gas/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define S0 16
95 #define S7 23
96 #define TREG 24
97 #define PIC_CALL_REG 25
98 #define KT0 26
99 #define KT1 27
100 #define GP 28
101 #define SP 29
102 #define FP 30
103 #define RA 31
104
105 #define ILLEGAL_REG (32)
106
107 #define AT mips_opts.at
108
109 /* Allow override of standard little-endian ECOFF format. */
110
111 #ifndef ECOFF_LITTLE_FORMAT
112 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
113 #endif
114
115 extern int target_big_endian;
116
117 /* The name of the readonly data section. */
118 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
121 ? ".rdata" \
122 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
123 ? ".rodata" \
124 : (abort (), ""))
125
126 /* Ways in which an instruction can be "appended" to the output. */
127 enum append_method {
128 /* Just add it normally. */
129 APPEND_ADD,
130
131 /* Add it normally and then add a nop. */
132 APPEND_ADD_WITH_NOP,
133
134 /* Turn an instruction with a delay slot into a "compact" version. */
135 APPEND_ADD_COMPACT,
136
137 /* Insert the instruction before the last one. */
138 APPEND_SWAP
139 };
140
141 /* Information about an instruction, including its format, operands
142 and fixups. */
143 struct mips_cl_insn
144 {
145 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
146 const struct mips_opcode *insn_mo;
147
148 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
149 a copy of INSN_MO->match with the operands filled in. If we have
150 decided to use an extended MIPS16 instruction, this includes the
151 extension. */
152 unsigned long insn_opcode;
153
154 /* The frag that contains the instruction. */
155 struct frag *frag;
156
157 /* The offset into FRAG of the first instruction byte. */
158 long where;
159
160 /* The relocs associated with the instruction, if any. */
161 fixS *fixp[3];
162
163 /* True if this entry cannot be moved from its current position. */
164 unsigned int fixed_p : 1;
165
166 /* True if this instruction occurred in a .set noreorder block. */
167 unsigned int noreorder_p : 1;
168
169 /* True for mips16 instructions that jump to an absolute address. */
170 unsigned int mips16_absolute_jump_p : 1;
171
172 /* True if this instruction is complete. */
173 unsigned int complete_p : 1;
174
175 /* True if this instruction is cleared from history by unconditional
176 branch. */
177 unsigned int cleared_p : 1;
178 };
179
180 /* The ABI to use. */
181 enum mips_abi_level
182 {
183 NO_ABI = 0,
184 O32_ABI,
185 O64_ABI,
186 N32_ABI,
187 N64_ABI,
188 EABI_ABI
189 };
190
191 /* MIPS ABI we are using for this output file. */
192 static enum mips_abi_level mips_abi = NO_ABI;
193
194 /* Whether or not we have code that can call pic code. */
195 int mips_abicalls = FALSE;
196
197 /* Whether or not we have code which can be put into a shared
198 library. */
199 static bfd_boolean mips_in_shared = TRUE;
200
201 /* This is the set of options which may be modified by the .set
202 pseudo-op. We use a struct so that .set push and .set pop are more
203 reliable. */
204
205 struct mips_set_options
206 {
207 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
208 if it has not been initialized. Changed by `.set mipsN', and the
209 -mipsN command line option, and the default CPU. */
210 int isa;
211 /* Enabled Application Specific Extensions (ASEs). These are set to -1
212 if they have not been initialized. Changed by `.set <asename>', by
213 command line options, and based on the default architecture. */
214 int ase_mips3d;
215 int ase_mdmx;
216 int ase_smartmips;
217 int ase_dsp;
218 int ase_dspr2;
219 int ase_mt;
220 int ase_mcu;
221 int ase_virt;
222 /* Whether we are assembling for the mips16 processor. 0 if we are
223 not, 1 if we are, and -1 if the value has not been initialized.
224 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
225 -nomips16 command line options, and the default CPU. */
226 int mips16;
227 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
228 1 if we are, and -1 if the value has not been initialized. Changed
229 by `.set micromips' and `.set nomicromips', and the -mmicromips
230 and -mno-micromips command line options, and the default CPU. */
231 int micromips;
232 /* Non-zero if we should not reorder instructions. Changed by `.set
233 reorder' and `.set noreorder'. */
234 int noreorder;
235 /* Non-zero if we should not permit the register designated "assembler
236 temporary" to be used in instructions. The value is the register
237 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
238 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
239 unsigned int at;
240 /* Non-zero if we should warn when a macro instruction expands into
241 more than one machine instruction. Changed by `.set nomacro' and
242 `.set macro'. */
243 int warn_about_macros;
244 /* Non-zero if we should not move instructions. Changed by `.set
245 move', `.set volatile', `.set nomove', and `.set novolatile'. */
246 int nomove;
247 /* Non-zero if we should not optimize branches by moving the target
248 of the branch into the delay slot. Actually, we don't perform
249 this optimization anyhow. Changed by `.set bopt' and `.set
250 nobopt'. */
251 int nobopt;
252 /* Non-zero if we should not autoextend mips16 instructions.
253 Changed by `.set autoextend' and `.set noautoextend'. */
254 int noautoextend;
255 /* Restrict general purpose registers and floating point registers
256 to 32 bit. This is initially determined when -mgp32 or -mfp32
257 is passed but can changed if the assembler code uses .set mipsN. */
258 int gp32;
259 int fp32;
260 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
261 command line option, and the default CPU. */
262 int arch;
263 /* True if ".set sym32" is in effect. */
264 bfd_boolean sym32;
265 /* True if floating-point operations are not allowed. Changed by .set
266 softfloat or .set hardfloat, by command line options -msoft-float or
267 -mhard-float. The default is false. */
268 bfd_boolean soft_float;
269
270 /* True if only single-precision floating-point operations are allowed.
271 Changed by .set singlefloat or .set doublefloat, command-line options
272 -msingle-float or -mdouble-float. The default is false. */
273 bfd_boolean single_float;
274 };
275
276 /* This is the struct we use to hold the current set of options. Note
277 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
278 -1 to indicate that they have not been initialized. */
279
280 /* True if -mgp32 was passed. */
281 static int file_mips_gp32 = -1;
282
283 /* True if -mfp32 was passed. */
284 static int file_mips_fp32 = -1;
285
286 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
287 static int file_mips_soft_float = 0;
288
289 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
290 static int file_mips_single_float = 0;
291
292 static struct mips_set_options mips_opts =
293 {
294 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
295 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
296 /* ase_mcu */ -1, /* ase_virt */ -1, /* mips16 */ -1,/* micromips */ -1,
297 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
298 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* gp32 */ 0,
299 /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
300 /* soft_float */ FALSE, /* single_float */ FALSE
301 };
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* MIPS ISA we are using for this output file. */
310 static int file_mips_isa = ISA_UNKNOWN;
311
312 /* True if any MIPS16 code was produced. */
313 static int file_ase_mips16;
314
315 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
316 || mips_opts.isa == ISA_MIPS32R2 \
317 || mips_opts.isa == ISA_MIPS64 \
318 || mips_opts.isa == ISA_MIPS64R2)
319
320 /* True if any microMIPS code was produced. */
321 static int file_ase_micromips;
322
323 /* True if we want to create R_MIPS_JALR for jalr $25. */
324 #ifdef TE_IRIX
325 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
326 #else
327 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
328 because there's no place for any addend, the only acceptable
329 expression is a bare symbol. */
330 #define MIPS_JALR_HINT_P(EXPR) \
331 (!HAVE_IN_PLACE_ADDENDS \
332 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
333 #endif
334
335 /* True if -mips3d was passed or implied by arguments passed on the
336 command line (e.g., by -march). */
337 static int file_ase_mips3d;
338
339 /* True if -mdmx was passed or implied by arguments passed on the
340 command line (e.g., by -march). */
341 static int file_ase_mdmx;
342
343 /* True if -msmartmips was passed or implied by arguments passed on the
344 command line (e.g., by -march). */
345 static int file_ase_smartmips;
346
347 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
348 || mips_opts.isa == ISA_MIPS32R2)
349
350 /* True if -mdsp was passed or implied by arguments passed on the
351 command line (e.g., by -march). */
352 static int file_ase_dsp;
353
354 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
355 || mips_opts.isa == ISA_MIPS64R2 \
356 || mips_opts.micromips)
357
358 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
359
360 /* True if -mdspr2 was passed or implied by arguments passed on the
361 command line (e.g., by -march). */
362 static int file_ase_dspr2;
363
364 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
365 || mips_opts.isa == ISA_MIPS64R2 \
366 || mips_opts.micromips)
367
368 /* True if -mmt was passed or implied by arguments passed on the
369 command line (e.g., by -march). */
370 static int file_ase_mt;
371
372 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
373 || mips_opts.isa == ISA_MIPS64R2)
374
375 #define ISA_SUPPORTS_MCU_ASE (mips_opts.isa == ISA_MIPS32R2 \
376 || mips_opts.isa == ISA_MIPS64R2 \
377 || mips_opts.micromips)
378
379 /* True if -mvirt was passed or implied by arguments passed on the
380 command line (e.g., by -march). */
381 static int file_ase_virt;
382
383 #define ISA_SUPPORTS_VIRT_ASE (mips_opts.isa == ISA_MIPS32R2 \
384 || mips_opts.isa == ISA_MIPS64R2)
385
386 #define ISA_SUPPORTS_VIRT64_ASE (mips_opts.isa == ISA_MIPS64R2)
387
388 /* The argument of the -march= flag. The architecture we are assembling. */
389 static int file_mips_arch = CPU_UNKNOWN;
390 static const char *mips_arch_string;
391
392 /* The argument of the -mtune= flag. The architecture for which we
393 are optimizing. */
394 static int mips_tune = CPU_UNKNOWN;
395 static const char *mips_tune_string;
396
397 /* True when generating 32-bit code for a 64-bit processor. */
398 static int mips_32bitmode = 0;
399
400 /* True if the given ABI requires 32-bit registers. */
401 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
402
403 /* Likewise 64-bit registers. */
404 #define ABI_NEEDS_64BIT_REGS(ABI) \
405 ((ABI) == N32_ABI \
406 || (ABI) == N64_ABI \
407 || (ABI) == O64_ABI)
408
409 /* Return true if ISA supports 64 bit wide gp registers. */
410 #define ISA_HAS_64BIT_REGS(ISA) \
411 ((ISA) == ISA_MIPS3 \
412 || (ISA) == ISA_MIPS4 \
413 || (ISA) == ISA_MIPS5 \
414 || (ISA) == ISA_MIPS64 \
415 || (ISA) == ISA_MIPS64R2)
416
417 /* Return true if ISA supports 64 bit wide float registers. */
418 #define ISA_HAS_64BIT_FPRS(ISA) \
419 ((ISA) == ISA_MIPS3 \
420 || (ISA) == ISA_MIPS4 \
421 || (ISA) == ISA_MIPS5 \
422 || (ISA) == ISA_MIPS32R2 \
423 || (ISA) == ISA_MIPS64 \
424 || (ISA) == ISA_MIPS64R2)
425
426 /* Return true if ISA supports 64-bit right rotate (dror et al.)
427 instructions. */
428 #define ISA_HAS_DROR(ISA) \
429 ((ISA) == ISA_MIPS64R2 \
430 || (mips_opts.micromips \
431 && ISA_HAS_64BIT_REGS (ISA)) \
432 )
433
434 /* Return true if ISA supports 32-bit right rotate (ror et al.)
435 instructions. */
436 #define ISA_HAS_ROR(ISA) \
437 ((ISA) == ISA_MIPS32R2 \
438 || (ISA) == ISA_MIPS64R2 \
439 || mips_opts.ase_smartmips \
440 || mips_opts.micromips \
441 )
442
443 /* Return true if ISA supports single-precision floats in odd registers. */
444 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
445 ((ISA) == ISA_MIPS32 \
446 || (ISA) == ISA_MIPS32R2 \
447 || (ISA) == ISA_MIPS64 \
448 || (ISA) == ISA_MIPS64R2)
449
450 /* Return true if ISA supports move to/from high part of a 64-bit
451 floating-point register. */
452 #define ISA_HAS_MXHC1(ISA) \
453 ((ISA) == ISA_MIPS32R2 \
454 || (ISA) == ISA_MIPS64R2)
455
456 #define HAVE_32BIT_GPRS \
457 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
458
459 #define HAVE_32BIT_FPRS \
460 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
461
462 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
463 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
514
515 /* True if CPU has seq/sne and seqi/snei instructions. */
516 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
517
518 /* True, if CPU has support for ldc1 and sdc1. */
519 #define CPU_HAS_LDC1_SDC1(CPU) \
520 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
521
522 /* True if mflo and mfhi can be immediately followed by instructions
523 which write to the HI and LO registers.
524
525 According to MIPS specifications, MIPS ISAs I, II, and III need
526 (at least) two instructions between the reads of HI/LO and
527 instructions which write them, and later ISAs do not. Contradicting
528 the MIPS specifications, some MIPS IV processor user manuals (e.g.
529 the UM for the NEC Vr5000) document needing the instructions between
530 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
531 MIPS64 and later ISAs to have the interlocks, plus any specific
532 earlier-ISA CPUs for which CPU documentation declares that the
533 instructions are really interlocked. */
534 #define hilo_interlocks \
535 (mips_opts.isa == ISA_MIPS32 \
536 || mips_opts.isa == ISA_MIPS32R2 \
537 || mips_opts.isa == ISA_MIPS64 \
538 || mips_opts.isa == ISA_MIPS64R2 \
539 || mips_opts.arch == CPU_R4010 \
540 || mips_opts.arch == CPU_R5900 \
541 || mips_opts.arch == CPU_R10000 \
542 || mips_opts.arch == CPU_R12000 \
543 || mips_opts.arch == CPU_R14000 \
544 || mips_opts.arch == CPU_R16000 \
545 || mips_opts.arch == CPU_RM7000 \
546 || mips_opts.arch == CPU_VR5500 \
547 || mips_opts.micromips \
548 )
549
550 /* Whether the processor uses hardware interlocks to protect reads
551 from the GPRs after they are loaded from memory, and thus does not
552 require nops to be inserted. This applies to instructions marked
553 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
554 level I and microMIPS mode instructions are always interlocked. */
555 #define gpr_interlocks \
556 (mips_opts.isa != ISA_MIPS1 \
557 || mips_opts.arch == CPU_R3900 \
558 || mips_opts.arch == CPU_R5900 \
559 || mips_opts.micromips \
560 )
561
562 /* Whether the processor uses hardware interlocks to avoid delays
563 required by coprocessor instructions, and thus does not require
564 nops to be inserted. This applies to instructions marked
565 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
566 between instructions marked INSN_WRITE_COND_CODE and ones marked
567 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
568 levels I, II, and III and microMIPS mode instructions are always
569 interlocked. */
570 /* Itbl support may require additional care here. */
571 #define cop_interlocks \
572 ((mips_opts.isa != ISA_MIPS1 \
573 && mips_opts.isa != ISA_MIPS2 \
574 && mips_opts.isa != ISA_MIPS3) \
575 || mips_opts.arch == CPU_R4300 \
576 || mips_opts.micromips \
577 )
578
579 /* Whether the processor uses hardware interlocks to protect reads
580 from coprocessor registers after they are loaded from memory, and
581 thus does not require nops to be inserted. This applies to
582 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
583 requires at MIPS ISA level I and microMIPS mode instructions are
584 always interlocked. */
585 #define cop_mem_interlocks \
586 (mips_opts.isa != ISA_MIPS1 \
587 || mips_opts.micromips \
588 )
589
590 /* Is this a mfhi or mflo instruction? */
591 #define MF_HILO_INSN(PINFO) \
592 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
593
594 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
595 has been selected. This implies, in particular, that addresses of text
596 labels have their LSB set. */
597 #define HAVE_CODE_COMPRESSION \
598 ((mips_opts.mips16 | mips_opts.micromips) != 0)
599
600 /* MIPS PIC level. */
601
602 enum mips_pic_level mips_pic;
603
604 /* 1 if we should generate 32 bit offsets from the $gp register in
605 SVR4_PIC mode. Currently has no meaning in other modes. */
606 static int mips_big_got = 0;
607
608 /* 1 if trap instructions should used for overflow rather than break
609 instructions. */
610 static int mips_trap = 0;
611
612 /* 1 if double width floating point constants should not be constructed
613 by assembling two single width halves into two single width floating
614 point registers which just happen to alias the double width destination
615 register. On some architectures this aliasing can be disabled by a bit
616 in the status register, and the setting of this bit cannot be determined
617 automatically at assemble time. */
618 static int mips_disable_float_construction;
619
620 /* Non-zero if any .set noreorder directives were used. */
621
622 static int mips_any_noreorder;
623
624 /* Non-zero if nops should be inserted when the register referenced in
625 an mfhi/mflo instruction is read in the next two instructions. */
626 static int mips_7000_hilo_fix;
627
628 /* The size of objects in the small data section. */
629 static unsigned int g_switch_value = 8;
630 /* Whether the -G option was used. */
631 static int g_switch_seen = 0;
632
633 #define N_RMASK 0xc4
634 #define N_VFP 0xd4
635
636 /* If we can determine in advance that GP optimization won't be
637 possible, we can skip the relaxation stuff that tries to produce
638 GP-relative references. This makes delay slot optimization work
639 better.
640
641 This function can only provide a guess, but it seems to work for
642 gcc output. It needs to guess right for gcc, otherwise gcc
643 will put what it thinks is a GP-relative instruction in a branch
644 delay slot.
645
646 I don't know if a fix is needed for the SVR4_PIC mode. I've only
647 fixed it for the non-PIC mode. KR 95/04/07 */
648 static int nopic_need_relax (symbolS *, int);
649
650 /* handle of the OPCODE hash table */
651 static struct hash_control *op_hash = NULL;
652
653 /* The opcode hash table we use for the mips16. */
654 static struct hash_control *mips16_op_hash = NULL;
655
656 /* The opcode hash table we use for the microMIPS ASE. */
657 static struct hash_control *micromips_op_hash = NULL;
658
659 /* This array holds the chars that always start a comment. If the
660 pre-processor is disabled, these aren't very useful */
661 const char comment_chars[] = "#";
662
663 /* This array holds the chars that only start a comment at the beginning of
664 a line. If the line seems to have the form '# 123 filename'
665 .line and .file directives will appear in the pre-processed output */
666 /* Note that input_file.c hand checks for '#' at the beginning of the
667 first line of the input file. This is because the compiler outputs
668 #NO_APP at the beginning of its output. */
669 /* Also note that C style comments are always supported. */
670 const char line_comment_chars[] = "#";
671
672 /* This array holds machine specific line separator characters. */
673 const char line_separator_chars[] = ";";
674
675 /* Chars that can be used to separate mant from exp in floating point nums */
676 const char EXP_CHARS[] = "eE";
677
678 /* Chars that mean this number is a floating point constant */
679 /* As in 0f12.456 */
680 /* or 0d1.2345e12 */
681 const char FLT_CHARS[] = "rRsSfFdDxXpP";
682
683 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
684 changed in read.c . Ideally it shouldn't have to know about it at all,
685 but nothing is ideal around here.
686 */
687
688 static char *insn_error;
689
690 static int auto_align = 1;
691
692 /* When outputting SVR4 PIC code, the assembler needs to know the
693 offset in the stack frame from which to restore the $gp register.
694 This is set by the .cprestore pseudo-op, and saved in this
695 variable. */
696 static offsetT mips_cprestore_offset = -1;
697
698 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
699 more optimizations, it can use a register value instead of a memory-saved
700 offset and even an other register than $gp as global pointer. */
701 static offsetT mips_cpreturn_offset = -1;
702 static int mips_cpreturn_register = -1;
703 static int mips_gp_register = GP;
704 static int mips_gprel_offset = 0;
705
706 /* Whether mips_cprestore_offset has been set in the current function
707 (or whether it has already been warned about, if not). */
708 static int mips_cprestore_valid = 0;
709
710 /* This is the register which holds the stack frame, as set by the
711 .frame pseudo-op. This is needed to implement .cprestore. */
712 static int mips_frame_reg = SP;
713
714 /* Whether mips_frame_reg has been set in the current function
715 (or whether it has already been warned about, if not). */
716 static int mips_frame_reg_valid = 0;
717
718 /* To output NOP instructions correctly, we need to keep information
719 about the previous two instructions. */
720
721 /* Whether we are optimizing. The default value of 2 means to remove
722 unneeded NOPs and swap branch instructions when possible. A value
723 of 1 means to not swap branches. A value of 0 means to always
724 insert NOPs. */
725 static int mips_optimize = 2;
726
727 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
728 equivalent to seeing no -g option at all. */
729 static int mips_debug = 0;
730
731 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
732 #define MAX_VR4130_NOPS 4
733
734 /* The maximum number of NOPs needed to fill delay slots. */
735 #define MAX_DELAY_NOPS 2
736
737 /* The maximum number of NOPs needed for any purpose. */
738 #define MAX_NOPS 4
739
740 /* A list of previous instructions, with index 0 being the most recent.
741 We need to look back MAX_NOPS instructions when filling delay slots
742 or working around processor errata. We need to look back one
743 instruction further if we're thinking about using history[0] to
744 fill a branch delay slot. */
745 static struct mips_cl_insn history[1 + MAX_NOPS];
746
747 /* Nop instructions used by emit_nop. */
748 static struct mips_cl_insn nop_insn;
749 static struct mips_cl_insn mips16_nop_insn;
750 static struct mips_cl_insn micromips_nop16_insn;
751 static struct mips_cl_insn micromips_nop32_insn;
752
753 /* The appropriate nop for the current mode. */
754 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn \
755 : (mips_opts.micromips ? &micromips_nop16_insn : &nop_insn))
756
757 /* The size of NOP_INSN in bytes. */
758 #define NOP_INSN_SIZE (HAVE_CODE_COMPRESSION ? 2 : 4)
759
760 /* If this is set, it points to a frag holding nop instructions which
761 were inserted before the start of a noreorder section. If those
762 nops turn out to be unnecessary, the size of the frag can be
763 decreased. */
764 static fragS *prev_nop_frag;
765
766 /* The number of nop instructions we created in prev_nop_frag. */
767 static int prev_nop_frag_holds;
768
769 /* The number of nop instructions that we know we need in
770 prev_nop_frag. */
771 static int prev_nop_frag_required;
772
773 /* The number of instructions we've seen since prev_nop_frag. */
774 static int prev_nop_frag_since;
775
776 /* For ECOFF and ELF, relocations against symbols are done in two
777 parts, with a HI relocation and a LO relocation. Each relocation
778 has only 16 bits of space to store an addend. This means that in
779 order for the linker to handle carries correctly, it must be able
780 to locate both the HI and the LO relocation. This means that the
781 relocations must appear in order in the relocation table.
782
783 In order to implement this, we keep track of each unmatched HI
784 relocation. We then sort them so that they immediately precede the
785 corresponding LO relocation. */
786
787 struct mips_hi_fixup
788 {
789 /* Next HI fixup. */
790 struct mips_hi_fixup *next;
791 /* This fixup. */
792 fixS *fixp;
793 /* The section this fixup is in. */
794 segT seg;
795 };
796
797 /* The list of unmatched HI relocs. */
798
799 static struct mips_hi_fixup *mips_hi_fixup_list;
800
801 /* The frag containing the last explicit relocation operator.
802 Null if explicit relocations have not been used. */
803
804 static fragS *prev_reloc_op_frag;
805
806 /* Map normal MIPS register numbers to mips16 register numbers. */
807
808 #define X ILLEGAL_REG
809 static const int mips32_to_16_reg_map[] =
810 {
811 X, X, 2, 3, 4, 5, 6, 7,
812 X, X, X, X, X, X, X, X,
813 0, 1, X, X, X, X, X, X,
814 X, X, X, X, X, X, X, X
815 };
816 #undef X
817
818 /* Map mips16 register numbers to normal MIPS register numbers. */
819
820 static const unsigned int mips16_to_32_reg_map[] =
821 {
822 16, 17, 2, 3, 4, 5, 6, 7
823 };
824
825 /* Map normal MIPS register numbers to microMIPS register numbers. */
826
827 #define mips32_to_micromips_reg_b_map mips32_to_16_reg_map
828 #define mips32_to_micromips_reg_c_map mips32_to_16_reg_map
829 #define mips32_to_micromips_reg_d_map mips32_to_16_reg_map
830 #define mips32_to_micromips_reg_e_map mips32_to_16_reg_map
831 #define mips32_to_micromips_reg_f_map mips32_to_16_reg_map
832 #define mips32_to_micromips_reg_g_map mips32_to_16_reg_map
833 #define mips32_to_micromips_reg_l_map mips32_to_16_reg_map
834
835 #define X ILLEGAL_REG
836 /* reg type h: 4, 5, 6. */
837 static const int mips32_to_micromips_reg_h_map[] =
838 {
839 X, X, X, X, 4, 5, 6, X,
840 X, X, X, X, X, X, X, X,
841 X, X, X, X, X, X, X, X,
842 X, X, X, X, X, X, X, X
843 };
844
845 /* reg type m: 0, 17, 2, 3, 16, 18, 19, 20. */
846 static const int mips32_to_micromips_reg_m_map[] =
847 {
848 0, X, 2, 3, X, X, X, X,
849 X, X, X, X, X, X, X, X,
850 4, 1, 5, 6, 7, X, X, X,
851 X, X, X, X, X, X, X, X
852 };
853
854 /* reg type q: 0, 2-7. 17. */
855 static const int mips32_to_micromips_reg_q_map[] =
856 {
857 0, X, 2, 3, 4, 5, 6, 7,
858 X, X, X, X, X, X, X, X,
859 X, 1, X, X, X, X, X, X,
860 X, X, X, X, X, X, X, X
861 };
862
863 #define mips32_to_micromips_reg_n_map mips32_to_micromips_reg_m_map
864 #undef X
865
866 /* Map microMIPS register numbers to normal MIPS register numbers. */
867
868 #define micromips_to_32_reg_b_map mips16_to_32_reg_map
869 #define micromips_to_32_reg_c_map mips16_to_32_reg_map
870 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
871 #define micromips_to_32_reg_e_map mips16_to_32_reg_map
872 #define micromips_to_32_reg_f_map mips16_to_32_reg_map
873 #define micromips_to_32_reg_g_map mips16_to_32_reg_map
874
875 /* The microMIPS registers with type h. */
876 static const unsigned int micromips_to_32_reg_h_map[] =
877 {
878 5, 5, 6, 4, 4, 4, 4, 4
879 };
880
881 /* The microMIPS registers with type i. */
882 static const unsigned int micromips_to_32_reg_i_map[] =
883 {
884 6, 7, 7, 21, 22, 5, 6, 7
885 };
886
887 #define micromips_to_32_reg_l_map mips16_to_32_reg_map
888
889 /* The microMIPS registers with type m. */
890 static const unsigned int micromips_to_32_reg_m_map[] =
891 {
892 0, 17, 2, 3, 16, 18, 19, 20
893 };
894
895 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
896
897 /* The microMIPS registers with type q. */
898 static const unsigned int micromips_to_32_reg_q_map[] =
899 {
900 0, 17, 2, 3, 4, 5, 6, 7
901 };
902
903 /* microMIPS imm type B. */
904 static const int micromips_imm_b_map[] =
905 {
906 1, 4, 8, 12, 16, 20, 24, -1
907 };
908
909 /* microMIPS imm type C. */
910 static const int micromips_imm_c_map[] =
911 {
912 128, 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 255, 32768, 65535
913 };
914
915 /* Classifies the kind of instructions we're interested in when
916 implementing -mfix-vr4120. */
917 enum fix_vr4120_class
918 {
919 FIX_VR4120_MACC,
920 FIX_VR4120_DMACC,
921 FIX_VR4120_MULT,
922 FIX_VR4120_DMULT,
923 FIX_VR4120_DIV,
924 FIX_VR4120_MTHILO,
925 NUM_FIX_VR4120_CLASSES
926 };
927
928 /* ...likewise -mfix-loongson2f-jump. */
929 static bfd_boolean mips_fix_loongson2f_jump;
930
931 /* ...likewise -mfix-loongson2f-nop. */
932 static bfd_boolean mips_fix_loongson2f_nop;
933
934 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
935 static bfd_boolean mips_fix_loongson2f;
936
937 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
938 there must be at least one other instruction between an instruction
939 of type X and an instruction of type Y. */
940 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
941
942 /* True if -mfix-vr4120 is in force. */
943 static int mips_fix_vr4120;
944
945 /* ...likewise -mfix-vr4130. */
946 static int mips_fix_vr4130;
947
948 /* ...likewise -mfix-24k. */
949 static int mips_fix_24k;
950
951 /* ...likewise -mfix-cn63xxp1 */
952 static bfd_boolean mips_fix_cn63xxp1;
953
954 /* We don't relax branches by default, since this causes us to expand
955 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
956 fail to compute the offset before expanding the macro to the most
957 efficient expansion. */
958
959 static int mips_relax_branch;
960 \f
961 /* The expansion of many macros depends on the type of symbol that
962 they refer to. For example, when generating position-dependent code,
963 a macro that refers to a symbol may have two different expansions,
964 one which uses GP-relative addresses and one which uses absolute
965 addresses. When generating SVR4-style PIC, a macro may have
966 different expansions for local and global symbols.
967
968 We handle these situations by generating both sequences and putting
969 them in variant frags. In position-dependent code, the first sequence
970 will be the GP-relative one and the second sequence will be the
971 absolute one. In SVR4 PIC, the first sequence will be for global
972 symbols and the second will be for local symbols.
973
974 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
975 SECOND are the lengths of the two sequences in bytes. These fields
976 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
977 the subtype has the following flags:
978
979 RELAX_USE_SECOND
980 Set if it has been decided that we should use the second
981 sequence instead of the first.
982
983 RELAX_SECOND_LONGER
984 Set in the first variant frag if the macro's second implementation
985 is longer than its first. This refers to the macro as a whole,
986 not an individual relaxation.
987
988 RELAX_NOMACRO
989 Set in the first variant frag if the macro appeared in a .set nomacro
990 block and if one alternative requires a warning but the other does not.
991
992 RELAX_DELAY_SLOT
993 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
994 delay slot.
995
996 RELAX_DELAY_SLOT_16BIT
997 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
998 16-bit instruction.
999
1000 RELAX_DELAY_SLOT_SIZE_FIRST
1001 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
1002 the macro is of the wrong size for the branch delay slot.
1003
1004 RELAX_DELAY_SLOT_SIZE_SECOND
1005 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1006 the macro is of the wrong size for the branch delay slot.
1007
1008 The frag's "opcode" points to the first fixup for relaxable code.
1009
1010 Relaxable macros are generated using a sequence such as:
1011
1012 relax_start (SYMBOL);
1013 ... generate first expansion ...
1014 relax_switch ();
1015 ... generate second expansion ...
1016 relax_end ();
1017
1018 The code and fixups for the unwanted alternative are discarded
1019 by md_convert_frag. */
1020 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1021
1022 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1023 #define RELAX_SECOND(X) ((X) & 0xff)
1024 #define RELAX_USE_SECOND 0x10000
1025 #define RELAX_SECOND_LONGER 0x20000
1026 #define RELAX_NOMACRO 0x40000
1027 #define RELAX_DELAY_SLOT 0x80000
1028 #define RELAX_DELAY_SLOT_16BIT 0x100000
1029 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1030 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1031
1032 /* Branch without likely bit. If label is out of range, we turn:
1033
1034 beq reg1, reg2, label
1035 delay slot
1036
1037 into
1038
1039 bne reg1, reg2, 0f
1040 nop
1041 j label
1042 0: delay slot
1043
1044 with the following opcode replacements:
1045
1046 beq <-> bne
1047 blez <-> bgtz
1048 bltz <-> bgez
1049 bc1f <-> bc1t
1050
1051 bltzal <-> bgezal (with jal label instead of j label)
1052
1053 Even though keeping the delay slot instruction in the delay slot of
1054 the branch would be more efficient, it would be very tricky to do
1055 correctly, because we'd have to introduce a variable frag *after*
1056 the delay slot instruction, and expand that instead. Let's do it
1057 the easy way for now, even if the branch-not-taken case now costs
1058 one additional instruction. Out-of-range branches are not supposed
1059 to be common, anyway.
1060
1061 Branch likely. If label is out of range, we turn:
1062
1063 beql reg1, reg2, label
1064 delay slot (annulled if branch not taken)
1065
1066 into
1067
1068 beql reg1, reg2, 1f
1069 nop
1070 beql $0, $0, 2f
1071 nop
1072 1: j[al] label
1073 delay slot (executed only if branch taken)
1074 2:
1075
1076 It would be possible to generate a shorter sequence by losing the
1077 likely bit, generating something like:
1078
1079 bne reg1, reg2, 0f
1080 nop
1081 j[al] label
1082 delay slot (executed only if branch taken)
1083 0:
1084
1085 beql -> bne
1086 bnel -> beq
1087 blezl -> bgtz
1088 bgtzl -> blez
1089 bltzl -> bgez
1090 bgezl -> bltz
1091 bc1fl -> bc1t
1092 bc1tl -> bc1f
1093
1094 bltzall -> bgezal (with jal label instead of j label)
1095 bgezall -> bltzal (ditto)
1096
1097
1098 but it's not clear that it would actually improve performance. */
1099 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1100 ((relax_substateT) \
1101 (0xc0000000 \
1102 | ((at) & 0x1f) \
1103 | ((toofar) ? 0x20 : 0) \
1104 | ((link) ? 0x40 : 0) \
1105 | ((likely) ? 0x80 : 0) \
1106 | ((uncond) ? 0x100 : 0)))
1107 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1108 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1109 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1110 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1111 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1112 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1113
1114 /* For mips16 code, we use an entirely different form of relaxation.
1115 mips16 supports two versions of most instructions which take
1116 immediate values: a small one which takes some small value, and a
1117 larger one which takes a 16 bit value. Since branches also follow
1118 this pattern, relaxing these values is required.
1119
1120 We can assemble both mips16 and normal MIPS code in a single
1121 object. Therefore, we need to support this type of relaxation at
1122 the same time that we support the relaxation described above. We
1123 use the high bit of the subtype field to distinguish these cases.
1124
1125 The information we store for this type of relaxation is the
1126 argument code found in the opcode file for this relocation, whether
1127 the user explicitly requested a small or extended form, and whether
1128 the relocation is in a jump or jal delay slot. That tells us the
1129 size of the value, and how it should be stored. We also store
1130 whether the fragment is considered to be extended or not. We also
1131 store whether this is known to be a branch to a different section,
1132 whether we have tried to relax this frag yet, and whether we have
1133 ever extended a PC relative fragment because of a shift count. */
1134 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1135 (0x80000000 \
1136 | ((type) & 0xff) \
1137 | ((small) ? 0x100 : 0) \
1138 | ((ext) ? 0x200 : 0) \
1139 | ((dslot) ? 0x400 : 0) \
1140 | ((jal_dslot) ? 0x800 : 0))
1141 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1142 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1143 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1144 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1145 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1146 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1147 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1148 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1149 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1150 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1151 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1152 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1153
1154 /* For microMIPS code, we use relaxation similar to one we use for
1155 MIPS16 code. Some instructions that take immediate values support
1156 two encodings: a small one which takes some small value, and a
1157 larger one which takes a 16 bit value. As some branches also follow
1158 this pattern, relaxing these values is required.
1159
1160 We can assemble both microMIPS and normal MIPS code in a single
1161 object. Therefore, we need to support this type of relaxation at
1162 the same time that we support the relaxation described above. We
1163 use one of the high bits of the subtype field to distinguish these
1164 cases.
1165
1166 The information we store for this type of relaxation is the argument
1167 code found in the opcode file for this relocation, the register
1168 selected as the assembler temporary, whether the branch is
1169 unconditional, whether it is compact, whether it stores the link
1170 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1171 branches to a sequence of instructions is enabled, and whether the
1172 displacement of a branch is too large to fit as an immediate argument
1173 of a 16-bit and a 32-bit branch, respectively. */
1174 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1175 relax32, toofar16, toofar32) \
1176 (0x40000000 \
1177 | ((type) & 0xff) \
1178 | (((at) & 0x1f) << 8) \
1179 | ((uncond) ? 0x2000 : 0) \
1180 | ((compact) ? 0x4000 : 0) \
1181 | ((link) ? 0x8000 : 0) \
1182 | ((relax32) ? 0x10000 : 0) \
1183 | ((toofar16) ? 0x20000 : 0) \
1184 | ((toofar32) ? 0x40000 : 0))
1185 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1186 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1187 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1188 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1189 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1190 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1191 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1192
1193 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1194 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1195 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1196 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1197 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1198 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1199
1200 /* Sign-extend 16-bit value X. */
1201 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1202
1203 /* Is the given value a sign-extended 32-bit value? */
1204 #define IS_SEXT_32BIT_NUM(x) \
1205 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1206 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1207
1208 /* Is the given value a sign-extended 16-bit value? */
1209 #define IS_SEXT_16BIT_NUM(x) \
1210 (((x) &~ (offsetT) 0x7fff) == 0 \
1211 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1212
1213 /* Is the given value a sign-extended 12-bit value? */
1214 #define IS_SEXT_12BIT_NUM(x) \
1215 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1216
1217 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1218 #define IS_ZEXT_32BIT_NUM(x) \
1219 (((x) &~ (offsetT) 0xffffffff) == 0 \
1220 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1221
1222 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
1223 VALUE << SHIFT. VALUE is evaluated exactly once. */
1224 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
1225 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
1226 | (((VALUE) & (MASK)) << (SHIFT)))
1227
1228 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1229 SHIFT places. */
1230 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1231 (((STRUCT) >> (SHIFT)) & (MASK))
1232
1233 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1234 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1235
1236 include/opcode/mips.h specifies operand fields using the macros
1237 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1238 with "MIPS16OP" instead of "OP". */
1239 #define INSERT_OPERAND(MICROMIPS, FIELD, INSN, VALUE) \
1240 do \
1241 if (!(MICROMIPS)) \
1242 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1243 OP_MASK_##FIELD, OP_SH_##FIELD); \
1244 else \
1245 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1246 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD); \
1247 while (0)
1248 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1249 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1250 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1251
1252 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1253 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1254 (!(MICROMIPS) \
1255 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1256 : EXTRACT_BITS ((INSN).insn_opcode, \
1257 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1258 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1259 EXTRACT_BITS ((INSN).insn_opcode, \
1260 MIPS16OP_MASK_##FIELD, \
1261 MIPS16OP_SH_##FIELD)
1262
1263 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1264 #define MIPS16_EXTEND (0xf000U << 16)
1265 \f
1266 /* Whether or not we are emitting a branch-likely macro. */
1267 static bfd_boolean emit_branch_likely_macro = FALSE;
1268
1269 /* Global variables used when generating relaxable macros. See the
1270 comment above RELAX_ENCODE for more details about how relaxation
1271 is used. */
1272 static struct {
1273 /* 0 if we're not emitting a relaxable macro.
1274 1 if we're emitting the first of the two relaxation alternatives.
1275 2 if we're emitting the second alternative. */
1276 int sequence;
1277
1278 /* The first relaxable fixup in the current frag. (In other words,
1279 the first fixup that refers to relaxable code.) */
1280 fixS *first_fixup;
1281
1282 /* sizes[0] says how many bytes of the first alternative are stored in
1283 the current frag. Likewise sizes[1] for the second alternative. */
1284 unsigned int sizes[2];
1285
1286 /* The symbol on which the choice of sequence depends. */
1287 symbolS *symbol;
1288 } mips_relax;
1289 \f
1290 /* Global variables used to decide whether a macro needs a warning. */
1291 static struct {
1292 /* True if the macro is in a branch delay slot. */
1293 bfd_boolean delay_slot_p;
1294
1295 /* Set to the length in bytes required if the macro is in a delay slot
1296 that requires a specific length of instruction, otherwise zero. */
1297 unsigned int delay_slot_length;
1298
1299 /* For relaxable macros, sizes[0] is the length of the first alternative
1300 in bytes and sizes[1] is the length of the second alternative.
1301 For non-relaxable macros, both elements give the length of the
1302 macro in bytes. */
1303 unsigned int sizes[2];
1304
1305 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1306 instruction of the first alternative in bytes and first_insn_sizes[1]
1307 is the length of the first instruction of the second alternative.
1308 For non-relaxable macros, both elements give the length of the first
1309 instruction in bytes.
1310
1311 Set to zero if we haven't yet seen the first instruction. */
1312 unsigned int first_insn_sizes[2];
1313
1314 /* For relaxable macros, insns[0] is the number of instructions for the
1315 first alternative and insns[1] is the number of instructions for the
1316 second alternative.
1317
1318 For non-relaxable macros, both elements give the number of
1319 instructions for the macro. */
1320 unsigned int insns[2];
1321
1322 /* The first variant frag for this macro. */
1323 fragS *first_frag;
1324 } mips_macro_warning;
1325 \f
1326 /* Prototypes for static functions. */
1327
1328 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1329
1330 static void append_insn
1331 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1332 bfd_boolean expansionp);
1333 static void mips_no_prev_insn (void);
1334 static void macro_build (expressionS *, const char *, const char *, ...);
1335 static void mips16_macro_build
1336 (expressionS *, const char *, const char *, va_list *);
1337 static void load_register (int, expressionS *, int);
1338 static void macro_start (void);
1339 static void macro_end (void);
1340 static void macro (struct mips_cl_insn * ip);
1341 static void mips16_macro (struct mips_cl_insn * ip);
1342 static void mips_ip (char *str, struct mips_cl_insn * ip);
1343 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1344 static void mips16_immed
1345 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1346 unsigned int, unsigned long *);
1347 static size_t my_getSmallExpression
1348 (expressionS *, bfd_reloc_code_real_type *, char *);
1349 static void my_getExpression (expressionS *, char *);
1350 static void s_align (int);
1351 static void s_change_sec (int);
1352 static void s_change_section (int);
1353 static void s_cons (int);
1354 static void s_float_cons (int);
1355 static void s_mips_globl (int);
1356 static void s_option (int);
1357 static void s_mipsset (int);
1358 static void s_abicalls (int);
1359 static void s_cpload (int);
1360 static void s_cpsetup (int);
1361 static void s_cplocal (int);
1362 static void s_cprestore (int);
1363 static void s_cpreturn (int);
1364 static void s_dtprelword (int);
1365 static void s_dtpreldword (int);
1366 static void s_tprelword (int);
1367 static void s_tpreldword (int);
1368 static void s_gpvalue (int);
1369 static void s_gpword (int);
1370 static void s_gpdword (int);
1371 static void s_cpadd (int);
1372 static void s_insn (int);
1373 static void md_obj_begin (void);
1374 static void md_obj_end (void);
1375 static void s_mips_ent (int);
1376 static void s_mips_end (int);
1377 static void s_mips_frame (int);
1378 static void s_mips_mask (int reg_type);
1379 static void s_mips_stab (int);
1380 static void s_mips_weakext (int);
1381 static void s_mips_file (int);
1382 static void s_mips_loc (int);
1383 static bfd_boolean pic_need_relax (symbolS *, asection *);
1384 static int relaxed_branch_length (fragS *, asection *, int);
1385 static int validate_mips_insn (const struct mips_opcode *);
1386 static int validate_micromips_insn (const struct mips_opcode *);
1387 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1388 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1389
1390 /* Table and functions used to map between CPU/ISA names, and
1391 ISA levels, and CPU numbers. */
1392
1393 struct mips_cpu_info
1394 {
1395 const char *name; /* CPU or ISA name. */
1396 int flags; /* ASEs available, or ISA flag. */
1397 int isa; /* ISA level. */
1398 int cpu; /* CPU number (default CPU if ISA). */
1399 };
1400
1401 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1402 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1403 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1404 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1405 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1406 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1407 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1408 #define MIPS_CPU_ASE_MCU 0x0080 /* CPU implements MCU ASE */
1409 #define MIPS_CPU_ASE_VIRT 0x0100 /* CPU implements Virtualization ASE */
1410
1411 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1412 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1413 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1414 \f
1415 /* Pseudo-op table.
1416
1417 The following pseudo-ops from the Kane and Heinrich MIPS book
1418 should be defined here, but are currently unsupported: .alias,
1419 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1420
1421 The following pseudo-ops from the Kane and Heinrich MIPS book are
1422 specific to the type of debugging information being generated, and
1423 should be defined by the object format: .aent, .begin, .bend,
1424 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1425 .vreg.
1426
1427 The following pseudo-ops from the Kane and Heinrich MIPS book are
1428 not MIPS CPU specific, but are also not specific to the object file
1429 format. This file is probably the best place to define them, but
1430 they are not currently supported: .asm0, .endr, .lab, .struct. */
1431
1432 static const pseudo_typeS mips_pseudo_table[] =
1433 {
1434 /* MIPS specific pseudo-ops. */
1435 {"option", s_option, 0},
1436 {"set", s_mipsset, 0},
1437 {"rdata", s_change_sec, 'r'},
1438 {"sdata", s_change_sec, 's'},
1439 {"livereg", s_ignore, 0},
1440 {"abicalls", s_abicalls, 0},
1441 {"cpload", s_cpload, 0},
1442 {"cpsetup", s_cpsetup, 0},
1443 {"cplocal", s_cplocal, 0},
1444 {"cprestore", s_cprestore, 0},
1445 {"cpreturn", s_cpreturn, 0},
1446 {"dtprelword", s_dtprelword, 0},
1447 {"dtpreldword", s_dtpreldword, 0},
1448 {"tprelword", s_tprelword, 0},
1449 {"tpreldword", s_tpreldword, 0},
1450 {"gpvalue", s_gpvalue, 0},
1451 {"gpword", s_gpword, 0},
1452 {"gpdword", s_gpdword, 0},
1453 {"cpadd", s_cpadd, 0},
1454 {"insn", s_insn, 0},
1455
1456 /* Relatively generic pseudo-ops that happen to be used on MIPS
1457 chips. */
1458 {"asciiz", stringer, 8 + 1},
1459 {"bss", s_change_sec, 'b'},
1460 {"err", s_err, 0},
1461 {"half", s_cons, 1},
1462 {"dword", s_cons, 3},
1463 {"weakext", s_mips_weakext, 0},
1464 {"origin", s_org, 0},
1465 {"repeat", s_rept, 0},
1466
1467 /* For MIPS this is non-standard, but we define it for consistency. */
1468 {"sbss", s_change_sec, 'B'},
1469
1470 /* These pseudo-ops are defined in read.c, but must be overridden
1471 here for one reason or another. */
1472 {"align", s_align, 0},
1473 {"byte", s_cons, 0},
1474 {"data", s_change_sec, 'd'},
1475 {"double", s_float_cons, 'd'},
1476 {"float", s_float_cons, 'f'},
1477 {"globl", s_mips_globl, 0},
1478 {"global", s_mips_globl, 0},
1479 {"hword", s_cons, 1},
1480 {"int", s_cons, 2},
1481 {"long", s_cons, 2},
1482 {"octa", s_cons, 4},
1483 {"quad", s_cons, 3},
1484 {"section", s_change_section, 0},
1485 {"short", s_cons, 1},
1486 {"single", s_float_cons, 'f'},
1487 {"stabd", s_mips_stab, 'd'},
1488 {"stabn", s_mips_stab, 'n'},
1489 {"stabs", s_mips_stab, 's'},
1490 {"text", s_change_sec, 't'},
1491 {"word", s_cons, 2},
1492
1493 { "extern", ecoff_directive_extern, 0},
1494
1495 { NULL, NULL, 0 },
1496 };
1497
1498 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1499 {
1500 /* These pseudo-ops should be defined by the object file format.
