, mo->name) == 0);
3859
3860 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3861 {
3862 ++mo;
3863 assert (mo->name);
3864 assert (strcmp (name, mo->name) == 0);
3865 }
3866
3867 create_insn (&insn, mo);
3868 for (;;)
3869 {
3870 int c;
3871
3872 c = *fmt++;
3873 switch (c)
3874 {
3875 case '\0':
3876 break;
3877
3878 case ',':
3879 case '(':
3880 case ')':
3881 continue;
3882
3883 case 'y':
3884 case 'w':
3885 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int));
3886 continue;
3887
3888 case 'x':
3889 case 'v':
3890 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int));
3891 continue;
3892
3893 case 'z':
3894 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int));
3895 continue;
3896
3897 case 'Z':
3898 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int));
3899 continue;
3900
3901 case '0':
3902 case 'S':
3903 case 'P':
3904 case 'R':
3905 continue;
3906
3907 case 'X':
3908 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int));
3909 continue;
3910
3911 case 'Y':
3912 {
3913 int regno;
3914
3915 regno = va_arg (args, int);
3916 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3917 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3918 }
3919 continue;
3920
3921 case '<':
3922 case '>':
3923 case '4':
3924 case '5':
3925 case 'H':
3926 case 'W':
3927 case 'D':
3928 case 'j':
3929 case '8':
3930 case 'V':
3931 case 'C':
3932 case 'U':
3933 case 'k':
3934 case 'K':
3935 case 'p':
3936 case 'q':
3937 {
3938 assert (ep != NULL);
3939
3940 if (ep->X_op != O_constant)
3941 *r = (int) BFD_RELOC_UNUSED + c;
3942 else
3943 {
3944 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3945 FALSE, &insn.insn_opcode, &insn.use_extend,
3946 &insn.extend);
3947 ep = NULL;
3948 *r = BFD_RELOC_UNUSED;
3949 }
3950 }
3951 continue;
3952
3953 case '6':
3954 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int));
3955 continue;
3956 }
3957
3958 break;
3959 }
3960
3961 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3962
3963 append_insn (&insn, ep, r);
3964 }
3965
3966 /*
3967 * Sign-extend 32-bit mode constants that have bit 31 set and all
3968 * higher bits unset.
3969 */
3970 static void
3971 normalize_constant_expr (expressionS *ex)
3972 {
3973 if (ex->X_op == O_constant
3974 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3975 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3976 - 0x80000000);
3977 }
3978
3979 /*
3980 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3981 * all higher bits unset.
3982 */
3983 static void
3984 normalize_address_expr (expressionS *ex)
3985 {
3986 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3987 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3988 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3989 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3990 - 0x80000000);
3991 }
3992
3993 /*
3994 * Generate a "jalr" instruction with a relocation hint to the called
3995 * function. This occurs in NewABI PIC code.
3996 */
3997 static void
3998 macro_build_jalr (expressionS *ep)
3999 {
4000 char *f = NULL;
4001
4002 if (HAVE_NEWABI)
4003 {
4004 frag_grow (8);
4005 f = frag_more (0);
4006 }
4007 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4008 if (HAVE_NEWABI)
4009 fix_new_exp (frag_now, f - frag_now->fr_literal,
4010 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4011 }
4012
4013 /*
4014 * Generate a "lui" instruction.
4015 */
4016 static void
4017 macro_build_lui (expressionS *ep, int regnum)
4018 {
4019 expressionS high_expr;
4020 const struct mips_opcode *mo;
4021 struct mips_cl_insn insn;
4022 bfd_reloc_code_real_type r[3]
4023 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4024 const char *name = "lui";
4025 const char *fmt = "t,u";
4026
4027 assert (! mips_opts.mips16);
4028
4029 high_expr = *ep;
4030
4031 if (high_expr.X_op == O_constant)
4032 {
4033 /* We can compute the instruction now without a relocation entry. */
4034 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4035 >> 16) & 0xffff;
4036 *r = BFD_RELOC_UNUSED;
4037 }
4038 else
4039 {
4040 assert (ep->X_op == O_symbol);
4041 /* _gp_disp is a special case, used from s_cpload.
4042 __gnu_local_gp is used if mips_no_shared. */
4043 assert (mips_pic == NO_PIC
4044 || (! HAVE_NEWABI
4045 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4046 || (! mips_in_shared
4047 && strcmp (S_GET_NAME (ep->X_add_symbol),
4048 "__gnu_local_gp") == 0));
4049 *r = BFD_RELOC_HI16_S;
4050 }
4051
4052 mo = hash_find (op_hash, name);
4053 assert (strcmp (name, mo->name) == 0);
4054 assert (strcmp (fmt, mo->args) == 0);
4055 create_insn (&insn, mo);
4056
4057 insn.insn_opcode = insn.insn_mo->match;
4058 INSERT_OPERAND (RT, insn, regnum);
4059 if (*r == BFD_RELOC_UNUSED)
4060 {
4061 insn.insn_opcode |= high_expr.X_add_number;
4062 append_insn (&insn, NULL, r);
4063 }
4064 else
4065 append_insn (&insn, &high_expr, r);
4066 }
4067
4068 /* Generate a sequence of instructions to do a load or store from a constant
4069 offset off of a base register (breg) into/from a target register (treg),
4070 using AT if necessary. */
4071 static void
4072 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4073 int treg, int breg, int dbl)
4074 {
4075 assert (ep->X_op == O_constant);
4076
4077 /* Sign-extending 32-bit constants makes their handling easier. */
4078 if (!dbl)
4079 normalize_constant_expr (ep);
4080
4081 /* Right now, this routine can only handle signed 32-bit constants. */
4082 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4083 as_warn (_("operand overflow"));
4084
4085 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4086 {
4087 /* Signed 16-bit offset will fit in the op. Easy! */
4088 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4089 }
4090 else
4091 {
4092 /* 32-bit offset, need multiple instructions and AT, like:
4093 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4094 addu $tempreg,$tempreg,$breg
4095 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4096 to handle the complete offset. */
4097 macro_build_lui (ep, AT);
4098 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4099 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4100
4101 if (!mips_opts.at)
4102 as_bad (_("Macro used $at after \".set noat\""));
4103 }
4104 }
4105
4106 /* set_at()
4107 * Generates code to set the $at register to true (one)
4108 * if reg is less than the immediate expression.
4109 */
4110 static void
4111 set_at (int reg, int unsignedp)
4112 {
4113 if (imm_expr.X_op == O_constant
4114 && imm_expr.X_add_number >= -0x8000
4115 && imm_expr.X_add_number < 0x8000)
4116 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4117 AT, reg, BFD_RELOC_LO16);
4118 else
4119 {
4120 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4121 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4122 }
4123 }
4124
4125 /* Warn if an expression is not a constant. */
4126
4127 static void
4128 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4129 {
4130 if (ex->X_op == O_big)
4131 as_bad (_("unsupported large constant"));
4132 else if (ex->X_op != O_constant)
4133 as_bad (_("Instruction %s requires absolute expression"),
4134 ip->insn_mo->name);
4135
4136 if (HAVE_32BIT_GPRS)
4137 normalize_constant_expr (ex);
4138 }
4139
4140 /* Count the leading zeroes by performing a binary chop. This is a
4141 bulky bit of source, but performance is a LOT better for the
4142 majority of values than a simple loop to count the bits:
4143 for (lcnt = 0; (lcnt < 32); lcnt++)
4144 if ((v) & (1 << (31 - lcnt)))
4145 break;
4146 However it is not code size friendly, and the gain will drop a bit
4147 on certain cached systems.
4148 */
4149 #define COUNT_TOP_ZEROES(v) \
4150 (((v) & ~0xffff) == 0 \
4151 ? ((v) & ~0xff) == 0 \
4152 ? ((v) & ~0xf) == 0 \
4153 ? ((v) & ~0x3) == 0 \
4154 ? ((v) & ~0x1) == 0 \
4155 ? !(v) \
4156 ? 32 \
4157 : 31 \
4158 : 30 \
4159 : ((v) & ~0x7) == 0 \
4160 ? 29 \
4161 : 28 \
4162 : ((v) & ~0x3f) == 0 \
4163 ? ((v) & ~0x1f) == 0 \
4164 ? 27 \
4165 : 26 \
4166 : ((v) & ~0x7f) == 0 \
4167 ? 25 \
4168 : 24 \
4169 : ((v) & ~0xfff) == 0 \
4170 ? ((v) & ~0x3ff) == 0 \
4171 ? ((v) & ~0x1ff) == 0 \
4172 ? 23 \
4173 : 22 \
4174 : ((v) & ~0x7ff) == 0 \
4175 ? 21 \
4176 : 20 \
4177 : ((v) & ~0x3fff) == 0 \
4178 ? ((v) & ~0x1fff) == 0 \
4179 ? 19 \
4180 : 18 \
4181 : ((v) & ~0x7fff) == 0 \
4182 ? 17 \
4183 : 16 \
4184 : ((v) & ~0xffffff) == 0 \
4185 ? ((v) & ~0xfffff) == 0 \
4186 ? ((v) & ~0x3ffff) == 0 \
4187 ? ((v) & ~0x1ffff) == 0 \
4188 ? 15 \
4189 : 14 \
4190 : ((v) & ~0x7ffff) == 0 \
4191 ? 13 \
4192 : 12 \
4193 : ((v) & ~0x3fffff) == 0 \
4194 ? ((v) & ~0x1fffff) == 0 \
4195 ? 11 \
4196 : 10 \
4197 : ((v) & ~0x7fffff) == 0 \
4198 ? 9 \
4199 : 8 \
4200 : ((v) & ~0xfffffff) == 0 \
4201 ? ((v) & ~0x3ffffff) == 0 \
4202 ? ((v) & ~0x1ffffff) == 0 \
4203 ? 7 \
4204 : 6 \
4205 : ((v) & ~0x7ffffff) == 0 \
4206 ? 5 \
4207 : 4 \
4208 : ((v) & ~0x3fffffff) == 0 \
4209 ? ((v) & ~0x1fffffff) == 0 \
4210 ? 3 \
4211 : 2 \
4212 : ((v) & ~0x7fffffff) == 0 \
4213 ? 1 \
4214 : 0)
4215
4216 /* load_register()
4217 * This routine generates the least number of instructions necessary to load
4218 * an absolute expression value into a register.
4219 */
4220 static void
4221 load_register (int reg, expressionS *ep, int dbl)
4222 {
4223 int freg;
4224 expressionS hi32, lo32;
4225
4226 if (ep->X_op != O_big)
4227 {
4228 assert (ep->X_op == O_constant);
4229
4230 /* Sign-extending 32-bit constants makes their handling easier. */
4231 if (!dbl)
4232 normalize_constant_expr (ep);
4233
4234 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4235 {
4236 /* We can handle 16 bit signed values with an addiu to
4237 $zero. No need to ever use daddiu here, since $zero and
4238 the result are always correct in 32 bit mode. */
4239 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4240 return;
4241 }
4242 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4243 {
4244 /* We can handle 16 bit unsigned values with an ori to
4245 $zero. */
4246 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4247 return;
4248 }
4249 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4250 {
4251 /* 32 bit values require an lui. */
4252 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4253 if ((ep->X_add_number & 0xffff) != 0)
4254 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4255 return;
4256 }
4257 }
4258
4259 /* The value is larger than 32 bits. */
4260
4261 if (!dbl || HAVE_32BIT_GPRS)
4262 {
4263 char value[32];
4264
4265 sprintf_vma (value, ep->X_add_number);
4266 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4267 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4268 return;
4269 }
4270
4271 if (ep->X_op != O_big)
4272 {
4273 hi32 = *ep;
4274 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4275 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4276 hi32.X_add_number &= 0xffffffff;
4277 lo32 = *ep;
4278 lo32.X_add_number &= 0xffffffff;
4279 }
4280 else
4281 {
4282 assert (ep->X_add_number > 2);
4283 if (ep->X_add_number == 3)
4284 generic_bignum[3] = 0;
4285 else if (ep->X_add_number > 4)
4286 as_bad (_("Number larger than 64 bits"));
4287 lo32.X_op = O_constant;
4288 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4289 hi32.X_op = O_constant;
4290 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4291 }
4292
4293 if (hi32.X_add_number == 0)
4294 freg = 0;
4295 else
4296 {
4297 int shift, bit;
4298 unsigned long hi, lo;
4299
4300 if (hi32.X_add_number == (offsetT) 0xffffffff)
4301 {
4302 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4303 {
4304 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4305 return;
4306 }
4307 if (lo32.X_add_number & 0x80000000)
4308 {
4309 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4310 if (lo32.X_add_number & 0xffff)
4311 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4312 return;
4313 }
4314 }
4315
4316 /* Check for 16bit shifted constant. We know that hi32 is
4317 non-zero, so start the mask on the first bit of the hi32
4318 value. */
4319 shift = 17;
4320 do
4321 {
4322 unsigned long himask, lomask;
4323
4324 if (shift < 32)
4325 {
4326 himask = 0xffff >> (32 - shift);
4327 lomask = (0xffff << shift) & 0xffffffff;
4328 }
4329 else
4330 {
4331 himask = 0xffff << (shift - 32);
4332 lomask = 0;
4333 }
4334 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4335 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4336 {
4337 expressionS tmp;
4338
4339 tmp.X_op = O_constant;
4340 if (shift < 32)
4341 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4342 | (lo32.X_add_number >> shift));
4343 else
4344 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4345 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4346 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4347 reg, reg, (shift >= 32) ? shift - 32 : shift);
4348 return;
4349 }
4350 ++shift;
4351 }
4352 while (shift <= (64 - 16));
4353
4354 /* Find the bit number of the lowest one bit, and store the
4355 shifted value in hi/lo. */
4356 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4357 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4358 if (lo != 0)
4359 {
4360 bit = 0;
4361 while ((lo & 1) == 0)
4362 {
4363 lo >>= 1;
4364 ++bit;
4365 }
4366 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4367 hi >>= bit;
4368 }
4369 else
4370 {
4371 bit = 32;
4372 while ((hi & 1) == 0)
4373 {
4374 hi >>= 1;
4375 ++bit;
4376 }
4377 lo = hi;
4378 hi = 0;
4379 }
4380
4381 /* Optimize if the shifted value is a (power of 2) - 1. */
4382 if ((hi == 0 && ((lo + 1) & lo) == 0)
4383 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4384 {
4385 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4386 if (shift != 0)
4387 {
4388 expressionS tmp;
4389
4390 /* This instruction will set the register to be all
4391 ones. */
4392 tmp.X_op = O_constant;
4393 tmp.X_add_number = (offsetT) -1;
4394 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4395 if (bit != 0)
4396 {
4397 bit += shift;
4398 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4399 reg, reg, (bit >= 32) ? bit - 32 : bit);
4400 }
4401 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4402 reg, reg, (shift >= 32) ? shift - 32 : shift);
4403 return;
4404 }
4405 }
4406
4407 /* Sign extend hi32 before calling load_register, because we can
4408 generally get better code when we load a sign extended value. */
4409 if ((hi32.X_add_number & 0x80000000) != 0)
4410 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4411 load_register (reg, &hi32, 0);
4412 freg = reg;
4413 }
4414 if ((lo32.X_add_number & 0xffff0000) == 0)
4415 {
4416 if (freg != 0)
4417 {
4418 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4419 freg = reg;
4420 }
4421 }
4422 else
4423 {
4424 expressionS mid16;
4425
4426 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4427 {
4428 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4429 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4430 return;
4431 }
4432
4433 if (freg != 0)
4434 {
4435 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4436 freg = reg;
4437 }
4438 mid16 = lo32;
4439 mid16.X_add_number >>= 16;
4440 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4441 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4442 freg = reg;
4443 }
4444 if ((lo32.X_add_number & 0xffff) != 0)
4445 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4446 }
4447
4448 static inline void
4449 load_delay_nop (void)
4450 {
4451 if (!gpr_interlocks)
4452 macro_build (NULL, "nop", "");
4453 }
4454
4455 /* Load an address into a register. */
4456
4457 static void
4458 load_address (int reg, expressionS *ep, int *used_at)
4459 {
4460 if (ep->X_op != O_constant
4461 && ep->X_op != O_symbol)
4462 {
4463 as_bad (_("expression too complex"));
4464 ep->X_op = O_constant;
4465 }
4466
4467 if (ep->X_op == O_constant)
4468 {
4469 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4470 return;
4471 }
4472
4473 if (mips_pic == NO_PIC)
4474 {
4475 /* If this is a reference to a GP relative symbol, we want
4476 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4477 Otherwise we want
4478 lui $reg,<sym> (BFD_RELOC_HI16_S)
4479 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4480 If we have an addend, we always use the latter form.
4481
4482 With 64bit address space and a usable $at we want
4483 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4484 lui $at,<sym> (BFD_RELOC_HI16_S)
4485 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4486 daddiu $at,<sym> (BFD_RELOC_LO16)
4487 dsll32 $reg,0
4488 daddu $reg,$reg,$at
4489
4490 If $at is already in use, we use a path which is suboptimal
4491 on superscalar processors.
4492 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4493 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4494 dsll $reg,16
4495 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4496 dsll $reg,16
4497 daddiu $reg,<sym> (BFD_RELOC_LO16)
4498
4499 For GP relative symbols in 64bit address space we can use
4500 the same sequence as in 32bit address space. */
4501 if (HAVE_64BIT_SYMBOLS)
4502 {
4503 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4504 && !nopic_need_relax (ep->X_add_symbol, 1))
4505 {
4506 relax_start (ep->X_add_symbol);
4507 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4508 mips_gp_register, BFD_RELOC_GPREL16);
4509 relax_switch ();
4510 }
4511
4512 if (*used_at == 0 && mips_opts.at)
4513 {
4514 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4515 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4516 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4517 BFD_RELOC_MIPS_HIGHER);
4518 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4519 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4520 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4521 *used_at = 1;
4522 }
4523 else
4524 {
4525 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4526 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4527 BFD_RELOC_MIPS_HIGHER);
4528 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4529 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4530 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4531 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4532 }
4533
4534 if (mips_relax.sequence)
4535 relax_end ();
4536 }
4537 else
4538 {
4539 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4540 && !nopic_need_relax (ep->X_add_symbol, 1))
4541 {
4542 relax_start (ep->X_add_symbol);
4543 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4544 mips_gp_register, BFD_RELOC_GPREL16);
4545 relax_switch ();
4546 }
4547 macro_build_lui (ep, reg);
4548 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4549 reg, reg, BFD_RELOC_LO16);
4550 if (mips_relax.sequence)
4551 relax_end ();
4552 }
4553 }
4554 else if (!mips_big_got)
4555 {
4556 expressionS ex;
4557
4558 /* If this is a reference to an external symbol, we want
4559 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4560 Otherwise we want
4561 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4562 nop
4563 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4564 If there is a constant, it must be added in after.
4565
4566 If we have NewABI, we want
4567 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4568 unless we're referencing a global symbol with a non-zero
4569 offset, in which case cst must be added separately. */
4570 if (HAVE_NEWABI)
4571 {
4572 if (ep->X_add_number)
4573 {
4574 ex.X_add_number = ep->X_add_number;
4575 ep->X_add_number = 0;
4576 relax_start (ep->X_add_symbol);
4577 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4578 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4579 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4580 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4581 ex.X_op = O_constant;
4582 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4583 reg, reg, BFD_RELOC_LO16);
4584 ep->X_add_number = ex.X_add_number;
4585 relax_switch ();
4586 }
4587 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4588 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4589 if (mips_relax.sequence)
4590 relax_end ();
4591 }
4592 else
4593 {
4594 ex.X_add_number = ep->X_add_number;
4595 ep->X_add_number = 0;
4596 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4597 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4598 load_delay_nop ();
4599 relax_start (ep->X_add_symbol);
4600 relax_switch ();
4601 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4602 BFD_RELOC_LO16);
4603 relax_end ();
4604
4605 if (ex.X_add_number != 0)
4606 {
4607 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4608 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4609 ex.X_op = O_constant;
4610 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4611 reg, reg, BFD_RELOC_LO16);
4612 }
4613 }
4614 }
4615 else if (mips_big_got)
4616 {
4617 expressionS ex;
4618
4619 /* This is the large GOT case. If this is a reference to an
4620 external symbol, we want
4621 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4622 addu $reg,$reg,$gp
4623 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4624
4625 Otherwise, for a reference to a local symbol in old ABI, we want
4626 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4627 nop
4628 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4629 If there is a constant, it must be added in after.
4630
4631 In the NewABI, for local symbols, with or without offsets, we want:
4632 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4633 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4634 */
4635 if (HAVE_NEWABI)
4636 {
4637 ex.X_add_number = ep->X_add_number;
4638 ep->X_add_number = 0;
4639 relax_start (ep->X_add_symbol);
4640 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4641 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4642 reg, reg, mips_gp_register);
4643 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4644 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4645 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4646 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4647 else if (ex.X_add_number)
4648 {
4649 ex.X_op = O_constant;
4650 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4651 BFD_RELOC_LO16);
4652 }
4653
4654 ep->X_add_number = ex.X_add_number;
4655 relax_switch ();
4656 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4657 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4658 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4659 BFD_RELOC_MIPS_GOT_OFST);
4660 relax_end ();
4661 }
4662 else
4663 {
4664 ex.X_add_number = ep->X_add_number;
4665 ep->X_add_number = 0;
4666 relax_start (ep->X_add_symbol);
4667 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4669 reg, reg, mips_gp_register);
4670 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4671 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4672 relax_switch ();
4673 if (reg_needs_delay (mips_gp_register))
4674 {
4675 /* We need a nop before loading from $gp. This special
4676 check is required because the lui which starts the main
4677 instruction stream does not refer to $gp, and so will not
4678 insert the nop which may be required. */
4679 macro_build (NULL, "nop", "");
4680 }
4681 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4682 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4683 load_delay_nop ();
4684 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4685 BFD_RELOC_LO16);
4686 relax_end ();
4687
4688 if (ex.X_add_number != 0)
4689 {
4690 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4691 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4692 ex.X_op = O_constant;
4693 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4694 BFD_RELOC_LO16);
4695 }
4696 }
4697 }
4698 else
4699 abort ();
4700
4701 if (!mips_opts.at && *used_at == 1)
4702 as_bad (_("Macro used $at after \".set noat\""));
4703 }
4704
4705 /* Move the contents of register SOURCE into register DEST. */
4706
4707 static void
4708 move_register (int dest, int source)
4709 {
4710 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4711 dest, source, 0);
4712 }
4713
4714 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4715 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4716 The two alternatives are:
4717
4718 Global symbol Local sybmol
4719 ------------- ------------
4720 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4721 ... ...
4722 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4723
4724 load_got_offset emits the first instruction and add_got_offset
4725 emits the second for a 16-bit offset or add_got_offset_hilo emits
4726 a sequence to add a 32-bit offset using a scratch register. */
4727
4728 static void
4729 load_got_offset (int dest, expressionS *local)
4730 {
4731 expressionS global;
4732
4733 global = *local;
4734 global.X_add_number = 0;
4735
4736 relax_start (local->X_add_symbol);
4737 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4738 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4739 relax_switch ();
4740 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4741 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4742 relax_end ();
4743 }
4744
4745 static void
4746 add_got_offset (int dest, expressionS *local)
4747 {
4748 expressionS global;
4749
4750 global.X_op = O_constant;
4751 global.X_op_symbol = NULL;
4752 global.X_add_symbol = NULL;
4753 global.X_add_number = local->X_add_number;
4754
4755 relax_start (local->X_add_symbol);
4756 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4757 dest, dest, BFD_RELOC_LO16);
4758 relax_switch ();
4759 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4760 relax_end ();
4761 }
4762
4763 static void
4764 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4765 {
4766 expressionS global;
4767 int hold_mips_optimize;
4768
4769 global.X_op = O_constant;
4770 global.X_op_symbol = NULL;
4771 global.X_add_symbol = NULL;
4772 global.X_add_number = local->X_add_number;
4773
4774 relax_start (local->X_add_symbol);
4775 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4776 relax_switch ();
4777 /* Set mips_optimize around the lui instruction to avoid
4778 inserting an unnecessary nop after the lw. */
4779 hold_mips_optimize = mips_optimize;
4780 mips_optimize = 2;
4781 macro_build_lui (&global, tmp);
4782 mips_optimize = hold_mips_optimize;
4783 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4784 relax_end ();
4785
4786 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4787 }
4788
4789 /*
4790 * Build macros
4791 * This routine implements the seemingly endless macro or synthesized
4792 * instructions and addressing modes in the mips assembly language. Many
4793 * of these macros are simple and are similar to each other. These could
4794 * probably be handled by some kind of table or grammar approach instead of
4795 * this verbose method. Others are not simple macros but are more like
4796 * optimizing code generation.
4797 * One interesting optimization is when several store macros appear
4798 * consecutively that would load AT with the upper half of the same address.
4799 * The ensuing load upper instructions are ommited. This implies some kind
4800 * of global optimization. We currently only optimize within a single macro.
4801 * For many of the load and store macros if the address is specified as a
4802 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4803 * first load register 'at' with zero and use it as the base register. The
4804 * mips assembler simply uses register $zero. Just one tiny optimization
4805 * we're missing.
4806 */
4807 static void
4808 macro (struct mips_cl_insn *ip)
4809 {
4810 unsigned int treg, sreg, dreg, breg;
4811 unsigned int tempreg;
4812 int mask;
4813 int used_at = 0;
4814 expressionS expr1;
4815 const char *s;
4816 const char *s2;
4817 const char *fmt;
4818 int likely = 0;
4819 int dbl = 0;
4820 int coproc = 0;
4821 int lr = 0;
4822 int imm = 0;
4823 int call = 0;
4824 int off;
4825 offsetT maxnum;
4826 bfd_reloc_code_real_type r;
4827 int hold_mips_optimize;
4828
4829 assert (! mips_opts.mips16);
4830
4831 treg = (ip->insn_opcode >> 16) & 0x1f;
4832 dreg = (ip->insn_opcode >> 11) & 0x1f;
4833 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4834 mask = ip->insn_mo->mask;
4835
4836 expr1.X_op = O_constant;
4837 expr1.X_op_symbol = NULL;
4838 expr1.X_add_symbol = NULL;
4839 expr1.X_add_number = 1;
4840
4841 switch (mask)
4842 {
4843 case M_DABS:
4844 dbl = 1;
4845 case M_ABS:
4846 /* bgez $a0,.+12
4847 move v0,$a0
4848 sub v0,$zero,$a0
4849 */
4850
4851 start_noreorder ();
4852
4853 expr1.X_add_number = 8;
4854 macro_build (&expr1, "bgez", "s,p", sreg);
4855 if (dreg == sreg)
4856 macro_build (NULL, "nop", "", 0);
4857 else
4858 move_register (dreg, sreg);
4859 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4860
4861 end_noreorder ();
4862 break;
4863
4864 case M_ADD_I:
4865 s = "addi";
4866 s2 = "add";
4867 goto do_addi;
4868 case M_ADDU_I:
4869 s = "addiu";
4870 s2 = "addu";
4871 goto do_addi;
4872 case M_DADD_I:
4873 dbl = 1;
4874 s = "daddi";
4875 s2 = "dadd";
4876 goto do_addi;
4877 case M_DADDU_I:
4878 dbl = 1;
4879 s = "daddiu";
4880 s2 = "daddu";
4881 do_addi:
4882 if (imm_expr.X_op == O_constant
4883 && imm_expr.X_add_number >= -0x8000
4884 && imm_expr.X_add_number < 0x8000)
4885 {
4886 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4887 break;
4888 }
4889 used_at = 1;
4890 load_register (AT, &imm_expr, dbl);
4891 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4892 break;
4893
4894 case M_AND_I:
4895 s = "andi";
4896 s2 = "and";
4897 goto do_bit;
4898 case M_OR_I:
4899 s = "ori";
4900 s2 = "or";
4901 goto do_bit;
4902 case M_NOR_I:
4903 s = "";
4904 s2 = "nor";
4905 goto do_bit;
4906 case M_XOR_I:
4907 s = "xori";
4908 s2 = "xor";
4909 do_bit:
4910 if (imm_expr.X_op == O_constant
4911 && imm_expr.X_add_number >= 0
4912 && imm_expr.X_add_number < 0x10000)
4913 {
4914 if (mask != M_NOR_I)
4915 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4916 else
4917 {
4918 macro_build (&imm_expr, "ori", "t,r,i",
4919 treg, sreg, BFD_RELOC_LO16);
4920 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4921 }
4922 break;
4923 }
4924
4925 used_at = 1;
4926 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4927 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4928 break;
4929
4930 case M_BALIGN:
4931 switch (imm_expr.X_add_number)
4932 {
4933 case 0:
4934 macro_build (NULL, "nop", "");
4935 break;
4936 case 2:
4937 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4938 break;
4939 default:
4940 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4941 (int)imm_expr.X_add_number);
4942 break;
4943 }
4944 break;
4945
4946 case M_BEQ_I:
4947 s = "beq";
4948 goto beq_i;
4949 case M_BEQL_I:
4950 s = "beql";
4951 likely = 1;
4952 goto beq_i;
4953 case M_BNE_I:
4954 s = "bne";
4955 goto beq_i;
4956 case M_BNEL_I:
4957 s = "bnel";
4958 likely = 1;
4959 beq_i:
4960 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4961 {
4962 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4963 break;
4964 }
4965 used_at = 1;
4966 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4967 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4968 break;
4969
4970 case M_BGEL:
4971 likely = 1;
4972 case M_BGE:
4973 if (treg == 0)
4974 {
4975 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4976 break;
4977 }
4978 if (sreg == 0)
4979 {
4980 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4981 break;
4982 }
4983 used_at = 1;
4984 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4985 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4986 break;
4987
4988 case M_BGTL_I:
4989 likely = 1;
4990 case M_BGT_I:
4991 /* check for > max integer */
4992 maxnum = 0x7fffffff;
4993 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4994 {
4995 maxnum <<= 16;
4996 maxnum |= 0xffff;
4997 maxnum <<= 16;
4998 maxnum |= 0xffff;
4999 }
5000 if (imm_expr.X_op == O_constant
5001 && imm_expr.X_add_number >= maxnum
5002 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5003 {
5004 do_false:
5005 /* result is always false */
5006 if (! likely)
5007 macro_build (NULL, "nop", "", 0);
5008 else
5009 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
5010 break;
5011 }
5012 if (imm_expr.X_op != O_constant)
5013 as_bad (_("Unsupported large constant"));
5014 ++imm_expr.X_add_number;
5015 /* FALLTHROUGH */
5016 case M_BGE_I:
5017 case M_BGEL_I:
5018 if (mask == M_BGEL_I)
5019 likely = 1;
5020 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5021 {
5022 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5023 break;
5024 }
5025 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5026 {
5027 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5028 break;
5029 }
5030 maxnum = 0x7fffffff;
5031 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5032 {
5033 maxnum <<= 16;
5034 maxnum |= 0xffff;
5035 maxnum <<= 16;
5036 maxnum |= 0xffff;
5037 }
5038 maxnum = - maxnum - 1;
5039 if (imm_expr.X_op == O_constant
5040 && imm_expr.X_add_number <= maxnum
5041 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5042 {
5043 do_true:
5044 /* result is always true */
5045 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5046 macro_build (&offset_expr, "b", "p");
5047 break;
5048 }
5049 used_at = 1;
5050 set_at (sreg, 0);
5051 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5052 break;
5053
5054 case M_BGEUL:
5055 likely = 1;
5056 case M_BGEU:
5057 if (treg == 0)
5058 goto do_true;
5059 if (sreg == 0)
5060 {
5061 macro_build (&offset_expr, likely ? "beql" : "beq",
5062 "s,t,p", 0, treg);
5063 break;
5064 }
5065 used_at = 1;
5066 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5067 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5068 break;
5069
5070 case M_BGTUL_I:
5071 likely = 1;
5072 case M_BGTU_I:
5073 if (sreg == 0
5074 || (HAVE_32BIT_GPRS
5075 && imm_expr.X_op == O_constant
5076 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5077 goto do_false;
5078 if (imm_expr.X_op != O_constant)
5079 as_bad (_("Unsupported large constant"));
5080 ++imm_expr.X_add_number;
5081 /* FALLTHROUGH */
5082 case M_BGEU_I:
5083 case M_BGEUL_I:
5084 if (mask == M_BGEUL_I)
5085 likely = 1;
5086 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5087 goto do_true;
5088 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5089 {
5090 macro_build (&offset_expr, likely ? "bnel" : "bne",
5091 "s,t,p", sreg, 0);
5092 break;
5093 }
5094 used_at = 1;
5095 set_at (sreg, 1);
5096 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5097 break;
5098
5099 case M_BGTL:
5100 likely = 1;
5101 case M_BGT:
5102 if (treg == 0)
5103 {
5104 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5105 break;
5106 }
5107 if (sreg == 0)
5108 {
5109 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5110 break;
5111 }
5112 used_at = 1;
5113 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5114 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5115 break;
5116
5117 case M_BGTUL:
5118 likely = 1;
5119 case M_BGTU:
5120 if (treg == 0)
5121 {
5122 macro_build (&offset_expr, likely ? "bnel" : "bne",
5123 "s,t,p", sreg, 0);
5124 break;
5125 }
5126 if (sreg == 0)
5127 goto do_false;
5128 used_at = 1;
5129 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5130 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5131 break;
5132
5133 case M_BLEL:
5134 likely = 1;
5135 case M_BLE:
5136 if (treg == 0)
5137 {
5138 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5139 break;
5140 }
5141 if (sreg == 0)
5142 {
5143 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5144 break;
5145 }
5146 used_at = 1;
5147 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5148 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5149 break;
5150
5151 case M_BLEL_I:
5152 likely = 1;
5153 case M_BLE_I:
5154 maxnum = 0x7fffffff;
5155 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5156 {
5157 maxnum <<= 16;
5158 maxnum |= 0xffff;
5159 maxnum <<= 16;
5160 maxnum |= 0xffff;
5161 }
5162 if (imm_expr.X_op == O_constant
5163 && imm_expr.X_add_number >= maxnum
5164 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5165 goto do_true;
5166 if (imm_expr.X_op != O_constant)
5167 as_bad (_("Unsupported large constant"));
5168 ++imm_expr.X_add_number;
5169 /* FALLTHROUGH */
5170 case M_BLT_I:
5171 case M_BLTL_I:
5172 if (mask == M_BLTL_I)
5173 likely = 1;
5174 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5175 {
5176 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5177 break;
5178 }
5179 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5180 {
5181 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5182 break;
5183 }
5184 used_at = 1;
5185 set_at (sreg, 0);
5186 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5187 break;
5188
5189 case M_BLEUL:
5190 likely = 1;
5191 case M_BLEU:
5192 if (treg == 0)
5193 {
5194 macro_build (&offset_expr, likely ? "beql" : "beq",
5195 "s,t,p", sreg, 0);
5196 break;
5197 }
5198 if (sreg == 0)
5199 goto do_true;
5200 used_at = 1;
5201 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5202 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5203 break;
5204
5205 case M_BLEUL_I:
5206 likely = 1;
5207 case M_BLEU_I:
5208 if (sreg == 0
5209 || (HAVE_32BIT_GPRS
5210 && imm_expr.X_op == O_constant
5211 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5212 goto do_true;
5213 if (imm_expr.X_op != O_constant)
5214 as_bad (_("Unsupported large constant"));
5215 ++imm_expr.X_add_number;
5216 /* FALLTHROUGH */
5217 case M_BLTU_I:
5218 case M_BLTUL_I:
5219 if (mask == M_BLTUL_I)
5220 likely = 1;
5221 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5222 goto do_false;
5223 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5224 {
5225 macro_build (&offset_expr, likely ? "beql" : "beq",
5226 "s,t,p", sreg, 0);
5227 break;
5228 }
5229 used_at = 1;
5230 set_at (sreg, 1);
5231 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5232 break;
5233
5234 case M_BLTL:
5235 likely = 1;
5236 case M_BLT:
5237 if (treg == 0)
5238 {
5239 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5240 break;
5241 }
5242 if (sreg == 0)
5243 {
5244 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5245 break;
5246 }
5247 used_at = 1;
5248 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5249 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5250 break;
5251
5252 case M_BLTUL:
5253 likely = 1;
5254 case M_BLTU:
5255 if (treg == 0)
5256 goto do_false;
5257 if (sreg == 0)
5258 {
5259 macro_build (&offset_expr, likely ? "bnel" : "bne",
5260 "s,t,p", 0, treg);
5261 break;
5262 }
5263 used_at = 1;
5264 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5265 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5266 break;
5267
5268 case M_DEXT:
5269 {
5270 unsigned long pos;
5271 unsigned long size;
5272
5273 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5274 {
5275 as_bad (_("Unsupported large constant"));
5276 pos = size = 1;
5277 }
5278 else
5279 {
5280 pos = (unsigned long) imm_expr.X_add_number;
5281 size = (unsigned long) imm2_expr.X_add_number;
5282 }
5283
5284 if (pos > 63)
5285 {
5286 as_bad (_("Improper position (%lu)"), pos);
5287 pos = 1;
5288 }
5289 if (size == 0 || size > 64
5290 || (pos + size - 1) > 63)
5291 {
5292 as_bad (_("Improper extract size (%lu, position %lu)"),
5293 size, pos);
5294 size = 1;
5295 }
5296
5297 if (size <= 32 && pos < 32)
5298 {
5299 s = "dext";
5300 fmt = "t,r,+A,+C";
5301 }
5302 else if (size <= 32)
5303 {
5304 s = "dextu";
5305 fmt = "t,r,+E,+H";
5306 }
5307 else
5308 {
5309 s = "dextm";
5310 fmt = "t,r,+A,+G";
5311 }
5312 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5313 }
5314 break;
5315
5316 case M_DINS:
5317 {
5318 unsigned long pos;
5319 unsigned long size;
5320
5321 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5322 {
5323 as_bad (_("Unsupported large constant"));
5324 pos = size = 1;
5325 }
5326 else
5327 {
5328 pos = (unsigned long) imm_expr.X_add_number;
5329 size = (unsigned long) imm2_expr.X_add_number;
5330 }
5331
5332 if (pos > 63)
5333 {
5334 as_bad (_("Improper position (%lu)"), pos);
5335 pos = 1;
5336 }
5337 if (size == 0 || size > 64
5338 || (pos + size - 1) > 63)
5339 {
5340 as_bad (_("Improper insert size (%lu, position %lu)"),
5341 size, pos);
5342 size = 1;
5343 }
5344
5345 if (pos < 32 && (pos + size - 1) < 32)
5346 {
5347 s = "dins";
5348 fmt = "t,r,+A,+B";
5349 }
5350 else if (pos >= 32)
5351 {
5352 s = "dinsu";
5353 fmt = "t,r,+E,+F";
5354 }
5355 else
5356 {
5357 s = "dinsm";
5358 fmt = "t,r,+A,+F";
5359 }
5360 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5361 (int) (pos + size - 1));
5362 }
5363 break;
5364
5365 case M_DDIV_3:
5366 dbl = 1;
5367 case M_DIV_3:
5368 s = "mflo";
5369 goto do_div3;
5370 case M_DREM_3:
5371 dbl = 1;
5372 case M_REM_3:
5373 s = "mfhi";
5374 do_div3:
5375 if (treg == 0)
5376 {
5377 as_warn (_("Divide by zero."));
5378 if (mips_trap)
5379 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5380 else
5381 macro_build (NULL, "break", "c", 7);
5382 break;
5383 }
5384
5385 start_noreorder ();
5386 if (mips_trap)
5387 {
5388 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5389 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5390 }
5391 else
5392 {
5393 expr1.X_add_number = 8;
5394 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5395 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5396 macro_build (NULL, "break", "c", 7);
5397 }
5398 expr1.X_add_number = -1;
5399 used_at = 1;
5400 load_register (AT, &expr1, dbl);
5401 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5402 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5403 if (dbl)
5404 {
5405 expr1.X_add_number = 1;
5406 load_register (AT, &expr1, dbl);
5407 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5408 }
5409 else
5410 {
5411 expr1.X_add_number = 0x80000000;
5412 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5413 }
5414 if (mips_trap)
5415 {
5416 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5417 /* We want to close the noreorder block as soon as possible, so
5418 that later insns are available for delay slot filling. */
5419 end_noreorder ();
5420 }
5421 else
5422 {
5423 expr1.X_add_number = 8;
5424 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5425 macro_build (NULL, "nop", "", 0);
5426
5427 /* We want to close the noreorder block as soon as possible, so
5428 that later insns are available for delay slot filling. */
5429 end_noreorder ();
5430
5431 macro_build (NULL, "break", "c", 6);
5432 }
5433 macro_build (NULL, s, "d", dreg);
5434 break;
5435
5436 case M_DIV_3I:
5437 s = "div";
5438 s2 = "mflo";
5439 goto do_divi;
5440 case M_DIVU_3I:
5441 s = "divu";
5442 s2 = "mflo";
5443 goto do_divi;
5444 case M_REM_3I:
5445 s = "div";
5446 s2 = "mfhi";
5447 goto do_divi;
5448 case M_REMU_3I:
5449 s = "divu";
5450 s2 = "mfhi";
5451 goto do_divi;
5452 case M_DDIV_3I:
5453 dbl = 1;
5454 s = "ddiv";
5455 s2 = "mflo";
5456 goto do_divi;
5457 case M_DDIVU_3I:
5458 dbl = 1;
5459 s = "ddivu";
5460 s2 = "mflo";
5461 goto do_divi;
5462 case M_DREM_3I:
5463 dbl = 1;
5464 s = "ddiv";
5465 s2 = "mfhi";
5466 goto do_divi;
5467 case M_DREMU_3I:
5468 dbl = 1;
5469 s = "ddivu";
5470 s2 = "mfhi";
5471 do_divi:
5472 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5473 {
5474 as_warn (_("Divide by zero."));
5475 if (mips_trap)
5476 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5477 else
5478 macro_build (NULL, "break", "c", 7);
5479 break;
5480 }
5481 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5482 {
5483 if (strcmp (s2, "mflo") == 0)
5484 move_register (dreg, sreg);
5485 else
5486 move_register (dreg, 0);
5487 break;
5488 }
5489 if (imm_expr.X_op == O_constant
5490 && imm_expr.X_add_number == -1
5491 && s[strlen (s) - 1] != 'u')
5492 {
5493 if (strcmp (s2, "mflo") == 0)
5494 {
5495 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5496 }
5497 else
5498 move_register (dreg, 0);
5499 break;
5500 }
5501
5502 used_at = 1;
5503 load_register (AT, &imm_expr, dbl);
5504 macro_build (NULL, s, "z,s,t", sreg, AT);
5505 macro_build (NULL, s2, "d", dreg);
5506 break;
5507
5508 case M_DIVU_3:
5509 s = "divu";
5510 s2 = "mflo";
5511 goto do_divu3;
5512 case M_REMU_3:
5513 s = "divu";
5514 s2 = "mfhi";
5515 goto do_divu3;
5516 case M_DDIVU_3:
5517 s = "ddivu";
5518 s2 = "mflo";
5519 goto do_divu3;
5520 case M_DREMU_3:
5521 s = "ddivu";
5522 s2 = "mfhi";
5523 do_divu3:
5524 start_noreorder ();
5525 if (mips_trap)
5526 {
5527 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5528 macro_build (NULL, s, "z,s,t", sreg, treg);
5529 /* We want to close the noreorder block as soon as possible, so
5530 that later insns are available for delay slot filling. */
5531 end_noreorder ();
5532 }
5533 else
5534 {
5535 expr1.X_add_number = 8;
5536 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5537 macro_build (NULL, s, "z,s,t", sreg, treg);
5538
5539 /* We want to close the noreorder block as soon as possible, so
5540 that later insns are available for delay slot filling. */
5541 end_noreorder ();
5542 macro_build (NULL, "break", "c", 7);
5543 }
5544 macro_build (NULL, s2, "d", dreg);
5545 break;
5546
5547 case M_DLCA_AB:
5548 dbl = 1;
5549 case M_LCA_AB:
5550 call = 1;
5551 goto do_la;
5552 case M_DLA_AB:
5553 dbl = 1;
5554 case M_LA_AB:
5555 do_la:
5556 /* Load the address of a symbol into a register. If breg is not
5557 zero, we then add a base register to it. */
5558
5559 if (dbl && HAVE_32BIT_GPRS)
5560 as_warn (_("dla used to load 32-bit register"));
5561
5562 if (! dbl && HAVE_64BIT_OBJECTS)
5563 as_warn (_("la used to load 64-bit address"));
5564
5565 if (offset_expr.X_op == O_constant
5566 && offset_expr.X_add_number >= -0x8000
5567 && offset_expr.X_add_number < 0x8000)
5568 {
5569 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5570 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5571 break;
5572 }
5573
5574 if (mips_opts.at && (treg == breg))
5575 {
5576 tempreg = AT;
5577 used_at = 1;
5578 }
5579 else
5580 {
5581 tempreg = treg;
5582 }
5583
5584 if (offset_expr.X_op != O_symbol
5585 && offset_expr.X_op != O_constant)
5586 {
5587 as_bad (_("expression too complex"));
5588 offset_expr.X_op = O_constant;
5589 }
5590
5591 if (offset_expr.X_op == O_constant)
5592 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5593 else if (mips_pic == NO_PIC)
5594 {
5595 /* If this is a reference to a GP relative symbol, we want
5596 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5597 Otherwise we want
5598 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5599 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5600 If we have a constant, we need two instructions anyhow,
5601 so we may as well always use the latter form.