1501 However, a.out doesn't support them, so we have versions here. */
1502 {"aent", s_mips_ent, 1},
1503 {"bgnb", s_ignore, 0},
1504 {"end", s_mips_end, 0},
1505 {"endb", s_ignore, 0},
1506 {"ent", s_mips_ent, 0},
1507 {"file", s_mips_file, 0},
1508 {"fmask", s_mips_mask, 'F'},
1509 {"frame", s_mips_frame, 0},
1510 {"loc", s_mips_loc, 0},
1511 {"mask", s_mips_mask, 'R'},
1512 {"verstamp", s_ignore, 0},
1513 { NULL, NULL, 0 },
1514 };
1515
1516 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1517 purpose of the `.dc.a' internal pseudo-op. */
1518
1519 int
1520 mips_address_bytes (void)
1521 {
1522 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1523 }
1524
1525 extern void pop_insert (const pseudo_typeS *);
1526
1527 void
1528 mips_pop_insert (void)
1529 {
1530 pop_insert (mips_pseudo_table);
1531 if (! ECOFF_DEBUGGING)
1532 pop_insert (mips_nonecoff_pseudo_table);
1533 }
1534 \f
1535 /* Symbols labelling the current insn. */
1536
1537 struct insn_label_list
1538 {
1539 struct insn_label_list *next;
1540 symbolS *label;
1541 };
1542
1543 static struct insn_label_list *free_insn_labels;
1544 #define label_list tc_segment_info_data.labels
1545
1546 static void mips_clear_insn_labels (void);
1547 static void mips_mark_labels (void);
1548 static void mips_compressed_mark_labels (void);
1549
1550 static inline void
1551 mips_clear_insn_labels (void)
1552 {
1553 register struct insn_label_list **pl;
1554 segment_info_type *si;
1555
1556 if (now_seg)
1557 {
1558 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1559 ;
1560
1561 si = seg_info (now_seg);
1562 *pl = si->label_list;
1563 si->label_list = NULL;
1564 }
1565 }
1566
1567 /* Mark instruction labels in MIPS16/microMIPS mode. */
1568
1569 static inline void
1570 mips_mark_labels (void)
1571 {
1572 if (HAVE_CODE_COMPRESSION)
1573 mips_compressed_mark_labels ();
1574 }
1575 \f
1576 static char *expr_end;
1577
1578 /* Expressions which appear in instructions. These are set by
1579 mips_ip. */
1580
1581 static expressionS imm_expr;
1582 static expressionS imm2_expr;
1583 static expressionS offset_expr;
1584
1585 /* Relocs associated with imm_expr and offset_expr. */
1586
1587 static bfd_reloc_code_real_type imm_reloc[3]
1588 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1589 static bfd_reloc_code_real_type offset_reloc[3]
1590 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1591
1592 /* This is set to the resulting size of the instruction to be produced
1593 by mips16_ip if an explicit extension is used or by mips_ip if an
1594 explicit size is supplied. */
1595
1596 static unsigned int forced_insn_length;
1597
1598 /* True if we are assembling an instruction. All dot symbols defined during
1599 this time should be treated as code labels. */
1600
1601 static bfd_boolean mips_assembling_insn;
1602
1603 #ifdef OBJ_ELF
1604 /* The pdr segment for per procedure frame/regmask info. Not used for
1605 ECOFF debugging. */
1606
1607 static segT pdr_seg;
1608 #endif
1609
1610 /* The default target format to use. */
1611
1612 #if defined (TE_FreeBSD)
1613 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1614 #elif defined (TE_TMIPS)
1615 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1616 #else
1617 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1618 #endif
1619
1620 const char *
1621 mips_target_format (void)
1622 {
1623 switch (OUTPUT_FLAVOR)
1624 {
1625 case bfd_target_ecoff_flavour:
1626 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1627 case bfd_target_coff_flavour:
1628 return "pe-mips";
1629 case bfd_target_elf_flavour:
1630 #ifdef TE_VXWORKS
1631 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1632 return (target_big_endian
1633 ? "elf32-bigmips-vxworks"
1634 : "elf32-littlemips-vxworks");
1635 #endif
1636 return (target_big_endian
1637 ? (HAVE_64BIT_OBJECTS
1638 ? ELF_TARGET ("elf64-", "big")
1639 : (HAVE_NEWABI
1640 ? ELF_TARGET ("elf32-n", "big")
1641 : ELF_TARGET ("elf32-", "big")))
1642 : (HAVE_64BIT_OBJECTS
1643 ? ELF_TARGET ("elf64-", "little")
1644 : (HAVE_NEWABI
1645 ? ELF_TARGET ("elf32-n", "little")
1646 : ELF_TARGET ("elf32-", "little"))));
1647 default:
1648 abort ();
1649 return NULL;
1650 }
1651 }
1652
1653 /* Return the length of a microMIPS instruction in bytes. If bits of
1654 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1655 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1656 major opcode) will require further modifications to the opcode
1657 table. */
1658
1659 static inline unsigned int
1660 micromips_insn_length (const struct mips_opcode *mo)
1661 {
1662 return (mo->mask >> 16) == 0 ? 2 : 4;
1663 }
1664
1665 /* Return the length of MIPS16 instruction OPCODE. */
1666
1667 static inline unsigned int
1668 mips16_opcode_length (unsigned long opcode)
1669 {
1670 return (opcode >> 16) == 0 ? 2 : 4;
1671 }
1672
1673 /* Return the length of instruction INSN. */
1674
1675 static inline unsigned int
1676 insn_length (const struct mips_cl_insn *insn)
1677 {
1678 if (mips_opts.micromips)
1679 return micromips_insn_length (insn->insn_mo);
1680 else if (mips_opts.mips16)
1681 return mips16_opcode_length (insn->insn_opcode);
1682 else
1683 return 4;
1684 }
1685
1686 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1687
1688 static void
1689 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1690 {
1691 size_t i;
1692
1693 insn->insn_mo = mo;
1694 insn->insn_opcode = mo->match;
1695 insn->frag = NULL;
1696 insn->where = 0;
1697 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1698 insn->fixp[i] = NULL;
1699 insn->fixed_p = (mips_opts.noreorder > 0);
1700 insn->noreorder_p = (mips_opts.noreorder > 0);
1701 insn->mips16_absolute_jump_p = 0;
1702 insn->complete_p = 0;
1703 insn->cleared_p = 0;
1704 }
1705
1706 /* Record the current MIPS16/microMIPS mode in now_seg. */
1707
1708 static void
1709 mips_record_compressed_mode (void)
1710 {
1711 segment_info_type *si;
1712
1713 si = seg_info (now_seg);
1714 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1715 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1716 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
1717 si->tc_segment_info_data.micromips = mips_opts.micromips;
1718 }
1719
1720 /* Read a standard MIPS instruction from BUF. */
1721
1722 static unsigned long
1723 read_insn (char *buf)
1724 {
1725 if (target_big_endian)
1726 return bfd_getb32 ((bfd_byte *) buf);
1727 else
1728 return bfd_getl32 ((bfd_byte *) buf);
1729 }
1730
1731 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
1732 the next byte. */
1733
1734 static char *
1735 write_insn (char *buf, unsigned int insn)
1736 {
1737 md_number_to_chars (buf, insn, 4);
1738 return buf + 4;
1739 }
1740
1741 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
1742 has length LENGTH. */
1743
1744 static unsigned long
1745 read_compressed_insn (char *buf, unsigned int length)
1746 {
1747 unsigned long insn;
1748 unsigned int i;
1749
1750 insn = 0;
1751 for (i = 0; i < length; i += 2)
1752 {
1753 insn <<= 16;
1754 if (target_big_endian)
1755 insn |= bfd_getb16 ((char *) buf);
1756 else
1757 insn |= bfd_getl16 ((char *) buf);
1758 buf += 2;
1759 }
1760 return insn;
1761 }
1762
1763 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
1764 instruction is LENGTH bytes long. Return a pointer to the next byte. */
1765
1766 static char *
1767 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
1768 {
1769 unsigned int i;
1770
1771 for (i = 0; i < length; i += 2)
1772 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
1773 return buf + length;
1774 }
1775
1776 /* Install INSN at the location specified by its "frag" and "where" fields. */
1777
1778 static void
1779 install_insn (const struct mips_cl_insn *insn)
1780 {
1781 char *f = insn->frag->fr_literal + insn->where;
1782 if (HAVE_CODE_COMPRESSION)
1783 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1784 else
1785 write_insn (f, insn->insn_opcode);
1786 mips_record_compressed_mode ();
1787 }
1788
1789 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1790 and install the opcode in the new location. */
1791
1792 static void
1793 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1794 {
1795 size_t i;
1796
1797 insn->frag = frag;
1798 insn->where = where;
1799 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1800 if (insn->fixp[i] != NULL)
1801 {
1802 insn->fixp[i]->fx_frag = frag;
1803 insn->fixp[i]->fx_where = where;
1804 }
1805 install_insn (insn);
1806 }
1807
1808 /* Add INSN to the end of the output. */
1809
1810 static void
1811 add_fixed_insn (struct mips_cl_insn *insn)
1812 {
1813 char *f = frag_more (insn_length (insn));
1814 move_insn (insn, frag_now, f - frag_now->fr_literal);
1815 }
1816
1817 /* Start a variant frag and move INSN to the start of the variant part,
1818 marking it as fixed. The other arguments are as for frag_var. */
1819
1820 static void
1821 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1822 relax_substateT subtype, symbolS *symbol, offsetT offset)
1823 {
1824 frag_grow (max_chars);
1825 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1826 insn->fixed_p = 1;
1827 frag_var (rs_machine_dependent, max_chars, var,
1828 subtype, symbol, offset, NULL);
1829 }
1830
1831 /* Insert N copies of INSN into the history buffer, starting at
1832 position FIRST. Neither FIRST nor N need to be clipped. */
1833
1834 static void
1835 insert_into_history (unsigned int first, unsigned int n,
1836 const struct mips_cl_insn *insn)
1837 {
1838 if (mips_relax.sequence != 2)
1839 {
1840 unsigned int i;
1841
1842 for (i = ARRAY_SIZE (history); i-- > first;)
1843 if (i >= first + n)
1844 history[i] = history[i - n];
1845 else
1846 history[i] = *insn;
1847 }
1848 }
1849
1850 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1851 the idea is to make it obvious at a glance that each errata is
1852 included. */
1853
1854 static void
1855 init_vr4120_conflicts (void)
1856 {
1857 #define CONFLICT(FIRST, SECOND) \
1858 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1859
1860 /* Errata 21 - [D]DIV[U] after [D]MACC */
1861 CONFLICT (MACC, DIV);
1862 CONFLICT (DMACC, DIV);
1863
1864 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1865 CONFLICT (DMULT, DMULT);
1866 CONFLICT (DMULT, DMACC);
1867 CONFLICT (DMACC, DMULT);
1868 CONFLICT (DMACC, DMACC);
1869
1870 /* Errata 24 - MT{LO,HI} after [D]MACC */
1871 CONFLICT (MACC, MTHILO);
1872 CONFLICT (DMACC, MTHILO);
1873
1874 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1875 instruction is executed immediately after a MACC or DMACC
1876 instruction, the result of [either instruction] is incorrect." */
1877 CONFLICT (MACC, MULT);
1878 CONFLICT (MACC, DMULT);
1879 CONFLICT (DMACC, MULT);
1880 CONFLICT (DMACC, DMULT);
1881
1882 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1883 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1884 DDIV or DDIVU instruction, the result of the MACC or
1885 DMACC instruction is incorrect.". */
1886 CONFLICT (DMULT, MACC);
1887 CONFLICT (DMULT, DMACC);
1888 CONFLICT (DIV, MACC);
1889 CONFLICT (DIV, DMACC);
1890
1891 #undef CONFLICT
1892 }
1893
1894 struct regname {
1895 const char *name;
1896 unsigned int num;
1897 };
1898
1899 #define RTYPE_MASK 0x1ff00
1900 #define RTYPE_NUM 0x00100
1901 #define RTYPE_FPU 0x00200
1902 #define RTYPE_FCC 0x00400
1903 #define RTYPE_VEC 0x00800
1904 #define RTYPE_GP 0x01000
1905 #define RTYPE_CP0 0x02000
1906 #define RTYPE_PC 0x04000
1907 #define RTYPE_ACC 0x08000
1908 #define RTYPE_CCC 0x10000
1909 #define RNUM_MASK 0x000ff
1910 #define RWARN 0x80000
1911
1912 #define GENERIC_REGISTER_NUMBERS \
1913 {"$0", RTYPE_NUM | 0}, \
1914 {"$1", RTYPE_NUM | 1}, \
1915 {"$2", RTYPE_NUM | 2}, \
1916 {"$3", RTYPE_NUM | 3}, \
1917 {"$4", RTYPE_NUM | 4}, \
1918 {"$5", RTYPE_NUM | 5}, \
1919 {"$6", RTYPE_NUM | 6}, \
1920 {"$7", RTYPE_NUM | 7}, \
1921 {"$8", RTYPE_NUM | 8}, \
1922 {"$9", RTYPE_NUM | 9}, \
1923 {"$10", RTYPE_NUM | 10}, \
1924 {"$11", RTYPE_NUM | 11}, \
1925 {"$12", RTYPE_NUM | 12}, \
1926 {"$13", RTYPE_NUM | 13}, \
1927 {"$14", RTYPE_NUM | 14}, \
1928 {"$15", RTYPE_NUM | 15}, \
1929 {"$16", RTYPE_NUM | 16}, \
1930 {"$17", RTYPE_NUM | 17}, \
1931 {"$18", RTYPE_NUM | 18}, \
1932 {"$19", RTYPE_NUM | 19}, \
1933 {"$20", RTYPE_NUM | 20}, \
1934 {"$21", RTYPE_NUM | 21}, \
1935 {"$22", RTYPE_NUM | 22}, \
1936 {"$23", RTYPE_NUM | 23}, \
1937 {"$24", RTYPE_NUM | 24}, \
1938 {"$25", RTYPE_NUM | 25}, \
1939 {"$26", RTYPE_NUM | 26}, \
1940 {"$27", RTYPE_NUM | 27}, \
1941 {"$28", RTYPE_NUM | 28}, \
1942 {"$29", RTYPE_NUM | 29}, \
1943 {"$30", RTYPE_NUM | 30}, \
1944 {"$31", RTYPE_NUM | 31}
1945
1946 #define FPU_REGISTER_NAMES \
1947 {"$f0", RTYPE_FPU | 0}, \
1948 {"$f1", RTYPE_FPU | 1}, \
1949 {"$f2", RTYPE_FPU | 2}, \
1950 {"$f3", RTYPE_FPU | 3}, \
1951 {"$f4", RTYPE_FPU | 4}, \
1952 {"$f5", RTYPE_FPU | 5}, \
1953 {"$f6", RTYPE_FPU | 6}, \
1954 {"$f7", RTYPE_FPU | 7}, \
1955 {"$f8", RTYPE_FPU | 8}, \
1956 {"$f9", RTYPE_FPU | 9}, \
1957 {"$f10", RTYPE_FPU | 10}, \
1958 {"$f11", RTYPE_FPU | 11}, \
1959 {"$f12", RTYPE_FPU | 12}, \
1960 {"$f13", RTYPE_FPU | 13}, \
1961 {"$f14", RTYPE_FPU | 14}, \
1962 {"$f15", RTYPE_FPU | 15}, \
1963 {"$f16", RTYPE_FPU | 16}, \
1964 {"$f17", RTYPE_FPU | 17}, \
1965 {"$f18", RTYPE_FPU | 18}, \
1966 {"$f19", RTYPE_FPU | 19}, \
1967 {"$f20", RTYPE_FPU | 20}, \
1968 {"$f21", RTYPE_FPU | 21}, \
1969 {"$f22", RTYPE_FPU | 22}, \
1970 {"$f23", RTYPE_FPU | 23}, \
1971 {"$f24", RTYPE_FPU | 24}, \
1972 {"$f25", RTYPE_FPU | 25}, \
1973 {"$f26", RTYPE_FPU | 26}, \
1974 {"$f27", RTYPE_FPU | 27}, \
1975 {"$f28", RTYPE_FPU | 28}, \
1976 {"$f29", RTYPE_FPU | 29}, \
1977 {"$f30", RTYPE_FPU | 30}, \
1978 {"$f31", RTYPE_FPU | 31}
1979
1980 #define FPU_CONDITION_CODE_NAMES \
1981 {"$fcc0", RTYPE_FCC | 0}, \
1982 {"$fcc1", RTYPE_FCC | 1}, \
1983 {"$fcc2", RTYPE_FCC | 2}, \
1984 {"$fcc3", RTYPE_FCC | 3}, \
1985 {"$fcc4", RTYPE_FCC | 4}, \
1986 {"$fcc5", RTYPE_FCC | 5}, \
1987 {"$fcc6", RTYPE_FCC | 6}, \
1988 {"$fcc7", RTYPE_FCC | 7}
1989
1990 #define COPROC_CONDITION_CODE_NAMES \
1991 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1992 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1993 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1994 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1995 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1996 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1997 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1998 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1999
2000 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2001 {"$a4", RTYPE_GP | 8}, \
2002 {"$a5", RTYPE_GP | 9}, \
2003 {"$a6", RTYPE_GP | 10}, \
2004 {"$a7", RTYPE_GP | 11}, \
2005 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2006 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2007 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2008 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2009 {"$t0", RTYPE_GP | 12}, \
2010 {"$t1", RTYPE_GP | 13}, \
2011 {"$t2", RTYPE_GP | 14}, \
2012 {"$t3", RTYPE_GP | 15}
2013
2014 #define O32_SYMBOLIC_REGISTER_NAMES \
2015 {"$t0", RTYPE_GP | 8}, \
2016 {"$t1", RTYPE_GP | 9}, \
2017 {"$t2", RTYPE_GP | 10}, \
2018 {"$t3", RTYPE_GP | 11}, \
2019 {"$t4", RTYPE_GP | 12}, \
2020 {"$t5", RTYPE_GP | 13}, \
2021 {"$t6", RTYPE_GP | 14}, \
2022 {"$t7", RTYPE_GP | 15}, \
2023 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2024 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2025 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2026 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2027
2028 /* Remaining symbolic register names */
2029 #define SYMBOLIC_REGISTER_NAMES \
2030 {"$zero", RTYPE_GP | 0}, \
2031 {"$at", RTYPE_GP | 1}, \
2032 {"$AT", RTYPE_GP | 1}, \
2033 {"$v0", RTYPE_GP | 2}, \
2034 {"$v1", RTYPE_GP | 3}, \
2035 {"$a0", RTYPE_GP | 4}, \
2036 {"$a1", RTYPE_GP | 5}, \
2037 {"$a2", RTYPE_GP | 6}, \
2038 {"$a3", RTYPE_GP | 7}, \
2039 {"$s0", RTYPE_GP | 16}, \
2040 {"$s1", RTYPE_GP | 17}, \
2041 {"$s2", RTYPE_GP | 18}, \
2042 {"$s3", RTYPE_GP | 19}, \
2043 {"$s4", RTYPE_GP | 20}, \
2044 {"$s5", RTYPE_GP | 21}, \
2045 {"$s6", RTYPE_GP | 22}, \
2046 {"$s7", RTYPE_GP | 23}, \
2047 {"$t8", RTYPE_GP | 24}, \
2048 {"$t9", RTYPE_GP | 25}, \
2049 {"$k0", RTYPE_GP | 26}, \
2050 {"$kt0", RTYPE_GP | 26}, \
2051 {"$k1", RTYPE_GP | 27}, \
2052 {"$kt1", RTYPE_GP | 27}, \
2053 {"$gp", RTYPE_GP | 28}, \
2054 {"$sp", RTYPE_GP | 29}, \
2055 {"$s8", RTYPE_GP | 30}, \
2056 {"$fp", RTYPE_GP | 30}, \
2057 {"$ra", RTYPE_GP | 31}
2058
2059 #define MIPS16_SPECIAL_REGISTER_NAMES \
2060 {"$pc", RTYPE_PC | 0}
2061
2062 #define MDMX_VECTOR_REGISTER_NAMES \
2063 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2064 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2065 {"$v2", RTYPE_VEC | 2}, \
2066 {"$v3", RTYPE_VEC | 3}, \
2067 {"$v4", RTYPE_VEC | 4}, \
2068 {"$v5", RTYPE_VEC | 5}, \
2069 {"$v6", RTYPE_VEC | 6}, \
2070 {"$v7", RTYPE_VEC | 7}, \
2071 {"$v8", RTYPE_VEC | 8}, \
2072 {"$v9", RTYPE_VEC | 9}, \
2073 {"$v10", RTYPE_VEC | 10}, \
2074 {"$v11", RTYPE_VEC | 11}, \
2075 {"$v12", RTYPE_VEC | 12}, \
2076 {"$v13", RTYPE_VEC | 13}, \
2077 {"$v14", RTYPE_VEC | 14}, \
2078 {"$v15", RTYPE_VEC | 15}, \
2079 {"$v16", RTYPE_VEC | 16}, \
2080 {"$v17", RTYPE_VEC | 17}, \
2081 {"$v18", RTYPE_VEC | 18}, \
2082 {"$v19", RTYPE_VEC | 19}, \
2083 {"$v20", RTYPE_VEC | 20}, \
2084 {"$v21", RTYPE_VEC | 21}, \
2085 {"$v22", RTYPE_VEC | 22}, \
2086 {"$v23", RTYPE_VEC | 23}, \
2087 {"$v24", RTYPE_VEC | 24}, \
2088 {"$v25", RTYPE_VEC | 25}, \
2089 {"$v26", RTYPE_VEC | 26}, \
2090 {"$v27", RTYPE_VEC | 27}, \
2091 {"$v28", RTYPE_VEC | 28}, \
2092 {"$v29", RTYPE_VEC | 29}, \
2093 {"$v30", RTYPE_VEC | 30}, \
2094 {"$v31", RTYPE_VEC | 31}
2095
2096 #define MIPS_DSP_ACCUMULATOR_NAMES \
2097 {"$ac0", RTYPE_ACC | 0}, \
2098 {"$ac1", RTYPE_ACC | 1}, \
2099 {"$ac2", RTYPE_ACC | 2}, \
2100 {"$ac3", RTYPE_ACC | 3}
2101
2102 static const struct regname reg_names[] = {
2103 GENERIC_REGISTER_NUMBERS,
2104 FPU_REGISTER_NAMES,
2105 FPU_CONDITION_CODE_NAMES,
2106 COPROC_CONDITION_CODE_NAMES,
2107
2108 /* The $txx registers depends on the abi,
2109 these will be added later into the symbol table from
2110 one of the tables below once mips_abi is set after
2111 parsing of arguments from the command line. */
2112 SYMBOLIC_REGISTER_NAMES,
2113
2114 MIPS16_SPECIAL_REGISTER_NAMES,
2115 MDMX_VECTOR_REGISTER_NAMES,
2116 MIPS_DSP_ACCUMULATOR_NAMES,
2117 {0, 0}
2118 };
2119
2120 static const struct regname reg_names_o32[] = {
2121 O32_SYMBOLIC_REGISTER_NAMES,
2122 {0, 0}
2123 };
2124
2125 static const struct regname reg_names_n32n64[] = {
2126 N32N64_SYMBOLIC_REGISTER_NAMES,
2127 {0, 0}
2128 };
2129
2130 /* Check if S points at a valid register specifier according to TYPES.
2131 If so, then return 1, advance S to consume the specifier and store
2132 the register's number in REGNOP, otherwise return 0. */
2133
2134 static int
2135 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2136 {
2137 symbolS *symbolP;
2138 char *e;
2139 char save_c;
2140 int reg = -1;
2141
2142 /* Find end of name. */
2143 e = *s;
2144 if (is_name_beginner (*e))
2145 ++e;
2146 while (is_part_of_name (*e))
2147 ++e;
2148
2149 /* Terminate name. */
2150 save_c = *e;
2151 *e = '\0';
2152
2153 /* Look for a register symbol. */
2154 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
2155 {
2156 int r = S_GET_VALUE (symbolP);
2157 if (r & types)
2158 reg = r & RNUM_MASK;
2159 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
2160 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
2161 reg = (r & RNUM_MASK) - 2;
2162 }
2163 /* Else see if this is a register defined in an itbl entry. */
2164 else if ((types & RTYPE_GP) && itbl_have_entries)
2165 {
2166 char *n = *s;
2167 unsigned long r;
2168
2169 if (*n == '$')
2170 ++n;
2171 if (itbl_get_reg_val (n, &r))
2172 reg = r & RNUM_MASK;
2173 }
2174
2175 /* Advance to next token if a register was recognised. */
2176 if (reg >= 0)
2177 *s = e;
2178 else if (types & RWARN)
2179 as_warn (_("Unrecognized register name `%s'"), *s);
2180
2181 *e = save_c;
2182 if (regnop)
2183 *regnop = reg;
2184 return reg >= 0;
2185 }
2186
2187 /* Check if S points at a valid register list according to TYPES.
2188 If so, then return 1, advance S to consume the list and store
2189 the registers present on the list as a bitmask of ones in REGLISTP,
2190 otherwise return 0. A valid list comprises a comma-separated
2191 enumeration of valid single registers and/or dash-separated
2192 contiguous register ranges as determined by their numbers.
2193
2194 As a special exception if one of s0-s7 registers is specified as
2195 the range's lower delimiter and s8 (fp) is its upper one, then no
2196 registers whose numbers place them between s7 and s8 (i.e. $24-$29)
2197 are selected; they have to be listed separately if needed. */
2198
2199 static int
2200 reglist_lookup (char **s, unsigned int types, unsigned int *reglistp)
2201 {
2202 unsigned int reglist = 0;
2203 unsigned int lastregno;
2204 bfd_boolean ok = TRUE;
2205 unsigned int regmask;
2206 char *s_endlist = *s;
2207 char *s_reset = *s;
2208 unsigned int regno;
2209
2210 while (reg_lookup (s, types, &regno))
2211 {
2212 lastregno = regno;
2213 if (**s == '-')
2214 {
2215 (*s)++;
2216 ok = reg_lookup (s, types, &lastregno);
2217 if (ok && lastregno < regno)
2218 ok = FALSE;
2219 if (!ok)
2220 break;
2221 }
2222
2223 if (lastregno == FP && regno >= S0 && regno <= S7)
2224 {
2225 lastregno = S7;
2226 reglist |= 1 << FP;
2227 }
2228 regmask = 1 << lastregno;
2229 regmask = (regmask << 1) - 1;
2230 regmask ^= (1 << regno) - 1;
2231 reglist |= regmask;
2232
2233 s_endlist = *s;
2234 if (**s != ',')
2235 break;
2236 (*s)++;
2237 }
2238
2239 if (ok)
2240 *s = s_endlist;
2241 else
2242 *s = s_reset;
2243 if (reglistp)
2244 *reglistp = reglist;
2245 return ok && reglist != 0;
2246 }
2247
2248 /* Return TRUE if opcode MO is valid on the currently selected ISA and
2249 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
2250
2251 static bfd_boolean
2252 is_opcode_valid (const struct mips_opcode *mo)
2253 {
2254 int isa = mips_opts.isa;
2255 int fp_s, fp_d;
2256
2257 if (mips_opts.ase_mdmx)
2258 isa |= INSN_MDMX;
2259 if (mips_opts.ase_dsp)
2260 isa |= INSN_DSP;
2261 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
2262 isa |= INSN_DSP64;
2263 if (mips_opts.ase_dspr2)
2264 isa |= INSN_DSPR2;
2265 if (mips_opts.ase_mt)
2266 isa |= INSN_MT;
2267 if (mips_opts.ase_mips3d)
2268 isa |= INSN_MIPS3D;
2269 if (mips_opts.ase_smartmips)
2270 isa |= INSN_SMARTMIPS;
2271 if (mips_opts.ase_mcu)
2272 isa |= INSN_MCU;
2273 if (mips_opts.ase_virt)
2274 isa |= INSN_VIRT;
2275 if (mips_opts.ase_virt && ISA_SUPPORTS_VIRT64_ASE)
2276 isa |= INSN_VIRT64;
2277
2278 if (!opcode_is_member (mo, isa, mips_opts.arch))
2279 return FALSE;
2280
2281 /* Check whether the instruction or macro requires single-precision or
2282 double-precision floating-point support. Note that this information is
2283 stored differently in the opcode table for insns and macros. */
2284 if (mo->pinfo == INSN_MACRO)
2285 {
2286 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2287 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2288 }
2289 else
2290 {
2291 fp_s = mo->pinfo & FP_S;
2292 fp_d = mo->pinfo & FP_D;
2293 }
2294
2295 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2296 return FALSE;
2297
2298 if (fp_s && mips_opts.soft_float)
2299 return FALSE;
2300
2301 return TRUE;
2302 }
2303
2304 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
2305 selected ISA and architecture. */
2306
2307 static bfd_boolean
2308 is_opcode_valid_16 (const struct mips_opcode *mo)
2309 {
2310 return opcode_is_member (mo, mips_opts.isa, mips_opts.arch);
2311 }
2312
2313 /* Return TRUE if the size of the microMIPS opcode MO matches one
2314 explicitly requested. Always TRUE in the standard MIPS mode. */
2315
2316 static bfd_boolean
2317 is_size_valid (const struct mips_opcode *mo)
2318 {
2319 if (!mips_opts.micromips)
2320 return TRUE;
2321
2322 if (!forced_insn_length)
2323 return TRUE;
2324 if (mo->pinfo == INSN_MACRO)
2325 return FALSE;
2326 return forced_insn_length == micromips_insn_length (mo);
2327 }
2328
2329 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
2330 of the preceding instruction. Always TRUE in the standard MIPS mode.
2331
2332 We don't accept macros in 16-bit delay slots to avoid a case where
2333 a macro expansion fails because it relies on a preceding 32-bit real
2334 instruction to have matched and does not handle the operands correctly.
2335 The only macros that may expand to 16-bit instructions are JAL that
2336 cannot be placed in a delay slot anyway, and corner cases of BALIGN
2337 and BGT (that likewise cannot be placed in a delay slot) that decay to
2338 a NOP. In all these cases the macros precede any corresponding real
2339 instruction definitions in the opcode table, so they will match in the
2340 second pass where the size of the delay slot is ignored and therefore
2341 produce correct code. */
2342
2343 static bfd_boolean
2344 is_delay_slot_valid (const struct mips_opcode *mo)
2345 {
2346 if (!mips_opts.micromips)
2347 return TRUE;
2348
2349 if (mo->pinfo == INSN_MACRO)
2350 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
2351 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2352 && micromips_insn_length (mo) != 4)
2353 return FALSE;
2354 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2355 && micromips_insn_length (mo) != 2)
2356 return FALSE;
2357
2358 return TRUE;
2359 }
2360
2361 /* This function is called once, at assembler startup time. It should set up
2362 all the tables, etc. that the MD part of the assembler will need. */
2363
2364 void
2365 md_begin (void)
2366 {
2367 const char *retval = NULL;
2368 int i = 0;
2369 int broken = 0;
2370
2371 if (mips_pic != NO_PIC)
2372 {
2373 if (g_switch_seen && g_switch_value != 0)
2374 as_bad (_("-G may not be used in position-independent code"));
2375 g_switch_value = 0;
2376 }
2377
2378 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
2379 as_warn (_("Could not set architecture and machine"));
2380
2381 op_hash = hash_new ();
2382
2383 for (i = 0; i < NUMOPCODES;)
2384 {
2385 const char *name = mips_opcodes[i].name;
2386
2387 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
2388 if (retval != NULL)
2389 {
2390 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2391 mips_opcodes[i].name, retval);
2392 /* Probably a memory allocation problem? Give up now. */
2393 as_fatal (_("Broken assembler. No assembly attempted."));
2394 }
2395 do
2396 {
2397 if (mips_opcodes[i].pinfo != INSN_MACRO)
2398 {
2399 if (!validate_mips_insn (&mips_opcodes[i]))
2400 broken = 1;
2401 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2402 {
2403 create_insn (&nop_insn, mips_opcodes + i);
2404 if (mips_fix_loongson2f_nop)
2405 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
2406 nop_insn.fixed_p = 1;
2407 }
2408 }
2409 ++i;
2410 }
2411 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
2412 }
2413
2414 mips16_op_hash = hash_new ();
2415
2416 i = 0;
2417 while (i < bfd_mips16_num_opcodes)
2418 {
2419 const char *name = mips16_opcodes[i].name;
2420
2421 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
2422 if (retval != NULL)
2423 as_fatal (_("internal: can't hash `%s': %s"),
2424 mips16_opcodes[i].name, retval);
2425 do
2426 {
2427 if (mips16_opcodes[i].pinfo != INSN_MACRO
2428 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
2429 != mips16_opcodes[i].match))
2430 {
2431 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
2432 mips16_opcodes[i].name, mips16_opcodes[i].args);
2433 broken = 1;
2434 }
2435 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2436 {
2437 create_insn (&mips16_nop_insn, mips16_opcodes + i);
2438 mips16_nop_insn.fixed_p = 1;
2439 }
2440 ++i;
2441 }
2442 while (i < bfd_mips16_num_opcodes
2443 && strcmp (mips16_opcodes[i].name, name) == 0);
2444 }
2445
2446 micromips_op_hash = hash_new ();
2447
2448 i = 0;
2449 while (i < bfd_micromips_num_opcodes)
2450 {
2451 const char *name = micromips_opcodes[i].name;
2452
2453 retval = hash_insert (micromips_op_hash, name,
2454 (void *) &micromips_opcodes[i]);
2455 if (retval != NULL)
2456 as_fatal (_("internal: can't hash `%s': %s"),
2457 micromips_opcodes[i].name, retval);
2458 do
2459 if (micromips_opcodes[i].pinfo != INSN_MACRO)
2460 {
2461 struct mips_cl_insn *micromips_nop_insn;
2462
2463 if (!validate_micromips_insn (&micromips_opcodes[i]))
2464 broken = 1;
2465
2466 if (micromips_insn_length (micromips_opcodes + i) == 2)
2467 micromips_nop_insn = &micromips_nop16_insn;
2468 else if (micromips_insn_length (micromips_opcodes + i) == 4)
2469 micromips_nop_insn = &micromips_nop32_insn;
2470 else
2471 continue;
2472
2473 if (micromips_nop_insn->insn_mo == NULL
2474 && strcmp (name, "nop") == 0)
2475 {
2476 create_insn (micromips_nop_insn, micromips_opcodes + i);
2477 micromips_nop_insn->fixed_p = 1;
2478 }
2479 }
2480 while (++i < bfd_micromips_num_opcodes
2481 && strcmp (micromips_opcodes[i].name, name) == 0);
2482 }
2483
2484 if (broken)
2485 as_fatal (_("Broken assembler. No assembly attempted."));
2486
2487 /* We add all the general register names to the symbol table. This
2488 helps us detect invalid uses of them. */
2489 for (i = 0; reg_names[i].name; i++)
2490 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
2491 reg_names[i].num, /* & RNUM_MASK, */
2492 &zero_address_frag));
2493 if (HAVE_NEWABI)
2494 for (i = 0; reg_names_n32n64[i].name; i++)
2495 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
2496 reg_names_n32n64[i].num, /* & RNUM_MASK, */
2497 &zero_address_frag));
2498 else
2499 for (i = 0; reg_names_o32[i].name; i++)
2500 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2501 reg_names_o32[i].num, /* & RNUM_MASK, */
2502 &zero_address_frag));
2503
2504 mips_no_prev_insn ();
2505
2506 mips_gprmask = 0;
2507 mips_cprmask[0] = 0;
2508 mips_cprmask[1] = 0;
2509 mips_cprmask[2] = 0;
2510 mips_cprmask[3] = 0;
2511
2512 /* set the default alignment for the text section (2**2) */
2513 record_alignment (text_section, 2);
2514
2515 bfd_set_gp_size (stdoutput, g_switch_value);
2516
2517 #ifdef OBJ_ELF
2518 if (IS_ELF)
2519 {
2520 /* On a native system other than VxWorks, sections must be aligned
2521 to 16 byte boundaries. When configured for an embedded ELF
2522 target, we don't bother. */
2523 if (strncmp (TARGET_OS, "elf", 3) != 0
2524 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2525 {
2526 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2527 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2528 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2529 }
2530
2531 /* Create a .reginfo section for register masks and a .mdebug
2532 section for debugging information. */
2533 {
2534 segT seg;
2535 subsegT subseg;
2536 flagword flags;
2537 segT sec;
2538
2539 seg = now_seg;
2540 subseg = now_subseg;
2541
2542 /* The ABI says this section should be loaded so that the
2543 running program can access it. However, we don't load it
2544 if we are configured for an embedded target */
2545 flags = SEC_READONLY | SEC_DATA;
2546 if (strncmp (TARGET_OS, "elf", 3) != 0)
2547 flags |= SEC_ALLOC | SEC_LOAD;
2548
2549 if (mips_abi != N64_ABI)
2550 {
2551 sec = subseg_new (".reginfo", (subsegT) 0);
2552
2553 bfd_set_section_flags (stdoutput, sec, flags);
2554 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2555
2556 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2557 }
2558 else
2559 {
2560 /* The 64-bit ABI uses a .MIPS.options section rather than
2561 .reginfo section. */
2562 sec = subseg_new (".MIPS.options", (subsegT) 0);
2563 bfd_set_section_flags (stdoutput, sec, flags);
2564 bfd_set_section_alignment (stdoutput, sec, 3);
2565
2566 /* Set up the option header. */
2567 {
2568 Elf_Internal_Options opthdr;
2569 char *f;
2570
2571 opthdr.kind = ODK_REGINFO;
2572 opthdr.size = (sizeof (Elf_External_Options)
2573 + sizeof (Elf64_External_RegInfo));
2574 opthdr.section = 0;
2575 opthdr.info = 0;
2576 f = frag_more (sizeof (Elf_External_Options));
2577 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2578 (Elf_External_Options *) f);
2579
2580 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2581 }
2582 }
2583
2584 if (ECOFF_DEBUGGING)
2585 {
2586 sec = subseg_new (".mdebug", (subsegT) 0);
2587 (void) bfd_set_section_flags (stdoutput, sec,
2588 SEC_HAS_CONTENTS | SEC_READONLY);
2589 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2590 }
2591 else if (mips_flag_pdr)
2592 {
2593 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2594 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2595 SEC_READONLY | SEC_RELOC
2596 | SEC_DEBUGGING);
2597 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2598 }
2599
2600 subseg_set (seg, subseg);
2601 }
2602 }
2603 #endif /* OBJ_ELF */
2604
2605 if (! ECOFF_DEBUGGING)
2606 md_obj_begin ();
2607
2608 if (mips_fix_vr4120)
2609 init_vr4120_conflicts ();
2610 }
2611
2612 void
2613 md_mips_end (void)
2614 {
2615 mips_emit_delays ();
2616 if (! ECOFF_DEBUGGING)
2617 md_obj_end ();
2618 }
2619
2620 void
2621 md_assemble (char *str)
2622 {
2623 struct mips_cl_insn insn;
2624 bfd_reloc_code_real_type unused_reloc[3]
2625 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2626
2627 imm_expr.X_op = O_absent;
2628 imm2_expr.X_op = O_absent;
2629 offset_expr.X_op = O_absent;
2630 imm_reloc[0] = BFD_RELOC_UNUSED;
2631 imm_reloc[1] = BFD_RELOC_UNUSED;
2632 imm_reloc[2] = BFD_RELOC_UNUSED;
2633 offset_reloc[0] = BFD_RELOC_UNUSED;
2634 offset_reloc[1] = BFD_RELOC_UNUSED;
2635 offset_reloc[2] = BFD_RELOC_UNUSED;
2636
2637 mips_mark_labels ();
2638 mips_assembling_insn = TRUE;
2639
2640 if (mips_opts.mips16)
2641 mips16_ip (str, &insn);
2642 else
2643 {
2644 mips_ip (str, &insn);
2645 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2646 str, insn.insn_opcode));
2647 }
2648
2649 if (insn_error)
2650 as_bad ("%s `%s'", insn_error, str);
2651 else if (insn.insn_mo->pinfo == INSN_MACRO)
2652 {
2653 macro_start ();
2654 if (mips_opts.mips16)
2655 mips16_macro (&insn);
2656 else
2657 macro (&insn);
2658 macro_end ();
2659 }
2660 else
2661 {
2662 if (imm_expr.X_op != O_absent)
2663 append_insn (&insn, &imm_expr, imm_reloc, FALSE);
2664 else if (offset_expr.X_op != O_absent)
2665 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
2666 else
2667 append_insn (&insn, NULL, unused_reloc, FALSE);
2668 }
2669
2670 mips_assembling_insn = FALSE;
2671 }
2672
2673 /* Convenience functions for abstracting away the differences between
2674 MIPS16 and non-MIPS16 relocations. */
2675
2676 static inline bfd_boolean
2677 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2678 {
2679 switch (reloc)
2680 {
2681 case BFD_RELOC_MIPS16_JMP:
2682 case BFD_RELOC_MIPS16_GPREL:
2683 case BFD_RELOC_MIPS16_GOT16:
2684 case BFD_RELOC_MIPS16_CALL16:
2685 case BFD_RELOC_MIPS16_HI16_S:
2686 case BFD_RELOC_MIPS16_HI16:
2687 case BFD_RELOC_MIPS16_LO16:
2688 return TRUE;
2689
2690 default:
2691 return FALSE;
2692 }
2693 }
2694
2695 static inline bfd_boolean
2696 micromips_reloc_p (bfd_reloc_code_real_type reloc)
2697 {
2698 switch (reloc)
2699 {
2700 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
2701 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
2702 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
2703 case BFD_RELOC_MICROMIPS_GPREL16:
2704 case BFD_RELOC_MICROMIPS_JMP:
2705 case BFD_RELOC_MICROMIPS_HI16:
2706 case BFD_RELOC_MICROMIPS_HI16_S:
2707 case BFD_RELOC_MICROMIPS_LO16:
2708 case BFD_RELOC_MICROMIPS_LITERAL:
2709 case BFD_RELOC_MICROMIPS_GOT16:
2710 case BFD_RELOC_MICROMIPS_CALL16:
2711 case BFD_RELOC_MICROMIPS_GOT_HI16:
2712 case BFD_RELOC_MICROMIPS_GOT_LO16:
2713 case BFD_RELOC_MICROMIPS_CALL_HI16:
2714 case BFD_RELOC_MICROMIPS_CALL_LO16:
2715 case BFD_RELOC_MICROMIPS_SUB:
2716 case BFD_RELOC_MICROMIPS_GOT_PAGE:
2717 case BFD_RELOC_MICROMIPS_GOT_OFST:
2718 case BFD_RELOC_MICROMIPS_GOT_DISP:
2719 case BFD_RELOC_MICROMIPS_HIGHEST:
2720 case BFD_RELOC_MICROMIPS_HIGHER:
2721 case BFD_RELOC_MICROMIPS_SCN_DISP:
2722 case BFD_RELOC_MICROMIPS_JALR:
2723 return TRUE;
2724
2725 default:
2726 return FALSE;
2727 }
2728 }
2729
2730 static inline bfd_boolean
2731 jmp_reloc_p (bfd_reloc_code_real_type reloc)
2732 {
2733 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
2734 }
2735
2736 static inline bfd_boolean
2737 got16_reloc_p (bfd_reloc_code_real_type reloc)
2738 {
2739 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
2740 || reloc == BFD_RELOC_MICROMIPS_GOT16);
2741 }
2742
2743 static inline bfd_boolean
2744 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2745 {
2746 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
2747 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
2748 }
2749
2750 static inline bfd_boolean
2751 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2752 {
2753 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
2754 || reloc == BFD_RELOC_MICROMIPS_LO16);
2755 }
2756
2757 static inline bfd_boolean
2758 jalr_reloc_p (bfd_reloc_code_real_type reloc)
2759 {
2760 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
2761 }
2762
2763 /* Return true if RELOC is a PC-relative relocation that does not have
2764 full address range. */
2765
2766 static inline bfd_boolean
2767 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
2768 {
2769 switch (reloc)
2770 {
2771 case BFD_RELOC_16_PCREL_S2:
2772 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
2773 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
2774 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
2775 return TRUE;
2776
2777 case BFD_RELOC_32_PCREL:
2778 return HAVE_64BIT_ADDRESSES;
2779
2780 default:
2781 return FALSE;
2782 }
2783 }
2784
2785 /* Return true if the given relocation might need a matching %lo().
2786 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2787 need a matching %lo() when applied to local symbols. */
2788
2789 static inline bfd_boolean
2790 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2791 {
2792 return (HAVE_IN_PLACE_ADDENDS
2793 && (hi16_reloc_p (reloc)
2794 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2795 all GOT16 relocations evaluate to "G". */
2796 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2797 }
2798
2799 /* Return the type of %lo() reloc needed by RELOC, given that
2800 reloc_needs_lo_p. */
2801
2802 static inline bfd_reloc_code_real_type
2803 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2804 {
2805 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
2806 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
2807 : BFD_RELOC_LO16));
2808 }
2809
2810 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2811 relocation. */
2812
2813 static inline bfd_boolean
2814 fixup_has_matching_lo_p (fixS *fixp)
2815 {
2816 return (fixp->fx_next != NULL
2817 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2818 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2819 && fixp->fx_offset == fixp->fx_next->fx_offset);
2820 }
2821
2822 /* This function returns true if modifying a register requires a
2823 delay. */
2824
2825 static int
2826 reg_needs_delay (unsigned int reg)
2827 {
2828 unsigned long prev_pinfo;
2829
2830 prev_pinfo = history[0].insn_mo->pinfo;
2831 if (! mips_opts.noreorder
2832 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2833 && ! gpr_interlocks)
2834 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2835 && ! cop_interlocks)))
2836 {
2837 /* A load from a coprocessor or from memory. All load delays
2838 delay the use of general register rt for one instruction. */
2839 /* Itbl support may require additional care here. */
2840 know (prev_pinfo & INSN_WRITE_GPR_T);
2841 if (reg == EXTRACT_OPERAND (mips_opts.micromips, RT, history[0]))
2842 return 1;
2843 }
2844
2845 return 0;
2846 }
2847
2848 /* Move all labels in LABELS to the current insertion point. TEXT_P
2849 says whether the labels refer to text or data. */
2850
2851 static void
2852 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
2853 {
2854 struct insn_label_list *l;
2855 valueT val;
2856
2857 for (l = labels; l != NULL; l = l->next)
2858 {
2859 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2860 symbol_set_frag (l->label, frag_now);
2861 val = (valueT) frag_now_fix ();
2862 /* MIPS16/microMIPS text labels are stored as odd. */
2863 if (text_p && HAVE_CODE_COMPRESSION)
2864 ++val;
2865 S_SET_VALUE (l->label, val);
2866 }
2867 }
2868
2869 /* Move all labels in insn_labels to the current insertion point
2870 and treat them as text labels. */
2871
2872 static void
2873 mips_move_text_labels (void)
2874 {
2875 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
2876 }
2877
2878 static bfd_boolean
2879 s_is_linkonce (symbolS *sym, segT from_seg)
2880 {
2881 bfd_boolean linkonce = FALSE;
2882 segT symseg = S_GET_SEGMENT (sym);
2883
2884 if (symseg != from_seg && !S_IS_LOCAL (sym))
2885 {
2886 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2887 linkonce = TRUE;
2888 #ifdef OBJ_ELF
2889 /* The GNU toolchain uses an extension for ELF: a section
2890 beginning with the magic string .gnu.linkonce is a
2891 linkonce section. */
2892 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2893 sizeof ".gnu.linkonce" - 1) == 0)
2894 linkonce = TRUE;
2895 #endif
2896 }
2897 return linkonce;
2898 }
2899
2900 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
2901 linker to handle them specially, such as generating jalx instructions
2902 when needed. We also make them odd for the duration of the assembly,
2903 in order to generate the right sort of code. We will make them even
2904 in the adjust_symtab routine, while leaving them marked. This is
2905 convenient for the debugger and the disassembler. The linker knows
2906 to make them odd again. */
2907
2908 static void
2909 mips_compressed_mark_label (symbolS *label)
2910 {
2911 gas_assert (HAVE_CODE_COMPRESSION);
2912
2913 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2914 if (IS_ELF)
2915 {
2916 if (mips_opts.mips16)
2917 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2918 else
2919 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
2920 }
2921 #endif
2922 if ((S_GET_VALUE (label) & 1) == 0
2923 /* Don't adjust the address if the label is global or weak, or
2924 in a link-once section, since we'll be emitting symbol reloc
2925 references to it which will be patched up by the linker, and
2926 the final value of the symbol may or may not be MIPS16/microMIPS. */
2927 && !S_IS_WEAK (label)
2928 && !S_IS_EXTERNAL (label)
2929 && !s_is_linkonce (label, now_seg))
2930 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2931 }
2932
2933 /* Mark preceding MIPS16 or microMIPS instruction labels. */
2934
2935 static void
2936 mips_compressed_mark_labels (void)
2937 {
2938 struct insn_label_list *l;
2939
2940 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
2941 mips_compressed_mark_label (l->label);
2942 }
2943
2944 /* End the current frag. Make it a variant frag and record the
2945 relaxation info. */
2946
2947 static void
2948 relax_close_frag (void)
2949 {
2950 mips_macro_warning.first_frag = frag_now;
2951 frag_var (rs_machine_dependent, 0, 0,
2952 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2953 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2954
2955 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2956 mips_relax.first_fixup = 0;
2957 }
2958
2959 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2960 See the comment above RELAX_ENCODE for more details. */
2961
2962 static void
2963 relax_start (symbolS *symbol)
2964 {
2965 gas_assert (mips_relax.sequence == 0);
2966 mips_relax.sequence = 1;
2967 mips_relax.symbol = symbol;
2968 }
2969
2970 /* Start generating the second version of a relaxable sequence.
2971 See the comment above RELAX_ENCODE for more details. */
2972
2973 static void
2974 relax_switch (void)
2975 {
2976 gas_assert (mips_relax.sequence == 1);
2977 mips_relax.sequence = 2;
2978 }
2979
2980 /* End the current relaxable sequence. */
2981
2982 static void
2983 relax_end (void)
2984 {
2985 gas_assert (mips_relax.sequence == 2);
2986 relax_close_frag ();
2987 mips_relax.sequence = 0;
2988 }
2989
2990 /* Return true if IP is a delayed branch or jump. */
2991
2992 static inline bfd_boolean
2993 delayed_branch_p (const struct mips_cl_insn *ip)
2994 {
2995 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2996 | INSN_COND_BRANCH_DELAY
2997 | INSN_COND_BRANCH_LIKELY)) != 0;
2998 }
2999
3000 /* Return true if IP is a compact branch or jump. */
3001
3002 static inline bfd_boolean
3003 compact_branch_p (const struct mips_cl_insn *ip)
3004 {
3005 if (mips_opts.mips16)
3006 return (ip->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
3007 | MIPS16_INSN_COND_BRANCH)) != 0;
3008 else
3009 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
3010 | INSN2_COND_BRANCH)) != 0;
3011 }
3012
3013 /* Return true if IP is an unconditional branch or jump. */
3014
3015 static inline bfd_boolean
3016 uncond_branch_p (const struct mips_cl_insn *ip)
3017 {
3018 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
3019 || (mips_opts.mips16
3020 ? (ip->insn_mo->pinfo & MIPS16_INSN_UNCOND_BRANCH) != 0
3021 : (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0));
3022 }
3023
3024 /* Return true if IP is a branch-likely instruction. */
3025
3026 static inline bfd_boolean
3027 branch_likely_p (const struct mips_cl_insn *ip)
3028 {
3029 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
3030 }
3031
3032 /* Return the type of nop that should be used to fill the delay slot
3033 of delayed branch IP. */
3034
3035 static struct mips_cl_insn *
3036 get_delay_slot_nop (const struct mips_cl_insn *ip)
3037 {
3038 if (mips_opts.micromips
3039 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3040 return &micromips_nop32_insn;
3041 return NOP_INSN;
3042 }
3043
3044 /* Return the mask of core registers that IP reads or writes. */
3045
3046 static unsigned int
3047 gpr_mod_mask (const struct mips_cl_insn *ip)
3048 {
3049 unsigned long pinfo2;
3050 unsigned int mask;
3051
3052 mask = 0;
3053 pinfo2 = ip->insn_mo->pinfo2;
3054 if (mips_opts.micromips)
3055 {
3056 if (pinfo2 & INSN2_MOD_GPR_MD)
3057 mask |= 1 << micromips_to_32_reg_d_map[EXTRACT_OPERAND (1, MD, *ip)];
3058 if (pinfo2 & INSN2_MOD_GPR_MF)
3059 mask |= 1 << micromips_to_32_reg_f_map[EXTRACT_OPERAND (1, MF, *ip)];
3060 if (pinfo2 & INSN2_MOD_SP)
3061 mask |= 1 << SP;
3062 }
3063 return mask;
3064 }
3065
3066 /* Return the mask of core registers that IP reads. */
3067
3068 static unsigned int
3069 gpr_read_mask (const struct mips_cl_insn *ip)
3070 {
3071 unsigned long pinfo, pinfo2;
3072 unsigned int mask;
3073
3074 mask = gpr_mod_mask (ip);
3075 pinfo = ip->insn_mo->pinfo;
3076 pinfo2 = ip->insn_mo->pinfo2;
3077 if (mips_opts.mips16)
3078 {
3079 if (pinfo & MIPS16_INSN_READ_X)
3080 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3081 if (pinfo & MIPS16_INSN_READ_Y)
3082 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3083 if (pinfo & MIPS16_INSN_READ_T)
3084 mask |= 1 << TREG;
3085 if (pinfo & MIPS16_INSN_READ_SP)
3086 mask |= 1 << SP;
3087 if (pinfo & MIPS16_INSN_READ_31)
3088 mask |= 1 << RA;
3089 if (pinfo & MIPS16_INSN_READ_Z)
3090 mask |= 1 << (mips16_to_32_reg_map
3091 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
3092 if (pinfo & MIPS16_INSN_READ_GPR_X)
3093 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3094 }
3095 else
3096 {
3097 if (pinfo2 & INSN2_READ_GPR_D)
3098 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3099 if (pinfo & INSN_READ_GPR_T)
3100 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3101 if (pinfo & INSN_READ_GPR_S)
3102 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3103 if (pinfo2 & INSN2_READ_GP)
3104 mask |= 1 << GP;
3105 if (pinfo2 & INSN2_READ_GPR_31)
3106 mask |= 1 << RA;
3107 if (pinfo2 & INSN2_READ_GPR_Z)
3108 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3109 }
3110 if (mips_opts.micromips)
3111 {
3112 if (pinfo2 & INSN2_READ_GPR_MC)
3113 mask |= 1 << micromips_to_32_reg_c_map[EXTRACT_OPERAND (1, MC, *ip)];
3114 if (pinfo2 & INSN2_READ_GPR_ME)
3115 mask |= 1 << micromips_to_32_reg_e_map[EXTRACT_OPERAND (1, ME, *ip)];
3116 if (pinfo2 & INSN2_READ_GPR_MG)
3117 mask |= 1 << micromips_to_32_reg_g_map[EXTRACT_OPERAND (1, MG, *ip)];
3118 if (pinfo2 & INSN2_READ_GPR_MJ)
3119 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3120 if (pinfo2 & INSN2_READ_GPR_MMN)
3121 {
3122 mask |= 1 << micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
3123 mask |= 1 << micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
3124 }
3125 if (pinfo2 & INSN2_READ_GPR_MP)
3126 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3127 if (pinfo2 & INSN2_READ_GPR_MQ)
3128 mask |= 1 << micromips_to_32_reg_q_map[EXTRACT_OPERAND (1, MQ, *ip)];
3129 }
3130 /* Don't include register 0. */
3131 return mask & ~1;
3132 }
3133
3134 /* Return the mask of core registers that IP writes. */
3135
3136 static unsigned int
3137 gpr_write_mask (const struct mips_cl_insn *ip)
3138 {
3139 unsigned long pinfo, pinfo2;
3140 unsigned int mask;
3141
3142 mask = gpr_mod_mask (ip);
3143 pinfo = ip->insn_mo->pinfo;
3144 pinfo2 = ip->insn_mo->pinfo2;
3145 if (mips_opts.mips16)
3146 {
3147 if (pinfo & MIPS16_INSN_WRITE_X)
3148 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3149 if (pinfo & MIPS16_INSN_WRITE_Y)
3150 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3151 if (pinfo & MIPS16_INSN_WRITE_Z)
3152 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
3153 if (pinfo & MIPS16_INSN_WRITE_T)
3154 mask |= 1 << TREG;
3155 if (pinfo & MIPS16_INSN_WRITE_SP)
3156 mask |= 1 << SP;
3157 if (pinfo & MIPS16_INSN_WRITE_31)
3158 mask |= 1 << RA;
3159 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3160 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3161 }
3162 else
3163 {
3164 if (pinfo & INSN_WRITE_GPR_D)
3165 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3166 if (pinfo & INSN_WRITE_GPR_T)
3167 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3168 if (pinfo & INSN_WRITE_GPR_S)
3169 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3170 if (pinfo & INSN_WRITE_GPR_31)
3171 mask |= 1 << RA;
3172 if (pinfo2 & INSN2_WRITE_GPR_Z)
3173 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3174 }
3175 if (mips_opts.micromips)
3176 {
3177 if (pinfo2 & INSN2_WRITE_GPR_MB)
3178 mask |= 1 << micromips_to_32_reg_b_map[EXTRACT_OPERAND (1, MB, *ip)];
3179 if (pinfo2 & INSN2_WRITE_GPR_MHI)
3180 {
3181 mask |= 1 << micromips_to_32_reg_h_map[EXTRACT_OPERAND (1, MH, *ip)];
3182 mask |= 1 << micromips_to_32_reg_i_map[EXTRACT_OPERAND (1, MI, *ip)];
3183 }
3184 if (pinfo2 & INSN2_WRITE_GPR_MJ)
3185 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3186 if (pinfo2 & INSN2_WRITE_GPR_MP)
3187 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3188 }
3189 /* Don't include register 0. */
3190 return mask & ~1;
3191 }
3192
3193 /* Return the mask of floating-point registers that IP reads. */
3194
3195 static unsigned int
3196 fpr_read_mask (const struct mips_cl_insn *ip)
3197 {
3198 unsigned long pinfo, pinfo2;
3199 unsigned int mask;
3200
3201 mask = 0;
3202 pinfo = ip->insn_mo->pinfo;
3203 pinfo2 = ip->insn_mo->pinfo2;
3204 if (!mips_opts.mips16)
3205 {
3206 if (pinfo2 & INSN2_READ_FPR_D)
3207 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3208 if (pinfo & INSN_READ_FPR_S)
3209 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3210 if (pinfo & INSN_READ_FPR_T)
3211 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3212 if (pinfo & INSN_READ_FPR_R)
3213 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FR, *ip);
3214 if (pinfo2 & INSN2_READ_FPR_Z)
3215 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3216 }
3217 /* Conservatively treat all operands to an FP_D instruction are doubles.
3218 (This is overly pessimistic for things like cvt.d.s.) */
3219 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3220 mask |= mask << 1;
3221 return mask;
3222 }
3223
3224 /* Return the mask of floating-point registers that IP writes. */
3225
3226 static unsigned int
3227 fpr_write_mask (const struct mips_cl_insn *ip)
3228 {
3229 unsigned long pinfo, pinfo2;
3230 unsigned int mask;
3231
3232 mask = 0;
3233 pinfo = ip->insn_mo->pinfo;
3234 pinfo2 = ip->insn_mo->pinfo2;
3235 if (!mips_opts.mips16)
3236 {
3237 if (pinfo & INSN_WRITE_FPR_D)
3238 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3239 if (pinfo & INSN_WRITE_FPR_S)
3240 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3241 if (pinfo & INSN_WRITE_FPR_T)
3242 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3243 if (pinfo2 & INSN2_WRITE_FPR_Z)
3244 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3245 }
3246 /* Conservatively treat all operands to an FP_D instruction are doubles.
3247 (This is overly pessimistic for things like cvt.s.d.) */
3248 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3249 mask |= mask << 1;
3250 return mask;
3251 }
3252
3253 /* Classify an instruction according to the FIX_VR4120_* enumeration.
3254 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
3255 by VR4120 errata. */
3256
3257 static unsigned int
3258 classify_vr4120_insn (const char *name)
3259 {
3260 if (strncmp (name, "macc", 4) == 0)
3261 return FIX_VR4120_MACC;
3262 if (strncmp (name, "dmacc", 5) == 0)
3263 return FIX_VR4120_DMACC;
3264 if (strncmp (name, "mult", 4) == 0)
3265 return FIX_VR4120_MULT;
3266 if (strncmp (name, "dmult", 5) == 0)
3267 return FIX_VR4120_DMULT;
3268 if (strstr (name, "div"))
3269 return FIX_VR4120_DIV;
3270 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
3271 return FIX_VR4120_MTHILO;
3272 return NUM_FIX_VR4120_CLASSES;
3273 }
3274
3275 #define INSN_ERET 0x42000018
3276 #define INSN_DERET 0x4200001f
3277
3278 /* Return the number of instructions that must separate INSN1 and INSN2,
3279 where INSN1 is the earlier instruction. Return the worst-case value
3280 for any INSN2 if INSN2 is null. */
3281
3282 static unsigned int
3283 insns_between (const struct mips_cl_insn *insn1,
3284 const struct mips_cl_insn *insn2)
3285 {
3286 unsigned long pinfo1, pinfo2;
3287 unsigned int mask;
3288
3289 /* This function needs to know which pinfo flags are set for INSN2
3290 and which registers INSN2 uses. The former is stored in PINFO2 and
3291 the latter is tested via INSN2_USES_GPR. If INSN2 is null, PINFO2
3292 will have every flag set and INSN2_USES_GPR will always return true. */
3293 pinfo1 = insn1->insn_mo->pinfo;
3294 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
3295
3296 #define INSN2_USES_GPR(REG) \
3297 (insn2 == NULL || (gpr_read_mask (insn2) & (1U << (REG))) != 0)
3298
3299 /* For most targets, write-after-read dependencies on the HI and LO
3300 registers must be separated by at least two instructions. */
3301 if (!hilo_interlocks)
3302 {
3303 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
3304 return 2;
3305 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
3306 return 2;
3307 }
3308
3309 /* If we're working around r7000 errata, there must be two instructions
3310 between an mfhi or mflo and any instruction that uses the result. */
3311 if (mips_7000_hilo_fix
3312 && !mips_opts.micromips
3313 && MF_HILO_INSN (pinfo1)
3314 && INSN2_USES_GPR (EXTRACT_OPERAND (0, RD, *insn1)))
3315 return 2;
3316
3317 /* If we're working around 24K errata, one instruction is required
3318 if an ERET or DERET is followed by a branch instruction. */
3319 if (mips_fix_24k && !mips_opts.micromips)
3320 {
3321 if (insn1->insn_opcode == INSN_ERET
3322 || insn1->insn_opcode == INSN_DERET)
3323 {
3324 if (insn2 == NULL
3325 || insn2->insn_opcode == INSN_ERET
3326 || insn2->insn_opcode == INSN_DERET
3327 || delayed_branch_p (insn2))
3328 return 1;
3329 }
3330 }
3331
3332 /* If working around VR4120 errata, check for combinations that need
3333 a single intervening instruction. */
3334 if (mips_fix_vr4120 && !mips_opts.micromips)
3335 {
3336 unsigned int class1, class2;
3337
3338 class1 = classify_vr4120_insn (insn1->insn_mo->name);
3339 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
3340 {
3341 if (insn2 == NULL)
3342 return 1;
3343 class2 = classify_vr4120_insn (insn2->insn_mo->name);
3344 if (vr4120_conflicts[class1] & (1 << class2))
3345 return 1;
3346 }
3347 }
3348
3349 if (!HAVE_CODE_COMPRESSION)
3350 {
3351 /* Check for GPR or coprocessor load delays. All such delays
3352 are on the RT register. */
3353 /* Itbl support may require additional care here. */
3354 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
3355 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
3356 {
3357 know (pinfo1 & INSN_WRITE_GPR_T);
3358 if (INSN2_USES_GPR (EXTRACT_OPERAND (0, RT, *insn1)))
3359 return 1;
3360 }
3361
3362 /* Check for generic coprocessor hazards.
3363
3364 This case is not handled very well. There is no special
3365 knowledge of CP0 handling, and the coprocessors other than
3366 the floating point unit are not distinguished at all. */
3367 /* Itbl support may require additional care here. FIXME!
3368 Need to modify this to include knowledge about
3369 user specified delays! */
3370 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
3371 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
3372 {
3373 /* Handle cases where INSN1 writes to a known general coprocessor
3374 register. There must be a one instruction delay before INSN2
3375 if INSN2 reads that register, otherwise no delay is needed. */
3376 mask = fpr_write_mask (insn1);
3377 if (mask != 0)
3378 {
3379 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
3380 return 1;
3381 }
3382 else
3383 {
3384 /* Read-after-write dependencies on the control registers
3385 require a two-instruction gap. */
3386 if ((pinfo1 & INSN_WRITE_COND_CODE)
3387 && (pinfo2 & INSN_READ_COND_CODE))
3388 return 2;
3389
3390 /* We don't know exactly what INSN1 does. If INSN2 is
3391 also a coprocessor instruction, assume there must be
3392 a one instruction gap. */
3393 if (pinfo2 & INSN_COP)
3394 return 1;
3395 }
3396 }
3397
3398 /* Check for read-after-write dependencies on the coprocessor
3399 control registers in cases where INSN1 does not need a general
3400 coprocessor delay. This means that INSN1 is a floating point
3401 comparison instruction. */
3402 /* Itbl support may require additional care here. */
3403 else if (!cop_interlocks
3404 && (pinfo1 & INSN_WRITE_COND_CODE)
3405 && (pinfo2 & INSN_READ_COND_CODE))
3406 return 1;
3407 }
3408
3409 #undef INSN2_USES_GPR
3410
3411 return 0;
3412 }
3413
3414 /* Return the number of nops that would be needed to work around the
3415 VR4130 mflo/mfhi errata if instruction INSN immediately followed
3416 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
3417 that are contained within the first IGNORE instructions of HIST. */
3418
3419 static int
3420 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
3421 const struct mips_cl_insn *insn)
3422 {
3423 int i, j;
3424 unsigned int mask;
3425
3426 /* Check if the instruction writes to HI or LO. MTHI and MTLO
3427 are not affected by the errata. */
3428 if (insn != 0
3429 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
3430 || strcmp (insn->insn_mo->name, "mtlo") == 0
3431 || strcmp (insn->insn_mo->name, "mthi") == 0))
3432 return 0;
3433
3434 /* Search for the first MFLO or MFHI. */
3435 for (i = 0; i < MAX_VR4130_NOPS; i++)
3436 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
3437 {
3438 /* Extract the destination register. */
3439 mask = gpr_write_mask (&hist[i]);
3440
3441 /* No nops are needed if INSN reads that register. */
3442 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
3443 return 0;
3444
3445 /* ...or if any of the intervening instructions do. */
3446 for (j = 0; j < i; j++)
3447 if (gpr_read_mask (&hist[j]) & mask)
3448 return 0;
3449
3450 if (i >= ignore)
3451 return MAX_VR4130_NOPS - i;
3452 }
3453 return 0;
3454 }
3455
3456 #define BASE_REG_EQ(INSN1, INSN2) \
3457 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
3458 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
3459
3460 /* Return the minimum alignment for this store instruction. */
3461
3462 static int
3463 fix_24k_align_to (const struct mips_opcode *mo)
3464 {
3465 if (strcmp (mo->name, "sh") == 0)
3466 return 2;
3467
3468 if (strcmp (mo->name, "swc1") == 0
3469 || strcmp (mo->name, "swc2") == 0
3470 || strcmp (mo->name, "sw") == 0
3471 || strcmp (mo->name, "sc") == 0
3472 || strcmp (mo->name, "s.s") == 0)
3473 return 4;
3474
3475 if (strcmp (mo->name, "sdc1") == 0
3476 || strcmp (mo->name, "sdc2") == 0
3477 || strcmp (mo->name, "s.d") == 0)
3478 return 8;
3479
3480 /* sb, swl, swr */
3481 return 1;
3482 }
3483
3484 struct fix_24k_store_info
3485 {
3486 /* Immediate offset, if any, for this store instruction. */
3487 short off;
3488 /* Alignment required by this store instruction. */
3489 int align_to;
3490 /* True for register offsets. */
3491 int register_offset;
3492 };
3493
3494 /* Comparison function used by qsort. */
3495
3496 static int
3497 fix_24k_sort (const void *a, const void *b)
3498 {
3499 const struct fix_24k_store_info *pos1 = a;
3500 const struct fix_24k_store_info *pos2 = b;
3501
3502 return (pos1->off - pos2->off);
3503 }
3504
3505 /* INSN is a store instruction. Try to record the store information
3506 in STINFO. Return false if the information isn't known. */
3507
3508 static bfd_boolean
3509 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
3510 const struct mips_cl_insn *insn)
3511 {
3512 /* The instruction must have a known offset. */
3513 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
3514 return FALSE;
3515
3516 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
3517 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
3518 return TRUE;
3519 }
3520
3521 /* Return the number of nops that would be needed to work around the 24k
3522 "lost data on stores during refill" errata if instruction INSN
3523 immediately followed the 2 instructions described by HIST.
3524 Ignore hazards that are contained within the first IGNORE
3525 instructions of HIST.
3526
3527 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
3528 for the data cache refills and store data. The following describes
3529 the scenario where the store data could be lost.
3530
3531 * A data cache miss, due to either a load or a store, causing fill
3532 data to be supplied by the memory subsystem
3533 * The first three doublewords of fill data are returned and written
3534 into the cache
3535 * A sequence of four stores occurs in consecutive cycles around the
3536 final doubleword of the fill:
3537 * Store A
3538 * Store B
3539 * Store C
3540 * Zero, One or more instructions
3541 * Store D
3542
3543 The four stores A-D must be to different doublewords of the line that
3544 is being filled. The fourth instruction in the sequence above permits
3545 the fill of the final doubleword to be transferred from the FSB into
3546 the cache. In the sequence above, the stores may be either integer
3547 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
3548 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
3549 different doublewords on the line. If the floating point unit is
3550 running in 1:2 mode, it is not possible to create the sequence above
3551 using only floating point store instructions.
3552
3553 In this case, the cache line being filled is incorrectly marked
3554 invalid, thereby losing the data from any store to the line that
3555 occurs between the original miss and the completion of the five
3556 cycle sequence shown above.
3557
3558 The workarounds are:
3559
3560 * Run the data cache in write-through mode.
3561 * Insert a non-store instruction between
3562 Store A and Store B or Store B and Store C. */
3563
3564 static int
3565 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
3566 const struct mips_cl_insn *insn)
3567 {
3568 struct fix_24k_store_info pos[3];
3569 int align, i, base_offset;
3570
3571 if (ignore >= 2)
3572 return 0;
3573
3574 /* If the previous instruction wasn't a store, there's nothing to
3575 worry about. */
3576 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3577 return 0;
3578
3579 /* If the instructions after the previous one are unknown, we have
3580 to assume the worst. */
3581 if (!insn)
3582 return 1;
3583
3584 /* Check whether we are dealing with three consecutive stores. */
3585 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
3586 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
3587 return 0;
3588
3589 /* If we don't know the relationship between the store addresses,
3590 assume the worst. */
3591 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
3592 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
3593 return 1;
3594
3595 if (!fix_24k_record_store_info (&pos[0], insn)
3596 || !fix_24k_record_store_info (&pos[1], &hist[0])
3597 || !fix_24k_record_store_info (&pos[2], &hist[1]))
3598 return 1;
3599
3600 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
3601
3602 /* Pick a value of ALIGN and X such that all offsets are adjusted by
3603 X bytes and such that the base register + X is known to be aligned
3604 to align bytes. */
3605
3606 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
3607 align = 8;
3608 else
3609 {
3610 align = pos[0].align_to;
3611 base_offset = pos[0].off;
3612 for (i = 1; i < 3; i++)
3613 if (align < pos[i].align_to)
3614 {
3615 align = pos[i].align_to;
3616 base_offset = pos[i].off;
3617 }
3618 for (i = 0; i < 3; i++)
3619 pos[i].off -= base_offset;
3620 }
3621
3622 pos[0].off &= ~align + 1;
3623 pos[1].off &= ~align + 1;
3624 pos[2].off &= ~align + 1;
3625
3626 /* If any two stores write to the same chunk, they also write to the
3627 same doubleword. The offsets are still sorted at this point. */
3628 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
3629 return 0;
3630
3631 /* A range of at least 9 bytes is needed for the stores to be in
3632 non-overlapping doublewords. */
3633 if (pos[2].off - pos[0].off <= 8)
3634 return 0;
3635
3636 if (pos[2].off - pos[1].off >= 24
3637 || pos[1].off - pos[0].off >= 24
3638 || pos[2].off - pos[0].off >= 32)
3639 return 0;
3640
3641 return 1;
3642 }
3643
3644 /* Return the number of nops that would be needed if instruction INSN
3645 immediately followed the MAX_NOPS instructions given by HIST,
3646 where HIST[0] is the most recent instruction. Ignore hazards
3647 between INSN and the first IGNORE instructions in HIST.
3648
3649 If INSN is null, return the worse-case number of nops for any
3650 instruction. */
3651
3652 static int
3653 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
3654 const struct mips_cl_insn *insn)
3655 {
3656 int i, nops, tmp_nops;
3657
3658 nops = 0;
3659 for (i = ignore; i < MAX_DELAY_NOPS; i++)
3660 {
3661 tmp_nops = insns_between (hist + i, insn) - i;
3662 if (tmp_nops > nops)
3663 nops = tmp_nops;
3664 }
3665
3666 if (mips_fix_vr4130 && !mips_opts.micromips)
3667 {
3668 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
3669 if (tmp_nops > nops)
3670 nops = tmp_nops;
3671 }
3672
3673 if (mips_fix_24k && !mips_opts.micromips)
3674 {
3675 tmp_nops = nops_for_24k (ignore, hist, insn);
3676 if (tmp_nops > nops)
3677 nops = tmp_nops;
3678 }
3679
3680 return nops;
3681 }
3682
3683 /* The variable arguments provide NUM_INSNS extra instructions that
3684 might be added to HIST. Return the largest number of nops that
3685 would be needed after the extended sequence, ignoring hazards
3686 in the first IGNORE instructions. */
3687
3688 static int
3689 nops_for_sequence (int num_insns, int ignore,
3690 const struct mips_cl_insn *hist, ...)
3691 {
3692 va_list args;
3693 struct mips_cl_insn buffer[MAX_NOPS];
3694 struct mips_cl_insn *cursor;
3695 int nops;
3696
3697 va_start (args, hist);
3698 cursor = buffer + num_insns;
3699 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
3700 while (cursor > buffer)
3701 *--cursor = *va_arg (args, const struct mips_cl_insn *);
3702
3703 nops = nops_for_insn (ignore, buffer, NULL);
3704 va_end (args);
3705 return nops;
3706 }
3707
3708 /* Like nops_for_insn, but if INSN is a branch, take into account the
3709 worst-case delay for the branch target. */
3710
3711 static int
3712 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
3713 const struct mips_cl_insn *insn)
3714 {
3715 int nops, tmp_nops;
3716
3717 nops = nops_for_insn (ignore, hist, insn);
3718 if (delayed_branch_p (insn))
3719 {
3720 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
3721 hist, insn, get_delay_slot_nop (insn));
3722 if (tmp_nops > nops)
3723 nops = tmp_nops;
3724 }
3725 else if (compact_branch_p (insn))
3726 {
3727 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
3728 if (tmp_nops > nops)
3729 nops = tmp_nops;
3730 }
3731 return nops;
3732 }
3733
3734 /* Fix NOP issue: Replace nops by "or at,at,zero". */
3735
3736 static void
3737 fix_loongson2f_nop (struct mips_cl_insn * ip)
3738 {
3739 gas_assert (!HAVE_CODE_COMPRESSION);
3740 if (strcmp (ip->insn_mo->name, "nop") == 0)
3741 ip->insn_opcode = LOONGSON2F_NOP_INSN;
3742 }
3743
3744 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
3745 jr target pc &= 'hffff_ffff_cfff_ffff. */
3746
3747 static void
3748 fix_loongson2f_jump (struct mips_cl_insn * ip)
3749 {
3750 gas_assert (!HAVE_CODE_COMPRESSION);
3751 if (strcmp (ip->insn_mo->name, "j") == 0
3752 || strcmp (ip->insn_mo->name, "jr") == 0
3753 || strcmp (ip->insn_mo->name, "jalr") == 0)
3754 {
3755 int sreg;
3756 expressionS ep;
3757
3758 if (! mips_opts.at)
3759 return;
3760
3761 sreg = EXTRACT_OPERAND (0, RS, *ip);
3762 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
3763 return;
3764
3765 ep.X_op = O_constant;
3766 ep.X_add_number = 0xcfff0000;
3767 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
3768 ep.X_add_number = 0xffff;
3769 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
3770 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
3771 }
3772 }
3773
3774 static void
3775 fix_loongson2f (struct mips_cl_insn * ip)
3776 {
3777 if (mips_fix_loongson2f_nop)
3778 fix_loongson2f_nop (ip);
3779
3780 if (mips_fix_loongson2f_jump)
3781 fix_loongson2f_jump (ip);
3782 }
3783
3784 /* IP is a branch that has a delay slot, and we need to fill it
3785 automatically. Return true if we can do that by swapping IP
3786 with the previous instruction.
3787 ADDRESS_EXPR is an operand of the instruction to be used with
3788 RELOC_TYPE. */
3789
3790 static bfd_boolean
3791 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
3792 bfd_reloc_code_real_type *reloc_type)
3793 {
3794 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
3795 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
3796
3797 /* -O2 and above is required for this optimization. */
3798 if (mips_optimize < 2)
3799 return FALSE;
3800
3801 /* If we have seen .set volatile or .set nomove, don't optimize. */
3802 if (mips_opts.nomove)
3803 return FALSE;
3804
3805 /* We can't swap if the previous instruction's position is fixed. */
3806 if (history[0].fixed_p)
3807 return FALSE;
3808
3809 /* If the previous previous insn was in a .set noreorder, we can't
3810 swap. Actually, the MIPS assembler will swap in this situation.
3811 However, gcc configured -with-gnu-as will generate code like
3812
3813 .set noreorder
3814 lw $4,XXX
3815 .set reorder
3816 INSN
3817 bne $4,$0,foo
3818
3819 in which we can not swap the bne and INSN. If gcc is not configured
3820 -with-gnu-as, it does not output the .set pseudo-ops. */
3821 if (history[1].noreorder_p)
3822 return FALSE;
3823
3824 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
3825 This means that the previous instruction was a 4-byte one anyhow. */
3826 if (mips_opts.mips16 && history[0].fixp[0])
3827 return FALSE;
3828
3829 /* If the branch is itself the target of a branch, we can not swap.
3830 We cheat on this; all we check for is whether there is a label on
3831 this instruction. If there are any branches to anything other than
3832 a label, users must use .set noreorder. */
3833 if (seg_info (now_seg)->label_list)
3834 return FALSE;
3835
3836 /* If the previous instruction is in a variant frag other than this
3837 branch's one, we cannot do the swap. This does not apply to
3838 MIPS16 code, which uses variant frags for different purposes. */
3839 if (!mips_opts.mips16
3840 && history[0].frag
3841 && history[0].frag->fr_type == rs_machine_dependent)
3842 return FALSE;
3843
3844 /* We do not swap with instructions that cannot architecturally
3845 be placed in a branch delay slot, such as SYNC or ERET. We
3846 also refrain from swapping with a trap instruction, since it
3847 complicates trap handlers to have the trap instruction be in
3848 a delay slot. */
3849 prev_pinfo = history[0].insn_mo->pinfo;
3850 if (prev_pinfo & INSN_NO_DELAY_SLOT)
3851 return FALSE;
3852
3853 /* Check for conflicts between the branch and the instructions
3854 before the candidate delay slot. */
3855 if (nops_for_insn (0, history + 1, ip) > 0)
3856 return FALSE;
3857
3858 /* Check for conflicts between the swapped sequence and the
3859 target of the branch. */
3860 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
3861 return FALSE;
3862
3863 /* If the branch reads a register that the previous
3864 instruction sets, we can not swap. */
3865 gpr_read = gpr_read_mask (ip);
3866 prev_gpr_write = gpr_write_mask (&history[0]);
3867 if (gpr_read & prev_gpr_write)
3868 return FALSE;
3869
3870 /* If the branch writes a register that the previous
3871 instruction sets, we can not swap. */
3872 gpr_write = gpr_write_mask (ip);
3873 if (gpr_write & prev_gpr_write)
3874 return FALSE;
3875
3876 /* If the branch writes a register that the previous
3877 instruction reads, we can not swap. */
3878 prev_gpr_read = gpr_read_mask (&history[0]);
3879 if (gpr_write & prev_gpr_read)
3880 return FALSE;
3881
3882 /* If one instruction sets a condition code and the
3883 other one uses a condition code, we can not swap. */
3884 pinfo = ip->insn_mo->pinfo;
3885 if ((pinfo & INSN_READ_COND_CODE)
3886 && (prev_pinfo & INSN_WRITE_COND_CODE))
3887 return FALSE;
3888 if ((pinfo & INSN_WRITE_COND_CODE)
3889 && (prev_pinfo & INSN_READ_COND_CODE))
3890 return FALSE;
3891
3892 /* If the previous instruction uses the PC, we can not swap. */
3893 prev_pinfo2 = history[0].insn_mo->pinfo2;
3894 if (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC))
3895 return FALSE;
3896 if (mips_opts.micromips && (prev_pinfo2 & INSN2_READ_PC))
3897 return FALSE;
3898
3899 /* If the previous instruction has an incorrect size for a fixed
3900 branch delay slot in microMIPS mode, we cannot swap. */
3901 pinfo2 = ip->insn_mo->pinfo2;
3902 if (mips_opts.micromips
3903 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
3904 && insn_length (history) != 2)
3905 return FALSE;
3906 if (mips_opts.micromips
3907 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
3908 && insn_length (history) != 4)
3909 return FALSE;
3910
3911 /* On R5900 short loops need to be fixed by inserting a nop in
3912 the branch delay slots.
3913 A short loop can be terminated too early. */
3914 if (mips_opts.arch == CPU_R5900
3915 /* Check if instruction has a parameter, ignore "j $31". */
3916 && (address_expr != NULL)
3917 /* Parameter must be 16 bit. */
3918 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
3919 /* Branch to same segment. */
3920 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
3921 /* Branch to same code fragment. */
3922 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
3923 /* Can only calculate branch offset if value is known. */
3924 && symbol_constant_p(address_expr->X_add_symbol)
3925 /* Check if branch is really conditional. */
3926 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
3927 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
3928 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
3929 {
3930 int distance;
3931 /* Check if loop is shorter than 6 instructions including
3932 branch and delay slot. */
3933 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
3934 if (distance <= 20)
3935 {
3936 int i;
3937 int rv;
3938
3939 rv = FALSE;
3940 /* When the loop includes branches or jumps,
3941 it is not a short loop. */
3942 for (i = 0; i < (distance / 4); i++)
3943 {
3944 if ((history[i].cleared_p)
3945 || delayed_branch_p(&history[i]))
3946 {
3947 rv = TRUE;
3948 break;
3949 }
3950 }
3951 if (rv == FALSE)
3952 {
3953 /* Insert nop after branch to fix short loop. */
3954 return FALSE;
3955 }
3956 }
3957 }
3958
3959 return TRUE;
3960 }
3961
3962 /* Decide how we should add IP to the instruction stream.
3963 ADDRESS_EXPR is an operand of the instruction to be used with
3964 RELOC_TYPE. */
3965
3966 static enum append_method
3967 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
3968 bfd_reloc_code_real_type *reloc_type)
3969 {
3970 unsigned long pinfo;
3971
3972 /* The relaxed version of a macro sequence must be inherently
3973 hazard-free. */
3974 if (mips_relax.sequence == 2)
3975 return APPEND_ADD;
3976
3977 /* We must not dabble with instructions in a ".set norerorder" block. */
3978 if (mips_opts.noreorder)
3979 return APPEND_ADD;
3980
3981 /* Otherwise, it's our responsibility to fill branch delay slots. */
3982 if (delayed_branch_p (ip))
3983 {
3984 if (!branch_likely_p (ip)
3985 && can_swap_branch_p (ip, address_expr, reloc_type))
3986 return APPEND_SWAP;
3987
3988 pinfo = ip->insn_mo->pinfo;
3989 if (mips_opts.mips16
3990 && ISA_SUPPORTS_MIPS16E
3991 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)))
3992 return APPEND_ADD_COMPACT;
3993
3994 return APPEND_ADD_WITH_NOP;
3995 }
3996
3997 return APPEND_ADD;
3998 }
3999
4000 /* IP is a MIPS16 instruction whose opcode we have just changed.
4001 Point IP->insn_mo to the new opcode's definition. */
4002
4003 static void
4004 find_altered_mips16_opcode (struct mips_cl_insn *ip)
4005 {
4006 const struct mips_opcode *mo, *end;
4007
4008 end = &mips16_opcodes[bfd_mips16_num_opcodes];
4009 for (mo = ip->insn_mo; mo < end; mo++)
4010 if ((ip->insn_opcode & mo->mask) == mo->match)
4011 {
4012 ip->insn_mo = mo;
4013 return;
4014 }
4015 abort ();
4016 }
4017
4018 /* For microMIPS macros, we need to generate a local number label
4019 as the target of branches. */
4020 #define MICROMIPS_LABEL_CHAR '\037'
4021 static unsigned long micromips_target_label;
4022 static char micromips_target_name[32];
4023
4024 static char *
4025 micromips_label_name (void)
4026 {
4027 char *p = micromips_target_name;
4028 char symbol_name_temporary[24];
4029 unsigned long l;
4030 int i;
4031
4032 if (*p)
4033 return p;
4034
4035 i = 0;
4036 l = micromips_target_label;
4037 #ifdef LOCAL_LABEL_PREFIX
4038 *p++ = LOCAL_LABEL_PREFIX;
4039 #endif
4040 *p++ = 'L';
4041 *p++ = MICROMIPS_LABEL_CHAR;
4042 do
4043 {
4044 symbol_name_temporary[i++] = l % 10 + '0';
4045 l /= 10;
4046 }
4047 while (l != 0);
4048 while (i > 0)
4049 *p++ = symbol_name_temporary[--i];
4050 *p = '\0';
4051
4052 return micromips_target_name;
4053 }
4054
4055 static void
4056 micromips_label_expr (expressionS *label_expr)
4057 {
4058 label_expr->X_op = O_symbol;
4059 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
4060 label_expr->X_add_number = 0;
4061 }
4062
4063 static void
4064 micromips_label_inc (void)
4065 {
4066 micromips_target_label++;
4067 *micromips_target_name = '\0';
4068 }
4069
4070 static void
4071 micromips_add_label (void)
4072 {
4073 symbolS *s;
4074
4075 s = colon (micromips_label_name ());
4076 micromips_label_inc ();
4077 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
4078 if (IS_ELF)
4079 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
4080 #else
4081 (void) s;
4082 #endif
4083 }
4084
4085 /* If assembling microMIPS code, then return the microMIPS reloc
4086 corresponding to the requested one if any. Otherwise return
4087 the reloc unchanged. */
4088
4089 static bfd_reloc_code_real_type
4090 micromips_map_reloc (bfd_reloc_code_real_type reloc)
4091 {
4092 static const bfd_reloc_code_real_type relocs[][2] =
4093 {
4094 /* Keep sorted incrementally by the left-hand key. */
4095 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
4096 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
4097 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
4098 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
4099 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
4100 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
4101 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
4102 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
4103 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
4104 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
4105 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
4106 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
4107 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
4108 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
4109 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
4110 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
4111 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
4112 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
4113 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
4114 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
4115 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
4116 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
4117 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
4118 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
4119 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
4120 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
4121 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
4122 };
4123 bfd_reloc_code_real_type r;
4124 size_t i;
4125
4126 if (!mips_opts.micromips)
4127 return reloc;
4128 for (i = 0; i < ARRAY_SIZE (relocs); i++)
4129 {
4130 r = relocs[i][0];
4131 if (r > reloc)
4132 return reloc;
4133 if (r == reloc)
4134 return relocs[i][1];
4135 }
4136 return reloc;
4137 }
4138
4139 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
4140 Return true on success, storing the resolved value in RESULT. */
4141
4142 static bfd_boolean
4143 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
4144 offsetT *result)
4145 {
4146 switch (reloc)
4147 {
4148 case BFD_RELOC_MIPS_HIGHEST:
4149 case BFD_RELOC_MICROMIPS_HIGHEST:
4150 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
4151 return TRUE;
4152
4153 case BFD_RELOC_MIPS_HIGHER:
4154 case BFD_RELOC_MICROMIPS_HIGHER:
4155 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
4156 return TRUE;
4157
4158 case BFD_RELOC_HI16_S:
4159 case BFD_RELOC_MICROMIPS_HI16_S:
4160 case BFD_RELOC_MIPS16_HI16_S:
4161 *result = ((operand + 0x8000) >> 16) & 0xffff;
4162 return TRUE;
4163
4164 case BFD_RELOC_HI16:
4165 case BFD_RELOC_MICROMIPS_HI16:
4166 case BFD_RELOC_MIPS16_HI16:
4167 *result = (operand >> 16) & 0xffff;
4168 return TRUE;
4169
4170 case BFD_RELOC_LO16:
4171 case BFD_RELOC_MICROMIPS_LO16:
4172 case BFD_RELOC_MIPS16_LO16:
4173 *result = operand & 0xffff;
4174 return TRUE;
4175
4176 case BFD_RELOC_UNUSED:
4177 *result = operand;
4178 return TRUE;
4179
4180 default:
4181 return FALSE;
4182 }
4183 }
4184
4185 /* Output an instruction. IP is the instruction information.
4186 ADDRESS_EXPR is an operand of the instruction to be used with
4187 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
4188 a macro expansion. */
4189
4190 static void
4191 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
4192 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
4193 {
4194 unsigned long prev_pinfo2, pinfo;
4195 bfd_boolean relaxed_branch = FALSE;
4196 enum append_method method;
4197 bfd_boolean relax32;
4198 int branch_disp;
4199
4200 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
4201 fix_loongson2f (ip);
4202
4203 file_ase_mips16 |= mips_opts.mips16;
4204 file_ase_micromips |= mips_opts.micromips;
4205
4206 prev_pinfo2 = history[0].insn_mo->pinfo2;
4207 pinfo = ip->insn_mo->pinfo;
4208
4209 if (mips_opts.micromips
4210 && !expansionp
4211 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
4212 && micromips_insn_length (ip->insn_mo) != 2)
4213 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
4214 && micromips_insn_length (ip->insn_mo) != 4)))
4215 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
4216 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
4217
4218 if (address_expr == NULL)
4219 ip->complete_p = 1;
4220 else if (reloc_type[0] <= BFD_RELOC_UNUSED
4221 && reloc_type[1] == BFD_RELOC_UNUSED
4222 && reloc_type[2] == BFD_RELOC_UNUSED
4223 && address_expr->X_op == O_constant)
4224 {
4225 switch (*reloc_type)
4226 {
4227 case BFD_RELOC_MIPS_JMP:
4228 {
4229 int shift;
4230
4231 shift = mips_opts.micromips ? 1 : 2;
4232 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4233 as_bad (_("jump to misaligned address (0x%lx)"),
4234 (unsigned long) address_expr->X_add_number);
4235 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4236 & 0x3ffffff);
4237 ip->complete_p = 1;
4238 }
4239 break;
4240
4241 case BFD_RELOC_MIPS16_JMP:
4242 if ((address_expr->X_add_number & 3) != 0)
4243 as_bad (_("jump to misaligned address (0x%lx)"),
4244 (unsigned long) address_expr->X_add_number);
4245 ip->insn_opcode |=
4246 (((address_expr->X_add_number & 0x7c0000) << 3)
4247 | ((address_expr->X_add_number & 0xf800000) >> 7)
4248 | ((address_expr->X_add_number & 0x3fffc) >> 2));
4249 ip->complete_p = 1;
4250 break;
4251
4252 case BFD_RELOC_16_PCREL_S2:
4253 {
4254 int shift;
4255
4256 shift = mips_opts.micromips ? 1 : 2;
4257 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
4258 as_bad (_("branch to misaligned address (0x%lx)"),
4259 (unsigned long) address_expr->X_add_number);
4260 if (!mips_relax_branch)
4261 {
4262 if ((address_expr->X_add_number + (1 << (shift + 15)))
4263 & ~((1 << (shift + 16)) - 1))
4264 as_bad (_("branch address range overflow (0x%lx)"),
4265 (unsigned long) address_expr->X_add_number);
4266 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
4267 & 0xffff);
4268 }
4269 }
4270 break;
4271
4272 default:
4273 {
4274 offsetT value;
4275
4276 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
4277 &value))
4278 {
4279 ip->insn_opcode |= value & 0xffff;
4280 ip->complete_p = 1;
4281 }
4282 }
4283 break;
4284 }
4285 }
4286
4287 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
4288 {
4289 /* There are a lot of optimizations we could do that we don't.
4290 In particular, we do not, in general, reorder instructions.
4291 If you use gcc with optimization, it will reorder
4292 instructions and generally do much more optimization then we
4293 do here; repeating all that work in the assembler would only
4294 benefit hand written assembly code, and does not seem worth
4295 it. */
4296 int nops = (mips_optimize == 0
4297 ? nops_for_insn (0, history, NULL)
4298 : nops_for_insn_or_target (0, history, ip));
4299 if (nops > 0)
4300 {
4301 fragS *old_frag;
4302 unsigned long old_frag_offset;
4303 int i;
4304
4305 old_frag = frag_now;
4306 old_frag_offset = frag_now_fix ();
4307
4308 for (i = 0; i < nops; i++)
4309 add_fixed_insn (NOP_INSN);
4310 insert_into_history (0, nops, NOP_INSN);
4311
4312 if (listing)
4313 {
4314 listing_prev_line ();
4315 /* We may be at the start of a variant frag. In case we
4316 are, make sure there is enough space for the frag
4317 after the frags created by listing_prev_line. The
4318 argument to frag_grow here must be at least as large
4319 as the argument to all other calls to frag_grow in
4320 this file. We don't have to worry about being in the
4321 middle of a variant frag, because the variants insert
4322 all needed nop instructions themselves. */
4323 frag_grow (40);
4324 }
4325
4326 mips_move_text_labels ();
4327
4328 #ifndef NO_ECOFF_DEBUGGING
4329 if (ECOFF_DEBUGGING)
4330 ecoff_fix_loc (old_frag, old_frag_offset);
4331 #endif
4332 }
4333 }
4334 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
4335 {
4336 int nops;
4337
4338 /* Work out how many nops in prev_nop_frag are needed by IP,
4339 ignoring hazards generated by the first prev_nop_frag_since
4340 instructions. */
4341 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
4342 gas_assert (nops <= prev_nop_frag_holds);
4343
4344 /* Enforce NOPS as a minimum. */
4345 if (nops > prev_nop_frag_required)
4346 prev_nop_frag_required = nops;
4347
4348 if (prev_nop_frag_holds == prev_nop_frag_required)
4349 {
4350 /* Settle for the current number of nops. Update the history
4351 accordingly (for the benefit of any future .set reorder code). */
4352 prev_nop_frag = NULL;
4353 insert_into_history (prev_nop_frag_since,
4354 prev_nop_frag_holds, NOP_INSN);
4355 }
4356 else
4357 {
4358 /* Allow this instruction to replace one of the nops that was
4359 tentatively added to prev_nop_frag. */
4360 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
4361 prev_nop_frag_holds--;
4362 prev_nop_frag_since++;
4363 }
4364 }
4365
4366 method = get_append_method (ip, address_expr, reloc_type);
4367 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
4368
4369 #ifdef OBJ_ELF
4370 /* The value passed to dwarf2_emit_insn is the distance between
4371 the beginning of the current instruction and the address that
4372 should be recorded in the debug tables. This is normally the
4373 current address.
4374
4375 For MIPS16/microMIPS debug info we want to use ISA-encoded
4376 addresses, so we use -1 for an address higher by one than the
4377 current one.
4378
4379 If the instruction produced is a branch that we will swap with
4380 the preceding instruction, then we add the displacement by which
4381 the branch will be moved backwards. This is more appropriate
4382 and for MIPS16/microMIPS code also prevents a debugger from
4383 placing a breakpoint in the middle of the branch (and corrupting
4384 code if software breakpoints are used). */
4385 dwarf2_emit_insn ((HAVE_CODE_COMPRESSION ? -1 : 0) + branch_disp);
4386 #endif
4387
4388 relax32 = (mips_relax_branch
4389 /* Don't try branch relaxation within .set nomacro, or within
4390 .set noat if we use $at for PIC computations. If it turns
4391 out that the branch was out-of-range, we'll get an error. */
4392 && !mips_opts.warn_about_macros
4393 && (mips_opts.at || mips_pic == NO_PIC)
4394 /* Don't relax BPOSGE32/64 as they have no complementing
4395 branches. */
4396 && !(ip->insn_mo->membership & (INSN_DSP64 | INSN_DSP)));
4397
4398 if (!HAVE_CODE_COMPRESSION
4399 && address_expr
4400 && relax32
4401 && *reloc_type == BFD_RELOC_16_PCREL_S2
4402 && delayed_branch_p (ip))
4403 {
4404 relaxed_branch = TRUE;
4405 add_relaxed_insn (ip, (relaxed_branch_length
4406 (NULL, NULL,
4407 uncond_branch_p (ip) ? -1
4408 : branch_likely_p (ip) ? 1
4409 : 0)), 4,
4410 RELAX_BRANCH_ENCODE
4411 (AT,
4412 uncond_branch_p (ip),
4413 branch_likely_p (ip),
4414 pinfo & INSN_WRITE_GPR_31,
4415 0),
4416 address_expr->X_add_symbol,
4417 address_expr->X_add_number);
4418 *reloc_type = BFD_RELOC_UNUSED;
4419 }
4420 else if (mips_opts.micromips
4421 && address_expr
4422 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
4423 || *reloc_type > BFD_RELOC_UNUSED)
4424 && (delayed_branch_p (ip) || compact_branch_p (ip))
4425 /* Don't try branch relaxation when users specify
4426 16-bit/32-bit instructions. */
4427 && !forced_insn_length)
4428 {
4429 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
4430 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
4431 int uncond = uncond_branch_p (ip) ? -1 : 0;
4432 int compact = compact_branch_p (ip);
4433 int al = pinfo & INSN_WRITE_GPR_31;
4434 int length32;
4435
4436 gas_assert (address_expr != NULL);
4437 gas_assert (!mips_relax.sequence);
4438
4439 relaxed_branch = TRUE;
4440 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
4441 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
4442 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
4443 relax32, 0, 0),
4444 address_expr->X_add_symbol,
4445 address_expr->X_add_number);
4446 *reloc_type = BFD_RELOC_UNUSED;
4447 }
4448 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
4449 {
4450 /* We need to set up a variant frag. */
4451 gas_assert (address_expr != NULL);
4452 add_relaxed_insn (ip, 4, 0,
4453 RELAX_MIPS16_ENCODE
4454 (*reloc_type - BFD_RELOC_UNUSED,
4455 forced_insn_length == 2, forced_insn_length == 4,
4456 delayed_branch_p (&history[0]),
4457 history[0].mips16_absolute_jump_p),
4458 make_expr_symbol (address_expr), 0);
4459 }
4460 else if (mips_opts.mips16 && insn_length (ip) == 2)
4461 {
4462 if (!delayed_branch_p (ip))
4463 /* Make sure there is enough room to swap this instruction with
4464 a following jump instruction. */
4465 frag_grow (6);
4466 add_fixed_insn (ip);
4467 }
4468 else
4469 {
4470 if (mips_opts.mips16
4471 && mips_opts.noreorder
4472 && delayed_branch_p (&history[0]))
4473 as_warn (_("extended instruction in delay slot"));
4474
4475 if (mips_relax.sequence)
4476 {
4477 /* If we've reached the end of this frag, turn it into a variant
4478 frag and record the information for the instructions we've
4479 written so far. */
4480 if (frag_room () < 4)
4481 relax_close_frag ();
4482 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4483 }
4484
4485 if (mips_relax.sequence != 2)
4486 {
4487 if (mips_macro_warning.first_insn_sizes[0] == 0)
4488 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
4489 mips_macro_warning.sizes[0] += insn_length (ip);
4490 mips_macro_warning.insns[0]++;
4491 }
4492 if (mips_relax.sequence != 1)
4493 {
4494 if (mips_macro_warning.first_insn_sizes[1] == 0)
4495 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
4496 mips_macro_warning.sizes[1] += insn_length (ip);
4497 mips_macro_warning.insns[1]++;
4498 }
4499
4500 if (mips_opts.mips16)
4501 {
4502 ip->fixed_p = 1;
4503 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
4504 }
4505 add_fixed_insn (ip);
4506 }
4507
4508 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
4509 {
4510 bfd_reloc_code_real_type final_type[3];
4511 reloc_howto_type *howto0;
4512 reloc_howto_type *howto;
4513 int i;
4514
4515 /* Perform any necessary conversion to microMIPS relocations
4516 and find out how many relocations there actually are. */
4517 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
4518 final_type[i] = micromips_map_reloc (reloc_type[i]);
4519
4520 /* In a compound relocation, it is the final (outermost)
4521 operator that determines the relocated field. */
4522 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
4523
4524 if (howto == NULL)
4525 {
4526 /* To reproduce this failure try assembling gas/testsuites/
4527 gas/mips/mips16-intermix.s with a mips-ecoff targeted
4528 assembler. */
4529 as_bad (_("Unsupported MIPS relocation number %d"),
4530 final_type[i - 1]);
4531 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
4532 }
4533
4534 if (i > 1)
4535 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
4536 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
4537 bfd_get_reloc_size (howto),
4538 address_expr,
4539 howto0 && howto0->pc_relative,
4540 final_type[0]);
4541
4542 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
4543 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
4544 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
4545
4546 /* These relocations can have an addend that won't fit in
4547 4 octets for 64bit assembly. */
4548 if (HAVE_64BIT_GPRS
4549 && ! howto->partial_inplace
4550 && (reloc_type[0] == BFD_RELOC_16
4551 || reloc_type[0] == BFD_RELOC_32
4552 || reloc_type[0] == BFD_RELOC_MIPS_JMP
4553 || reloc_type[0] == BFD_RELOC_GPREL16
4554 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
4555 || reloc_type[0] == BFD_RELOC_GPREL32
4556 || reloc_type[0] == BFD_RELOC_64
4557 || reloc_type[0] == BFD_RELOC_CTOR
4558 || reloc_type[0] == BFD_RELOC_MIPS_SUB
4559 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
4560 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
4561 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
4562 || reloc_type[0] == BFD_RELOC_MIPS_REL16
4563 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
4564 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
4565 || hi16_reloc_p (reloc_type[0])
4566 || lo16_reloc_p (reloc_type[0])))
4567 ip->fixp[0]->fx_no_overflow = 1;
4568
4569 /* These relocations can have an addend that won't fit in 2 octets. */
4570 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
4571 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
4572 ip->fixp[0]->fx_no_overflow = 1;
4573
4574 if (mips_relax.sequence)
4575 {
4576 if (mips_relax.first_fixup == 0)
4577 mips_relax.first_fixup = ip->fixp[0];
4578 }
4579 else if (reloc_needs_lo_p (*reloc_type))
4580 {
4581 struct mips_hi_fixup *hi_fixup;
4582
4583 /* Reuse the last entry if it already has a matching %lo. */
4584 hi_fixup = mips_hi_fixup_list;
4585 if (hi_fixup == 0
4586 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4587 {
4588 hi_fixup = ((struct mips_hi_fixup *)
4589 xmalloc (sizeof (struct mips_hi_fixup)));
4590 hi_fixup->next = mips_hi_fixup_list;
4591 mips_hi_fixup_list = hi_fixup;
4592 }
4593 hi_fixup->fixp = ip->fixp[0];
4594 hi_fixup->seg = now_seg;
4595 }
4596
4597 /* Add fixups for the second and third relocations, if given.