5602
5603 With 64bit address space and a usable $at we want
5604 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5605 lui $at,<sym> (BFD_RELOC_HI16_S)
5606 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5607 daddiu $at,<sym> (BFD_RELOC_LO16)
5608 dsll32 $tempreg,0
5609 daddu $tempreg,$tempreg,$at
5610
5611 If $at is already in use, we use a path which is suboptimal
5612 on superscalar processors.
5613 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5614 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5615 dsll $tempreg,16
5616 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5617 dsll $tempreg,16
5618 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5619
5620 For GP relative symbols in 64bit address space we can use
5621 the same sequence as in 32bit address space. */
5622 if (HAVE_64BIT_SYMBOLS)
5623 {
5624 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5625 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5626 {
5627 relax_start (offset_expr.X_add_symbol);
5628 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5629 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5630 relax_switch ();
5631 }
5632
5633 if (used_at == 0 && mips_opts.at)
5634 {
5635 macro_build (&offset_expr, "lui", "t,u",
5636 tempreg, BFD_RELOC_MIPS_HIGHEST);
5637 macro_build (&offset_expr, "lui", "t,u",
5638 AT, BFD_RELOC_HI16_S);
5639 macro_build (&offset_expr, "daddiu", "t,r,j",
5640 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5641 macro_build (&offset_expr, "daddiu", "t,r,j",
5642 AT, AT, BFD_RELOC_LO16);
5643 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5644 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5645 used_at = 1;
5646 }
5647 else
5648 {
5649 macro_build (&offset_expr, "lui", "t,u",
5650 tempreg, BFD_RELOC_MIPS_HIGHEST);
5651 macro_build (&offset_expr, "daddiu", "t,r,j",
5652 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5653 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5654 macro_build (&offset_expr, "daddiu", "t,r,j",
5655 tempreg, tempreg, BFD_RELOC_HI16_S);
5656 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5657 macro_build (&offset_expr, "daddiu", "t,r,j",
5658 tempreg, tempreg, BFD_RELOC_LO16);
5659 }
5660
5661 if (mips_relax.sequence)
5662 relax_end ();
5663 }
5664 else
5665 {
5666 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5667 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5668 {
5669 relax_start (offset_expr.X_add_symbol);
5670 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5671 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5672 relax_switch ();
5673 }
5674 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5675 as_bad (_("offset too large"));
5676 macro_build_lui (&offset_expr, tempreg);
5677 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5678 tempreg, tempreg, BFD_RELOC_LO16);
5679 if (mips_relax.sequence)
5680 relax_end ();
5681 }
5682 }
5683 else if (!mips_big_got && !HAVE_NEWABI)
5684 {
5685 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5686
5687 /* If this is a reference to an external symbol, and there
5688 is no constant, we want
5689 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5690 or for lca or if tempreg is PIC_CALL_REG
5691 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5692 For a local symbol, we want
5693 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5694 nop
5695 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5696
5697 If we have a small constant, and this is a reference to
5698 an external symbol, we want
5699 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5700 nop
5701 addiu $tempreg,$tempreg,<constant>
5702 For a local symbol, we want the same instruction
5703 sequence, but we output a BFD_RELOC_LO16 reloc on the
5704 addiu instruction.
5705
5706 If we have a large constant, and this is a reference to
5707 an external symbol, we want
5708 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5709 lui $at,<hiconstant>
5710 addiu $at,$at,<loconstant>
5711 addu $tempreg,$tempreg,$at
5712 For a local symbol, we want the same instruction
5713 sequence, but we output a BFD_RELOC_LO16 reloc on the
5714 addiu instruction.
5715 */
5716
5717 if (offset_expr.X_add_number == 0)
5718 {
5719 if (mips_pic == SVR4_PIC
5720 && breg == 0
5721 && (call || tempreg == PIC_CALL_REG))
5722 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5723
5724 relax_start (offset_expr.X_add_symbol);
5725 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5726 lw_reloc_type, mips_gp_register);
5727 if (breg != 0)
5728 {
5729 /* We're going to put in an addu instruction using
5730 tempreg, so we may as well insert the nop right
5731 now. */
5732 load_delay_nop ();
5733 }
5734 relax_switch ();
5735 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5736 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5737 load_delay_nop ();
5738 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5739 tempreg, tempreg, BFD_RELOC_LO16);
5740 relax_end ();
5741 /* FIXME: If breg == 0, and the next instruction uses
5742 $tempreg, then if this variant case is used an extra
5743 nop will be generated. */
5744 }
5745 else if (offset_expr.X_add_number >= -0x8000
5746 && offset_expr.X_add_number < 0x8000)
5747 {
5748 load_got_offset (tempreg, &offset_expr);
5749 load_delay_nop ();
5750 add_got_offset (tempreg, &offset_expr);
5751 }
5752 else
5753 {
5754 expr1.X_add_number = offset_expr.X_add_number;
5755 offset_expr.X_add_number =
5756 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5757 load_got_offset (tempreg, &offset_expr);
5758 offset_expr.X_add_number = expr1.X_add_number;
5759 /* If we are going to add in a base register, and the
5760 target register and the base register are the same,
5761 then we are using AT as a temporary register. Since
5762 we want to load the constant into AT, we add our
5763 current AT (from the global offset table) and the
5764 register into the register now, and pretend we were
5765 not using a base register. */
5766 if (breg == treg)
5767 {
5768 load_delay_nop ();
5769 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5770 treg, AT, breg);
5771 breg = 0;
5772 tempreg = treg;
5773 }
5774 add_got_offset_hilo (tempreg, &offset_expr, AT);
5775 used_at = 1;
5776 }
5777 }
5778 else if (!mips_big_got && HAVE_NEWABI)
5779 {
5780 int add_breg_early = 0;
5781
5782 /* If this is a reference to an external, and there is no
5783 constant, or local symbol (*), with or without a
5784 constant, we want
5785 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5786 or for lca or if tempreg is PIC_CALL_REG
5787 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5788
5789 If we have a small constant, and this is a reference to
5790 an external symbol, we want
5791 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5792 addiu $tempreg,$tempreg,<constant>
5793
5794 If we have a large constant, and this is a reference to
5795 an external symbol, we want
5796 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5797 lui $at,<hiconstant>
5798 addiu $at,$at,<loconstant>
5799 addu $tempreg,$tempreg,$at
5800
5801 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5802 local symbols, even though it introduces an additional
5803 instruction. */
5804
5805 if (offset_expr.X_add_number)
5806 {
5807 expr1.X_add_number = offset_expr.X_add_number;
5808 offset_expr.X_add_number = 0;
5809
5810 relax_start (offset_expr.X_add_symbol);
5811 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5812 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5813
5814 if (expr1.X_add_number >= -0x8000
5815 && expr1.X_add_number < 0x8000)
5816 {
5817 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5818 tempreg, tempreg, BFD_RELOC_LO16);
5819 }
5820 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5821 {
5822 int dreg;
5823
5824 /* If we are going to add in a base register, and the
5825 target register and the base register are the same,
5826 then we are using AT as a temporary register. Since
5827 we want to load the constant into AT, we add our
5828 current AT (from the global offset table) and the
5829 register into the register now, and pretend we were
5830 not using a base register. */
5831 if (breg != treg)
5832 dreg = tempreg;
5833 else
5834 {
5835 assert (tempreg == AT);
5836 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5837 treg, AT, breg);
5838 dreg = treg;
5839 add_breg_early = 1;
5840 }
5841
5842 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5843 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5844 dreg, dreg, AT);
5845
5846 used_at = 1;
5847 }
5848 else
5849 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5850
5851 relax_switch ();
5852 offset_expr.X_add_number = expr1.X_add_number;
5853
5854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5855 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5856 if (add_breg_early)
5857 {
5858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5859 treg, tempreg, breg);
5860 breg = 0;
5861 tempreg = treg;
5862 }
5863 relax_end ();
5864 }
5865 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5866 {
5867 relax_start (offset_expr.X_add_symbol);
5868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5869 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5870 relax_switch ();
5871 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5872 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5873 relax_end ();
5874 }
5875 else
5876 {
5877 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5878 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5879 }
5880 }
5881 else if (mips_big_got && !HAVE_NEWABI)
5882 {
5883 int gpdelay;
5884 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5885 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5886 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5887
5888 /* This is the large GOT case. If this is a reference to an
5889 external symbol, and there is no constant, we want
5890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5891 addu $tempreg,$tempreg,$gp
5892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5893 or for lca or if tempreg is PIC_CALL_REG
5894 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5895 addu $tempreg,$tempreg,$gp
5896 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5897 For a local symbol, we want
5898 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5899 nop
5900 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5901
5902 If we have a small constant, and this is a reference to
5903 an external symbol, we want
5904 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5905 addu $tempreg,$tempreg,$gp
5906 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5907 nop
5908 addiu $tempreg,$tempreg,<constant>
5909 For a local symbol, we want
5910 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5911 nop
5912 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5913
5914 If we have a large constant, and this is a reference to
5915 an external symbol, we want
5916 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5917 addu $tempreg,$tempreg,$gp
5918 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5919 lui $at,<hiconstant>
5920 addiu $at,$at,<loconstant>
5921 addu $tempreg,$tempreg,$at
5922 For a local symbol, we want
5923 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5924 lui $at,<hiconstant>
5925 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5926 addu $tempreg,$tempreg,$at
5927 */
5928
5929 expr1.X_add_number = offset_expr.X_add_number;
5930 offset_expr.X_add_number = 0;
5931 relax_start (offset_expr.X_add_symbol);
5932 gpdelay = reg_needs_delay (mips_gp_register);
5933 if (expr1.X_add_number == 0 && breg == 0
5934 && (call || tempreg == PIC_CALL_REG))
5935 {
5936 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5937 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5938 }
5939 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5941 tempreg, tempreg, mips_gp_register);
5942 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5943 tempreg, lw_reloc_type, tempreg);
5944 if (expr1.X_add_number == 0)
5945 {
5946 if (breg != 0)
5947 {
5948 /* We're going to put in an addu instruction using
5949 tempreg, so we may as well insert the nop right
5950 now. */
5951 load_delay_nop ();
5952 }
5953 }
5954 else if (expr1.X_add_number >= -0x8000
5955 && expr1.X_add_number < 0x8000)
5956 {
5957 load_delay_nop ();
5958 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5959 tempreg, tempreg, BFD_RELOC_LO16);
5960 }
5961 else
5962 {
5963 int dreg;
5964
5965 /* If we are going to add in a base register, and the
5966 target register and the base register are the same,
5967 then we are using AT as a temporary register. Since
5968 we want to load the constant into AT, we add our
5969 current AT (from the global offset table) and the
5970 register into the register now, and pretend we were
5971 not using a base register. */
5972 if (breg != treg)
5973 dreg = tempreg;
5974 else
5975 {
5976 assert (tempreg == AT);
5977 load_delay_nop ();
5978 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5979 treg, AT, breg);
5980 dreg = treg;
5981 }
5982
5983 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5984 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5985
5986 used_at = 1;
5987 }
5988 offset_expr.X_add_number =
5989 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5990 relax_switch ();
5991
5992 if (gpdelay)
5993 {
5994 /* This is needed because this instruction uses $gp, but
5995 the first instruction on the main stream does not. */
5996 macro_build (NULL, "nop", "");
5997 }
5998
5999 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6000 local_reloc_type, mips_gp_register);
6001 if (expr1.X_add_number >= -0x8000
6002 && expr1.X_add_number < 0x8000)
6003 {
6004 load_delay_nop ();
6005 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6006 tempreg, tempreg, BFD_RELOC_LO16);
6007 /* FIXME: If add_number is 0, and there was no base
6008 register, the external symbol case ended with a load,
6009 so if the symbol turns out to not be external, and
6010 the next instruction uses tempreg, an unnecessary nop
6011 will be inserted. */
6012 }
6013 else
6014 {
6015 if (breg == treg)
6016 {
6017 /* We must add in the base register now, as in the
6018 external symbol case. */
6019 assert (tempreg == AT);
6020 load_delay_nop ();
6021 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6022 treg, AT, breg);
6023 tempreg = treg;
6024 /* We set breg to 0 because we have arranged to add
6025 it in in both cases. */
6026 breg = 0;
6027 }
6028
6029 macro_build_lui (&expr1, AT);
6030 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6031 AT, AT, BFD_RELOC_LO16);
6032 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6033 tempreg, tempreg, AT);
6034 used_at = 1;
6035 }
6036 relax_end ();
6037 }
6038 else if (mips_big_got && HAVE_NEWABI)
6039 {
6040 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6041 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6042 int add_breg_early = 0;
6043
6044 /* This is the large GOT case. If this is a reference to an
6045 external symbol, and there is no constant, we want
6046 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6047 add $tempreg,$tempreg,$gp
6048 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6049 or for lca or if tempreg is PIC_CALL_REG
6050 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6051 add $tempreg,$tempreg,$gp
6052 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6053
6054 If we have a small constant, and this is a reference to
6055 an external symbol, we want
6056 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6057 add $tempreg,$tempreg,$gp
6058 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6059 addi $tempreg,$tempreg,<constant>
6060
6061 If we have a large constant, and this is a reference to
6062 an external symbol, we want
6063 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6064 addu $tempreg,$tempreg,$gp
6065 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6066 lui $at,<hiconstant>
6067 addi $at,$at,<loconstant>
6068 add $tempreg,$tempreg,$at
6069
6070 If we have NewABI, and we know it's a local symbol, we want
6071 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6072 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6073 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6074
6075 relax_start (offset_expr.X_add_symbol);
6076
6077 expr1.X_add_number = offset_expr.X_add_number;
6078 offset_expr.X_add_number = 0;
6079
6080 if (expr1.X_add_number == 0 && breg == 0
6081 && (call || tempreg == PIC_CALL_REG))
6082 {
6083 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6084 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6085 }
6086 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6087 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6088 tempreg, tempreg, mips_gp_register);
6089 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6090 tempreg, lw_reloc_type, tempreg);
6091
6092 if (expr1.X_add_number == 0)
6093 ;
6094 else if (expr1.X_add_number >= -0x8000
6095 && expr1.X_add_number < 0x8000)
6096 {
6097 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6098 tempreg, tempreg, BFD_RELOC_LO16);
6099 }
6100 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6101 {
6102 int dreg;
6103
6104 /* If we are going to add in a base register, and the
6105 target register and the base register are the same,
6106 then we are using AT as a temporary register. Since
6107 we want to load the constant into AT, we add our
6108 current AT (from the global offset table) and the
6109 register into the register now, and pretend we were
6110 not using a base register. */
6111 if (breg != treg)
6112 dreg = tempreg;
6113 else
6114 {
6115 assert (tempreg == AT);
6116 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6117 treg, AT, breg);
6118 dreg = treg;
6119 add_breg_early = 1;
6120 }
6121
6122 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6123 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6124
6125 used_at = 1;
6126 }
6127 else
6128 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6129
6130 relax_switch ();
6131 offset_expr.X_add_number = expr1.X_add_number;
6132 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6133 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6134 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6135 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6136 if (add_breg_early)
6137 {
6138 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6139 treg, tempreg, breg);
6140 breg = 0;
6141 tempreg = treg;
6142 }
6143 relax_end ();
6144 }
6145 else
6146 abort ();
6147
6148 if (breg != 0)
6149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6150 break;
6151
6152 case M_MSGSND:
6153 {
6154 unsigned long temp = (treg << 16) | (0x01);
6155 macro_build (NULL, "c2", "C", temp);
6156 }
6157 /* AT is not used, just return */
6158 return;
6159
6160 case M_MSGLD:
6161 {
6162 unsigned long temp = (0x02);
6163 macro_build (NULL, "c2", "C", temp);
6164 }
6165 /* AT is not used, just return */
6166 return;
6167
6168 case M_MSGLD_T:
6169 {
6170 unsigned long temp = (treg << 16) | (0x02);
6171 macro_build (NULL, "c2", "C", temp);
6172 }
6173 /* AT is not used, just return */
6174 return;
6175
6176 case M_MSGWAIT:
6177 macro_build (NULL, "c2", "C", 3);
6178 /* AT is not used, just return */
6179 return;
6180
6181 case M_MSGWAIT_T:
6182 {
6183 unsigned long temp = (treg << 16) | 0x03;
6184 macro_build (NULL, "c2", "C", temp);
6185 }
6186 /* AT is not used, just return */
6187 return;
6188
6189 case M_J_A:
6190 /* The j instruction may not be used in PIC code, since it
6191 requires an absolute address. We convert it to a b
6192 instruction. */
6193 if (mips_pic == NO_PIC)
6194 macro_build (&offset_expr, "j", "a");
6195 else
6196 macro_build (&offset_expr, "b", "p");
6197 break;
6198
6199 /* The jal instructions must be handled as macros because when
6200 generating PIC code they expand to multi-instruction
6201 sequences. Normally they are simple instructions. */
6202 case M_JAL_1:
6203 dreg = RA;
6204 /* Fall through. */
6205 case M_JAL_2:
6206 if (mips_pic == NO_PIC)
6207 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6208 else
6209 {
6210 if (sreg != PIC_CALL_REG)
6211 as_warn (_("MIPS PIC call to register other than $25"));
6212
6213 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6214 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6215 {
6216 if (mips_cprestore_offset < 0)
6217 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6218 else
6219 {
6220 if (! mips_frame_reg_valid)
6221 {
6222 as_warn (_("No .frame pseudo-op used in PIC code"));
6223 /* Quiet this warning. */
6224 mips_frame_reg_valid = 1;
6225 }
6226 if (! mips_cprestore_valid)
6227 {
6228 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6229 /* Quiet this warning. */
6230 mips_cprestore_valid = 1;
6231 }
6232 expr1.X_add_number = mips_cprestore_offset;
6233 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6234 mips_gp_register,
6235 mips_frame_reg,
6236 HAVE_64BIT_ADDRESSES);
6237 }
6238 }
6239 }
6240
6241 break;
6242
6243 case M_JAL_A:
6244 if (mips_pic == NO_PIC)
6245 macro_build (&offset_expr, "jal", "a");
6246 else if (mips_pic == SVR4_PIC)
6247 {
6248 /* If this is a reference to an external symbol, and we are
6249 using a small GOT, we want
6250 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6251 nop
6252 jalr $ra,$25
6253 nop
6254 lw $gp,cprestore($sp)
6255 The cprestore value is set using the .cprestore
6256 pseudo-op. If we are using a big GOT, we want
6257 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6258 addu $25,$25,$gp
6259 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6260 nop
6261 jalr $ra,$25
6262 nop
6263 lw $gp,cprestore($sp)
6264 If the symbol is not external, we want
6265 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6266 nop
6267 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6268 jalr $ra,$25
6269 nop
6270 lw $gp,cprestore($sp)
6271
6272 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6273 sequences above, minus nops, unless the symbol is local,
6274 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6275 GOT_DISP. */
6276 if (HAVE_NEWABI)
6277 {
6278 if (! mips_big_got)
6279 {
6280 relax_start (offset_expr.X_add_symbol);
6281 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6282 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6283 mips_gp_register);
6284 relax_switch ();
6285 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6286 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6287 mips_gp_register);
6288 relax_end ();
6289 }
6290 else
6291 {
6292 relax_start (offset_expr.X_add_symbol);
6293 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6294 BFD_RELOC_MIPS_CALL_HI16);
6295 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6296 PIC_CALL_REG, mips_gp_register);
6297 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6298 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6299 PIC_CALL_REG);
6300 relax_switch ();
6301 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6302 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6303 mips_gp_register);
6304 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6305 PIC_CALL_REG, PIC_CALL_REG,
6306 BFD_RELOC_MIPS_GOT_OFST);
6307 relax_end ();
6308 }
6309
6310 macro_build_jalr (&offset_expr);
6311 }
6312 else
6313 {
6314 relax_start (offset_expr.X_add_symbol);
6315 if (! mips_big_got)
6316 {
6317 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6318 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6319 mips_gp_register);
6320 load_delay_nop ();
6321 relax_switch ();
6322 }
6323 else
6324 {
6325 int gpdelay;
6326
6327 gpdelay = reg_needs_delay (mips_gp_register);
6328 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6329 BFD_RELOC_MIPS_CALL_HI16);
6330 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6331 PIC_CALL_REG, mips_gp_register);
6332 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6333 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6334 PIC_CALL_REG);
6335 load_delay_nop ();
6336 relax_switch ();
6337 if (gpdelay)
6338 macro_build (NULL, "nop", "");
6339 }
6340 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6341 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6342 mips_gp_register);
6343 load_delay_nop ();
6344 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6345 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6346 relax_end ();
6347 macro_build_jalr (&offset_expr);
6348
6349 if (mips_cprestore_offset < 0)
6350 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6351 else
6352 {
6353 if (! mips_frame_reg_valid)
6354 {
6355 as_warn (_("No .frame pseudo-op used in PIC code"));
6356 /* Quiet this warning. */
6357 mips_frame_reg_valid = 1;
6358 }
6359 if (! mips_cprestore_valid)
6360 {
6361 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6362 /* Quiet this warning. */
6363 mips_cprestore_valid = 1;
6364 }
6365 if (mips_opts.noreorder)
6366 macro_build (NULL, "nop", "");
6367 expr1.X_add_number = mips_cprestore_offset;
6368 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6369 mips_gp_register,
6370 mips_frame_reg,
6371 HAVE_64BIT_ADDRESSES);
6372 }
6373 }
6374 }
6375 else if (mips_pic == VXWORKS_PIC)
6376 as_bad (_("Non-PIC jump used in PIC library"));
6377 else
6378 abort ();
6379
6380 break;
6381
6382 case M_LB_AB:
6383 s = "lb";
6384 goto ld;
6385 case M_LBU_AB:
6386 s = "lbu";
6387 goto ld;
6388 case M_LH_AB:
6389 s = "lh";
6390 goto ld;
6391 case M_LHU_AB:
6392 s = "lhu";
6393 goto ld;
6394 case M_LW_AB:
6395 s = "lw";
6396 goto ld;
6397 case M_LWC0_AB:
6398 s = "lwc0";
6399 /* Itbl support may require additional care here. */
6400 coproc = 1;
6401 goto ld;
6402 case M_LWC1_AB:
6403 s = "lwc1";
6404 /* Itbl support may require additional care here. */
6405 coproc = 1;
6406 goto ld;
6407 case M_LWC2_AB:
6408 s = "lwc2";
6409 /* Itbl support may require additional care here. */
6410 coproc = 1;
6411 goto ld;
6412 case M_LWC3_AB:
6413 s = "lwc3";
6414 /* Itbl support may require additional care here. */
6415 coproc = 1;
6416 goto ld;
6417 case M_LWL_AB:
6418 s = "lwl";
6419 lr = 1;
6420 goto ld;
6421 case M_LWR_AB:
6422 s = "lwr";
6423 lr = 1;
6424 goto ld;
6425 case M_LDC1_AB:
6426 s = "ldc1";
6427 /* Itbl support may require additional care here. */
6428 coproc = 1;
6429 goto ld;
6430 case M_LDC2_AB:
6431 s = "ldc2";
6432 /* Itbl support may require additional care here. */
6433 coproc = 1;
6434 goto ld;
6435 case M_LDC3_AB:
6436 s = "ldc3";
6437 /* Itbl support may require additional care here. */
6438 coproc = 1;
6439 goto ld;
6440 case M_LDL_AB:
6441 s = "ldl";
6442 lr = 1;
6443 goto ld;
6444 case M_LDR_AB:
6445 s = "ldr";
6446 lr = 1;
6447 goto ld;
6448 case M_LL_AB:
6449 s = "ll";
6450 goto ld;
6451 case M_LLD_AB:
6452 s = "lld";
6453 goto ld;
6454 case M_LWU_AB:
6455 s = "lwu";
6456 ld:
6457 if (breg == treg || coproc || lr)
6458 {
6459 tempreg = AT;
6460 used_at = 1;
6461 }
6462 else
6463 {
6464 tempreg = treg;
6465 }
6466 goto ld_st;
6467 case M_SB_AB:
6468 s = "sb";
6469 goto st;
6470 case M_SH_AB:
6471 s = "sh";
6472 goto st;
6473 case M_SW_AB:
6474 s = "sw";
6475 goto st;
6476 case M_SWC0_AB:
6477 s = "swc0";
6478 /* Itbl support may require additional care here. */
6479 coproc = 1;
6480 goto st;
6481 case M_SWC1_AB:
6482 s = "swc1";
6483 /* Itbl support may require additional care here. */
6484 coproc = 1;
6485 goto st;
6486 case M_SWC2_AB:
6487 s = "swc2";
6488 /* Itbl support may require additional care here. */
6489 coproc = 1;
6490 goto st;
6491 case M_SWC3_AB:
6492 s = "swc3";
6493 /* Itbl support may require additional care here. */
6494 coproc = 1;
6495 goto st;
6496 case M_SWL_AB:
6497 s = "swl";
6498 goto st;
6499 case M_SWR_AB:
6500 s = "swr";
6501 goto st;
6502 case M_SC_AB:
6503 s = "sc";
6504 goto st;
6505 case M_SCD_AB:
6506 s = "scd";
6507 goto st;
6508 case M_CACHE_AB:
6509 s = "cache";
6510 goto st;
6511 case M_SDC1_AB:
6512 s = "sdc1";
6513 coproc = 1;
6514 /* Itbl support may require additional care here. */
6515 goto st;
6516 case M_SDC2_AB:
6517 s = "sdc2";
6518 /* Itbl support may require additional care here. */
6519 coproc = 1;
6520 goto st;
6521 case M_SDC3_AB:
6522 s = "sdc3";
6523 /* Itbl support may require additional care here. */
6524 coproc = 1;
6525 goto st;
6526 case M_SDL_AB:
6527 s = "sdl";
6528 goto st;
6529 case M_SDR_AB:
6530 s = "sdr";
6531 st:
6532 tempreg = AT;
6533 used_at = 1;
6534 ld_st:
6535 if (coproc
6536 && NO_ISA_COP (mips_opts.arch)
6537 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6538 {
6539 as_bad (_("opcode not supported on this processor: %s"),
6540 mips_cpu_info_from_arch (mips_opts.arch)->name);
6541 break;
6542 }
6543
6544 /* Itbl support may require additional care here. */
6545 if (mask == M_LWC1_AB
6546 || mask == M_SWC1_AB
6547 || mask == M_LDC1_AB
6548 || mask == M_SDC1_AB
6549 || mask == M_L_DAB
6550 || mask == M_S_DAB)
6551 fmt = "T,o(b)";
6552 else if (mask == M_CACHE_AB)
6553 fmt = "k,o(b)";
6554 else if (coproc)
6555 fmt = "E,o(b)";
6556 else
6557 fmt = "t,o(b)";
6558
6559 if (offset_expr.X_op != O_constant
6560 && offset_expr.X_op != O_symbol)
6561 {
6562 as_bad (_("expression too complex"));
6563 offset_expr.X_op = O_constant;
6564 }
6565
6566 if (HAVE_32BIT_ADDRESSES
6567 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6568 {
6569 char value [32];
6570
6571 sprintf_vma (value, offset_expr.X_add_number);
6572 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6573 }
6574
6575 /* A constant expression in PIC code can be handled just as it
6576 is in non PIC code. */
6577 if (offset_expr.X_op == O_constant)
6578 {
6579 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6580 & ~(bfd_vma) 0xffff);
6581 normalize_address_expr (&expr1);
6582 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6583 if (breg != 0)
6584 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6585 tempreg, tempreg, breg);
6586 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6587 }
6588 else if (mips_pic == NO_PIC)
6589 {
6590 /* If this is a reference to a GP relative symbol, and there
6591 is no base register, we want
6592 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6593 Otherwise, if there is no base register, we want
6594 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6595 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6596 If we have a constant, we need two instructions anyhow,
6597 so we always use the latter form.
6598
6599 If we have a base register, and this is a reference to a
6600 GP relative symbol, we want
6601 addu $tempreg,$breg,$gp
6602 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6603 Otherwise we want
6604 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6605 addu $tempreg,$tempreg,$breg
6606 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6607 With a constant we always use the latter case.
6608
6609 With 64bit address space and no base register and $at usable,
6610 we want
6611 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6612 lui $at,<sym> (BFD_RELOC_HI16_S)
6613 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6614 dsll32 $tempreg,0
6615 daddu $tempreg,$at
6616 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6617 If we have a base register, we want
6618 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6619 lui $at,<sym> (BFD_RELOC_HI16_S)
6620 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6621 daddu $at,$breg
6622 dsll32 $tempreg,0
6623 daddu $tempreg,$at
6624 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6625
6626 Without $at we can't generate the optimal path for superscalar
6627 processors here since this would require two temporary registers.
6628 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6629 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6630 dsll $tempreg,16
6631 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6632 dsll $tempreg,16
6633 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6634 If we have a base register, we want
6635 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6636 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6637 dsll $tempreg,16
6638 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6639 dsll $tempreg,16
6640 daddu $tempreg,$tempreg,$breg
6641 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6642
6643 For GP relative symbols in 64bit address space we can use
6644 the same sequence as in 32bit address space. */
6645 if (HAVE_64BIT_SYMBOLS)
6646 {
6647 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6648 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6649 {
6650 relax_start (offset_expr.X_add_symbol);
6651 if (breg == 0)
6652 {
6653 macro_build (&offset_expr, s, fmt, treg,
6654 BFD_RELOC_GPREL16, mips_gp_register);
6655 }
6656 else
6657 {
6658 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6659 tempreg, breg, mips_gp_register);
6660 macro_build (&offset_expr, s, fmt, treg,
6661 BFD_RELOC_GPREL16, tempreg);
6662 }
6663 relax_switch ();
6664 }
6665
6666 if (used_at == 0 && mips_opts.at)
6667 {
6668 macro_build (&offset_expr, "lui", "t,u", tempreg,
6669 BFD_RELOC_MIPS_HIGHEST);
6670 macro_build (&offset_expr, "lui", "t,u", AT,
6671 BFD_RELOC_HI16_S);
6672 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6673 tempreg, BFD_RELOC_MIPS_HIGHER);
6674 if (breg != 0)
6675 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6676 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6677 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6678 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6679 tempreg);
6680 used_at = 1;
6681 }
6682 else
6683 {
6684 macro_build (&offset_expr, "lui", "t,u", tempreg,
6685 BFD_RELOC_MIPS_HIGHEST);
6686 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6687 tempreg, BFD_RELOC_MIPS_HIGHER);
6688 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6689 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6690 tempreg, BFD_RELOC_HI16_S);
6691 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6692 if (breg != 0)
6693 macro_build (NULL, "daddu", "d,v,t",
6694 tempreg, tempreg, breg);
6695 macro_build (&offset_expr, s, fmt, treg,
6696 BFD_RELOC_LO16, tempreg);
6697 }
6698
6699 if (mips_relax.sequence)
6700 relax_end ();
6701 break;
6702 }
6703
6704 if (breg == 0)
6705 {
6706 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6707 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6708 {
6709 relax_start (offset_expr.X_add_symbol);
6710 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6711 mips_gp_register);
6712 relax_switch ();
6713 }
6714 macro_build_lui (&offset_expr, tempreg);
6715 macro_build (&offset_expr, s, fmt, treg,
6716 BFD_RELOC_LO16, tempreg);
6717 if (mips_relax.sequence)
6718 relax_end ();
6719 }
6720 else
6721 {
6722 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6723 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6724 {
6725 relax_start (offset_expr.X_add_symbol);
6726 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6727 tempreg, breg, mips_gp_register);
6728 macro_build (&offset_expr, s, fmt, treg,
6729 BFD_RELOC_GPREL16, tempreg);
6730 relax_switch ();
6731 }
6732 macro_build_lui (&offset_expr, tempreg);
6733 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6734 tempreg, tempreg, breg);
6735 macro_build (&offset_expr, s, fmt, treg,
6736 BFD_RELOC_LO16, tempreg);
6737 if (mips_relax.sequence)
6738 relax_end ();
6739 }
6740 }
6741 else if (!mips_big_got)
6742 {
6743 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6744
6745 /* If this is a reference to an external symbol, we want
6746 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6747 nop
6748 <op> $treg,0($tempreg)
6749 Otherwise we want
6750 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6751 nop
6752 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6753 <op> $treg,0($tempreg)
6754
6755 For NewABI, we want
6756 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6757 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6758
6759 If there is a base register, we add it to $tempreg before
6760 the <op>. If there is a constant, we stick it in the
6761 <op> instruction. We don't handle constants larger than
6762 16 bits, because we have no way to load the upper 16 bits
6763 (actually, we could handle them for the subset of cases
6764 in which we are not using $at). */
6765 assert (offset_expr.X_op == O_symbol);
6766 if (HAVE_NEWABI)
6767 {
6768 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6769 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6770 if (breg != 0)
6771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6772 tempreg, tempreg, breg);
6773 macro_build (&offset_expr, s, fmt, treg,
6774 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6775 break;
6776 }
6777 expr1.X_add_number = offset_expr.X_add_number;
6778 offset_expr.X_add_number = 0;
6779 if (expr1.X_add_number < -0x8000
6780 || expr1.X_add_number >= 0x8000)
6781 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6782 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6783 lw_reloc_type, mips_gp_register);
6784 load_delay_nop ();
6785 relax_start (offset_expr.X_add_symbol);
6786 relax_switch ();
6787 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6788 tempreg, BFD_RELOC_LO16);
6789 relax_end ();
6790 if (breg != 0)
6791 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6792 tempreg, tempreg, breg);
6793 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6794 }
6795 else if (mips_big_got && !HAVE_NEWABI)
6796 {
6797 int gpdelay;
6798
6799 /* If this is a reference to an external symbol, we want
6800 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6801 addu $tempreg,$tempreg,$gp
6802 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6803 <op> $treg,0($tempreg)
6804 Otherwise we want
6805 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6806 nop
6807 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6808 <op> $treg,0($tempreg)
6809 If there is a base register, we add it to $tempreg before
6810 the <op>. If there is a constant, we stick it in the
6811 <op> instruction. We don't handle constants larger than
6812 16 bits, because we have no way to load the upper 16 bits
6813 (actually, we could handle them for the subset of cases
6814 in which we are not using $at). */
6815 assert (offset_expr.X_op == O_symbol);
6816 expr1.X_add_number = offset_expr.X_add_number;
6817 offset_expr.X_add_number = 0;
6818 if (expr1.X_add_number < -0x8000
6819 || expr1.X_add_number >= 0x8000)
6820 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6821 gpdelay = reg_needs_delay (mips_gp_register);
6822 relax_start (offset_expr.X_add_symbol);
6823 macro_build (&offset_expr, "lui", "t,u", tempreg,
6824 BFD_RELOC_MIPS_GOT_HI16);
6825 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6826 mips_gp_register);
6827 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6828 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6829 relax_switch ();
6830 if (gpdelay)
6831 macro_build (NULL, "nop", "");
6832 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6833 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6834 load_delay_nop ();
6835 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6836 tempreg, BFD_RELOC_LO16);
6837 relax_end ();
6838
6839 if (breg != 0)
6840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6841 tempreg, tempreg, breg);
6842 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6843 }
6844 else if (mips_big_got && HAVE_NEWABI)
6845 {
6846 /* If this is a reference to an external symbol, we want
6847 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6848 add $tempreg,$tempreg,$gp
6849 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6850 <op> $treg,<ofst>($tempreg)
6851 Otherwise, for local symbols, we want:
6852 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6853 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6854 assert (offset_expr.X_op == O_symbol);
6855 expr1.X_add_number = offset_expr.X_add_number;
6856 offset_expr.X_add_number = 0;
6857 if (expr1.X_add_number < -0x8000
6858 || expr1.X_add_number >= 0x8000)
6859 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6860 relax_start (offset_expr.X_add_symbol);
6861 macro_build (&offset_expr, "lui", "t,u", tempreg,
6862 BFD_RELOC_MIPS_GOT_HI16);
6863 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6864 mips_gp_register);
6865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6866 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6867 if (breg != 0)
6868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6869 tempreg, tempreg, breg);
6870 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6871
6872 relax_switch ();
6873 offset_expr.X_add_number = expr1.X_add_number;
6874 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6875 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6876 if (breg != 0)
6877 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6878 tempreg, tempreg, breg);
6879 macro_build (&offset_expr, s, fmt, treg,
6880 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6881 relax_end ();
6882 }
6883 else
6884 abort ();
6885
6886 break;
6887
6888 case M_LI:
6889 case M_LI_S:
6890 load_register (treg, &imm_expr, 0);
6891 break;
6892
6893 case M_DLI:
6894 load_register (treg, &imm_expr, 1);
6895 break;
6896
6897 case M_LI_SS:
6898 if (imm_expr.X_op == O_constant)
6899 {
6900 used_at = 1;
6901 load_register (AT, &imm_expr, 0);
6902 macro_build (NULL, "mtc1", "t,G", AT, treg);
6903 break;
6904 }
6905 else
6906 {
6907 assert (offset_expr.X_op == O_symbol
6908 && strcmp (segment_name (S_GET_SEGMENT
6909 (offset_expr.X_add_symbol)),
6910 ".lit4") == 0
6911 && offset_expr.X_add_number == 0);
6912 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6913 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6914 break;
6915 }
6916
6917 case M_LI_D:
6918 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6919 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6920 order 32 bits of the value and the low order 32 bits are either
6921 zero or in OFFSET_EXPR. */
6922 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6923 {
6924 if (HAVE_64BIT_GPRS)
6925 load_register (treg, &imm_expr, 1);
6926 else
6927 {
6928 int hreg, lreg;
6929
6930 if (target_big_endian)
6931 {
6932 hreg = treg;
6933 lreg = treg + 1;
6934 }
6935 else
6936 {
6937 hreg = treg + 1;
6938 lreg = treg;
6939 }
6940
6941 if (hreg <= 31)
6942 load_register (hreg, &imm_expr, 0);
6943 if (lreg <= 31)
6944 {
6945 if (offset_expr.X_op == O_absent)
6946 move_register (lreg, 0);
6947 else
6948 {
6949 assert (offset_expr.X_op == O_constant);
6950 load_register (lreg, &offset_expr, 0);
6951 }
6952 }
6953 }
6954 break;
6955 }
6956
6957 /* We know that sym is in the .rdata section. First we get the
6958 upper 16 bits of the address. */
6959 if (mips_pic == NO_PIC)
6960 {
6961 macro_build_lui (&offset_expr, AT);
6962 used_at = 1;
6963 }
6964 else
6965 {
6966 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6967 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6968 used_at = 1;
6969 }
6970
6971 /* Now we load the register(s). */
6972 if (HAVE_64BIT_GPRS)
6973 {
6974 used_at = 1;
6975 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6976 }
6977 else
6978 {
6979 used_at = 1;
6980 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6981 if (treg != RA)
6982 {
6983 /* FIXME: How in the world do we deal with the possible
6984 overflow here? */
6985 offset_expr.X_add_number += 4;
6986 macro_build (&offset_expr, "lw", "t,o(b)",
6987 treg + 1, BFD_RELOC_LO16, AT);
6988 }
6989 }
6990 break;
6991
6992 case M_LI_DD:
6993 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6994 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6995 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6996 the value and the low order 32 bits are either zero or in
6997 OFFSET_EXPR. */
6998 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6999 {
7000 used_at = 1;
7001 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7002 if (HAVE_64BIT_FPRS)
7003 {
7004 assert (HAVE_64BIT_GPRS);
7005 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7006 }
7007 else
7008 {
7009 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7010 if (offset_expr.X_op == O_absent)
7011 macro_build (NULL, "mtc1", "t,G", 0, treg);
7012 else
7013 {
7014 assert (offset_expr.X_op == O_constant);
7015 load_register (AT, &offset_expr, 0);
7016 macro_build (NULL, "mtc1", "t,G", AT, treg);
7017 }
7018 }
7019 break;
7020 }
7021
7022 assert (offset_expr.X_op == O_symbol
7023 && offset_expr.X_add_number == 0);
7024 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7025 if (strcmp (s, ".lit8") == 0)
7026 {
7027 if (mips_opts.isa != ISA_MIPS1)
7028 {
7029 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7030 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7031 break;
7032 }
7033 breg = mips_gp_register;
7034 r = BFD_RELOC_MIPS_LITERAL;
7035 goto dob;
7036 }
7037 else
7038 {
7039 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7040 used_at = 1;
7041 if (mips_pic != NO_PIC)
7042 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7043 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7044 else
7045 {
7046 /* FIXME: This won't work for a 64 bit address. */
7047 macro_build_lui (&offset_expr, AT);
7048 }
7049
7050 if (mips_opts.isa != ISA_MIPS1)
7051 {
7052 macro_build (&offset_expr, "ldc1", "T,o(b)",
7053 treg, BFD_RELOC_LO16, AT);
7054 break;
7055 }
7056 breg = AT;
7057 r = BFD_RELOC_LO16;
7058 goto dob;
7059 }
7060
7061 case M_L_DOB:
7062 /* Even on a big endian machine $fn comes before $fn+1. We have
7063 to adjust when loading from memory. */
7064 r = BFD_RELOC_LO16;
7065 dob:
7066 assert (mips_opts.isa == ISA_MIPS1);
7067 macro_build (&offset_expr, "lwc1", "T,o(b)",
7068 target_big_endian ? treg + 1 : treg, r, breg);
7069 /* FIXME: A possible overflow which I don't know how to deal
7070 with. */
7071 offset_expr.X_add_number += 4;
7072 macro_build (&offset_expr, "lwc1", "T,o(b)",
7073 target_big_endian ? treg : treg + 1, r, breg);
7074 break;
7075
7076 case M_L_DAB:
7077 /*
7078 * The MIPS assembler seems to check for X_add_number not
7079 * being double aligned and generating:
7080 * lui at,%hi(foo+1)
7081 * addu at,at,v1
7082 * addiu at,at,%lo(foo+1)
7083 * lwc1 f2,0(at)
7084 * lwc1 f3,4(at)
7085 * But, the resulting address is the same after relocation so why
7086 * generate the extra instruction?
7087 */
7088 /* Itbl support may require additional care here. */
7089 coproc = 1;
7090 if (mips_opts.isa != ISA_MIPS1)
7091 {
7092 s = "ldc1";
7093 goto ld;
7094 }
7095
7096 s = "lwc1";
7097 fmt = "T,o(b)";
7098 goto ldd_std;
7099
7100 case M_S_DAB:
7101 if (mips_opts.isa != ISA_MIPS1)
7102 {
7103 s = "sdc1";
7104 goto st;
7105 }
7106
7107 s = "swc1";
7108 fmt = "T,o(b)";
7109 /* Itbl support may require additional care here. */
7110 coproc = 1;
7111 goto ldd_std;
7112
7113 case M_LD_AB:
7114 if (HAVE_64BIT_GPRS)
7115 {
7116 s = "ld";
7117 goto ld;
7118 }
7119
7120 s = "lw";
7121 fmt = "t,o(b)";
7122 goto ldd_std;
7123
7124 case M_SD_AB:
7125 if (HAVE_64BIT_GPRS)
7126 {
7127 s = "sd";
7128 goto st;
7129 }
7130
7131 s = "sw";
7132 fmt = "t,o(b)";
7133
7134 ldd_std:
7135 if (offset_expr.X_op != O_symbol
7136 && offset_expr.X_op != O_constant)
7137 {
7138 as_bad (_("expression too complex"));
7139 offset_expr.X_op = O_constant;
7140 }
7141
7142 if (HAVE_32BIT_ADDRESSES
7143 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7144 {
7145 char value [32];
7146
7147 sprintf_vma (value, offset_expr.X_add_number);
7148 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7149 }
7150
7151 /* Even on a big endian machine $fn comes before $fn+1. We have
7152 to adjust when loading from memory. We set coproc if we must
7153 load $fn+1 first. */
7154 /* Itbl support may require additional care here. */
7155 if (! target_big_endian)
7156 coproc = 0;
7157
7158 if (mips_pic == NO_PIC
7159 || offset_expr.X_op == O_constant)
7160 {
7161 /* If this is a reference to a GP relative symbol, we want
7162 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7163 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7164 If we have a base register, we use this
7165 addu $at,$breg,$gp
7166 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7167 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7168 If this is not a GP relative symbol, we want
7169 lui $at,<sym> (BFD_RELOC_HI16_S)
7170 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7171 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7172 If there is a base register, we add it to $at after the
7173 lui instruction. If there is a constant, we always use
7174 the last case. */
7175 if (offset_expr.X_op == O_symbol
7176 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7177 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7178 {
7179 relax_start (offset_expr.X_add_symbol);
7180 if (breg == 0)
7181 {
7182 tempreg = mips_gp_register;
7183 }
7184 else
7185 {
7186 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7187 AT, breg, mips_gp_register);
7188 tempreg = AT;
7189 used_at = 1;
7190 }
7191
7192 /* Itbl support may require additional care here. */
7193 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7194 BFD_RELOC_GPREL16, tempreg);
7195 offset_expr.X_add_number += 4;
7196
7197 /* Set mips_optimize to 2 to avoid inserting an
7198 undesired nop. */
7199 hold_mips_optimize = mips_optimize;
7200 mips_optimize = 2;
7201 /* Itbl support may require additional care here. */
7202 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7203 BFD_RELOC_GPREL16, tempreg);
7204 mips_optimize = hold_mips_optimize;
7205
7206 relax_switch ();
7207
7208 /* We just generated two relocs. When tc_gen_reloc
7209 handles this case, it will skip the first reloc and
7210 handle the second. The second reloc already has an
7211 extra addend of 4, which we added above. We must
7212 subtract it out, and then subtract another 4 to make
7213 the first reloc come out right. The second reloc
7214 will come out right because we are going to add 4 to
7215 offset_expr when we build its instruction below.
7216
7217 If we have a symbol, then we don't want to include
7218 the offset, because it will wind up being included
7219 when we generate the reloc. */
7220
7221 if (offset_expr.X_op == O_constant)
7222 offset_expr.X_add_number -= 8;
7223 else
7224 {
7225 offset_expr.X_add_number = -4;
7226 offset_expr.X_op = O_constant;
7227 }
7228 }
7229 used_at = 1;
7230 macro_build_lui (&offset_expr, AT);
7231 if (breg != 0)
7232 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7233 /* Itbl support may require additional care here. */
7234 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7235 BFD_RELOC_LO16, AT);
7236 /* FIXME: How do we handle overflow here? */
7237 offset_expr.X_add_number += 4;
7238 /* Itbl support may require additional care here. */
7239 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7240 BFD_RELOC_LO16, AT);
7241 if (mips_relax.sequence)
7242 relax_end ();
7243 }
7244 else if (!mips_big_got)
7245 {
7246 /* If this is a reference to an external symbol, we want
7247 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7248 nop
7249 <op> $treg,0($at)
7250 <op> $treg+1,4($at)
7251 Otherwise we want
7252 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7253 nop
7254 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7255 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7256 If there is a base register we add it to $at before the
7257 lwc1 instructions. If there is a constant we include it
7258 in the lwc1 instructions. */
7259 used_at = 1;
7260 expr1.X_add_number = offset_expr.X_add_number;
7261 if (expr1.X_add_number < -0x8000
7262 || expr1.X_add_number >= 0x8000 - 4)
7263 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7264 load_got_offset (AT, &offset_expr);
7265 load_delay_nop ();
7266 if (breg != 0)
7267 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7268
7269 /* Set mips_optimize to 2 to avoid inserting an undesired
7270 nop. */
7271 hold_mips_optimize = mips_optimize;
7272 mips_optimize = 2;
7273
7274 /* Itbl support may require additional care here. */
7275 relax_start (offset_expr.X_add_symbol);
7276 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7277 BFD_RELOC_LO16, AT);
7278 expr1.X_add_number += 4;
7279 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7280 BFD_RELOC_LO16, AT);
7281 relax_switch ();
7282 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7283 BFD_RELOC_LO16, AT);
7284 offset_expr.X_add_number += 4;
7285 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7286 BFD_RELOC_LO16, AT);
7287 relax_end ();
7288
7289 mips_optimize = hold_mips_optimize;
7290 }
7291 else if (mips_big_got)
7292 {
7293 int gpdelay;
7294
7295 /* If this is a reference to an external symbol, we want
7296 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7297 addu $at,$at,$gp
7298 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7299 nop
7300 <op> $treg,0($at)
7301 <op> $treg+1,4($at)
7302 Otherwise we want
7303 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7304 nop
7305 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7306 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7307 If there is a base register we add it to $at before the
7308 lwc1 instructions. If there is a constant we include it
7309 in the lwc1 instructions. */
7310 used_at = 1;
7311 expr1.X_add_number = offset_expr.X_add_number;
7312 offset_expr.X_add_number = 0;
7313 if (expr1.X_add_number < -0x8000
7314 || expr1.X_add_number >= 0x8000 - 4)
7315 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7316 gpdelay = reg_needs_delay (mips_gp_register);
7317 relax_start (offset_expr.X_add_symbol);
7318 macro_build (&offset_expr, "lui", "t,u",
7319 AT, BFD_RELOC_MIPS_GOT_HI16);
7320 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7321 AT, AT, mips_gp_register);
7322 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7323 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7324 load_delay_nop ();
7325 if (breg != 0)
7326 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7327 /* Itbl support may require additional care here. */
7328 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7329 BFD_RELOC_LO16, AT);
7330 expr1.X_add_number += 4;
7331
7332 /* Set mips_optimize to 2 to avoid inserting an undesired
7333 nop. */
7334 hold_mips_optimize = mips_optimize;
7335 mips_optimize = 2;
7336 /* Itbl support may require additional care here. */
7337 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7338 BFD_RELOC_LO16, AT);
7339 mips_optimize = hold_mips_optimize;
7340 expr1.X_add_number -= 4;
7341
7342 relax_switch ();
7343 offset_expr.X_add_number = expr1.X_add_number;
7344 if (gpdelay)
7345 macro_build (NULL, "nop", "");
7346 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7347 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7348 load_delay_nop ();
7349 if (breg != 0)
7350 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7351 /* Itbl support may require additional care here. */
7352 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7353 BFD_RELOC_LO16, AT);
7354 offset_expr.X_add_number += 4;
7355
7356 /* Set mips_optimize to 2 to avoid inserting an undesired
7357 nop. */
7358 hold_mips_optimize = mips_optimize;
7359 mips_optimize = 2;
7360 /* Itbl support may require additional care here. */
7361 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7362 BFD_RELOC_LO16, AT);
7363 mips_optimize = hold_mips_optimize;
7364 relax_end ();
7365 }
7366 else
7367 abort ();
7368
7369 break;
7370
7371 case M_LD_OB:
7372 s = "lw";
7373 goto sd_ob;
7374 case M_SD_OB:
7375 s = "sw";
7376 sd_ob:
7377 assert (HAVE_32BIT_ADDRESSES);
7378 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7379 offset_expr.X_add_number += 4;
7380 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
7381 break;
7382
7383 /* New code added to support COPZ instructions.
7384 This code builds table entries out of the macros in mip_opcodes.
7385 R4000 uses interlocks to handle coproc delays.
7386 Other chips (like the R3000) require nops to be inserted for delays.
7387
7388 FIXME: Currently, we require that the user handle delays.
7389 In order to fill delay slots for non-interlocked chips,
7390 we must have a way to specify delays based on the coprocessor.
7391 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7392 What are the side-effects of the cop instruction?
7393 What cache support might we have and what are its effects?
7394 Both coprocessor & memory require delays. how long???
7395 What registers are read/set/modified?
7396
7397 If an itbl is provided to interpret cop instructions,
7398 this knowledge can be encoded in the itbl spec. */
7399
7400 case M_COP0:
7401 s = "c0";
7402 goto copz;
7403 case M_COP1:
7404 s = "c1";
7405 goto copz;
7406 case M_COP2:
7407 s = "c2";
7408 goto copz;
7409 case M_COP3:
7410 s = "c3";
7411 copz:
7412 if (NO_ISA_COP (mips_opts.arch)
7413 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7414 {
7415 as_bad (_("opcode not supported on this processor: %s"),
7416 mips_cpu_info_from_arch (mips_opts.arch)->name);
7417 break;
7418 }
7419
7420 /* For now we just do C (same as Cz). The parameter will be
7421 stored in insn_opcode by mips_ip. */
7422 macro_build (NULL, s, "C", ip->insn_opcode);
7423 break;
7424
7425 case M_MOVE:
7426 move_register (dreg, sreg);
7427 break;
7428
7429 #ifdef LOSING_COMPILER
7430 default:
7431 /* Try and see if this is a new itbl instruction.
7432 This code builds table entries out of the macros in mip_opcodes.
7433 FIXME: For now we just assemble the expression and pass it's
7434 value along as a 32-bit immediate.
7435 We may want to have the assembler assemble this value,
7436 so that we gain the assembler's knowledge of delay slots,
7437 symbols, etc.
7438 Would it be more efficient to use mask (id) here? */
7439 if (itbl_have_entries
7440 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7441 {
7442 s = ip->insn_mo->name;
7443 s2 = "cop3";
7444 coproc = ITBL_DECODE_PNUM (immed_expr);;
7445 macro_build (&immed_expr, s, "C");
7446 break;
7447 }
7448 macro2 (ip);
7449 break;
7450 }
7451 if (!mips_opts.at && used_at)
7452 as_bad (_("Macro used $at after \".set noat\""));
7453 }
7454
7455 static void
7456 macro2 (struct mips_cl_insn *ip)
7457 {
7458 unsigned int treg, sreg, dreg, breg;
7459 unsigned int tempreg;
7460 int mask;
7461 int used_at;
7462 expressionS expr1;
7463 const char *s;
7464 const char *s2;
7465 const char *fmt;
7466 int likely = 0;
7467 int dbl = 0;
7468 int coproc = 0;
7469 int lr = 0;
7470 int imm = 0;
7471 int off;
7472 offsetT maxnum;
7473 bfd_reloc_code_real_type r;
7474
7475 treg = (ip->insn_opcode >> 16) & 0x1f;
7476 dreg = (ip->insn_opcode >> 11) & 0x1f;
7477 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7478 mask = ip->insn_mo->mask;
7479
7480 expr1.X_op = O_constant;
7481 expr1.X_op_symbol = NULL;
7482 expr1.X_add_symbol = NULL;
7483 expr1.X_add_number = 1;
7484
7485 switch (mask)
7486 {
7487 #endif /* LOSING_COMPILER */
7488
7489 case M_DMUL:
7490 dbl = 1;
7491 case M_MUL:
7492 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7493 macro_build (NULL, "mflo", "d", dreg);
7494 break;
7495
7496 case M_DMUL_I:
7497 dbl = 1;
7498 case M_MUL_I:
7499 /* The MIPS assembler some times generates shifts and adds. I'm
7500 not trying to be that fancy. GCC should do this for us
7501 anyway. */
7502 used_at = 1;
7503 load_register (AT, &imm_expr, dbl);
7504 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7505 macro_build (NULL, "mflo", "d", dreg);
7506 break;
7507
7508 case M_DMULO_I:
7509 dbl = 1;
7510 case M_MULO_I:
7511 imm = 1;
7512 goto do_mulo;
7513
7514 case M_DMULO:
7515 dbl = 1;
7516 case M_MULO:
7517 do_mulo:
7518 start_noreorder ();
7519 used_at = 1;
7520 if (imm)
7521 load_register (AT, &imm_expr, dbl);
7522 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7523 macro_build (NULL, "mflo", "d", dreg);
7524 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7525 macro_build (NULL, "mfhi", "d", AT);
7526 if (mips_trap)
7527 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7528 else
7529 {
7530 expr1.X_add_number = 8;
7531 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7532 macro_build (NULL, "nop", "", 0);
7533 macro_build (NULL, "break", "c", 6);
7534 }
7535 end_noreorder ();
7536 macro_build (NULL, "mflo", "d", dreg);
7537 break;
7538
7539 case M_DMULOU_I:
7540 dbl = 1;
7541 case M_MULOU_I:
7542 imm = 1;
7543 goto do_mulou;
7544
7545 case M_DMULOU:
7546 dbl = 1;
7547 case M_MULOU:
7548 do_mulou:
7549 start_noreorder ();
7550 used_at = 1;
7551 if (imm)
7552 load_register (AT, &imm_expr, dbl);
7553 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7554 sreg, imm ? AT : treg);
7555 macro_build (NULL, "mfhi", "d", AT);
7556 macro_build (NULL, "mflo", "d", dreg);
7557 if (mips_trap)
7558 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7559 else
7560 {
7561 expr1.X_add_number = 8;
7562 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7563 macro_build (NULL, "nop", "", 0);
7564 macro_build (NULL, "break", "c", 6);
7565 }
7566 end_noreorder ();
7567 break;
7568
7569 case M_DROL:
7570 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7571 {
7572 if (dreg == sreg)
7573 {
7574 tempreg = AT;
7575 used_at = 1;
7576 }
7577 else
7578 {
7579 tempreg = dreg;
7580 }
7581 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7582 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7583 break;
7584 }
7585 used_at = 1;
7586 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7587 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7588 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7589 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7590 break;
7591
7592 case M_ROL:
7593 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7594 {
7595 if (dreg == sreg)
7596 {
7597 tempreg = AT;
7598 used_at = 1;
7599 }
7600 else
7601 {
7602 tempreg = dreg;
7603 }
7604 macro_build (NULL, "negu", "d,w", tempreg, treg);
7605 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7606 break;
7607 }
7608 used_at = 1;
7609 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7610 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7611 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7612 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7613 break;
7614
7615 case M_DROL_I:
7616 {
7617 unsigned int rot;
7618 char *l, *r;
7619
7620 if (imm_expr.X_op != O_constant)
7621 as_bad (_("Improper rotate count"));
7622 rot = imm_expr.X_add_number & 0x3f;
7623 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7624 {
7625 rot = (64 - rot) & 0x3f;
7626 if (rot >= 32)
7627 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7628 else
7629 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7630 break;
7631 }
7632 if (rot == 0)
7633 {
7634 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7635 break;
7636 }
7637 l = (rot < 0x20) ? "dsll" : "dsll32";
7638 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7639 rot &= 0x1f;
7640 used_at = 1;
7641 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7642 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7643 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7644 }
7645 break;
7646
7647 case M_ROL_I:
7648 {
7649 unsigned int rot;
7650
7651 if (imm_expr.X_op != O_constant)
7652 as_bad (_("Improper rotate count"));
7653 rot = imm_expr.X_add_number & 0x1f;
7654 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7655 {
7656 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7657 break;
7658 }
7659 if (rot == 0)
7660 {
7661 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7662 break;
7663 }
7664 used_at = 1;
7665 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7666 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7667 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7668 }
7669 break;
7670
7671 case M_DROR:
7672 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7673 {
7674 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7675 break;
7676 }
7677 used_at = 1;
7678 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7679 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7680 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7681 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7682 break;
7683
7684 case M_ROR:
7685 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7686 {
7687 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7688 break;
7689 }
7690 used_at = 1;
7691 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7692 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7693 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7694 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7695 break;
7696
7697 case M_DROR_I:
7698 {
7699 unsigned int rot;
7700 char *l, *r;
7701
7702 if (imm_expr.X_op != O_constant)
7703 as_bad (_("Improper rotate count"));
7704 rot = imm_expr.X_add_number & 0x3f;
7705 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7706 {
7707 if (rot >= 32)
7708 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7709 else
7710 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7711 break;
7712 }
7713 if (rot == 0)
7714 {
7715 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7716 break;
7717 }
7718 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7719 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7720 rot &= 0x1f;
7721 used_at = 1;
7722 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7723 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7724 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7725 }
7726 break;
7727
7728 case M_ROR_I:
7729 {
7730 unsigned int rot;
7731
7732 if (imm_expr.X_op != O_constant)
7733 as_bad (_("Improper rotate count"));
7734 rot = imm_expr.X_add_number & 0x1f;
7735 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7736 {
7737 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7738 break;
7739 }
7740 if (rot == 0)
7741 {
7742 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7743 break;
7744 }
7745 used_at = 1;
7746 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7747 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7748 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7749 }
7750 break;
7751
7752 case M_S_DOB:
7753 assert (mips_opts.isa == ISA_MIPS1);
7754 /* Even on a big endian machine $fn comes before $fn+1. We have
7755 to adjust when storing to memory. */
7756 macro_build (&offset_expr, "swc1", "T,o(b)",
7757 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7758 offset_expr.X_add_number += 4;
7759 macro_build (&offset_expr, "swc1", "T,o(b)",
7760 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7761 break;
7762
7763 case M_SEQ:
7764 if (sreg == 0)
7765 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7766 else if (treg == 0)
7767 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7768 else
7769 {
7770 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7771 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7772 }
7773 break;
7774
7775 case M_SEQ_I:
7776 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7777 {
7778 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7779 break;
7780 }
7781 if (sreg == 0)
7782 {
7783 as_warn (_("Instruction %s: result is always false"),
7784 ip->insn_mo->name);
7785 move_register (dreg, 0);
7786 break;
7787 }
7788 if (CPU_HAS_SEQ (mips_opts.arch)
7789 && -512 <= imm_expr.X_add_number
7790 && imm_expr.X_add_number < 512)
7791 {
7792 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7793 (int) imm_expr.X_add_number);
7794 break;
7795 }
7796 if (imm_expr.X_op == O_constant
7797 && imm_expr.X_add_number >= 0
7798 && imm_expr.X_add_number < 0x10000)
7799 {
7800 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7801 }
7802 else if (imm_expr.X_op == O_constant
7803 && imm_expr.X_add_number > -0x8000
7804 && imm_expr.X_add_number < 0)
7805 {
7806 imm_expr.X_add_number = -imm_expr.X_add_number;
7807 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7808 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7809 }
7810 else if (CPU_HAS_SEQ (mips_opts.arch))
7811 {
7812 used_at = 1;
7813 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7814 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7815 break;
7816 }
7817 else
7818 {
7819 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7820 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7821 used_at = 1;
7822 }
7823 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7824 break;
7825
7826 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7827 s = "slt";
7828 goto sge;
7829 case M_SGEU:
7830 s = "sltu";
7831 sge:
7832 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7833 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7834 break;
7835
7836 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7837 case M_SGEU_I:
7838 if (imm_expr.X_op == O_constant
7839 && imm_expr.X_add_number >= -0x8000
7840 && imm_expr.X_add_number < 0x8000)
7841 {
7842 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7843 dreg, sreg, BFD_RELOC_LO16);
7844 }
7845 else
7846 {
7847 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7848 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7849 dreg, sreg, AT);
7850 used_at = 1;
7851 }
7852 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7853 break;
7854
7855 case M_SGT: /* sreg > treg <==> treg < sreg */
7856 s = "slt";
7857 goto sgt;
7858 case M_SGTU:
7859 s = "sltu";
7860 sgt:
7861 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7862 break;
7863
7864 case M_SGT_I: /* sreg > I <==> I < sreg */
7865 s = "slt";
7866 goto sgti;
7867 case M_SGTU_I:
7868 s = "sltu";
7869 sgti:
7870 used_at = 1;
7871 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7872 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7873 break;
7874
7875 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7876 s = "slt";
7877 goto sle;
7878 case M_SLEU:
7879 s = "sltu";
7880 sle:
7881 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7882 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7883 break;
7884
7885 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7886 s = "slt";
7887 goto slei;
7888 case M_SLEU_I:
7889 s = "sltu";
7890 slei:
7891 used_at = 1;
7892 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7893 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7894 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7895 break;
7896
7897 case M_SLT_I:
7898 if (imm_expr.X_op == O_constant
7899 && imm_expr.X_add_number >= -0x8000
7900 && imm_expr.X_add_number < 0x8000)
7901 {
7902 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7903 break;
7904 }
7905 used_at = 1;
7906 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7907 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7908 break;
7909
7910 case M_SLTU_I:
7911 if (imm_expr.X_op == O_constant
7912 && imm_expr.X_add_number >= -0x8000
7913 && imm_expr.X_add_number < 0x8000)
7914 {
7915 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7916 BFD_RELOC_LO16);
7917 break;
7918 }
7919 used_at = 1;
7920 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7921 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7922 break;
7923
7924 case M_SNE:
7925 if (sreg == 0)
7926 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7927 else if (treg == 0)
7928 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7929 else
7930 {
7931 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7932 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7933 }
7934 break;
7935
7936 case M_SNE_I:
7937 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7938 {
7939 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7940 break;
7941 }
7942 if (sreg == 0)
7943 {
7944 as_warn (_("Instruction %s: result is always true"),
7945 ip->insn_mo->name);
7946 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7947 dreg, 0, BFD_RELOC_LO16);
7948 break;
7949 }
7950 if (CPU_HAS_SEQ (mips_opts.arch)
7951 && -512 <= imm_expr.X_add_number
7952 && imm_expr.X_add_number < 512)
7953 {
7954 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7955 (int) imm_expr.X_add_number);
7956 break;
7957 }
7958 if (imm_expr.X_op == O_constant
7959 && imm_expr.X_add_number >= 0
7960 && imm_expr.X_add_number < 0x10000)
7961 {
7962 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7963 }
7964 else if (imm_expr.X_op == O_constant
7965 && imm_expr.X_add_number > -0x8000
7966 && imm_expr.X_add_number < 0)
7967 {
7968 imm_expr.X_add_number = -imm_expr.X_add_number;
7969 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7970 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7971 }
7972 else if (CPU_HAS_SEQ (mips_opts.arch))
7973 {
7974 used_at = 1;
7975 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7976 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7977 break;
7978 }
7979 else
7980 {
7981 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7982 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7983 used_at = 1;
7984 }
7985 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7986 break;
7987
7988 case M_DSUB_I:
7989 dbl = 1;
7990 case M_SUB_I:
7991 if (imm_expr.X_op == O_constant
7992 && imm_expr.X_add_number > -0x8000
7993 && imm_expr.X_add_number <= 0x8000)
7994 {
7995 imm_expr.X_add_number = -imm_expr.X_add_number;
7996 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7997 dreg, sreg, BFD_RELOC_LO16);
7998 break;
7999 }
8000 used_at = 1;
8001 load_register (AT, &imm_expr, dbl);
8002 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
8003 break;
8004
8005 case M_DSUBU_I:
8006 dbl = 1;
8007 case M_SUBU_I:
8008 if (imm_expr.X_op == O_constant
8009 && imm_expr.X_add_number > -0x8000
8010 && imm_expr.X_add_number <= 0x8000)
8011 {
8012 imm_expr.X_add_number = -imm_expr.X_add_number;
8013 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
8014 dreg, sreg, BFD_RELOC_LO16);
8015 break;
8016 }
8017 used_at = 1;
8018 load_register (AT, &imm_expr, dbl);
8019 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
8020 break;
8021
8022 case M_TEQ_I:
8023 s = "teq";
8024 goto trap;
8025 case M_TGE_I:
8026 s = "tge";
8027 goto trap;
8028 case M_TGEU_I:
8029 s = "tgeu";
8030 goto trap;
8031 case M_TLT_I:
8032 s = "tlt";
8033 goto trap;
8034 case M_TLTU_I:
8035 s = "tltu";
8036 goto trap;
8037 case M_TNE_I:
8038 s = "tne";
8039 trap:
8040 used_at = 1;
8041 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8042 macro_build (NULL, s, "s,t", sreg, AT);
8043 break;
8044
8045 case M_TRUNCWS:
8046 case M_TRUNCWD:
8047 assert (mips_opts.isa == ISA_MIPS1);
8048 used_at = 1;
8049 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
8050 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
8051
8052 /*
8053 * Is the double cfc1 instruction a bug in the mips assembler;
8054 * or is there a reason for it?
8055 */
8056 start_noreorder ();
8057 macro_build (NULL, "cfc1", "t,G", treg, RA);
8058 macro_build (NULL, "cfc1", "t,G", treg, RA);
8059 macro_build (NULL, "nop", "");
8060 expr1.X_add_number = 3;
8061 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8062 expr1.X_add_number = 2;
8063 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8064 macro_build (NULL, "ctc1", "t,G", AT, RA);
8065 macro_build (NULL, "nop", "");
8066 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8067 dreg, sreg);
8068 macro_build (NULL, "ctc1", "t,G", treg, RA);
8069 macro_build (NULL, "nop", "");
8070 end_noreorder ();
8071 break;
8072
8073 case M_ULH:
8074 s = "lb";
8075 goto ulh;
8076 case M_ULHU:
8077 s = "lbu";
8078 ulh:
8079 used_at = 1;
8080 if (offset_expr.X_add_number >= 0x7fff)
8081 as_bad (_("operand overflow"));
8082 if (! target_big_endian)
8083 ++offset_expr.X_add_number;
8084 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8085 if (! target_big_endian)
8086 --offset_expr.X_add_number;
8087 else
8088 ++offset_expr.X_add_number;
8089 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8090 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8091 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8092 break;
8093
8094 case M_ULD:
8095 s = "ldl";
8096 s2 = "ldr";
8097 off = 7;
8098 goto ulw;
8099 case M_ULW:
8100 s = "lwl";
8101 s2 = "lwr";
8102 off = 3;
8103 ulw:
8104 if (offset_expr.X_add_number >= 0x8000 - off)
8105 as_bad (_("operand overflow"));
8106 if (treg != breg)
8107 tempreg = treg;
8108 else
8109 {
8110 used_at = 1;
8111 tempreg = AT;
8112 }
8113 if (! target_big_endian)
8114 offset_expr.X_add_number += off;
8115 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8116 if (! target_big_endian)
8117 offset_expr.X_add_number -= off;
8118 else
8119 offset_expr.X_add_number += off;
8120 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8121
8122 /* If necessary, move the result in tempreg the final destination. */
8123 if (treg == tempreg)
8124 break;
8125 /* Protect second load's delay slot. */
8126 load_delay_nop ();
8127 move_register (treg, tempreg);
8128 break;
8129
8130 case M_ULD_A:
8131 s = "ldl";
8132 s2 = "ldr";
8133 off = 7;
8134 goto ulwa;
8135 case M_ULW_A:
8136 s = "lwl";
8137 s2 = "lwr";
8138 off = 3;
8139 ulwa:
8140 used_at = 1;
8141 load_address (AT, &offset_expr, &used_at);
8142 if (breg != 0)
8143 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8144 if (! target_big_endian)
8145 expr1.X_add_number = off;
8146 else
8147 expr1.X_add_number = 0;
8148 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8149 if (! target_big_endian)
8150 expr1.X_add_number = 0;
8151 else
8152 expr1.X_add_number = off;
8153 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8154 break;
8155
8156 case M_ULH_A:
8157 case M_ULHU_A:
8158 used_at = 1;
8159 load_address (AT, &offset_expr, &used_at);
8160 if (breg != 0)
8161 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8162 if (target_big_endian)
8163 expr1.X_add_number = 0;
8164 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8165 treg, BFD_RELOC_LO16, AT);
8166 if (target_big_endian)
8167 expr1.X_add_number = 1;
8168 else
8169 expr1.X_add_number = 0;
8170 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8171 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8172 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8173 break;
8174
8175 case M_USH:
8176 used_at = 1;
8177 if (offset_expr.X_add_number >= 0x7fff)
8178 as_bad (_("operand overflow"));
8179 if (target_big_endian)
8180 ++offset_expr.X_add_number;
8181 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8182 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8183 if (target_big_endian)
8184 --offset_expr.X_add_number;
8185 else
8186 ++offset_expr.X_add_number;
8187 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8188 break;
8189
8190 case M_USD:
8191 s = "sdl";
8192 s2 = "sdr";
8193 off = 7;
8194 goto usw;
8195 case M_USW:
8196 s = "swl";
8197 s2 = "swr";
8198 off = 3;
8199 usw:
8200 if (offset_expr.X_add_number >= 0x8000 - off)
8201 as_bad (_("operand overflow"));
8202 if (! target_big_endian)
8203 offset_expr.X_add_number += off;
8204 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8205 if (! target_big_endian)
8206 offset_expr.X_add_number -= off;
8207 else
8208 offset_expr.X_add_number += off;
8209 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8210 break;
8211
8212 case M_USD_A:
8213 s = "sdl";
8214 s2 = "sdr";
8215 off = 7;
8216 goto uswa;
8217 case M_USW_A:
8218 s = "swl";
8219 s2 = "swr";
8220 off = 3;
8221 uswa:
8222 used_at = 1;
8223 load_address (AT, &offset_expr, &used_at);
8224 if (breg != 0)
8225 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8226 if (! target_big_endian)
8227 expr1.X_add_number = off;
8228 else
8229 expr1.X_add_number = 0;
8230 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8231 if (! target_big_endian)
8232 expr1.X_add_number = 0;
8233 else
8234 expr1.X_add_number = off;
8235 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8236 break;
8237
8238 case M_USH_A:
8239 used_at = 1;
8240 load_address (AT, &offset_expr, &used_at);
8241 if (breg != 0)
8242 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8243 if (! target_big_endian)
8244 expr1.X_add_number = 0;
8245 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8246 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8247 if (! target_big_endian)
8248 expr1.X_add_number = 1;
8249 else
8250 expr1.X_add_number = 0;
8251 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8252 if (! target_big_endian)
8253 expr1.X_add_number = 0;
8254 else
8255 expr1.X_add_number = 1;
8256 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8257 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8258 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8259 break;
8260
8261 default:
8262 /* FIXME: Check if this is one of the itbl macros, since they
8263 are added dynamically. */
8264 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8265 break;
8266 }
8267 if (!mips_opts.at && used_at)
8268 as_bad (_("Macro used $at after \".set noat\""));
8269 }
8270
8271 /* Implement macros in mips16 mode. */
8272
8273 static void
8274 mips16_macro (struct mips_cl_insn *ip)
8275 {
8276 int mask;
8277 int xreg, yreg, zreg, tmp;
8278 expressionS expr1;
8279 int dbl;
8280 const char *s, *s2, *s3;
8281
8282 mask = ip->insn_mo->mask;
8283
8284 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8285 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8286 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8287
8288 expr1.X_op = O_constant;
8289 expr1.X_op_symbol = NULL;
8290 expr1.X_add_symbol = NULL;
8291 expr1.X_add_number = 1;
8292
8293 dbl = 0;
8294
8295 switch (mask)
8296 {
8297 default:
8298 internalError ();
8299
8300 case M_DDIV_3:
8301 dbl = 1;
8302 case M_DIV_3:
8303 s = "mflo";
8304 goto do_div3;
8305 case M_DREM_3:
8306 dbl = 1;
8307 case M_REM_3:
8308 s = "mfhi";
8309 do_div3:
8310 start_noreorder ();
8311 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8312 expr1.X_add_number = 2;
8313 macro_build (&expr1, "bnez", "x,p", yreg);
8314 macro_build (NULL, "break", "6", 7);
8315
8316 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8317 since that causes an overflow. We should do that as well,
8318 but I don't see how to do the comparisons without a temporary
8319 register. */
8320 end_noreorder ();
8321 macro_build (NULL, s, "x", zreg);
8322 break;
8323
8324 case M_DIVU_3:
8325 s = "divu";
8326 s2 = "mflo";
8327 goto do_divu3;
8328 case M_REMU_3:
8329 s = "divu";
8330 s2 = "mfhi";
8331 goto do_divu3;
8332 case M_DDIVU_3:
8333 s = "ddivu";
8334 s2 = "mflo";
8335 goto do_divu3;
8336 case M_DREMU_3:
8337 s = "ddivu";
8338 s2 = "mfhi";
8339 do_divu3:
8340 start_noreorder ();
8341 macro_build (NULL, s, "0,x,y", xreg, yreg);
8342 expr1.X_add_number = 2;
8343 macro_build (&expr1, "bnez", "x,p", yreg);
8344 macro_build (NULL, "break", "6", 7);
8345 end_noreorder ();
8346 macro_build (NULL, s2, "x", zreg);
8347 break;
8348
8349 case M_DMUL:
8350 dbl = 1;
8351 case M_MUL:
8352 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8353 macro_build (NULL, "mflo", "x", zreg);
8354 break;
8355
8356 case M_DSUBU_I:
8357 dbl = 1;
8358 goto do_subu;
8359 case M_SUBU_I:
8360 do_subu:
8361 if (imm_expr.X_op != O_constant)
8362 as_bad (_("Unsupported large constant"));
8363 imm_expr.X_add_number = -imm_expr.X_add_number;
8364 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8365 break;
8366
8367 case M_SUBU_I_2:
8368 if (imm_expr.X_op != O_constant)
8369 as_bad (_("Unsupported large constant"));
8370 imm_expr.X_add_number = -imm_expr.X_add_number;
8371 macro_build (&imm_expr, "addiu", "x,k", xreg);
8372 break;
8373
8374 case M_DSUBU_I_2:
8375 if (imm_expr.X_op != O_constant)
8376 as_bad (_("Unsupported large constant"));
8377 imm_expr.X_add_number = -imm_expr.X_add_number;
8378 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8379 break;
8380
8381 case M_BEQ:
8382 s = "cmp";
8383 s2 = "bteqz";
8384 goto do_branch;
8385 case M_BNE:
8386 s = "cmp";
8387 s2 = "btnez";
8388 goto do_branch;
8389 case M_BLT:
8390 s = "slt";
8391 s2 = "btnez";
8392 goto do_branch;
8393 case M_BLTU:
8394 s = "sltu";
8395 s2 = "btnez";
8396 goto do_branch;
8397 case M_BLE:
8398 s = "slt";
8399 s2 = "bteqz";
8400 goto do_reverse_branch;
8401 case M_BLEU:
8402 s = "sltu";
8403 s2 = "bteqz";
8404 goto do_reverse_branch;
8405 case M_BGE:
8406 s = "slt";
8407 s2 = "bteqz";
8408 goto do_branch;
8409 case M_BGEU:
8410 s = "sltu";
8411 s2 = "bteqz";
8412 goto do_branch;
8413 case M_BGT:
8414 s = "slt";
8415 s2 = "btnez";
8416 goto do_reverse_branch;
8417 case M_BGTU:
8418 s = "sltu";
8419 s2 = "btnez";
8420
8421 do_reverse_branch:
8422 tmp = xreg;
8423 xreg = yreg;
8424 yreg = tmp;
8425
8426 do_branch:
8427 macro_build (NULL, s, "x,y", xreg, yreg);
8428 macro_build (&offset_expr, s2, "p");
8429 break;
8430
8431 case M_BEQ_I:
8432 s = "cmpi";
8433 s2 = "bteqz";
8434 s3 = "x,U";
8435 goto do_branch_i;
8436 case M_BNE_I:
8437 s = "cmpi";
8438 s2 = "btnez";
8439 s3 = "x,U";
8440 goto do_branch_i;
8441 case M_BLT_I:
8442 s = "slti";
8443 s2 = "btnez";
8444 s3 = "x,8";
8445 goto do_branch_i;
8446 case M_BLTU_I:
8447 s = "sltiu";
8448 s2 = "btnez";
8449 s3 = "x,8";
8450 goto do_branch_i;
8451 case M_BLE_I:
8452 s = "slti";
8453 s2 = "btnez";
8454 s3 = "x,8";
8455 goto do_addone_branch_i;
8456 case M_BLEU_I:
8457 s = "sltiu";
8458 s2 = "btnez";
8459 s3 = "x,8";
8460 goto do_addone_branch_i;
8461 case M_BGE_I:
8462 s = "slti";
8463 s2 = "bteqz";
8464 s3 = "x,8";
8465 goto do_branch_i;
8466 case M_BGEU_I:
8467 s = "sltiu";
8468 s2 = "bteqz";
8469 s3 = "x,8";
8470 goto do_branch_i;
8471 case M_BGT_I:
8472 s = "slti";
8473 s2 = "bteqz";
8474 s3 = "x,8";
8475 goto do_addone_branch_i;
8476 case M_BGTU_I:
8477 s = "sltiu";
8478 s2 = "bteqz";
8479 s3 = "x,8";
8480
8481 do_addone_branch_i:
8482 if (imm_expr.X_op != O_constant)
8483 as_bad (_("Unsupported large constant"));
8484 ++imm_expr.X_add_number;
8485
8486 do_branch_i:
8487 macro_build (&imm_expr, s, s3, xreg);
8488 macro_build (&offset_expr, s2, "p");
8489 break;
8490
8491 case M_ABS:
8492 expr1.X_add_number = 0;
8493 macro_build (&expr1, "slti", "x,8", yreg);
8494 if (xreg != yreg)
8495 move_register (xreg, yreg);
8496 expr1.X_add_number = 2;
8497 macro_build (&expr1, "bteqz", "p");
8498 macro_build (NULL, "neg", "x,w", xreg, xreg);
8499 }
8500 }
8501
8502 /* For consistency checking, verify that all bits are specified either
8503 by the match/mask part of the instruction definition, or by the
8504 operand list. */
8505 static int
8506 validate_mips_insn (const struct mips_opcode *opc)
8507 {
8508 const char *p = opc->args;
8509 char c;
8510 unsigned long used_bits = opc->mask;
8511
8512 if ((used_bits & opc->match) != opc->match)
8513 {
8514 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8515 opc->name, opc->args);
8516 return 0;
8517 }
8518 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8519 while (*p)
8520 switch (c = *p++)
8521 {
8522 case ',': break;
8523 case '(': break;
8524 case ')': break;
8525 case '+':
8526 switch (c = *p++)
8527 {
8528 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8529 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8530 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8531 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8532 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8533 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8534 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8535 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8536 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8537 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8538 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8539 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8540 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8541 case 'I': break;
8542 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8543 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8544 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8545 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8546 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8547 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8548 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8549 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8550 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8551 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8552
8553 default:
8554 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8555 c, opc->name, opc->args);
8556 return 0;
8557 }
8558 break;
8559 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8560 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8561 case 'A': break;
8562 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8563 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8564 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8565 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8566 case 'F': break;
8567 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8568 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8569 case 'I': break;
8570 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8571 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8572 case 'L': break;
8573 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8574 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8575 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8576 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8577 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8578 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8579 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8580 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8581 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8582 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8583 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8584 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8585 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8586 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8587 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8588 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8589 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8590 case 'f': break;
8591 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8592 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8593 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8594 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8595 case 'l': break;
8596 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8597 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8598 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8599 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8600 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8601 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8602 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8603 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8604 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8605 case 'x': break;
8606 case 'z': break;
8607 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8608 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8609 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8610 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8611 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8612 case '[': break;
8613 case ']': break;
8614 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8615 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8616 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8617 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8618 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8619 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8620 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8621 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8622 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8623 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8624 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8625 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8626 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8627 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8628 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8629 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8630 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8631 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8632 default:
8633 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8634 c, opc->name, opc->args);
8635 return 0;
8636 }
8637 #undef USE_BITS
8638 if (used_bits != 0xffffffff)
8639 {
8640 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8641 ~used_bits & 0xffffffff, opc->name, opc->args);
8642 return 0;
8643 }
8644 return 1;
8645 }
8646
8647 /* UDI immediates. */
8648 struct mips_immed {
8649 char type;
8650 unsigned int shift;
8651 unsigned long mask;
8652 const char * desc;
8653 };
8654
8655 static const struct mips_immed mips_immed[] = {
8656 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8657 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8658 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8659 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8660 { 0,0,0,0 }
8661 };
8662
8663 /* Check whether an odd floating-point register is allowed. */
8664 static int
8665 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8666 {
8667 const char *s = insn->name;
8668
8669 if (insn->pinfo == INSN_MACRO)
8670 /* Let a macro pass, we'll catch it later when it is expanded. */
8671 return 1;
8672
8673 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8674 {
8675 /* Allow odd registers for single-precision ops. */
8676 switch (insn->pinfo & (FP_S | FP_D))
8677 {
8678 case FP_S:
8679 case 0:
8680 return 1; /* both single precision - ok */
8681 case FP_D:
8682 return 0; /* both double precision - fail */
8683 default:
8684 break;
8685 }
8686
8687 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8688 s = strchr (insn->name, '.');
8689 if (argnum == 2)
8690 s = s != NULL ? strchr (s + 1, '.') : NULL;
8691 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8692 }
8693
8694 /* Single-precision coprocessor loads and moves are OK too. */
8695 if ((insn->pinfo & FP_S)
8696 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8697 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8698 return 1;
8699
8700 return 0;
8701 }
8702
8703 /* This routine assembles an instruction into its binary format. As a
8704 side effect, it sets one of the global variables imm_reloc or
8705 offset_reloc to the type of relocation to do if one of the operands
8706 is an address expression. */
8707
8708 static void
8709 mips_ip (char *str, struct mips_cl_insn *ip)
8710 {
8711 char *s;
8712 const char *args;
8713 char c = 0;
8714 struct mips_opcode *insn;
8715 char *argsStart;
8716 unsigned int regno;
8717 unsigned int lastregno = 0;
8718 unsigned int lastpos = 0;
8719 unsigned int limlo, limhi;
8720 char *s_reset;
8721 char save_c = 0;
8722 offsetT min_range, max_range;
8723 int argnum;
8724 unsigned int rtype;
8725
8726 insn_error = NULL;
8727
8728 /* If the instruction contains a '.', we first try to match an instruction
8729 including the '.'. Then we try again without the '.'. */
8730 insn = NULL;
8731 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8732 continue;
8733
8734 /* If we stopped on whitespace, then replace the whitespace with null for
8735 the call to hash_find. Save the character we replaced just in case we
8736 have to re-parse the instruction. */
8737 if (ISSPACE (*s))
8738 {
8739 save_c = *s;
8740 *s++ = '\0';
8741 }
8742
8743 insn = (struct mips_opcode *) hash_find (op_hash, str);
8744
8745 /* If we didn't find the instruction in the opcode table, try again, but
8746 this time with just the instruction up to, but not including the
8747 first '.'. */
8748 if (insn == NULL)
8749 {
8750 /* Restore the character we overwrite above (if any). */
8751 if (save_c)
8752 *(--s) = save_c;
8753
8754 /* Scan up to the first '.' or whitespace. */
8755 for (s = str;
8756 *s != '\0' && *s != '.' && !ISSPACE (*s);
8757 ++s)
8758 continue;
8759
8760 /* If we did not find a '.', then we can quit now. */
8761 if (*s != '.')