4598 Note that the ABI allows the second relocation to be
4599 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
4600 moment we only use RSS_UNDEF, but we could add support
4601 for the others if it ever becomes necessary. */
4602 for (i = 1; i < 3; i++)
4603 if (reloc_type[i] != BFD_RELOC_UNUSED)
4604 {
4605 ip->fixp[i] = fix_new (ip->frag, ip->where,
4606 ip->fixp[0]->fx_size, NULL, 0,
4607 FALSE, final_type[i]);
4608
4609 /* Use fx_tcbit to mark compound relocs. */
4610 ip->fixp[0]->fx_tcbit = 1;
4611 ip->fixp[i]->fx_tcbit = 1;
4612 }
4613 }
4614 install_insn (ip);
4615
4616 /* Update the register mask information. */
4617 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
4618 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
4619
4620 switch (method)
4621 {
4622 case APPEND_ADD:
4623 insert_into_history (0, 1, ip);
4624 break;
4625
4626 case APPEND_ADD_WITH_NOP:
4627 {
4628 struct mips_cl_insn *nop;
4629
4630 insert_into_history (0, 1, ip);
4631 nop = get_delay_slot_nop (ip);
4632 add_fixed_insn (nop);
4633 insert_into_history (0, 1, nop);
4634 if (mips_relax.sequence)
4635 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
4636 }
4637 break;
4638
4639 case APPEND_ADD_COMPACT:
4640 /* Convert MIPS16 jr/jalr into a "compact" jump. */
4641 gas_assert (mips_opts.mips16);
4642 ip->insn_opcode |= 0x0080;
4643 find_altered_mips16_opcode (ip);
4644 install_insn (ip);
4645 insert_into_history (0, 1, ip);
4646 break;
4647
4648 case APPEND_SWAP:
4649 {
4650 struct mips_cl_insn delay = history[0];
4651 if (mips_opts.mips16)
4652 {
4653 know (delay.frag == ip->frag);
4654 move_insn (ip, delay.frag, delay.where);
4655 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
4656 }
4657 else if (relaxed_branch || delay.frag != ip->frag)
4658 {
4659 /* Add the delay slot instruction to the end of the
4660 current frag and shrink the fixed part of the
4661 original frag. If the branch occupies the tail of
4662 the latter, move it backwards to cover the gap. */
4663 delay.frag->fr_fix -= branch_disp;
4664 if (delay.frag == ip->frag)
4665 move_insn (ip, ip->frag, ip->where - branch_disp);
4666 add_fixed_insn (&delay);
4667 }
4668 else
4669 {
4670 move_insn (&delay, ip->frag,
4671 ip->where - branch_disp + insn_length (ip));
4672 move_insn (ip, history[0].frag, history[0].where);
4673 }
4674 history[0] = *ip;
4675 delay.fixed_p = 1;
4676 insert_into_history (0, 1, &delay);
4677 }
4678 break;
4679 }
4680
4681 /* If we have just completed an unconditional branch, clear the history. */
4682 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
4683 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
4684 {
4685 unsigned int i;
4686
4687 mips_no_prev_insn ();
4688
4689 for (i = 0; i < ARRAY_SIZE (history); i++)
4690 history[i].cleared_p = 1;
4691 }
4692
4693 /* We need to emit a label at the end of branch-likely macros. */
4694 if (emit_branch_likely_macro)
4695 {
4696 emit_branch_likely_macro = FALSE;
4697 micromips_add_label ();
4698 }
4699
4700 /* We just output an insn, so the next one doesn't have a label. */
4701 mips_clear_insn_labels ();
4702 }
4703
4704 /* Forget that there was any previous instruction or label.
4705 When BRANCH is true, the branch history is also flushed. */
4706
4707 static void
4708 mips_no_prev_insn (void)
4709 {
4710 prev_nop_frag = NULL;
4711 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
4712 mips_clear_insn_labels ();
4713 }
4714
4715 /* This function must be called before we emit something other than
4716 instructions. It is like mips_no_prev_insn except that it inserts
4717 any NOPS that might be needed by previous instructions. */
4718
4719 void
4720 mips_emit_delays (void)
4721 {
4722 if (! mips_opts.noreorder)
4723 {
4724 int nops = nops_for_insn (0, history, NULL);
4725 if (nops > 0)
4726 {
4727 while (nops-- > 0)
4728 add_fixed_insn (NOP_INSN);
4729 mips_move_text_labels ();
4730 }
4731 }
4732 mips_no_prev_insn ();
4733 }
4734
4735 /* Start a (possibly nested) noreorder block. */
4736
4737 static void
4738 start_noreorder (void)
4739 {
4740 if (mips_opts.noreorder == 0)
4741 {
4742 unsigned int i;
4743 int nops;
4744
4745 /* None of the instructions before the .set noreorder can be moved. */
4746 for (i = 0; i < ARRAY_SIZE (history); i++)
4747 history[i].fixed_p = 1;
4748
4749 /* Insert any nops that might be needed between the .set noreorder
4750 block and the previous instructions. We will later remove any
4751 nops that turn out not to be needed. */
4752 nops = nops_for_insn (0, history, NULL);
4753 if (nops > 0)
4754 {
4755 if (mips_optimize != 0)
4756 {
4757 /* Record the frag which holds the nop instructions, so
4758 that we can remove them if we don't need them. */
4759 frag_grow (nops * NOP_INSN_SIZE);
4760 prev_nop_frag = frag_now;
4761 prev_nop_frag_holds = nops;
4762 prev_nop_frag_required = 0;
4763 prev_nop_frag_since = 0;
4764 }
4765
4766 for (; nops > 0; --nops)
4767 add_fixed_insn (NOP_INSN);
4768
4769 /* Move on to a new frag, so that it is safe to simply
4770 decrease the size of prev_nop_frag. */
4771 frag_wane (frag_now);
4772 frag_new (0);
4773 mips_move_text_labels ();
4774 }
4775 mips_mark_labels ();
4776 mips_clear_insn_labels ();
4777 }
4778 mips_opts.noreorder++;
4779 mips_any_noreorder = 1;
4780 }
4781
4782 /* End a nested noreorder block. */
4783
4784 static void
4785 end_noreorder (void)
4786 {
4787 mips_opts.noreorder--;
4788 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
4789 {
4790 /* Commit to inserting prev_nop_frag_required nops and go back to
4791 handling nop insertion the .set reorder way. */
4792 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
4793 * NOP_INSN_SIZE);
4794 insert_into_history (prev_nop_frag_since,
4795 prev_nop_frag_required, NOP_INSN);
4796 prev_nop_frag = NULL;
4797 }
4798 }
4799
4800 /* Set up global variables for the start of a new macro. */
4801
4802 static void
4803 macro_start (void)
4804 {
4805 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
4806 memset (&mips_macro_warning.first_insn_sizes, 0,
4807 sizeof (mips_macro_warning.first_insn_sizes));
4808 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
4809 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
4810 && delayed_branch_p (&history[0]));
4811 switch (history[0].insn_mo->pinfo2
4812 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
4813 {
4814 case INSN2_BRANCH_DELAY_32BIT:
4815 mips_macro_warning.delay_slot_length = 4;
4816 break;
4817 case INSN2_BRANCH_DELAY_16BIT:
4818 mips_macro_warning.delay_slot_length = 2;
4819 break;
4820 default:
4821 mips_macro_warning.delay_slot_length = 0;
4822 break;
4823 }
4824 mips_macro_warning.first_frag = NULL;
4825 }
4826
4827 /* Given that a macro is longer than one instruction or of the wrong size,
4828 return the appropriate warning for it. Return null if no warning is
4829 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
4830 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
4831 and RELAX_NOMACRO. */
4832
4833 static const char *
4834 macro_warning (relax_substateT subtype)
4835 {
4836 if (subtype & RELAX_DELAY_SLOT)
4837 return _("Macro instruction expanded into multiple instructions"
4838 " in a branch delay slot");
4839 else if (subtype & RELAX_NOMACRO)
4840 return _("Macro instruction expanded into multiple instructions");
4841 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
4842 | RELAX_DELAY_SLOT_SIZE_SECOND))
4843 return ((subtype & RELAX_DELAY_SLOT_16BIT)
4844 ? _("Macro instruction expanded into a wrong size instruction"
4845 " in a 16-bit branch delay slot")
4846 : _("Macro instruction expanded into a wrong size instruction"
4847 " in a 32-bit branch delay slot"));
4848 else
4849 return 0;
4850 }
4851
4852 /* Finish up a macro. Emit warnings as appropriate. */
4853
4854 static void
4855 macro_end (void)
4856 {
4857 /* Relaxation warning flags. */
4858 relax_substateT subtype = 0;
4859
4860 /* Check delay slot size requirements. */
4861 if (mips_macro_warning.delay_slot_length == 2)
4862 subtype |= RELAX_DELAY_SLOT_16BIT;
4863 if (mips_macro_warning.delay_slot_length != 0)
4864 {
4865 if (mips_macro_warning.delay_slot_length
4866 != mips_macro_warning.first_insn_sizes[0])
4867 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
4868 if (mips_macro_warning.delay_slot_length
4869 != mips_macro_warning.first_insn_sizes[1])
4870 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
4871 }
4872
4873 /* Check instruction count requirements. */
4874 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
4875 {
4876 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
4877 subtype |= RELAX_SECOND_LONGER;
4878 if (mips_opts.warn_about_macros)
4879 subtype |= RELAX_NOMACRO;
4880 if (mips_macro_warning.delay_slot_p)
4881 subtype |= RELAX_DELAY_SLOT;
4882 }
4883
4884 /* If both alternatives fail to fill a delay slot correctly,
4885 emit the warning now. */
4886 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
4887 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
4888 {
4889 relax_substateT s;
4890 const char *msg;
4891
4892 s = subtype & (RELAX_DELAY_SLOT_16BIT
4893 | RELAX_DELAY_SLOT_SIZE_FIRST
4894 | RELAX_DELAY_SLOT_SIZE_SECOND);
4895 msg = macro_warning (s);
4896 if (msg != NULL)
4897 as_warn ("%s", msg);
4898 subtype &= ~s;
4899 }
4900
4901 /* If both implementations are longer than 1 instruction, then emit the
4902 warning now. */
4903 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
4904 {
4905 relax_substateT s;
4906 const char *msg;
4907
4908 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
4909 msg = macro_warning (s);
4910 if (msg != NULL)
4911 as_warn ("%s", msg);
4912 subtype &= ~s;
4913 }
4914
4915 /* If any flags still set, then one implementation might need a warning
4916 and the other either will need one of a different kind or none at all.
4917 Pass any remaining flags over to relaxation. */
4918 if (mips_macro_warning.first_frag != NULL)
4919 mips_macro_warning.first_frag->fr_subtype |= subtype;
4920 }
4921
4922 /* Instruction operand formats used in macros that vary between
4923 standard MIPS and microMIPS code. */
4924
4925 static const char * const brk_fmt[2] = { "c", "mF" };
4926 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
4927 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
4928 static const char * const lui_fmt[2] = { "t,u", "s,u" };
4929 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
4930 static const char * const mfhl_fmt[2] = { "d", "mj" };
4931 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
4932 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
4933
4934 #define BRK_FMT (brk_fmt[mips_opts.micromips])
4935 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
4936 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
4937 #define LUI_FMT (lui_fmt[mips_opts.micromips])
4938 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
4939 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips])
4940 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
4941 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
4942
4943 /* Read a macro's relocation codes from *ARGS and store them in *R.
4944 The first argument in *ARGS will be either the code for a single
4945 relocation or -1 followed by the three codes that make up a
4946 composite relocation. */
4947
4948 static void
4949 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
4950 {
4951 int i, next;
4952
4953 next = va_arg (*args, int);
4954 if (next >= 0)
4955 r[0] = (bfd_reloc_code_real_type) next;
4956 else
4957 for (i = 0; i < 3; i++)
4958 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
4959 }
4960
4961 /* Build an instruction created by a macro expansion. This is passed
4962 a pointer to the count of instructions created so far, an
4963 expression, the name of the instruction to build, an operand format
4964 string, and corresponding arguments. */
4965
4966 static void
4967 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
4968 {
4969 const struct mips_opcode *mo = NULL;
4970 bfd_reloc_code_real_type r[3];
4971 const struct mips_opcode *amo;
4972 struct hash_control *hash;
4973 struct mips_cl_insn insn;
4974 va_list args;
4975
4976 va_start (args, fmt);
4977
4978 if (mips_opts.mips16)
4979 {
4980 mips16_macro_build (ep, name, fmt, &args);
4981 va_end (args);
4982 return;
4983 }
4984
4985 r[0] = BFD_RELOC_UNUSED;
4986 r[1] = BFD_RELOC_UNUSED;
4987 r[2] = BFD_RELOC_UNUSED;
4988 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
4989 amo = (struct mips_opcode *) hash_find (hash, name);
4990 gas_assert (amo);
4991 gas_assert (strcmp (name, amo->name) == 0);
4992
4993 do
4994 {
4995 /* Search until we get a match for NAME. It is assumed here that
4996 macros will never generate MDMX, MIPS-3D, or MT instructions.
4997 We try to match an instruction that fulfils the branch delay
4998 slot instruction length requirement (if any) of the previous
4999 instruction. While doing this we record the first instruction
5000 seen that matches all the other conditions and use it anyway
5001 if the requirement cannot be met; we will issue an appropriate
5002 warning later on. */
5003 if (strcmp (fmt, amo->args) == 0
5004 && amo->pinfo != INSN_MACRO
5005 && is_opcode_valid (amo)
5006 && is_size_valid (amo))
5007 {
5008 if (is_delay_slot_valid (amo))
5009 {
5010 mo = amo;
5011 break;
5012 }
5013 else if (!mo)
5014 mo = amo;
5015 }
5016
5017 ++amo;
5018 gas_assert (amo->name);
5019 }
5020 while (strcmp (name, amo->name) == 0);
5021
5022 gas_assert (mo);
5023 create_insn (&insn, mo);
5024 for (;;)
5025 {
5026 switch (*fmt++)
5027 {
5028 case '\0':
5029 break;
5030
5031 case ',':
5032 case '(':
5033 case ')':
5034 continue;
5035
5036 case '+':
5037 switch (*fmt++)
5038 {
5039 case 'A':
5040 case 'E':
5041 INSERT_OPERAND (mips_opts.micromips,
5042 EXTLSB, insn, va_arg (args, int));
5043 continue;
5044
5045 case 'B':
5046 case 'F':
5047 /* Note that in the macro case, these arguments are already
5048 in MSB form. (When handling the instruction in the
5049 non-macro case, these arguments are sizes from which
5050 MSB values must be calculated.) */
5051 INSERT_OPERAND (mips_opts.micromips,
5052 INSMSB, insn, va_arg (args, int));
5053 continue;
5054
5055 case 'J':
5056 gas_assert (!mips_opts.micromips);
5057 INSERT_OPERAND (0, CODE10, insn, va_arg (args, int));
5058 continue;
5059
5060 case 'C':
5061 case 'G':
5062 case 'H':
5063 /* Note that in the macro case, these arguments are already
5064 in MSBD form. (When handling the instruction in the
5065 non-macro case, these arguments are sizes from which
5066 MSBD values must be calculated.) */
5067 INSERT_OPERAND (mips_opts.micromips,
5068 EXTMSBD, insn, va_arg (args, int));
5069 continue;
5070
5071 case 'Q':
5072 gas_assert (!mips_opts.micromips);
5073 INSERT_OPERAND (0, SEQI, insn, va_arg (args, int));
5074 continue;
5075
5076 default:
5077 abort ();
5078 }
5079 continue;
5080
5081 case '2':
5082 INSERT_OPERAND (mips_opts.micromips, BP, insn, va_arg (args, int));
5083 continue;
5084
5085 case 'n':
5086 gas_assert (mips_opts.micromips);
5087 case 't':
5088 case 'w':
5089 case 'E':
5090 INSERT_OPERAND (mips_opts.micromips, RT, insn, va_arg (args, int));
5091 continue;
5092
5093 case 'c':
5094 gas_assert (!mips_opts.micromips);
5095 INSERT_OPERAND (0, CODE, insn, va_arg (args, int));
5096 continue;
5097
5098 case 'W':
5099 gas_assert (!mips_opts.micromips);
5100 case 'T':
5101 INSERT_OPERAND (mips_opts.micromips, FT, insn, va_arg (args, int));
5102 continue;
5103
5104 case 'G':
5105 if (mips_opts.micromips)
5106 INSERT_OPERAND (1, RS, insn, va_arg (args, int));
5107 else
5108 INSERT_OPERAND (0, RD, insn, va_arg (args, int));
5109 continue;
5110
5111 case 'K':
5112 gas_assert (!mips_opts.micromips);
5113 case 'd':
5114 INSERT_OPERAND (mips_opts.micromips, RD, insn, va_arg (args, int));
5115 continue;
5116
5117 case 'U':
5118 gas_assert (!mips_opts.micromips);
5119 {
5120 int tmp = va_arg (args, int);
5121
5122 INSERT_OPERAND (0, RT, insn, tmp);
5123 INSERT_OPERAND (0, RD, insn, tmp);
5124 }
5125 continue;
5126
5127 case 'V':
5128 case 'S':
5129 gas_assert (!mips_opts.micromips);
5130 INSERT_OPERAND (0, FS, insn, va_arg (args, int));
5131 continue;
5132
5133 case 'z':
5134 continue;
5135
5136 case '<':
5137 INSERT_OPERAND (mips_opts.micromips,
5138 SHAMT, insn, va_arg (args, int));
5139 continue;
5140
5141 case 'D':
5142 gas_assert (!mips_opts.micromips);
5143 INSERT_OPERAND (0, FD, insn, va_arg (args, int));
5144 continue;
5145
5146 case 'B':
5147 gas_assert (!mips_opts.micromips);
5148 INSERT_OPERAND (0, CODE20, insn, va_arg (args, int));
5149 continue;
5150
5151 case 'J':
5152 gas_assert (!mips_opts.micromips);
5153 INSERT_OPERAND (0, CODE19, insn, va_arg (args, int));
5154 continue;
5155
5156 case 'q':
5157 gas_assert (!mips_opts.micromips);
5158 INSERT_OPERAND (0, CODE2, insn, va_arg (args, int));
5159 continue;
5160
5161 case 'b':
5162 case 's':
5163 case 'r':
5164 case 'v':
5165 INSERT_OPERAND (mips_opts.micromips, RS, insn, va_arg (args, int));
5166 continue;
5167
5168 case 'i':
5169 case 'j':
5170 macro_read_relocs (&args, r);
5171 gas_assert (*r == BFD_RELOC_GPREL16
5172 || *r == BFD_RELOC_MIPS_HIGHER
5173 || *r == BFD_RELOC_HI16_S
5174 || *r == BFD_RELOC_LO16
5175 || *r == BFD_RELOC_MIPS_GOT_OFST);
5176 continue;
5177
5178 case 'o':
5179 macro_read_relocs (&args, r);
5180 continue;
5181
5182 case 'u':
5183 macro_read_relocs (&args, r);
5184 gas_assert (ep != NULL
5185 && (ep->X_op == O_constant
5186 || (ep->X_op == O_symbol
5187 && (*r == BFD_RELOC_MIPS_HIGHEST
5188 || *r == BFD_RELOC_HI16_S
5189 || *r == BFD_RELOC_HI16
5190 || *r == BFD_RELOC_GPREL16
5191 || *r == BFD_RELOC_MIPS_GOT_HI16
5192 || *r == BFD_RELOC_MIPS_CALL_HI16))));
5193 continue;
5194
5195 case 'p':
5196 gas_assert (ep != NULL);
5197
5198 /*
5199 * This allows macro() to pass an immediate expression for
5200 * creating short branches without creating a symbol.
5201 *
5202 * We don't allow branch relaxation for these branches, as
5203 * they should only appear in ".set nomacro" anyway.
5204 */
5205 if (ep->X_op == O_constant)
5206 {
5207 /* For microMIPS we always use relocations for branches.
5208 So we should not resolve immediate values. */
5209 gas_assert (!mips_opts.micromips);
5210
5211 if ((ep->X_add_number & 3) != 0)
5212 as_bad (_("branch to misaligned address (0x%lx)"),
5213 (unsigned long) ep->X_add_number);
5214 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
5215 as_bad (_("branch address range overflow (0x%lx)"),
5216 (unsigned long) ep->X_add_number);
5217 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
5218 ep = NULL;
5219 }
5220 else
5221 *r = BFD_RELOC_16_PCREL_S2;
5222 continue;
5223
5224 case 'a':
5225 gas_assert (ep != NULL);
5226 *r = BFD_RELOC_MIPS_JMP;
5227 continue;
5228
5229 case 'C':
5230 gas_assert (!mips_opts.micromips);
5231 INSERT_OPERAND (0, COPZ, insn, va_arg (args, unsigned long));
5232 continue;
5233
5234 case 'k':
5235 INSERT_OPERAND (mips_opts.micromips,
5236 CACHE, insn, va_arg (args, unsigned long));
5237 continue;
5238
5239 case '|':
5240 gas_assert (mips_opts.micromips);
5241 INSERT_OPERAND (1, TRAP, insn, va_arg (args, int));
5242 continue;
5243
5244 case '.':
5245 gas_assert (mips_opts.micromips);
5246 INSERT_OPERAND (1, OFFSET10, insn, va_arg (args, int));
5247 continue;
5248
5249 case '\\':
5250 INSERT_OPERAND (mips_opts.micromips,
5251 3BITPOS, insn, va_arg (args, unsigned int));
5252 continue;
5253
5254 case '~':
5255 INSERT_OPERAND (mips_opts.micromips,
5256 OFFSET12, insn, va_arg (args, unsigned long));
5257 continue;
5258
5259 case 'N':
5260 gas_assert (mips_opts.micromips);
5261 INSERT_OPERAND (1, BCC, insn, va_arg (args, int));
5262 continue;
5263
5264 case 'm': /* Opcode extension character. */
5265 gas_assert (mips_opts.micromips);
5266 switch (*fmt++)
5267 {
5268 case 'j':
5269 INSERT_OPERAND (1, MJ, insn, va_arg (args, int));
5270 break;
5271
5272 case 'p':
5273 INSERT_OPERAND (1, MP, insn, va_arg (args, int));
5274 break;
5275
5276 case 'F':
5277 INSERT_OPERAND (1, IMMF, insn, va_arg (args, int));
5278 break;
5279
5280 default:
5281 abort ();
5282 }
5283 continue;
5284
5285 default:
5286 abort ();
5287 }
5288 break;
5289 }
5290 va_end (args);
5291 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5292
5293 append_insn (&insn, ep, r, TRUE);
5294 }
5295
5296 static void
5297 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
5298 va_list *args)
5299 {
5300 struct mips_opcode *mo;
5301 struct mips_cl_insn insn;
5302 bfd_reloc_code_real_type r[3]
5303 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
5304
5305 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
5306 gas_assert (mo);
5307 gas_assert (strcmp (name, mo->name) == 0);
5308
5309 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
5310 {
5311 ++mo;
5312 gas_assert (mo->name);
5313 gas_assert (strcmp (name, mo->name) == 0);
5314 }
5315
5316 create_insn (&insn, mo);
5317 for (;;)
5318 {
5319 int c;
5320
5321 c = *fmt++;
5322 switch (c)
5323 {
5324 case '\0':
5325 break;
5326
5327 case ',':
5328 case '(':
5329 case ')':
5330 continue;
5331
5332 case 'y':
5333 case 'w':
5334 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
5335 continue;
5336
5337 case 'x':
5338 case 'v':
5339 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
5340 continue;
5341
5342 case 'z':
5343 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
5344 continue;
5345
5346 case 'Z':
5347 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
5348 continue;
5349
5350 case '0':
5351 case 'S':
5352 case 'P':
5353 case 'R':
5354 continue;
5355
5356 case 'X':
5357 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
5358 continue;
5359
5360 case 'Y':
5361 {
5362 int regno;
5363
5364 regno = va_arg (*args, int);
5365 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
5366 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
5367 }
5368 continue;
5369
5370 case '<':
5371 case '>':
5372 case '4':
5373 case '5':
5374 case 'H':
5375 case 'W':
5376 case 'D':
5377 case 'j':
5378 case '8':
5379 case 'V':
5380 case 'C':
5381 case 'U':
5382 case 'k':
5383 case 'K':
5384 case 'p':
5385 case 'q':
5386 {
5387 offsetT value;
5388
5389 gas_assert (ep != NULL);
5390
5391 if (ep->X_op != O_constant)
5392 *r = (int) BFD_RELOC_UNUSED + c;
5393 else if (calculate_reloc (*r, ep->X_add_number, &value))
5394 {
5395 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
5396 ep = NULL;
5397 *r = BFD_RELOC_UNUSED;
5398 }
5399 }
5400 continue;
5401
5402 case '6':
5403 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
5404 continue;
5405 }
5406
5407 break;
5408 }
5409
5410 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
5411
5412 append_insn (&insn, ep, r, TRUE);
5413 }
5414
5415 /*
5416 * Sign-extend 32-bit mode constants that have bit 31 set and all
5417 * higher bits unset.
5418 */
5419 static void
5420 normalize_constant_expr (expressionS *ex)
5421 {
5422 if (ex->X_op == O_constant
5423 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5424 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5425 - 0x80000000);
5426 }
5427
5428 /*
5429 * Sign-extend 32-bit mode address offsets that have bit 31 set and
5430 * all higher bits unset.
5431 */
5432 static void
5433 normalize_address_expr (expressionS *ex)
5434 {
5435 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
5436 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
5437 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
5438 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
5439 - 0x80000000);
5440 }
5441
5442 /*
5443 * Generate a "jalr" instruction with a relocation hint to the called
5444 * function. This occurs in NewABI PIC code.
5445 */
5446 static void
5447 macro_build_jalr (expressionS *ep, int cprestore)
5448 {
5449 static const bfd_reloc_code_real_type jalr_relocs[2]
5450 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
5451 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
5452 const char *jalr;
5453 char *f = NULL;
5454
5455 if (MIPS_JALR_HINT_P (ep))
5456 {
5457 frag_grow (8);
5458 f = frag_more (0);
5459 }
5460 if (mips_opts.micromips)
5461 {
5462 jalr = mips_opts.noreorder && !cprestore ? "jalr" : "jalrs";
5463 if (MIPS_JALR_HINT_P (ep)
5464 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
5465 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
5466 else
5467 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
5468 }
5469 else
5470 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
5471 if (MIPS_JALR_HINT_P (ep))
5472 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
5473 }
5474
5475 /*
5476 * Generate a "lui" instruction.
5477 */
5478 static void
5479 macro_build_lui (expressionS *ep, int regnum)
5480 {
5481 gas_assert (! mips_opts.mips16);
5482
5483 if (ep->X_op != O_constant)
5484 {
5485 gas_assert (ep->X_op == O_symbol);
5486 /* _gp_disp is a special case, used from s_cpload.
5487 __gnu_local_gp is used if mips_no_shared. */
5488 gas_assert (mips_pic == NO_PIC
5489 || (! HAVE_NEWABI
5490 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
5491 || (! mips_in_shared
5492 && strcmp (S_GET_NAME (ep->X_add_symbol),
5493 "__gnu_local_gp") == 0));
5494 }
5495
5496 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
5497 }
5498
5499 /* Generate a sequence of instructions to do a load or store from a constant
5500 offset off of a base register (breg) into/from a target register (treg),
5501 using AT if necessary. */
5502 static void
5503 macro_build_ldst_constoffset (expressionS *ep, const char *op,
5504 int treg, int breg, int dbl)
5505 {
5506 gas_assert (ep->X_op == O_constant);
5507
5508 /* Sign-extending 32-bit constants makes their handling easier. */
5509 if (!dbl)
5510 normalize_constant_expr (ep);
5511
5512 /* Right now, this routine can only handle signed 32-bit constants. */
5513 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
5514 as_warn (_("operand overflow"));
5515
5516 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
5517 {
5518 /* Signed 16-bit offset will fit in the op. Easy! */
5519 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
5520 }
5521 else
5522 {
5523 /* 32-bit offset, need multiple instructions and AT, like:
5524 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
5525 addu $tempreg,$tempreg,$breg
5526 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
5527 to handle the complete offset. */
5528 macro_build_lui (ep, AT);
5529 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
5530 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
5531
5532 if (!mips_opts.at)
5533 as_bad (_("Macro used $at after \".set noat\""));
5534 }
5535 }
5536
5537 /* set_at()
5538 * Generates code to set the $at register to true (one)
5539 * if reg is less than the immediate expression.
5540 */
5541 static void
5542 set_at (int reg, int unsignedp)
5543 {
5544 if (imm_expr.X_op == O_constant
5545 && imm_expr.X_add_number >= -0x8000
5546 && imm_expr.X_add_number < 0x8000)
5547 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
5548 AT, reg, BFD_RELOC_LO16);
5549 else
5550 {
5551 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5552 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
5553 }
5554 }
5555
5556 /* Warn if an expression is not a constant. */
5557
5558 static void
5559 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
5560 {
5561 if (ex->X_op == O_big)
5562 as_bad (_("unsupported large constant"));
5563 else if (ex->X_op != O_constant)
5564 as_bad (_("Instruction %s requires absolute expression"),
5565 ip->insn_mo->name);
5566
5567 if (HAVE_32BIT_GPRS)
5568 normalize_constant_expr (ex);
5569 }
5570
5571 /* Count the leading zeroes by performing a binary chop. This is a
5572 bulky bit of source, but performance is a LOT better for the
5573 majority of values than a simple loop to count the bits:
5574 for (lcnt = 0; (lcnt < 32); lcnt++)
5575 if ((v) & (1 << (31 - lcnt)))
5576 break;
5577 However it is not code size friendly, and the gain will drop a bit
5578 on certain cached systems.
5579 */
5580 #define COUNT_TOP_ZEROES(v) \
5581 (((v) & ~0xffff) == 0 \
5582 ? ((v) & ~0xff) == 0 \
5583 ? ((v) & ~0xf) == 0 \
5584 ? ((v) & ~0x3) == 0 \
5585 ? ((v) & ~0x1) == 0 \
5586 ? !(v) \
5587 ? 32 \
5588 : 31 \
5589 : 30 \
5590 : ((v) & ~0x7) == 0 \
5591 ? 29 \
5592 : 28 \
5593 : ((v) & ~0x3f) == 0 \
5594 ? ((v) & ~0x1f) == 0 \
5595 ? 27 \
5596 : 26 \
5597 : ((v) & ~0x7f) == 0 \
5598 ? 25 \
5599 : 24 \
5600 : ((v) & ~0xfff) == 0 \
5601 ? ((v) & ~0x3ff) == 0 \
5602 ? ((v) & ~0x1ff) == 0 \
5603 ? 23 \
5604 : 22 \
5605 : ((v) & ~0x7ff) == 0 \
5606 ? 21 \
5607 : 20 \
5608 : ((v) & ~0x3fff) == 0 \
5609 ? ((v) & ~0x1fff) == 0 \
5610 ? 19 \
5611 : 18 \
5612 : ((v) & ~0x7fff) == 0 \
5613 ? 17 \
5614 : 16 \
5615 : ((v) & ~0xffffff) == 0 \
5616 ? ((v) & ~0xfffff) == 0 \
5617 ? ((v) & ~0x3ffff) == 0 \
5618 ? ((v) & ~0x1ffff) == 0 \
5619 ? 15 \
5620 : 14 \
5621 : ((v) & ~0x7ffff) == 0 \
5622 ? 13 \
5623 : 12 \
5624 : ((v) & ~0x3fffff) == 0 \
5625 ? ((v) & ~0x1fffff) == 0 \
5626 ? 11 \
5627 : 10 \
5628 : ((v) & ~0x7fffff) == 0 \
5629 ? 9 \
5630 : 8 \
5631 : ((v) & ~0xfffffff) == 0 \
5632 ? ((v) & ~0x3ffffff) == 0 \
5633 ? ((v) & ~0x1ffffff) == 0 \
5634 ? 7 \
5635 : 6 \
5636 : ((v) & ~0x7ffffff) == 0 \
5637 ? 5 \
5638 : 4 \
5639 : ((v) & ~0x3fffffff) == 0 \
5640 ? ((v) & ~0x1fffffff) == 0 \
5641 ? 3 \
5642 : 2 \
5643 : ((v) & ~0x7fffffff) == 0 \
5644 ? 1 \
5645 : 0)
5646
5647 /* load_register()
5648 * This routine generates the least number of instructions necessary to load
5649 * an absolute expression value into a register.
5650 */
5651 static void
5652 load_register (int reg, expressionS *ep, int dbl)
5653 {
5654 int freg;
5655 expressionS hi32, lo32;
5656
5657 if (ep->X_op != O_big)
5658 {
5659 gas_assert (ep->X_op == O_constant);
5660
5661 /* Sign-extending 32-bit constants makes their handling easier. */
5662 if (!dbl)
5663 normalize_constant_expr (ep);
5664
5665 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
5666 {
5667 /* We can handle 16 bit signed values with an addiu to
5668 $zero. No need to ever use daddiu here, since $zero and
5669 the result are always correct in 32 bit mode. */
5670 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5671 return;
5672 }
5673 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
5674 {
5675 /* We can handle 16 bit unsigned values with an ori to
5676 $zero. */
5677 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5678 return;
5679 }
5680 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
5681 {
5682 /* 32 bit values require an lui. */
5683 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5684 if ((ep->X_add_number & 0xffff) != 0)
5685 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5686 return;
5687 }
5688 }
5689
5690 /* The value is larger than 32 bits. */
5691
5692 if (!dbl || HAVE_32BIT_GPRS)
5693 {
5694 char value[32];
5695
5696 sprintf_vma (value, ep->X_add_number);
5697 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5698 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5699 return;
5700 }
5701
5702 if (ep->X_op != O_big)
5703 {
5704 hi32 = *ep;
5705 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5706 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
5707 hi32.X_add_number &= 0xffffffff;
5708 lo32 = *ep;
5709 lo32.X_add_number &= 0xffffffff;
5710 }
5711 else
5712 {
5713 gas_assert (ep->X_add_number > 2);
5714 if (ep->X_add_number == 3)
5715 generic_bignum[3] = 0;
5716 else if (ep->X_add_number > 4)
5717 as_bad (_("Number larger than 64 bits"));
5718 lo32.X_op = O_constant;
5719 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
5720 hi32.X_op = O_constant;
5721 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
5722 }
5723
5724 if (hi32.X_add_number == 0)
5725 freg = 0;
5726 else
5727 {
5728 int shift, bit;
5729 unsigned long hi, lo;
5730
5731 if (hi32.X_add_number == (offsetT) 0xffffffff)
5732 {
5733 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
5734 {
5735 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5736 return;
5737 }
5738 if (lo32.X_add_number & 0x80000000)
5739 {
5740 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5741 if (lo32.X_add_number & 0xffff)
5742 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
5743 return;
5744 }
5745 }
5746
5747 /* Check for 16bit shifted constant. We know that hi32 is
5748 non-zero, so start the mask on the first bit of the hi32
5749 value. */
5750 shift = 17;
5751 do
5752 {
5753 unsigned long himask, lomask;
5754
5755 if (shift < 32)
5756 {
5757 himask = 0xffff >> (32 - shift);
5758 lomask = (0xffff << shift) & 0xffffffff;
5759 }
5760 else
5761 {
5762 himask = 0xffff << (shift - 32);
5763 lomask = 0;
5764 }
5765 if ((hi32.X_add_number & ~(offsetT) himask) == 0
5766 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
5767 {
5768 expressionS tmp;
5769
5770 tmp.X_op = O_constant;
5771 if (shift < 32)
5772 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
5773 | (lo32.X_add_number >> shift));
5774 else
5775 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
5776 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
5777 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5778 reg, reg, (shift >= 32) ? shift - 32 : shift);
5779 return;
5780 }
5781 ++shift;
5782 }
5783 while (shift <= (64 - 16));
5784
5785 /* Find the bit number of the lowest one bit, and store the
5786 shifted value in hi/lo. */
5787 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
5788 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
5789 if (lo != 0)
5790 {
5791 bit = 0;
5792 while ((lo & 1) == 0)
5793 {
5794 lo >>= 1;
5795 ++bit;
5796 }
5797 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
5798 hi >>= bit;
5799 }
5800 else
5801 {
5802 bit = 32;
5803 while ((hi & 1) == 0)
5804 {
5805 hi >>= 1;
5806 ++bit;
5807 }
5808 lo = hi;
5809 hi = 0;
5810 }
5811
5812 /* Optimize if the shifted value is a (power of 2) - 1. */
5813 if ((hi == 0 && ((lo + 1) & lo) == 0)
5814 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
5815 {
5816 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
5817 if (shift != 0)
5818 {
5819 expressionS tmp;
5820
5821 /* This instruction will set the register to be all
5822 ones. */
5823 tmp.X_op = O_constant;
5824 tmp.X_add_number = (offsetT) -1;
5825 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
5826 if (bit != 0)
5827 {
5828 bit += shift;
5829 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
5830 reg, reg, (bit >= 32) ? bit - 32 : bit);
5831 }
5832 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
5833 reg, reg, (shift >= 32) ? shift - 32 : shift);
5834 return;
5835 }
5836 }
5837
5838 /* Sign extend hi32 before calling load_register, because we can
5839 generally get better code when we load a sign extended value. */
5840 if ((hi32.X_add_number & 0x80000000) != 0)
5841 hi32.X_add_number |= ~(offsetT) 0xffffffff;
5842 load_register (reg, &hi32, 0);
5843 freg = reg;
5844 }
5845 if ((lo32.X_add_number & 0xffff0000) == 0)
5846 {
5847 if (freg != 0)
5848 {
5849 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
5850 freg = reg;
5851 }
5852 }
5853 else
5854 {
5855 expressionS mid16;
5856
5857 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
5858 {
5859 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
5860 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
5861 return;
5862 }
5863
5864 if (freg != 0)
5865 {
5866 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
5867 freg = reg;
5868 }
5869 mid16 = lo32;
5870 mid16.X_add_number >>= 16;
5871 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5872 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5873 freg = reg;
5874 }
5875 if ((lo32.X_add_number & 0xffff) != 0)
5876 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
5877 }
5878
5879 static inline void
5880 load_delay_nop (void)
5881 {
5882 if (!gpr_interlocks)
5883 macro_build (NULL, "nop", "");
5884 }
5885
5886 /* Load an address into a register. */
5887
5888 static void
5889 load_address (int reg, expressionS *ep, int *used_at)
5890 {
5891 if (ep->X_op != O_constant
5892 && ep->X_op != O_symbol)
5893 {
5894 as_bad (_("expression too complex"));
5895 ep->X_op = O_constant;
5896 }
5897
5898 if (ep->X_op == O_constant)
5899 {
5900 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
5901 return;
5902 }
5903
5904 if (mips_pic == NO_PIC)
5905 {
5906 /* If this is a reference to a GP relative symbol, we want
5907 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
5908 Otherwise we want
5909 lui $reg,<sym> (BFD_RELOC_HI16_S)
5910 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5911 If we have an addend, we always use the latter form.
5912
5913 With 64bit address space and a usable $at we want
5914 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5915 lui $at,<sym> (BFD_RELOC_HI16_S)
5916 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5917 daddiu $at,<sym> (BFD_RELOC_LO16)
5918 dsll32 $reg,0
5919 daddu $reg,$reg,$at
5920
5921 If $at is already in use, we use a path which is suboptimal
5922 on superscalar processors.
5923 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5924 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
5925 dsll $reg,16
5926 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
5927 dsll $reg,16
5928 daddiu $reg,<sym> (BFD_RELOC_LO16)
5929
5930 For GP relative symbols in 64bit address space we can use
5931 the same sequence as in 32bit address space. */
5932 if (HAVE_64BIT_SYMBOLS)
5933 {
5934 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5935 && !nopic_need_relax (ep->X_add_symbol, 1))
5936 {
5937 relax_start (ep->X_add_symbol);
5938 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5939 mips_gp_register, BFD_RELOC_GPREL16);
5940 relax_switch ();
5941 }
5942
5943 if (*used_at == 0 && mips_opts.at)
5944 {
5945 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5946 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
5947 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5948 BFD_RELOC_MIPS_HIGHER);
5949 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
5950 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
5951 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
5952 *used_at = 1;
5953 }
5954 else
5955 {
5956 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
5957 macro_build (ep, "daddiu", "t,r,j", reg, reg,
5958 BFD_RELOC_MIPS_HIGHER);
5959 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5960 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
5961 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
5962 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
5963 }
5964
5965 if (mips_relax.sequence)
5966 relax_end ();
5967 }
5968 else
5969 {
5970 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
5971 && !nopic_need_relax (ep->X_add_symbol, 1))
5972 {
5973 relax_start (ep->X_add_symbol);
5974 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
5975 mips_gp_register, BFD_RELOC_GPREL16);
5976 relax_switch ();
5977 }
5978 macro_build_lui (ep, reg);
5979 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
5980 reg, reg, BFD_RELOC_LO16);
5981 if (mips_relax.sequence)
5982 relax_end ();
5983 }
5984 }
5985 else if (!mips_big_got)
5986 {
5987 expressionS ex;
5988
5989 /* If this is a reference to an external symbol, we want
5990 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5991 Otherwise we want
5992 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5993 nop
5994 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
5995 If there is a constant, it must be added in after.
5996
5997 If we have NewABI, we want
5998 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5999 unless we're referencing a global symbol with a non-zero
6000 offset, in which case cst must be added separately. */
6001 if (HAVE_NEWABI)
6002 {
6003 if (ep->X_add_number)
6004 {
6005 ex.X_add_number = ep->X_add_number;
6006 ep->X_add_number = 0;
6007 relax_start (ep->X_add_symbol);
6008 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6009 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6010 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6011 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6012 ex.X_op = O_constant;
6013 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
6014 reg, reg, BFD_RELOC_LO16);
6015 ep->X_add_number = ex.X_add_number;
6016 relax_switch ();
6017 }
6018 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6019 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6020 if (mips_relax.sequence)
6021 relax_end ();
6022 }
6023 else
6024 {
6025 ex.X_add_number = ep->X_add_number;
6026 ep->X_add_number = 0;
6027 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6028 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6029 load_delay_nop ();
6030 relax_start (ep->X_add_symbol);
6031 relax_switch ();
6032 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6033 BFD_RELOC_LO16);
6034 relax_end ();
6035
6036 if (ex.X_add_number != 0)
6037 {
6038 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6039 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6040 ex.X_op = O_constant;
6041 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
6042 reg, reg, BFD_RELOC_LO16);
6043 }
6044 }
6045 }
6046 else if (mips_big_got)
6047 {
6048 expressionS ex;
6049
6050 /* This is the large GOT case. If this is a reference to an
6051 external symbol, we want
6052 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6053 addu $reg,$reg,$gp
6054 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
6055
6056 Otherwise, for a reference to a local symbol in old ABI, we want
6057 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6058 nop
6059 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
6060 If there is a constant, it must be added in after.
6061
6062 In the NewABI, for local symbols, with or without offsets, we want:
6063 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6064 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6065 */
6066 if (HAVE_NEWABI)
6067 {
6068 ex.X_add_number = ep->X_add_number;
6069 ep->X_add_number = 0;
6070 relax_start (ep->X_add_symbol);
6071 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6073 reg, reg, mips_gp_register);
6074 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6075 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6076 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6077 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6078 else if (ex.X_add_number)
6079 {
6080 ex.X_op = O_constant;
6081 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6082 BFD_RELOC_LO16);
6083 }
6084
6085 ep->X_add_number = ex.X_add_number;
6086 relax_switch ();
6087 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6088 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6089 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6090 BFD_RELOC_MIPS_GOT_OFST);
6091 relax_end ();
6092 }
6093 else
6094 {
6095 ex.X_add_number = ep->X_add_number;
6096 ep->X_add_number = 0;
6097 relax_start (ep->X_add_symbol);
6098 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
6099 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6100 reg, reg, mips_gp_register);
6101 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
6102 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
6103 relax_switch ();
6104 if (reg_needs_delay (mips_gp_register))
6105 {
6106 /* We need a nop before loading from $gp. This special
6107 check is required because the lui which starts the main
6108 instruction stream does not refer to $gp, and so will not
6109 insert the nop which may be required. */
6110 macro_build (NULL, "nop", "");
6111 }
6112 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
6113 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6114 load_delay_nop ();
6115 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6116 BFD_RELOC_LO16);
6117 relax_end ();
6118
6119 if (ex.X_add_number != 0)
6120 {
6121 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
6122 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6123 ex.X_op = O_constant;
6124 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
6125 BFD_RELOC_LO16);
6126 }
6127 }
6128 }
6129 else
6130 abort ();
6131
6132 if (!mips_opts.at && *used_at == 1)
6133 as_bad (_("Macro used $at after \".set noat\""));
6134 }
6135
6136 /* Move the contents of register SOURCE into register DEST. */
6137
6138 static void
6139 move_register (int dest, int source)
6140 {
6141 /* Prefer to use a 16-bit microMIPS instruction unless the previous
6142 instruction specifically requires a 32-bit one. */
6143 if (mips_opts.micromips
6144 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
6145 macro_build (NULL, "move", "mp,mj", dest, source);
6146 else
6147 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
6148 dest, source, 0);
6149 }
6150
6151 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
6152 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
6153 The two alternatives are:
6154
6155 Global symbol Local sybmol
6156 ------------- ------------
6157 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
6158 ... ...