8762 {
8763 insn_error = "unrecognized opcode";
8764 return;
8765 }
8766
8767 /* Lookup the instruction in the hash table. */
8768 *s++ = '\0';
8769 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8770 {
8771 insn_error = "unrecognized opcode";
8772 return;
8773 }
8774 }
8775
8776 argsStart = s;
8777 for (;;)
8778 {
8779 bfd_boolean ok;
8780
8781 assert (strcmp (insn->name, str) == 0);
8782
8783 ok = is_opcode_valid (insn, FALSE);
8784 if (! ok)
8785 {
8786 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8787 && strcmp (insn->name, insn[1].name) == 0)
8788 {
8789 ++insn;
8790 continue;
8791 }
8792 else
8793 {
8794 if (!insn_error)
8795 {
8796 static char buf[100];
8797 sprintf (buf,
8798 _("opcode not supported on this processor: %s (%s)"),
8799 mips_cpu_info_from_arch (mips_opts.arch)->name,
8800 mips_cpu_info_from_isa (mips_opts.isa)->name);
8801 insn_error = buf;
8802 }
8803 if (save_c)
8804 *(--s) = save_c;
8805 return;
8806 }
8807 }
8808
8809 create_insn (ip, insn);
8810 insn_error = NULL;
8811 argnum = 1;
8812 lastregno = 0xffffffff;
8813 for (args = insn->args;; ++args)
8814 {
8815 int is_mdmx;
8816
8817 s += strspn (s, " \t");
8818 is_mdmx = 0;
8819 switch (*args)
8820 {
8821 case '\0': /* end of args */
8822 if (*s == '\0')
8823 return;
8824 break;
8825
8826 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8827 my_getExpression (&imm_expr, s);
8828 check_absolute_expr (ip, &imm_expr);
8829 if ((unsigned long) imm_expr.X_add_number != 1
8830 && (unsigned long) imm_expr.X_add_number != 3)
8831 {
8832 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8833 (unsigned long) imm_expr.X_add_number);
8834 }
8835 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8836 imm_expr.X_op = O_absent;
8837 s = expr_end;
8838 continue;
8839
8840 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8841 my_getExpression (&imm_expr, s);
8842 check_absolute_expr (ip, &imm_expr);
8843 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8844 {
8845 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8846 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8847 }
8848 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8849 imm_expr.X_op = O_absent;
8850 s = expr_end;
8851 continue;
8852
8853 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8854 my_getExpression (&imm_expr, s);
8855 check_absolute_expr (ip, &imm_expr);
8856 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8857 {
8858 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8859 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8860 }
8861 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8862 imm_expr.X_op = O_absent;
8863 s = expr_end;
8864 continue;
8865
8866 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8867 my_getExpression (&imm_expr, s);
8868 check_absolute_expr (ip, &imm_expr);
8869 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8870 {
8871 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8872 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8873 }
8874 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8875 imm_expr.X_op = O_absent;
8876 s = expr_end;
8877 continue;
8878
8879 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8880 my_getExpression (&imm_expr, s);
8881 check_absolute_expr (ip, &imm_expr);
8882 if (imm_expr.X_add_number & ~OP_MASK_RS)
8883 {
8884 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8885 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8886 }
8887 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8888 imm_expr.X_op = O_absent;
8889 s = expr_end;
8890 continue;
8891
8892 case '7': /* four dsp accumulators in bits 11,12 */
8893 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8894 s[3] >= '0' && s[3] <= '3')
8895 {
8896 regno = s[3] - '0';
8897 s += 4;
8898 INSERT_OPERAND (DSPACC, *ip, regno);
8899 continue;
8900 }
8901 else
8902 as_bad (_("Invalid dsp acc register"));
8903 break;
8904
8905 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8906 my_getExpression (&imm_expr, s);
8907 check_absolute_expr (ip, &imm_expr);
8908 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8909 {
8910 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8911 OP_MASK_WRDSP,
8912 (unsigned long) imm_expr.X_add_number);
8913 }
8914 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8915 imm_expr.X_op = O_absent;
8916 s = expr_end;
8917 continue;
8918
8919 case '9': /* four dsp accumulators in bits 21,22 */
8920 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8921 s[3] >= '0' && s[3] <= '3')
8922 {
8923 regno = s[3] - '0';
8924 s += 4;
8925 INSERT_OPERAND (DSPACC_S, *ip, regno);
8926 continue;
8927 }
8928 else
8929 as_bad (_("Invalid dsp acc register"));
8930 break;
8931
8932 case '0': /* dsp 6-bit signed immediate in bit 20 */
8933 my_getExpression (&imm_expr, s);
8934 check_absolute_expr (ip, &imm_expr);
8935 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8936 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8937 if (imm_expr.X_add_number < min_range ||
8938 imm_expr.X_add_number > max_range)
8939 {
8940 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8941 (long) min_range, (long) max_range,
8942 (long) imm_expr.X_add_number);
8943 }
8944 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8945 imm_expr.X_op = O_absent;
8946 s = expr_end;
8947 continue;
8948
8949 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8950 my_getExpression (&imm_expr, s);
8951 check_absolute_expr (ip, &imm_expr);
8952 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8953 {
8954 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8955 OP_MASK_RDDSP,
8956 (unsigned long) imm_expr.X_add_number);
8957 }
8958 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8959 imm_expr.X_op = O_absent;
8960 s = expr_end;
8961 continue;
8962
8963 case ':': /* dsp 7-bit signed immediate in bit 19 */
8964 my_getExpression (&imm_expr, s);
8965 check_absolute_expr (ip, &imm_expr);
8966 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8967 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8968 if (imm_expr.X_add_number < min_range ||
8969 imm_expr.X_add_number > max_range)
8970 {
8971 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8972 (long) min_range, (long) max_range,
8973 (long) imm_expr.X_add_number);
8974 }
8975 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8976 imm_expr.X_op = O_absent;
8977 s = expr_end;
8978 continue;
8979
8980 case '@': /* dsp 10-bit signed immediate in bit 16 */
8981 my_getExpression (&imm_expr, s);
8982 check_absolute_expr (ip, &imm_expr);
8983 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8984 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8985 if (imm_expr.X_add_number < min_range ||
8986 imm_expr.X_add_number > max_range)
8987 {
8988 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8989 (long) min_range, (long) max_range,
8990 (long) imm_expr.X_add_number);
8991 }
8992 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8993 imm_expr.X_op = O_absent;
8994 s = expr_end;
8995 continue;
8996
8997 case '!': /* MT usermode flag bit. */
8998 my_getExpression (&imm_expr, s);
8999 check_absolute_expr (ip, &imm_expr);
9000 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
9001 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
9002 (unsigned long) imm_expr.X_add_number);
9003 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
9004 imm_expr.X_op = O_absent;
9005 s = expr_end;
9006 continue;
9007
9008 case '$': /* MT load high flag bit. */
9009 my_getExpression (&imm_expr, s);
9010 check_absolute_expr (ip, &imm_expr);
9011 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
9012 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
9013 (unsigned long) imm_expr.X_add_number);
9014 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
9015 imm_expr.X_op = O_absent;
9016 s = expr_end;
9017 continue;
9018
9019 case '*': /* four dsp accumulators in bits 18,19 */
9020 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9021 s[3] >= '0' && s[3] <= '3')
9022 {
9023 regno = s[3] - '0';
9024 s += 4;
9025 INSERT_OPERAND (MTACC_T, *ip, regno);
9026 continue;
9027 }
9028 else
9029 as_bad (_("Invalid dsp/smartmips acc register"));
9030 break;
9031
9032 case '&': /* four dsp accumulators in bits 13,14 */
9033 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9034 s[3] >= '0' && s[3] <= '3')
9035 {
9036 regno = s[3] - '0';
9037 s += 4;
9038 INSERT_OPERAND (MTACC_D, *ip, regno);
9039 continue;
9040 }
9041 else
9042 as_bad (_("Invalid dsp/smartmips acc register"));
9043 break;
9044
9045 case ',':
9046 ++argnum;
9047 if (*s++ == *args)
9048 continue;
9049 s--;
9050 switch (*++args)
9051 {
9052 case 'r':
9053 case 'v':
9054 INSERT_OPERAND (RS, *ip, lastregno);
9055 continue;
9056
9057 case 'w':
9058 INSERT_OPERAND (RT, *ip, lastregno);
9059 continue;
9060
9061 case 'W':
9062 INSERT_OPERAND (FT, *ip, lastregno);
9063 continue;
9064
9065 case 'V':
9066 INSERT_OPERAND (FS, *ip, lastregno);
9067 continue;
9068 }
9069 break;
9070
9071 case '(':
9072 /* Handle optional base register.
9073 Either the base register is omitted or
9074 we must have a left paren. */
9075 /* This is dependent on the next operand specifier
9076 is a base register specification. */
9077 assert (args[1] == 'b' || args[1] == '5'
9078 || args[1] == '-' || args[1] == '4');
9079 if (*s == '\0')
9080 return;
9081
9082 case ')': /* these must match exactly */
9083 case '[':
9084 case ']':
9085 if (*s++ == *args)
9086 continue;
9087 break;
9088
9089 case '+': /* Opcode extension character. */
9090 switch (*++args)
9091 {
9092 case '1': /* UDI immediates. */
9093 case '2':
9094 case '3':
9095 case '4':
9096 {
9097 const struct mips_immed *imm = mips_immed;
9098
9099 while (imm->type && imm->type != *args)
9100 ++imm;
9101 if (! imm->type)
9102 internalError ();
9103 my_getExpression (&imm_expr, s);
9104 check_absolute_expr (ip, &imm_expr);
9105 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9106 {
9107 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9108 imm->desc ? imm->desc : ip->insn_mo->name,
9109 (unsigned long) imm_expr.X_add_number,
9110 (unsigned long) imm_expr.X_add_number);
9111 imm_expr.X_add_number &= imm->mask;
9112 }
9113 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9114 << imm->shift);
9115 imm_expr.X_op = O_absent;
9116 s = expr_end;
9117 }
9118 continue;
9119
9120 case 'A': /* ins/ext position, becomes LSB. */
9121 limlo = 0;
9122 limhi = 31;
9123 goto do_lsb;
9124 case 'E':
9125 limlo = 32;
9126 limhi = 63;
9127 goto do_lsb;
9128 do_lsb:
9129 my_getExpression (&imm_expr, s);
9130 check_absolute_expr (ip, &imm_expr);
9131 if ((unsigned long) imm_expr.X_add_number < limlo
9132 || (unsigned long) imm_expr.X_add_number > limhi)
9133 {
9134 as_bad (_("Improper position (%lu)"),
9135 (unsigned long) imm_expr.X_add_number);
9136 imm_expr.X_add_number = limlo;
9137 }
9138 lastpos = imm_expr.X_add_number;
9139 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9140 imm_expr.X_op = O_absent;
9141 s = expr_end;
9142 continue;
9143
9144 case 'B': /* ins size, becomes MSB. */
9145 limlo = 1;
9146 limhi = 32;
9147 goto do_msb;
9148 case 'F':
9149 limlo = 33;
9150 limhi = 64;
9151 goto do_msb;
9152 do_msb:
9153 my_getExpression (&imm_expr, s);
9154 check_absolute_expr (ip, &imm_expr);
9155 /* Check for negative input so that small negative numbers
9156 will not succeed incorrectly. The checks against
9157 (pos+size) transitively check "size" itself,
9158 assuming that "pos" is reasonable. */
9159 if ((long) imm_expr.X_add_number < 0
9160 || ((unsigned long) imm_expr.X_add_number
9161 + lastpos) < limlo
9162 || ((unsigned long) imm_expr.X_add_number
9163 + lastpos) > limhi)
9164 {
9165 as_bad (_("Improper insert size (%lu, position %lu)"),
9166 (unsigned long) imm_expr.X_add_number,
9167 (unsigned long) lastpos);
9168 imm_expr.X_add_number = limlo - lastpos;
9169 }
9170 INSERT_OPERAND (INSMSB, *ip,
9171 lastpos + imm_expr.X_add_number - 1);
9172 imm_expr.X_op = O_absent;
9173 s = expr_end;
9174 continue;
9175
9176 case 'C': /* ext size, becomes MSBD. */
9177 limlo = 1;
9178 limhi = 32;
9179 goto do_msbd;
9180 case 'G':
9181 limlo = 33;
9182 limhi = 64;
9183 goto do_msbd;
9184 case 'H':
9185 limlo = 33;
9186 limhi = 64;
9187 goto do_msbd;
9188 do_msbd:
9189 my_getExpression (&imm_expr, s);
9190 check_absolute_expr (ip, &imm_expr);
9191 /* Check for negative input so that small negative numbers
9192 will not succeed incorrectly. The checks against
9193 (pos+size) transitively check "size" itself,
9194 assuming that "pos" is reasonable. */
9195 if ((long) imm_expr.X_add_number < 0
9196 || ((unsigned long) imm_expr.X_add_number
9197 + lastpos) < limlo
9198 || ((unsigned long) imm_expr.X_add_number
9199 + lastpos) > limhi)
9200 {
9201 as_bad (_("Improper extract size (%lu, position %lu)"),
9202 (unsigned long) imm_expr.X_add_number,
9203 (unsigned long) lastpos);
9204 imm_expr.X_add_number = limlo - lastpos;
9205 }
9206 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9207 imm_expr.X_op = O_absent;
9208 s = expr_end;
9209 continue;
9210
9211 case 'D':
9212 /* +D is for disassembly only; never match. */
9213 break;
9214
9215 case 'I':
9216 /* "+I" is like "I", except that imm2_expr is used. */
9217 my_getExpression (&imm2_expr, s);
9218 if (imm2_expr.X_op != O_big
9219 && imm2_expr.X_op != O_constant)
9220 insn_error = _("absolute expression required");
9221 if (HAVE_32BIT_GPRS)
9222 normalize_constant_expr (&imm2_expr);
9223 s = expr_end;
9224 continue;
9225
9226 case 'T': /* Coprocessor register. */
9227 /* +T is for disassembly only; never match. */
9228 break;
9229
9230 case 't': /* Coprocessor register number. */
9231 if (s[0] == '$' && ISDIGIT (s[1]))
9232 {
9233 ++s;
9234 regno = 0;
9235 do
9236 {
9237 regno *= 10;
9238 regno += *s - '0';
9239 ++s;
9240 }
9241 while (ISDIGIT (*s));
9242 if (regno > 31)
9243 as_bad (_("Invalid register number (%d)"), regno);
9244 else
9245 {
9246 INSERT_OPERAND (RT, *ip, regno);
9247 continue;
9248 }
9249 }
9250 else
9251 as_bad (_("Invalid coprocessor 0 register number"));
9252 break;
9253
9254 case 'x':
9255 /* bbit[01] and bbit[01]32 bit index. Give error if index
9256 is not in the valid range. */
9257 my_getExpression (&imm_expr, s);
9258 check_absolute_expr (ip, &imm_expr);
9259 if ((unsigned) imm_expr.X_add_number > 31)
9260 {
9261 as_bad (_("Improper bit index (%lu)"),
9262 (unsigned long) imm_expr.X_add_number);
9263 imm_expr.X_add_number = 0;
9264 }
9265 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9266 imm_expr.X_op = O_absent;
9267 s = expr_end;
9268 continue;
9269
9270 case 'X':
9271 /* bbit[01] bit index when bbit is used but we generate
9272 bbit[01]32 because the index is over 32. Move to the
9273 next candidate if index is not in the valid range. */
9274 my_getExpression (&imm_expr, s);
9275 check_absolute_expr (ip, &imm_expr);
9276 if ((unsigned) imm_expr.X_add_number < 32
9277 || (unsigned) imm_expr.X_add_number > 63)
9278 break;
9279 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9280 imm_expr.X_op = O_absent;
9281 s = expr_end;
9282 continue;
9283
9284 case 'p':
9285 /* cins, cins32, exts and exts32 position field. Give error
9286 if it's not in the valid range. */
9287 my_getExpression (&imm_expr, s);
9288 check_absolute_expr (ip, &imm_expr);
9289 if ((unsigned) imm_expr.X_add_number > 31)
9290 {
9291 as_bad (_("Improper position (%lu)"),
9292 (unsigned long) imm_expr.X_add_number);
9293 imm_expr.X_add_number = 0;
9294 }
9295 /* Make the pos explicit to simplify +S. */
9296 lastpos = imm_expr.X_add_number + 32;
9297 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9298 imm_expr.X_op = O_absent;
9299 s = expr_end;
9300 continue;
9301
9302 case 'P':
9303 /* cins, cins32, exts and exts32 position field. Move to
9304 the next candidate if it's not in the valid range. */
9305 my_getExpression (&imm_expr, s);
9306 check_absolute_expr (ip, &imm_expr);
9307 if ((unsigned) imm_expr.X_add_number < 32
9308 || (unsigned) imm_expr.X_add_number > 63)
9309 break;
9310 lastpos = imm_expr.X_add_number;
9311 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9312 imm_expr.X_op = O_absent;
9313 s = expr_end;
9314 continue;
9315
9316 case 's':
9317 /* cins and exts length-minus-one field. */
9318 my_getExpression (&imm_expr, s);
9319 check_absolute_expr (ip, &imm_expr);
9320 if ((unsigned long) imm_expr.X_add_number > 31)
9321 {
9322 as_bad (_("Improper size (%lu)"),
9323 (unsigned long) imm_expr.X_add_number);
9324 imm_expr.X_add_number = 0;
9325 }
9326 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9327 imm_expr.X_op = O_absent;
9328 s = expr_end;
9329 continue;
9330
9331 case 'S':
9332 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9333 length-minus-one field. */
9334 my_getExpression (&imm_expr, s);
9335 check_absolute_expr (ip, &imm_expr);
9336 if ((long) imm_expr.X_add_number < 0
9337 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9338 {
9339 as_bad (_("Improper size (%lu)"),
9340 (unsigned long) imm_expr.X_add_number);
9341 imm_expr.X_add_number = 0;
9342 }
9343 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9344 imm_expr.X_op = O_absent;
9345 s = expr_end;
9346 continue;
9347
9348 case 'Q':
9349 /* seqi/snei immediate field. */
9350 my_getExpression (&imm_expr, s);
9351 check_absolute_expr (ip, &imm_expr);
9352 if ((long) imm_expr.X_add_number < -512
9353 || (long) imm_expr.X_add_number >= 512)
9354 {
9355 as_bad (_("Improper immediate (%ld)"),
9356 (long) imm_expr.X_add_number);
9357 imm_expr.X_add_number = 0;
9358 }
9359 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9360 imm_expr.X_op = O_absent;
9361 s = expr_end;
9362 continue;
9363
9364 default:
9365 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9366 *args, insn->name, insn->args);
9367 /* Further processing is fruitless. */
9368 return;
9369 }
9370 break;
9371
9372 case '<': /* must be at least one digit */
9373 /*
9374 * According to the manual, if the shift amount is greater
9375 * than 31 or less than 0, then the shift amount should be
9376 * mod 32. In reality the mips assembler issues an error.
9377 * We issue a warning and mask out all but the low 5 bits.
9378 */
9379 my_getExpression (&imm_expr, s);
9380 check_absolute_expr (ip, &imm_expr);
9381 if ((unsigned long) imm_expr.X_add_number > 31)
9382 as_warn (_("Improper shift amount (%lu)"),
9383 (unsigned long) imm_expr.X_add_number);
9384 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9385 imm_expr.X_op = O_absent;
9386 s = expr_end;
9387 continue;
9388
9389 case '>': /* shift amount minus 32 */
9390 my_getExpression (&imm_expr, s);
9391 check_absolute_expr (ip, &imm_expr);
9392 if ((unsigned long) imm_expr.X_add_number < 32
9393 || (unsigned long) imm_expr.X_add_number > 63)
9394 break;
9395 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9396 imm_expr.X_op = O_absent;
9397 s = expr_end;
9398 continue;
9399
9400 case 'k': /* cache code */
9401 case 'h': /* prefx code */
9402 case '1': /* sync type */
9403 my_getExpression (&imm_expr, s);
9404 check_absolute_expr (ip, &imm_expr);
9405 if ((unsigned long) imm_expr.X_add_number > 31)
9406 as_warn (_("Invalid value for `%s' (%lu)"),
9407 ip->insn_mo->name,
9408 (unsigned long) imm_expr.X_add_number);
9409 if (*args == 'k')
9410 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9411 else if (*args == 'h')
9412 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9413 else
9414 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9415 imm_expr.X_op = O_absent;
9416 s = expr_end;
9417 continue;
9418
9419 case 'c': /* break code */
9420 my_getExpression (&imm_expr, s);
9421 check_absolute_expr (ip, &imm_expr);
9422 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9423 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9424 ip->insn_mo->name,
9425 (unsigned long) imm_expr.X_add_number);
9426 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9427 imm_expr.X_op = O_absent;
9428 s = expr_end;
9429 continue;
9430
9431 case 'q': /* lower break code */
9432 my_getExpression (&imm_expr, s);
9433 check_absolute_expr (ip, &imm_expr);
9434 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9435 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9436 ip->insn_mo->name,
9437 (unsigned long) imm_expr.X_add_number);
9438 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9439 imm_expr.X_op = O_absent;
9440 s = expr_end;
9441 continue;
9442
9443 case 'B': /* 20-bit syscall/break code. */
9444 my_getExpression (&imm_expr, s);
9445 check_absolute_expr (ip, &imm_expr);
9446 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9447 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9448 ip->insn_mo->name,
9449 (unsigned long) imm_expr.X_add_number);
9450 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9451 imm_expr.X_op = O_absent;
9452 s = expr_end;
9453 continue;
9454
9455 case 'C': /* Coprocessor code */
9456 my_getExpression (&imm_expr, s);
9457 check_absolute_expr (ip, &imm_expr);
9458 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9459 {
9460 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9461 (unsigned long) imm_expr.X_add_number);
9462 imm_expr.X_add_number &= OP_MASK_COPZ;
9463 }
9464 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9465 imm_expr.X_op = O_absent;
9466 s = expr_end;
9467 continue;
9468
9469 case 'J': /* 19-bit wait code. */
9470 my_getExpression (&imm_expr, s);
9471 check_absolute_expr (ip, &imm_expr);
9472 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9473 {
9474 as_warn (_("Illegal 19-bit code (%lu)"),
9475 (unsigned long) imm_expr.X_add_number);
9476 imm_expr.X_add_number &= OP_MASK_CODE19;
9477 }
9478 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9479 imm_expr.X_op = O_absent;
9480 s = expr_end;
9481 continue;
9482
9483 case 'P': /* Performance register. */
9484 my_getExpression (&imm_expr, s);
9485 check_absolute_expr (ip, &imm_expr);
9486 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9487 as_warn (_("Invalid performance register (%lu)"),
9488 (unsigned long) imm_expr.X_add_number);
9489 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9490 imm_expr.X_op = O_absent;
9491 s = expr_end;
9492 continue;
9493
9494 case 'G': /* Coprocessor destination register. */
9495 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9496 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9497 else
9498 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9499 INSERT_OPERAND (RD, *ip, regno);
9500 if (ok)
9501 {
9502 lastregno = regno;
9503 continue;
9504 }
9505 else
9506 break;
9507
9508 case 'b': /* base register */
9509 case 'd': /* destination register */
9510 case 's': /* source register */
9511 case 't': /* target register */
9512 case 'r': /* both target and source */
9513 case 'v': /* both dest and source */
9514 case 'w': /* both dest and target */
9515 case 'E': /* coprocessor target register */
9516 case 'K': /* 'rdhwr' destination register */
9517 case 'x': /* ignore register name */
9518 case 'z': /* must be zero register */
9519 case 'U': /* destination register (clo/clz). */
9520 case 'g': /* coprocessor destination register */
9521 s_reset = s;
9522 if (*args == 'E' || *args == 'K')
9523 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9524 else
9525 {
9526 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9527 if (regno == AT && mips_opts.at)
9528 {
9529 if (mips_opts.at == ATREG)
9530 as_warn (_("used $at without \".set noat\""));
9531 else
9532 as_warn (_("used $%u with \".set at=$%u\""),
9533 regno, mips_opts.at);
9534 }
9535 }
9536 if (ok)
9537 {
9538 c = *args;
9539 if (*s == ' ')
9540 ++s;
9541 if (args[1] != *s)
9542 {
9543 if (c == 'r' || c == 'v' || c == 'w')
9544 {
9545 regno = lastregno;
9546 s = s_reset;
9547 ++args;
9548 }
9549 }
9550 /* 'z' only matches $0. */
9551 if (c == 'z' && regno != 0)
9552 break;
9553
9554 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9555 {
9556 if (regno == lastregno)
9557 {
9558 insn_error = _("source and destination must be different");
9559 continue;
9560 }
9561 if (regno == 31 && lastregno == 0xffffffff)
9562 {
9563 insn_error = _("a destination register must be supplied");
9564 continue;
9565 }
9566 }
9567 /* Now that we have assembled one operand, we use the args string
9568 * to figure out where it goes in the instruction. */
9569 switch (c)
9570 {
9571 case 'r':
9572 case 's':
9573 case 'v':
9574 case 'b':
9575 INSERT_OPERAND (RS, *ip, regno);
9576 break;
9577 case 'd':
9578 case 'G':
9579 case 'K':
9580 case 'g':
9581 INSERT_OPERAND (RD, *ip, regno);
9582 break;
9583 case 'U':
9584 INSERT_OPERAND (RD, *ip, regno);
9585 INSERT_OPERAND (RT, *ip, regno);
9586 break;
9587 case 'w':
9588 case 't':
9589 case 'E':
9590 INSERT_OPERAND (RT, *ip, regno);
9591 break;
9592 case 'x':
9593 /* This case exists because on the r3000 trunc
9594 expands into a macro which requires a gp
9595 register. On the r6000 or r4000 it is
9596 assembled into a single instruction which
9597 ignores the register. Thus the insn version
9598 is MIPS_ISA2 and uses 'x', and the macro
9599 version is MIPS_ISA1 and uses 't'. */
9600 break;
9601 case 'z':
9602 /* This case is for the div instruction, which
9603 acts differently if the destination argument
9604 is $0. This only matches $0, and is checked
9605 outside the switch. */
9606 break;
9607 case 'D':
9608 /* Itbl operand; not yet implemented. FIXME ?? */
9609 break;
9610 /* What about all other operands like 'i', which
9611 can be specified in the opcode table? */
9612 }
9613 lastregno = regno;
9614 continue;
9615 }
9616 switch (*args++)
9617 {
9618 case 'r':
9619 case 'v':
9620 INSERT_OPERAND (RS, *ip, lastregno);
9621 continue;
9622 case 'w':
9623 INSERT_OPERAND (RT, *ip, lastregno);
9624 continue;
9625 }
9626 break;
9627
9628 case 'O': /* MDMX alignment immediate constant. */
9629 my_getExpression (&imm_expr, s);
9630 check_absolute_expr (ip, &imm_expr);
9631 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9632 as_warn ("Improper align amount (%ld), using low bits",
9633 (long) imm_expr.X_add_number);
9634 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9635 imm_expr.X_op = O_absent;
9636 s = expr_end;
9637 continue;
9638
9639 case 'Q': /* MDMX vector, element sel, or const. */
9640 if (s[0] != '$')
9641 {
9642 /* MDMX Immediate. */
9643 my_getExpression (&imm_expr, s);
9644 check_absolute_expr (ip, &imm_expr);
9645 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9646 as_warn (_("Invalid MDMX Immediate (%ld)"),
9647 (long) imm_expr.X_add_number);
9648 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9649 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9650 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9651 else
9652 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9653 imm_expr.X_op = O_absent;
9654 s = expr_end;
9655 continue;
9656 }
9657 /* Not MDMX Immediate. Fall through. */
9658 case 'X': /* MDMX destination register. */
9659 case 'Y': /* MDMX source register. */
9660 case 'Z': /* MDMX target register. */
9661 is_mdmx = 1;
9662 case 'D': /* floating point destination register */
9663 case 'S': /* floating point source register */
9664 case 'T': /* floating point target register */
9665 case 'R': /* floating point source register */
9666 case 'V':
9667 case 'W':
9668 rtype = RTYPE_FPU;
9669 if (is_mdmx
9670 || (mips_opts.ase_mdmx
9671 && (ip->insn_mo->pinfo & FP_D)
9672 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9673 | INSN_COPROC_MEMORY_DELAY
9674 | INSN_LOAD_COPROC_DELAY
9675 | INSN_LOAD_MEMORY_DELAY
9676 | INSN_STORE_MEMORY))))
9677 rtype |= RTYPE_VEC;
9678 s_reset = s;
9679 if (reg_lookup (&s, rtype, &regno))
9680 {
9681 if ((regno & 1) != 0
9682 && HAVE_32BIT_FPRS
9683 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9684 as_warn (_("Float register should be even, was %d"),
9685 regno);
9686
9687 c = *args;
9688 if (*s == ' ')
9689 ++s;
9690 if (args[1] != *s)
9691 {
9692 if (c == 'V' || c == 'W')
9693 {
9694 regno = lastregno;
9695 s = s_reset;
9696 ++args;
9697 }
9698 }
9699 switch (c)
9700 {
9701 case 'D':
9702 case 'X':
9703 INSERT_OPERAND (FD, *ip, regno);
9704 break;
9705 case 'V':
9706 case 'S':
9707 case 'Y':
9708 INSERT_OPERAND (FS, *ip, regno);
9709 break;
9710 case 'Q':
9711 /* This is like 'Z', but also needs to fix the MDMX
9712 vector/scalar select bits. Note that the
9713 scalar immediate case is handled above. */
9714 if (*s == '[')
9715 {
9716 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9717 int max_el = (is_qh ? 3 : 7);
9718 s++;
9719 my_getExpression(&imm_expr, s);
9720 check_absolute_expr (ip, &imm_expr);
9721 s = expr_end;
9722 if (imm_expr.X_add_number > max_el)
9723 as_bad(_("Bad element selector %ld"),
9724 (long) imm_expr.X_add_number);
9725 imm_expr.X_add_number &= max_el;
9726 ip->insn_opcode |= (imm_expr.X_add_number
9727 << (OP_SH_VSEL +
9728 (is_qh ? 2 : 1)));
9729 imm_expr.X_op = O_absent;
9730 if (*s != ']')
9731 as_warn(_("Expecting ']' found '%s'"), s);
9732 else
9733 s++;
9734 }
9735 else
9736 {
9737 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9738 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9739 << OP_SH_VSEL);
9740 else
9741 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9742 OP_SH_VSEL);
9743 }
9744 /* Fall through */
9745 case 'W':
9746 case 'T':
9747 case 'Z':
9748 INSERT_OPERAND (FT, *ip, regno);
9749 break;
9750 case 'R':
9751 INSERT_OPERAND (FR, *ip, regno);
9752 break;
9753 }
9754 lastregno = regno;
9755 continue;
9756 }
9757
9758 switch (*args++)
9759 {
9760 case 'V':
9761 INSERT_OPERAND (FS, *ip, lastregno);
9762 continue;
9763 case 'W':
9764 INSERT_OPERAND (FT, *ip, lastregno);
9765 continue;
9766 }
9767 break;
9768
9769 case 'I':
9770 my_getExpression (&imm_expr, s);
9771 if (imm_expr.X_op != O_big
9772 && imm_expr.X_op != O_constant)
9773 insn_error = _("absolute expression required");
9774 if (HAVE_32BIT_GPRS)
9775 normalize_constant_expr (&imm_expr);
9776 s = expr_end;
9777 continue;
9778
9779 case 'A':
9780 my_getExpression (&offset_expr, s);
9781 normalize_address_expr (&offset_expr);
9782 *imm_reloc = BFD_RELOC_32;
9783 s = expr_end;
9784 continue;
9785
9786 case 'F':
9787 case 'L':
9788 case 'f':
9789 case 'l':
9790 {
9791 int f64;
9792 int using_gprs;
9793 char *save_in;
9794 char *err;
9795 unsigned char temp[8];
9796 int len;
9797 unsigned int length;
9798 segT seg;
9799 subsegT subseg;
9800 char *p;
9801
9802 /* These only appear as the last operand in an
9803 instruction, and every instruction that accepts
9804 them in any variant accepts them in all variants.
9805 This means we don't have to worry about backing out
9806 any changes if the instruction does not match.
9807
9808 The difference between them is the size of the
9809 floating point constant and where it goes. For 'F'
9810 and 'L' the constant is 64 bits; for 'f' and 'l' it
9811 is 32 bits. Where the constant is placed is based
9812 on how the MIPS assembler does things:
9813 F -- .rdata
9814 L -- .lit8
9815 f -- immediate value
9816 l -- .lit4
9817
9818 The .lit4 and .lit8 sections are only used if
9819 permitted by the -G argument.
9820
9821 The code below needs to know whether the target register
9822 is 32 or 64 bits wide. It relies on the fact 'f' and
9823 'F' are used with GPR-based instructions and 'l' and
9824 'L' are used with FPR-based instructions. */
9825
9826 f64 = *args == 'F' || *args == 'L';
9827 using_gprs = *args == 'F' || *args == 'f';
9828
9829 save_in = input_line_pointer;
9830 input_line_pointer = s;
9831 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9832 length = len;
9833 s = input_line_pointer;
9834 input_line_pointer = save_in;
9835 if (err != NULL && *err != '\0')
9836 {
9837 as_bad (_("Bad floating point constant: %s"), err);
9838 memset (temp, '\0', sizeof temp);
9839 length = f64 ? 8 : 4;
9840 }
9841
9842 assert (length == (unsigned) (f64 ? 8 : 4));
9843
9844 if (*args == 'f'
9845 || (*args == 'l'
9846 && (g_switch_value < 4
9847 || (temp[0] == 0 && temp[1] == 0)
9848 || (temp[2] == 0 && temp[3] == 0))))
9849 {
9850 imm_expr.X_op = O_constant;
9851 if (! target_big_endian)
9852 imm_expr.X_add_number = bfd_getl32 (temp);
9853 else
9854 imm_expr.X_add_number = bfd_getb32 (temp);
9855 }
9856 else if (length > 4
9857 && ! mips_disable_float_construction
9858 /* Constants can only be constructed in GPRs and
9859 copied to FPRs if the GPRs are at least as wide
9860 as the FPRs. Force the constant into memory if
9861 we are using 64-bit FPRs but the GPRs are only
9862 32 bits wide. */
9863 && (using_gprs
9864 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9865 && ((temp[0] == 0 && temp[1] == 0)
9866 || (temp[2] == 0 && temp[3] == 0))
9867 && ((temp[4] == 0 && temp[5] == 0)
9868 || (temp[6] == 0 && temp[7] == 0)))
9869 {
9870 /* The value is simple enough to load with a couple of
9871 instructions. If using 32-bit registers, set
9872 imm_expr to the high order 32 bits and offset_expr to
9873 the low order 32 bits. Otherwise, set imm_expr to
9874 the entire 64 bit constant. */
9875 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9876 {
9877 imm_expr.X_op = O_constant;
9878 offset_expr.X_op = O_constant;
9879 if (! target_big_endian)
9880 {
9881 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9882 offset_expr.X_add_number = bfd_getl32 (temp);
9883 }
9884 else
9885 {
9886 imm_expr.X_add_number = bfd_getb32 (temp);
9887 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9888 }
9889 if (offset_expr.X_add_number == 0)
9890 offset_expr.X_op = O_absent;
9891 }
9892 else if (sizeof (imm_expr.X_add_number) > 4)
9893 {
9894 imm_expr.X_op = O_constant;
9895 if (! target_big_endian)
9896 imm_expr.X_add_number = bfd_getl64 (temp);
9897 else
9898 imm_expr.X_add_number = bfd_getb64 (temp);
9899 }
9900 else
9901 {
9902 imm_expr.X_op = O_big;
9903 imm_expr.X_add_number = 4;
9904 if (! target_big_endian)
9905 {
9906 generic_bignum[0] = bfd_getl16 (temp);
9907 generic_bignum[1] = bfd_getl16 (temp + 2);
9908 generic_bignum[2] = bfd_getl16 (temp + 4);
9909 generic_bignum[3] = bfd_getl16 (temp + 6);
9910 }
9911 else
9912 {
9913 generic_bignum[0] = bfd_getb16 (temp + 6);
9914 generic_bignum[1] = bfd_getb16 (temp + 4);
9915 generic_bignum[2] = bfd_getb16 (temp + 2);
9916 generic_bignum[3] = bfd_getb16 (temp);
9917 }
9918 }
9919 }
9920 else
9921 {
9922 const char *newname;
9923 segT new_seg;
9924
9925 /* Switch to the right section. */
9926 seg = now_seg;
9927 subseg = now_subseg;
9928 switch (*args)
9929 {
9930 default: /* unused default case avoids warnings. */
9931 case 'L':
9932 newname = RDATA_SECTION_NAME;
9933 if (g_switch_value >= 8)
9934 newname = ".lit8";
9935 break;
9936 case 'F':
9937 newname = RDATA_SECTION_NAME;
9938 break;
9939 case 'l':
9940 assert (g_switch_value >= 4);
9941 newname = ".lit4";
9942 break;
9943 }
9944 new_seg = subseg_new (newname, (subsegT) 0);
9945 if (IS_ELF)
9946 bfd_set_section_flags (stdoutput, new_seg,
9947 (SEC_ALLOC
9948 | SEC_LOAD
9949 | SEC_READONLY
9950 | SEC_DATA));
9951 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9952 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9953 record_alignment (new_seg, 4);
9954 else
9955 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9956 if (seg == now_seg)
9957 as_bad (_("Can't use floating point insn in this section"));
9958
9959 /* Set the argument to the current address in the
9960 section. */
9961 offset_expr.X_op = O_symbol;
9962 offset_expr.X_add_symbol =
9963 symbol_new ("L0\001", now_seg,
9964 (valueT) frag_now_fix (), frag_now);
9965 offset_expr.X_add_number = 0;
9966
9967 /* Put the floating point number into the section. */
9968 p = frag_more ((int) length);
9969 memcpy (p, temp, length);
9970
9971 /* Switch back to the original section. */
9972 subseg_set (seg, subseg);
9973 }
9974 }
9975 continue;
9976
9977 case 'i': /* 16 bit unsigned immediate */
9978 case 'j': /* 16 bit signed immediate */
9979 *imm_reloc = BFD_RELOC_LO16;
9980 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9981 {
9982 int more;
9983 offsetT minval, maxval;
9984
9985 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9986 && strcmp (insn->name, insn[1].name) == 0);
9987
9988 /* If the expression was written as an unsigned number,
9989 only treat it as signed if there are no more
9990 alternatives. */
9991 if (more
9992 && *args == 'j'
9993 && sizeof (imm_expr.X_add_number) <= 4
9994 && imm_expr.X_op == O_constant
9995 && imm_expr.X_add_number < 0
9996 && imm_expr.X_unsigned
9997 && HAVE_64BIT_GPRS)
9998 break;
9999
10000 /* For compatibility with older assemblers, we accept
10001 0x8000-0xffff as signed 16-bit numbers when only
10002 signed numbers are allowed. */
10003 if (*args == 'i')
10004 minval = 0, maxval = 0xffff;
10005 else if (more)
10006 minval = -0x8000, maxval = 0x7fff;
10007 else
10008 minval = -0x8000, maxval = 0xffff;
10009
10010 if (imm_expr.X_op != O_constant
10011 || imm_expr.X_add_number < minval
10012 || imm_expr.X_add_number > maxval)
10013 {
10014 if (more)
10015 break;
10016 if (imm_expr.X_op == O_constant
10017 || imm_expr.X_op == O_big)
10018 as_bad (_("expression out of range"));
10019 }
10020 }
10021 s = expr_end;
10022 continue;
10023
10024 case 'o': /* 16 bit offset */
10025 /* Check whether there is only a single bracketed expression
10026 left. If so, it must be the base register and the
10027 constant must be zero. */
10028 if (*s == '(' && strchr (s + 1, '(') == 0)
10029 {
10030 offset_expr.X_op = O_constant;
10031 offset_expr.X_add_number = 0;
10032 continue;
10033 }
10034
10035 /* If this value won't fit into a 16 bit offset, then go
10036 find a macro that will generate the 32 bit offset
10037 code pattern. */
10038 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10039 && (offset_expr.X_op != O_constant
10040 || offset_expr.X_add_number >= 0x8000
10041 || offset_expr.X_add_number < -0x8000))
10042 break;
10043
10044 s = expr_end;
10045 continue;
10046
10047 case 'p': /* pc relative offset */
10048 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10049 my_getExpression (&offset_expr, s);
10050 s = expr_end;
10051 continue;
10052
10053 case 'u': /* upper 16 bits */
10054 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10055 && imm_expr.X_op == O_constant
10056 && (imm_expr.X_add_number < 0
10057 || imm_expr.X_add_number >= 0x10000))
10058 as_bad (_("lui expression not in range 0..65535"));
10059 s = expr_end;
10060 continue;
10061
10062 case 'a': /* 26 bit address */
10063 my_getExpression (&offset_expr, s);
10064 s = expr_end;
10065 *offset_reloc = BFD_RELOC_MIPS_JMP;
10066 continue;
10067
10068 case 'N': /* 3 bit branch condition code */
10069 case 'M': /* 3 bit compare condition code */
10070 rtype = RTYPE_CCC;
10071 if (ip->insn_mo->pinfo & (FP_D| FP_S))
10072 rtype |= RTYPE_FCC;
10073 if (!reg_lookup (&s, rtype, &regno))
10074 break;
10075 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
10076 || strcmp(str + strlen(str) - 5, "any2f") == 0
10077 || strcmp(str + strlen(str) - 5, "any2t") == 0)
10078 && (regno & 1) != 0)
10079 as_warn(_("Condition code register should be even for %s, was %d"),
10080 str, regno);
10081 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
10082 || strcmp(str + strlen(str) - 5, "any4t") == 0)
10083 && (regno & 3) != 0)
10084 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
10085 str, regno);
10086 if (*args == 'N')
10087 INSERT_OPERAND (BCC, *ip, regno);
10088 else
10089 INSERT_OPERAND (CCC, *ip, regno);
10090 continue;
10091
10092 case 'H':
10093 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10094 s += 2;
10095 if (ISDIGIT (*s))
10096 {
10097 c = 0;
10098 do
10099 {
10100 c *= 10;
10101 c += *s - '0';
10102 ++s;
10103 }
10104 while (ISDIGIT (*s));
10105 }
10106 else
10107 c = 8; /* Invalid sel value. */
10108
10109 if (c > 7)
10110 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
10111 ip->insn_opcode |= c;
10112 continue;
10113
10114 case 'e':
10115 /* Must be at least one digit. */
10116 my_getExpression (&imm_expr, s);
10117 check_absolute_expr (ip, &imm_expr);
10118
10119 if ((unsigned long) imm_expr.X_add_number
10120 > (unsigned long) OP_MASK_VECBYTE)
10121 {
10122 as_bad (_("bad byte vector index (%ld)"),
10123 (long) imm_expr.X_add_number);
10124 imm_expr.X_add_number = 0;
10125 }
10126
10127 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10128 imm_expr.X_op = O_absent;
10129 s = expr_end;
10130 continue;
10131
10132 case '%':
10133 my_getExpression (&imm_expr, s);
10134 check_absolute_expr (ip, &imm_expr);
10135
10136 if ((unsigned long) imm_expr.X_add_number
10137 > (unsigned long) OP_MASK_VECALIGN)
10138 {
10139 as_bad (_("bad byte vector index (%ld)"),
10140 (long) imm_expr.X_add_number);
10141 imm_expr.X_add_number = 0;
10142 }
10143
10144 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10145 imm_expr.X_op = O_absent;
10146 s = expr_end;
10147 continue;
10148
10149 default:
10150 as_bad (_("bad char = '%c'\n"), *args);
10151 internalError ();
10152 }
10153 break;
10154 }
10155 /* Args don't match. */
10156 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10157 !strcmp (insn->name, insn[1].name))
10158 {
10159 ++insn;
10160 s = argsStart;
10161 insn_error = _("illegal operands");
10162 continue;
10163 }
10164 if (save_c)
10165 *(--argsStart) = save_c;
10166 insn_error = _("illegal operands");
10167 return;
10168 }
10169 }
10170
10171 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10172
10173 /* This routine assembles an instruction into its binary format when
10174 assembling for the mips16. As a side effect, it sets one of the
10175 global variables imm_reloc or offset_reloc to the type of
10176 relocation to do if one of the operands is an address expression.
10177 It also sets mips16_small and mips16_ext if the user explicitly
10178 requested a small or extended instruction. */
10179
10180 static void
10181 mips16_ip (char *str, struct mips_cl_insn *ip)
10182 {
10183 char *s;
10184 const char *args;
10185 struct mips_opcode *insn;
10186 char *argsstart;
10187 unsigned int regno;
10188 unsigned int lastregno = 0;
10189 char *s_reset;
10190 size_t i;
10191
10192 insn_error = NULL;
10193
10194 mips16_small = FALSE;
10195 mips16_ext = FALSE;
10196
10197 for (s = str; ISLOWER (*s); ++s)
10198 ;
10199 switch (*s)
10200 {
10201 case '\0':
10202 break;
10203
10204 case ' ':
10205 *s++ = '\0';
10206 break;
10207
10208 case '.':
10209 if (s[1] == 't' && s[2] == ' ')
10210 {
10211 *s = '\0';
10212 mips16_small = TRUE;
10213 s += 3;
10214 break;
10215 }
10216 else if (s[1] == 'e' && s[2] == ' ')
10217 {
10218 *s = '\0';
10219 mips16_ext = TRUE;
10220 s += 3;
10221 break;
10222 }
10223 /* Fall through. */
10224 default:
10225 insn_error = _("unknown opcode");
10226 return;
10227 }
10228
10229 if (mips_opts.noautoextend && ! mips16_ext)
10230 mips16_small = TRUE;
10231
10232 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10233 {
10234 insn_error = _("unrecognized opcode");
10235 return;
10236 }
10237
10238 argsstart = s;
10239 for (;;)
10240 {
10241 bfd_boolean ok;
10242
10243 assert (strcmp (insn->name, str) == 0);
10244
10245 ok = is_opcode_valid_16 (insn);
10246 if (! ok)
10247 {
10248 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10249 && strcmp (insn->name, insn[1].name) == 0)
10250 {
10251 ++insn;
10252 continue;
10253 }
10254 else
10255 {
10256 if (!insn_error)
10257 {
10258 static char buf[100];
10259 sprintf (buf,
10260 _("opcode not supported on this processor: %s (%s)"),
10261 mips_cpu_info_from_arch (mips_opts.arch)->name,
10262 mips_cpu_info_from_isa (mips_opts.isa)->name);
10263 insn_error = buf;
10264 }
10265 return;
10266 }
10267 }
10268
10269 create_insn (ip, insn);
10270 imm_expr.X_op = O_absent;
10271 imm_reloc[0] = BFD_RELOC_UNUSED;
10272 imm_reloc[1] = BFD_RELOC_UNUSED;
10273 imm_reloc[2] = BFD_RELOC_UNUSED;
10274 imm2_expr.X_op = O_absent;
10275 offset_expr.X_op = O_absent;
10276 offset_reloc[0] = BFD_RELOC_UNUSED;
10277 offset_reloc[1] = BFD_RELOC_UNUSED;
10278 offset_reloc[2] = BFD_RELOC_UNUSED;
10279 for (args = insn->args; 1; ++args)
10280 {
10281 int c;
10282
10283 if (*s == ' ')
10284 ++s;
10285
10286 /* In this switch statement we call break if we did not find
10287 a match, continue if we did find a match, or return if we
10288 are done. */
10289
10290 c = *args;
10291 switch (c)
10292 {
10293 case '\0':
10294 if (*s == '\0')
10295 {
10296 /* Stuff the immediate value in now, if we can. */
10297 if (imm_expr.X_op == O_constant
10298 && *imm_reloc > BFD_RELOC_UNUSED
10299 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10300 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10301 && insn->pinfo != INSN_MACRO)
10302 {
10303 valueT tmp;
10304
10305 switch (*offset_reloc)
10306 {
10307 case BFD_RELOC_MIPS16_HI16_S:
10308 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10309 break;
10310
10311 case BFD_RELOC_MIPS16_HI16:
10312 tmp = imm_expr.X_add_number >> 16;
10313 break;
10314
10315 case BFD_RELOC_MIPS16_LO16:
10316 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10317 - 0x8000;
10318 break;
10319
10320 case BFD_RELOC_UNUSED:
10321 tmp = imm_expr.X_add_number;
10322 break;
10323
10324 default:
10325 internalError ();
10326 }
10327 *offset_reloc = BFD_RELOC_UNUSED;
10328
10329 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10330 tmp, TRUE, mips16_small,
10331 mips16_ext, &ip->insn_opcode,
10332 &ip->use_extend, &ip->extend);
10333 imm_expr.X_op = O_absent;
10334 *imm_reloc = BFD_RELOC_UNUSED;
10335 }
10336
10337 return;
10338 }
10339 break;
10340
10341 case ',':
10342 if (*s++ == c)
10343 continue;
10344 s--;
10345 switch (*++args)
10346 {
10347 case 'v':
10348 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10349 continue;
10350 case 'w':
10351 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10352 continue;
10353 }
10354 break;
10355
10356 case '(':
10357 case ')':
10358 if (*s++ == c)
10359 continue;
10360 break;
10361
10362 case 'v':
10363 case 'w':
10364 if (s[0] != '$')
10365 {
10366 if (c == 'v')
10367 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10368 else
10369 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10370 ++args;
10371 continue;
10372 }
10373 /* Fall through. */
10374 case 'x':
10375 case 'y':
10376 case 'z':
10377 case 'Z':
10378 case '0':
10379 case 'S':
10380 case 'R':
10381 case 'X':
10382 case 'Y':
10383 s_reset = s;
10384 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10385 {
10386 if (c == 'v' || c == 'w')
10387 {
10388 if (c == 'v')
10389 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10390 else
10391 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10392 ++args;
10393 continue;
10394 }
10395 break;
10396 }
10397
10398 if (*s == ' ')
10399 ++s;
10400 if (args[1] != *s)
10401 {
10402 if (c == 'v' || c == 'w')
10403 {
10404 regno = mips16_to_32_reg_map[lastregno];
10405 s = s_reset;
10406 ++args;
10407 }
10408 }
10409
10410 switch (c)
10411 {
10412 case 'x':
10413 case 'y':
10414 case 'z':
10415 case 'v':
10416 case 'w':
10417 case 'Z':
10418 regno = mips32_to_16_reg_map[regno];
10419 break;
10420
10421 case '0':
10422 if (regno != 0)
10423 regno = ILLEGAL_REG;
10424 break;
10425
10426 case 'S':
10427 if (regno != SP)
10428 regno = ILLEGAL_REG;
10429 break;
10430
10431 case 'R':
10432 if (regno != RA)
10433 regno = ILLEGAL_REG;
10434 break;
10435
10436 case 'X':
10437 case 'Y':
10438 if (regno == AT && mips_opts.at)
10439 {
10440 if (mips_opts.at == ATREG)
10441 as_warn (_("used $at without \".set noat\""));
10442 else
10443 as_warn (_("used $%u with \".set at=$%u\""),
10444 regno, mips_opts.at);
10445 }
10446 break;
10447
10448 default:
10449 internalError ();
10450 }
10451
10452 if (regno == ILLEGAL_REG)
10453 break;
10454
10455 switch (c)
10456 {
10457 case 'x':
10458 case 'v':
10459 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10460 break;
10461 case 'y':
10462 case 'w':
10463 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10464 break;
10465 case 'z':
10466 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10467 break;
10468 case 'Z':
10469 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10470 case '0':
10471 case 'S':
10472 case 'R':
10473 break;
10474 case 'X':
10475 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10476 break;
10477 case 'Y':
10478 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10479 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10480 break;
10481 default:
10482 internalError ();
10483 }
10484
10485 lastregno = regno;
10486 continue;
10487
10488 case 'P':
10489 if (strncmp (s, "$pc", 3) == 0)
10490 {
10491 s += 3;
10492 continue;
10493 }
10494 break;
10495
10496 case '5':
10497 case 'H':
10498 case 'W':
10499 case 'D':
10500 case 'j':
10501 case 'V':
10502 case 'C':
10503 case 'U':
10504 case 'k':
10505 case 'K':
10506 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10507 if (i > 0)
10508 {
10509 if (imm_expr.X_op != O_constant)
10510 {
10511 mips16_ext = TRUE;
10512 ip->use_extend = TRUE;
10513 ip->extend = 0;
10514 }
10515 else
10516 {
10517 /* We need to relax this instruction. */
10518 *offset_reloc = *imm_reloc;
10519 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10520 }
10521 s = expr_end;
10522 continue;
10523 }
10524 *imm_reloc = BFD_RELOC_UNUSED;
10525 /* Fall through. */
10526 case '<':
10527 case '>':
10528 case '[':
10529 case ']':
10530 case '4':
10531 case '8':
10532 my_getExpression (&imm_expr, s);
10533 if (imm_expr.X_op == O_register)
10534 {
10535 /* What we thought was an expression turned out to
10536 be a register. */
10537
10538 if (s[0] == '(' && args[1] == '(')
10539 {
10540 /* It looks like the expression was omitted
10541 before a register indirection, which means
10542 that the expression is implicitly zero. We
10543 still set up imm_expr, so that we handle
10544 explicit extensions correctly. */
10545 imm_expr.X_op = O_constant;
10546 imm_expr.X_add_number = 0;
10547 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10548 continue;
10549 }
10550
10551 break;
10552 }
10553
10554 /* We need to relax this instruction. */
10555 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10556 s = expr_end;
10557 continue;
10558
10559 case 'p':
10560 case 'q':
10561 case 'A':
10562 case 'B':
10563 case 'E':
10564 /* We use offset_reloc rather than imm_reloc for the PC
10565 relative operands. This lets macros with both
10566 immediate and address operands work correctly. */
10567 my_getExpression (&offset_expr, s);
10568
10569 if (offset_expr.X_op == O_register)
10570 break;
10571
10572 /* We need to relax this instruction. */
10573 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10574 s = expr_end;
10575 continue;
10576
10577 case '6': /* break code */
10578 my_getExpression (&imm_expr, s);
10579 check_absolute_expr (ip, &imm_expr);
10580 if ((unsigned long) imm_expr.X_add_number > 63)
10581 as_warn (_("Invalid value for `%s' (%lu)"),
10582 ip->insn_mo->name,
10583 (unsigned long) imm_expr.X_add_number);
10584 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10585 imm_expr.X_op = O_absent;
10586 s = expr_end;
10587 continue;
10588
10589 case 'a': /* 26 bit address */
10590 my_getExpression (&offset_expr, s);
10591 s = expr_end;
10592 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10593 ip->insn_opcode <<= 16;
10594 continue;
10595
10596 case 'l': /* register list for entry macro */
10597 case 'L': /* register list for exit macro */
10598 {
10599 int mask;
10600
10601 if (c == 'l')
10602 mask = 0;
10603 else
10604 mask = 7 << 3;
10605 while (*s != '\0')
10606 {
10607 unsigned int freg, reg1, reg2;
10608
10609 while (*s == ' ' || *s == ',')
10610 ++s;
10611 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10612 freg = 0;
10613 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10614 freg = 1;
10615 else
10616 {
10617 as_bad (_("can't parse register list"));
10618 break;
10619 }
10620 if (*s == ' ')
10621 ++s;
10622 if (*s != '-')
10623 reg2 = reg1;
10624 else
10625 {
10626 ++s;
10627 if (!reg_lookup (&s, freg ? RTYPE_FPU
10628 : (RTYPE_GP | RTYPE_NUM), &reg2))
10629 {
10630 as_bad (_("invalid register list"));
10631 break;
10632 }
10633 }
10634 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10635 {
10636 mask &= ~ (7 << 3);
10637 mask |= 5 << 3;
10638 }
10639 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10640 {
10641 mask &= ~ (7 << 3);
10642 mask |= 6 << 3;
10643 }
10644 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10645 mask |= (reg2 - 3) << 3;
10646 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10647 mask |= (reg2 - 15) << 1;
10648 else if (reg1 == RA && reg2 == RA)
10649 mask |= 1;
10650 else
10651 {
10652 as_bad (_("invalid register list"));
10653 break;
10654 }
10655 }
10656 /* The mask is filled in in the opcode table for the
10657 benefit of the disassembler. We remove it before
10658 applying the actual mask. */
10659 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10660 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10661 }
10662 continue;
10663
10664 case 'm': /* Register list for save insn. */
10665 case 'M': /* Register list for restore insn. */
10666 {
10667 int opcode = 0;
10668 int framesz = 0, seen_framesz = 0;
10669 int args = 0, statics = 0, sregs = 0;
10670
10671 while (*s != '\0')
10672 {
10673 unsigned int reg1, reg2;
10674
10675 SKIP_SPACE_TABS (s);
10676 while (*s == ',')
10677 ++s;
10678 SKIP_SPACE_TABS (s);
10679
10680 my_getExpression (&imm_expr, s);
10681 if (imm_expr.X_op == O_constant)
10682 {
10683 /* Handle the frame size. */
10684 if (seen_framesz)
10685 {
10686 as_bad (_("more than one frame size in list"));
10687 break;
10688 }
10689 seen_framesz = 1;
10690 framesz = imm_expr.X_add_number;
10691 imm_expr.X_op = O_absent;
10692 s = expr_end;
10693 continue;
10694 }
10695
10696 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10697 {
10698 as_bad (_("can't parse register list"));
10699 break;
10700 }
10701
10702 while (*s == ' ')
10703 ++s;
10704
10705 if (*s != '-')
10706 reg2 = reg1;
10707 else
10708 {
10709 ++s;
10710 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10711 || reg2 < reg1)
10712 {
10713 as_bad (_("can't parse register list"));
10714 break;
10715 }
10716 }
10717
10718 while (reg1 <= reg2)
10719 {
10720 if (reg1 >= 4 && reg1 <= 7)
10721 {
10722 if (!seen_framesz)
10723 /* args $a0-$a3 */
10724 args |= 1 << (reg1 - 4);
10725 else
10726 /* statics $a0-$a3 */
10727 statics |= 1 << (reg1 - 4);
10728 }
10729 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10730 {
10731 /* $s0-$s8 */
10732 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10733 }
10734 else if (reg1 == 31)
10735 {
10736 /* Add $ra to insn. */
10737 opcode |= 0x40;
10738 }
10739 else
10740 {
10741 as_bad (_("unexpected register in list"));
10742 break;
10743 }
10744 if (++reg1 == 24)
10745 reg1 = 30;
10746 }
10747 }
10748
10749 /* Encode args/statics combination. */
10750 if (args & statics)
10751 as_bad (_("arg/static registers overlap"));
10752 else if (args == 0xf)
10753 /* All $a0-$a3 are args. */
10754 opcode |= MIPS16_ALL_ARGS << 16;
10755 else if (statics == 0xf)
10756 /* All $a0-$a3 are statics. */
10757 opcode |= MIPS16_ALL_STATICS << 16;
10758 else
10759 {
10760 int narg = 0, nstat = 0;
10761
10762 /* Count arg registers. */
10763 while (args & 0x1)
10764 {
10765 args >>= 1;
10766 narg++;
10767 }
10768 if (args != 0)
10769 as_bad (_("invalid arg register list"));
10770
10771 /* Count static registers. */
10772 while (statics & 0x8)
10773 {
10774 statics = (statics << 1) & 0xf;
10775 nstat++;
10776 }
10777 if (statics != 0)
10778 as_bad (_("invalid static register list"));
10779
10780 /* Encode args/statics. */
10781 opcode |= ((narg << 2) | nstat) << 16;
10782 }
10783
10784 /* Encode $s0/$s1. */
10785 if (sregs & (1 << 0)) /* $s0 */
10786 opcode |= 0x20;
10787 if (sregs & (1 << 1)) /* $s1 */
10788 opcode |= 0x10;
10789 sregs >>= 2;
10790
10791 if (sregs != 0)
10792 {
10793 /* Count regs $s2-$s8. */
10794 int nsreg = 0;
10795 while (sregs & 1)
10796 {
10797 sregs >>= 1;
10798 nsreg++;
10799 }
10800 if (sregs != 0)
10801 as_bad (_("invalid static register list"));
10802 /* Encode $s2-$s8. */
10803 opcode |= nsreg << 24;
10804 }
10805
10806 /* Encode frame size. */
10807 if (!seen_framesz)
10808 as_bad (_("missing frame size"));
10809 else if ((framesz & 7) != 0 || framesz < 0
10810 || framesz > 0xff * 8)
10811 as_bad (_("invalid frame size"));
10812 else if (framesz != 128 || (opcode >> 16) != 0)
10813 {
10814 framesz /= 8;
10815 opcode |= (((framesz & 0xf0) << 16)
10816 | (framesz & 0x0f));
10817 }
10818
10819 /* Finally build the instruction. */
10820 if ((opcode >> 16) != 0 || framesz == 0)
10821 {
10822 ip->use_extend = TRUE;
10823 ip->extend = opcode >> 16;
10824 }
10825 ip->insn_opcode |= opcode & 0x7f;
10826 }
10827 continue;
10828
10829 case 'e': /* extend code */
10830 my_getExpression (&imm_expr, s);
10831 check_absolute_expr (ip, &imm_expr);
10832 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10833 {
10834 as_warn (_("Invalid value for `%s' (%lu)"),
10835 ip->insn_mo->name,
10836 (unsigned long) imm_expr.X_add_number);
10837 imm_expr.X_add_number &= 0x7ff;
10838 }
10839 ip->insn_opcode |= imm_expr.X_add_number;
10840 imm_expr.X_op = O_absent;
10841 s = expr_end;
10842 continue;
10843
10844 default:
10845 internalError ();
10846 }
10847 break;
10848 }
10849
10850 /* Args don't match. */
10851 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10852 strcmp (insn->name, insn[1].name) == 0)
10853 {
10854 ++insn;
10855 s = argsstart;
10856 continue;
10857 }
10858
10859 insn_error = _("illegal operands");
10860
10861 return;
10862 }
10863 }
10864
10865 /* This structure holds information we know about a mips16 immediate
10866 argument type. */
10867
10868 struct mips16_immed_operand
10869 {
10870 /* The type code used in the argument string in the opcode table. */
10871 int type;
10872 /* The number of bits in the short form of the opcode. */
10873 int nbits;
10874 /* The number of bits in the extended form of the opcode. */
10875 int extbits;
10876 /* The amount by which the short form is shifted when it is used;
10877 for example, the sw instruction has a shift count of 2. */
10878 int shift;
10879 /* The amount by which the short form is shifted when it is stored
10880 into the instruction code. */
10881 int op_shift;
10882 /* Non-zero if the short form is unsigned. */
10883 int unsp;
10884 /* Non-zero if the extended form is unsigned. */
10885 int extu;
10886 /* Non-zero if the value is PC relative. */
10887 int pcrel;
10888 };
10889
10890 /* The mips16 immediate operand types. */
10891
10892 static const struct mips16_immed_operand mips16_immed_operands[] =
10893 {
10894 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10895 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10896 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10897 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10898 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10899 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10900 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10901 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10902 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10903 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10904 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10905 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10906 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10907 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10908 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10909 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10910 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10911 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10912 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10913 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10914 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10915 };
10916
10917 #define MIPS16_NUM_IMMED \
10918 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10919
10920 /* Handle a mips16 instruction with an immediate value. This or's the
10921 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10922 whether an extended value is needed; if one is needed, it sets
10923 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10924 If SMALL is true, an unextended opcode was explicitly requested.
10925 If EXT is true, an extended opcode was explicitly requested. If
10926 WARN is true, warn if EXT does not match reality. */
10927
10928 static void
10929 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10930 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10931 unsigned long *insn, bfd_boolean *use_extend,
10932 unsigned short *extend)
10933 {
10934 const struct mips16_immed_operand *op;
10935 int mintiny, maxtiny;
10936 bfd_boolean needext;
10937
10938 op = mips16_immed_operands;
10939 while (op->type != type)
10940 {
10941 ++op;
10942 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10943 }
10944
10945 if (op->unsp)
10946 {
10947 if (type == '<' || type == '>' || type == '[' || type == ']')
10948 {
10949 mintiny = 1;
10950 maxtiny = 1 << op->nbits;
10951 }
10952 else
10953 {
10954 mintiny = 0;
10955 maxtiny = (1 << op->nbits) - 1;
10956 }
10957 }
10958 else
10959 {
10960 mintiny = - (1 << (op->nbits - 1));
10961 maxtiny = (1 << (op->nbits - 1)) - 1;
10962 }
10963
10964 /* Branch offsets have an implicit 0 in the lowest bit. */
10965 if (type == 'p' || type == 'q')
10966 val /= 2;
10967
10968 if ((val & ((1 << op->shift) - 1)) != 0
10969 || val < (mintiny << op->shift)
10970 || val > (maxtiny << op->shift))
10971 needext = TRUE;
10972 else
10973 needext = FALSE;
10974
10975 if (warn && ext && ! needext)
10976 as_warn_where (file, line,
10977 _("extended operand requested but not required"));
10978 if (small && needext)
10979 as_bad_where (file, line, _("invalid unextended operand value"));
10980
10981 if (small || (! ext && ! needext))
10982 {
10983 int insnval;
10984
10985 *use_extend = FALSE;
10986 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10987 insnval <<= op->op_shift;
10988 *insn |= insnval;
10989 }
10990 else
10991 {
10992 long minext, maxext;
10993 int extval;
10994
10995 if (op->extu)
10996 {
10997 minext = 0;
10998 maxext = (1 << op->extbits) - 1;
10999 }
11000 else
11001 {
11002 minext = - (1 << (op->extbits - 1));
11003 maxext = (1 << (op->extbits - 1)) - 1;
11004 }
11005 if (val < minext || val > maxext)
11006 as_bad_where (file, line,
11007 _("operand value out of range for instruction"));
11008
11009 *use_extend = TRUE;
11010 if (op->extbits == 16)
11011 {
11012 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11013 val &= 0x1f;
11014 }
11015 else if (op->extbits == 15)
11016 {
11017 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11018 val &= 0xf;
11019 }
11020 else
11021 {
11022 extval = ((val & 0x1f) << 6) | (val & 0x20);
11023 val = 0;
11024 }
11025
11026 *extend = (unsigned short) extval;
11027 *insn |= val;
11028 }
11029 }
11030 \f
11031 struct percent_op_match
11032 {
11033 const char *str;
11034 bfd_reloc_code_real_type reloc;
11035 };
11036
11037 static const struct percent_op_match mips_percent_op[] =
11038 {
11039 {"%lo", BFD_RELOC_LO16},
11040 #ifdef OBJ_ELF
11041 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11042 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11043 {"%call16", BFD_RELOC_MIPS_CALL16},
11044 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11045 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11046 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11047 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11048 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11049 {"%got", BFD_RELOC_MIPS_GOT16},
11050 {"%gp_rel", BFD_RELOC_GPREL16},
11051 {"%half", BFD_RELOC_16},
11052 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11053 {"%higher", BFD_RELOC_MIPS_HIGHER},
11054 {"%neg", BFD_RELOC_MIPS_SUB},
11055 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11056 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11057 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11058 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11059 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11060 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11061 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11062 #endif
11063 {"%hi", BFD_RELOC_HI16_S}
11064 };
11065
11066 static const struct percent_op_match mips16_percent_op[] =
11067 {
11068 {"%lo", BFD_RELOC_MIPS16_LO16},
11069 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11070 {"%got", BFD_RELOC_MIPS16_GOT16},
11071 {"%call16", BFD_RELOC_MIPS16_CALL16},
11072 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11073 };
11074
11075
11076 /* Return true if *STR points to a relocation operator. When returning true,
11077 move *STR over the operator and store its relocation code in *RELOC.
11078 Leave both *STR and *RELOC alone when returning false. */
11079
11080 static bfd_boolean
11081 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11082 {
11083 const struct percent_op_match *percent_op;
11084 size_t limit, i;
11085
11086 if (mips_opts.mips16)
11087 {
11088 percent_op = mips16_percent_op;
11089 limit = ARRAY_SIZE (mips16_percent_op);
11090 }
11091 else
11092 {
11093 percent_op = mips_percent_op;
11094 limit = ARRAY_SIZE (mips_percent_op);
11095 }
11096
11097 for (i = 0; i < limit; i++)
11098 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11099 {
11100 int len = strlen (percent_op[i].str);
11101
11102 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11103 continue;
11104
11105 *str += strlen (percent_op[i].str);
11106 *reloc = percent_op[i].reloc;
11107
11108 /* Check whether the output BFD supports this relocation.
11109 If not, issue an error and fall back on something safe. */
11110 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11111 {
11112 as_bad ("relocation %s isn't supported by the current ABI",
11113 percent_op[i].str);
11114 *reloc = BFD_RELOC_UNUSED;
11115 }
11116 return TRUE;
11117 }
11118 return FALSE;
11119 }
11120
11121
11122 /* Parse string STR as a 16-bit relocatable operand. Store the
11123 expression in *EP and the relocations in the array starting
11124 at RELOC. Return the number of relocation operators used.