6159 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
6160
6161 load_got_offset emits the first instruction and add_got_offset
6162 emits the second for a 16-bit offset or add_got_offset_hilo emits
6163 a sequence to add a 32-bit offset using a scratch register. */
6164
6165 static void
6166 load_got_offset (int dest, expressionS *local)
6167 {
6168 expressionS global;
6169
6170 global = *local;
6171 global.X_add_number = 0;
6172
6173 relax_start (local->X_add_symbol);
6174 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6175 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6176 relax_switch ();
6177 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
6178 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6179 relax_end ();
6180 }
6181
6182 static void
6183 add_got_offset (int dest, expressionS *local)
6184 {
6185 expressionS global;
6186
6187 global.X_op = O_constant;
6188 global.X_op_symbol = NULL;
6189 global.X_add_symbol = NULL;
6190 global.X_add_number = local->X_add_number;
6191
6192 relax_start (local->X_add_symbol);
6193 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
6194 dest, dest, BFD_RELOC_LO16);
6195 relax_switch ();
6196 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
6197 relax_end ();
6198 }
6199
6200 static void
6201 add_got_offset_hilo (int dest, expressionS *local, int tmp)
6202 {
6203 expressionS global;
6204 int hold_mips_optimize;
6205
6206 global.X_op = O_constant;
6207 global.X_op_symbol = NULL;
6208 global.X_add_symbol = NULL;
6209 global.X_add_number = local->X_add_number;
6210
6211 relax_start (local->X_add_symbol);
6212 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
6213 relax_switch ();
6214 /* Set mips_optimize around the lui instruction to avoid
6215 inserting an unnecessary nop after the lw. */
6216 hold_mips_optimize = mips_optimize;
6217 mips_optimize = 2;
6218 macro_build_lui (&global, tmp);
6219 mips_optimize = hold_mips_optimize;
6220 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
6221 relax_end ();
6222
6223 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
6224 }
6225
6226 /* Emit a sequence of instructions to emulate a branch likely operation.
6227 BR is an ordinary branch corresponding to one to be emulated. BRNEG
6228 is its complementing branch with the original condition negated.
6229 CALL is set if the original branch specified the link operation.
6230 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
6231
6232 Code like this is produced in the noreorder mode:
6233
6234 BRNEG <args>, 1f
6235 nop
6236 b <sym>
6237 delay slot (executed only if branch taken)
6238 1:
6239
6240 or, if CALL is set:
6241
6242 BRNEG <args>, 1f
6243 nop
6244 bal <sym>
6245 delay slot (executed only if branch taken)
6246 1:
6247
6248 In the reorder mode the delay slot would be filled with a nop anyway,
6249 so code produced is simply:
6250
6251 BR <args>, <sym>
6252 nop
6253
6254 This function is used when producing code for the microMIPS ASE that
6255 does not implement branch likely instructions in hardware. */
6256
6257 static void
6258 macro_build_branch_likely (const char *br, const char *brneg,
6259 int call, expressionS *ep, const char *fmt,
6260 unsigned int sreg, unsigned int treg)
6261 {
6262 int noreorder = mips_opts.noreorder;
6263 expressionS expr1;
6264
6265 gas_assert (mips_opts.micromips);
6266 start_noreorder ();
6267 if (noreorder)
6268 {
6269 micromips_label_expr (&expr1);
6270 macro_build (&expr1, brneg, fmt, sreg, treg);
6271 macro_build (NULL, "nop", "");
6272 macro_build (ep, call ? "bal" : "b", "p");
6273
6274 /* Set to true so that append_insn adds a label. */
6275 emit_branch_likely_macro = TRUE;
6276 }
6277 else
6278 {
6279 macro_build (ep, br, fmt, sreg, treg);
6280 macro_build (NULL, "nop", "");
6281 }
6282 end_noreorder ();
6283 }
6284
6285 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
6286 the condition code tested. EP specifies the branch target. */
6287
6288 static void
6289 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
6290 {
6291 const int call = 0;
6292 const char *brneg;
6293 const char *br;
6294
6295 switch (type)
6296 {
6297 case M_BC1FL:
6298 br = "bc1f";
6299 brneg = "bc1t";
6300 break;
6301 case M_BC1TL:
6302 br = "bc1t";
6303 brneg = "bc1f";
6304 break;
6305 case M_BC2FL:
6306 br = "bc2f";
6307 brneg = "bc2t";
6308 break;
6309 case M_BC2TL:
6310 br = "bc2t";
6311 brneg = "bc2f";
6312 break;
6313 default:
6314 abort ();
6315 }
6316 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
6317 }
6318
6319 /* Emit a two-argument branch macro specified by TYPE, using SREG as
6320 the register tested. EP specifies the branch target. */
6321
6322 static void
6323 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
6324 {
6325 const char *brneg = NULL;
6326 const char *br;
6327 int call = 0;
6328
6329 switch (type)
6330 {
6331 case M_BGEZ:
6332 br = "bgez";
6333 break;
6334 case M_BGEZL:
6335 br = mips_opts.micromips ? "bgez" : "bgezl";
6336 brneg = "bltz";
6337 break;
6338 case M_BGEZALL:
6339 gas_assert (mips_opts.micromips);
6340 br = "bgezals";
6341 brneg = "bltz";
6342 call = 1;
6343 break;
6344 case M_BGTZ:
6345 br = "bgtz";
6346 break;
6347 case M_BGTZL:
6348 br = mips_opts.micromips ? "bgtz" : "bgtzl";
6349 brneg = "blez";
6350 break;
6351 case M_BLEZ:
6352 br = "blez";
6353 break;
6354 case M_BLEZL:
6355 br = mips_opts.micromips ? "blez" : "blezl";
6356 brneg = "bgtz";
6357 break;
6358 case M_BLTZ:
6359 br = "bltz";
6360 break;
6361 case M_BLTZL:
6362 br = mips_opts.micromips ? "bltz" : "bltzl";
6363 brneg = "bgez";
6364 break;
6365 case M_BLTZALL:
6366 gas_assert (mips_opts.micromips);
6367 br = "bltzals";
6368 brneg = "bgez";
6369 call = 1;
6370 break;
6371 default:
6372 abort ();
6373 }
6374 if (mips_opts.micromips && brneg)
6375 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
6376 else
6377 macro_build (ep, br, "s,p", sreg);
6378 }
6379
6380 /* Emit a three-argument branch macro specified by TYPE, using SREG and
6381 TREG as the registers tested. EP specifies the branch target. */
6382
6383 static void
6384 macro_build_branch_rsrt (int type, expressionS *ep,
6385 unsigned int sreg, unsigned int treg)
6386 {
6387 const char *brneg = NULL;
6388 const int call = 0;
6389 const char *br;
6390
6391 switch (type)
6392 {
6393 case M_BEQ:
6394 case M_BEQ_I:
6395 br = "beq";
6396 break;
6397 case M_BEQL:
6398 case M_BEQL_I:
6399 br = mips_opts.micromips ? "beq" : "beql";
6400 brneg = "bne";
6401 break;
6402 case M_BNE:
6403 case M_BNE_I:
6404 br = "bne";
6405 break;
6406 case M_BNEL:
6407 case M_BNEL_I:
6408 br = mips_opts.micromips ? "bne" : "bnel";
6409 brneg = "beq";
6410 break;
6411 default:
6412 abort ();
6413 }
6414 if (mips_opts.micromips && brneg)
6415 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
6416 else
6417 macro_build (ep, br, "s,t,p", sreg, treg);
6418 }
6419
6420 /*
6421 * Build macros
6422 * This routine implements the seemingly endless macro or synthesized
6423 * instructions and addressing modes in the mips assembly language. Many
6424 * of these macros are simple and are similar to each other. These could
6425 * probably be handled by some kind of table or grammar approach instead of
6426 * this verbose method. Others are not simple macros but are more like
6427 * optimizing code generation.
6428 * One interesting optimization is when several store macros appear
6429 * consecutively that would load AT with the upper half of the same address.
6430 * The ensuing load upper instructions are ommited. This implies some kind
6431 * of global optimization. We currently only optimize within a single macro.
6432 * For many of the load and store macros if the address is specified as a
6433 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
6434 * first load register 'at' with zero and use it as the base register. The
6435 * mips assembler simply uses register $zero. Just one tiny optimization
6436 * we're missing.
6437 */
6438 static void
6439 macro (struct mips_cl_insn *ip)
6440 {
6441 unsigned int treg, sreg, dreg, breg;
6442 unsigned int tempreg;
6443 int mask;
6444 int used_at = 0;
6445 expressionS label_expr;
6446 expressionS expr1;
6447 expressionS *ep;
6448 const char *s;
6449 const char *s2;
6450 const char *fmt;
6451 int likely = 0;
6452 int coproc = 0;
6453 int off12 = 0;
6454 int call = 0;
6455 int jals = 0;
6456 int dbl = 0;
6457 int imm = 0;
6458 int ust = 0;
6459 int lp = 0;
6460 int ab = 0;
6461 int off0 = 0;
6462 int off;
6463 offsetT maxnum;
6464 bfd_reloc_code_real_type r;
6465 int hold_mips_optimize;
6466
6467 gas_assert (! mips_opts.mips16);
6468
6469 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
6470 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
6471 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
6472 mask = ip->insn_mo->mask;
6473
6474 label_expr.X_op = O_constant;
6475 label_expr.X_op_symbol = NULL;
6476 label_expr.X_add_symbol = NULL;
6477 label_expr.X_add_number = 0;
6478
6479 expr1.X_op = O_constant;
6480 expr1.X_op_symbol = NULL;
6481 expr1.X_add_symbol = NULL;
6482 expr1.X_add_number = 1;
6483
6484 switch (mask)
6485 {
6486 case M_DABS:
6487 dbl = 1;
6488 case M_ABS:
6489 /* bgez $a0,1f
6490 move v0,$a0
6491 sub v0,$zero,$a0
6492 1:
6493 */
6494
6495 start_noreorder ();
6496
6497 if (mips_opts.micromips)
6498 micromips_label_expr (&label_expr);
6499 else
6500 label_expr.X_add_number = 8;
6501 macro_build (&label_expr, "bgez", "s,p", sreg);
6502 if (dreg == sreg)
6503 macro_build (NULL, "nop", "");
6504 else
6505 move_register (dreg, sreg);
6506 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
6507 if (mips_opts.micromips)
6508 micromips_add_label ();
6509
6510 end_noreorder ();
6511 break;
6512
6513 case M_ADD_I:
6514 s = "addi";
6515 s2 = "add";
6516 goto do_addi;
6517 case M_ADDU_I:
6518 s = "addiu";
6519 s2 = "addu";
6520 goto do_addi;
6521 case M_DADD_I:
6522 dbl = 1;
6523 s = "daddi";
6524 s2 = "dadd";
6525 if (!mips_opts.micromips)
6526 goto do_addi;
6527 if (imm_expr.X_op == O_constant
6528 && imm_expr.X_add_number >= -0x200
6529 && imm_expr.X_add_number < 0x200)
6530 {
6531 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
6532 break;
6533 }
6534 goto do_addi_i;
6535 case M_DADDU_I:
6536 dbl = 1;
6537 s = "daddiu";
6538 s2 = "daddu";
6539 do_addi:
6540 if (imm_expr.X_op == O_constant
6541 && imm_expr.X_add_number >= -0x8000
6542 && imm_expr.X_add_number < 0x8000)
6543 {
6544 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
6545 break;
6546 }
6547 do_addi_i:
6548 used_at = 1;
6549 load_register (AT, &imm_expr, dbl);
6550 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6551 break;
6552
6553 case M_AND_I:
6554 s = "andi";
6555 s2 = "and";
6556 goto do_bit;
6557 case M_OR_I:
6558 s = "ori";
6559 s2 = "or";
6560 goto do_bit;
6561 case M_NOR_I:
6562 s = "";
6563 s2 = "nor";
6564 goto do_bit;
6565 case M_XOR_I:
6566 s = "xori";
6567 s2 = "xor";
6568 do_bit:
6569 if (imm_expr.X_op == O_constant
6570 && imm_expr.X_add_number >= 0
6571 && imm_expr.X_add_number < 0x10000)
6572 {
6573 if (mask != M_NOR_I)
6574 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
6575 else
6576 {
6577 macro_build (&imm_expr, "ori", "t,r,i",
6578 treg, sreg, BFD_RELOC_LO16);
6579 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
6580 }
6581 break;
6582 }
6583
6584 used_at = 1;
6585 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
6586 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
6587 break;
6588
6589 case M_BALIGN:
6590 switch (imm_expr.X_add_number)
6591 {
6592 case 0:
6593 macro_build (NULL, "nop", "");
6594 break;
6595 case 2:
6596 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
6597 break;
6598 case 1:
6599 case 3:
6600 macro_build (NULL, "balign", "t,s,2", treg, sreg,
6601 (int) imm_expr.X_add_number);
6602 break;
6603 default:
6604 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
6605 (unsigned long) imm_expr.X_add_number);
6606 break;
6607 }
6608 break;
6609
6610 case M_BC1FL:
6611 case M_BC1TL:
6612 case M_BC2FL:
6613 case M_BC2TL:
6614 gas_assert (mips_opts.micromips);
6615 macro_build_branch_ccl (mask, &offset_expr,
6616 EXTRACT_OPERAND (1, BCC, *ip));
6617 break;
6618
6619 case M_BEQ_I:
6620 case M_BEQL_I:
6621 case M_BNE_I:
6622 case M_BNEL_I:
6623 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6624 treg = 0;
6625 else
6626 {
6627 treg = AT;
6628 used_at = 1;
6629 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
6630 }
6631 /* Fall through. */
6632 case M_BEQL:
6633 case M_BNEL:
6634 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
6635 break;
6636
6637 case M_BGEL:
6638 likely = 1;
6639 case M_BGE:
6640 if (treg == 0)
6641 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
6642 else if (sreg == 0)
6643 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
6644 else
6645 {
6646 used_at = 1;
6647 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6648 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6649 &offset_expr, AT, ZERO);
6650 }
6651 break;
6652
6653 case M_BGEZL:
6654 case M_BGEZALL:
6655 case M_BGTZL:
6656 case M_BLEZL:
6657 case M_BLTZL:
6658 case M_BLTZALL:
6659 macro_build_branch_rs (mask, &offset_expr, sreg);
6660 break;
6661
6662 case M_BGTL_I:
6663 likely = 1;
6664 case M_BGT_I:
6665 /* Check for > max integer. */
6666 maxnum = 0x7fffffff;
6667 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6668 {
6669 maxnum <<= 16;
6670 maxnum |= 0xffff;
6671 maxnum <<= 16;
6672 maxnum |= 0xffff;
6673 }
6674 if (imm_expr.X_op == O_constant
6675 && imm_expr.X_add_number >= maxnum
6676 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6677 {
6678 do_false:
6679 /* Result is always false. */
6680 if (! likely)
6681 macro_build (NULL, "nop", "");
6682 else
6683 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
6684 break;
6685 }
6686 if (imm_expr.X_op != O_constant)
6687 as_bad (_("Unsupported large constant"));
6688 ++imm_expr.X_add_number;
6689 /* FALLTHROUGH */
6690 case M_BGE_I:
6691 case M_BGEL_I:
6692 if (mask == M_BGEL_I)
6693 likely = 1;
6694 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6695 {
6696 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
6697 &offset_expr, sreg);
6698 break;
6699 }
6700 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6701 {
6702 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
6703 &offset_expr, sreg);
6704 break;
6705 }
6706 maxnum = 0x7fffffff;
6707 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6708 {
6709 maxnum <<= 16;
6710 maxnum |= 0xffff;
6711 maxnum <<= 16;
6712 maxnum |= 0xffff;
6713 }
6714 maxnum = - maxnum - 1;
6715 if (imm_expr.X_op == O_constant
6716 && imm_expr.X_add_number <= maxnum
6717 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6718 {
6719 do_true:
6720 /* result is always true */
6721 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
6722 macro_build (&offset_expr, "b", "p");
6723 break;
6724 }
6725 used_at = 1;
6726 set_at (sreg, 0);
6727 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6728 &offset_expr, AT, ZERO);
6729 break;
6730
6731 case M_BGEUL:
6732 likely = 1;
6733 case M_BGEU:
6734 if (treg == 0)
6735 goto do_true;
6736 else if (sreg == 0)
6737 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6738 &offset_expr, ZERO, treg);
6739 else
6740 {
6741 used_at = 1;
6742 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6743 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6744 &offset_expr, AT, ZERO);
6745 }
6746 break;
6747
6748 case M_BGTUL_I:
6749 likely = 1;
6750 case M_BGTU_I:
6751 if (sreg == 0
6752 || (HAVE_32BIT_GPRS
6753 && imm_expr.X_op == O_constant
6754 && imm_expr.X_add_number == -1))
6755 goto do_false;
6756 if (imm_expr.X_op != O_constant)
6757 as_bad (_("Unsupported large constant"));
6758 ++imm_expr.X_add_number;
6759 /* FALLTHROUGH */
6760 case M_BGEU_I:
6761 case M_BGEUL_I:
6762 if (mask == M_BGEUL_I)
6763 likely = 1;
6764 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6765 goto do_true;
6766 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6767 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6768 &offset_expr, sreg, ZERO);
6769 else
6770 {
6771 used_at = 1;
6772 set_at (sreg, 1);
6773 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6774 &offset_expr, AT, ZERO);
6775 }
6776 break;
6777
6778 case M_BGTL:
6779 likely = 1;
6780 case M_BGT:
6781 if (treg == 0)
6782 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
6783 else if (sreg == 0)
6784 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
6785 else
6786 {
6787 used_at = 1;
6788 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6789 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6790 &offset_expr, AT, ZERO);
6791 }
6792 break;
6793
6794 case M_BGTUL:
6795 likely = 1;
6796 case M_BGTU:
6797 if (treg == 0)
6798 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6799 &offset_expr, sreg, ZERO);
6800 else if (sreg == 0)
6801 goto do_false;
6802 else
6803 {
6804 used_at = 1;
6805 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6806 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6807 &offset_expr, AT, ZERO);
6808 }
6809 break;
6810
6811 case M_BLEL:
6812 likely = 1;
6813 case M_BLE:
6814 if (treg == 0)
6815 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6816 else if (sreg == 0)
6817 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
6818 else
6819 {
6820 used_at = 1;
6821 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
6822 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6823 &offset_expr, AT, ZERO);
6824 }
6825 break;
6826
6827 case M_BLEL_I:
6828 likely = 1;
6829 case M_BLE_I:
6830 maxnum = 0x7fffffff;
6831 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
6832 {
6833 maxnum <<= 16;
6834 maxnum |= 0xffff;
6835 maxnum <<= 16;
6836 maxnum |= 0xffff;
6837 }
6838 if (imm_expr.X_op == O_constant
6839 && imm_expr.X_add_number >= maxnum
6840 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
6841 goto do_true;
6842 if (imm_expr.X_op != O_constant)
6843 as_bad (_("Unsupported large constant"));
6844 ++imm_expr.X_add_number;
6845 /* FALLTHROUGH */
6846 case M_BLT_I:
6847 case M_BLTL_I:
6848 if (mask == M_BLTL_I)
6849 likely = 1;
6850 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6851 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6852 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6853 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
6854 else
6855 {
6856 used_at = 1;
6857 set_at (sreg, 0);
6858 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6859 &offset_expr, AT, ZERO);
6860 }
6861 break;
6862
6863 case M_BLEUL:
6864 likely = 1;
6865 case M_BLEU:
6866 if (treg == 0)
6867 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6868 &offset_expr, sreg, ZERO);
6869 else if (sreg == 0)
6870 goto do_true;
6871 else
6872 {
6873 used_at = 1;
6874 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
6875 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6876 &offset_expr, AT, ZERO);
6877 }
6878 break;
6879
6880 case M_BLEUL_I:
6881 likely = 1;
6882 case M_BLEU_I:
6883 if (sreg == 0
6884 || (HAVE_32BIT_GPRS
6885 && imm_expr.X_op == O_constant
6886 && imm_expr.X_add_number == -1))
6887 goto do_true;
6888 if (imm_expr.X_op != O_constant)
6889 as_bad (_("Unsupported large constant"));
6890 ++imm_expr.X_add_number;
6891 /* FALLTHROUGH */
6892 case M_BLTU_I:
6893 case M_BLTUL_I:
6894 if (mask == M_BLTUL_I)
6895 likely = 1;
6896 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
6897 goto do_false;
6898 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
6899 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
6900 &offset_expr, sreg, ZERO);
6901 else
6902 {
6903 used_at = 1;
6904 set_at (sreg, 1);
6905 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6906 &offset_expr, AT, ZERO);
6907 }
6908 break;
6909
6910 case M_BLTL:
6911 likely = 1;
6912 case M_BLT:
6913 if (treg == 0)
6914 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
6915 else if (sreg == 0)
6916 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
6917 else
6918 {
6919 used_at = 1;
6920 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
6921 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6922 &offset_expr, AT, ZERO);
6923 }
6924 break;
6925
6926 case M_BLTUL:
6927 likely = 1;
6928 case M_BLTU:
6929 if (treg == 0)
6930 goto do_false;
6931 else if (sreg == 0)
6932 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6933 &offset_expr, ZERO, treg);
6934 else
6935 {
6936 used_at = 1;
6937 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
6938 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
6939 &offset_expr, AT, ZERO);
6940 }
6941 break;
6942
6943 case M_DEXT:
6944 {
6945 /* Use unsigned arithmetic. */
6946 addressT pos;
6947 addressT size;
6948
6949 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6950 {
6951 as_bad (_("Unsupported large constant"));
6952 pos = size = 1;
6953 }
6954 else
6955 {
6956 pos = imm_expr.X_add_number;
6957 size = imm2_expr.X_add_number;
6958 }
6959
6960 if (pos > 63)
6961 {
6962 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
6963 pos = 1;
6964 }
6965 if (size == 0 || size > 64 || (pos + size - 1) > 63)
6966 {
6967 as_bad (_("Improper extract size (%lu, position %lu)"),
6968 (unsigned long) size, (unsigned long) pos);
6969 size = 1;
6970 }
6971
6972 if (size <= 32 && pos < 32)
6973 {
6974 s = "dext";
6975 fmt = "t,r,+A,+C";
6976 }
6977 else if (size <= 32)
6978 {
6979 s = "dextu";
6980 fmt = "t,r,+E,+H";
6981 }
6982 else
6983 {
6984 s = "dextm";
6985 fmt = "t,r,+A,+G";
6986 }
6987 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
6988 (int) (size - 1));
6989 }
6990 break;
6991
6992 case M_DINS:
6993 {
6994 /* Use unsigned arithmetic. */
6995 addressT pos;
6996 addressT size;
6997
6998 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
6999 {
7000 as_bad (_("Unsupported large constant"));
7001 pos = size = 1;
7002 }
7003 else
7004 {
7005 pos = imm_expr.X_add_number;
7006 size = imm2_expr.X_add_number;
7007 }
7008
7009 if (pos > 63)
7010 {
7011 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
7012 pos = 1;
7013 }
7014 if (size == 0 || size > 64 || (pos + size - 1) > 63)
7015 {
7016 as_bad (_("Improper insert size (%lu, position %lu)"),
7017 (unsigned long) size, (unsigned long) pos);
7018 size = 1;
7019 }
7020
7021 if (pos < 32 && (pos + size - 1) < 32)
7022 {
7023 s = "dins";
7024 fmt = "t,r,+A,+B";
7025 }
7026 else if (pos >= 32)
7027 {
7028 s = "dinsu";
7029 fmt = "t,r,+E,+F";
7030 }
7031 else
7032 {
7033 s = "dinsm";
7034 fmt = "t,r,+A,+F";
7035 }
7036 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
7037 (int) (pos + size - 1));
7038 }
7039 break;
7040
7041 case M_DDIV_3:
7042 dbl = 1;
7043 case M_DIV_3:
7044 s = "mflo";
7045 goto do_div3;
7046 case M_DREM_3:
7047 dbl = 1;
7048 case M_REM_3:
7049 s = "mfhi";
7050 do_div3:
7051 if (treg == 0)
7052 {
7053 as_warn (_("Divide by zero."));
7054 if (mips_trap)
7055 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7056 else
7057 macro_build (NULL, "break", BRK_FMT, 7);
7058 break;
7059 }
7060
7061 start_noreorder ();
7062 if (mips_trap)
7063 {
7064 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7065 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7066 }
7067 else
7068 {
7069 if (mips_opts.micromips)
7070 micromips_label_expr (&label_expr);
7071 else
7072 label_expr.X_add_number = 8;
7073 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7074 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
7075 macro_build (NULL, "break", BRK_FMT, 7);
7076 if (mips_opts.micromips)
7077 micromips_add_label ();
7078 }
7079 expr1.X_add_number = -1;
7080 used_at = 1;
7081 load_register (AT, &expr1, dbl);
7082 if (mips_opts.micromips)
7083 micromips_label_expr (&label_expr);
7084 else
7085 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
7086 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
7087 if (dbl)
7088 {
7089 expr1.X_add_number = 1;
7090 load_register (AT, &expr1, dbl);
7091 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
7092 }
7093 else
7094 {
7095 expr1.X_add_number = 0x80000000;
7096 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
7097 }
7098 if (mips_trap)
7099 {
7100 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
7101 /* We want to close the noreorder block as soon as possible, so
7102 that later insns are available for delay slot filling. */
7103 end_noreorder ();
7104 }
7105 else
7106 {
7107 if (mips_opts.micromips)
7108 micromips_label_expr (&label_expr);
7109 else
7110 label_expr.X_add_number = 8;
7111 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
7112 macro_build (NULL, "nop", "");
7113
7114 /* We want to close the noreorder block as soon as possible, so
7115 that later insns are available for delay slot filling. */
7116 end_noreorder ();
7117
7118 macro_build (NULL, "break", BRK_FMT, 6);
7119 }
7120 if (mips_opts.micromips)
7121 micromips_add_label ();
7122 macro_build (NULL, s, MFHL_FMT, dreg);
7123 break;
7124
7125 case M_DIV_3I:
7126 s = "div";
7127 s2 = "mflo";
7128 goto do_divi;
7129 case M_DIVU_3I:
7130 s = "divu";
7131 s2 = "mflo";
7132 goto do_divi;
7133 case M_REM_3I:
7134 s = "div";
7135 s2 = "mfhi";
7136 goto do_divi;
7137 case M_REMU_3I:
7138 s = "divu";
7139 s2 = "mfhi";
7140 goto do_divi;
7141 case M_DDIV_3I:
7142 dbl = 1;
7143 s = "ddiv";
7144 s2 = "mflo";
7145 goto do_divi;
7146 case M_DDIVU_3I:
7147 dbl = 1;
7148 s = "ddivu";
7149 s2 = "mflo";
7150 goto do_divi;
7151 case M_DREM_3I:
7152 dbl = 1;
7153 s = "ddiv";
7154 s2 = "mfhi";
7155 goto do_divi;
7156 case M_DREMU_3I:
7157 dbl = 1;
7158 s = "ddivu";
7159 s2 = "mfhi";
7160 do_divi:
7161 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7162 {
7163 as_warn (_("Divide by zero."));
7164 if (mips_trap)
7165 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
7166 else
7167 macro_build (NULL, "break", BRK_FMT, 7);
7168 break;
7169 }
7170 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
7171 {
7172 if (strcmp (s2, "mflo") == 0)
7173 move_register (dreg, sreg);
7174 else
7175 move_register (dreg, ZERO);
7176 break;
7177 }
7178 if (imm_expr.X_op == O_constant
7179 && imm_expr.X_add_number == -1
7180 && s[strlen (s) - 1] != 'u')
7181 {
7182 if (strcmp (s2, "mflo") == 0)
7183 {
7184 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
7185 }
7186 else
7187 move_register (dreg, ZERO);
7188 break;
7189 }
7190
7191 used_at = 1;
7192 load_register (AT, &imm_expr, dbl);
7193 macro_build (NULL, s, "z,s,t", sreg, AT);
7194 macro_build (NULL, s2, MFHL_FMT, dreg);
7195 break;
7196
7197 case M_DIVU_3:
7198 s = "divu";
7199 s2 = "mflo";
7200 goto do_divu3;
7201 case M_REMU_3:
7202 s = "divu";
7203 s2 = "mfhi";
7204 goto do_divu3;
7205 case M_DDIVU_3:
7206 s = "ddivu";
7207 s2 = "mflo";
7208 goto do_divu3;
7209 case M_DREMU_3:
7210 s = "ddivu";
7211 s2 = "mfhi";
7212 do_divu3:
7213 start_noreorder ();
7214 if (mips_trap)
7215 {
7216 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
7217 macro_build (NULL, s, "z,s,t", sreg, treg);
7218 /* We want to close the noreorder block as soon as possible, so
7219 that later insns are available for delay slot filling. */
7220 end_noreorder ();
7221 }
7222 else
7223 {
7224 if (mips_opts.micromips)
7225 micromips_label_expr (&label_expr);
7226 else
7227 label_expr.X_add_number = 8;
7228 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
7229 macro_build (NULL, s, "z,s,t", sreg, treg);
7230
7231 /* We want to close the noreorder block as soon as possible, so
7232 that later insns are available for delay slot filling. */
7233 end_noreorder ();
7234 macro_build (NULL, "break", BRK_FMT, 7);
7235 if (mips_opts.micromips)
7236 micromips_add_label ();
7237 }
7238 macro_build (NULL, s2, MFHL_FMT, dreg);
7239 break;
7240
7241 case M_DLCA_AB:
7242 dbl = 1;
7243 case M_LCA_AB:
7244 call = 1;
7245 goto do_la;
7246 case M_DLA_AB:
7247 dbl = 1;
7248 case M_LA_AB:
7249 do_la:
7250 /* Load the address of a symbol into a register. If breg is not
7251 zero, we then add a base register to it. */
7252
7253 if (dbl && HAVE_32BIT_GPRS)
7254 as_warn (_("dla used to load 32-bit register"));
7255
7256 if (!dbl && HAVE_64BIT_OBJECTS)
7257 as_warn (_("la used to load 64-bit address"));
7258
7259 if (offset_expr.X_op == O_constant
7260 && offset_expr.X_add_number >= -0x8000
7261 && offset_expr.X_add_number < 0x8000)
7262 {
7263 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
7264 "t,r,j", treg, sreg, BFD_RELOC_LO16);
7265 break;
7266 }
7267
7268 if (mips_opts.at && (treg == breg))
7269 {
7270 tempreg = AT;
7271 used_at = 1;
7272 }
7273 else
7274 {
7275 tempreg = treg;
7276 }
7277
7278 if (offset_expr.X_op != O_symbol
7279 && offset_expr.X_op != O_constant)
7280 {
7281 as_bad (_("Expression too complex"));
7282 offset_expr.X_op = O_constant;
7283 }
7284
7285 if (offset_expr.X_op == O_constant)
7286 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
7287 else if (mips_pic == NO_PIC)
7288 {
7289 /* If this is a reference to a GP relative symbol, we want
7290 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
7291 Otherwise we want
7292 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
7293 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7294 If we have a constant, we need two instructions anyhow,
7295 so we may as well always use the latter form.
7296
7297 With 64bit address space and a usable $at we want
7298 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7299 lui $at,<sym> (BFD_RELOC_HI16_S)
7300 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7301 daddiu $at,<sym> (BFD_RELOC_LO16)
7302 dsll32 $tempreg,0
7303 daddu $tempreg,$tempreg,$at
7304
7305 If $at is already in use, we use a path which is suboptimal
7306 on superscalar processors.
7307 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7308 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
7309 dsll $tempreg,16
7310 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
7311 dsll $tempreg,16
7312 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
7313
7314 For GP relative symbols in 64bit address space we can use
7315 the same sequence as in 32bit address space. */
7316 if (HAVE_64BIT_SYMBOLS)
7317 {
7318 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7319 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7320 {
7321 relax_start (offset_expr.X_add_symbol);
7322 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7323 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7324 relax_switch ();
7325 }
7326
7327 if (used_at == 0 && mips_opts.at)
7328 {
7329 macro_build (&offset_expr, "lui", LUI_FMT,
7330 tempreg, BFD_RELOC_MIPS_HIGHEST);
7331 macro_build (&offset_expr, "lui", LUI_FMT,
7332 AT, BFD_RELOC_HI16_S);
7333 macro_build (&offset_expr, "daddiu", "t,r,j",
7334 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7335 macro_build (&offset_expr, "daddiu", "t,r,j",
7336 AT, AT, BFD_RELOC_LO16);
7337 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
7338 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
7339 used_at = 1;
7340 }
7341 else
7342 {
7343 macro_build (&offset_expr, "lui", LUI_FMT,
7344 tempreg, BFD_RELOC_MIPS_HIGHEST);
7345 macro_build (&offset_expr, "daddiu", "t,r,j",
7346 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
7347 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7348 macro_build (&offset_expr, "daddiu", "t,r,j",
7349 tempreg, tempreg, BFD_RELOC_HI16_S);
7350 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
7351 macro_build (&offset_expr, "daddiu", "t,r,j",
7352 tempreg, tempreg, BFD_RELOC_LO16);
7353 }
7354
7355 if (mips_relax.sequence)
7356 relax_end ();
7357 }
7358 else
7359 {
7360 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7361 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7362 {
7363 relax_start (offset_expr.X_add_symbol);
7364 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7365 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
7366 relax_switch ();
7367 }
7368 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7369 as_bad (_("Offset too large"));
7370 macro_build_lui (&offset_expr, tempreg);
7371 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7372 tempreg, tempreg, BFD_RELOC_LO16);
7373 if (mips_relax.sequence)
7374 relax_end ();
7375 }
7376 }
7377 else if (!mips_big_got && !HAVE_NEWABI)
7378 {
7379 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7380
7381 /* If this is a reference to an external symbol, and there
7382 is no constant, we want
7383 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7384 or for lca or if tempreg is PIC_CALL_REG
7385 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7386 For a local symbol, we want
7387 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7388 nop
7389 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7390
7391 If we have a small constant, and this is a reference to
7392 an external symbol, we want
7393 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7394 nop
7395 addiu $tempreg,$tempreg,<constant>
7396 For a local symbol, we want the same instruction
7397 sequence, but we output a BFD_RELOC_LO16 reloc on the
7398 addiu instruction.
7399
7400 If we have a large constant, and this is a reference to
7401 an external symbol, we want
7402 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7403 lui $at,<hiconstant>
7404 addiu $at,$at,<loconstant>
7405 addu $tempreg,$tempreg,$at
7406 For a local symbol, we want the same instruction
7407 sequence, but we output a BFD_RELOC_LO16 reloc on the
7408 addiu instruction.
7409 */
7410
7411 if (offset_expr.X_add_number == 0)
7412 {
7413 if (mips_pic == SVR4_PIC
7414 && breg == 0
7415 && (call || tempreg == PIC_CALL_REG))
7416 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
7417
7418 relax_start (offset_expr.X_add_symbol);
7419 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7420 lw_reloc_type, mips_gp_register);
7421 if (breg != 0)
7422 {
7423 /* We're going to put in an addu instruction using
7424 tempreg, so we may as well insert the nop right
7425 now. */
7426 load_delay_nop ();
7427 }
7428 relax_switch ();
7429 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7430 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
7431 load_delay_nop ();
7432 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7433 tempreg, tempreg, BFD_RELOC_LO16);
7434 relax_end ();
7435 /* FIXME: If breg == 0, and the next instruction uses
7436 $tempreg, then if this variant case is used an extra
7437 nop will be generated. */
7438 }
7439 else if (offset_expr.X_add_number >= -0x8000
7440 && offset_expr.X_add_number < 0x8000)
7441 {
7442 load_got_offset (tempreg, &offset_expr);
7443 load_delay_nop ();
7444 add_got_offset (tempreg, &offset_expr);
7445 }
7446 else
7447 {
7448 expr1.X_add_number = offset_expr.X_add_number;
7449 offset_expr.X_add_number =
7450 SEXT_16BIT (offset_expr.X_add_number);
7451 load_got_offset (tempreg, &offset_expr);
7452 offset_expr.X_add_number = expr1.X_add_number;
7453 /* If we are going to add in a base register, and the
7454 target register and the base register are the same,
7455 then we are using AT as a temporary register. Since
7456 we want to load the constant into AT, we add our
7457 current AT (from the global offset table) and the
7458 register into the register now, and pretend we were
7459 not using a base register. */
7460 if (breg == treg)
7461 {
7462 load_delay_nop ();
7463 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7464 treg, AT, breg);
7465 breg = 0;
7466 tempreg = treg;
7467 }
7468 add_got_offset_hilo (tempreg, &offset_expr, AT);
7469 used_at = 1;
7470 }
7471 }
7472 else if (!mips_big_got && HAVE_NEWABI)
7473 {
7474 int add_breg_early = 0;
7475
7476 /* If this is a reference to an external, and there is no
7477 constant, or local symbol (*), with or without a
7478 constant, we want
7479 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7480 or for lca or if tempreg is PIC_CALL_REG
7481 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7482
7483 If we have a small constant, and this is a reference to
7484 an external symbol, we want
7485 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7486 addiu $tempreg,$tempreg,<constant>
7487
7488 If we have a large constant, and this is a reference to
7489 an external symbol, we want
7490 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7491 lui $at,<hiconstant>
7492 addiu $at,$at,<loconstant>
7493 addu $tempreg,$tempreg,$at
7494
7495 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
7496 local symbols, even though it introduces an additional
7497 instruction. */
7498
7499 if (offset_expr.X_add_number)
7500 {
7501 expr1.X_add_number = offset_expr.X_add_number;
7502 offset_expr.X_add_number = 0;
7503
7504 relax_start (offset_expr.X_add_symbol);
7505 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7506 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7507
7508 if (expr1.X_add_number >= -0x8000
7509 && expr1.X_add_number < 0x8000)
7510 {
7511 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7512 tempreg, tempreg, BFD_RELOC_LO16);
7513 }
7514 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7515 {
7516 /* If we are going to add in a base register, and the
7517 target register and the base register are the same,
7518 then we are using AT as a temporary register. Since
7519 we want to load the constant into AT, we add our
7520 current AT (from the global offset table) and the
7521 register into the register now, and pretend we were
7522 not using a base register. */
7523 if (breg != treg)
7524 dreg = tempreg;
7525 else
7526 {
7527 gas_assert (tempreg == AT);
7528 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7529 treg, AT, breg);
7530 dreg = treg;
7531 add_breg_early = 1;
7532 }
7533
7534 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7535 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7536 dreg, dreg, AT);
7537
7538 used_at = 1;
7539 }
7540 else
7541 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7542
7543 relax_switch ();
7544 offset_expr.X_add_number = expr1.X_add_number;
7545
7546 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7547 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7548 if (add_breg_early)
7549 {
7550 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7551 treg, tempreg, breg);
7552 breg = 0;
7553 tempreg = treg;
7554 }
7555 relax_end ();
7556 }
7557 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
7558 {
7559 relax_start (offset_expr.X_add_symbol);
7560 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7561 BFD_RELOC_MIPS_CALL16, mips_gp_register);
7562 relax_switch ();
7563 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7564 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7565 relax_end ();
7566 }
7567 else
7568 {
7569 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7570 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7571 }
7572 }
7573 else if (mips_big_got && !HAVE_NEWABI)
7574 {
7575 int gpdelay;
7576 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7577 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7578 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
7579
7580 /* This is the large GOT case. If this is a reference to an
7581 external symbol, and there is no constant, we want
7582 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7583 addu $tempreg,$tempreg,$gp
7584 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7585 or for lca or if tempreg is PIC_CALL_REG
7586 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7587 addu $tempreg,$tempreg,$gp
7588 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7589 For a local symbol, we want
7590 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7591 nop
7592 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
7593
7594 If we have a small constant, and this is a reference to
7595 an external symbol, we want
7596 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7597 addu $tempreg,$tempreg,$gp
7598 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7599 nop
7600 addiu $tempreg,$tempreg,<constant>
7601 For a local symbol, we want
7602 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7603 nop
7604 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
7605
7606 If we have a large constant, and this is a reference to
7607 an external symbol, we want
7608 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7609 addu $tempreg,$tempreg,$gp
7610 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7611 lui $at,<hiconstant>
7612 addiu $at,$at,<loconstant>
7613 addu $tempreg,$tempreg,$at
7614 For a local symbol, we want
7615 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7616 lui $at,<hiconstant>
7617 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
7618 addu $tempreg,$tempreg,$at
7619 */
7620
7621 expr1.X_add_number = offset_expr.X_add_number;
7622 offset_expr.X_add_number = 0;
7623 relax_start (offset_expr.X_add_symbol);
7624 gpdelay = reg_needs_delay (mips_gp_register);
7625 if (expr1.X_add_number == 0 && breg == 0
7626 && (call || tempreg == PIC_CALL_REG))
7627 {
7628 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7629 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7630 }
7631 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7632 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7633 tempreg, tempreg, mips_gp_register);
7634 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7635 tempreg, lw_reloc_type, tempreg);
7636 if (expr1.X_add_number == 0)
7637 {
7638 if (breg != 0)
7639 {
7640 /* We're going to put in an addu instruction using
7641 tempreg, so we may as well insert the nop right
7642 now. */
7643 load_delay_nop ();
7644 }
7645 }
7646 else if (expr1.X_add_number >= -0x8000
7647 && expr1.X_add_number < 0x8000)
7648 {
7649 load_delay_nop ();
7650 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7651 tempreg, tempreg, BFD_RELOC_LO16);
7652 }
7653 else
7654 {
7655 /* If we are going to add in a base register, and the
7656 target register and the base register are the same,
7657 then we are using AT as a temporary register. Since
7658 we want to load the constant into AT, we add our
7659 current AT (from the global offset table) and the
7660 register into the register now, and pretend we were
7661 not using a base register. */
7662 if (breg != treg)
7663 dreg = tempreg;
7664 else
7665 {
7666 gas_assert (tempreg == AT);
7667 load_delay_nop ();
7668 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7669 treg, AT, breg);
7670 dreg = treg;
7671 }
7672
7673 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7674 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7675
7676 used_at = 1;
7677 }
7678 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
7679 relax_switch ();
7680
7681 if (gpdelay)
7682 {
7683 /* This is needed because this instruction uses $gp, but
7684 the first instruction on the main stream does not. */
7685 macro_build (NULL, "nop", "");
7686 }
7687
7688 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7689 local_reloc_type, mips_gp_register);
7690 if (expr1.X_add_number >= -0x8000
7691 && expr1.X_add_number < 0x8000)
7692 {
7693 load_delay_nop ();
7694 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7695 tempreg, tempreg, BFD_RELOC_LO16);
7696 /* FIXME: If add_number is 0, and there was no base
7697 register, the external symbol case ended with a load,
7698 so if the symbol turns out to not be external, and
7699 the next instruction uses tempreg, an unnecessary nop
7700 will be inserted. */
7701 }
7702 else
7703 {
7704 if (breg == treg)
7705 {
7706 /* We must add in the base register now, as in the
7707 external symbol case. */
7708 gas_assert (tempreg == AT);
7709 load_delay_nop ();
7710 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7711 treg, AT, breg);
7712 tempreg = treg;
7713 /* We set breg to 0 because we have arranged to add
7714 it in in both cases. */
7715 breg = 0;
7716 }
7717
7718 macro_build_lui (&expr1, AT);
7719 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
7720 AT, AT, BFD_RELOC_LO16);
7721 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7722 tempreg, tempreg, AT);
7723 used_at = 1;
7724 }
7725 relax_end ();
7726 }
7727 else if (mips_big_got && HAVE_NEWABI)
7728 {
7729 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
7730 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
7731 int add_breg_early = 0;
7732
7733 /* This is the large GOT case. If this is a reference to an
7734 external symbol, and there is no constant, we want
7735 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7736 add $tempreg,$tempreg,$gp
7737 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7738 or for lca or if tempreg is PIC_CALL_REG
7739 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7740 add $tempreg,$tempreg,$gp
7741 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
7742
7743 If we have a small constant, and this is a reference to
7744 an external symbol, we want
7745 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7746 add $tempreg,$tempreg,$gp
7747 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7748 addi $tempreg,$tempreg,<constant>
7749
7750 If we have a large constant, and this is a reference to
7751 an external symbol, we want
7752 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7753 addu $tempreg,$tempreg,$gp
7754 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7755 lui $at,<hiconstant>
7756 addi $at,$at,<loconstant>
7757 add $tempreg,$tempreg,$at
7758
7759 If we have NewABI, and we know it's a local symbol, we want
7760 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7761 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
7762 otherwise we have to resort to GOT_HI16/GOT_LO16. */
7763
7764 relax_start (offset_expr.X_add_symbol);
7765
7766 expr1.X_add_number = offset_expr.X_add_number;
7767 offset_expr.X_add_number = 0;
7768
7769 if (expr1.X_add_number == 0 && breg == 0
7770 && (call || tempreg == PIC_CALL_REG))
7771 {
7772 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
7773 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
7774 }
7775 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
7776 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7777 tempreg, tempreg, mips_gp_register);
7778 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7779 tempreg, lw_reloc_type, tempreg);
7780
7781 if (expr1.X_add_number == 0)
7782 ;
7783 else if (expr1.X_add_number >= -0x8000
7784 && expr1.X_add_number < 0x8000)
7785 {
7786 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
7787 tempreg, tempreg, BFD_RELOC_LO16);
7788 }
7789 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
7790 {