11125
11126 On exit, EXPR_END points to the first character after the expression. */
11127
11128 static size_t
11129 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11130 char *str)
11131 {
11132 bfd_reloc_code_real_type reversed_reloc[3];
11133 size_t reloc_index, i;
11134 int crux_depth, str_depth;
11135 char *crux;
11136
11137 /* Search for the start of the main expression, recoding relocations
11138 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11139 of the main expression and with CRUX_DEPTH containing the number
11140 of open brackets at that point. */
11141 reloc_index = -1;
11142 str_depth = 0;
11143 do
11144 {
11145 reloc_index++;
11146 crux = str;
11147 crux_depth = str_depth;
11148
11149 /* Skip over whitespace and brackets, keeping count of the number
11150 of brackets. */
11151 while (*str == ' ' || *str == '\t' || *str == '(')
11152 if (*str++ == '(')
11153 str_depth++;
11154 }
11155 while (*str == '%'
11156 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11157 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11158
11159 my_getExpression (ep, crux);
11160 str = expr_end;
11161
11162 /* Match every open bracket. */
11163 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11164 if (*str++ == ')')
11165 crux_depth--;
11166
11167 if (crux_depth > 0)
11168 as_bad ("unclosed '('");
11169
11170 expr_end = str;
11171
11172 if (reloc_index != 0)
11173 {
11174 prev_reloc_op_frag = frag_now;
11175 for (i = 0; i < reloc_index; i++)
11176 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11177 }
11178
11179 return reloc_index;
11180 }
11181
11182 static void
11183 my_getExpression (expressionS *ep, char *str)
11184 {
11185 char *save_in;
11186 valueT val;
11187
11188 save_in = input_line_pointer;
11189 input_line_pointer = str;
11190 expression (ep);
11191 expr_end = input_line_pointer;
11192 input_line_pointer = save_in;
11193
11194 /* If we are in mips16 mode, and this is an expression based on `.',
11195 then we bump the value of the symbol by 1 since that is how other
11196 text symbols are handled. We don't bother to handle complex
11197 expressions, just `.' plus or minus a constant. */
11198 if (mips_opts.mips16
11199 && ep->X_op == O_symbol
11200 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11201 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11202 && symbol_get_frag (ep->X_add_symbol) == frag_now
11203 && symbol_constant_p (ep->X_add_symbol)
11204 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11205 S_SET_VALUE (ep->X_add_symbol, val + 1);
11206 }
11207
11208 char *
11209 md_atof (int type, char *litP, int *sizeP)
11210 {
11211 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11212 }
11213
11214 void
11215 md_number_to_chars (char *buf, valueT val, int n)
11216 {
11217 if (target_big_endian)
11218 number_to_chars_bigendian (buf, val, n);
11219 else
11220 number_to_chars_littleendian (buf, val, n);
11221 }
11222 \f
11223 #ifdef OBJ_ELF
11224 static int support_64bit_objects(void)
11225 {
11226 const char **list, **l;
11227 int yes;
11228
11229 list = bfd_target_list ();
11230 for (l = list; *l != NULL; l++)
11231 #ifdef TE_TMIPS
11232 /* This is traditional mips */
11233 if (strcmp (*l, "elf64-tradbigmips") == 0
11234 || strcmp (*l, "elf64-tradlittlemips") == 0)
11235 #else
11236 if (strcmp (*l, "elf64-bigmips") == 0
11237 || strcmp (*l, "elf64-littlemips") == 0)
11238 #endif
11239 break;
11240 yes = (*l != NULL);
11241 free (list);
11242 return yes;
11243 }
11244 #endif /* OBJ_ELF */
11245
11246 const char *md_shortopts = "O::g::G:";
11247
11248 enum options
11249 {
11250 OPTION_MARCH = OPTION_MD_BASE,
11251 OPTION_MTUNE,
11252 OPTION_MIPS1,
11253 OPTION_MIPS2,
11254 OPTION_MIPS3,
11255 OPTION_MIPS4,
11256 OPTION_MIPS5,
11257 OPTION_MIPS32,
11258 OPTION_MIPS64,
11259 OPTION_MIPS32R2,
11260 OPTION_MIPS64R2,
11261 OPTION_MIPS16,
11262 OPTION_NO_MIPS16,
11263 OPTION_MIPS3D,
11264 OPTION_NO_MIPS3D,
11265 OPTION_MDMX,
11266 OPTION_NO_MDMX,
11267 OPTION_DSP,
11268 OPTION_NO_DSP,
11269 OPTION_MT,
11270 OPTION_NO_MT,
11271 OPTION_SMARTMIPS,
11272 OPTION_NO_SMARTMIPS,
11273 OPTION_DSPR2,
11274 OPTION_NO_DSPR2,
11275 OPTION_COMPAT_ARCH_BASE,
11276 OPTION_M4650,
11277 OPTION_NO_M4650,
11278 OPTION_M4010,
11279 OPTION_NO_M4010,
11280 OPTION_M4100,
11281 OPTION_NO_M4100,
11282 OPTION_M3900,
11283 OPTION_NO_M3900,
11284 OPTION_M7000_HILO_FIX,
11285 OPTION_MNO_7000_HILO_FIX,
11286 OPTION_FIX_24K,
11287 OPTION_NO_FIX_24K,
11288 OPTION_FIX_VR4120,
11289 OPTION_NO_FIX_VR4120,
11290 OPTION_FIX_VR4130,
11291 OPTION_NO_FIX_VR4130,
11292 OPTION_TRAP,
11293 OPTION_BREAK,
11294 OPTION_EB,
11295 OPTION_EL,
11296 OPTION_FP32,
11297 OPTION_GP32,
11298 OPTION_CONSTRUCT_FLOATS,
11299 OPTION_NO_CONSTRUCT_FLOATS,
11300 OPTION_FP64,
11301 OPTION_GP64,
11302 OPTION_RELAX_BRANCH,
11303 OPTION_NO_RELAX_BRANCH,
11304 OPTION_MSHARED,
11305 OPTION_MNO_SHARED,
11306 OPTION_MSYM32,
11307 OPTION_MNO_SYM32,
11308 OPTION_SOFT_FLOAT,
11309 OPTION_HARD_FLOAT,
11310 OPTION_SINGLE_FLOAT,
11311 OPTION_DOUBLE_FLOAT,
11312 OPTION_32,
11313 #ifdef OBJ_ELF
11314 OPTION_CALL_SHARED,
11315 OPTION_CALL_NONPIC,
11316 OPTION_NON_SHARED,
11317 OPTION_XGOT,
11318 OPTION_MABI,
11319 OPTION_N32,
11320 OPTION_64,
11321 OPTION_MDEBUG,
11322 OPTION_NO_MDEBUG,
11323 OPTION_PDR,
11324 OPTION_NO_PDR,
11325 OPTION_MVXWORKS_PIC,
11326 #endif /* OBJ_ELF */
11327 OPTION_END_OF_ENUM
11328 };
11329
11330 struct option md_longopts[] =
11331 {
11332 /* Options which specify architecture. */
11333 {"march", required_argument, NULL, OPTION_MARCH},
11334 {"mtune", required_argument, NULL, OPTION_MTUNE},
11335 {"mips0", no_argument, NULL, OPTION_MIPS1},
11336 {"mips1", no_argument, NULL, OPTION_MIPS1},
11337 {"mips2", no_argument, NULL, OPTION_MIPS2},
11338 {"mips3", no_argument, NULL, OPTION_MIPS3},
11339 {"mips4", no_argument, NULL, OPTION_MIPS4},
11340 {"mips5", no_argument, NULL, OPTION_MIPS5},
11341 {"mips32", no_argument, NULL, OPTION_MIPS32},
11342 {"mips64", no_argument, NULL, OPTION_MIPS64},
11343 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11344 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11345
11346 /* Options which specify Application Specific Extensions (ASEs). */
11347 {"mips16", no_argument, NULL, OPTION_MIPS16},
11348 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11349 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11350 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11351 {"mdmx", no_argument, NULL, OPTION_MDMX},
11352 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11353 {"mdsp", no_argument, NULL, OPTION_DSP},
11354 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11355 {"mmt", no_argument, NULL, OPTION_MT},
11356 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11357 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11358 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11359 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11360 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11361
11362 /* Old-style architecture options. Don't add more of these. */
11363 {"m4650", no_argument, NULL, OPTION_M4650},
11364 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11365 {"m4010", no_argument, NULL, OPTION_M4010},
11366 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11367 {"m4100", no_argument, NULL, OPTION_M4100},
11368 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11369 {"m3900", no_argument, NULL, OPTION_M3900},
11370 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11371
11372 /* Options which enable bug fixes. */
11373 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11374 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11375 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11376 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11377 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11378 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11379 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11380 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11381 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11382
11383 /* Miscellaneous options. */
11384 {"trap", no_argument, NULL, OPTION_TRAP},
11385 {"no-break", no_argument, NULL, OPTION_TRAP},
11386 {"break", no_argument, NULL, OPTION_BREAK},
11387 {"no-trap", no_argument, NULL, OPTION_BREAK},
11388 {"EB", no_argument, NULL, OPTION_EB},
11389 {"EL", no_argument, NULL, OPTION_EL},
11390 {"mfp32", no_argument, NULL, OPTION_FP32},
11391 {"mgp32", no_argument, NULL, OPTION_GP32},
11392 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11393 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11394 {"mfp64", no_argument, NULL, OPTION_FP64},
11395 {"mgp64", no_argument, NULL, OPTION_GP64},
11396 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11397 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11398 {"mshared", no_argument, NULL, OPTION_MSHARED},
11399 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11400 {"msym32", no_argument, NULL, OPTION_MSYM32},
11401 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11402 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11403 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11404 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11405 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11406
11407 /* Strictly speaking this next option is ELF specific,
11408 but we allow it for other ports as well in order to
11409 make testing easier. */
11410 {"32", no_argument, NULL, OPTION_32},
11411
11412 /* ELF-specific options. */
11413 #ifdef OBJ_ELF
11414 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11415 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11416 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11417 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11418 {"xgot", no_argument, NULL, OPTION_XGOT},
11419 {"mabi", required_argument, NULL, OPTION_MABI},
11420 {"n32", no_argument, NULL, OPTION_N32},
11421 {"64", no_argument, NULL, OPTION_64},
11422 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11423 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11424 {"mpdr", no_argument, NULL, OPTION_PDR},
11425 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11426 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11427 #endif /* OBJ_ELF */
11428
11429 {NULL, no_argument, NULL, 0}
11430 };
11431 size_t md_longopts_size = sizeof (md_longopts);
11432
11433 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11434 NEW_VALUE. Warn if another value was already specified. Note:
11435 we have to defer parsing the -march and -mtune arguments in order
11436 to handle 'from-abi' correctly, since the ABI might be specified
11437 in a later argument. */
11438
11439 static void
11440 mips_set_option_string (const char **string_ptr, const char *new_value)
11441 {
11442 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11443 as_warn (_("A different %s was already specified, is now %s"),
11444 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11445 new_value);
11446
11447 *string_ptr = new_value;
11448 }
11449
11450 int
11451 md_parse_option (int c, char *arg)
11452 {
11453 switch (c)
11454 {
11455 case OPTION_CONSTRUCT_FLOATS:
11456 mips_disable_float_construction = 0;
11457 break;
11458
11459 case OPTION_NO_CONSTRUCT_FLOATS:
11460 mips_disable_float_construction = 1;
11461 break;
11462
11463 case OPTION_TRAP:
11464 mips_trap = 1;
11465 break;
11466
11467 case OPTION_BREAK:
11468 mips_trap = 0;
11469 break;
11470
11471 case OPTION_EB:
11472 target_big_endian = 1;
11473 break;
11474
11475 case OPTION_EL:
11476 target_big_endian = 0;
11477 break;
11478
11479 case 'O':
11480 if (arg == NULL)
11481 mips_optimize = 1;
11482 else if (arg[0] == '0')
11483 mips_optimize = 0;
11484 else if (arg[0] == '1')
11485 mips_optimize = 1;
11486 else
11487 mips_optimize = 2;
11488 break;
11489
11490 case 'g':
11491 if (arg == NULL)
11492 mips_debug = 2;
11493 else
11494 mips_debug = atoi (arg);
11495 break;
11496
11497 case OPTION_MIPS1:
11498 file_mips_isa = ISA_MIPS1;
11499 break;
11500
11501 case OPTION_MIPS2:
11502 file_mips_isa = ISA_MIPS2;
11503 break;
11504
11505 case OPTION_MIPS3:
11506 file_mips_isa = ISA_MIPS3;
11507 break;
11508
11509 case OPTION_MIPS4:
11510 file_mips_isa = ISA_MIPS4;
11511 break;
11512
11513 case OPTION_MIPS5:
11514 file_mips_isa = ISA_MIPS5;
11515 break;
11516
11517 case OPTION_MIPS32:
11518 file_mips_isa = ISA_MIPS32;
11519 break;
11520
11521 case OPTION_MIPS32R2:
11522 file_mips_isa = ISA_MIPS32R2;
11523 break;
11524
11525 case OPTION_MIPS64R2:
11526 file_mips_isa = ISA_MIPS64R2;
11527 break;
11528
11529 case OPTION_MIPS64:
11530 file_mips_isa = ISA_MIPS64;
11531 break;
11532
11533 case OPTION_MTUNE:
11534 mips_set_option_string (&mips_tune_string, arg);
11535 break;
11536
11537 case OPTION_MARCH:
11538 mips_set_option_string (&mips_arch_string, arg);
11539 break;
11540
11541 case OPTION_M4650:
11542 mips_set_option_string (&mips_arch_string, "4650");
11543 mips_set_option_string (&mips_tune_string, "4650");
11544 break;
11545
11546 case OPTION_NO_M4650:
11547 break;
11548
11549 case OPTION_M4010:
11550 mips_set_option_string (&mips_arch_string, "4010");
11551 mips_set_option_string (&mips_tune_string, "4010");
11552 break;
11553
11554 case OPTION_NO_M4010:
11555 break;
11556
11557 case OPTION_M4100:
11558 mips_set_option_string (&mips_arch_string, "4100");
11559 mips_set_option_string (&mips_tune_string, "4100");
11560 break;
11561
11562 case OPTION_NO_M4100:
11563 break;
11564
11565 case OPTION_M3900:
11566 mips_set_option_string (&mips_arch_string, "3900");
11567 mips_set_option_string (&mips_tune_string, "3900");
11568 break;
11569
11570 case OPTION_NO_M3900:
11571 break;
11572
11573 case OPTION_MDMX:
11574 mips_opts.ase_mdmx = 1;
11575 break;
11576
11577 case OPTION_NO_MDMX:
11578 mips_opts.ase_mdmx = 0;
11579 break;
11580
11581 case OPTION_DSP:
11582 mips_opts.ase_dsp = 1;
11583 mips_opts.ase_dspr2 = 0;
11584 break;
11585
11586 case OPTION_NO_DSP:
11587 mips_opts.ase_dsp = 0;
11588 mips_opts.ase_dspr2 = 0;
11589 break;
11590
11591 case OPTION_DSPR2:
11592 mips_opts.ase_dspr2 = 1;
11593 mips_opts.ase_dsp = 1;
11594 break;
11595
11596 case OPTION_NO_DSPR2:
11597 mips_opts.ase_dspr2 = 0;
11598 mips_opts.ase_dsp = 0;
11599 break;
11600
11601 case OPTION_MT:
11602 mips_opts.ase_mt = 1;
11603 break;
11604
11605 case OPTION_NO_MT:
11606 mips_opts.ase_mt = 0;
11607 break;
11608
11609 case OPTION_MIPS16:
11610 mips_opts.mips16 = 1;
11611 mips_no_prev_insn ();
11612 break;
11613
11614 case OPTION_NO_MIPS16:
11615 mips_opts.mips16 = 0;
11616 mips_no_prev_insn ();
11617 break;
11618
11619 case OPTION_MIPS3D:
11620 mips_opts.ase_mips3d = 1;
11621 break;
11622
11623 case OPTION_NO_MIPS3D:
11624 mips_opts.ase_mips3d = 0;
11625 break;
11626
11627 case OPTION_SMARTMIPS:
11628 mips_opts.ase_smartmips = 1;
11629 break;
11630
11631 case OPTION_NO_SMARTMIPS:
11632 mips_opts.ase_smartmips = 0;
11633 break;
11634
11635 case OPTION_FIX_24K:
11636 mips_fix_24k = 1;
11637 break;
11638
11639 case OPTION_NO_FIX_24K:
11640 mips_fix_24k = 0;
11641 break;
11642
11643 case OPTION_FIX_VR4120:
11644 mips_fix_vr4120 = 1;
11645 break;
11646
11647 case OPTION_NO_FIX_VR4120:
11648 mips_fix_vr4120 = 0;
11649 break;
11650
11651 case OPTION_FIX_VR4130:
11652 mips_fix_vr4130 = 1;
11653 break;
11654
11655 case OPTION_NO_FIX_VR4130:
11656 mips_fix_vr4130 = 0;
11657 break;
11658
11659 case OPTION_RELAX_BRANCH:
11660 mips_relax_branch = 1;
11661 break;
11662
11663 case OPTION_NO_RELAX_BRANCH:
11664 mips_relax_branch = 0;
11665 break;
11666
11667 case OPTION_MSHARED:
11668 mips_in_shared = TRUE;
11669 break;
11670
11671 case OPTION_MNO_SHARED:
11672 mips_in_shared = FALSE;
11673 break;
11674
11675 case OPTION_MSYM32:
11676 mips_opts.sym32 = TRUE;
11677 break;
11678
11679 case OPTION_MNO_SYM32:
11680 mips_opts.sym32 = FALSE;
11681 break;
11682
11683 #ifdef OBJ_ELF
11684 /* When generating ELF code, we permit -KPIC and -call_shared to
11685 select SVR4_PIC, and -non_shared to select no PIC. This is
11686 intended to be compatible with Irix 5. */
11687 case OPTION_CALL_SHARED:
11688 if (!IS_ELF)
11689 {
11690 as_bad (_("-call_shared is supported only for ELF format"));
11691 return 0;
11692 }
11693 mips_pic = SVR4_PIC;
11694 mips_abicalls = TRUE;
11695 break;
11696
11697 case OPTION_CALL_NONPIC:
11698 if (!IS_ELF)
11699 {
11700 as_bad (_("-call_nonpic is supported only for ELF format"));
11701 return 0;
11702 }
11703 mips_pic = NO_PIC;
11704 mips_abicalls = TRUE;
11705 break;
11706
11707 case OPTION_NON_SHARED:
11708 if (!IS_ELF)
11709 {
11710 as_bad (_("-non_shared is supported only for ELF format"));
11711 return 0;
11712 }
11713 mips_pic = NO_PIC;
11714 mips_abicalls = FALSE;
11715 break;
11716
11717 /* The -xgot option tells the assembler to use 32 bit offsets
11718 when accessing the got in SVR4_PIC mode. It is for Irix
11719 compatibility. */
11720 case OPTION_XGOT:
11721 mips_big_got = 1;
11722 break;
11723 #endif /* OBJ_ELF */
11724
11725 case 'G':
11726 g_switch_value = atoi (arg);
11727 g_switch_seen = 1;
11728 break;
11729
11730 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11731 and -mabi=64. */
11732 case OPTION_32:
11733 if (IS_ELF)
11734 mips_abi = O32_ABI;
11735 /* We silently ignore -32 for non-ELF targets. This greatly
11736 simplifies the construction of the MIPS GAS test cases. */
11737 break;
11738
11739 #ifdef OBJ_ELF
11740 case OPTION_N32:
11741 if (!IS_ELF)
11742 {
11743 as_bad (_("-n32 is supported for ELF format only"));
11744 return 0;
11745 }
11746 mips_abi = N32_ABI;
11747 break;
11748
11749 case OPTION_64:
11750 if (!IS_ELF)
11751 {
11752 as_bad (_("-64 is supported for ELF format only"));
11753 return 0;
11754 }
11755 mips_abi = N64_ABI;
11756 if (!support_64bit_objects())
11757 as_fatal (_("No compiled in support for 64 bit object file format"));
11758 break;
11759 #endif /* OBJ_ELF */
11760
11761 case OPTION_GP32:
11762 file_mips_gp32 = 1;
11763 break;
11764
11765 case OPTION_GP64:
11766 file_mips_gp32 = 0;
11767 break;
11768
11769 case OPTION_FP32:
11770 file_mips_fp32 = 1;
11771 break;
11772
11773 case OPTION_FP64:
11774 file_mips_fp32 = 0;
11775 break;
11776
11777 case OPTION_SINGLE_FLOAT:
11778 file_mips_single_float = 1;
11779 break;
11780
11781 case OPTION_DOUBLE_FLOAT:
11782 file_mips_single_float = 0;
11783 break;
11784
11785 case OPTION_SOFT_FLOAT:
11786 file_mips_soft_float = 1;
11787 break;
11788
11789 case OPTION_HARD_FLOAT:
11790 file_mips_soft_float = 0;
11791 break;
11792
11793 #ifdef OBJ_ELF
11794 case OPTION_MABI:
11795 if (!IS_ELF)
11796 {
11797 as_bad (_("-mabi is supported for ELF format only"));
11798 return 0;
11799 }
11800 if (strcmp (arg, "32") == 0)
11801 mips_abi = O32_ABI;
11802 else if (strcmp (arg, "o64") == 0)
11803 mips_abi = O64_ABI;
11804 else if (strcmp (arg, "n32") == 0)
11805 mips_abi = N32_ABI;
11806 else if (strcmp (arg, "64") == 0)
11807 {
11808 mips_abi = N64_ABI;
11809 if (! support_64bit_objects())
11810 as_fatal (_("No compiled in support for 64 bit object file "
11811 "format"));
11812 }
11813 else if (strcmp (arg, "eabi") == 0)
11814 mips_abi = EABI_ABI;
11815 else
11816 {
11817 as_fatal (_("invalid abi -mabi=%s"), arg);
11818 return 0;
11819 }
11820 break;
11821 #endif /* OBJ_ELF */
11822
11823 case OPTION_M7000_HILO_FIX:
11824 mips_7000_hilo_fix = TRUE;
11825 break;
11826
11827 case OPTION_MNO_7000_HILO_FIX:
11828 mips_7000_hilo_fix = FALSE;
11829 break;
11830
11831 #ifdef OBJ_ELF
11832 case OPTION_MDEBUG:
11833 mips_flag_mdebug = TRUE;
11834 break;
11835
11836 case OPTION_NO_MDEBUG:
11837 mips_flag_mdebug = FALSE;
11838 break;
11839
11840 case OPTION_PDR:
11841 mips_flag_pdr = TRUE;
11842 break;
11843
11844 case OPTION_NO_PDR:
11845 mips_flag_pdr = FALSE;
11846 break;
11847
11848 case OPTION_MVXWORKS_PIC:
11849 mips_pic = VXWORKS_PIC;
11850 break;
11851 #endif /* OBJ_ELF */
11852
11853 default:
11854 return 0;
11855 }
11856
11857 return 1;
11858 }
11859 \f
11860 /* Set up globals to generate code for the ISA or processor
11861 described by INFO. */
11862
11863 static void
11864 mips_set_architecture (const struct mips_cpu_info *info)
11865 {
11866 if (info != 0)
11867 {
11868 file_mips_arch = info->cpu;
11869 mips_opts.arch = info->cpu;
11870 mips_opts.isa = info->isa;
11871 }
11872 }
11873
11874
11875 /* Likewise for tuning. */
11876
11877 static void
11878 mips_set_tune (const struct mips_cpu_info *info)
11879 {
11880 if (info != 0)
11881 mips_tune = info->cpu;
11882 }
11883
11884
11885 void
11886 mips_after_parse_args (void)
11887 {
11888 const struct mips_cpu_info *arch_info = 0;
11889 const struct mips_cpu_info *tune_info = 0;
11890
11891 /* GP relative stuff not working for PE */
11892 if (strncmp (TARGET_OS, "pe", 2) == 0)
11893 {
11894 if (g_switch_seen && g_switch_value != 0)
11895 as_bad (_("-G not supported in this configuration."));
11896 g_switch_value = 0;
11897 }
11898
11899 if (mips_abi == NO_ABI)
11900 mips_abi = MIPS_DEFAULT_ABI;
11901
11902 /* The following code determines the architecture and register size.
11903 Similar code was added to GCC 3.3 (see override_options() in
11904 config/mips/mips.c). The GAS and GCC code should be kept in sync
11905 as much as possible. */
11906
11907 if (mips_arch_string != 0)
11908 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11909
11910 if (file_mips_isa != ISA_UNKNOWN)
11911 {
11912 /* Handle -mipsN. At this point, file_mips_isa contains the
11913 ISA level specified by -mipsN, while arch_info->isa contains
11914 the -march selection (if any). */
11915 if (arch_info != 0)
11916 {
11917 /* -march takes precedence over -mipsN, since it is more descriptive.
11918 There's no harm in specifying both as long as the ISA levels
11919 are the same. */
11920 if (file_mips_isa != arch_info->isa)
11921 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11922 mips_cpu_info_from_isa (file_mips_isa)->name,
11923 mips_cpu_info_from_isa (arch_info->isa)->name);
11924 }
11925 else
11926 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11927 }
11928
11929 if (arch_info == 0)
11930 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11931
11932 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11933 as_bad ("-march=%s is not compatible with the selected ABI",
11934 arch_info->name);
11935
11936 mips_set_architecture (arch_info);
11937
11938 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11939 if (mips_tune_string != 0)
11940 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11941
11942 if (tune_info == 0)
11943 mips_set_tune (arch_info);
11944 else
11945 mips_set_tune (tune_info);
11946
11947 if (file_mips_gp32 >= 0)
11948 {
11949 /* The user specified the size of the integer registers. Make sure
11950 it agrees with the ABI and ISA. */
11951 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11952 as_bad (_("-mgp64 used with a 32-bit processor"));
11953 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11954 as_bad (_("-mgp32 used with a 64-bit ABI"));
11955 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11956 as_bad (_("-mgp64 used with a 32-bit ABI"));
11957 }
11958 else
11959 {
11960 /* Infer the integer register size from the ABI and processor.
11961 Restrict ourselves to 32-bit registers if that's all the
11962 processor has, or if the ABI cannot handle 64-bit registers. */
11963 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11964 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11965 }
11966
11967 switch (file_mips_fp32)
11968 {
11969 default:
11970 case -1:
11971 /* No user specified float register size.
11972 ??? GAS treats single-float processors as though they had 64-bit
11973 float registers (although it complains when double-precision
11974 instructions are used). As things stand, saying they have 32-bit
11975 registers would lead to spurious "register must be even" messages.
11976 So here we assume float registers are never smaller than the
11977 integer ones. */
11978 if (file_mips_gp32 == 0)
11979 /* 64-bit integer registers implies 64-bit float registers. */
11980 file_mips_fp32 = 0;
11981 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11982 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11983 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11984 file_mips_fp32 = 0;
11985 else
11986 /* 32-bit float registers. */
11987 file_mips_fp32 = 1;
11988 break;
11989
11990 /* The user specified the size of the float registers. Check if it
11991 agrees with the ABI and ISA. */
11992 case 0:
11993 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11994 as_bad (_("-mfp64 used with a 32-bit fpu"));
11995 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11996 && !ISA_HAS_MXHC1 (mips_opts.isa))
11997 as_warn (_("-mfp64 used with a 32-bit ABI"));
11998 break;
11999 case 1:
12000 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12001 as_warn (_("-mfp32 used with a 64-bit ABI"));
12002 break;
12003 }
12004
12005 /* End of GCC-shared inference code. */
12006
12007 /* This flag is set when we have a 64-bit capable CPU but use only
12008 32-bit wide registers. Note that EABI does not use it. */
12009 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12010 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12011 || mips_abi == O32_ABI))
12012 mips_32bitmode = 1;
12013
12014 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12015 as_bad (_("trap exception not supported at ISA 1"));
12016
12017 /* If the selected architecture includes support for ASEs, enable
12018 generation of code for them. */
12019 if (mips_opts.mips16 == -1)
12020 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12021 if (mips_opts.ase_mips3d == -1)
12022 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12023 && file_mips_fp32 == 0) ? 1 : 0;
12024 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12025 as_bad (_("-mfp32 used with -mips3d"));
12026
12027 if (mips_opts.ase_mdmx == -1)
12028 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12029 && file_mips_fp32 == 0) ? 1 : 0;
12030 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12031 as_bad (_("-mfp32 used with -mdmx"));
12032
12033 if (mips_opts.ase_smartmips == -1)
12034 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12035 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12036 as_warn ("%s ISA does not support SmartMIPS",
12037 mips_cpu_info_from_isa (mips_opts.isa)->name);
12038
12039 if (mips_opts.ase_dsp == -1)
12040 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12041 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12042 as_warn ("%s ISA does not support DSP ASE",
12043 mips_cpu_info_from_isa (mips_opts.isa)->name);
12044
12045 if (mips_opts.ase_dspr2 == -1)
12046 {
12047 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12048 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12049 }
12050 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12051 as_warn ("%s ISA does not support DSP R2 ASE",
12052 mips_cpu_info_from_isa (mips_opts.isa)->name);
12053
12054 if (mips_opts.ase_mt == -1)
12055 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12056 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12057 as_warn ("%s ISA does not support MT ASE",
12058 mips_cpu_info_from_isa (mips_opts.isa)->name);
12059
12060 file_mips_isa = mips_opts.isa;
12061 file_ase_mips16 = mips_opts.mips16;
12062 file_ase_mips3d = mips_opts.ase_mips3d;
12063 file_ase_mdmx = mips_opts.ase_mdmx;
12064 file_ase_smartmips = mips_opts.ase_smartmips;
12065 file_ase_dsp = mips_opts.ase_dsp;
12066 file_ase_dspr2 = mips_opts.ase_dspr2;
12067 file_ase_mt = mips_opts.ase_mt;
12068 mips_opts.gp32 = file_mips_gp32;
12069 mips_opts.fp32 = file_mips_fp32;
12070 mips_opts.soft_float = file_mips_soft_float;
12071 mips_opts.single_float = file_mips_single_float;
12072
12073 if (mips_flag_mdebug < 0)
12074 {
12075 #ifdef OBJ_MAYBE_ECOFF
12076 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12077 mips_flag_mdebug = 1;
12078 else
12079 #endif /* OBJ_MAYBE_ECOFF */
12080 mips_flag_mdebug = 0;
12081 }
12082 }
12083 \f
12084 void
12085 mips_init_after_args (void)
12086 {
12087 /* initialize opcodes */
12088 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12089 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12090 }
12091
12092 long
12093 md_pcrel_from (fixS *fixP)
12094 {
12095 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12096 switch (fixP->fx_r_type)
12097 {
12098 case BFD_RELOC_16_PCREL_S2:
12099 case BFD_RELOC_MIPS_JMP:
12100 /* Return the address of the delay slot. */
12101 return addr + 4;
12102 default:
12103 /* We have no relocation type for PC relative MIPS16 instructions. */
12104 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12105 as_bad_where (fixP->fx_file, fixP->fx_line,
12106 _("PC relative MIPS16 instruction references a different section"));
12107 return addr;
12108 }
12109 }
12110
12111 /* This is called before the symbol table is processed. In order to
12112 work with gcc when using mips-tfile, we must keep all local labels.
12113 However, in other cases, we want to discard them. If we were
12114 called with -g, but we didn't see any debugging information, it may
12115 mean that gcc is smuggling debugging information through to
12116 mips-tfile, in which case we must generate all local labels. */
12117
12118 void
12119 mips_frob_file_before_adjust (void)
12120 {
12121 #ifndef NO_ECOFF_DEBUGGING
12122 if (ECOFF_DEBUGGING
12123 && mips_debug != 0
12124 && ! ecoff_debugging_seen)
12125 flag_keep_locals = 1;
12126 #endif
12127 }
12128
12129 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12130 the corresponding LO16 reloc. This is called before md_apply_fix and
12131 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12132 relocation operators.
12133
12134 For our purposes, a %lo() expression matches a %got() or %hi()
12135 expression if:
12136
12137 (a) it refers to the same symbol; and
12138 (b) the offset applied in the %lo() expression is no lower than
12139 the offset applied in the %got() or %hi().
12140
12141 (b) allows us to cope with code like:
12142
12143 lui $4,%hi(foo)
12144 lh $4,%lo(foo+2)($4)
12145
12146 ...which is legal on RELA targets, and has a well-defined behaviour
12147 if the user knows that adding 2 to "foo" will not induce a carry to
12148 the high 16 bits.
12149
12150 When several %lo()s match a particular %got() or %hi(), we use the
12151 following rules to distinguish them:
12152
12153 (1) %lo()s with smaller offsets are a better match than %lo()s with
12154 higher offsets.
12155
12156 (2) %lo()s with no matching %got() or %hi() are better than those
12157 that already have a matching %got() or %hi().
12158
12159 (3) later %lo()s are better than earlier %lo()s.
12160
12161 These rules are applied in order.
12162
12163 (1) means, among other things, that %lo()s with identical offsets are
12164 chosen if they exist.
12165
12166 (2) means that we won't associate several high-part relocations with
12167 the same low-part relocation unless there's no alternative. Having
12168 several high parts for the same low part is a GNU extension; this rule
12169 allows careful users to avoid it.
12170
12171 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12172 with the last high-part relocation being at the front of the list.
12173 It therefore makes sense to choose the last matching low-part
12174 relocation, all other things being equal. It's also easier
12175 to code that way. */
12176
12177 void
12178 mips_frob_file (void)
12179 {
12180 struct mips_hi_fixup *l;
12181 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12182
12183 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12184 {
12185 segment_info_type *seginfo;
12186 bfd_boolean matched_lo_p;
12187 fixS **hi_pos, **lo_pos, **pos;
12188
12189 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12190
12191 /* If a GOT16 relocation turns out to be against a global symbol,
12192 there isn't supposed to be a matching LO. */
12193 if (got16_reloc_p (l->fixp->fx_r_type)
12194 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12195 continue;
12196
12197 /* Check quickly whether the next fixup happens to be a matching %lo. */
12198 if (fixup_has_matching_lo_p (l->fixp))
12199 continue;
12200
12201 seginfo = seg_info (l->seg);
12202
12203 /* Set HI_POS to the position of this relocation in the chain.
12204 Set LO_POS to the position of the chosen low-part relocation.
12205 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12206 relocation that matches an immediately-preceding high-part
12207 relocation. */
12208 hi_pos = NULL;
12209 lo_pos = NULL;
12210 matched_lo_p = FALSE;
12211 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12212
12213 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12214 {
12215 if (*pos == l->fixp)
12216 hi_pos = pos;
12217
12218 if ((*pos)->fx_r_type == looking_for_rtype
12219 && (*pos)->fx_addsy == l->fixp->fx_addsy
12220 && (*pos)->fx_offset >= l->fixp->fx_offset
12221 && (lo_pos == NULL
12222 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12223 || (!matched_lo_p
12224 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12225 lo_pos = pos;
12226
12227 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12228 && fixup_has_matching_lo_p (*pos));
12229 }
12230
12231 /* If we found a match, remove the high-part relocation from its
12232 current position and insert it before the low-part relocation.
12233 Make the offsets match so that fixup_has_matching_lo_p()
12234 will return true.
12235
12236 We don't warn about unmatched high-part relocations since some
12237 versions of gcc have been known to emit dead "lui ...%hi(...)"
12238 instructions. */
12239 if (lo_pos != NULL)
12240 {
12241 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12242 if (l->fixp->fx_next != *lo_pos)
12243 {
12244 *hi_pos = l->fixp->fx_next;
12245 l->fixp->fx_next = *lo_pos;
12246 *lo_pos = l->fixp;
12247 }
12248 }
12249 }
12250 }
12251
12252 /* We may have combined relocations without symbols in the N32/N64 ABI.
12253 We have to prevent gas from dropping them. */
12254
12255 int
12256 mips_force_relocation (fixS *fixp)
12257 {
12258 if (generic_force_reloc (fixp))
12259 return 1;
12260
12261 if (HAVE_NEWABI
12262 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12263 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12264 || hi16_reloc_p (fixp->fx_r_type)
12265 || lo16_reloc_p (fixp->fx_r_type)))
12266 return 1;
12267
12268 return 0;
12269 }
12270
12271 /* Apply a fixup to the object file. */
12272
12273 void
12274 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12275 {
12276 bfd_byte *buf;
12277 long insn;
12278 reloc_howto_type *howto;
12279
12280 /* We ignore generic BFD relocations we don't know about. */
12281 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12282 if (! howto)
12283 return;
12284
12285 assert (fixP->fx_size == 4
12286 || fixP->fx_r_type == BFD_RELOC_16
12287 || fixP->fx_r_type == BFD_RELOC_64
12288 || fixP->fx_r_type == BFD_RELOC_CTOR
12289 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12290 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12291 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12292 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12293
12294 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12295
12296 assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12297
12298 /* Don't treat parts of a composite relocation as done. There are two
12299 reasons for this:
12300
12301 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12302 should nevertheless be emitted if the first part is.
12303
12304 (2) In normal usage, composite relocations are never assembly-time
12305 constants. The easiest way of dealing with the pathological
12306 exceptions is to generate a relocation against STN_UNDEF and
12307 leave everything up to the linker. */
12308 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12309 fixP->fx_done = 1;
12310
12311 switch (fixP->fx_r_type)
12312 {
12313 case BFD_RELOC_MIPS_TLS_GD:
12314 case BFD_RELOC_MIPS_TLS_LDM:
12315 case BFD_RELOC_MIPS_TLS_DTPREL32:
12316 case BFD_RELOC_MIPS_TLS_DTPREL64:
12317 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12318 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12319 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12320 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12321 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12322 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12323 /* fall through */
12324
12325 case BFD_RELOC_MIPS_JMP:
12326 case BFD_RELOC_MIPS_SHIFT5:
12327 case BFD_RELOC_MIPS_SHIFT6:
12328 case BFD_RELOC_MIPS_GOT_DISP:
12329 case BFD_RELOC_MIPS_GOT_PAGE:
12330 case BFD_RELOC_MIPS_GOT_OFST:
12331 case BFD_RELOC_MIPS_SUB:
12332 case BFD_RELOC_MIPS_INSERT_A:
12333 case BFD_RELOC_MIPS_INSERT_B:
12334 case BFD_RELOC_MIPS_DELETE:
12335 case BFD_RELOC_MIPS_HIGHEST:
12336 case BFD_RELOC_MIPS_HIGHER:
12337 case BFD_RELOC_MIPS_SCN_DISP:
12338 case BFD_RELOC_MIPS_REL16:
12339 case BFD_RELOC_MIPS_RELGOT:
12340 case BFD_RELOC_MIPS_JALR:
12341 case BFD_RELOC_HI16:
12342 case BFD_RELOC_HI16_S:
12343 case BFD_RELOC_GPREL16:
12344 case BFD_RELOC_MIPS_LITERAL:
12345 case BFD_RELOC_MIPS_CALL16:
12346 case BFD_RELOC_MIPS_GOT16:
12347 case BFD_RELOC_GPREL32:
12348 case BFD_RELOC_MIPS_GOT_HI16:
12349 case BFD_RELOC_MIPS_GOT_LO16:
12350 case BFD_RELOC_MIPS_CALL_HI16:
12351 case BFD_RELOC_MIPS_CALL_LO16:
12352 case BFD_RELOC_MIPS16_GPREL:
12353 case BFD_RELOC_MIPS16_GOT16:
12354 case BFD_RELOC_MIPS16_CALL16:
12355 case BFD_RELOC_MIPS16_HI16:
12356 case BFD_RELOC_MIPS16_HI16_S:
12357 case BFD_RELOC_MIPS16_JMP:
12358 /* Nothing needed to do. The value comes from the reloc entry. */
12359 break;
12360
12361 case BFD_RELOC_64:
12362 /* This is handled like BFD_RELOC_32, but we output a sign
12363 extended value if we are only 32 bits. */
12364 if (fixP->fx_done)
12365 {
12366 if (8 <= sizeof (valueT))
12367 md_number_to_chars ((char *) buf, *valP, 8);
12368 else
12369 {
12370 valueT hiv;
12371
12372 if ((*valP & 0x80000000) != 0)
12373 hiv = 0xffffffff;
12374 else
12375 hiv = 0;
12376 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12377 *valP, 4);
12378 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12379 hiv, 4);
12380 }
12381 }
12382 break;
12383
12384 case BFD_RELOC_RVA:
12385 case BFD_RELOC_32:
12386 case BFD_RELOC_16:
12387 /* If we are deleting this reloc entry, we must fill in the
12388 value now. This can happen if we have a .word which is not
12389 resolved when it appears but is later defined. */
12390 if (fixP->fx_done)
12391 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12392 break;
12393
12394 case BFD_RELOC_LO16:
12395 case BFD_RELOC_MIPS16_LO16:
12396 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12397 may be safe to remove, but if so it's not obvious. */
12398 /* When handling an embedded PIC switch statement, we can wind
12399 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12400 if (fixP->fx_done)
12401 {
12402 if (*valP + 0x8000 > 0xffff)
12403 as_bad_where (fixP->fx_file, fixP->fx_line,
12404 _("relocation overflow"));
12405 if (target_big_endian)
12406 buf += 2;
12407 md_number_to_chars ((char *) buf, *valP, 2);
12408 }
12409 break;
12410
12411 case BFD_RELOC_16_PCREL_S2:
12412 if ((*valP & 0x3) != 0)
12413 as_bad_where (fixP->fx_file, fixP->fx_line,
12414 _("Branch to misaligned address (%lx)"), (long) *valP);
12415
12416 /* We need to save the bits in the instruction since fixup_segment()
12417 might be deleting the relocation entry (i.e., a branch within
12418 the current segment). */
12419 if (! fixP->fx_done)
12420 break;
12421
12422 /* Update old instruction data. */
12423 if (target_big_endian)
12424 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12425 else
12426 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12427
12428 if (*valP + 0x20000 <= 0x3ffff)
12429 {
12430 insn |= (*valP >> 2) & 0xffff;
12431 md_number_to_chars ((char *) buf, insn, 4);
12432 }
12433 else if (mips_pic == NO_PIC
12434 && fixP->fx_done
12435 && fixP->fx_frag->fr_address >= text_section->vma
12436 && (fixP->fx_frag->fr_address
12437 < text_section->vma + bfd_get_section_size (text_section))
12438 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12439 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12440 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12441 {
12442 /* The branch offset is too large. If this is an
12443 unconditional branch, and we are not generating PIC code,
12444 we can convert it to an absolute jump instruction. */
12445 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12446 insn = 0x0c000000; /* jal */
12447 else
12448 insn = 0x08000000; /* j */
12449 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12450 fixP->fx_done = 0;
12451 fixP->fx_addsy = section_symbol (text_section);
12452 *valP += md_pcrel_from (fixP);
12453 md_number_to_chars ((char *) buf, insn, 4);
12454 }
12455 else
12456 {
12457 /* If we got here, we have branch-relaxation disabled,
12458 and there's nothing we can do to fix this instruction
12459 without turning it into a longer sequence. */
12460 as_bad_where (fixP->fx_file, fixP->fx_line,
12461 _("Branch out of range"));
12462 }
12463 break;
12464
12465 case BFD_RELOC_VTABLE_INHERIT:
12466 fixP->fx_done = 0;
12467 if (fixP->fx_addsy
12468 && !S_IS_DEFINED (fixP->fx_addsy)
12469 && !S_IS_WEAK (fixP->fx_addsy))
12470 S_SET_WEAK (fixP->fx_addsy);
12471 break;
12472
12473 case BFD_RELOC_VTABLE_ENTRY:
12474 fixP->fx_done = 0;
12475 break;
12476
12477 default:
12478 internalError ();
12479 }
12480
12481 /* Remember value for tc_gen_reloc. */
12482 fixP->fx_addnumber = *valP;
12483 }
12484
12485 static symbolS *
12486 get_symbol (void)
12487 {
12488 int c;
12489 char *name;
12490 symbolS *p;
12491
12492 name = input_line_pointer;
12493 c = get_symbol_end ();
12494 p = (symbolS *) symbol_find_or_make (name);
12495 *input_line_pointer = c;
12496 return p;
12497 }
12498
12499 /* Align the current frag to a given power of two. If a particular
12500 fill byte should be used, FILL points to an integer that contains
12501 that byte, otherwise FILL is null.
12502
12503 The MIPS assembler also automatically adjusts any preceding
12504 label. */
12505
12506 static void
12507 mips_align (int to, int *fill, symbolS *label)
12508 {
12509 mips_emit_delays ();
12510 mips_record_mips16_mode ();
12511 if (fill == NULL && subseg_text_p (now_seg))
12512 frag_align_code (to, 0);
12513 else
12514 frag_align (to, fill ? *fill : 0, 0);
12515 record_alignment (now_seg, to);
12516 if (label != NULL)
12517 {
12518 assert (S_GET_SEGMENT (label) == now_seg);
12519 symbol_set_frag (label, frag_now);
12520 S_SET_VALUE (label, (valueT) frag_now_fix ());
12521 }
12522 }
12523
12524 /* Align to a given power of two. .align 0 turns off the automatic
12525 alignment used by the data creating pseudo-ops. */
12526
12527 static void
12528 s_align (int x ATTRIBUTE_UNUSED)
12529 {
12530 int temp, fill_value, *fill_ptr;
12531 long max_alignment = 28;
12532
12533 /* o Note that the assembler pulls down any immediately preceding label
12534 to the aligned address.
12535 o It's not documented but auto alignment is reinstated by
12536 a .align pseudo instruction.
12537 o Note also that after auto alignment is turned off the mips assembler
12538 issues an error on attempt to assemble an improperly aligned data item.
12539 We don't. */
12540
12541 temp = get_absolute_expression ();
12542 if (temp > max_alignment)
12543 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12544 else if (temp < 0)
12545 {
12546 as_warn (_("Alignment negative: 0 assumed."));
12547 temp = 0;
12548 }
12549 if (*input_line_pointer == ',')
12550 {
12551 ++input_line_pointer;
12552 fill_value = get_absolute_expression ();
12553 fill_ptr = &fill_value;
12554 }
12555 else
12556 fill_ptr = 0;
12557 if (temp)
12558 {
12559 segment_info_type *si = seg_info (now_seg);
12560 struct insn_label_list *l = si->label_list;
12561 /* Auto alignment should be switched on by next section change. */
12562 auto_align = 1;
12563 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12564 }
12565 else
12566 {
12567 auto_align = 0;
12568 }
12569
12570 demand_empty_rest_of_line ();
12571 }
12572
12573 static void
12574 s_change_sec (int sec)
12575 {
12576 segT seg;
12577
12578 #ifdef OBJ_ELF
12579 /* The ELF backend needs to know that we are changing sections, so
12580 that .previous works correctly. We could do something like check
12581 for an obj_section_change_hook macro, but that might be confusing
12582 as it would not be appropriate to use it in the section changing
12583 functions in read.c, since obj-elf.c intercepts those. FIXME:
12584 This should be cleaner, somehow. */
12585 if (IS_ELF)
12586 obj_elf_section_change_hook ();
12587 #endif
12588
12589 mips_emit_delays ();
12590
12591 if (mips_fix_24k)
12592 check_for_24k_errata ((struct mips_cl_insn *) &history[0], -1);
12593
12594 switch (sec)
12595 {
12596 case 't':
12597 s_text (0);
12598 break;
12599 case 'd':
12600 s_data (0);
12601 break;
12602 case 'b':
12603 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12604 demand_empty_rest_of_line ();
12605 break;
12606
12607 case 'r':
12608 seg = subseg_new (RDATA_SECTION_NAME,
12609 (subsegT) get_absolute_expression ());
12610 if (IS_ELF)
12611 {
12612 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12613 | SEC_READONLY | SEC_RELOC
12614 | SEC_DATA));
12615 if (strncmp (TARGET_OS, "elf", 3) != 0)
12616 record_alignment (seg, 4);
12617 }
12618 demand_empty_rest_of_line ();
12619 break;
12620
12621 case 's':
12622 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12623 if (IS_ELF)
12624 {
12625 bfd_set_section_flags (stdoutput, seg,
12626 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12627 if (strncmp (TARGET_OS, "elf", 3) != 0)
12628 record_alignment (seg, 4);
12629 }
12630 demand_empty_rest_of_line ();
12631 break;
12632 }
12633
12634 auto_align = 1;
12635 }
12636
12637 void
12638 s_change_section (int ignore ATTRIBUTE_UNUSED)
12639 {
12640 #ifdef OBJ_ELF
12641 char *section_name;
12642 char c;
12643 char next_c = 0;
12644 int section_type;
12645 int section_flag;
12646 int section_entry_size;
12647 int section_alignment;
12648
12649 if (!IS_ELF)
12650 return;
12651
12652 if (mips_fix_24k)
12653 check_for_24k_errata ((struct mips_cl_insn *) &history[0], -1);
12654
12655 section_name = input_line_pointer;
12656 c = get_symbol_end ();
12657 if (c)
12658 next_c = *(input_line_pointer + 1);
12659
12660 /* Do we have .section Name<,"flags">? */
12661 if (c != ',' || (c == ',' && next_c == '"'))
12662 {
12663 /* just after name is now '\0'. */
12664 *input_line_pointer = c;
12665 input_line_pointer = section_name;
12666 obj_elf_section (ignore);
12667 return;
12668 }
12669 input_line_pointer++;
12670
12671 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12672 if (c == ',')
12673 section_type = get_absolute_expression ();
12674 else
12675 section_type = 0;
12676 if (*input_line_pointer++ == ',')
12677 section_flag = get_absolute_expression ();
12678 else
12679 section_flag = 0;
12680 if (*input_line_pointer++ == ',')
12681 section_entry_size = get_absolute_expression ();
12682 else
12683 section_entry_size = 0;
12684 if (*input_line_pointer++ == ',')
12685 section_alignment = get_absolute_expression ();
12686 else
12687 section_alignment = 0;
12688
12689 section_name = xstrdup (section_name);
12690
12691 /* When using the generic form of .section (as implemented by obj-elf.c),
12692 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12693 traditionally had to fall back on the more common @progbits instead.