7791 /* If we are going to add in a base register, and the
7792 target register and the base register are the same,
7793 then we are using AT as a temporary register. Since
7794 we want to load the constant into AT, we add our
7795 current AT (from the global offset table) and the
7796 register into the register now, and pretend we were
7797 not using a base register. */
7798 if (breg != treg)
7799 dreg = tempreg;
7800 else
7801 {
7802 gas_assert (tempreg == AT);
7803 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7804 treg, AT, breg);
7805 dreg = treg;
7806 add_breg_early = 1;
7807 }
7808
7809 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
7810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
7811
7812 used_at = 1;
7813 }
7814 else
7815 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
7816
7817 relax_switch ();
7818 offset_expr.X_add_number = expr1.X_add_number;
7819 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7820 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
7821 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
7822 tempreg, BFD_RELOC_MIPS_GOT_OFST);
7823 if (add_breg_early)
7824 {
7825 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7826 treg, tempreg, breg);
7827 breg = 0;
7828 tempreg = treg;
7829 }
7830 relax_end ();
7831 }
7832 else
7833 abort ();
7834
7835 if (breg != 0)
7836 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
7837 break;
7838
7839 case M_MSGSND:
7840 gas_assert (!mips_opts.micromips);
7841 {
7842 unsigned long temp = (treg << 16) | (0x01);
7843 macro_build (NULL, "c2", "C", temp);
7844 }
7845 break;
7846
7847 case M_MSGLD:
7848 gas_assert (!mips_opts.micromips);
7849 {
7850 unsigned long temp = (0x02);
7851 macro_build (NULL, "c2", "C", temp);
7852 }
7853 break;
7854
7855 case M_MSGLD_T:
7856 gas_assert (!mips_opts.micromips);
7857 {
7858 unsigned long temp = (treg << 16) | (0x02);
7859 macro_build (NULL, "c2", "C", temp);
7860 }
7861 break;
7862
7863 case M_MSGWAIT:
7864 gas_assert (!mips_opts.micromips);
7865 macro_build (NULL, "c2", "C", 3);
7866 break;
7867
7868 case M_MSGWAIT_T:
7869 gas_assert (!mips_opts.micromips);
7870 {
7871 unsigned long temp = (treg << 16) | 0x03;
7872 macro_build (NULL, "c2", "C", temp);
7873 }
7874 break;
7875
7876 case M_J_A:
7877 /* The j instruction may not be used in PIC code, since it
7878 requires an absolute address. We convert it to a b
7879 instruction. */
7880 if (mips_pic == NO_PIC)
7881 macro_build (&offset_expr, "j", "a");
7882 else
7883 macro_build (&offset_expr, "b", "p");
7884 break;
7885
7886 /* The jal instructions must be handled as macros because when
7887 generating PIC code they expand to multi-instruction
7888 sequences. Normally they are simple instructions. */
7889 case M_JALS_1:
7890 dreg = RA;
7891 /* Fall through. */
7892 case M_JALS_2:
7893 gas_assert (mips_opts.micromips);
7894 jals = 1;
7895 goto jal;
7896 case M_JAL_1:
7897 dreg = RA;
7898 /* Fall through. */
7899 case M_JAL_2:
7900 jal:
7901 if (mips_pic == NO_PIC)
7902 {
7903 s = jals ? "jalrs" : "jalr";
7904 if (mips_opts.micromips
7905 && dreg == RA
7906 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7907 macro_build (NULL, s, "mj", sreg);
7908 else
7909 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7910 }
7911 else
7912 {
7913 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
7914 && mips_cprestore_offset >= 0);
7915
7916 if (sreg != PIC_CALL_REG)
7917 as_warn (_("MIPS PIC call to register other than $25"));
7918
7919 s = (mips_opts.micromips && (!mips_opts.noreorder || cprestore)
7920 ? "jalrs" : "jalr");
7921 if (mips_opts.micromips
7922 && dreg == RA
7923 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7924 macro_build (NULL, s, "mj", sreg);
7925 else
7926 macro_build (NULL, s, JALR_FMT, dreg, sreg);
7927 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
7928 {
7929 if (mips_cprestore_offset < 0)
7930 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7931 else
7932 {
7933 if (!mips_frame_reg_valid)
7934 {
7935 as_warn (_("No .frame pseudo-op used in PIC code"));
7936 /* Quiet this warning. */
7937 mips_frame_reg_valid = 1;
7938 }
7939 if (!mips_cprestore_valid)
7940 {
7941 as_warn (_("No .cprestore pseudo-op used in PIC code"));
7942 /* Quiet this warning. */
7943 mips_cprestore_valid = 1;
7944 }
7945 if (mips_opts.noreorder)
7946 macro_build (NULL, "nop", "");
7947 expr1.X_add_number = mips_cprestore_offset;
7948 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
7949 mips_gp_register,
7950 mips_frame_reg,
7951 HAVE_64BIT_ADDRESSES);
7952 }
7953 }
7954 }
7955
7956 break;
7957
7958 case M_JALS_A:
7959 gas_assert (mips_opts.micromips);
7960 jals = 1;
7961 /* Fall through. */
7962 case M_JAL_A:
7963 if (mips_pic == NO_PIC)
7964 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
7965 else if (mips_pic == SVR4_PIC)
7966 {
7967 /* If this is a reference to an external symbol, and we are
7968 using a small GOT, we want
7969 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
7970 nop
7971 jalr $ra,$25
7972 nop
7973 lw $gp,cprestore($sp)
7974 The cprestore value is set using the .cprestore
7975 pseudo-op. If we are using a big GOT, we want
7976 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
7977 addu $25,$25,$gp
7978 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
7979 nop
7980 jalr $ra,$25
7981 nop
7982 lw $gp,cprestore($sp)
7983 If the symbol is not external, we want
7984 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7985 nop
7986 addiu $25,$25,<sym> (BFD_RELOC_LO16)
7987 jalr $ra,$25
7988 nop
7989 lw $gp,cprestore($sp)
7990
7991 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
7992 sequences above, minus nops, unless the symbol is local,
7993 which enables us to use GOT_PAGE/GOT_OFST (big got) or
7994 GOT_DISP. */
7995 if (HAVE_NEWABI)
7996 {
7997 if (!mips_big_got)
7998 {
7999 relax_start (offset_expr.X_add_symbol);
8000 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8001 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
8002 mips_gp_register);
8003 relax_switch ();
8004 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8005 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
8006 mips_gp_register);
8007 relax_end ();
8008 }
8009 else
8010 {
8011 relax_start (offset_expr.X_add_symbol);
8012 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
8013 BFD_RELOC_MIPS_CALL_HI16);
8014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
8015 PIC_CALL_REG, mips_gp_register);
8016 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8017 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
8018 PIC_CALL_REG);
8019 relax_switch ();
8020 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8021 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
8022 mips_gp_register);
8023 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8024 PIC_CALL_REG, PIC_CALL_REG,
8025 BFD_RELOC_MIPS_GOT_OFST);
8026 relax_end ();
8027 }
8028
8029 macro_build_jalr (&offset_expr, 0);
8030 }
8031 else
8032 {
8033 relax_start (offset_expr.X_add_symbol);
8034 if (!mips_big_got)
8035 {
8036 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8037 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
8038 mips_gp_register);
8039 load_delay_nop ();
8040 relax_switch ();
8041 }
8042 else
8043 {
8044 int gpdelay;
8045
8046 gpdelay = reg_needs_delay (mips_gp_register);
8047 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
8048 BFD_RELOC_MIPS_CALL_HI16);
8049 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
8050 PIC_CALL_REG, mips_gp_register);
8051 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8052 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
8053 PIC_CALL_REG);
8054 load_delay_nop ();
8055 relax_switch ();
8056 if (gpdelay)
8057 macro_build (NULL, "nop", "");
8058 }
8059 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
8060 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
8061 mips_gp_register);
8062 load_delay_nop ();
8063 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8064 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
8065 relax_end ();
8066 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
8067
8068 if (mips_cprestore_offset < 0)
8069 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8070 else
8071 {
8072 if (!mips_frame_reg_valid)
8073 {
8074 as_warn (_("No .frame pseudo-op used in PIC code"));
8075 /* Quiet this warning. */
8076 mips_frame_reg_valid = 1;
8077 }
8078 if (!mips_cprestore_valid)
8079 {
8080 as_warn (_("No .cprestore pseudo-op used in PIC code"));
8081 /* Quiet this warning. */
8082 mips_cprestore_valid = 1;
8083 }
8084 if (mips_opts.noreorder)
8085 macro_build (NULL, "nop", "");
8086 expr1.X_add_number = mips_cprestore_offset;
8087 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
8088 mips_gp_register,
8089 mips_frame_reg,
8090 HAVE_64BIT_ADDRESSES);
8091 }
8092 }
8093 }
8094 else if (mips_pic == VXWORKS_PIC)
8095 as_bad (_("Non-PIC jump used in PIC library"));
8096 else
8097 abort ();
8098
8099 break;
8100
8101 case M_ACLR_AB:
8102 ab = 1;
8103 case M_ACLR_OB:
8104 s = "aclr";
8105 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8106 fmt = "\\,~(b)";
8107 off12 = 1;
8108 goto ld_st;
8109 case M_ASET_AB:
8110 ab = 1;
8111 case M_ASET_OB:
8112 s = "aset";
8113 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
8114 fmt = "\\,~(b)";
8115 off12 = 1;
8116 goto ld_st;
8117 case M_LB_AB:
8118 ab = 1;
8119 s = "lb";
8120 fmt = "t,o(b)";
8121 goto ld;
8122 case M_LBU_AB:
8123 ab = 1;
8124 s = "lbu";
8125 fmt = "t,o(b)";
8126 goto ld;
8127 case M_LH_AB:
8128 ab = 1;
8129 s = "lh";
8130 fmt = "t,o(b)";
8131 goto ld;
8132 case M_LHU_AB:
8133 ab = 1;
8134 s = "lhu";
8135 fmt = "t,o(b)";
8136 goto ld;
8137 case M_LW_AB:
8138 ab = 1;
8139 s = "lw";
8140 fmt = "t,o(b)";
8141 goto ld;
8142 case M_LWC0_AB:
8143 ab = 1;
8144 gas_assert (!mips_opts.micromips);
8145 s = "lwc0";
8146 fmt = "E,o(b)";
8147 /* Itbl support may require additional care here. */
8148 coproc = 1;
8149 goto ld_st;
8150 case M_LWC1_AB:
8151 ab = 1;
8152 s = "lwc1";
8153 fmt = "T,o(b)";
8154 /* Itbl support may require additional care here. */
8155 coproc = 1;
8156 goto ld_st;
8157 case M_LWC2_AB:
8158 ab = 1;
8159 case M_LWC2_OB:
8160 s = "lwc2";
8161 fmt = COP12_FMT;
8162 off12 = mips_opts.micromips;
8163 /* Itbl support may require additional care here. */
8164 coproc = 1;
8165 goto ld_st;
8166 case M_LWC3_AB:
8167 ab = 1;
8168 gas_assert (!mips_opts.micromips);
8169 s = "lwc3";
8170 fmt = "E,o(b)";
8171 /* Itbl support may require additional care here. */
8172 coproc = 1;
8173 goto ld_st;
8174 case M_LWL_AB:
8175 ab = 1;
8176 case M_LWL_OB:
8177 s = "lwl";
8178 fmt = MEM12_FMT;
8179 off12 = mips_opts.micromips;
8180 goto ld_st;
8181 case M_LWR_AB:
8182 ab = 1;
8183 case M_LWR_OB:
8184 s = "lwr";
8185 fmt = MEM12_FMT;
8186 off12 = mips_opts.micromips;
8187 goto ld_st;
8188 case M_LDC1_AB:
8189 ab = 1;
8190 s = "ldc1";
8191 fmt = "T,o(b)";
8192 /* Itbl support may require additional care here. */
8193 coproc = 1;
8194 goto ld_st;
8195 case M_LDC2_AB:
8196 ab = 1;
8197 case M_LDC2_OB:
8198 s = "ldc2";
8199 fmt = COP12_FMT;
8200 off12 = mips_opts.micromips;
8201 /* Itbl support may require additional care here. */
8202 coproc = 1;
8203 goto ld_st;
8204 case M_LQC2_AB:
8205 ab = 1;
8206 s = "lqc2";
8207 fmt = "E,o(b)";
8208 /* Itbl support may require additional care here. */
8209 coproc = 1;
8210 goto ld_st;
8211 case M_LDC3_AB:
8212 ab = 1;
8213 s = "ldc3";
8214 fmt = "E,o(b)";
8215 /* Itbl support may require additional care here. */
8216 coproc = 1;
8217 goto ld_st;
8218 case M_LDL_AB:
8219 ab = 1;
8220 case M_LDL_OB:
8221 s = "ldl";
8222 fmt = MEM12_FMT;
8223 off12 = mips_opts.micromips;
8224 goto ld_st;
8225 case M_LDR_AB:
8226 ab = 1;
8227 case M_LDR_OB:
8228 s = "ldr";
8229 fmt = MEM12_FMT;
8230 off12 = mips_opts.micromips;
8231 goto ld_st;
8232 case M_LL_AB:
8233 ab = 1;
8234 case M_LL_OB:
8235 s = "ll";
8236 fmt = MEM12_FMT;
8237 off12 = mips_opts.micromips;
8238 goto ld;
8239 case M_LLD_AB:
8240 ab = 1;
8241 case M_LLD_OB:
8242 s = "lld";
8243 fmt = MEM12_FMT;
8244 off12 = mips_opts.micromips;
8245 goto ld;
8246 case M_LWU_AB:
8247 ab = 1;
8248 case M_LWU_OB:
8249 s = "lwu";
8250 fmt = MEM12_FMT;
8251 off12 = mips_opts.micromips;
8252 goto ld;
8253 case M_LWP_AB:
8254 ab = 1;
8255 case M_LWP_OB:
8256 gas_assert (mips_opts.micromips);
8257 s = "lwp";
8258 fmt = "t,~(b)";
8259 off12 = 1;
8260 lp = 1;
8261 goto ld;
8262 case M_LDP_AB:
8263 ab = 1;
8264 case M_LDP_OB:
8265 gas_assert (mips_opts.micromips);
8266 s = "ldp";
8267 fmt = "t,~(b)";
8268 off12 = 1;
8269 lp = 1;
8270 goto ld;
8271 case M_LWM_AB:
8272 ab = 1;
8273 case M_LWM_OB:
8274 gas_assert (mips_opts.micromips);
8275 s = "lwm";
8276 fmt = "n,~(b)";
8277 off12 = 1;
8278 goto ld_st;
8279 case M_LDM_AB:
8280 ab = 1;
8281 case M_LDM_OB:
8282 gas_assert (mips_opts.micromips);
8283 s = "ldm";
8284 fmt = "n,~(b)";
8285 off12 = 1;
8286 goto ld_st;
8287
8288 ld:
8289 /* We don't want to use $0 as tempreg. */
8290 if (breg == treg + lp || treg + lp == ZERO)
8291 goto ld_st;
8292 else
8293 tempreg = treg + lp;
8294 goto ld_noat;
8295
8296 case M_SB_AB:
8297 ab = 1;
8298 s = "sb";
8299 fmt = "t,o(b)";
8300 goto ld_st;
8301 case M_SH_AB:
8302 ab = 1;
8303 s = "sh";
8304 fmt = "t,o(b)";
8305 goto ld_st;
8306 case M_SW_AB:
8307 ab = 1;
8308 s = "sw";
8309 fmt = "t,o(b)";
8310 goto ld_st;
8311 case M_SWC0_AB:
8312 ab = 1;
8313 gas_assert (!mips_opts.micromips);
8314 s = "swc0";
8315 fmt = "E,o(b)";
8316 /* Itbl support may require additional care here. */
8317 coproc = 1;
8318 goto ld_st;
8319 case M_SWC1_AB:
8320 ab = 1;
8321 s = "swc1";
8322 fmt = "T,o(b)";
8323 /* Itbl support may require additional care here. */
8324 coproc = 1;
8325 goto ld_st;
8326 case M_SWC2_AB:
8327 ab = 1;
8328 case M_SWC2_OB:
8329 s = "swc2";
8330 fmt = COP12_FMT;
8331 off12 = mips_opts.micromips;
8332 /* Itbl support may require additional care here. */
8333 coproc = 1;
8334 goto ld_st;
8335 case M_SWC3_AB:
8336 ab = 1;
8337 gas_assert (!mips_opts.micromips);
8338 s = "swc3";
8339 fmt = "E,o(b)";
8340 /* Itbl support may require additional care here. */
8341 coproc = 1;
8342 goto ld_st;
8343 case M_SWL_AB:
8344 ab = 1;
8345 case M_SWL_OB:
8346 s = "swl";
8347 fmt = MEM12_FMT;
8348 off12 = mips_opts.micromips;
8349 goto ld_st;
8350 case M_SWR_AB:
8351 ab = 1;
8352 case M_SWR_OB:
8353 s = "swr";
8354 fmt = MEM12_FMT;
8355 off12 = mips_opts.micromips;
8356 goto ld_st;
8357 case M_SC_AB:
8358 ab = 1;
8359 case M_SC_OB:
8360 s = "sc";
8361 fmt = MEM12_FMT;
8362 off12 = mips_opts.micromips;
8363 goto ld_st;
8364 case M_SCD_AB:
8365 ab = 1;
8366 case M_SCD_OB:
8367 s = "scd";
8368 fmt = MEM12_FMT;
8369 off12 = mips_opts.micromips;
8370 goto ld_st;
8371 case M_CACHE_AB:
8372 ab = 1;
8373 case M_CACHE_OB:
8374 s = "cache";
8375 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
8376 off12 = mips_opts.micromips;
8377 goto ld_st;
8378 case M_PREF_AB:
8379 ab = 1;
8380 case M_PREF_OB:
8381 s = "pref";
8382 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
8383 off12 = mips_opts.micromips;
8384 goto ld_st;
8385 case M_SDC1_AB:
8386 ab = 1;
8387 s = "sdc1";
8388 fmt = "T,o(b)";
8389 coproc = 1;
8390 /* Itbl support may require additional care here. */
8391 goto ld_st;
8392 case M_SDC2_AB:
8393 ab = 1;
8394 case M_SDC2_OB:
8395 s = "sdc2";
8396 fmt = COP12_FMT;
8397 off12 = mips_opts.micromips;
8398 /* Itbl support may require additional care here. */
8399 coproc = 1;
8400 goto ld_st;
8401 case M_SQC2_AB:
8402 ab = 1;
8403 s = "sqc2";
8404 fmt = "E,o(b)";
8405 /* Itbl support may require additional care here. */
8406 coproc = 1;
8407 goto ld_st;
8408 case M_SDC3_AB:
8409 ab = 1;
8410 gas_assert (!mips_opts.micromips);
8411 s = "sdc3";
8412 fmt = "E,o(b)";
8413 /* Itbl support may require additional care here. */
8414 coproc = 1;
8415 goto ld_st;
8416 case M_SDL_AB:
8417 ab = 1;
8418 case M_SDL_OB:
8419 s = "sdl";
8420 fmt = MEM12_FMT;
8421 off12 = mips_opts.micromips;
8422 goto ld_st;
8423 case M_SDR_AB:
8424 ab = 1;
8425 case M_SDR_OB:
8426 s = "sdr";
8427 fmt = MEM12_FMT;
8428 off12 = mips_opts.micromips;
8429 goto ld_st;
8430 case M_SWP_AB:
8431 ab = 1;
8432 case M_SWP_OB:
8433 gas_assert (mips_opts.micromips);
8434 s = "swp";
8435 fmt = "t,~(b)";
8436 off12 = 1;
8437 goto ld_st;
8438 case M_SDP_AB:
8439 ab = 1;
8440 case M_SDP_OB:
8441 gas_assert (mips_opts.micromips);
8442 s = "sdp";
8443 fmt = "t,~(b)";
8444 off12 = 1;
8445 goto ld_st;
8446 case M_SWM_AB:
8447 ab = 1;
8448 case M_SWM_OB:
8449 gas_assert (mips_opts.micromips);
8450 s = "swm";
8451 fmt = "n,~(b)";
8452 off12 = 1;
8453 goto ld_st;
8454 case M_SDM_AB:
8455 ab = 1;
8456 case M_SDM_OB:
8457 gas_assert (mips_opts.micromips);
8458 s = "sdm";
8459 fmt = "n,~(b)";
8460 off12 = 1;
8461
8462 ld_st:
8463 tempreg = AT;
8464 used_at = 1;
8465 ld_noat:
8466 if (offset_expr.X_op != O_constant
8467 && offset_expr.X_op != O_symbol)
8468 {
8469 as_bad (_("Expression too complex"));
8470 offset_expr.X_op = O_constant;
8471 }
8472
8473 if (HAVE_32BIT_ADDRESSES
8474 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8475 {
8476 char value [32];
8477
8478 sprintf_vma (value, offset_expr.X_add_number);
8479 as_bad (_("Number (0x%s) larger than 32 bits"), value);
8480 }
8481
8482 /* A constant expression in PIC code can be handled just as it
8483 is in non PIC code. */
8484 if (offset_expr.X_op == O_constant)
8485 {
8486 int hipart = 0;
8487
8488 expr1.X_add_number = offset_expr.X_add_number;
8489 normalize_address_expr (&expr1);
8490 if (!off12 && !IS_SEXT_16BIT_NUM (expr1.X_add_number))
8491 {
8492 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
8493 & ~(bfd_vma) 0xffff);
8494 hipart = 1;
8495 }
8496 else if (off12 && !IS_SEXT_12BIT_NUM (expr1.X_add_number))
8497 {
8498 expr1.X_add_number = ((expr1.X_add_number + 0x800)
8499 & ~(bfd_vma) 0xfff);
8500 hipart = 1;
8501 }
8502 if (hipart)
8503 {
8504 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
8505 if (breg != 0)
8506 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8507 tempreg, tempreg, breg);
8508 breg = tempreg;
8509 }
8510 if (off0)
8511 {
8512 if (offset_expr.X_add_number == 0)
8513 tempreg = breg;
8514 else
8515 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
8516 "t,r,j", tempreg, breg, BFD_RELOC_LO16);
8517 macro_build (NULL, s, fmt, treg, tempreg);
8518 }
8519 else if (!off12)
8520 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
8521 else
8522 macro_build (NULL, s, fmt,
8523 treg, (unsigned long) offset_expr.X_add_number, breg);
8524 }
8525 else if (off12 || off0)
8526 {
8527 /* A 12-bit or 0-bit offset field is too narrow to be used
8528 for a low-part relocation, so load the whole address into
8529 the auxillary register. In the case of "A(b)" addresses,
8530 we first load absolute address "A" into the register and
8531 then add base register "b". In the case of "o(b)" addresses,
8532 we simply need to add 16-bit offset "o" to base register "b", and
8533 offset_reloc already contains the relocations associated
8534 with "o". */
8535 if (ab)
8536 {
8537 load_address (tempreg, &offset_expr, &used_at);
8538 if (breg != 0)
8539 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8540 tempreg, tempreg, breg);
8541 }
8542 else
8543 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8544 tempreg, breg, -1,
8545 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8546 expr1.X_add_number = 0;
8547 if (off0)
8548 macro_build (NULL, s, fmt, treg, tempreg);
8549 else
8550 macro_build (NULL, s, fmt,
8551 treg, (unsigned long) expr1.X_add_number, tempreg);
8552 }
8553 else if (mips_pic == NO_PIC)
8554 {
8555 /* If this is a reference to a GP relative symbol, and there
8556 is no base register, we want
8557 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
8558 Otherwise, if there is no base register, we want
8559 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8560 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8561 If we have a constant, we need two instructions anyhow,
8562 so we always use the latter form.
8563
8564 If we have a base register, and this is a reference to a
8565 GP relative symbol, we want
8566 addu $tempreg,$breg,$gp
8567 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
8568 Otherwise we want
8569 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8570 addu $tempreg,$tempreg,$breg
8571 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8572 With a constant we always use the latter case.
8573
8574 With 64bit address space and no base register and $at usable,
8575 we want
8576 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8577 lui $at,<sym> (BFD_RELOC_HI16_S)
8578 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8579 dsll32 $tempreg,0
8580 daddu $tempreg,$at
8581 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8582 If we have a base register, we want
8583 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8584 lui $at,<sym> (BFD_RELOC_HI16_S)
8585 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8586 daddu $at,$breg
8587 dsll32 $tempreg,0
8588 daddu $tempreg,$at
8589 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8590
8591 Without $at we can't generate the optimal path for superscalar
8592 processors here since this would require two temporary registers.
8593 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8594 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8595 dsll $tempreg,16
8596 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8597 dsll $tempreg,16
8598 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8599 If we have a base register, we want
8600 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8601 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8602 dsll $tempreg,16
8603 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8604 dsll $tempreg,16
8605 daddu $tempreg,$tempreg,$breg
8606 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
8607
8608 For GP relative symbols in 64bit address space we can use
8609 the same sequence as in 32bit address space. */
8610 if (HAVE_64BIT_SYMBOLS)
8611 {
8612 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8613 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8614 {
8615 relax_start (offset_expr.X_add_symbol);
8616 if (breg == 0)
8617 {
8618 macro_build (&offset_expr, s, fmt, treg,
8619 BFD_RELOC_GPREL16, mips_gp_register);
8620 }
8621 else
8622 {
8623 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8624 tempreg, breg, mips_gp_register);
8625 macro_build (&offset_expr, s, fmt, treg,
8626 BFD_RELOC_GPREL16, tempreg);
8627 }
8628 relax_switch ();
8629 }
8630
8631 if (used_at == 0 && mips_opts.at)
8632 {
8633 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8634 BFD_RELOC_MIPS_HIGHEST);
8635 macro_build (&offset_expr, "lui", LUI_FMT, AT,
8636 BFD_RELOC_HI16_S);
8637 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8638 tempreg, BFD_RELOC_MIPS_HIGHER);
8639 if (breg != 0)
8640 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
8641 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
8642 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
8643 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
8644 tempreg);
8645 used_at = 1;
8646 }
8647 else
8648 {
8649 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8650 BFD_RELOC_MIPS_HIGHEST);
8651 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8652 tempreg, BFD_RELOC_MIPS_HIGHER);
8653 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8654 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
8655 tempreg, BFD_RELOC_HI16_S);
8656 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8657 if (breg != 0)
8658 macro_build (NULL, "daddu", "d,v,t",
8659 tempreg, tempreg, breg);
8660 macro_build (&offset_expr, s, fmt, treg,
8661 BFD_RELOC_LO16, tempreg);
8662 }
8663
8664 if (mips_relax.sequence)
8665 relax_end ();
8666 break;
8667 }
8668
8669 if (breg == 0)
8670 {
8671 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8672 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8673 {
8674 relax_start (offset_expr.X_add_symbol);
8675 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
8676 mips_gp_register);
8677 relax_switch ();
8678 }
8679 macro_build_lui (&offset_expr, tempreg);
8680 macro_build (&offset_expr, s, fmt, treg,
8681 BFD_RELOC_LO16, tempreg);
8682 if (mips_relax.sequence)
8683 relax_end ();
8684 }
8685 else
8686 {
8687 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8688 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8689 {
8690 relax_start (offset_expr.X_add_symbol);
8691 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8692 tempreg, breg, mips_gp_register);
8693 macro_build (&offset_expr, s, fmt, treg,
8694 BFD_RELOC_GPREL16, tempreg);
8695 relax_switch ();
8696 }
8697 macro_build_lui (&offset_expr, tempreg);
8698 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8699 tempreg, tempreg, breg);
8700 macro_build (&offset_expr, s, fmt, treg,
8701 BFD_RELOC_LO16, tempreg);
8702 if (mips_relax.sequence)
8703 relax_end ();
8704 }
8705 }
8706 else if (!mips_big_got)
8707 {
8708 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
8709
8710 /* If this is a reference to an external symbol, we want
8711 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8712 nop
8713 <op> $treg,0($tempreg)
8714 Otherwise we want
8715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8716 nop
8717 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8718 <op> $treg,0($tempreg)
8719
8720 For NewABI, we want
8721 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8722 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
8723
8724 If there is a base register, we add it to $tempreg before
8725 the <op>. If there is a constant, we stick it in the
8726 <op> instruction. We don't handle constants larger than
8727 16 bits, because we have no way to load the upper 16 bits
8728 (actually, we could handle them for the subset of cases
8729 in which we are not using $at). */
8730 gas_assert (offset_expr.X_op == O_symbol);
8731 if (HAVE_NEWABI)
8732 {
8733 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8734 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8735 if (breg != 0)
8736 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8737 tempreg, tempreg, breg);
8738 macro_build (&offset_expr, s, fmt, treg,
8739 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8740 break;
8741 }
8742 expr1.X_add_number = offset_expr.X_add_number;
8743 offset_expr.X_add_number = 0;
8744 if (expr1.X_add_number < -0x8000
8745 || expr1.X_add_number >= 0x8000)
8746 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8747 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8748 lw_reloc_type, mips_gp_register);
8749 load_delay_nop ();
8750 relax_start (offset_expr.X_add_symbol);
8751 relax_switch ();
8752 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8753 tempreg, BFD_RELOC_LO16);
8754 relax_end ();
8755 if (breg != 0)
8756 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8757 tempreg, tempreg, breg);
8758 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8759 }
8760 else if (mips_big_got && !HAVE_NEWABI)
8761 {
8762 int gpdelay;
8763
8764 /* If this is a reference to an external symbol, we want
8765 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8766 addu $tempreg,$tempreg,$gp
8767 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8768 <op> $treg,0($tempreg)
8769 Otherwise we want
8770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8771 nop
8772 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8773 <op> $treg,0($tempreg)
8774 If there is a base register, we add it to $tempreg before
8775 the <op>. If there is a constant, we stick it in the
8776 <op> instruction. We don't handle constants larger than
8777 16 bits, because we have no way to load the upper 16 bits
8778 (actually, we could handle them for the subset of cases
8779 in which we are not using $at). */
8780 gas_assert (offset_expr.X_op == O_symbol);
8781 expr1.X_add_number = offset_expr.X_add_number;
8782 offset_expr.X_add_number = 0;
8783 if (expr1.X_add_number < -0x8000
8784 || expr1.X_add_number >= 0x8000)
8785 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8786 gpdelay = reg_needs_delay (mips_gp_register);
8787 relax_start (offset_expr.X_add_symbol);
8788 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8789 BFD_RELOC_MIPS_GOT_HI16);
8790 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8791 mips_gp_register);
8792 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8793 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8794 relax_switch ();
8795 if (gpdelay)
8796 macro_build (NULL, "nop", "");
8797 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8798 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8799 load_delay_nop ();
8800 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
8801 tempreg, BFD_RELOC_LO16);
8802 relax_end ();
8803
8804 if (breg != 0)
8805 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8806 tempreg, tempreg, breg);
8807 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8808 }
8809 else if (mips_big_got && HAVE_NEWABI)
8810 {
8811 /* If this is a reference to an external symbol, we want
8812 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
8813 add $tempreg,$tempreg,$gp
8814 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
8815 <op> $treg,<ofst>($tempreg)
8816 Otherwise, for local symbols, we want:
8817 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
8818 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
8819 gas_assert (offset_expr.X_op == O_symbol);
8820 expr1.X_add_number = offset_expr.X_add_number;
8821 offset_expr.X_add_number = 0;
8822 if (expr1.X_add_number < -0x8000
8823 || expr1.X_add_number >= 0x8000)
8824 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
8825 relax_start (offset_expr.X_add_symbol);
8826 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
8827 BFD_RELOC_MIPS_GOT_HI16);
8828 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
8829 mips_gp_register);
8830 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8831 BFD_RELOC_MIPS_GOT_LO16, tempreg);
8832 if (breg != 0)
8833 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8834 tempreg, tempreg, breg);
8835 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
8836
8837 relax_switch ();
8838 offset_expr.X_add_number = expr1.X_add_number;
8839 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
8840 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
8841 if (breg != 0)
8842 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
8843 tempreg, tempreg, breg);
8844 macro_build (&offset_expr, s, fmt, treg,
8845 BFD_RELOC_MIPS_GOT_OFST, tempreg);
8846 relax_end ();
8847 }
8848 else
8849 abort ();
8850
8851 break;
8852
8853 case M_LI:
8854 case M_LI_S:
8855 load_register (treg, &imm_expr, 0);
8856 break;
8857
8858 case M_DLI:
8859 load_register (treg, &imm_expr, 1);
8860 break;
8861
8862 case M_LI_SS:
8863 if (imm_expr.X_op == O_constant)
8864 {
8865 used_at = 1;
8866 load_register (AT, &imm_expr, 0);
8867 macro_build (NULL, "mtc1", "t,G", AT, treg);
8868 break;
8869 }
8870 else
8871 {
8872 gas_assert (offset_expr.X_op == O_symbol
8873 && strcmp (segment_name (S_GET_SEGMENT
8874 (offset_expr.X_add_symbol)),
8875 ".lit4") == 0
8876 && offset_expr.X_add_number == 0);
8877 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
8878 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8879 break;
8880 }
8881
8882 case M_LI_D:
8883 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
8884 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
8885 order 32 bits of the value and the low order 32 bits are either
8886 zero or in OFFSET_EXPR. */
8887 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8888 {
8889 if (HAVE_64BIT_GPRS)
8890 load_register (treg, &imm_expr, 1);
8891 else
8892 {
8893 int hreg, lreg;
8894
8895 if (target_big_endian)
8896 {
8897 hreg = treg;
8898 lreg = treg + 1;
8899 }
8900 else
8901 {
8902 hreg = treg + 1;
8903 lreg = treg;
8904 }
8905
8906 if (hreg <= 31)
8907 load_register (hreg, &imm_expr, 0);
8908 if (lreg <= 31)
8909 {
8910 if (offset_expr.X_op == O_absent)
8911 move_register (lreg, 0);
8912 else
8913 {
8914 gas_assert (offset_expr.X_op == O_constant);
8915 load_register (lreg, &offset_expr, 0);
8916 }
8917 }
8918 }
8919 break;
8920 }
8921
8922 /* We know that sym is in the .rdata section. First we get the
8923 upper 16 bits of the address. */
8924 if (mips_pic == NO_PIC)
8925 {
8926 macro_build_lui (&offset_expr, AT);
8927 used_at = 1;
8928 }
8929 else
8930 {
8931 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
8932 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8933 used_at = 1;
8934 }
8935
8936 /* Now we load the register(s). */
8937 if (HAVE_64BIT_GPRS)
8938 {
8939 used_at = 1;
8940 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8941 }
8942 else
8943 {
8944 used_at = 1;
8945 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8946 if (treg != RA)
8947 {
8948 /* FIXME: How in the world do we deal with the possible
8949 overflow here? */
8950 offset_expr.X_add_number += 4;
8951 macro_build (&offset_expr, "lw", "t,o(b)",
8952 treg + 1, BFD_RELOC_LO16, AT);
8953 }
8954 }
8955 break;
8956
8957 case M_LI_DD:
8958 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
8959 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
8960 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
8961 the value and the low order 32 bits are either zero or in
8962 OFFSET_EXPR. */
8963 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
8964 {
8965 used_at = 1;
8966 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
8967 if (HAVE_64BIT_FPRS)
8968 {
8969 gas_assert (HAVE_64BIT_GPRS);
8970 macro_build (NULL, "dmtc1", "t,S", AT, treg);
8971 }
8972 else
8973 {
8974 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
8975 if (offset_expr.X_op == O_absent)
8976 macro_build (NULL, "mtc1", "t,G", 0, treg);
8977 else
8978 {
8979 gas_assert (offset_expr.X_op == O_constant);
8980 load_register (AT, &offset_expr, 0);
8981 macro_build (NULL, "mtc1", "t,G", AT, treg);
8982 }
8983 }
8984 break;
8985 }
8986
8987 gas_assert (offset_expr.X_op == O_symbol
8988 && offset_expr.X_add_number == 0);
8989 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
8990 if (strcmp (s, ".lit8") == 0)
8991 {
8992 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
8993 {
8994 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
8995 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8996 break;
8997 }
8998 breg = mips_gp_register;
8999 r = BFD_RELOC_MIPS_LITERAL;
9000 goto dob;
9001 }
9002 else
9003 {
9004 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
9005 used_at = 1;
9006 if (mips_pic != NO_PIC)
9007 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9008 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9009 else
9010 {
9011 /* FIXME: This won't work for a 64 bit address. */
9012 macro_build_lui (&offset_expr, AT);
9013 }
9014
9015 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch) || mips_opts.micromips)
9016 {
9017 macro_build (&offset_expr, "ldc1", "T,o(b)",
9018 treg, BFD_RELOC_LO16, AT);
9019 break;
9020 }
9021 breg = AT;
9022 r = BFD_RELOC_LO16;
9023 goto dob;
9024 }
9025
9026 case M_L_DOB:
9027 /* Even on a big endian machine $fn comes before $fn+1. We have
9028 to adjust when loading from memory. */
9029 r = BFD_RELOC_LO16;
9030 dob:
9031 gas_assert (!mips_opts.micromips);
9032 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
9033 macro_build (&offset_expr, "lwc1", "T,o(b)",
9034 target_big_endian ? treg + 1 : treg, r, breg);
9035 /* FIXME: A possible overflow which I don't know how to deal
9036 with. */
9037 offset_expr.X_add_number += 4;
9038 macro_build (&offset_expr, "lwc1", "T,o(b)",
9039 target_big_endian ? treg : treg + 1, r, breg);
9040 break;
9041
9042 case M_S_DOB:
9043 gas_assert (!mips_opts.micromips);
9044 gas_assert (!CPU_HAS_LDC1_SDC1 (mips_opts.arch));
9045 /* Even on a big endian machine $fn comes before $fn+1. We have
9046 to adjust when storing to memory. */
9047 macro_build (&offset_expr, "swc1", "T,o(b)",
9048 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
9049 offset_expr.X_add_number += 4;
9050 macro_build (&offset_expr, "swc1", "T,o(b)",
9051 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
9052 break;
9053
9054 case M_L_DAB:
9055 gas_assert (!mips_opts.micromips);
9056 /*
9057 * The MIPS assembler seems to check for X_add_number not
9058 * being double aligned and generating:
9059 * lui at,%hi(foo+1)
9060 * addu at,at,v1
9061 * addiu at,at,%lo(foo+1)
9062 * lwc1 f2,0(at)
9063 * lwc1 f3,4(at)
9064 * But, the resulting address is the same after relocation so why
9065 * generate the extra instruction?
9066 */
9067 /* Itbl support may require additional care here. */
9068 coproc = 1;
9069 fmt = "T,o(b)";
9070 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9071 {
9072 s = "ldc1";
9073 goto ld_st;
9074 }
9075 s = "lwc1";
9076 goto ldd_std;
9077
9078 case M_S_DAB:
9079 gas_assert (!mips_opts.micromips);
9080 /* Itbl support may require additional care here. */
9081 coproc = 1;
9082 fmt = "T,o(b)";
9083 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
9084 {
9085 s = "sdc1";
9086 goto ld_st;
9087 }
9088 s = "swc1";
9089 goto ldd_std;
9090
9091 case M_LQ_AB:
9092 fmt = "t,o(b)";
9093 s = "lq";
9094 goto ld;
9095
9096 case M_SQ_AB:
9097 fmt = "t,o(b)";
9098 s = "sq";
9099 goto ld_st;
9100
9101 case M_LD_AB:
9102 fmt = "t,o(b)";
9103 if (HAVE_64BIT_GPRS)
9104 {
9105 s = "ld";
9106 goto ld;
9107 }
9108 s = "lw";
9109 goto ldd_std;
9110
9111 case M_SD_AB:
9112 fmt = "t,o(b)";
9113 if (HAVE_64BIT_GPRS)
9114 {
9115 s = "sd";
9116 goto ld_st;
9117 }
9118 s = "sw";
9119
9120 ldd_std:
9121 if (offset_expr.X_op != O_symbol
9122 && offset_expr.X_op != O_constant)
9123 {
9124 as_bad (_("Expression too complex"));
9125 offset_expr.X_op = O_constant;
9126 }
9127
9128 if (HAVE_32BIT_ADDRESSES
9129 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
9130 {
9131 char value [32];
9132
9133 sprintf_vma (value, offset_expr.X_add_number);
9134 as_bad (_("Number (0x%s) larger than 32 bits"), value);
9135 }
9136
9137 /* Even on a big endian machine $fn comes before $fn+1. We have
9138 to adjust when loading from memory. We set coproc if we must
9139 load $fn+1 first. */
9140 /* Itbl support may require additional care here. */
9141 if (!target_big_endian)
9142 coproc = 0;
9143
9144 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
9145 {
9146 /* If this is a reference to a GP relative symbol, we want
9147 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
9148 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
9149 If we have a base register, we use this
9150 addu $at,$breg,$gp
9151 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
9152 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
9153 If this is not a GP relative symbol, we want
9154 lui $at,<sym> (BFD_RELOC_HI16_S)
9155 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9156 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9157 If there is a base register, we add it to $at after the
9158 lui instruction. If there is a constant, we always use
9159 the last case. */
9160 if (offset_expr.X_op == O_symbol
9161 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
9162 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
9163 {
9164 relax_start (offset_expr.X_add_symbol);
9165 if (breg == 0)
9166 {
9167 tempreg = mips_gp_register;
9168 }
9169 else
9170 {
9171 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9172 AT, breg, mips_gp_register);
9173 tempreg = AT;
9174 used_at = 1;
9175 }
9176
9177 /* Itbl support may require additional care here. */
9178 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9179 BFD_RELOC_GPREL16, tempreg);
9180 offset_expr.X_add_number += 4;
9181
9182 /* Set mips_optimize to 2 to avoid inserting an
9183 undesired nop. */
9184 hold_mips_optimize = mips_optimize;
9185 mips_optimize = 2;
9186 /* Itbl support may require additional care here. */
9187 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9188 BFD_RELOC_GPREL16, tempreg);
9189 mips_optimize = hold_mips_optimize;
9190
9191 relax_switch ();
9192
9193 offset_expr.X_add_number -= 4;
9194 }
9195 used_at = 1;
9196 macro_build_lui (&offset_expr, AT);
9197 if (breg != 0)
9198 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9199 /* Itbl support may require additional care here. */
9200 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9201 BFD_RELOC_LO16, AT);
9202 /* FIXME: How do we handle overflow here? */
9203 offset_expr.X_add_number += 4;
9204 /* Itbl support may require additional care here. */
9205 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9206 BFD_RELOC_LO16, AT);
9207 if (mips_relax.sequence)
9208 relax_end ();
9209 }
9210 else if (!mips_big_got)
9211 {
9212 /* If this is a reference to an external symbol, we want
9213 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9214 nop
9215 <op> $treg,0($at)
9216 <op> $treg+1,4($at)
9217 Otherwise we want
9218 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9219 nop
9220 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9221 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9222 If there is a base register we add it to $at before the
9223 lwc1 instructions. If there is a constant we include it
9224 in the lwc1 instructions. */
9225 used_at = 1;
9226 expr1.X_add_number = offset_expr.X_add_number;
9227 if (expr1.X_add_number < -0x8000
9228 || expr1.X_add_number >= 0x8000 - 4)
9229 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9230 load_got_offset (AT, &offset_expr);
9231 load_delay_nop ();
9232 if (breg != 0)
9233 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9234
9235 /* Set mips_optimize to 2 to avoid inserting an undesired
9236 nop. */
9237 hold_mips_optimize = mips_optimize;
9238 mips_optimize = 2;
9239
9240 /* Itbl support may require additional care here. */
9241 relax_start (offset_expr.X_add_symbol);
9242 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9243 BFD_RELOC_LO16, AT);
9244 expr1.X_add_number += 4;
9245 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9246 BFD_RELOC_LO16, AT);
9247 relax_switch ();
9248 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9249 BFD_RELOC_LO16, AT);
9250 offset_expr.X_add_number += 4;
9251 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9252 BFD_RELOC_LO16, AT);
9253 relax_end ();
9254
9255 mips_optimize = hold_mips_optimize;
9256 }
9257 else if (mips_big_got)
9258 {
9259 int gpdelay;
9260
9261 /* If this is a reference to an external symbol, we want
9262 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9263 addu $at,$at,$gp
9264 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
9265 nop
9266 <op> $treg,0($at)
9267 <op> $treg+1,4($at)
9268 Otherwise we want
9269 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9270 nop
9271 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
9272 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
9273 If there is a base register we add it to $at before the
9274 lwc1 instructions. If there is a constant we include it
9275 in the lwc1 instructions. */
9276 used_at = 1;
9277 expr1.X_add_number = offset_expr.X_add_number;
9278 offset_expr.X_add_number = 0;
9279 if (expr1.X_add_number < -0x8000
9280 || expr1.X_add_number >= 0x8000 - 4)
9281 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9282 gpdelay = reg_needs_delay (mips_gp_register);
9283 relax_start (offset_expr.X_add_symbol);
9284 macro_build (&offset_expr, "lui", LUI_FMT,
9285 AT, BFD_RELOC_MIPS_GOT_HI16);
9286 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9287 AT, AT, mips_gp_register);
9288 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9289 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
9290 load_delay_nop ();
9291 if (breg != 0)
9292 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9293 /* Itbl support may require additional care here. */
9294 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
9295 BFD_RELOC_LO16, AT);
9296 expr1.X_add_number += 4;
9297
9298 /* Set mips_optimize to 2 to avoid inserting an undesired
9299 nop. */
9300 hold_mips_optimize = mips_optimize;
9301 mips_optimize = 2;
9302 /* Itbl support may require additional care here. */
9303 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
9304 BFD_RELOC_LO16, AT);
9305 mips_optimize = hold_mips_optimize;
9306 expr1.X_add_number -= 4;
9307
9308 relax_switch ();
9309 offset_expr.X_add_number = expr1.X_add_number;
9310 if (gpdelay)
9311 macro_build (NULL, "nop", "");
9312 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
9313 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9314 load_delay_nop ();
9315 if (breg != 0)
9316 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
9317 /* Itbl support may require additional care here. */
9318 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
9319 BFD_RELOC_LO16, AT);
9320 offset_expr.X_add_number += 4;
9321
9322 /* Set mips_optimize to 2 to avoid inserting an undesired
9323 nop. */
9324 hold_mips_optimize = mips_optimize;
9325 mips_optimize = 2;
9326 /* Itbl support may require additional care here. */
9327 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
9328 BFD_RELOC_LO16, AT);
9329 mips_optimize = hold_mips_optimize;
9330 relax_end ();
9331 }
9332 else
9333 abort ();
9334
9335 break;
9336
9337 case M_LD_OB:
9338 s = HAVE_64BIT_GPRS ? "ld" : "lw";
9339 goto sd_ob;
9340 case M_SD_OB:
9341 s = HAVE_64BIT_GPRS ? "sd" : "sw";
9342 sd_ob:
9343 macro_build (&offset_expr, s, "t,o(b)", treg,
9344 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9345 breg);
9346 if (!HAVE_64BIT_GPRS)
9347 {
9348 offset_expr.X_add_number += 4;
9349 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
9350 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
9351 breg);
9352 }
9353 break;
9354
9355
9356 case M_SAA_AB:
9357 ab = 1;
9358 case M_SAA_OB:
9359 s = "saa";
9360 off0 = 1;
9361 fmt = "t,(b)";
9362 goto ld_st;
9363 case M_SAAD_AB:
9364 ab = 1;
9365 case M_SAAD_OB:
9366 s = "saad";
9367 off0 = 1;
9368 fmt = "t,(b)";
9369 goto ld_st;
9370
9371 /* New code added to support COPZ instructions.
9372 This code builds table entries out of the macros in mip_opcodes.
9373 R4000 uses interlocks to handle coproc delays.
9374 Other chips (like the R3000) require nops to be inserted for delays.
9375
9376 FIXME: Currently, we require that the user handle delays.
9377 In order to fill delay slots for non-interlocked chips,
9378 we must have a way to specify delays based on the coprocessor.