12694
12695 There's nothing really harmful in this, since bfd will correct
12696 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12697 means that, for backwards compatibility, the special_section entries
12698 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12699
12700 Even so, we shouldn't force users of the MIPS .section syntax to
12701 incorrectly label the sections as SHT_PROGBITS. The best compromise
12702 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12703 generic type-checking code. */
12704 if (section_type == SHT_MIPS_DWARF)
12705 section_type = SHT_PROGBITS;
12706
12707 obj_elf_change_section (section_name, section_type, section_flag,
12708 section_entry_size, 0, 0, 0);
12709
12710 if (now_seg->name != section_name)
12711 free (section_name);
12712 #endif /* OBJ_ELF */
12713 }
12714
12715 void
12716 mips_enable_auto_align (void)
12717 {
12718 auto_align = 1;
12719 }
12720
12721 static void
12722 s_cons (int log_size)
12723 {
12724 segment_info_type *si = seg_info (now_seg);
12725 struct insn_label_list *l = si->label_list;
12726 symbolS *label;
12727
12728 label = l != NULL ? l->label : NULL;
12729 mips_emit_delays ();
12730 if (log_size > 0 && auto_align)
12731 mips_align (log_size, 0, label);
12732 mips_clear_insn_labels ();
12733 cons (1 << log_size);
12734 }
12735
12736 static void
12737 s_float_cons (int type)
12738 {
12739 segment_info_type *si = seg_info (now_seg);
12740 struct insn_label_list *l = si->label_list;
12741 symbolS *label;
12742
12743 label = l != NULL ? l->label : NULL;
12744
12745 mips_emit_delays ();
12746
12747 if (auto_align)
12748 {
12749 if (type == 'd')
12750 mips_align (3, 0, label);
12751 else
12752 mips_align (2, 0, label);
12753 }
12754
12755 mips_clear_insn_labels ();
12756
12757 float_cons (type);
12758 }
12759
12760 /* Handle .globl. We need to override it because on Irix 5 you are
12761 permitted to say
12762 .globl foo .text
12763 where foo is an undefined symbol, to mean that foo should be
12764 considered to be the address of a function. */
12765
12766 static void
12767 s_mips_globl (int x ATTRIBUTE_UNUSED)
12768 {
12769 char *name;
12770 int c;
12771 symbolS *symbolP;
12772 flagword flag;
12773
12774 do
12775 {
12776 name = input_line_pointer;
12777 c = get_symbol_end ();
12778 symbolP = symbol_find_or_make (name);
12779 S_SET_EXTERNAL (symbolP);
12780
12781 *input_line_pointer = c;
12782 SKIP_WHITESPACE ();
12783
12784 /* On Irix 5, every global symbol that is not explicitly labelled as
12785 being a function is apparently labelled as being an object. */
12786 flag = BSF_OBJECT;
12787
12788 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12789 && (*input_line_pointer != ','))
12790 {
12791 char *secname;
12792 asection *sec;
12793
12794 secname = input_line_pointer;
12795 c = get_symbol_end ();
12796 sec = bfd_get_section_by_name (stdoutput, secname);
12797 if (sec == NULL)
12798 as_bad (_("%s: no such section"), secname);
12799 *input_line_pointer = c;
12800
12801 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12802 flag = BSF_FUNCTION;
12803 }
12804
12805 symbol_get_bfdsym (symbolP)->flags |= flag;
12806
12807 c = *input_line_pointer;
12808 if (c == ',')
12809 {
12810 input_line_pointer++;
12811 SKIP_WHITESPACE ();
12812 if (is_end_of_line[(unsigned char) *input_line_pointer])
12813 c = '\n';
12814 }
12815 }
12816 while (c == ',');
12817
12818 demand_empty_rest_of_line ();
12819 }
12820
12821 static void
12822 s_option (int x ATTRIBUTE_UNUSED)
12823 {
12824 char *opt;
12825 char c;
12826
12827 opt = input_line_pointer;
12828 c = get_symbol_end ();
12829
12830 if (*opt == 'O')
12831 {
12832 /* FIXME: What does this mean? */
12833 }
12834 else if (strncmp (opt, "pic", 3) == 0)
12835 {
12836 int i;
12837
12838 i = atoi (opt + 3);
12839 if (i == 0)
12840 mips_pic = NO_PIC;
12841 else if (i == 2)
12842 {
12843 mips_pic = SVR4_PIC;
12844 mips_abicalls = TRUE;
12845 }
12846 else
12847 as_bad (_(".option pic%d not supported"), i);
12848
12849 if (mips_pic == SVR4_PIC)
12850 {
12851 if (g_switch_seen && g_switch_value != 0)
12852 as_warn (_("-G may not be used with SVR4 PIC code"));
12853 g_switch_value = 0;
12854 bfd_set_gp_size (stdoutput, 0);
12855 }
12856 }
12857 else
12858 as_warn (_("Unrecognized option \"%s\""), opt);
12859
12860 *input_line_pointer = c;
12861 demand_empty_rest_of_line ();
12862 }
12863
12864 /* This structure is used to hold a stack of .set values. */
12865
12866 struct mips_option_stack
12867 {
12868 struct mips_option_stack *next;
12869 struct mips_set_options options;
12870 };
12871
12872 static struct mips_option_stack *mips_opts_stack;
12873
12874 /* Handle the .set pseudo-op. */
12875
12876 static void
12877 s_mipsset (int x ATTRIBUTE_UNUSED)
12878 {
12879 char *name = input_line_pointer, ch;
12880
12881 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12882 ++input_line_pointer;
12883 ch = *input_line_pointer;
12884 *input_line_pointer = '\0';
12885
12886 if (strcmp (name, "reorder") == 0)
12887 {
12888 if (mips_opts.noreorder)
12889 end_noreorder ();
12890 }
12891 else if (strcmp (name, "noreorder") == 0)
12892 {
12893 if (!mips_opts.noreorder)
12894 start_noreorder ();
12895 }
12896 else if (strncmp (name, "at=", 3) == 0)
12897 {
12898 char *s = name + 3;
12899
12900 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12901 as_bad (_("Unrecognized register name `%s'"), s);
12902 }
12903 else if (strcmp (name, "at") == 0)
12904 {
12905 mips_opts.at = ATREG;
12906 }
12907 else if (strcmp (name, "noat") == 0)
12908 {
12909 mips_opts.at = ZERO;
12910 }
12911 else if (strcmp (name, "macro") == 0)
12912 {
12913 mips_opts.warn_about_macros = 0;
12914 }
12915 else if (strcmp (name, "nomacro") == 0)
12916 {
12917 if (mips_opts.noreorder == 0)
12918 as_bad (_("`noreorder' must be set before `nomacro'"));
12919 mips_opts.warn_about_macros = 1;
12920 }
12921 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12922 {
12923 mips_opts.nomove = 0;
12924 }
12925 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12926 {
12927 mips_opts.nomove = 1;
12928 }
12929 else if (strcmp (name, "bopt") == 0)
12930 {
12931 mips_opts.nobopt = 0;
12932 }
12933 else if (strcmp (name, "nobopt") == 0)
12934 {
12935 mips_opts.nobopt = 1;
12936 }
12937 else if (strcmp (name, "gp=default") == 0)
12938 mips_opts.gp32 = file_mips_gp32;
12939 else if (strcmp (name, "gp=32") == 0)
12940 mips_opts.gp32 = 1;
12941 else if (strcmp (name, "gp=64") == 0)
12942 {
12943 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12944 as_warn ("%s isa does not support 64-bit registers",
12945 mips_cpu_info_from_isa (mips_opts.isa)->name);
12946 mips_opts.gp32 = 0;
12947 }
12948 else if (strcmp (name, "fp=default") == 0)
12949 mips_opts.fp32 = file_mips_fp32;
12950 else if (strcmp (name, "fp=32") == 0)
12951 mips_opts.fp32 = 1;
12952 else if (strcmp (name, "fp=64") == 0)
12953 {
12954 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12955 as_warn ("%s isa does not support 64-bit floating point registers",
12956 mips_cpu_info_from_isa (mips_opts.isa)->name);
12957 mips_opts.fp32 = 0;
12958 }
12959 else if (strcmp (name, "softfloat") == 0)
12960 mips_opts.soft_float = 1;
12961 else if (strcmp (name, "hardfloat") == 0)
12962 mips_opts.soft_float = 0;
12963 else if (strcmp (name, "singlefloat") == 0)
12964 mips_opts.single_float = 1;
12965 else if (strcmp (name, "doublefloat") == 0)
12966 mips_opts.single_float = 0;
12967 else if (strcmp (name, "mips16") == 0
12968 || strcmp (name, "MIPS-16") == 0)
12969 mips_opts.mips16 = 1;
12970 else if (strcmp (name, "nomips16") == 0
12971 || strcmp (name, "noMIPS-16") == 0)
12972 mips_opts.mips16 = 0;
12973 else if (strcmp (name, "smartmips") == 0)
12974 {
12975 if (!ISA_SUPPORTS_SMARTMIPS)
12976 as_warn ("%s ISA does not support SmartMIPS ASE",
12977 mips_cpu_info_from_isa (mips_opts.isa)->name);
12978 mips_opts.ase_smartmips = 1;
12979 }
12980 else if (strcmp (name, "nosmartmips") == 0)
12981 mips_opts.ase_smartmips = 0;
12982 else if (strcmp (name, "mips3d") == 0)
12983 mips_opts.ase_mips3d = 1;
12984 else if (strcmp (name, "nomips3d") == 0)
12985 mips_opts.ase_mips3d = 0;
12986 else if (strcmp (name, "mdmx") == 0)
12987 mips_opts.ase_mdmx = 1;
12988 else if (strcmp (name, "nomdmx") == 0)
12989 mips_opts.ase_mdmx = 0;
12990 else if (strcmp (name, "dsp") == 0)
12991 {
12992 if (!ISA_SUPPORTS_DSP_ASE)
12993 as_warn ("%s ISA does not support DSP ASE",
12994 mips_cpu_info_from_isa (mips_opts.isa)->name);
12995 mips_opts.ase_dsp = 1;
12996 mips_opts.ase_dspr2 = 0;
12997 }
12998 else if (strcmp (name, "nodsp") == 0)
12999 {
13000 mips_opts.ase_dsp = 0;
13001 mips_opts.ase_dspr2 = 0;
13002 }
13003 else if (strcmp (name, "dspr2") == 0)
13004 {
13005 if (!ISA_SUPPORTS_DSPR2_ASE)
13006 as_warn ("%s ISA does not support DSP R2 ASE",
13007 mips_cpu_info_from_isa (mips_opts.isa)->name);
13008 mips_opts.ase_dspr2 = 1;
13009 mips_opts.ase_dsp = 1;
13010 }
13011 else if (strcmp (name, "nodspr2") == 0)
13012 {
13013 mips_opts.ase_dspr2 = 0;
13014 mips_opts.ase_dsp = 0;
13015 }
13016 else if (strcmp (name, "mt") == 0)
13017 {
13018 if (!ISA_SUPPORTS_MT_ASE)
13019 as_warn ("%s ISA does not support MT ASE",
13020 mips_cpu_info_from_isa (mips_opts.isa)->name);
13021 mips_opts.ase_mt = 1;
13022 }
13023 else if (strcmp (name, "nomt") == 0)
13024 mips_opts.ase_mt = 0;
13025 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13026 {
13027 int reset = 0;
13028
13029 /* Permit the user to change the ISA and architecture on the fly.
13030 Needless to say, misuse can cause serious problems. */
13031 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13032 {
13033 reset = 1;
13034 mips_opts.isa = file_mips_isa;
13035 mips_opts.arch = file_mips_arch;
13036 }
13037 else if (strncmp (name, "arch=", 5) == 0)
13038 {
13039 const struct mips_cpu_info *p;
13040
13041 p = mips_parse_cpu("internal use", name + 5);
13042 if (!p)
13043 as_bad (_("unknown architecture %s"), name + 5);
13044 else
13045 {
13046 mips_opts.arch = p->cpu;
13047 mips_opts.isa = p->isa;
13048 }
13049 }
13050 else if (strncmp (name, "mips", 4) == 0)
13051 {
13052 const struct mips_cpu_info *p;
13053
13054 p = mips_parse_cpu("internal use", name);
13055 if (!p)
13056 as_bad (_("unknown ISA level %s"), name + 4);
13057 else
13058 {
13059 mips_opts.arch = p->cpu;
13060 mips_opts.isa = p->isa;
13061 }
13062 }
13063 else
13064 as_bad (_("unknown ISA or architecture %s"), name);
13065
13066 switch (mips_opts.isa)
13067 {
13068 case 0:
13069 break;
13070 case ISA_MIPS1:
13071 case ISA_MIPS2:
13072 case ISA_MIPS32:
13073 case ISA_MIPS32R2:
13074 mips_opts.gp32 = 1;
13075 mips_opts.fp32 = 1;
13076 break;
13077 case ISA_MIPS3:
13078 case ISA_MIPS4:
13079 case ISA_MIPS5:
13080 case ISA_MIPS64:
13081 case ISA_MIPS64R2:
13082 mips_opts.gp32 = 0;
13083 mips_opts.fp32 = 0;
13084 break;
13085 default:
13086 as_bad (_("unknown ISA level %s"), name + 4);
13087 break;
13088 }
13089 if (reset)
13090 {
13091 mips_opts.gp32 = file_mips_gp32;
13092 mips_opts.fp32 = file_mips_fp32;
13093 }
13094 }
13095 else if (strcmp (name, "autoextend") == 0)
13096 mips_opts.noautoextend = 0;
13097 else if (strcmp (name, "noautoextend") == 0)
13098 mips_opts.noautoextend = 1;
13099 else if (strcmp (name, "push") == 0)
13100 {
13101 struct mips_option_stack *s;
13102
13103 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13104 s->next = mips_opts_stack;
13105 s->options = mips_opts;
13106 mips_opts_stack = s;
13107 }
13108 else if (strcmp (name, "pop") == 0)
13109 {
13110 struct mips_option_stack *s;
13111
13112 s = mips_opts_stack;
13113 if (s == NULL)
13114 as_bad (_(".set pop with no .set push"));
13115 else
13116 {
13117 /* If we're changing the reorder mode we need to handle
13118 delay slots correctly. */
13119 if (s->options.noreorder && ! mips_opts.noreorder)
13120 start_noreorder ();
13121 else if (! s->options.noreorder && mips_opts.noreorder)
13122 end_noreorder ();
13123
13124 mips_opts = s->options;
13125 mips_opts_stack = s->next;
13126 free (s);
13127 }
13128 }
13129 else if (strcmp (name, "sym32") == 0)
13130 mips_opts.sym32 = TRUE;
13131 else if (strcmp (name, "nosym32") == 0)
13132 mips_opts.sym32 = FALSE;
13133 else if (strchr (name, ','))
13134 {
13135 /* Generic ".set" directive; use the generic handler. */
13136 *input_line_pointer = ch;
13137 input_line_pointer = name;
13138 s_set (0);
13139 return;
13140 }
13141 else
13142 {
13143 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13144 }
13145 *input_line_pointer = ch;
13146 demand_empty_rest_of_line ();
13147 }
13148
13149 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13150 .option pic2. It means to generate SVR4 PIC calls. */
13151
13152 static void
13153 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13154 {
13155 mips_pic = SVR4_PIC;
13156 mips_abicalls = TRUE;
13157
13158 if (g_switch_seen && g_switch_value != 0)
13159 as_warn (_("-G may not be used with SVR4 PIC code"));
13160 g_switch_value = 0;
13161
13162 bfd_set_gp_size (stdoutput, 0);
13163 demand_empty_rest_of_line ();
13164 }
13165
13166 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13167 PIC code. It sets the $gp register for the function based on the
13168 function address, which is in the register named in the argument.
13169 This uses a relocation against _gp_disp, which is handled specially
13170 by the linker. The result is:
13171 lui $gp,%hi(_gp_disp)
13172 addiu $gp,$gp,%lo(_gp_disp)
13173 addu $gp,$gp,.cpload argument
13174 The .cpload argument is normally $25 == $t9.
13175
13176 The -mno-shared option changes this to:
13177 lui $gp,%hi(__gnu_local_gp)
13178 addiu $gp,$gp,%lo(__gnu_local_gp)
13179 and the argument is ignored. This saves an instruction, but the
13180 resulting code is not position independent; it uses an absolute
13181 address for __gnu_local_gp. Thus code assembled with -mno-shared
13182 can go into an ordinary executable, but not into a shared library. */
13183
13184 static void
13185 s_cpload (int ignore ATTRIBUTE_UNUSED)
13186 {
13187 expressionS ex;
13188 int reg;
13189 int in_shared;
13190
13191 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13192 .cpload is ignored. */
13193 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13194 {
13195 s_ignore (0);
13196 return;
13197 }
13198
13199 /* .cpload should be in a .set noreorder section. */
13200 if (mips_opts.noreorder == 0)
13201 as_warn (_(".cpload not in noreorder section"));
13202
13203 reg = tc_get_register (0);
13204
13205 /* If we need to produce a 64-bit address, we are better off using
13206 the default instruction sequence. */
13207 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13208
13209 ex.X_op = O_symbol;
13210 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13211 "__gnu_local_gp");
13212 ex.X_op_symbol = NULL;
13213 ex.X_add_number = 0;
13214
13215 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13216 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13217
13218 macro_start ();
13219 macro_build_lui (&ex, mips_gp_register);
13220 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13221 mips_gp_register, BFD_RELOC_LO16);
13222 if (in_shared)
13223 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13224 mips_gp_register, reg);
13225 macro_end ();
13226
13227 demand_empty_rest_of_line ();
13228 }
13229
13230 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13231 .cpsetup $reg1, offset|$reg2, label
13232
13233 If offset is given, this results in:
13234 sd $gp, offset($sp)
13235 lui $gp, %hi(%neg(%gp_rel(label)))
13236 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13237 daddu $gp, $gp, $reg1
13238
13239 If $reg2 is given, this results in:
13240 daddu $reg2, $gp, $0
13241 lui $gp, %hi(%neg(%gp_rel(label)))
13242 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13243 daddu $gp, $gp, $reg1
13244 $reg1 is normally $25 == $t9.
13245
13246 The -mno-shared option replaces the last three instructions with
13247 lui $gp,%hi(_gp)
13248 addiu $gp,$gp,%lo(_gp) */
13249
13250 static void
13251 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13252 {
13253 expressionS ex_off;
13254 expressionS ex_sym;
13255 int reg1;
13256
13257 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13258 We also need NewABI support. */
13259 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13260 {
13261 s_ignore (0);
13262 return;
13263 }
13264
13265 reg1 = tc_get_register (0);
13266 SKIP_WHITESPACE ();
13267 if (*input_line_pointer != ',')
13268 {
13269 as_bad (_("missing argument separator ',' for .cpsetup"));
13270 return;
13271 }
13272 else
13273 ++input_line_pointer;
13274 SKIP_WHITESPACE ();
13275 if (*input_line_pointer == '$')
13276 {
13277 mips_cpreturn_register = tc_get_register (0);
13278 mips_cpreturn_offset = -1;
13279 }
13280 else
13281 {
13282 mips_cpreturn_offset = get_absolute_expression ();
13283 mips_cpreturn_register = -1;
13284 }
13285 SKIP_WHITESPACE ();
13286 if (*input_line_pointer != ',')
13287 {
13288 as_bad (_("missing argument separator ',' for .cpsetup"));
13289 return;
13290 }
13291 else
13292 ++input_line_pointer;
13293 SKIP_WHITESPACE ();
13294 expression (&ex_sym);
13295
13296 macro_start ();
13297 if (mips_cpreturn_register == -1)
13298 {
13299 ex_off.X_op = O_constant;
13300 ex_off.X_add_symbol = NULL;
13301 ex_off.X_op_symbol = NULL;
13302 ex_off.X_add_number = mips_cpreturn_offset;
13303
13304 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13305 BFD_RELOC_LO16, SP);
13306 }
13307 else
13308 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13309 mips_gp_register, 0);
13310
13311 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13312 {
13313 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13314 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13315 BFD_RELOC_HI16_S);
13316
13317 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13318 mips_gp_register, -1, BFD_RELOC_GPREL16,
13319 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13320
13321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13322 mips_gp_register, reg1);
13323 }
13324 else
13325 {
13326 expressionS ex;
13327
13328 ex.X_op = O_symbol;
13329 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13330 ex.X_op_symbol = NULL;
13331 ex.X_add_number = 0;
13332
13333 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13334 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13335
13336 macro_build_lui (&ex, mips_gp_register);
13337 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13338 mips_gp_register, BFD_RELOC_LO16);
13339 }
13340
13341 macro_end ();
13342
13343 demand_empty_rest_of_line ();
13344 }
13345
13346 static void
13347 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13348 {
13349 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13350 .cplocal is ignored. */
13351 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13352 {
13353 s_ignore (0);
13354 return;
13355 }
13356
13357 mips_gp_register = tc_get_register (0);
13358 demand_empty_rest_of_line ();
13359 }
13360
13361 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13362 offset from $sp. The offset is remembered, and after making a PIC
13363 call $gp is restored from that location. */
13364
13365 static void
13366 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13367 {
13368 expressionS ex;
13369
13370 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13371 .cprestore is ignored. */
13372 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13373 {
13374 s_ignore (0);
13375 return;
13376 }
13377
13378 mips_cprestore_offset = get_absolute_expression ();
13379 mips_cprestore_valid = 1;
13380
13381 ex.X_op = O_constant;
13382 ex.X_add_symbol = NULL;
13383 ex.X_op_symbol = NULL;
13384 ex.X_add_number = mips_cprestore_offset;
13385
13386 macro_start ();
13387 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13388 SP, HAVE_64BIT_ADDRESSES);
13389 macro_end ();
13390
13391 demand_empty_rest_of_line ();
13392 }
13393
13394 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13395 was given in the preceding .cpsetup, it results in:
13396 ld $gp, offset($sp)
13397
13398 If a register $reg2 was given there, it results in:
13399 daddu $gp, $reg2, $0 */
13400
13401 static void
13402 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13403 {
13404 expressionS ex;
13405
13406 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13407 We also need NewABI support. */
13408 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13409 {
13410 s_ignore (0);
13411 return;
13412 }
13413
13414 macro_start ();
13415 if (mips_cpreturn_register == -1)
13416 {
13417 ex.X_op = O_constant;
13418 ex.X_add_symbol = NULL;
13419 ex.X_op_symbol = NULL;
13420 ex.X_add_number = mips_cpreturn_offset;
13421
13422 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13423 }
13424 else
13425 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13426 mips_cpreturn_register, 0);
13427 macro_end ();
13428
13429 demand_empty_rest_of_line ();
13430 }
13431
13432 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13433 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13434 use in DWARF debug information. */
13435
13436 static void
13437 s_dtprel_internal (size_t bytes)
13438 {
13439 expressionS ex;
13440 char *p;
13441
13442 expression (&ex);
13443
13444 if (ex.X_op != O_symbol)
13445 {
13446 as_bad (_("Unsupported use of %s"), (bytes == 8
13447 ? ".dtpreldword"
13448 : ".dtprelword"));
13449 ignore_rest_of_line ();
13450 }
13451
13452 p = frag_more (bytes);
13453 md_number_to_chars (p, 0, bytes);
13454 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13455 (bytes == 8
13456 ? BFD_RELOC_MIPS_TLS_DTPREL64
13457 : BFD_RELOC_MIPS_TLS_DTPREL32));
13458
13459 demand_empty_rest_of_line ();
13460 }
13461
13462 /* Handle .dtprelword. */
13463
13464 static void
13465 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13466 {
13467 s_dtprel_internal (4);
13468 }
13469
13470 /* Handle .dtpreldword. */
13471
13472 static void
13473 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13474 {
13475 s_dtprel_internal (8);
13476 }
13477
13478 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13479 code. It sets the offset to use in gp_rel relocations. */
13480
13481 static void
13482 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13483 {
13484 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13485 We also need NewABI support. */
13486 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13487 {
13488 s_ignore (0);
13489 return;
13490 }
13491
13492 mips_gprel_offset = get_absolute_expression ();
13493
13494 demand_empty_rest_of_line ();
13495 }
13496
13497 /* Handle the .gpword pseudo-op. This is used when generating PIC
13498 code. It generates a 32 bit GP relative reloc. */
13499
13500 static void
13501 s_gpword (int ignore ATTRIBUTE_UNUSED)
13502 {
13503 segment_info_type *si;
13504 struct insn_label_list *l;
13505 symbolS *label;
13506 expressionS ex;
13507 char *p;
13508
13509 /* When not generating PIC code, this is treated as .word. */
13510 if (mips_pic != SVR4_PIC)
13511 {
13512 s_cons (2);
13513 return;
13514 }
13515
13516 si = seg_info (now_seg);
13517 l = si->label_list;
13518 label = l != NULL ? l->label : NULL;
13519 mips_emit_delays ();
13520 if (auto_align)
13521 mips_align (2, 0, label);
13522 mips_clear_insn_labels ();
13523
13524 expression (&ex);
13525
13526 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13527 {
13528 as_bad (_("Unsupported use of .gpword"));
13529 ignore_rest_of_line ();
13530 }
13531
13532 p = frag_more (4);
13533 md_number_to_chars (p, 0, 4);
13534 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13535 BFD_RELOC_GPREL32);
13536
13537 demand_empty_rest_of_line ();
13538 }
13539
13540 static void
13541 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13542 {
13543 segment_info_type *si;
13544 struct insn_label_list *l;
13545 symbolS *label;
13546 expressionS ex;
13547 char *p;
13548
13549 /* When not generating PIC code, this is treated as .dword. */
13550 if (mips_pic != SVR4_PIC)
13551 {
13552 s_cons (3);
13553 return;
13554 }
13555
13556 si = seg_info (now_seg);
13557 l = si->label_list;
13558 label = l != NULL ? l->label : NULL;
13559 mips_emit_delays ();
13560 if (auto_align)
13561 mips_align (3, 0, label);
13562 mips_clear_insn_labels ();
13563
13564 expression (&ex);
13565
13566 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13567 {
13568 as_bad (_("Unsupported use of .gpdword"));
13569 ignore_rest_of_line ();
13570 }
13571
13572 p = frag_more (8);
13573 md_number_to_chars (p, 0, 8);
13574 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13575 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13576
13577 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13578 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13579 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13580
13581 demand_empty_rest_of_line ();
13582 }
13583
13584 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13585 tables in SVR4 PIC code. */
13586
13587 static void
13588 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13589 {
13590 int reg;
13591
13592 /* This is ignored when not generating SVR4 PIC code. */
13593 if (mips_pic != SVR4_PIC)
13594 {
13595 s_ignore (0);
13596 return;
13597 }
13598
13599 /* Add $gp to the register named as an argument. */
13600 macro_start ();
13601 reg = tc_get_register (0);
13602 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13603 macro_end ();
13604
13605 demand_empty_rest_of_line ();
13606 }
13607
13608 /* Handle the .insn pseudo-op. This marks instruction labels in
13609 mips16 mode. This permits the linker to handle them specially,
13610 such as generating jalx instructions when needed. We also make
13611 them odd for the duration of the assembly, in order to generate the
13612 right sort of code. We will make them even in the adjust_symtab
13613 routine, while leaving them marked. This is convenient for the
13614 debugger and the disassembler. The linker knows to make them odd
13615 again. */
13616
13617 static void
13618 s_insn (int ignore ATTRIBUTE_UNUSED)
13619 {
13620 mips16_mark_labels ();
13621
13622 demand_empty_rest_of_line ();
13623 }
13624
13625 /* Handle a .stabn directive. We need these in order to mark a label
13626 as being a mips16 text label correctly. Sometimes the compiler
13627 will emit a label, followed by a .stabn, and then switch sections.
13628 If the label and .stabn are in mips16 mode, then the label is
13629 really a mips16 text label. */
13630
13631 static void
13632 s_mips_stab (int type)
13633 {
13634 if (type == 'n')
13635 mips16_mark_labels ();
13636
13637 s_stab (type);
13638 }
13639
13640 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13641
13642 static void
13643 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13644 {
13645 char *name;
13646 int c;
13647 symbolS *symbolP;
13648 expressionS exp;
13649
13650 name = input_line_pointer;
13651 c = get_symbol_end ();
13652 symbolP = symbol_find_or_make (name);
13653 S_SET_WEAK (symbolP);
13654 *input_line_pointer = c;
13655
13656 SKIP_WHITESPACE ();
13657
13658 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13659 {
13660 if (S_IS_DEFINED (symbolP))
13661 {
13662 as_bad ("ignoring attempt to redefine symbol %s",
13663 S_GET_NAME (symbolP));
13664 ignore_rest_of_line ();
13665 return;
13666 }
13667
13668 if (*input_line_pointer == ',')
13669 {
13670 ++input_line_pointer;
13671 SKIP_WHITESPACE ();
13672 }
13673
13674 expression (&exp);
13675 if (exp.X_op != O_symbol)
13676 {
13677 as_bad ("bad .weakext directive");
13678 ignore_rest_of_line ();
13679 return;
13680 }
13681 symbol_set_value_expression (symbolP, &exp);
13682 }
13683
13684 demand_empty_rest_of_line ();
13685 }
13686
13687 /* Parse a register string into a number. Called from the ECOFF code
13688 to parse .frame. The argument is non-zero if this is the frame
13689 register, so that we can record it in mips_frame_reg. */
13690
13691 int
13692 tc_get_register (int frame)
13693 {
13694 unsigned int reg;
13695
13696 SKIP_WHITESPACE ();
13697 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13698 reg = 0;
13699 if (frame)
13700 {
13701 mips_frame_reg = reg != 0 ? reg : SP;
13702 mips_frame_reg_valid = 1;
13703 mips_cprestore_valid = 0;
13704 }
13705 return reg;
13706 }
13707
13708 valueT
13709 md_section_align (asection *seg, valueT addr)
13710 {
13711 int align = bfd_get_section_alignment (stdoutput, seg);
13712
13713 if (IS_ELF)
13714 {
13715 /* We don't need to align ELF sections to the full alignment.
13716 However, Irix 5 may prefer that we align them at least to a 16
13717 byte boundary. We don't bother to align the sections if we
13718 are targeted for an embedded system. */
13719 if (strncmp (TARGET_OS, "elf", 3) == 0)
13720 return addr;
13721 if (align > 4)
13722 align = 4;
13723 }
13724
13725 return ((addr + (1 << align) - 1) & (-1 << align));
13726 }
13727
13728 /* Utility routine, called from above as well. If called while the
13729 input file is still being read, it's only an approximation. (For
13730 example, a symbol may later become defined which appeared to be
13731 undefined earlier.) */
13732
13733 static int
13734 nopic_need_relax (symbolS *sym, int before_relaxing)
13735 {
13736 if (sym == 0)
13737 return 0;
13738
13739 if (g_switch_value > 0)
13740 {
13741 const char *symname;
13742 int change;
13743
13744 /* Find out whether this symbol can be referenced off the $gp
13745 register. It can be if it is smaller than the -G size or if
13746 it is in the .sdata or .sbss section. Certain symbols can
13747 not be referenced off the $gp, although it appears as though
13748 they can. */
13749 symname = S_GET_NAME (sym);
13750 if (symname != (const char *) NULL
13751 && (strcmp (symname, "eprol") == 0
13752 || strcmp (symname, "etext") == 0
13753 || strcmp (symname, "_gp") == 0
13754 || strcmp (symname, "edata") == 0
13755 || strcmp (symname, "_fbss") == 0
13756 || strcmp (symname, "_fdata") == 0
13757 || strcmp (symname, "_ftext") == 0
13758 || strcmp (symname, "end") == 0
13759 || strcmp (symname, "_gp_disp") == 0))
13760 change = 1;
13761 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13762 && (0
13763 #ifndef NO_ECOFF_DEBUGGING
13764 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13765 && (symbol_get_obj (sym)->ecoff_extern_size
13766 <= g_switch_value))
13767 #endif
13768 /* We must defer this decision until after the whole
13769 file has been read, since there might be a .extern
13770 after the first use of this symbol. */
13771 || (before_relaxing
13772 #ifndef NO_ECOFF_DEBUGGING
13773 && symbol_get_obj (sym)->ecoff_extern_size == 0
13774 #endif
13775 && S_GET_VALUE (sym) == 0)
13776 || (S_GET_VALUE (sym) != 0
13777 && S_GET_VALUE (sym) <= g_switch_value)))
13778 change = 0;
13779 else
13780 {
13781 const char *segname;
13782
13783 segname = segment_name (S_GET_SEGMENT (sym));
13784 assert (strcmp (segname, ".lit8") != 0
13785 && strcmp (segname, ".lit4") != 0);
13786 change = (strcmp (segname, ".sdata") != 0
13787 && strcmp (segname, ".sbss") != 0
13788 && strncmp (segname, ".sdata.", 7) != 0
13789 && strncmp (segname, ".sbss.", 6) != 0
13790 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13791 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13792 }
13793 return change;
13794 }
13795 else
13796 /* We are not optimizing for the $gp register. */
13797 return 1;
13798 }
13799
13800
13801 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13802
13803 static bfd_boolean
13804 pic_need_relax (symbolS *sym, asection *segtype)
13805 {
13806 asection *symsec;
13807
13808 /* Handle the case of a symbol equated to another symbol. */
13809 while (symbol_equated_reloc_p (sym))
13810 {
13811 symbolS *n;
13812
13813 /* It's possible to get a loop here in a badly written program. */
13814 n = symbol_get_value_expression (sym)->X_add_symbol;
13815 if (n == sym)
13816 break;
13817 sym = n;
13818 }
13819
13820 if (symbol_section_p (sym))
13821 return TRUE;
13822
13823 symsec = S_GET_SEGMENT (sym);
13824
13825 /* This must duplicate the test in adjust_reloc_syms. */
13826 return (symsec != &bfd_und_section
13827 && symsec != &bfd_abs_section
13828 && !bfd_is_com_section (symsec)
13829 && !s_is_linkonce (sym, segtype)
13830 #ifdef OBJ_ELF
13831 /* A global or weak symbol is treated as external. */
13832 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13833 #endif
13834 );
13835 }
13836
13837
13838 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13839 extended opcode. SEC is the section the frag is in. */
13840
13841 static int
13842 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13843 {
13844 int type;
13845 const struct mips16_immed_operand *op;
13846 offsetT val;
13847 int mintiny, maxtiny;
13848 segT symsec;
13849 fragS *sym_frag;
13850
13851 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13852 return 0;
13853 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13854 return 1;
13855
13856 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13857 op = mips16_immed_operands;
13858 while (op->type != type)
13859 {
13860 ++op;
13861 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13862 }
13863
13864 if (op->unsp)
13865 {
13866 if (type == '<' || type == '>' || type == '[' || type == ']')
13867 {
13868 mintiny = 1;
13869 maxtiny = 1 << op->nbits;
13870 }
13871 else
13872 {
13873 mintiny = 0;
13874 maxtiny = (1 << op->nbits) - 1;
13875 }
13876 }
13877 else
13878 {
13879 mintiny = - (1 << (op->nbits - 1));
13880 maxtiny = (1 << (op->nbits - 1)) - 1;
13881 }
13882
13883 sym_frag = symbol_get_frag (fragp->fr_symbol);
13884 val = S_GET_VALUE (fragp->fr_symbol);
13885 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13886
13887 if (op->pcrel)
13888 {
13889 addressT addr;
13890
13891 /* We won't have the section when we are called from
13892 mips_relax_frag. However, we will always have been called
13893 from md_estimate_size_before_relax first. If this is a
13894 branch to a different section, we mark it as such. If SEC is
13895 NULL, and the frag is not marked, then it must be a branch to
13896 the same section. */
13897 if (sec == NULL)
13898 {
13899 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13900 return 1;
13901 }
13902 else
13903 {
13904 /* Must have been called from md_estimate_size_before_relax. */
13905 if (symsec != sec)
13906 {
13907 fragp->fr_subtype =
13908 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13909
13910 /* FIXME: We should support this, and let the linker
13911 catch branches and loads that are out of range. */
13912 as_bad_where (fragp->fr_file, fragp->fr_line,
13913 _("unsupported PC relative reference to different section"));
13914
13915 return 1;
13916 }
13917 if (fragp != sym_frag && sym_frag->fr_address == 0)
13918 /* Assume non-extended on the first relaxation pass.
13919 The address we have calculated will be bogus if this is
13920 a forward branch to another frag, as the forward frag
13921 will have fr_address == 0. */
13922 return 0;
13923 }
13924
13925 /* In this case, we know for sure that the symbol fragment is in
13926 the same section. If the relax_marker of the symbol fragment
13927 differs from the relax_marker of this fragment, we have not
13928 yet adjusted the symbol fragment fr_address. We want to add
13929 in STRETCH in order to get a better estimate of the address.
13930 This particularly matters because of the shift bits. */
13931 if (stretch != 0
13932 && sym_frag->relax_marker != fragp->relax_marker)
13933 {
13934 fragS *f;
13935
13936 /* Adjust stretch for any alignment frag. Note that if have
13937 been expanding the earlier code, the symbol may be
13938 defined in what appears to be an earlier frag. FIXME:
13939 This doesn't handle the fr_subtype field, which specifies
13940 a maximum number of bytes to skip when doing an
13941 alignment. */
13942 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13943 {
13944 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13945 {
13946 if (stretch < 0)
13947 stretch = - ((- stretch)
13948 & ~ ((1 << (int) f->fr_offset) - 1));
13949 else
13950 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13951 if (stretch == 0)
13952 break;
13953 }
13954 }
13955 if (f != NULL)
13956 val += stretch;
13957 }
13958
13959 addr = fragp->fr_address + fragp->fr_fix;
13960
13961 /* The base address rules are complicated. The base address of
13962 a branch is the following instruction. The base address of a
13963 PC relative load or add is the instruction itself, but if it
13964 is in a delay slot (in which case it can not be extended) use
13965 the address of the instruction whose delay slot it is in. */
13966 if (type == 'p' || type == 'q')
13967 {
13968 addr += 2;
13969
13970 /* If we are currently assuming that this frag should be
13971 extended, then, the current address is two bytes
13972 higher. */
13973 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13974 addr += 2;
13975
13976 /* Ignore the low bit in the target, since it will be set
13977 for a text label. */
13978 if ((val & 1) != 0)
13979 --val;
13980 }
13981 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13982 addr -= 4;
13983 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13984 addr -= 2;
13985
13986 val -= addr & ~ ((1 << op->shift) - 1);
13987
13988 /* Branch offsets have an implicit 0 in the lowest bit. */
13989 if (type == 'p' || type == 'q')
13990 val /= 2;
13991
13992 /* If any of the shifted bits are set, we must use an extended
13993 opcode. If the address depends on the size of this
13994 instruction, this can lead to a loop, so we arrange to always
13995 use an extended opcode. We only check this when we are in
13996 the main relaxation loop, when SEC is NULL. */
13997 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13998 {
13999 fragp->fr_subtype =
14000 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14001 return 1;
14002 }
14003
14004 /* If we are about to mark a frag as extended because the value
14005 is precisely maxtiny + 1, then there is a chance of an
14006 infinite loop as in the following code:
14007 la $4,foo
14008 .skip 1020
14009 .align 2
14010 foo:
14011 In this case when the la is extended, foo is 0x3fc bytes
14012 away, so the la can be shrunk, but then foo is 0x400 away, so
14013 the la must be extended. To avoid this loop, we mark the
14014 frag as extended if it was small, and is about to become
14015 extended with a value of maxtiny + 1. */
14016 if (val == ((maxtiny + 1) << op->shift)
14017 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14018 && sec == NULL)
14019 {
14020 fragp->fr_subtype =
14021 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14022 return 1;
14023 }
14024 }
14025 else if (symsec != absolute_section && sec != NULL)
14026 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14027
14028 if ((val & ((1 << op->shift) - 1)) != 0
14029 || val < (mintiny << op->shift)
14030 || val > (maxtiny << op->shift))
14031 return 1;
14032 else
14033 return 0;
14034 }
14035
14036 /* Compute the length of a branch sequence, and adjust the
14037 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14038 worst-case length is computed, with UPDATE being used to indicate
14039 whether an unconditional (-1), branch-likely (+1) or regular (0)
14040 branch is to be computed. */
14041 static int
14042 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14043 {
14044 bfd_boolean toofar;
14045 int length;
14046
14047 if (fragp
14048 && S_IS_DEFINED (fragp->fr_symbol)
14049 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14050 {
14051 addressT addr;
14052 offsetT val;
14053
14054 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14055
14056 addr = fragp->fr_address + fragp->fr_fix + 4;
14057
14058 val -= addr;
14059
14060 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14061 }
14062 else if (fragp)
14063 /* If the symbol is not defined or it's in a different segment,
14064 assume the user knows what's going on and emit a short
14065 branch. */
14066 toofar = FALSE;
14067 else
14068 toofar = TRUE;
14069
14070 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14071 fragp->fr_subtype
14072 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14073 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14074 RELAX_BRANCH_LINK (fragp->fr_subtype),
14075 toofar);
14076
14077 length = 4;
14078 if (toofar)
14079 {
14080 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14081 length += 8;
14082
14083 if (mips_pic != NO_PIC)
14084 {
14085 /* Additional space for PIC loading of target address. */
14086 length += 8;
14087 if (mips_opts.isa == ISA_MIPS1)
14088 /* Additional space for $at-stabilizing nop. */
14089 length += 4;
14090 }
14091
14092 /* If branch is conditional. */
14093 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14094 length += 8;
14095 }
14096
14097 return length;
14098 }
14099
14100 /* Estimate the size of a frag before relaxing. Unless this is the
14101 mips16, we are not really relaxing here, and the final size is
14102 encoded in the subtype information. For the mips16, we have to
14103 decide whether we are using an extended opcode or not. */
14104
14105 int
14106 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14107 {
14108 int change;
14109
14110 if (RELAX_BRANCH_P (fragp->fr_subtype))
14111 {
14112
14113 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14114
14115 return fragp->fr_var;
14116 }
14117
14118 if (RELAX_MIPS16_P (fragp->fr_subtype))
14119 /* We don't want to modify the EXTENDED bit here; it might get us
14120 into infinite loops. We change it only in mips_relax_frag(). */
14121 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14122
14123 if (mips_pic == NO_PIC)
14124 change = nopic_need_relax (fragp->fr_symbol, 0);
14125 else if (mips_pic == SVR4_PIC)
14126 change = pic_need_relax (fragp->fr_symbol, segtype);
14127 else if (mips_pic == VXWORKS_PIC)
14128 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14129 change = 0;
14130 else
14131 abort ();
14132
14133 if (change)
14134 {
14135 fragp->fr_subtype |= RELAX_USE_SECOND;
14136 return -RELAX_FIRST (fragp->fr_subtype);
14137 }
14138 else
14139 return -RELAX_SECOND (fragp->fr_subtype);
14140 }
14141
14142 /* This is called to see whether a reloc against a defined symbol
14143 should be converted into a reloc against a section. */
14144
14145 int
14146 mips_fix_adjustable (fixS *fixp)
14147 {
14148 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14149 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14150 return 0;
14151
14152 if (fixp->fx_addsy == NULL)
14153 return 1;
14154
14155 /* If symbol SYM is in a mergeable section, relocations of the form
14156 SYM + 0 can usually be made section-relative. The mergeable data
14157 is then identified by the section offset rather than by the symbol.
14158
14159 However, if we're generating REL LO16 relocations, the offset is split
14160 between the LO16 and parterning high part relocation. The linker will
14161 need to recalculate the complete offset in order to correctly identify
14162 the merge data.
14163
14164 The linker has traditionally not looked for the parterning high part
14165 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14166 placed anywhere. Rather than break backwards compatibility by changing
14167 this, it seems better not to force the issue, and instead keep the
14168 original symbol. This will work with either linker behavior. */
14169 if ((lo16_reloc_p (fixp->fx_r_type)
14170 || reloc_needs_lo_p (fixp->fx_r_type))
14171 && HAVE_IN_PLACE_ADDENDS
14172 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14173 return 0;
14174
14175 #ifdef OBJ_ELF
14176 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14177 to a floating-point stub. The same is true for non-R_MIPS16_26
14178 relocations against MIPS16 functions; in this case, the stub becomes
14179 the function's canonical address.