9379 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
9380 What are the side-effects of the cop instruction?
9381 What cache support might we have and what are its effects?
9382 Both coprocessor & memory require delays. how long???
9383 What registers are read/set/modified?
9384
9385 If an itbl is provided to interpret cop instructions,
9386 this knowledge can be encoded in the itbl spec. */
9387
9388 case M_COP0:
9389 s = "c0";
9390 goto copz;
9391 case M_COP1:
9392 s = "c1";
9393 goto copz;
9394 case M_COP2:
9395 s = "c2";
9396 goto copz;
9397 case M_COP3:
9398 s = "c3";
9399 copz:
9400 gas_assert (!mips_opts.micromips);
9401 /* For now we just do C (same as Cz). The parameter will be
9402 stored in insn_opcode by mips_ip. */
9403 macro_build (NULL, s, "C", ip->insn_opcode);
9404 break;
9405
9406 case M_MOVE:
9407 move_register (dreg, sreg);
9408 break;
9409
9410 case M_DMUL:
9411 dbl = 1;
9412 case M_MUL:
9413 if (mips_opts.arch == CPU_R5900)
9414 {
9415 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", dreg, sreg, treg);
9416 }
9417 else
9418 {
9419 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
9420 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9421 }
9422 break;
9423
9424 case M_DMUL_I:
9425 dbl = 1;
9426 case M_MUL_I:
9427 /* The MIPS assembler some times generates shifts and adds. I'm
9428 not trying to be that fancy. GCC should do this for us
9429 anyway. */
9430 used_at = 1;
9431 load_register (AT, &imm_expr, dbl);
9432 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
9433 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9434 break;
9435
9436 case M_DMULO_I:
9437 dbl = 1;
9438 case M_MULO_I:
9439 imm = 1;
9440 goto do_mulo;
9441
9442 case M_DMULO:
9443 dbl = 1;
9444 case M_MULO:
9445 do_mulo:
9446 start_noreorder ();
9447 used_at = 1;
9448 if (imm)
9449 load_register (AT, &imm_expr, dbl);
9450 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
9451 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9452 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
9453 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9454 if (mips_trap)
9455 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
9456 else
9457 {
9458 if (mips_opts.micromips)
9459 micromips_label_expr (&label_expr);
9460 else
9461 label_expr.X_add_number = 8;
9462 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
9463 macro_build (NULL, "nop", "");
9464 macro_build (NULL, "break", BRK_FMT, 6);
9465 if (mips_opts.micromips)
9466 micromips_add_label ();
9467 }
9468 end_noreorder ();
9469 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9470 break;
9471
9472 case M_DMULOU_I:
9473 dbl = 1;
9474 case M_MULOU_I:
9475 imm = 1;
9476 goto do_mulou;
9477
9478 case M_DMULOU:
9479 dbl = 1;
9480 case M_MULOU:
9481 do_mulou:
9482 start_noreorder ();
9483 used_at = 1;
9484 if (imm)
9485 load_register (AT, &imm_expr, dbl);
9486 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
9487 sreg, imm ? AT : treg);
9488 macro_build (NULL, "mfhi", MFHL_FMT, AT);
9489 macro_build (NULL, "mflo", MFHL_FMT, dreg);
9490 if (mips_trap)
9491 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
9492 else
9493 {
9494 if (mips_opts.micromips)
9495 micromips_label_expr (&label_expr);
9496 else
9497 label_expr.X_add_number = 8;
9498 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
9499 macro_build (NULL, "nop", "");
9500 macro_build (NULL, "break", BRK_FMT, 6);
9501 if (mips_opts.micromips)
9502 micromips_add_label ();
9503 }
9504 end_noreorder ();
9505 break;
9506
9507 case M_DROL:
9508 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9509 {
9510 if (dreg == sreg)
9511 {
9512 tempreg = AT;
9513 used_at = 1;
9514 }
9515 else
9516 {
9517 tempreg = dreg;
9518 }
9519 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
9520 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
9521 break;
9522 }
9523 used_at = 1;
9524 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9525 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
9526 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
9527 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9528 break;
9529
9530 case M_ROL:
9531 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9532 {
9533 if (dreg == sreg)
9534 {
9535 tempreg = AT;
9536 used_at = 1;
9537 }
9538 else
9539 {
9540 tempreg = dreg;
9541 }
9542 macro_build (NULL, "negu", "d,w", tempreg, treg);
9543 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
9544 break;
9545 }
9546 used_at = 1;
9547 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9548 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
9549 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
9550 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9551 break;
9552
9553 case M_DROL_I:
9554 {
9555 unsigned int rot;
9556 char *l;
9557 char *rr;
9558
9559 if (imm_expr.X_op != O_constant)
9560 as_bad (_("Improper rotate count"));
9561 rot = imm_expr.X_add_number & 0x3f;
9562 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9563 {
9564 rot = (64 - rot) & 0x3f;
9565 if (rot >= 32)
9566 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9567 else
9568 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9569 break;
9570 }
9571 if (rot == 0)
9572 {
9573 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9574 break;
9575 }
9576 l = (rot < 0x20) ? "dsll" : "dsll32";
9577 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
9578 rot &= 0x1f;
9579 used_at = 1;
9580 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
9581 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9582 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9583 }
9584 break;
9585
9586 case M_ROL_I:
9587 {
9588 unsigned int rot;
9589
9590 if (imm_expr.X_op != O_constant)
9591 as_bad (_("Improper rotate count"));
9592 rot = imm_expr.X_add_number & 0x1f;
9593 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9594 {
9595 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
9596 break;
9597 }
9598 if (rot == 0)
9599 {
9600 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9601 break;
9602 }
9603 used_at = 1;
9604 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
9605 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9606 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9607 }
9608 break;
9609
9610 case M_DROR:
9611 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9612 {
9613 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
9614 break;
9615 }
9616 used_at = 1;
9617 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
9618 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
9619 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
9620 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9621 break;
9622
9623 case M_ROR:
9624 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9625 {
9626 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
9627 break;
9628 }
9629 used_at = 1;
9630 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
9631 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
9632 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
9633 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9634 break;
9635
9636 case M_DROR_I:
9637 {
9638 unsigned int rot;
9639 char *l;
9640 char *rr;
9641
9642 if (imm_expr.X_op != O_constant)
9643 as_bad (_("Improper rotate count"));
9644 rot = imm_expr.X_add_number & 0x3f;
9645 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
9646 {
9647 if (rot >= 32)
9648 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
9649 else
9650 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
9651 break;
9652 }
9653 if (rot == 0)
9654 {
9655 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
9656 break;
9657 }
9658 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
9659 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
9660 rot &= 0x1f;
9661 used_at = 1;
9662 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
9663 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9664 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9665 }
9666 break;
9667
9668 case M_ROR_I:
9669 {
9670 unsigned int rot;
9671
9672 if (imm_expr.X_op != O_constant)
9673 as_bad (_("Improper rotate count"));
9674 rot = imm_expr.X_add_number & 0x1f;
9675 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
9676 {
9677 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
9678 break;
9679 }
9680 if (rot == 0)
9681 {
9682 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
9683 break;
9684 }
9685 used_at = 1;
9686 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
9687 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
9688 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
9689 }
9690 break;
9691
9692 case M_SEQ:
9693 if (sreg == 0)
9694 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
9695 else if (treg == 0)
9696 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9697 else
9698 {
9699 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9700 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9701 }
9702 break;
9703
9704 case M_SEQ_I:
9705 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9706 {
9707 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9708 break;
9709 }
9710 if (sreg == 0)
9711 {
9712 as_warn (_("Instruction %s: result is always false"),
9713 ip->insn_mo->name);
9714 move_register (dreg, 0);
9715 break;
9716 }
9717 if (CPU_HAS_SEQ (mips_opts.arch)
9718 && -512 <= imm_expr.X_add_number
9719 && imm_expr.X_add_number < 512)
9720 {
9721 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
9722 (int) imm_expr.X_add_number);
9723 break;
9724 }
9725 if (imm_expr.X_op == O_constant
9726 && imm_expr.X_add_number >= 0
9727 && imm_expr.X_add_number < 0x10000)
9728 {
9729 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9730 }
9731 else if (imm_expr.X_op == O_constant
9732 && imm_expr.X_add_number > -0x8000
9733 && imm_expr.X_add_number < 0)
9734 {
9735 imm_expr.X_add_number = -imm_expr.X_add_number;
9736 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9737 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9738 }
9739 else if (CPU_HAS_SEQ (mips_opts.arch))
9740 {
9741 used_at = 1;
9742 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9743 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
9744 break;
9745 }
9746 else
9747 {
9748 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9749 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9750 used_at = 1;
9751 }
9752 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
9753 break;
9754
9755 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
9756 s = "slt";
9757 goto sge;
9758 case M_SGEU:
9759 s = "sltu";
9760 sge:
9761 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
9762 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9763 break;
9764
9765 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
9766 case M_SGEU_I:
9767 if (imm_expr.X_op == O_constant
9768 && imm_expr.X_add_number >= -0x8000
9769 && imm_expr.X_add_number < 0x8000)
9770 {
9771 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
9772 dreg, sreg, BFD_RELOC_LO16);
9773 }
9774 else
9775 {
9776 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9777 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
9778 dreg, sreg, AT);
9779 used_at = 1;
9780 }
9781 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9782 break;
9783
9784 case M_SGT: /* sreg > treg <==> treg < sreg */
9785 s = "slt";
9786 goto sgt;
9787 case M_SGTU:
9788 s = "sltu";
9789 sgt:
9790 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9791 break;
9792
9793 case M_SGT_I: /* sreg > I <==> I < sreg */
9794 s = "slt";
9795 goto sgti;
9796 case M_SGTU_I:
9797 s = "sltu";
9798 sgti:
9799 used_at = 1;
9800 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9801 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9802 break;
9803
9804 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
9805 s = "slt";
9806 goto sle;
9807 case M_SLEU:
9808 s = "sltu";
9809 sle:
9810 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
9811 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9812 break;
9813
9814 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
9815 s = "slt";
9816 goto slei;
9817 case M_SLEU_I:
9818 s = "sltu";
9819 slei:
9820 used_at = 1;
9821 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9822 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
9823 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
9824 break;
9825
9826 case M_SLT_I:
9827 if (imm_expr.X_op == O_constant
9828 && imm_expr.X_add_number >= -0x8000
9829 && imm_expr.X_add_number < 0x8000)
9830 {
9831 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9832 break;
9833 }
9834 used_at = 1;
9835 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9836 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
9837 break;
9838
9839 case M_SLTU_I:
9840 if (imm_expr.X_op == O_constant
9841 && imm_expr.X_add_number >= -0x8000
9842 && imm_expr.X_add_number < 0x8000)
9843 {
9844 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
9845 BFD_RELOC_LO16);
9846 break;
9847 }
9848 used_at = 1;
9849 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9850 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
9851 break;
9852
9853 case M_SNE:
9854 if (sreg == 0)
9855 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
9856 else if (treg == 0)
9857 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9858 else
9859 {
9860 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
9861 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9862 }
9863 break;
9864
9865 case M_SNE_I:
9866 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
9867 {
9868 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
9869 break;
9870 }
9871 if (sreg == 0)
9872 {
9873 as_warn (_("Instruction %s: result is always true"),
9874 ip->insn_mo->name);
9875 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
9876 dreg, 0, BFD_RELOC_LO16);
9877 break;
9878 }
9879 if (CPU_HAS_SEQ (mips_opts.arch)
9880 && -512 <= imm_expr.X_add_number
9881 && imm_expr.X_add_number < 512)
9882 {
9883 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
9884 (int) imm_expr.X_add_number);
9885 break;
9886 }
9887 if (imm_expr.X_op == O_constant
9888 && imm_expr.X_add_number >= 0
9889 && imm_expr.X_add_number < 0x10000)
9890 {
9891 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
9892 }
9893 else if (imm_expr.X_op == O_constant
9894 && imm_expr.X_add_number > -0x8000
9895 && imm_expr.X_add_number < 0)
9896 {
9897 imm_expr.X_add_number = -imm_expr.X_add_number;
9898 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
9899 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9900 }
9901 else if (CPU_HAS_SEQ (mips_opts.arch))
9902 {
9903 used_at = 1;
9904 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9905 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
9906 break;
9907 }
9908 else
9909 {
9910 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9911 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
9912 used_at = 1;
9913 }
9914 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
9915 break;
9916
9917 case M_SUB_I:
9918 s = "addi";
9919 s2 = "sub";
9920 goto do_subi;
9921 case M_SUBU_I:
9922 s = "addiu";
9923 s2 = "subu";
9924 goto do_subi;
9925 case M_DSUB_I:
9926 dbl = 1;
9927 s = "daddi";
9928 s2 = "dsub";
9929 if (!mips_opts.micromips)
9930 goto do_subi;
9931 if (imm_expr.X_op == O_constant
9932 && imm_expr.X_add_number > -0x200
9933 && imm_expr.X_add_number <= 0x200)
9934 {
9935 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
9936 break;
9937 }
9938 goto do_subi_i;
9939 case M_DSUBU_I:
9940 dbl = 1;
9941 s = "daddiu";
9942 s2 = "dsubu";
9943 do_subi:
9944 if (imm_expr.X_op == O_constant
9945 && imm_expr.X_add_number > -0x8000
9946 && imm_expr.X_add_number <= 0x8000)
9947 {
9948 imm_expr.X_add_number = -imm_expr.X_add_number;
9949 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
9950 break;
9951 }
9952 do_subi_i:
9953 used_at = 1;
9954 load_register (AT, &imm_expr, dbl);
9955 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
9956 break;
9957
9958 case M_TEQ_I:
9959 s = "teq";
9960 goto trap;
9961 case M_TGE_I:
9962 s = "tge";
9963 goto trap;
9964 case M_TGEU_I:
9965 s = "tgeu";
9966 goto trap;
9967 case M_TLT_I:
9968 s = "tlt";
9969 goto trap;
9970 case M_TLTU_I:
9971 s = "tltu";
9972 goto trap;
9973 case M_TNE_I:
9974 s = "tne";
9975 trap:
9976 used_at = 1;
9977 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
9978 macro_build (NULL, s, "s,t", sreg, AT);
9979 break;
9980
9981 case M_TRUNCWS:
9982 case M_TRUNCWD:
9983 gas_assert (!mips_opts.micromips);
9984 gas_assert (mips_opts.isa == ISA_MIPS1);
9985 used_at = 1;
9986 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
9987 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
9988
9989 /*
9990 * Is the double cfc1 instruction a bug in the mips assembler;
9991 * or is there a reason for it?
9992 */
9993 start_noreorder ();
9994 macro_build (NULL, "cfc1", "t,G", treg, RA);
9995 macro_build (NULL, "cfc1", "t,G", treg, RA);
9996 macro_build (NULL, "nop", "");
9997 expr1.X_add_number = 3;
9998 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
9999 expr1.X_add_number = 2;
10000 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
10001 macro_build (NULL, "ctc1", "t,G", AT, RA);
10002 macro_build (NULL, "nop", "");
10003 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
10004 dreg, sreg);
10005 macro_build (NULL, "ctc1", "t,G", treg, RA);
10006 macro_build (NULL, "nop", "");
10007 end_noreorder ();
10008 break;
10009
10010 case M_ULH_A:
10011 ab = 1;
10012 case M_ULH:
10013 s = "lb";
10014 s2 = "lbu";
10015 off = 1;
10016 goto uld_st;
10017 case M_ULHU_A:
10018 ab = 1;
10019 case M_ULHU:
10020 s = "lbu";
10021 s2 = "lbu";
10022 off = 1;
10023 goto uld_st;
10024 case M_ULW_A:
10025 ab = 1;
10026 case M_ULW:
10027 s = "lwl";
10028 s2 = "lwr";
10029 off12 = mips_opts.micromips;
10030 off = 3;
10031 goto uld_st;
10032 case M_ULD_A:
10033 ab = 1;
10034 case M_ULD:
10035 s = "ldl";
10036 s2 = "ldr";
10037 off12 = mips_opts.micromips;
10038 off = 7;
10039 goto uld_st;
10040 case M_USH_A:
10041 ab = 1;
10042 case M_USH:
10043 s = "sb";
10044 s2 = "sb";
10045 off = 1;
10046 ust = 1;
10047 goto uld_st;
10048 case M_USW_A:
10049 ab = 1;
10050 case M_USW:
10051 s = "swl";
10052 s2 = "swr";
10053 off12 = mips_opts.micromips;
10054 off = 3;
10055 ust = 1;
10056 goto uld_st;
10057 case M_USD_A:
10058 ab = 1;
10059 case M_USD:
10060 s = "sdl";
10061 s2 = "sdr";
10062 off12 = mips_opts.micromips;
10063 off = 7;
10064 ust = 1;
10065
10066 uld_st:
10067 if (!ab && offset_expr.X_add_number >= 0x8000 - off)
10068 as_bad (_("Operand overflow"));
10069
10070 ep = &offset_expr;
10071 expr1.X_add_number = 0;
10072 if (ab)
10073 {
10074 used_at = 1;
10075 tempreg = AT;
10076 load_address (tempreg, ep, &used_at);
10077 if (breg != 0)
10078 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10079 tempreg, tempreg, breg);
10080 breg = tempreg;
10081 tempreg = treg;
10082 ep = &expr1;
10083 }
10084 else if (off12
10085 && (offset_expr.X_op != O_constant
10086 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number)
10087 || !IS_SEXT_12BIT_NUM (offset_expr.X_add_number + off)))
10088 {
10089 used_at = 1;
10090 tempreg = AT;
10091 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg,
10092 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10093 breg = tempreg;
10094 tempreg = treg;
10095 ep = &expr1;
10096 }
10097 else if (!ust && treg == breg)
10098 {
10099 used_at = 1;
10100 tempreg = AT;
10101 }
10102 else
10103 tempreg = treg;
10104
10105 if (off == 1)
10106 goto ulh_sh;
10107
10108 if (!target_big_endian)
10109 ep->X_add_number += off;
10110 if (!off12)
10111 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10112 else
10113 macro_build (NULL, s, "t,~(b)",
10114 tempreg, (unsigned long) ep->X_add_number, breg);
10115
10116 if (!target_big_endian)
10117 ep->X_add_number -= off;
10118 else
10119 ep->X_add_number += off;
10120 if (!off12)
10121 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10122 else
10123 macro_build (NULL, s2, "t,~(b)",
10124 tempreg, (unsigned long) ep->X_add_number, breg);
10125
10126 /* If necessary, move the result in tempreg to the final destination. */
10127 if (!ust && treg != tempreg)
10128 {
10129 /* Protect second load's delay slot. */
10130 load_delay_nop ();
10131 move_register (treg, tempreg);
10132 }
10133 break;
10134
10135 ulh_sh:
10136 used_at = 1;
10137 if (target_big_endian == ust)
10138 ep->X_add_number += off;
10139 tempreg = ust || ab ? treg : AT;
10140 macro_build (ep, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10141
10142 /* For halfword transfers we need a temporary register to shuffle
10143 bytes. Unfortunately for M_USH_A we have none available before
10144 the next store as AT holds the base address. We deal with this
10145 case by clobbering TREG and then restoring it as with ULH. */
10146 tempreg = ust == ab ? treg : AT;
10147 if (ust)
10148 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
10149
10150 if (target_big_endian == ust)
10151 ep->X_add_number -= off;
10152 else
10153 ep->X_add_number += off;
10154 macro_build (ep, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
10155
10156 /* For M_USH_A re-retrieve the LSB. */
10157 if (ust && ab)
10158 {
10159 if (target_big_endian)
10160 ep->X_add_number += off;
10161 else
10162 ep->X_add_number -= off;
10163 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
10164 }
10165 /* For ULH and M_USH_A OR the LSB in. */
10166 if (!ust || ab)
10167 {
10168 tempreg = !ab ? AT : treg;
10169 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
10170 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
10171 }
10172 break;
10173
10174 default:
10175 /* FIXME: Check if this is one of the itbl macros, since they
10176 are added dynamically. */
10177 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
10178 break;
10179 }
10180 if (!mips_opts.at && used_at)
10181 as_bad (_("Macro used $at after \".set noat\""));
10182 }
10183
10184 /* Implement macros in mips16 mode. */
10185
10186 static void
10187 mips16_macro (struct mips_cl_insn *ip)
10188 {
10189 int mask;
10190 int xreg, yreg, zreg, tmp;
10191 expressionS expr1;
10192 int dbl;
10193 const char *s, *s2, *s3;
10194
10195 mask = ip->insn_mo->mask;
10196
10197 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
10198 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
10199 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
10200
10201 expr1.X_op = O_constant;
10202 expr1.X_op_symbol = NULL;
10203 expr1.X_add_symbol = NULL;
10204 expr1.X_add_number = 1;
10205
10206 dbl = 0;
10207
10208 switch (mask)
10209 {
10210 default:
10211 abort ();
10212
10213 case M_DDIV_3:
10214 dbl = 1;
10215 case M_DIV_3:
10216 s = "mflo";
10217 goto do_div3;
10218 case M_DREM_3:
10219 dbl = 1;
10220 case M_REM_3:
10221 s = "mfhi";
10222 do_div3:
10223 start_noreorder ();
10224 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
10225 expr1.X_add_number = 2;
10226 macro_build (&expr1, "bnez", "x,p", yreg);
10227 macro_build (NULL, "break", "6", 7);
10228
10229 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
10230 since that causes an overflow. We should do that as well,
10231 but I don't see how to do the comparisons without a temporary
10232 register. */
10233 end_noreorder ();
10234 macro_build (NULL, s, "x", zreg);
10235 break;
10236
10237 case M_DIVU_3:
10238 s = "divu";
10239 s2 = "mflo";
10240 goto do_divu3;
10241 case M_REMU_3:
10242 s = "divu";
10243 s2 = "mfhi";
10244 goto do_divu3;
10245 case M_DDIVU_3:
10246 s = "ddivu";
10247 s2 = "mflo";
10248 goto do_divu3;
10249 case M_DREMU_3:
10250 s = "ddivu";
10251 s2 = "mfhi";
10252 do_divu3:
10253 start_noreorder ();
10254 macro_build (NULL, s, "0,x,y", xreg, yreg);
10255 expr1.X_add_number = 2;
10256 macro_build (&expr1, "bnez", "x,p", yreg);
10257 macro_build (NULL, "break", "6", 7);
10258 end_noreorder ();
10259 macro_build (NULL, s2, "x", zreg);
10260 break;
10261
10262 case M_DMUL:
10263 dbl = 1;
10264 case M_MUL:
10265 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
10266 macro_build (NULL, "mflo", "x", zreg);
10267 break;
10268
10269 case M_DSUBU_I:
10270 dbl = 1;
10271 goto do_subu;
10272 case M_SUBU_I:
10273 do_subu:
10274 if (imm_expr.X_op != O_constant)
10275 as_bad (_("Unsupported large constant"));
10276 imm_expr.X_add_number = -imm_expr.X_add_number;
10277 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
10278 break;
10279
10280 case M_SUBU_I_2:
10281 if (imm_expr.X_op != O_constant)
10282 as_bad (_("Unsupported large constant"));
10283 imm_expr.X_add_number = -imm_expr.X_add_number;
10284 macro_build (&imm_expr, "addiu", "x,k", xreg);
10285 break;
10286
10287 case M_DSUBU_I_2:
10288 if (imm_expr.X_op != O_constant)
10289 as_bad (_("Unsupported large constant"));
10290 imm_expr.X_add_number = -imm_expr.X_add_number;
10291 macro_build (&imm_expr, "daddiu", "y,j", yreg);
10292 break;
10293
10294 case M_BEQ:
10295 s = "cmp";
10296 s2 = "bteqz";
10297 goto do_branch;
10298 case M_BNE:
10299 s = "cmp";
10300 s2 = "btnez";
10301 goto do_branch;
10302 case M_BLT:
10303 s = "slt";
10304 s2 = "btnez";
10305 goto do_branch;
10306 case M_BLTU:
10307 s = "sltu";
10308 s2 = "btnez";
10309 goto do_branch;
10310 case M_BLE:
10311 s = "slt";
10312 s2 = "bteqz";
10313 goto do_reverse_branch;
10314 case M_BLEU:
10315 s = "sltu";
10316 s2 = "bteqz";
10317 goto do_reverse_branch;
10318 case M_BGE:
10319 s = "slt";
10320 s2 = "bteqz";
10321 goto do_branch;
10322 case M_BGEU:
10323 s = "sltu";
10324 s2 = "bteqz";
10325 goto do_branch;
10326 case M_BGT:
10327 s = "slt";
10328 s2 = "btnez";
10329 goto do_reverse_branch;
10330 case M_BGTU:
10331 s = "sltu";
10332 s2 = "btnez";
10333
10334 do_reverse_branch:
10335 tmp = xreg;
10336 xreg = yreg;
10337 yreg = tmp;
10338
10339 do_branch:
10340 macro_build (NULL, s, "x,y", xreg, yreg);
10341 macro_build (&offset_expr, s2, "p");
10342 break;
10343
10344 case M_BEQ_I:
10345 s = "cmpi";
10346 s2 = "bteqz";
10347 s3 = "x,U";
10348 goto do_branch_i;
10349 case M_BNE_I:
10350 s = "cmpi";
10351 s2 = "btnez";
10352 s3 = "x,U";
10353 goto do_branch_i;
10354 case M_BLT_I:
10355 s = "slti";
10356 s2 = "btnez";
10357 s3 = "x,8";
10358 goto do_branch_i;
10359 case M_BLTU_I:
10360 s = "sltiu";
10361 s2 = "btnez";
10362 s3 = "x,8";
10363 goto do_branch_i;
10364 case M_BLE_I:
10365 s = "slti";
10366 s2 = "btnez";
10367 s3 = "x,8";
10368 goto do_addone_branch_i;
10369 case M_BLEU_I:
10370 s = "sltiu";
10371 s2 = "btnez";
10372 s3 = "x,8";
10373 goto do_addone_branch_i;
10374 case M_BGE_I:
10375 s = "slti";
10376 s2 = "bteqz";
10377 s3 = "x,8";
10378 goto do_branch_i;
10379 case M_BGEU_I:
10380 s = "sltiu";
10381 s2 = "bteqz";
10382 s3 = "x,8";
10383 goto do_branch_i;
10384 case M_BGT_I:
10385 s = "slti";
10386 s2 = "bteqz";
10387 s3 = "x,8";
10388 goto do_addone_branch_i;
10389 case M_BGTU_I:
10390 s = "sltiu";
10391 s2 = "bteqz";
10392 s3 = "x,8";
10393
10394 do_addone_branch_i:
10395 if (imm_expr.X_op != O_constant)
10396 as_bad (_("Unsupported large constant"));
10397 ++imm_expr.X_add_number;
10398
10399 do_branch_i:
10400 macro_build (&imm_expr, s, s3, xreg);
10401 macro_build (&offset_expr, s2, "p");
10402 break;
10403
10404 case M_ABS:
10405 expr1.X_add_number = 0;
10406 macro_build (&expr1, "slti", "x,8", yreg);
10407 if (xreg != yreg)
10408 move_register (xreg, yreg);
10409 expr1.X_add_number = 2;
10410 macro_build (&expr1, "bteqz", "p");
10411 macro_build (NULL, "neg", "x,w", xreg, xreg);
10412 }
10413 }
10414
10415 /* For consistency checking, verify that all bits are specified either
10416 by the match/mask part of the instruction definition, or by the
10417 operand list. */
10418 static int
10419 validate_mips_insn (const struct mips_opcode *opc)
10420 {
10421 const char *p = opc->args;
10422 char c;
10423 unsigned long used_bits = opc->mask;
10424
10425 if ((used_bits & opc->match) != opc->match)
10426 {
10427 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
10428 opc->name, opc->args);
10429 return 0;
10430 }
10431 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
10432 while (*p)
10433 switch (c = *p++)
10434 {
10435 case ',': break;
10436 case '(': break;
10437 case ')': break;
10438 case '+':
10439 switch (c = *p++)
10440 {
10441 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
10442 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
10443 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
10444 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
10445 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10446 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10447 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10448 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
10449 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10450 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10451 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
10452 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10453 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
10454 case 'I': break;
10455 case 'J': USE_BITS (OP_MASK_CODE10, OP_SH_CODE10); break;
10456 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10457 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
10458 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10459 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10460 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
10461 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10462 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
10463 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
10464 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10465 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
10466 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
10467 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
10468 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
10469 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
10470 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
10471
10472 default:
10473 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
10474 c, opc->name, opc->args);
10475 return 0;
10476 }
10477 break;
10478 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10479 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10480 case 'A': break;
10481 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
10482 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
10483 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10484 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10485 case 'F': break;
10486 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10487 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
10488 case 'I': break;
10489 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
10490 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10491 case 'L': break;
10492 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
10493 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
10494 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
10495 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
10496 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10497 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
10498 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10499 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10500 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10501 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10502 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
10503 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
10504 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
10505 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
10506 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10507 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
10508 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10509 case 'f': break;
10510 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
10511 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10512 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10513 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
10514 case 'l': break;
10515 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10516 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
10517 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
10518 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10519 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10520 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10521 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
10522 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10523 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10524 case 'x': break;
10525 case 'z': break;
10526 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
10527 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
10528 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
10529 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
10530 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
10531 case '[': break;
10532 case ']': break;
10533 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
10534 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
10535 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
10536 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
10537 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
10538 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
10539 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
10540 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
10541 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
10542 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
10543 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
10544 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
10545 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
10546 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
10547 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
10548 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
10549 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
10550 case '\\': USE_BITS (OP_MASK_3BITPOS, OP_SH_3BITPOS); break;
10551 case '~': USE_BITS (OP_MASK_OFFSET12, OP_SH_OFFSET12); break;
10552 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
10553 default:
10554 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
10555 c, opc->name, opc->args);
10556 return 0;
10557 }
10558 #undef USE_BITS
10559 if (used_bits != 0xffffffff)
10560 {
10561 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
10562 ~used_bits & 0xffffffff, opc->name, opc->args);
10563 return 0;
10564 }
10565 return 1;
10566 }
10567
10568 /* For consistency checking, verify that the length implied matches the
10569 major opcode and that all bits are specified either by the match/mask
10570 part of the instruction definition, or by the operand list. */
10571
10572 static int
10573 validate_micromips_insn (const struct mips_opcode *opc)
10574 {
10575 unsigned long match = opc->match;
10576 unsigned long mask = opc->mask;
10577 const char *p = opc->args;
10578 unsigned long insn_bits;
10579 unsigned long used_bits;
10580 unsigned long major;
10581 unsigned int length;
10582 char e;
10583 char c;
10584
10585 if ((mask & match) != match)
10586 {
10587 as_bad (_("Internal error: bad microMIPS opcode (mask error): %s %s"),
10588 opc->name, opc->args);
10589 return 0;
10590 }
10591 length = micromips_insn_length (opc);
10592 if (length != 2 && length != 4)
10593 {
10594 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
10595 "%s %s"), length, opc->name, opc->args);
10596 return 0;
10597 }
10598 major = match >> (10 + 8 * (length - 2));
10599 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
10600 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
10601 {
10602 as_bad (_("Internal error: bad microMIPS opcode "
10603 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
10604 return 0;
10605 }
10606
10607 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
10608 insn_bits = 1 << 4 * length;
10609 insn_bits <<= 4 * length;
10610 insn_bits -= 1;
10611 used_bits = mask;
10612 #define USE_BITS(field) \
10613 (used_bits |= MICROMIPSOP_MASK_##field << MICROMIPSOP_SH_##field)
10614 while (*p)
10615 switch (c = *p++)
10616 {
10617 case ',': break;
10618 case '(': break;
10619 case ')': break;
10620 case '+':
10621 e = c;
10622 switch (c = *p++)
10623 {
10624 case 'A': USE_BITS (EXTLSB); break;
10625 case 'B': USE_BITS (INSMSB); break;
10626 case 'C': USE_BITS (EXTMSBD); break;
10627 case 'D': USE_BITS (RS); USE_BITS (SEL); break;
10628 case 'E': USE_BITS (EXTLSB); break;
10629 case 'F': USE_BITS (INSMSB); break;
10630 case 'G': USE_BITS (EXTMSBD); break;
10631 case 'H': USE_BITS (EXTMSBD); break;
10632 default:
10633 as_bad (_("Internal error: bad mips opcode "
10634 "(unknown extension operand type `%c%c'): %s %s"),
10635 e, c, opc->name, opc->args);
10636 return 0;
10637 }
10638 break;
10639 case 'm':
10640 e = c;
10641 switch (c = *p++)
10642 {
10643 case 'A': USE_BITS (IMMA); break;
10644 case 'B': USE_BITS (IMMB); break;
10645 case 'C': USE_BITS (IMMC); break;
10646 case 'D': USE_BITS (IMMD); break;
10647 case 'E': USE_BITS (IMME); break;
10648 case 'F': USE_BITS (IMMF); break;
10649 case 'G': USE_BITS (IMMG); break;
10650 case 'H': USE_BITS (IMMH); break;
10651 case 'I': USE_BITS (IMMI); break;
10652 case 'J': USE_BITS (IMMJ); break;
10653 case 'L': USE_BITS (IMML); break;
10654 case 'M': USE_BITS (IMMM); break;
10655 case 'N': USE_BITS (IMMN); break;
10656 case 'O': USE_BITS (IMMO); break;
10657 case 'P': USE_BITS (IMMP); break;
10658 case 'Q': USE_BITS (IMMQ); break;
10659 case 'U': USE_BITS (IMMU); break;
10660 case 'W': USE_BITS (IMMW); break;
10661 case 'X': USE_BITS (IMMX); break;
10662 case 'Y': USE_BITS (IMMY); break;
10663 case 'Z': break;
10664 case 'a': break;
10665 case 'b': USE_BITS (MB); break;
10666 case 'c': USE_BITS (MC); break;
10667 case 'd': USE_BITS (MD); break;
10668 case 'e': USE_BITS (ME); break;
10669 case 'f': USE_BITS (MF); break;
10670 case 'g': USE_BITS (MG); break;
10671 case 'h': USE_BITS (MH); break;
10672 case 'i': USE_BITS (MI); break;
10673 case 'j': USE_BITS (MJ); break;
10674 case 'l': USE_BITS (ML); break;
10675 case 'm': USE_BITS (MM); break;
10676 case 'n': USE_BITS (MN); break;
10677 case 'p': USE_BITS (MP); break;
10678 case 'q': USE_BITS (MQ); break;
10679 case 'r': break;
10680 case 's': break;
10681 case 't': break;
10682 case 'x': break;
10683 case 'y': break;
10684 case 'z': break;
10685 default:
10686 as_bad (_("Internal error: bad mips opcode "
10687 "(unknown extension operand type `%c%c'): %s %s"),
10688 e, c, opc->name, opc->args);
10689 return 0;
10690 }
10691 break;
10692 case '.': USE_BITS (OFFSET10); break;
10693 case '1': USE_BITS (STYPE); break;
10694 case '2': USE_BITS (BP); break;
10695 case '3': USE_BITS (SA3); break;
10696 case '4': USE_BITS (SA4); break;
10697 case '5': USE_BITS (IMM8); break;
10698 case '6': USE_BITS (RS); break;
10699 case '7': USE_BITS (DSPACC); break;
10700 case '8': USE_BITS (WRDSP); break;
10701 case '0': USE_BITS (DSPSFT); break;
10702 case '<': USE_BITS (SHAMT); break;
10703 case '>': USE_BITS (SHAMT); break;
10704 case '@': USE_BITS (IMM10); break;
10705 case 'B': USE_BITS (CODE10); break;
10706 case 'C': USE_BITS (COPZ); break;
10707 case 'D': USE_BITS (FD); break;
10708 case 'E': USE_BITS (RT); break;
10709 case 'G': USE_BITS (RS); break;
10710 case 'H': USE_BITS (SEL); break;
10711 case 'K': USE_BITS (RS); break;
10712 case 'M': USE_BITS (CCC); break;
10713 case 'N': USE_BITS (BCC); break;
10714 case 'R': USE_BITS (FR); break;
10715 case 'S': USE_BITS (FS); break;
10716 case 'T': USE_BITS (FT); break;
10717 case 'V': USE_BITS (FS); break;
10718 case '\\': USE_BITS (3BITPOS); break;
10719 case '^': USE_BITS (RD); break;
10720 case 'a': USE_BITS (TARGET); break;
10721 case 'b': USE_BITS (RS); break;
10722 case 'c': USE_BITS (CODE); break;
10723 case 'd': USE_BITS (RD); break;
10724 case 'h': USE_BITS (PREFX); break;
10725 case 'i': USE_BITS (IMMEDIATE); break;
10726 case 'j': USE_BITS (DELTA); break;
10727 case 'k': USE_BITS (CACHE); break;
10728 case 'n': USE_BITS (RT); break;
10729 case 'o': USE_BITS (DELTA); break;
10730 case 'p': USE_BITS (DELTA); break;
10731 case 'q': USE_BITS (CODE2); break;
10732 case 'r': USE_BITS (RS); break;
10733 case 's': USE_BITS (RS); break;
10734 case 't': USE_BITS (RT); break;
10735 case 'u': USE_BITS (IMMEDIATE); break;
10736 case 'v': USE_BITS (RS); break;
10737 case 'w': USE_BITS (RT); break;
10738 case 'y': USE_BITS (RS3); break;
10739 case 'z': break;
10740 case '|': USE_BITS (TRAP); break;
10741 case '~': USE_BITS (OFFSET12); break;
10742 default:
10743 as_bad (_("Internal error: bad microMIPS opcode "
10744 "(unknown operand type `%c'): %s %s"),
10745 c, opc->name, opc->args);
10746 return 0;
10747 }
10748 #undef USE_BITS
10749 if (used_bits != insn_bits)
10750 {
10751 if (~used_bits & insn_bits)
10752 as_bad (_("Internal error: bad microMIPS opcode "
10753 "(bits 0x%lx undefined): %s %s"),
10754 ~used_bits & insn_bits, opc->name, opc->args);
10755 if (used_bits & ~insn_bits)
10756 as_bad (_("Internal error: bad microMIPS opcode "
10757 "(bits 0x%lx defined): %s %s"),
10758 used_bits & ~insn_bits, opc->name, opc->args);
10759 return 0;
10760 }
10761 return 1;
10762 }
10763
10764 /* UDI immediates. */
10765 struct mips_immed {
10766 char type;
10767 unsigned int shift;
10768 unsigned long mask;
10769 const char * desc;
10770 };
10771
10772 static const struct mips_immed mips_immed[] = {
10773 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
10774 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
10775 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
10776 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
10777 { 0,0,0,0 }
10778 };
10779
10780 /* Check whether an odd floating-point register is allowed. */
10781 static int
10782 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
10783 {
10784 const char *s = insn->name;
10785
10786 if (insn->pinfo == INSN_MACRO)
10787 /* Let a macro pass, we'll catch it later when it is expanded. */
10788 return 1;
10789
10790 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || (mips_opts.arch == CPU_R5900))
10791 {
10792 /* Allow odd registers for single-precision ops. */
10793 switch (insn->pinfo & (FP_S | FP_D))
10794 {
10795 case FP_S:
10796 case 0:
10797 return 1; /* both single precision - ok */
10798 case FP_D:
10799 return 0; /* both double precision - fail */
10800 default:
10801 break;
10802 }
10803
10804 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
10805 s = strchr (insn->name, '.');
10806 if (argnum == 2)
10807 s = s != NULL ? strchr (s + 1, '.') : NULL;
10808 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
10809 }
10810
10811 /* Single-precision coprocessor loads and moves are OK too. */
10812 if ((insn->pinfo & FP_S)
10813 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
10814 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
10815 return 1;
10816
10817 return 0;
10818 }
10819
10820 /* Check if EXPR is a constant between MIN (inclusive) and MAX (exclusive)
10821 taking bits from BIT up. */
10822 static int
10823 expr_const_in_range (expressionS *ep, offsetT min, offsetT max, int bit)
10824 {
10825 return (ep->X_op == O_constant
10826 && (ep->X_add_number & ((1 << bit) - 1)) == 0
10827 && ep->X_add_number >= min << bit
10828 && ep->X_add_number < max << bit);
10829 }
10830
10831 /* This routine assembles an instruction into its binary format. As a
10832 side effect, it sets one of the global variables imm_reloc or
10833 offset_reloc to the type of relocation to do if one of the operands
10834 is an address expression. */
10835
10836 static void
10837 mips_ip (char *str, struct mips_cl_insn *ip)
10838 {
10839 bfd_boolean wrong_delay_slot_insns = FALSE;
10840 bfd_boolean need_delay_slot_ok = TRUE;
10841 struct mips_opcode *firstinsn = NULL;
10842 const struct mips_opcode *past;
10843 struct hash_control *hash;
10844 char *s;
10845 const char *args;
10846 char c = 0;
10847 struct mips_opcode *insn;
10848 char *argsStart;
10849 unsigned int regno;
10850 unsigned int lastregno;
10851 unsigned int destregno = 0;
10852 unsigned int lastpos = 0;
10853 unsigned int limlo, limhi;
10854 int sizelo;
10855 char *s_reset;
10856 offsetT min_range, max_range;
10857 long opend;
10858 char *name;
10859 int argnum;
10860 unsigned int rtype;
10861 char *dot;
10862 long end;
10863
10864 insn_error = NULL;
10865
10866 if (mips_opts.micromips)
10867 {
10868 hash = micromips_op_hash;
10869 past = &micromips_opcodes[bfd_micromips_num_opcodes];
10870 }
10871 else
10872 {
10873 hash = op_hash;
10874 past = &mips_opcodes[NUMOPCODES];
10875 }
10876 forced_insn_length = 0;
10877 insn = NULL;
10878
10879 /* We first try to match an instruction up to a space or to the end. */
10880 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
10881 continue;
10882
10883 /* Make a copy of the instruction so that we can fiddle with it. */
10884 name = alloca (end + 1);
10885 memcpy (name, str, end);
10886 name[end] = '\0';
10887
10888 for (;;)
10889 {
10890 insn = (struct mips_opcode *) hash_find (hash, name);
10891
10892 if (insn != NULL || !mips_opts.micromips)
10893 break;
10894 if (forced_insn_length)
10895 break;
10896
10897 /* See if there's an instruction size override suffix,
10898 either `16' or `32', at the end of the mnemonic proper,
10899 that defines the operation, i.e. before the first `.'
10900 character if any. Strip it and retry. */
10901 dot = strchr (name, '.');
10902 opend = dot != NULL ? dot - name : end;
10903 if (opend < 3)
10904 break;
10905 if (name[opend - 2] == '1' && name[opend - 1] == '6')
10906 forced_insn_length = 2;
10907 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
10908 forced_insn_length = 4;
10909 else
10910 break;
10911 memcpy (name + opend - 2, name + opend, end - opend + 1);
10912 }
10913 if (insn == NULL)
10914 {
10915 insn_error = _("Unrecognized opcode");
10916 return;
10917 }
10918
10919 /* For microMIPS instructions placed in a fixed-length branch delay slot
10920 we make up to two passes over the relevant fragment of the opcode
10921 table. First we try instructions that meet the delay slot's length
10922 requirement. If none matched, then we retry with the remaining ones
10923 and if one matches, then we use it and then issue an appropriate
10924 warning later on. */
10925 argsStart = s = str + end;
10926 for (;;)
10927 {
10928 bfd_boolean delay_slot_ok;
10929 bfd_boolean size_ok;
10930 bfd_boolean ok;
10931
10932 gas_assert (strcmp (insn->name, name) == 0);
10933
10934 ok = is_opcode_valid (insn);
10935 size_ok = is_size_valid (insn);
10936 delay_slot_ok = is_delay_slot_valid (insn);
10937 if (!delay_slot_ok && !wrong_delay_slot_insns)
10938 {
10939 firstinsn = insn;
10940 wrong_delay_slot_insns = TRUE;
10941 }
10942 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
10943 {
10944 static char buf[256];
10945
10946 if (insn + 1 < past && strcmp (insn->name, insn[1].name) == 0)
10947 {
10948 ++insn;
10949 continue;
10950 }
10951 if (wrong_delay_slot_insns && need_delay_slot_ok)
10952 {
10953 gas_assert (firstinsn);
10954 need_delay_slot_ok = FALSE;
10955 past = insn + 1;
10956 insn = firstinsn;
10957 continue;
10958 }
10959
10960 if (insn_error)
10961 return;
10962
10963 if (!ok)
10964 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
10965 mips_cpu_info_from_arch (mips_opts.arch)->name,
10966 mips_cpu_info_from_isa (mips_opts.isa)->name);
10967 else
10968 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
10969 8 * forced_insn_length);
10970 insn_error = buf;
10971
10972 return;
10973 }
10974
10975 create_insn (ip, insn);
10976 insn_error = NULL;
10977 argnum = 1;
10978 lastregno = 0xffffffff;
10979 for (args = insn->args;; ++args)
10980 {
10981 int is_mdmx;
10982
10983 s += strspn (s, " \t");
10984 is_mdmx = 0;
10985 switch (*args)
10986 {
10987 case '\0': /* end of args */
10988 if (*s == '\0')
10989 return;
10990 break;
10991
10992 case '2':
10993 /* DSP 2-bit unsigned immediate in bit 11 (for standard MIPS
10994 code) or 14 (for microMIPS code). */
10995 my_getExpression (&imm_expr, s);
10996 check_absolute_expr (ip, &imm_expr);
10997 if ((unsigned long) imm_expr.X_add_number != 1
10998 && (unsigned long) imm_expr.X_add_number != 3)
10999 {
11000 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
11001 (unsigned long) imm_expr.X_add_number);
11002 }
11003 INSERT_OPERAND (mips_opts.micromips,
11004 BP, *ip, imm_expr.X_add_number);
11005 imm_expr.X_op = O_absent;
11006 s = expr_end;
11007 continue;
11008
11009 case '3':
11010 /* DSP 3-bit unsigned immediate in bit 13 (for standard MIPS
11011 code) or 21 (for microMIPS code). */
11012 {
11013 unsigned long mask = (mips_opts.micromips
11014 ? MICROMIPSOP_MASK_SA3 : OP_MASK_SA3);
11015
11016 my_getExpression (&imm_expr, s);
11017 check_absolute_expr (ip, &imm_expr);
11018 if ((unsigned long) imm_expr.X_add_number > mask)
11019 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11020 mask, (unsigned long) imm_expr.X_add_number);
11021 INSERT_OPERAND (mips_opts.micromips,
11022 SA3, *ip, imm_expr.X_add_number);
11023 imm_expr.X_op = O_absent;
11024 s = expr_end;
11025 }
11026 continue;
11027
11028 case '4':
11029 /* DSP 4-bit unsigned immediate in bit 12 (for standard MIPS
11030 code) or 21 (for microMIPS code). */
11031 {
11032 unsigned long mask = (mips_opts.micromips
11033 ? MICROMIPSOP_MASK_SA4 : OP_MASK_SA4);
11034
11035 my_getExpression (&imm_expr, s);
11036 check_absolute_expr (ip, &imm_expr);
11037 if ((unsigned long) imm_expr.X_add_number > mask)
11038 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11039 mask, (unsigned long) imm_expr.X_add_number);
11040 INSERT_OPERAND (mips_opts.micromips,
11041 SA4, *ip, imm_expr.X_add_number);
11042 imm_expr.X_op = O_absent;
11043 s = expr_end;
11044 }
11045 continue;
11046
11047 case '5':
11048 /* DSP 8-bit unsigned immediate in bit 13 (for standard MIPS
11049 code) or 16 (for microMIPS code). */
11050 {
11051 unsigned long mask = (mips_opts.micromips
11052 ? MICROMIPSOP_MASK_IMM8 : OP_MASK_IMM8);
11053
11054 my_getExpression (&imm_expr, s);
11055 check_absolute_expr (ip, &imm_expr);
11056 if ((unsigned long) imm_expr.X_add_number > mask)
11057 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11058 mask, (unsigned long) imm_expr.X_add_number);
11059 INSERT_OPERAND (mips_opts.micromips,
11060 IMM8, *ip, imm_expr.X_add_number);
11061 imm_expr.X_op = O_absent;
11062 s = expr_end;
11063 }
11064 continue;
11065
11066 case '6':
11067 /* DSP 5-bit unsigned immediate in bit 16 (for standard MIPS
11068 code) or 21 (for microMIPS code). */
11069 {
11070 unsigned long mask = (mips_opts.micromips
11071 ? MICROMIPSOP_MASK_RS : OP_MASK_RS);
11072
11073 my_getExpression (&imm_expr, s);
11074 check_absolute_expr (ip, &imm_expr);
11075 if ((unsigned long) imm_expr.X_add_number > mask)
11076 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11077 mask, (unsigned long) imm_expr.X_add_number);
11078 INSERT_OPERAND (mips_opts.micromips,
11079 RS, *ip, imm_expr.X_add_number);
11080 imm_expr.X_op = O_absent;
11081 s = expr_end;
11082 }
11083 continue;
11084
11085 case '7': /* Four DSP accumulators in bits 11,12. */
11086 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11087 && s[3] >= '0' && s[3] <= '3')
11088 {
11089 regno = s[3] - '0';
11090 s += 4;
11091 INSERT_OPERAND (mips_opts.micromips, DSPACC, *ip, regno);
11092 continue;
11093 }
11094 else
11095 as_bad (_("Invalid dsp acc register"));
11096 break;
11097
11098 case '8':
11099 /* DSP 6-bit unsigned immediate in bit 11 (for standard MIPS
11100 code) or 14 (for microMIPS code). */
11101 {
11102 unsigned long mask = (mips_opts.micromips
11103 ? MICROMIPSOP_MASK_WRDSP
11104 : OP_MASK_WRDSP);
11105
11106 my_getExpression (&imm_expr, s);
11107 check_absolute_expr (ip, &imm_expr);
11108 if ((unsigned long) imm_expr.X_add_number > mask)
11109 as_bad (_("DSP immediate not in range 0..%lu (%lu)"),
11110 mask, (unsigned long) imm_expr.X_add_number);
11111 INSERT_OPERAND (mips_opts.micromips,
11112 WRDSP, *ip, imm_expr.X_add_number);
11113 imm_expr.X_op = O_absent;
11114 s = expr_end;
11115 }
11116 continue;
11117
11118 case '9': /* Four DSP accumulators in bits 21,22. */
11119 gas_assert (!mips_opts.micromips);
11120 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c'
11121 && s[3] >= '0' && s[3] <= '3')
11122 {
11123 regno = s[3] - '0';
11124 s += 4;
11125 INSERT_OPERAND (0, DSPACC_S, *ip, regno);
11126 continue;
11127 }
11128 else
11129 as_bad (_("Invalid dsp acc register"));
11130 break;
11131
11132 case '0':
11133 /* DSP 6-bit signed immediate in bit 16 (for standard MIPS
11134 code) or 20 (for microMIPS code). */
11135 {
11136 long mask = (mips_opts.micromips
11137 ? MICROMIPSOP_MASK_DSPSFT : OP_MASK_DSPSFT);
11138
11139 my_getExpression (&imm_expr, s);
11140 check_absolute_expr (ip, &imm_expr);
11141 min_range = -((mask + 1) >> 1);
11142 max_range = ((mask + 1) >> 1) - 1;
11143 if (imm_expr.X_add_number < min_range
11144 || imm_expr.X_add_number > max_range)
11145 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11146 (long) min_range, (long) max_range,
11147 (long) imm_expr.X_add_number);
11148 INSERT_OPERAND (mips_opts.micromips,
11149 DSPSFT, *ip, imm_expr.X_add_number);
11150 imm_expr.X_op = O_absent;
11151 s = expr_end;
11152 }
11153 continue;
11154
11155 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
11156 gas_assert (!mips_opts.micromips);
11157 my_getExpression (&imm_expr, s);
11158 check_absolute_expr (ip, &imm_expr);
11159 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
11160 {
11161 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11162 OP_MASK_RDDSP,
11163 (unsigned long) imm_expr.X_add_number);
11164 }
11165 INSERT_OPERAND (0, RDDSP, *ip, imm_expr.X_add_number);
11166 imm_expr.X_op = O_absent;
11167 s = expr_end;
11168 continue;
11169
11170 case ':': /* DSP 7-bit signed immediate in bit 19. */
11171 gas_assert (!mips_opts.micromips);
11172 my_getExpression (&imm_expr, s);
11173 check_absolute_expr (ip, &imm_expr);
11174 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
11175 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
11176 if (imm_expr.X_add_number < min_range ||
11177 imm_expr.X_add_number > max_range)
11178 {
11179 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11180 (long) min_range, (long) max_range,
11181 (long) imm_expr.X_add_number);
11182 }
11183 INSERT_OPERAND (0, DSPSFT_7, *ip, imm_expr.X_add_number);
11184 imm_expr.X_op = O_absent;
11185 s = expr_end;
11186 continue;
11187
11188 case '@': /* DSP 10-bit signed immediate in bit 16. */
11189 {
11190 long mask = (mips_opts.micromips
11191 ? MICROMIPSOP_MASK_IMM10 : OP_MASK_IMM10);
11192
11193 my_getExpression (&imm_expr, s);
11194 check_absolute_expr (ip, &imm_expr);
11195 min_range = -((mask + 1) >> 1);
11196 max_range = ((mask + 1) >> 1) - 1;
11197 if (imm_expr.X_add_number < min_range
11198 || imm_expr.X_add_number > max_range)
11199 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
11200 (long) min_range, (long) max_range,
11201 (long) imm_expr.X_add_number);
11202 INSERT_OPERAND (mips_opts.micromips,
11203 IMM10, *ip, imm_expr.X_add_number);
11204 imm_expr.X_op = O_absent;
11205 s = expr_end;
11206 }
11207 continue;
11208
11209 case '^': /* DSP 5-bit unsigned immediate in bit 11. */
11210 gas_assert (mips_opts.micromips);
11211 my_getExpression (&imm_expr, s);
11212 check_absolute_expr (ip, &imm_expr);
11213 if (imm_expr.X_add_number & ~MICROMIPSOP_MASK_RD)
11214 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
11215 MICROMIPSOP_MASK_RD,
11216 (unsigned long) imm_expr.X_add_number);
11217 INSERT_OPERAND (1, RD, *ip, imm_expr.X_add_number);
11218 imm_expr.X_op = O_absent;
11219 s = expr_end;
11220 continue;
11221
11222 case '!': /* MT usermode flag bit. */
11223 gas_assert (!mips_opts.micromips);
11224 my_getExpression (&imm_expr, s);
11225 check_absolute_expr (ip, &imm_expr);
11226 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
11227 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
11228 (unsigned long) imm_expr.X_add_number);
11229 INSERT_OPERAND (0, MT_U, *ip, imm_expr.X_add_number);
11230 imm_expr.X_op = O_absent;
11231 s = expr_end;
11232 continue;
11233
11234 case '$': /* MT load high flag bit. */
11235 gas_assert (!mips_opts.micromips);
11236 my_getExpression (&imm_expr, s);
11237 check_absolute_expr (ip, &imm_expr);
11238 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
11239 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
11240 (unsigned long) imm_expr.X_add_number);
11241 INSERT_OPERAND (0, MT_H, *ip, imm_expr.X_add_number);
11242 imm_expr.X_op = O_absent;
11243 s = expr_end;
11244 continue;
11245
11246 case '*': /* Four DSP accumulators in bits 18,19. */
11247 gas_assert (!mips_opts.micromips);
11248 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11249 s[3] >= '0' && s[3] <= '3')
11250 {
11251 regno = s[3] - '0';
11252 s += 4;
11253 INSERT_OPERAND (0, MTACC_T, *ip, regno);
11254 continue;
11255 }
11256 else
11257 as_bad (_("Invalid dsp/smartmips acc register"));
11258 break;
11259
11260 case '&': /* Four DSP accumulators in bits 13,14. */
11261 gas_assert (!mips_opts.micromips);
11262 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
11263 s[3] >= '0' && s[3] <= '3')
11264 {
11265 regno = s[3] - '0';
11266 s += 4;
11267 INSERT_OPERAND (0, MTACC_D, *ip, regno);
11268 continue;
11269 }
11270 else
11271 as_bad (_("Invalid dsp/smartmips acc register"));
11272 break;
11273
11274 case '\\': /* 3-bit bit position. */
11275 {
11276 unsigned long mask = (mips_opts.micromips
11277 ? MICROMIPSOP_MASK_3BITPOS
11278 : OP_MASK_3BITPOS);
11279
11280 my_getExpression (&imm_expr, s);
11281 check_absolute_expr (ip, &imm_expr);
11282 if ((unsigned long) imm_expr.X_add_number > mask)
11283 as_warn (_("Bit position for %s not in range 0..%lu (%lu)"),
11284 ip->insn_mo->name,
11285 mask, (unsigned long) imm_expr.X_add_number);
11286 INSERT_OPERAND (mips_opts.micromips,
11287 3BITPOS, *ip, imm_expr.X_add_number);
11288 imm_expr.X_op = O_absent;
11289 s = expr_end;
11290 }
11291 continue;
11292
11293 case ',':
11294 ++argnum;
11295 if (*s++ == *args)
11296 continue;
11297 s--;
11298 switch (*++args)
11299 {
11300 case 'r':
11301 case 'v':
11302 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
11303 continue;
11304
11305 case 'w':
11306 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
11307 continue;
11308
11309 case 'W':
11310 gas_assert (!mips_opts.micromips);
11311 INSERT_OPERAND (0, FT, *ip, lastregno);
11312 continue;
11313
11314 case 'V':
11315 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
11316 continue;
11317 }
11318 break;
11319
11320 case '(':
11321 /* Handle optional base register.