14180
14181 Floating-point stubs are stored in unique .mips16.call.* or
14182 .mips16.fn.* sections. If a stub T for function F is in section S,
14183 the first relocation in section S must be against F; this is how the
14184 linker determines the target function. All relocations that might
14185 resolve to T must also be against F. We therefore have the following
14186 restrictions, which are given in an intentionally-redundant way:
14187
14188 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14189 symbols.
14190
14191 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14192 if that stub might be used.
14193
14194 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14195 symbols.
14196
14197 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14198 that stub might be used.
14199
14200 There is a further restriction:
14201
14202 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14203 on targets with in-place addends; the relocation field cannot
14204 encode the low bit.
14205
14206 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14207 against a MIPS16 symbol.
14208
14209 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14210 relocation against some symbol R, no relocation against R may be
14211 reduced. (Note that this deals with (2) as well as (1) because
14212 relocations against global symbols will never be reduced on ELF
14213 targets.) This approach is a little simpler than trying to detect
14214 stub sections, and gives the "all or nothing" per-symbol consistency
14215 that we have for MIPS16 symbols. */
14216 if (IS_ELF
14217 && fixp->fx_subsy == NULL
14218 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14219 || *symbol_get_tc (fixp->fx_addsy)))
14220 return 0;
14221 #endif
14222
14223 return 1;
14224 }
14225
14226 /* Translate internal representation of relocation info to BFD target
14227 format. */
14228
14229 arelent **
14230 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14231 {
14232 static arelent *retval[4];
14233 arelent *reloc;
14234 bfd_reloc_code_real_type code;
14235
14236 memset (retval, 0, sizeof(retval));
14237 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14238 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14239 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14240 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14241
14242 if (fixp->fx_pcrel)
14243 {
14244 assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14245
14246 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14247 Relocations want only the symbol offset. */
14248 reloc->addend = fixp->fx_addnumber + reloc->address;
14249 if (!IS_ELF)
14250 {
14251 /* A gruesome hack which is a result of the gruesome gas
14252 reloc handling. What's worse, for COFF (as opposed to
14253 ECOFF), we might need yet another copy of reloc->address.
14254 See bfd_install_relocation. */
14255 reloc->addend += reloc->address;
14256 }
14257 }
14258 else
14259 reloc->addend = fixp->fx_addnumber;
14260
14261 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14262 entry to be used in the relocation's section offset. */
14263 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14264 {
14265 reloc->address = reloc->addend;
14266 reloc->addend = 0;
14267 }
14268
14269 code = fixp->fx_r_type;
14270
14271 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14272 if (reloc->howto == NULL)
14273 {
14274 as_bad_where (fixp->fx_file, fixp->fx_line,
14275 _("Can not represent %s relocation in this object file format"),
14276 bfd_get_reloc_code_name (code));
14277 retval[0] = NULL;
14278 }
14279
14280 return retval;
14281 }
14282
14283 /* Relax a machine dependent frag. This returns the amount by which
14284 the current size of the frag should change. */
14285
14286 int
14287 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14288 {
14289 if (RELAX_BRANCH_P (fragp->fr_subtype))
14290 {
14291 offsetT old_var = fragp->fr_var;
14292
14293 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14294
14295 return fragp->fr_var - old_var;
14296 }
14297
14298 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14299 return 0;
14300
14301 if (mips16_extended_frag (fragp, NULL, stretch))
14302 {
14303 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14304 return 0;
14305 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14306 return 2;
14307 }
14308 else
14309 {
14310 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14311 return 0;
14312 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14313 return -2;
14314 }
14315
14316 return 0;
14317 }
14318
14319 /* Convert a machine dependent frag. */
14320
14321 void
14322 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14323 {
14324 if (RELAX_BRANCH_P (fragp->fr_subtype))
14325 {
14326 bfd_byte *buf;
14327 unsigned long insn;
14328 expressionS exp;
14329 fixS *fixp;
14330
14331 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14332
14333 if (target_big_endian)
14334 insn = bfd_getb32 (buf);
14335 else
14336 insn = bfd_getl32 (buf);
14337
14338 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14339 {
14340 /* We generate a fixup instead of applying it right now
14341 because, if there are linker relaxations, we're going to
14342 need the relocations. */
14343 exp.X_op = O_symbol;
14344 exp.X_add_symbol = fragp->fr_symbol;
14345 exp.X_add_number = fragp->fr_offset;
14346
14347 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14348 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14349 fixp->fx_file = fragp->fr_file;
14350 fixp->fx_line = fragp->fr_line;
14351
14352 md_number_to_chars ((char *) buf, insn, 4);
14353 buf += 4;
14354 }
14355 else
14356 {
14357 int i;
14358
14359 as_warn_where (fragp->fr_file, fragp->fr_line,
14360 _("relaxed out-of-range branch into a jump"));
14361
14362 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14363 goto uncond;
14364
14365 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14366 {
14367 /* Reverse the branch. */
14368 switch ((insn >> 28) & 0xf)
14369 {
14370 case 4:
14371 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14372 have the condition reversed by tweaking a single
14373 bit, and their opcodes all have 0x4???????. */
14374 assert ((insn & 0xf1000000) == 0x41000000);
14375 insn ^= 0x00010000;
14376 break;
14377
14378 case 0:
14379 /* bltz 0x04000000 bgez 0x04010000
14380 bltzal 0x04100000 bgezal 0x04110000 */
14381 assert ((insn & 0xfc0e0000) == 0x04000000);
14382 insn ^= 0x00010000;
14383 break;
14384
14385 case 1:
14386 /* beq 0x10000000 bne 0x14000000
14387 blez 0x18000000 bgtz 0x1c000000 */
14388 insn ^= 0x04000000;
14389 break;
14390
14391 default:
14392 abort ();
14393 }
14394 }
14395
14396 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14397 {
14398 /* Clear the and-link bit. */
14399 assert ((insn & 0xfc1c0000) == 0x04100000);
14400
14401 /* bltzal 0x04100000 bgezal 0x04110000
14402 bltzall 0x04120000 bgezall 0x04130000 */
14403 insn &= ~0x00100000;
14404 }
14405
14406 /* Branch over the branch (if the branch was likely) or the
14407 full jump (not likely case). Compute the offset from the
14408 current instruction to branch to. */
14409 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14410 i = 16;
14411 else
14412 {
14413 /* How many bytes in instructions we've already emitted? */
14414 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14415 /* How many bytes in instructions from here to the end? */
14416 i = fragp->fr_var - i;
14417 }
14418 /* Convert to instruction count. */
14419 i >>= 2;
14420 /* Branch counts from the next instruction. */
14421 i--;
14422 insn |= i;
14423 /* Branch over the jump. */
14424 md_number_to_chars ((char *) buf, insn, 4);
14425 buf += 4;
14426
14427 /* nop */
14428 md_number_to_chars ((char *) buf, 0, 4);
14429 buf += 4;
14430
14431 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14432 {
14433 /* beql $0, $0, 2f */
14434 insn = 0x50000000;
14435 /* Compute the PC offset from the current instruction to
14436 the end of the variable frag. */
14437 /* How many bytes in instructions we've already emitted? */
14438 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14439 /* How many bytes in instructions from here to the end? */
14440 i = fragp->fr_var - i;
14441 /* Convert to instruction count. */
14442 i >>= 2;
14443 /* Don't decrement i, because we want to branch over the
14444 delay slot. */
14445
14446 insn |= i;
14447 md_number_to_chars ((char *) buf, insn, 4);
14448 buf += 4;
14449
14450 md_number_to_chars ((char *) buf, 0, 4);
14451 buf += 4;
14452 }
14453
14454 uncond:
14455 if (mips_pic == NO_PIC)
14456 {
14457 /* j or jal. */
14458 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14459 ? 0x0c000000 : 0x08000000);
14460 exp.X_op = O_symbol;
14461 exp.X_add_symbol = fragp->fr_symbol;
14462 exp.X_add_number = fragp->fr_offset;
14463
14464 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14465 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14466 fixp->fx_file = fragp->fr_file;
14467 fixp->fx_line = fragp->fr_line;
14468
14469 md_number_to_chars ((char *) buf, insn, 4);
14470 buf += 4;
14471 }
14472 else
14473 {
14474 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14475 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14476 exp.X_op = O_symbol;
14477 exp.X_add_symbol = fragp->fr_symbol;
14478 exp.X_add_number = fragp->fr_offset;
14479
14480 if (fragp->fr_offset)
14481 {
14482 exp.X_add_symbol = make_expr_symbol (&exp);
14483 exp.X_add_number = 0;
14484 }
14485
14486 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14487 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14488 fixp->fx_file = fragp->fr_file;
14489 fixp->fx_line = fragp->fr_line;
14490
14491 md_number_to_chars ((char *) buf, insn, 4);
14492 buf += 4;
14493
14494 if (mips_opts.isa == ISA_MIPS1)
14495 {
14496 /* nop */
14497 md_number_to_chars ((char *) buf, 0, 4);
14498 buf += 4;
14499 }
14500
14501 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14502 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14503
14504 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14505 4, &exp, FALSE, BFD_RELOC_LO16);
14506 fixp->fx_file = fragp->fr_file;
14507 fixp->fx_line = fragp->fr_line;
14508
14509 md_number_to_chars ((char *) buf, insn, 4);
14510 buf += 4;
14511
14512 /* j(al)r $at. */
14513 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14514 insn = 0x0020f809;
14515 else
14516 insn = 0x00200008;
14517
14518 md_number_to_chars ((char *) buf, insn, 4);
14519 buf += 4;
14520 }
14521 }
14522
14523 assert (buf == (bfd_byte *)fragp->fr_literal
14524 + fragp->fr_fix + fragp->fr_var);
14525
14526 fragp->fr_fix += fragp->fr_var;
14527
14528 return;
14529 }
14530
14531 if (RELAX_MIPS16_P (fragp->fr_subtype))
14532 {
14533 int type;
14534 const struct mips16_immed_operand *op;
14535 bfd_boolean small, ext;
14536 offsetT val;
14537 bfd_byte *buf;
14538 unsigned long insn;
14539 bfd_boolean use_extend;
14540 unsigned short extend;
14541
14542 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14543 op = mips16_immed_operands;
14544 while (op->type != type)
14545 ++op;
14546
14547 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14548 {
14549 small = FALSE;
14550 ext = TRUE;
14551 }
14552 else
14553 {
14554 small = TRUE;
14555 ext = FALSE;
14556 }
14557
14558 resolve_symbol_value (fragp->fr_symbol);
14559 val = S_GET_VALUE (fragp->fr_symbol);
14560 if (op->pcrel)
14561 {
14562 addressT addr;
14563
14564 addr = fragp->fr_address + fragp->fr_fix;
14565
14566 /* The rules for the base address of a PC relative reloc are
14567 complicated; see mips16_extended_frag. */
14568 if (type == 'p' || type == 'q')
14569 {
14570 addr += 2;
14571 if (ext)
14572 addr += 2;
14573 /* Ignore the low bit in the target, since it will be
14574 set for a text label. */
14575 if ((val & 1) != 0)
14576 --val;
14577 }
14578 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14579 addr -= 4;
14580 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14581 addr -= 2;
14582
14583 addr &= ~ (addressT) ((1 << op->shift) - 1);
14584 val -= addr;
14585
14586 /* Make sure the section winds up with the alignment we have
14587 assumed. */
14588 if (op->shift > 0)
14589 record_alignment (asec, op->shift);
14590 }
14591
14592 if (ext
14593 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14594 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14595 as_warn_where (fragp->fr_file, fragp->fr_line,
14596 _("extended instruction in delay slot"));
14597
14598 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14599
14600 if (target_big_endian)
14601 insn = bfd_getb16 (buf);
14602 else
14603 insn = bfd_getl16 (buf);
14604
14605 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14606 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14607 small, ext, &insn, &use_extend, &extend);
14608
14609 if (use_extend)
14610 {
14611 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14612 fragp->fr_fix += 2;
14613 buf += 2;
14614 }
14615
14616 md_number_to_chars ((char *) buf, insn, 2);
14617 fragp->fr_fix += 2;
14618 buf += 2;
14619 }
14620 else
14621 {
14622 int first, second;
14623 fixS *fixp;
14624
14625 first = RELAX_FIRST (fragp->fr_subtype);
14626 second = RELAX_SECOND (fragp->fr_subtype);
14627 fixp = (fixS *) fragp->fr_opcode;
14628
14629 /* Possibly emit a warning if we've chosen the longer option. */
14630 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14631 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14632 {
14633 const char *msg = macro_warning (fragp->fr_subtype);
14634 if (msg != 0)
14635 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14636 }
14637
14638 /* Go through all the fixups for the first sequence. Disable them
14639 (by marking them as done) if we're going to use the second
14640 sequence instead. */
14641 while (fixp
14642 && fixp->fx_frag == fragp
14643 && fixp->fx_where < fragp->fr_fix - second)
14644 {
14645 if (fragp->fr_subtype & RELAX_USE_SECOND)
14646 fixp->fx_done = 1;
14647 fixp = fixp->fx_next;
14648 }
14649
14650 /* Go through the fixups for the second sequence. Disable them if
14651 we're going to use the first sequence, otherwise adjust their
14652 addresses to account for the relaxation. */
14653 while (fixp && fixp->fx_frag == fragp)
14654 {
14655 if (fragp->fr_subtype & RELAX_USE_SECOND)
14656 fixp->fx_where -= first;
14657 else
14658 fixp->fx_done = 1;
14659 fixp = fixp->fx_next;
14660 }
14661
14662 /* Now modify the frag contents. */
14663 if (fragp->fr_subtype & RELAX_USE_SECOND)
14664 {
14665 char *start;
14666
14667 start = fragp->fr_literal + fragp->fr_fix - first - second;
14668 memmove (start, start + first, second);
14669 fragp->fr_fix -= first;
14670 }
14671 else
14672 fragp->fr_fix -= second;
14673 }
14674 }
14675
14676 #ifdef OBJ_ELF
14677
14678 /* This function is called after the relocs have been generated.
14679 We've been storing mips16 text labels as odd. Here we convert them
14680 back to even for the convenience of the debugger. */
14681
14682 void
14683 mips_frob_file_after_relocs (void)
14684 {
14685 asymbol **syms;
14686 unsigned int count, i;
14687
14688 if (!IS_ELF)
14689 return;
14690
14691 syms = bfd_get_outsymbols (stdoutput);
14692 count = bfd_get_symcount (stdoutput);
14693 for (i = 0; i < count; i++, syms++)
14694 {
14695 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14696 && ((*syms)->value & 1) != 0)
14697 {
14698 (*syms)->value &= ~1;
14699 /* If the symbol has an odd size, it was probably computed
14700 incorrectly, so adjust that as well. */
14701 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14702 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14703 }
14704 }
14705 }
14706
14707 #endif
14708
14709 /* This function is called whenever a label is defined. It is used
14710 when handling branch delays; if a branch has a label, we assume we
14711 can not move it. */
14712
14713 void
14714 mips_define_label (symbolS *sym)
14715 {
14716 segment_info_type *si = seg_info (now_seg);
14717 struct insn_label_list *l;
14718
14719 if (free_insn_labels == NULL)
14720 l = (struct insn_label_list *) xmalloc (sizeof *l);
14721 else
14722 {
14723 l = free_insn_labels;
14724 free_insn_labels = l->next;
14725 }
14726
14727 l->label = sym;
14728 l->next = si->label_list;
14729 si->label_list = l;
14730
14731 #ifdef OBJ_ELF
14732 dwarf2_emit_label (sym);
14733 #endif
14734 }
14735 \f
14736 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14737
14738 /* Some special processing for a MIPS ELF file. */
14739
14740 void
14741 mips_elf_final_processing (void)
14742 {
14743 /* Write out the register information. */
14744 if (mips_abi != N64_ABI)
14745 {
14746 Elf32_RegInfo s;
14747
14748 s.ri_gprmask = mips_gprmask;
14749 s.ri_cprmask[0] = mips_cprmask[0];
14750 s.ri_cprmask[1] = mips_cprmask[1];
14751 s.ri_cprmask[2] = mips_cprmask[2];
14752 s.ri_cprmask[3] = mips_cprmask[3];
14753 /* The gp_value field is set by the MIPS ELF backend. */
14754
14755 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14756 ((Elf32_External_RegInfo *)
14757 mips_regmask_frag));
14758 }
14759 else
14760 {
14761 Elf64_Internal_RegInfo s;
14762
14763 s.ri_gprmask = mips_gprmask;
14764 s.ri_pad = 0;
14765 s.ri_cprmask[0] = mips_cprmask[0];
14766 s.ri_cprmask[1] = mips_cprmask[1];
14767 s.ri_cprmask[2] = mips_cprmask[2];
14768 s.ri_cprmask[3] = mips_cprmask[3];
14769 /* The gp_value field is set by the MIPS ELF backend. */
14770
14771 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14772 ((Elf64_External_RegInfo *)
14773 mips_regmask_frag));
14774 }
14775
14776 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14777 sort of BFD interface for this. */
14778 if (mips_any_noreorder)
14779 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14780 if (mips_pic != NO_PIC)
14781 {
14782 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14783 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14784 }
14785 if (mips_abicalls)
14786 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14787
14788 /* Set MIPS ELF flags for ASEs. */
14789 /* We may need to define a new flag for DSP ASE, and set this flag when
14790 file_ase_dsp is true. */
14791 /* Same for DSP R2. */
14792 /* We may need to define a new flag for MT ASE, and set this flag when
14793 file_ase_mt is true. */
14794 if (file_ase_mips16)
14795 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14796 #if 0 /* XXX FIXME */
14797 if (file_ase_mips3d)
14798 elf_elfheader (stdoutput)->e_flags |= ???;
14799 #endif
14800 if (file_ase_mdmx)
14801 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14802
14803 /* Set the MIPS ELF ABI flags. */
14804 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14805 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14806 else if (mips_abi == O64_ABI)
14807 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14808 else if (mips_abi == EABI_ABI)
14809 {
14810 if (!file_mips_gp32)
14811 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14812 else
14813 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14814 }
14815 else if (mips_abi == N32_ABI)
14816 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14817
14818 /* Nothing to do for N64_ABI. */
14819
14820 if (mips_32bitmode)
14821 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14822
14823 #if 0 /* XXX FIXME */
14824 /* 32 bit code with 64 bit FP registers. */
14825 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14826 elf_elfheader (stdoutput)->e_flags |= ???;
14827 #endif
14828 }
14829
14830 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14831 \f
14832 typedef struct proc {
14833 symbolS *func_sym;
14834 symbolS *func_end_sym;
14835 unsigned long reg_mask;
14836 unsigned long reg_offset;
14837 unsigned long fpreg_mask;
14838 unsigned long fpreg_offset;
14839 unsigned long frame_offset;
14840 unsigned long frame_reg;
14841 unsigned long pc_reg;
14842 } procS;
14843
14844 static procS cur_proc;
14845 static procS *cur_proc_ptr;
14846 static int numprocs;
14847
14848 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14849 nop as "0". */
14850
14851 char
14852 mips_nop_opcode (void)
14853 {
14854 return seg_info (now_seg)->tc_segment_info_data.mips16;
14855 }
14856
14857 /* Fill in an rs_align_code fragment. This only needs to do something
14858 for MIPS16 code, where 0 is not a nop. */
14859
14860 void
14861 mips_handle_align (fragS *fragp)
14862 {
14863 char *p;
14864
14865 if (fragp->fr_type != rs_align_code)
14866 return;
14867
14868 p = fragp->fr_literal + fragp->fr_fix;
14869 if (*p)
14870 {
14871 int bytes;
14872
14873 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14874 if (bytes & 1)
14875 {
14876 *p++ = 0;
14877 fragp->fr_fix++;
14878 }
14879 md_number_to_chars (p, mips16_nop_insn.insn_opcode, 2);
14880 fragp->fr_var = 2;
14881 }
14882 }
14883
14884 static void
14885 md_obj_begin (void)
14886 {
14887 }
14888
14889 static void
14890 md_obj_end (void)
14891 {
14892 /* Check for premature end, nesting errors, etc. */
14893 if (cur_proc_ptr)
14894 as_warn (_("missing .end at end of assembly"));
14895 }
14896
14897 static long
14898 get_number (void)
14899 {
14900 int negative = 0;
14901 long val = 0;
14902
14903 if (*input_line_pointer == '-')
14904 {
14905 ++input_line_pointer;
14906 negative = 1;
14907 }
14908 if (!ISDIGIT (*input_line_pointer))
14909 as_bad (_("expected simple number"));
14910 if (input_line_pointer[0] == '0')
14911 {
14912 if (input_line_pointer[1] == 'x')
14913 {
14914 input_line_pointer += 2;
14915 while (ISXDIGIT (*input_line_pointer))
14916 {
14917 val <<= 4;
14918 val |= hex_value (*input_line_pointer++);
14919 }
14920 return negative ? -val : val;
14921 }
14922 else
14923 {
14924 ++input_line_pointer;
14925 while (ISDIGIT (*input_line_pointer))
14926 {
14927 val <<= 3;
14928 val |= *input_line_pointer++ - '0';
14929 }
14930 return negative ? -val : val;
14931 }
14932 }
14933 if (!ISDIGIT (*input_line_pointer))
14934 {
14935 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14936 *input_line_pointer, *input_line_pointer);
14937 as_warn (_("invalid number"));
14938 return -1;
14939 }
14940 while (ISDIGIT (*input_line_pointer))
14941 {
14942 val *= 10;
14943 val += *input_line_pointer++ - '0';
14944 }
14945 return negative ? -val : val;
14946 }
14947
14948 /* The .file directive; just like the usual .file directive, but there
14949 is an initial number which is the ECOFF file index. In the non-ECOFF
14950 case .file implies DWARF-2. */
14951
14952 static void
14953 s_mips_file (int x ATTRIBUTE_UNUSED)
14954 {
14955 static int first_file_directive = 0;
14956
14957 if (ECOFF_DEBUGGING)
14958 {
14959 get_number ();
14960 s_app_file (0);
14961 }
14962 else
14963 {
14964 char *filename;
14965
14966 filename = dwarf2_directive_file (0);
14967
14968 /* Versions of GCC up to 3.1 start files with a ".file"
14969 directive even for stabs output. Make sure that this
14970 ".file" is handled. Note that you need a version of GCC
14971 after 3.1 in order to support DWARF-2 on MIPS. */
14972 if (filename != NULL && ! first_file_directive)
14973 {
14974 (void) new_logical_line (filename, -1);
14975 s_app_file_string (filename, 0);
14976 }
14977 first_file_directive = 1;
14978 }
14979 }
14980
14981 /* The .loc directive, implying DWARF-2. */
14982
14983 static void
14984 s_mips_loc (int x ATTRIBUTE_UNUSED)
14985 {
14986 if (!ECOFF_DEBUGGING)
14987 dwarf2_directive_loc (0);
14988 }
14989
14990 /* The .end directive. */
14991
14992 static void
14993 s_mips_end (int x ATTRIBUTE_UNUSED)
14994 {
14995 symbolS *p;
14996
14997 /* Following functions need their own .frame and .cprestore directives. */
14998 mips_frame_reg_valid = 0;
14999 mips_cprestore_valid = 0;
15000
15001 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15002 {
15003 p = get_symbol ();
15004 demand_empty_rest_of_line ();
15005 }
15006 else
15007 p = NULL;
15008
15009 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15010 as_warn (_(".end not in text section"));
15011
15012 if (!cur_proc_ptr)
15013 {
15014 as_warn (_(".end directive without a preceding .ent directive."));
15015 demand_empty_rest_of_line ();
15016 return;
15017 }
15018
15019 if (p != NULL)
15020 {
15021 assert (S_GET_NAME (p));
15022 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15023 as_warn (_(".end symbol does not match .ent symbol."));
15024
15025 if (debug_type == DEBUG_STABS)
15026 stabs_generate_asm_endfunc (S_GET_NAME (p),
15027 S_GET_NAME (p));
15028 }
15029 else
15030 as_warn (_(".end directive missing or unknown symbol"));
15031
15032 #ifdef OBJ_ELF
15033 /* Create an expression to calculate the size of the function. */
15034 if (p && cur_proc_ptr)
15035 {
15036 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15037 expressionS *exp = xmalloc (sizeof (expressionS));
15038
15039 obj->size = exp;
15040 exp->X_op = O_subtract;
15041 exp->X_add_symbol = symbol_temp_new_now ();
15042 exp->X_op_symbol = p;
15043 exp->X_add_number = 0;
15044
15045 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15046 }
15047
15048 /* Generate a .pdr section. */
15049 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15050 {
15051 segT saved_seg = now_seg;
15052 subsegT saved_subseg = now_subseg;
15053 valueT dot;
15054 expressionS exp;
15055 char *fragp;
15056
15057 dot = frag_now_fix ();
15058
15059 #ifdef md_flush_pending_output
15060 md_flush_pending_output ();
15061 #endif
15062
15063 assert (pdr_seg);
15064 subseg_set (pdr_seg, 0);
15065
15066 /* Write the symbol. */
15067 exp.X_op = O_symbol;
15068 exp.X_add_symbol = p;
15069 exp.X_add_number = 0;
15070 emit_expr (&exp, 4);
15071
15072 fragp = frag_more (7 * 4);
15073
15074 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15075 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15076 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15077 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15078 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15079 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15080 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15081
15082 subseg_set (saved_seg, saved_subseg);
15083 }
15084 #endif /* OBJ_ELF */
15085
15086 cur_proc_ptr = NULL;
15087 }
15088
15089 /* The .aent and .ent directives. */
15090
15091 static void
15092 s_mips_ent (int aent)
15093 {
15094 symbolS *symbolP;
15095
15096 symbolP = get_symbol ();
15097 if (*input_line_pointer == ',')
15098 ++input_line_pointer;
15099 SKIP_WHITESPACE ();
15100 if (ISDIGIT (*input_line_pointer)
15101 || *input_line_pointer == '-')
15102 get_number ();
15103
15104 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15105 as_warn (_(".ent or .aent not in text section."));
15106
15107 if (!aent && cur_proc_ptr)
15108 as_warn (_("missing .end"));
15109
15110 if (!aent)
15111 {
15112 /* This function needs its own .frame and .cprestore directives. */
15113 mips_frame_reg_valid = 0;
15114 mips_cprestore_valid = 0;
15115
15116 cur_proc_ptr = &cur_proc;
15117 memset (cur_proc_ptr, '\0', sizeof (procS));
15118
15119 cur_proc_ptr->func_sym = symbolP;
15120
15121 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15122
15123 ++numprocs;
15124
15125 if (debug_type == DEBUG_STABS)
15126 stabs_generate_asm_func (S_GET_NAME (symbolP),
15127 S_GET_NAME (symbolP));
15128 }
15129
15130 demand_empty_rest_of_line ();
15131 }
15132
15133 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15134 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15135 s_mips_frame is used so that we can set the PDR information correctly.
15136 We can't use the ecoff routines because they make reference to the ecoff
15137 symbol table (in the mdebug section). */
15138
15139 static void
15140 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15141 {
15142 #ifdef OBJ_ELF
15143 if (IS_ELF && !ECOFF_DEBUGGING)
15144 {
15145 long val;
15146
15147 if (cur_proc_ptr == (procS *) NULL)
15148 {
15149 as_warn (_(".frame outside of .ent"));
15150 demand_empty_rest_of_line ();
15151 return;
15152 }
15153
15154 cur_proc_ptr->frame_reg = tc_get_register (1);
15155
15156 SKIP_WHITESPACE ();
15157 if (*input_line_pointer++ != ','
15158 || get_absolute_expression_and_terminator (&val) != ',')
15159 {
15160 as_warn (_("Bad .frame directive"));
15161 --input_line_pointer;
15162 demand_empty_rest_of_line ();
15163 return;
15164 }
15165
15166 cur_proc_ptr->frame_offset = val;
15167 cur_proc_ptr->pc_reg = tc_get_register (0);
15168
15169 demand_empty_rest_of_line ();
15170 }
15171 else
15172 #endif /* OBJ_ELF */
15173 s_ignore (ignore);
15174 }
15175
15176 /* The .fmask and .mask directives. If the mdebug section is present
15177 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15178 embedded targets, s_mips_mask is used so that we can set the PDR
15179 information correctly. We can't use the ecoff routines because they
15180 make reference to the ecoff symbol table (in the mdebug section). */
15181
15182 static void
15183 s_mips_mask (int reg_type)
15184 {
15185 #ifdef OBJ_ELF
15186 if (IS_ELF && !ECOFF_DEBUGGING)
15187 {
15188 long mask, off;
15189
15190 if (cur_proc_ptr == (procS *) NULL)
15191 {
15192 as_warn (_(".mask/.fmask outside of .ent"));
15193 demand_empty_rest_of_line ();
15194 return;
15195 }
15196
15197 if (get_absolute_expression_and_terminator (&mask) != ',')
15198 {
15199 as_warn (_("Bad .mask/.fmask directive"));
15200 --input_line_pointer;
15201 demand_empty_rest_of_line ();
15202 return;
15203 }
15204
15205 off = get_absolute_expression ();
15206
15207 if (reg_type == 'F')
15208 {
15209 cur_proc_ptr->fpreg_mask = mask;
15210 cur_proc_ptr->fpreg_offset = off;
15211 }
15212 else
15213 {
15214 cur_proc_ptr->reg_mask = mask;
15215 cur_proc_ptr->reg_offset = off;
15216 }
15217
15218 demand_empty_rest_of_line ();
15219 }
15220 else
15221 #endif /* OBJ_ELF */
15222 s_ignore (reg_type);
15223 }
15224
15225 /* A table describing all the processors gas knows about. Names are
15226 matched in the order listed.
15227
15228 To ease comparison, please keep this table in the same order as
15229 gcc's mips_cpu_info_table[]. */
15230 static const struct mips_cpu_info mips_cpu_info_table[] =
15231 {
15232 /* Entries for generic ISAs */
15233 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15234 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15235 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15236 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15237 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15238 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15239 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15240 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15241 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15242
15243 /* MIPS I */
15244 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15245 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15246 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15247
15248 /* MIPS II */
15249 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15250
15251 /* MIPS III */
15252 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15253 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15254 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15255 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15256 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15257 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15258 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15259 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15260 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15261 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15262 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15263 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15264 /* ST Microelectronics Loongson 2E and 2F cores */
15265 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15266 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15267
15268 /* MIPS IV */
15269 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15270 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15271 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15272 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15273 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15274 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15275 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15276 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15277 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15278 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15279 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15280 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15281 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15282 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15283 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15284
15285 /* MIPS 32 */
15286 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15287 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15288 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15289 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15290
15291 /* MIPS 32 Release 2 */
15292 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15293 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15294 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15295 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15296 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15297 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15298 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15299 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15300 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15301 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15302 /* Deprecated forms of the above. */
15303 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15304 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15305 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15306 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15307 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15308 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15309 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15310 /* Deprecated forms of the above. */
15311 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15312 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15313 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15314 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15315 ISA_MIPS32R2, CPU_MIPS32R2 },
15316 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15317 ISA_MIPS32R2, CPU_MIPS32R2 },
15318 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15319 ISA_MIPS32R2, CPU_MIPS32R2 },
15320 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15321 ISA_MIPS32R2, CPU_MIPS32R2 },
15322 /* Deprecated forms of the above. */
15323 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15324 ISA_MIPS32R2, CPU_MIPS32R2 },
15325 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15326 ISA_MIPS32R2, CPU_MIPS32R2 },
15327 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15328 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15329 ISA_MIPS32R2, CPU_MIPS32R2 },
15330 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15331 ISA_MIPS32R2, CPU_MIPS32R2 },
15332 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15333 ISA_MIPS32R2, CPU_MIPS32R2 },
15334 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15335 ISA_MIPS32R2, CPU_MIPS32R2 },
15336 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15337 ISA_MIPS32R2, CPU_MIPS32R2 },
15338 /* Deprecated forms of the above. */
15339 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15340 ISA_MIPS32R2, CPU_MIPS32R2 },
15341 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15342 ISA_MIPS32R2, CPU_MIPS32R2 },
15343
15344 /* MIPS 64 */
15345 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15346 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15347 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15348 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15349
15350 /* Broadcom SB-1 CPU core */
15351 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15352 ISA_MIPS64, CPU_SB1 },
15353 /* Broadcom SB-1A CPU core */
15354 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15355 ISA_MIPS64, CPU_SB1 },
15356
15357 /* MIPS 64 Release 2 */
15358
15359 /* Cavium Networks Octeon CPU core */
15360 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15361
15362 /* RMI Xlr */
15363 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15364
15365 /* End marker */
15366 { NULL, 0, 0, 0 }
15367 };
15368
15369
15370 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15371 with a final "000" replaced by "k". Ignore case.
15372
15373 Note: this function is shared between GCC and GAS. */
15374
15375 static bfd_boolean
15376 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15377 {
15378 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15379 given++, canonical++;
15380
15381 return ((*given == 0 && *canonical == 0)
15382 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15383 }
15384
15385
15386 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15387 CPU name. We've traditionally allowed a lot of variation here.
15388
15389 Note: this function is shared between GCC and GAS. */
15390
15391 static bfd_boolean
15392 mips_matching_cpu_name_p (const char *canonical, const char *given)
15393 {
15394 /* First see if the name matches exactly, or with a final "000"
15395 turned into "k". */
15396 if (mips_strict_matching_cpu_name_p (canonical, given))
15397 return TRUE;
15398
15399 /* If not, try comparing based on numerical designation alone.
15400 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15401 if (TOLOWER (*given) == 'r')
15402 given++;
15403 if (!ISDIGIT (*given))
15404 return FALSE;
15405
15406 /* Skip over some well-known prefixes in the canonical name,
15407 hoping to find a number there too. */
15408 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15409 canonical += 2;
15410 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15411 canonical += 2;
15412 else if (TOLOWER (canonical[0]) == 'r')
15413 canonical += 1;
15414
15415 return mips_strict_matching_cpu_name_p (canonical, given);
15416 }
15417
15418
15419 /* Parse an option that takes the name of a processor as its argument.
15420 OPTION is the name of the option and CPU_STRING is the argument.
15421 Return the corresponding processor enumeration if the CPU_STRING is
15422 recognized, otherwise report an error and return null.
15423
15424 A similar function exists in GCC. */
15425
15426 static const struct mips_cpu_info *
15427 mips_parse_cpu (const char *option, const char *cpu_string)
15428 {
15429 const struct mips_cpu_info *p;
15430
15431 /* 'from-abi' selects the most compatible architecture for the given
15432 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15433 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15434 version. Look first at the -mgp options, if given, otherwise base
15435 the choice on MIPS_DEFAULT_64BIT.
15436
15437 Treat NO_ABI like the EABIs. One reason to do this is that the
15438 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15439 architecture. This code picks MIPS I for 'mips' and MIPS III for
15440 'mips64', just as we did in the days before 'from-abi'. */
15441 if (strcasecmp (cpu_string, "from-abi") == 0)
15442 {
15443 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15444 return mips_cpu_info_from_isa (ISA_MIPS1);
15445
15446 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15447 return mips_cpu_info_from_isa (ISA_MIPS3);
15448
15449 if (file_mips_gp32 >= 0)
15450 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15451
15452 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15453 ? ISA_MIPS3
15454 : ISA_MIPS1);
15455 }
15456
15457 /* 'default' has traditionally been a no-op. Probably not very useful. */
15458 if (strcasecmp (cpu_string, "default") == 0)
15459 return 0;
15460
15461 for (p = mips_cpu_info_table; p->name != 0; p++)
15462 if (mips_matching_cpu_name_p (p->name, cpu_string))
15463 return p;
15464
15465 as_bad ("Bad value (%s) for %s", cpu_string, option);
15466 return 0;
15467 }
15468
15469 /* Return the canonical processor information for ISA (a member of the
15470 ISA_MIPS* enumeration). */
15471
15472 static const struct mips_cpu_info *
15473 mips_cpu_info_from_isa (int isa)
15474 {
15475 int i;
15476
15477 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15478 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15479 && isa == mips_cpu_info_table[i].isa)
15480 return (&mips_cpu_info_table[i]);
15481
15482 return NULL;
15483 }
15484
15485 static const struct mips_cpu_info *
15486 mips_cpu_info_from_arch (int arch)
15487 {
15488 int i;
15489
15490 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15491 if (arch == mips_cpu_info_table[i].cpu)
15492 return (&mips_cpu_info_table[i]);
15493
15494 return NULL;
15495 }
15496 \f
15497 static void
15498 show (FILE *stream, const char *string, int *col_p, int *first_p)
15499 {
15500 if (*first_p)
15501 {
15502 fprintf (stream, "%24s", "");
15503 *col_p = 24;
15504 }
15505 else
15506 {
15507 fprintf (stream, ", ");
15508 *col_p += 2;
15509 }
15510
15511 if (*col_p + strlen (string) > 72)
15512 {
15513 fprintf (stream, "\n%24s", "");
15514 *col_p = 24;
15515 }
15516
15517 fprintf (stream, "%s", string);
15518 *col_p += strlen (string);
15519
15520 *first_p = 0;
15521 }
15522
15523 void
15524 md_show_usage (FILE *stream)
15525 {
15526 int column, first;
15527 size_t i;
15528
15529 fprintf (stream, _("\
15530 MIPS options:\n\
15531 -EB generate big endian output\n\
15532 -EL generate little endian output\n\
15533 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15534 -G NUM allow referencing objects up to NUM bytes\n\
15535 implicitly with the gp register [default 8]\n"));
15536 fprintf (stream, _("\
15537 -mips1 generate MIPS ISA I instructions\n\
15538 -mips2 generate MIPS ISA II instructions\n\
15539 -mips3 generate MIPS ISA III instructions\n\
15540 -mips4 generate MIPS ISA IV instructions\n\
15541 -mips5 generate MIPS ISA V instructions\n\
15542 -mips32 generate MIPS32 ISA instructions\n\
15543 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15544 -mips64 generate MIPS64 ISA instructions\n\
15545 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15546 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15547
15548 first = 1;
15549
15550 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15551 show (stream, mips_cpu_info_table[i].name, &column, &first);
15552 show (stream, "from-abi", &column, &first);
15553 fputc ('\n', stream);
15554
15555 fprintf (stream, _("\
15556 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15557 -no-mCPU don't generate code specific to CPU.\n\
15558 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15559
15560 first = 1;
15561
15562 show (stream, "3900", &column, &first);
15563 show (stream, "4010", &column, &first);
15564 show (stream, "4100", &column, &first);
15565 show (stream, "4650", &column, &first);
15566 fputc ('\n', stream);
15567
15568 fprintf (stream, _("\
15569 -mips16 generate mips16 instructions\n\
15570 -no-mips16 do not generate mips16 instructions\n"));
15571 fprintf (stream, _("\
15572 -msmartmips generate smartmips instructions\n\
15573 -mno-smartmips do not generate smartmips instructions\n"));
15574 fprintf (stream, _("\
15575 -mdsp generate DSP instructions\n\
15576 -mno-dsp do not generate DSP instructions\n"));
15577 fprintf (stream, _("\
15578 -mdspr2 generate DSP R2 instructions\n\
15579 -mno-dspr2 do not generate DSP R2 instructions\n"));
15580 fprintf (stream, _("\
15581 -mmt generate MT instructions\n\
15582 -mno-mt do not generate MT instructions\n"));
15583 fprintf (stream, _("\
15584 -mfix-vr4120 work around certain VR4120 errata\n\
15585 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15586 -mfix-24k insert a nop after ERET and DERET instructions\n\
15587 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15588 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15589 -msym32 assume all symbols have 32-bit values\n\
15590 -O0 remove unneeded NOPs, do not swap branches\n\
15591 -O remove unneeded NOPs and swap branches\n\
15592 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15593 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15594 fprintf (stream, _("\
15595 -mhard-float allow floating-point instructions\n\
15596 -msoft-float do not allow floating-point instructions\n\
15597 -msingle-float only allow 32-bit floating-point operations\n\
15598 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15599 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15600 ));
15601 #ifdef OBJ_ELF
15602 fprintf (stream, _("\
15603 -KPIC, -call_shared generate SVR4 position independent code\n\
15604 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15605 -mvxworks-pic generate VxWorks position independent code\n\
15606 -non_shared do not generate code that can operate with DSOs\n\
15607 -xgot assume a 32 bit GOT\n\
15608 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15609 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15610 position dependent (non shared) code\n\
15611 -mabi=ABI create ABI conformant object file for:\n"));
15612
15613 first = 1;
15614
15615 show (stream, "32", &column, &first);
15616 show (stream, "o64", &column, &first);
15617 show (stream, "n32", &column, &first);
15618 show (stream, "64", &column, &first);
15619 show (stream, "eabi", &column, &first);
15620
15621 fputc ('\n', stream);
15622
15623 fprintf (stream, _("\
15624 -32 create o32 ABI object file (default)\n\
15625 -n32 create n32 ABI object file\n\
15626 -64 create 64 ABI object file\n"));
15627 #endif
15628 }
15629
15630 enum dwarf2_format
15631 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15632 {
15633 if (HAVE_64BIT_SYMBOLS)
15634 {
15635 #ifdef TE_IRIX
15636 return dwarf2_format_64bit_irix;
15637 #else
15638 return dwarf2_format_64bit;
15639 #endif
15640 }
15641 else
15642 return dwarf2_format_32bit;
15643 }
15644
15645 int
15646 mips_dwarf2_addr_size (void)
15647 {
15648 if (HAVE_64BIT_OBJECTS)
15649 return 8;
15650 else
15651 return 4;
15652 }
15653
15654 /* Standard calling conventions leave the CFA at SP on entry. */
15655 void
15656 mips_cfi_frame_initial_instructions (void)
15657 {
15658 cfi_add_CFA_def_cfa_register (SP);
15659 }
15660
15661 int
15662 tc_mips_regname_to_dw2regnum (char *regname)
15663 {
15664 unsigned int regnum = -1;
15665 unsigned int reg;
15666
15667 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15668 regnum = reg;
15669
15670 return regnum;
15671 }
This page took 0.438938 seconds and 5 git commands to generate.