11322 Either the base register is omitted or
11323 we must have a left paren. */
11324 /* This is dependent on the next operand specifier
11325 is a base register specification. */
11326 gas_assert (args[1] == 'b'
11327 || (mips_opts.micromips
11328 && args[1] == 'm'
11329 && (args[2] == 'l' || args[2] == 'n'
11330 || args[2] == 's' || args[2] == 'a')));
11331 if (*s == '\0' && args[1] == 'b')
11332 return;
11333 /* Fall through. */
11334
11335 case ')': /* These must match exactly. */
11336 if (*s++ == *args)
11337 continue;
11338 break;
11339
11340 case '[': /* These must match exactly. */
11341 case ']':
11342 gas_assert (!mips_opts.micromips);
11343 if (*s++ == *args)
11344 continue;
11345 break;
11346
11347 case '+': /* Opcode extension character. */
11348 switch (*++args)
11349 {
11350 case '1': /* UDI immediates. */
11351 case '2':
11352 case '3':
11353 case '4':
11354 gas_assert (!mips_opts.micromips);
11355 {
11356 const struct mips_immed *imm = mips_immed;
11357
11358 while (imm->type && imm->type != *args)
11359 ++imm;
11360 if (! imm->type)
11361 abort ();
11362 my_getExpression (&imm_expr, s);
11363 check_absolute_expr (ip, &imm_expr);
11364 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
11365 {
11366 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
11367 imm->desc ? imm->desc : ip->insn_mo->name,
11368 (unsigned long) imm_expr.X_add_number,
11369 (unsigned long) imm_expr.X_add_number);
11370 imm_expr.X_add_number &= imm->mask;
11371 }
11372 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
11373 << imm->shift);
11374 imm_expr.X_op = O_absent;
11375 s = expr_end;
11376 }
11377 continue;
11378
11379 case 'J': /* 10-bit hypcall code. */
11380 gas_assert (!mips_opts.micromips);
11381 {
11382 unsigned long mask = OP_MASK_CODE10;
11383
11384 my_getExpression (&imm_expr, s);
11385 check_absolute_expr (ip, &imm_expr);
11386 if ((unsigned long) imm_expr.X_add_number > mask)
11387 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11388 ip->insn_mo->name,
11389 mask, (unsigned long) imm_expr.X_add_number);
11390 INSERT_OPERAND (0, CODE10, *ip, imm_expr.X_add_number);
11391 imm_expr.X_op = O_absent;
11392 s = expr_end;
11393 }
11394 continue;
11395
11396 case 'A': /* ins/ext position, becomes LSB. */
11397 limlo = 0;
11398 limhi = 31;
11399 goto do_lsb;
11400 case 'E':
11401 limlo = 32;
11402 limhi = 63;
11403 goto do_lsb;
11404 do_lsb:
11405 my_getExpression (&imm_expr, s);
11406 check_absolute_expr (ip, &imm_expr);
11407 if ((unsigned long) imm_expr.X_add_number < limlo
11408 || (unsigned long) imm_expr.X_add_number > limhi)
11409 {
11410 as_bad (_("Improper position (%lu)"),
11411 (unsigned long) imm_expr.X_add_number);
11412 imm_expr.X_add_number = limlo;
11413 }
11414 lastpos = imm_expr.X_add_number;
11415 INSERT_OPERAND (mips_opts.micromips,
11416 EXTLSB, *ip, imm_expr.X_add_number);
11417 imm_expr.X_op = O_absent;
11418 s = expr_end;
11419 continue;
11420
11421 case 'B': /* ins size, becomes MSB. */
11422 limlo = 1;
11423 limhi = 32;
11424 goto do_msb;
11425 case 'F':
11426 limlo = 33;
11427 limhi = 64;
11428 goto do_msb;
11429 do_msb:
11430 my_getExpression (&imm_expr, s);
11431 check_absolute_expr (ip, &imm_expr);
11432 /* Check for negative input so that small negative numbers
11433 will not succeed incorrectly. The checks against
11434 (pos+size) transitively check "size" itself,
11435 assuming that "pos" is reasonable. */
11436 if ((long) imm_expr.X_add_number < 0
11437 || ((unsigned long) imm_expr.X_add_number
11438 + lastpos) < limlo
11439 || ((unsigned long) imm_expr.X_add_number
11440 + lastpos) > limhi)
11441 {
11442 as_bad (_("Improper insert size (%lu, position %lu)"),
11443 (unsigned long) imm_expr.X_add_number,
11444 (unsigned long) lastpos);
11445 imm_expr.X_add_number = limlo - lastpos;
11446 }
11447 INSERT_OPERAND (mips_opts.micromips, INSMSB, *ip,
11448 lastpos + imm_expr.X_add_number - 1);
11449 imm_expr.X_op = O_absent;
11450 s = expr_end;
11451 continue;
11452
11453 case 'C': /* ext size, becomes MSBD. */
11454 limlo = 1;
11455 limhi = 32;
11456 sizelo = 1;
11457 goto do_msbd;
11458 case 'G':
11459 limlo = 33;
11460 limhi = 64;
11461 sizelo = 33;
11462 goto do_msbd;
11463 case 'H':
11464 limlo = 33;
11465 limhi = 64;
11466 sizelo = 1;
11467 goto do_msbd;
11468 do_msbd:
11469 my_getExpression (&imm_expr, s);
11470 check_absolute_expr (ip, &imm_expr);
11471 /* The checks against (pos+size) don't transitively check
11472 "size" itself, assuming that "pos" is reasonable.
11473 We also need to check the lower bound of "size". */
11474 if ((long) imm_expr.X_add_number < sizelo
11475 || ((unsigned long) imm_expr.X_add_number
11476 + lastpos) < limlo
11477 || ((unsigned long) imm_expr.X_add_number
11478 + lastpos) > limhi)
11479 {
11480 as_bad (_("Improper extract size (%lu, position %lu)"),
11481 (unsigned long) imm_expr.X_add_number,
11482 (unsigned long) lastpos);
11483 imm_expr.X_add_number = limlo - lastpos;
11484 }
11485 INSERT_OPERAND (mips_opts.micromips,
11486 EXTMSBD, *ip, imm_expr.X_add_number - 1);
11487 imm_expr.X_op = O_absent;
11488 s = expr_end;
11489 continue;
11490
11491 case 'D':
11492 /* +D is for disassembly only; never match. */
11493 break;
11494
11495 case 'I':
11496 /* "+I" is like "I", except that imm2_expr is used. */
11497 my_getExpression (&imm2_expr, s);
11498 if (imm2_expr.X_op != O_big
11499 && imm2_expr.X_op != O_constant)
11500 insn_error = _("absolute expression required");
11501 if (HAVE_32BIT_GPRS)
11502 normalize_constant_expr (&imm2_expr);
11503 s = expr_end;
11504 continue;
11505
11506 case 'T': /* Coprocessor register. */
11507 gas_assert (!mips_opts.micromips);
11508 /* +T is for disassembly only; never match. */
11509 break;
11510
11511 case 't': /* Coprocessor register number. */
11512 gas_assert (!mips_opts.micromips);
11513 if (s[0] == '$' && ISDIGIT (s[1]))
11514 {
11515 ++s;
11516 regno = 0;
11517 do
11518 {
11519 regno *= 10;
11520 regno += *s - '0';
11521 ++s;
11522 }
11523 while (ISDIGIT (*s));
11524 if (regno > 31)
11525 as_bad (_("Invalid register number (%d)"), regno);
11526 else
11527 {
11528 INSERT_OPERAND (0, RT, *ip, regno);
11529 continue;
11530 }
11531 }
11532 else
11533 as_bad (_("Invalid coprocessor 0 register number"));
11534 break;
11535
11536 case 'x':
11537 /* bbit[01] and bbit[01]32 bit index. Give error if index
11538 is not in the valid range. */
11539 gas_assert (!mips_opts.micromips);
11540 my_getExpression (&imm_expr, s);
11541 check_absolute_expr (ip, &imm_expr);
11542 if ((unsigned) imm_expr.X_add_number > 31)
11543 {
11544 as_bad (_("Improper bit index (%lu)"),
11545 (unsigned long) imm_expr.X_add_number);
11546 imm_expr.X_add_number = 0;
11547 }
11548 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number);
11549 imm_expr.X_op = O_absent;
11550 s = expr_end;
11551 continue;
11552
11553 case 'X':
11554 /* bbit[01] bit index when bbit is used but we generate
11555 bbit[01]32 because the index is over 32. Move to the
11556 next candidate if index is not in the valid range. */
11557 gas_assert (!mips_opts.micromips);
11558 my_getExpression (&imm_expr, s);
11559 check_absolute_expr (ip, &imm_expr);
11560 if ((unsigned) imm_expr.X_add_number < 32
11561 || (unsigned) imm_expr.X_add_number > 63)
11562 break;
11563 INSERT_OPERAND (0, BBITIND, *ip, imm_expr.X_add_number - 32);
11564 imm_expr.X_op = O_absent;
11565 s = expr_end;
11566 continue;
11567
11568 case 'p':
11569 /* cins, cins32, exts and exts32 position field. Give error
11570 if it's not in the valid range. */
11571 gas_assert (!mips_opts.micromips);
11572 my_getExpression (&imm_expr, s);
11573 check_absolute_expr (ip, &imm_expr);
11574 if ((unsigned) imm_expr.X_add_number > 31)
11575 {
11576 as_bad (_("Improper position (%lu)"),
11577 (unsigned long) imm_expr.X_add_number);
11578 imm_expr.X_add_number = 0;
11579 }
11580 /* Make the pos explicit to simplify +S. */
11581 lastpos = imm_expr.X_add_number + 32;
11582 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number);
11583 imm_expr.X_op = O_absent;
11584 s = expr_end;
11585 continue;
11586
11587 case 'P':
11588 /* cins, cins32, exts and exts32 position field. Move to
11589 the next candidate if it's not in the valid range. */
11590 gas_assert (!mips_opts.micromips);
11591 my_getExpression (&imm_expr, s);
11592 check_absolute_expr (ip, &imm_expr);
11593 if ((unsigned) imm_expr.X_add_number < 32
11594 || (unsigned) imm_expr.X_add_number > 63)
11595 break;
11596 lastpos = imm_expr.X_add_number;
11597 INSERT_OPERAND (0, CINSPOS, *ip, imm_expr.X_add_number - 32);
11598 imm_expr.X_op = O_absent;
11599 s = expr_end;
11600 continue;
11601
11602 case 's':
11603 /* cins and exts length-minus-one field. */
11604 gas_assert (!mips_opts.micromips);
11605 my_getExpression (&imm_expr, s);
11606 check_absolute_expr (ip, &imm_expr);
11607 if ((unsigned long) imm_expr.X_add_number > 31)
11608 {
11609 as_bad (_("Improper size (%lu)"),
11610 (unsigned long) imm_expr.X_add_number);
11611 imm_expr.X_add_number = 0;
11612 }
11613 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11614 imm_expr.X_op = O_absent;
11615 s = expr_end;
11616 continue;
11617
11618 case 'S':
11619 /* cins32/exts32 and cins/exts aliasing cint32/exts32
11620 length-minus-one field. */
11621 gas_assert (!mips_opts.micromips);
11622 my_getExpression (&imm_expr, s);
11623 check_absolute_expr (ip, &imm_expr);
11624 if ((long) imm_expr.X_add_number < 0
11625 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
11626 {
11627 as_bad (_("Improper size (%lu)"),
11628 (unsigned long) imm_expr.X_add_number);
11629 imm_expr.X_add_number = 0;
11630 }
11631 INSERT_OPERAND (0, CINSLM1, *ip, imm_expr.X_add_number);
11632 imm_expr.X_op = O_absent;
11633 s = expr_end;
11634 continue;
11635
11636 case 'Q':
11637 /* seqi/snei immediate field. */
11638 gas_assert (!mips_opts.micromips);
11639 my_getExpression (&imm_expr, s);
11640 check_absolute_expr (ip, &imm_expr);
11641 if ((long) imm_expr.X_add_number < -512
11642 || (long) imm_expr.X_add_number >= 512)
11643 {
11644 as_bad (_("Improper immediate (%ld)"),
11645 (long) imm_expr.X_add_number);
11646 imm_expr.X_add_number = 0;
11647 }
11648 INSERT_OPERAND (0, SEQI, *ip, imm_expr.X_add_number);
11649 imm_expr.X_op = O_absent;
11650 s = expr_end;
11651 continue;
11652
11653 case 'a': /* 8-bit signed offset in bit 6 */
11654 gas_assert (!mips_opts.micromips);
11655 my_getExpression (&imm_expr, s);
11656 check_absolute_expr (ip, &imm_expr);
11657 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
11658 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
11659 if (imm_expr.X_add_number < min_range
11660 || imm_expr.X_add_number > max_range)
11661 {
11662 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11663 (long) min_range, (long) max_range,
11664 (long) imm_expr.X_add_number);
11665 }
11666 INSERT_OPERAND (0, OFFSET_A, *ip, imm_expr.X_add_number);
11667 imm_expr.X_op = O_absent;
11668 s = expr_end;
11669 continue;
11670
11671 case 'b': /* 8-bit signed offset in bit 3 */
11672 gas_assert (!mips_opts.micromips);
11673 my_getExpression (&imm_expr, s);
11674 check_absolute_expr (ip, &imm_expr);
11675 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
11676 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
11677 if (imm_expr.X_add_number < min_range
11678 || imm_expr.X_add_number > max_range)
11679 {
11680 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11681 (long) min_range, (long) max_range,
11682 (long) imm_expr.X_add_number);
11683 }
11684 INSERT_OPERAND (0, OFFSET_B, *ip, imm_expr.X_add_number);
11685 imm_expr.X_op = O_absent;
11686 s = expr_end;
11687 continue;
11688
11689 case 'c': /* 9-bit signed offset in bit 6 */
11690 gas_assert (!mips_opts.micromips);
11691 my_getExpression (&imm_expr, s);
11692 check_absolute_expr (ip, &imm_expr);
11693 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
11694 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
11695 /* We check the offset range before adjusted. */
11696 min_range <<= 4;
11697 max_range <<= 4;
11698 if (imm_expr.X_add_number < min_range
11699 || imm_expr.X_add_number > max_range)
11700 {
11701 as_bad (_("Offset not in range %ld..%ld (%ld)"),
11702 (long) min_range, (long) max_range,
11703 (long) imm_expr.X_add_number);
11704 }
11705 if (imm_expr.X_add_number & 0xf)
11706 {
11707 as_bad (_("Offset not 16 bytes alignment (%ld)"),
11708 (long) imm_expr.X_add_number);
11709 }
11710 /* Right shift 4 bits to adjust the offset operand. */
11711 INSERT_OPERAND (0, OFFSET_C, *ip,
11712 imm_expr.X_add_number >> 4);
11713 imm_expr.X_op = O_absent;
11714 s = expr_end;
11715 continue;
11716
11717 case 'z':
11718 gas_assert (!mips_opts.micromips);
11719 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
11720 break;
11721 if (regno == AT && mips_opts.at)
11722 {
11723 if (mips_opts.at == ATREG)
11724 as_warn (_("used $at without \".set noat\""));
11725 else
11726 as_warn (_("used $%u with \".set at=$%u\""),
11727 regno, mips_opts.at);
11728 }
11729 INSERT_OPERAND (0, RZ, *ip, regno);
11730 continue;
11731
11732 case 'Z':
11733 gas_assert (!mips_opts.micromips);
11734 if (!reg_lookup (&s, RTYPE_FPU, &regno))
11735 break;
11736 INSERT_OPERAND (0, FZ, *ip, regno);
11737 continue;
11738
11739 default:
11740 as_bad (_("Internal error: bad %s opcode "
11741 "(unknown extension operand type `+%c'): %s %s"),
11742 mips_opts.micromips ? "microMIPS" : "MIPS",
11743 *args, insn->name, insn->args);
11744 /* Further processing is fruitless. */
11745 return;
11746 }
11747 break;
11748
11749 case '.': /* 10-bit offset. */
11750 gas_assert (mips_opts.micromips);
11751 case '~': /* 12-bit offset. */
11752 {
11753 int shift = *args == '.' ? 9 : 11;
11754 size_t i;
11755
11756 /* Check whether there is only a single bracketed expression
11757 left. If so, it must be the base register and the
11758 constant must be zero. */
11759 if (*s == '(' && strchr (s + 1, '(') == 0)
11760 continue;
11761
11762 /* If this value won't fit into the offset, then go find
11763 a macro that will generate a 16- or 32-bit offset code
11764 pattern. */
11765 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
11766 if ((i == 0 && (imm_expr.X_op != O_constant
11767 || imm_expr.X_add_number >= 1 << shift
11768 || imm_expr.X_add_number < -1 << shift))
11769 || i > 0)
11770 {
11771 imm_expr.X_op = O_absent;
11772 break;
11773 }
11774 if (shift == 9)
11775 INSERT_OPERAND (1, OFFSET10, *ip, imm_expr.X_add_number);
11776 else
11777 INSERT_OPERAND (mips_opts.micromips,
11778 OFFSET12, *ip, imm_expr.X_add_number);
11779 imm_expr.X_op = O_absent;
11780 s = expr_end;
11781 }
11782 continue;
11783
11784 case '<': /* must be at least one digit */
11785 /*
11786 * According to the manual, if the shift amount is greater
11787 * than 31 or less than 0, then the shift amount should be
11788 * mod 32. In reality the mips assembler issues an error.
11789 * We issue a warning and mask out all but the low 5 bits.
11790 */
11791 my_getExpression (&imm_expr, s);
11792 check_absolute_expr (ip, &imm_expr);
11793 if ((unsigned long) imm_expr.X_add_number > 31)
11794 as_warn (_("Improper shift amount (%lu)"),
11795 (unsigned long) imm_expr.X_add_number);
11796 INSERT_OPERAND (mips_opts.micromips,
11797 SHAMT, *ip, imm_expr.X_add_number);
11798 imm_expr.X_op = O_absent;
11799 s = expr_end;
11800 continue;
11801
11802 case '>': /* shift amount minus 32 */
11803 my_getExpression (&imm_expr, s);
11804 check_absolute_expr (ip, &imm_expr);
11805 if ((unsigned long) imm_expr.X_add_number < 32
11806 || (unsigned long) imm_expr.X_add_number > 63)
11807 break;
11808 INSERT_OPERAND (mips_opts.micromips,
11809 SHAMT, *ip, imm_expr.X_add_number - 32);
11810 imm_expr.X_op = O_absent;
11811 s = expr_end;
11812 continue;
11813
11814 case 'k': /* CACHE code. */
11815 case 'h': /* PREFX code. */
11816 case '1': /* SYNC type. */
11817 my_getExpression (&imm_expr, s);
11818 check_absolute_expr (ip, &imm_expr);
11819 if ((unsigned long) imm_expr.X_add_number > 31)
11820 as_warn (_("Invalid value for `%s' (%lu)"),
11821 ip->insn_mo->name,
11822 (unsigned long) imm_expr.X_add_number);
11823 switch (*args)
11824 {
11825 case 'k':
11826 if (mips_fix_cn63xxp1
11827 && !mips_opts.micromips
11828 && strcmp ("pref", insn->name) == 0)
11829 switch (imm_expr.X_add_number)
11830 {
11831 case 5:
11832 case 25:
11833 case 26:
11834 case 27:
11835 case 28:
11836 case 29:
11837 case 30:
11838 case 31: /* These are ok. */
11839 break;
11840
11841 default: /* The rest must be changed to 28. */
11842 imm_expr.X_add_number = 28;
11843 break;
11844 }
11845 INSERT_OPERAND (mips_opts.micromips,
11846 CACHE, *ip, imm_expr.X_add_number);
11847 break;
11848 case 'h':
11849 INSERT_OPERAND (mips_opts.micromips,
11850 PREFX, *ip, imm_expr.X_add_number);
11851 break;
11852 case '1':
11853 INSERT_OPERAND (mips_opts.micromips,
11854 STYPE, *ip, imm_expr.X_add_number);
11855 break;
11856 }
11857 imm_expr.X_op = O_absent;
11858 s = expr_end;
11859 continue;
11860
11861 case 'c': /* BREAK code. */
11862 {
11863 unsigned long mask = (mips_opts.micromips
11864 ? MICROMIPSOP_MASK_CODE
11865 : OP_MASK_CODE);
11866
11867 my_getExpression (&imm_expr, s);
11868 check_absolute_expr (ip, &imm_expr);
11869 if ((unsigned long) imm_expr.X_add_number > mask)
11870 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11871 ip->insn_mo->name,
11872 mask, (unsigned long) imm_expr.X_add_number);
11873 INSERT_OPERAND (mips_opts.micromips,
11874 CODE, *ip, imm_expr.X_add_number);
11875 imm_expr.X_op = O_absent;
11876 s = expr_end;
11877 }
11878 continue;
11879
11880 case 'q': /* Lower BREAK code. */
11881 {
11882 unsigned long mask = (mips_opts.micromips
11883 ? MICROMIPSOP_MASK_CODE2
11884 : OP_MASK_CODE2);
11885
11886 my_getExpression (&imm_expr, s);
11887 check_absolute_expr (ip, &imm_expr);
11888 if ((unsigned long) imm_expr.X_add_number > mask)
11889 as_warn (_("Lower code for %s not in range 0..%lu (%lu)"),
11890 ip->insn_mo->name,
11891 mask, (unsigned long) imm_expr.X_add_number);
11892 INSERT_OPERAND (mips_opts.micromips,
11893 CODE2, *ip, imm_expr.X_add_number);
11894 imm_expr.X_op = O_absent;
11895 s = expr_end;
11896 }
11897 continue;
11898
11899 case 'B': /* 20- or 10-bit syscall/break/wait code. */
11900 {
11901 unsigned long mask = (mips_opts.micromips
11902 ? MICROMIPSOP_MASK_CODE10
11903 : OP_MASK_CODE20);
11904
11905 my_getExpression (&imm_expr, s);
11906 check_absolute_expr (ip, &imm_expr);
11907 if ((unsigned long) imm_expr.X_add_number > mask)
11908 as_warn (_("Code for %s not in range 0..%lu (%lu)"),
11909 ip->insn_mo->name,
11910 mask, (unsigned long) imm_expr.X_add_number);
11911 if (mips_opts.micromips)
11912 INSERT_OPERAND (1, CODE10, *ip, imm_expr.X_add_number);
11913 else
11914 INSERT_OPERAND (0, CODE20, *ip, imm_expr.X_add_number);
11915 imm_expr.X_op = O_absent;
11916 s = expr_end;
11917 }
11918 continue;
11919
11920 case 'C': /* 25- or 23-bit coprocessor code. */
11921 {
11922 unsigned long mask = (mips_opts.micromips
11923 ? MICROMIPSOP_MASK_COPZ
11924 : OP_MASK_COPZ);
11925
11926 my_getExpression (&imm_expr, s);
11927 check_absolute_expr (ip, &imm_expr);
11928 if ((unsigned long) imm_expr.X_add_number > mask)
11929 as_warn (_("Coproccesor code > %u bits (%lu)"),
11930 mips_opts.micromips ? 23U : 25U,
11931 (unsigned long) imm_expr.X_add_number);
11932 INSERT_OPERAND (mips_opts.micromips,
11933 COPZ, *ip, imm_expr.X_add_number);
11934 imm_expr.X_op = O_absent;
11935 s = expr_end;
11936 }
11937 continue;
11938
11939 case 'J': /* 19-bit WAIT code. */
11940 gas_assert (!mips_opts.micromips);
11941 my_getExpression (&imm_expr, s);
11942 check_absolute_expr (ip, &imm_expr);
11943 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
11944 {
11945 as_warn (_("Illegal 19-bit code (%lu)"),
11946 (unsigned long) imm_expr.X_add_number);
11947 imm_expr.X_add_number &= OP_MASK_CODE19;
11948 }
11949 INSERT_OPERAND (0, CODE19, *ip, imm_expr.X_add_number);
11950 imm_expr.X_op = O_absent;
11951 s = expr_end;
11952 continue;
11953
11954 case 'P': /* Performance register. */
11955 gas_assert (!mips_opts.micromips);
11956 my_getExpression (&imm_expr, s);
11957 check_absolute_expr (ip, &imm_expr);
11958 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
11959 as_warn (_("Invalid performance register (%lu)"),
11960 (unsigned long) imm_expr.X_add_number);
11961 if (imm_expr.X_add_number != 0 && mips_opts.arch == CPU_R5900
11962 && (!strcmp(insn->name,"mfps") || !strcmp(insn->name,"mtps")))
11963 as_warn (_("Invalid performance register (%lu)"),
11964 (unsigned long) imm_expr.X_add_number);
11965 INSERT_OPERAND (0, PERFREG, *ip, imm_expr.X_add_number);
11966 imm_expr.X_op = O_absent;
11967 s = expr_end;
11968 continue;
11969
11970 case 'G': /* Coprocessor destination register. */
11971 {
11972 unsigned long opcode = ip->insn_opcode;
11973 unsigned long mask;
11974 unsigned int types;
11975 int cop0;
11976
11977 if (mips_opts.micromips)
11978 {
11979 mask = ~((MICROMIPSOP_MASK_RT << MICROMIPSOP_SH_RT)
11980 | (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS)
11981 | (MICROMIPSOP_MASK_SEL << MICROMIPSOP_SH_SEL));
11982 opcode &= mask;
11983 switch (opcode)
11984 {
11985 case 0x000000fc: /* mfc0 */
11986 case 0x000002fc: /* mtc0 */
11987 case 0x580000fc: /* dmfc0 */
11988 case 0x580002fc: /* dmtc0 */
11989 cop0 = 1;
11990 break;
11991 default:
11992 cop0 = 0;
11993 break;
11994 }
11995 }
11996 else
11997 {
11998 opcode = (opcode >> OP_SH_OP) & OP_MASK_OP;
11999 cop0 = opcode == OP_OP_COP0;
12000 }
12001 types = RTYPE_NUM | (cop0 ? RTYPE_CP0 : RTYPE_GP);
12002 ok = reg_lookup (&s, types, &regno);
12003 if (mips_opts.micromips)
12004 INSERT_OPERAND (1, RS, *ip, regno);
12005 else
12006 INSERT_OPERAND (0, RD, *ip, regno);
12007 if (ok)
12008 {
12009 lastregno = regno;
12010 continue;
12011 }
12012 }
12013 break;
12014
12015 case 'y': /* ALNV.PS source register. */
12016 gas_assert (mips_opts.micromips);
12017 goto do_reg;
12018 case 'x': /* Ignore register name. */
12019 case 'U': /* Destination register (CLO/CLZ). */
12020 case 'g': /* Coprocessor destination register. */
12021 gas_assert (!mips_opts.micromips);
12022 case 'b': /* Base register. */
12023 case 'd': /* Destination register. */
12024 case 's': /* Source register. */
12025 case 't': /* Target register. */
12026 case 'r': /* Both target and source. */
12027 case 'v': /* Both dest and source. */
12028 case 'w': /* Both dest and target. */
12029 case 'E': /* Coprocessor target register. */
12030 case 'K': /* RDHWR destination register. */
12031 case 'z': /* Must be zero register. */
12032 do_reg:
12033 s_reset = s;
12034 if (*args == 'E' || *args == 'K')
12035 ok = reg_lookup (&s, RTYPE_NUM, &regno);
12036 else
12037 {
12038 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
12039 if (regno == AT && mips_opts.at)
12040 {
12041 if (mips_opts.at == ATREG)
12042 as_warn (_("Used $at without \".set noat\""));
12043 else
12044 as_warn (_("Used $%u with \".set at=$%u\""),
12045 regno, mips_opts.at);
12046 }
12047 }
12048 if (ok)
12049 {
12050 c = *args;
12051 if (*s == ' ')
12052 ++s;
12053 if (args[1] != *s)
12054 {
12055 if (c == 'r' || c == 'v' || c == 'w')
12056 {
12057 regno = lastregno;
12058 s = s_reset;
12059 ++args;
12060 }
12061 }
12062 /* 'z' only matches $0. */
12063 if (c == 'z' && regno != 0)
12064 break;
12065
12066 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
12067 {
12068 if (regno == lastregno)
12069 {
12070 insn_error
12071 = _("Source and destination must be different");
12072 continue;
12073 }
12074 if (regno == 31 && lastregno == 0xffffffff)
12075 {
12076 insn_error
12077 = _("A destination register must be supplied");
12078 continue;
12079 }
12080 }
12081 /* Now that we have assembled one operand, we use the args
12082 string to figure out where it goes in the instruction. */
12083 switch (c)
12084 {
12085 case 'r':
12086 case 's':
12087 case 'v':
12088 case 'b':
12089 INSERT_OPERAND (mips_opts.micromips, RS, *ip, regno);
12090 break;
12091
12092 case 'K':
12093 if (mips_opts.micromips)
12094 INSERT_OPERAND (1, RS, *ip, regno);
12095 else
12096 INSERT_OPERAND (0, RD, *ip, regno);
12097 break;
12098
12099 case 'd':
12100 case 'g':
12101 INSERT_OPERAND (mips_opts.micromips, RD, *ip, regno);
12102 break;
12103
12104 case 'U':
12105 gas_assert (!mips_opts.micromips);
12106 INSERT_OPERAND (0, RD, *ip, regno);
12107 INSERT_OPERAND (0, RT, *ip, regno);
12108 break;
12109
12110 case 'w':
12111 case 't':
12112 case 'E':
12113 INSERT_OPERAND (mips_opts.micromips, RT, *ip, regno);
12114 break;
12115
12116 case 'y':
12117 gas_assert (mips_opts.micromips);
12118 INSERT_OPERAND (1, RS3, *ip, regno);
12119 break;
12120
12121 case 'x':
12122 /* This case exists because on the r3000 trunc
12123 expands into a macro which requires a gp
12124 register. On the r6000 or r4000 it is
12125 assembled into a single instruction which
12126 ignores the register. Thus the insn version
12127 is MIPS_ISA2 and uses 'x', and the macro
12128 version is MIPS_ISA1 and uses 't'. */
12129 break;
12130
12131 case 'z':
12132 /* This case is for the div instruction, which
12133 acts differently if the destination argument
12134 is $0. This only matches $0, and is checked
12135 outside the switch. */
12136 break;
12137 }
12138 lastregno = regno;
12139 continue;
12140 }
12141 switch (*args++)
12142 {
12143 case 'r':
12144 case 'v':
12145 INSERT_OPERAND (mips_opts.micromips, RS, *ip, lastregno);
12146 continue;
12147
12148 case 'w':
12149 INSERT_OPERAND (mips_opts.micromips, RT, *ip, lastregno);
12150 continue;
12151 }
12152 break;
12153
12154 case 'O': /* MDMX alignment immediate constant. */
12155 gas_assert (!mips_opts.micromips);
12156 my_getExpression (&imm_expr, s);
12157 check_absolute_expr (ip, &imm_expr);
12158 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
12159 as_warn (_("Improper align amount (%ld), using low bits"),
12160 (long) imm_expr.X_add_number);
12161 INSERT_OPERAND (0, ALN, *ip, imm_expr.X_add_number);
12162 imm_expr.X_op = O_absent;
12163 s = expr_end;
12164 continue;
12165
12166 case 'Q': /* MDMX vector, element sel, or const. */
12167 if (s[0] != '$')
12168 {
12169 /* MDMX Immediate. */
12170 gas_assert (!mips_opts.micromips);
12171 my_getExpression (&imm_expr, s);
12172 check_absolute_expr (ip, &imm_expr);
12173 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
12174 as_warn (_("Invalid MDMX Immediate (%ld)"),
12175 (long) imm_expr.X_add_number);
12176 INSERT_OPERAND (0, FT, *ip, imm_expr.X_add_number);
12177 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12178 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
12179 else
12180 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
12181 imm_expr.X_op = O_absent;
12182 s = expr_end;
12183 continue;
12184 }
12185 /* Not MDMX Immediate. Fall through. */
12186 case 'X': /* MDMX destination register. */
12187 case 'Y': /* MDMX source register. */
12188 case 'Z': /* MDMX target register. */
12189 is_mdmx = 1;
12190 case 'W':
12191 gas_assert (!mips_opts.micromips);
12192 case 'D': /* Floating point destination register. */
12193 case 'S': /* Floating point source register. */
12194 case 'T': /* Floating point target register. */
12195 case 'R': /* Floating point source register. */
12196 case 'V':
12197 rtype = RTYPE_FPU;
12198 if (is_mdmx
12199 || (mips_opts.ase_mdmx
12200 && (ip->insn_mo->pinfo & FP_D)
12201 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
12202 | INSN_COPROC_MEMORY_DELAY
12203 | INSN_LOAD_COPROC_DELAY
12204 | INSN_LOAD_MEMORY_DELAY
12205 | INSN_STORE_MEMORY))))
12206 rtype |= RTYPE_VEC;
12207 s_reset = s;
12208 if (reg_lookup (&s, rtype, &regno))
12209 {
12210 if ((regno & 1) != 0
12211 && HAVE_32BIT_FPRS
12212 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
12213 as_warn (_("Float register should be even, was %d"),
12214 regno);
12215
12216 c = *args;
12217 if (*s == ' ')
12218 ++s;
12219 if (args[1] != *s)
12220 {
12221 if (c == 'V' || c == 'W')
12222 {
12223 regno = lastregno;
12224 s = s_reset;
12225 ++args;
12226 }
12227 }
12228 switch (c)
12229 {
12230 case 'D':
12231 case 'X':
12232 INSERT_OPERAND (mips_opts.micromips, FD, *ip, regno);
12233 break;
12234
12235 case 'V':
12236 case 'S':
12237 case 'Y':
12238 INSERT_OPERAND (mips_opts.micromips, FS, *ip, regno);
12239 break;
12240
12241 case 'Q':
12242 /* This is like 'Z', but also needs to fix the MDMX
12243 vector/scalar select bits. Note that the
12244 scalar immediate case is handled above. */
12245 if (*s == '[')
12246 {
12247 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
12248 int max_el = (is_qh ? 3 : 7);
12249 s++;
12250 my_getExpression(&imm_expr, s);
12251 check_absolute_expr (ip, &imm_expr);
12252 s = expr_end;
12253 if (imm_expr.X_add_number > max_el)
12254 as_bad (_("Bad element selector %ld"),
12255 (long) imm_expr.X_add_number);
12256 imm_expr.X_add_number &= max_el;
12257 ip->insn_opcode |= (imm_expr.X_add_number
12258 << (OP_SH_VSEL +
12259 (is_qh ? 2 : 1)));
12260 imm_expr.X_op = O_absent;
12261 if (*s != ']')
12262 as_warn (_("Expecting ']' found '%s'"), s);
12263 else
12264 s++;
12265 }
12266 else
12267 {
12268 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
12269 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
12270 << OP_SH_VSEL);
12271 else
12272 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
12273 OP_SH_VSEL);
12274 }
12275 /* Fall through. */
12276 case 'W':
12277 case 'T':
12278 case 'Z':
12279 INSERT_OPERAND (mips_opts.micromips, FT, *ip, regno);
12280 break;
12281
12282 case 'R':
12283 INSERT_OPERAND (mips_opts.micromips, FR, *ip, regno);
12284 break;
12285 }
12286 lastregno = regno;
12287 continue;
12288 }
12289
12290 switch (*args++)
12291 {
12292 case 'V':
12293 INSERT_OPERAND (mips_opts.micromips, FS, *ip, lastregno);
12294 continue;
12295
12296 case 'W':
12297 INSERT_OPERAND (mips_opts.micromips, FT, *ip, lastregno);
12298 continue;
12299 }
12300 break;
12301
12302 case 'I':
12303 my_getExpression (&imm_expr, s);
12304 if (imm_expr.X_op != O_big
12305 && imm_expr.X_op != O_constant)
12306 insn_error = _("absolute expression required");
12307 if (HAVE_32BIT_GPRS)
12308 normalize_constant_expr (&imm_expr);
12309 s = expr_end;
12310 continue;
12311
12312 case 'A':
12313 my_getExpression (&offset_expr, s);
12314 normalize_address_expr (&offset_expr);
12315 *imm_reloc = BFD_RELOC_32;
12316 s = expr_end;
12317 continue;
12318
12319 case 'F':
12320 case 'L':
12321 case 'f':
12322 case 'l':
12323 {
12324 int f64;
12325 int using_gprs;
12326 char *save_in;
12327 char *err;
12328 unsigned char temp[8];
12329 int len;
12330 unsigned int length;
12331 segT seg;
12332 subsegT subseg;
12333 char *p;
12334
12335 /* These only appear as the last operand in an
12336 instruction, and every instruction that accepts
12337 them in any variant accepts them in all variants.
12338 This means we don't have to worry about backing out
12339 any changes if the instruction does not match.
12340
12341 The difference between them is the size of the
12342 floating point constant and where it goes. For 'F'
12343 and 'L' the constant is 64 bits; for 'f' and 'l' it
12344 is 32 bits. Where the constant is placed is based
12345 on how the MIPS assembler does things:
12346 F -- .rdata
12347 L -- .lit8
12348 f -- immediate value
12349 l -- .lit4
12350
12351 The .lit4 and .lit8 sections are only used if
12352 permitted by the -G argument.
12353
12354 The code below needs to know whether the target register
12355 is 32 or 64 bits wide. It relies on the fact 'f' and
12356 'F' are used with GPR-based instructions and 'l' and
12357 'L' are used with FPR-based instructions. */
12358
12359 f64 = *args == 'F' || *args == 'L';
12360 using_gprs = *args == 'F' || *args == 'f';
12361
12362 save_in = input_line_pointer;
12363 input_line_pointer = s;
12364 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
12365 length = len;
12366 s = input_line_pointer;
12367 input_line_pointer = save_in;
12368 if (err != NULL && *err != '\0')
12369 {
12370 as_bad (_("Bad floating point constant: %s"), err);
12371 memset (temp, '\0', sizeof temp);
12372 length = f64 ? 8 : 4;
12373 }
12374
12375 gas_assert (length == (unsigned) (f64 ? 8 : 4));
12376
12377 if (*args == 'f'
12378 || (*args == 'l'
12379 && (g_switch_value < 4
12380 || (temp[0] == 0 && temp[1] == 0)
12381 || (temp[2] == 0 && temp[3] == 0))))
12382 {
12383 imm_expr.X_op = O_constant;
12384 if (!target_big_endian)
12385 imm_expr.X_add_number = bfd_getl32 (temp);
12386 else
12387 imm_expr.X_add_number = bfd_getb32 (temp);
12388 }
12389 else if (length > 4
12390 && !mips_disable_float_construction
12391 /* Constants can only be constructed in GPRs and
12392 copied to FPRs if the GPRs are at least as wide
12393 as the FPRs. Force the constant into memory if
12394 we are using 64-bit FPRs but the GPRs are only
12395 32 bits wide. */
12396 && (using_gprs
12397 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
12398 && ((temp[0] == 0 && temp[1] == 0)
12399 || (temp[2] == 0 && temp[3] == 0))
12400 && ((temp[4] == 0 && temp[5] == 0)
12401 || (temp[6] == 0 && temp[7] == 0)))
12402 {
12403 /* The value is simple enough to load with a couple of
12404 instructions. If using 32-bit registers, set
12405 imm_expr to the high order 32 bits and offset_expr to
12406 the low order 32 bits. Otherwise, set imm_expr to
12407 the entire 64 bit constant. */
12408 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
12409 {
12410 imm_expr.X_op = O_constant;
12411 offset_expr.X_op = O_constant;
12412 if (!target_big_endian)
12413 {
12414 imm_expr.X_add_number = bfd_getl32 (temp + 4);
12415 offset_expr.X_add_number = bfd_getl32 (temp);
12416 }
12417 else
12418 {
12419 imm_expr.X_add_number = bfd_getb32 (temp);
12420 offset_expr.X_add_number = bfd_getb32 (temp + 4);
12421 }
12422 if (offset_expr.X_add_number == 0)
12423 offset_expr.X_op = O_absent;
12424 }
12425 else if (sizeof (imm_expr.X_add_number) > 4)
12426 {
12427 imm_expr.X_op = O_constant;
12428 if (!target_big_endian)
12429 imm_expr.X_add_number = bfd_getl64 (temp);
12430 else
12431 imm_expr.X_add_number = bfd_getb64 (temp);
12432 }
12433 else
12434 {
12435 imm_expr.X_op = O_big;
12436 imm_expr.X_add_number = 4;
12437 if (!target_big_endian)
12438 {
12439 generic_bignum[0] = bfd_getl16 (temp);
12440 generic_bignum[1] = bfd_getl16 (temp + 2);
12441 generic_bignum[2] = bfd_getl16 (temp + 4);
12442 generic_bignum[3] = bfd_getl16 (temp + 6);
12443 }
12444 else
12445 {
12446 generic_bignum[0] = bfd_getb16 (temp + 6);
12447 generic_bignum[1] = bfd_getb16 (temp + 4);
12448 generic_bignum[2] = bfd_getb16 (temp + 2);
12449 generic_bignum[3] = bfd_getb16 (temp);
12450 }
12451 }
12452 }
12453 else
12454 {
12455 const char *newname;
12456 segT new_seg;
12457
12458 /* Switch to the right section. */
12459 seg = now_seg;
12460 subseg = now_subseg;
12461 switch (*args)
12462 {
12463 default: /* unused default case avoids warnings. */
12464 case 'L':
12465 newname = RDATA_SECTION_NAME;
12466 if (g_switch_value >= 8)
12467 newname = ".lit8";
12468 break;
12469 case 'F':
12470 newname = RDATA_SECTION_NAME;
12471 break;
12472 case 'l':
12473 gas_assert (g_switch_value >= 4);
12474 newname = ".lit4";
12475 break;
12476 }
12477 new_seg = subseg_new (newname, (subsegT) 0);
12478 if (IS_ELF)
12479 bfd_set_section_flags (stdoutput, new_seg,
12480 (SEC_ALLOC
12481 | SEC_LOAD
12482 | SEC_READONLY
12483 | SEC_DATA));
12484 frag_align (*args == 'l' ? 2 : 3, 0, 0);
12485 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
12486 record_alignment (new_seg, 4);
12487 else
12488 record_alignment (new_seg, *args == 'l' ? 2 : 3);
12489 if (seg == now_seg)
12490 as_bad (_("Can't use floating point insn in this section"));
12491
12492 /* Set the argument to the current address in the
12493 section. */
12494 offset_expr.X_op = O_symbol;
12495 offset_expr.X_add_symbol = symbol_temp_new_now ();
12496 offset_expr.X_add_number = 0;
12497
12498 /* Put the floating point number into the section. */
12499 p = frag_more ((int) length);
12500 memcpy (p, temp, length);
12501
12502 /* Switch back to the original section. */
12503 subseg_set (seg, subseg);
12504 }
12505 }
12506 continue;
12507
12508 case 'i': /* 16-bit unsigned immediate. */
12509 case 'j': /* 16-bit signed immediate. */
12510 *imm_reloc = BFD_RELOC_LO16;
12511 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
12512 {
12513 int more;
12514 offsetT minval, maxval;
12515
12516 more = (insn + 1 < past
12517 && strcmp (insn->name, insn[1].name) == 0);
12518
12519 /* If the expression was written as an unsigned number,
12520 only treat it as signed if there are no more
12521 alternatives. */
12522 if (more
12523 && *args == 'j'
12524 && sizeof (imm_expr.X_add_number) <= 4
12525 && imm_expr.X_op == O_constant
12526 && imm_expr.X_add_number < 0
12527 && imm_expr.X_unsigned
12528 && HAVE_64BIT_GPRS)
12529 break;
12530
12531 /* For compatibility with older assemblers, we accept
12532 0x8000-0xffff as signed 16-bit numbers when only
12533 signed numbers are allowed. */
12534 if (*args == 'i')
12535 minval = 0, maxval = 0xffff;
12536 else if (more)
12537 minval = -0x8000, maxval = 0x7fff;
12538 else
12539 minval = -0x8000, maxval = 0xffff;
12540
12541 if (imm_expr.X_op != O_constant
12542 || imm_expr.X_add_number < minval
12543 || imm_expr.X_add_number > maxval)
12544 {
12545 if (more)
12546 break;
12547 if (imm_expr.X_op == O_constant
12548 || imm_expr.X_op == O_big)
12549 as_bad (_("Expression out of range"));
12550 }
12551 }
12552 s = expr_end;
12553 continue;
12554
12555 case 'o': /* 16-bit offset. */
12556 offset_reloc[0] = BFD_RELOC_LO16;
12557 offset_reloc[1] = BFD_RELOC_UNUSED;
12558 offset_reloc[2] = BFD_RELOC_UNUSED;
12559
12560 /* Check whether there is only a single bracketed expression
12561 left. If so, it must be the base register and the
12562 constant must be zero. */
12563 if (*s == '(' && strchr (s + 1, '(') == 0)
12564 {
12565 offset_expr.X_op = O_constant;
12566 offset_expr.X_add_number = 0;
12567 continue;
12568 }
12569
12570 /* If this value won't fit into a 16 bit offset, then go
12571 find a macro that will generate the 32 bit offset
12572 code pattern. */
12573 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
12574 && (offset_expr.X_op != O_constant
12575 || offset_expr.X_add_number >= 0x8000
12576 || offset_expr.X_add_number < -0x8000))
12577 break;
12578
12579 s = expr_end;
12580 continue;
12581
12582 case 'p': /* PC-relative offset. */
12583 *offset_reloc = BFD_RELOC_16_PCREL_S2;
12584 my_getExpression (&offset_expr, s);
12585 s = expr_end;
12586 continue;
12587
12588 case 'u': /* Upper 16 bits. */
12589 *imm_reloc = BFD_RELOC_LO16;
12590 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
12591 && imm_expr.X_op == O_constant
12592 && (imm_expr.X_add_number < 0
12593 || imm_expr.X_add_number >= 0x10000))
12594 as_bad (_("lui expression (%lu) not in range 0..65535"),
12595 (unsigned long) imm_expr.X_add_number);
12596 s = expr_end;
12597 continue;
12598
12599 case 'a': /* 26-bit address. */
12600 *offset_reloc = BFD_RELOC_MIPS_JMP;
12601 my_getExpression (&offset_expr, s);
12602 s = expr_end;
12603 continue;
12604
12605 case 'N': /* 3-bit branch condition code. */
12606 case 'M': /* 3-bit compare condition code. */
12607 rtype = RTYPE_CCC;
12608 if (ip->insn_mo->pinfo & (FP_D | FP_S))
12609 rtype |= RTYPE_FCC;
12610 if (!reg_lookup (&s, rtype, &regno))
12611 break;
12612 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
12613 || strcmp (str + strlen (str) - 5, "any2f") == 0
12614 || strcmp (str + strlen (str) - 5, "any2t") == 0)
12615 && (regno & 1) != 0)
12616 as_warn (_("Condition code register should be even for %s, "
12617 "was %d"),
12618 str, regno);
12619 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
12620 || strcmp (str + strlen (str) - 5, "any4t") == 0)
12621 && (regno & 3) != 0)
12622 as_warn (_("Condition code register should be 0 or 4 for %s, "
12623 "was %d"),
12624 str, regno);
12625 if (*args == 'N')
12626 INSERT_OPERAND (mips_opts.micromips, BCC, *ip, regno);
12627 else
12628 INSERT_OPERAND (mips_opts.micromips, CCC, *ip, regno);
12629 continue;
12630
12631 case 'H':
12632 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
12633 s += 2;
12634 if (ISDIGIT (*s))
12635 {
12636 c = 0;
12637 do
12638 {
12639 c *= 10;
12640 c += *s - '0';
12641 ++s;
12642 }
12643 while (ISDIGIT (*s));
12644 }
12645 else
12646 c = 8; /* Invalid sel value. */
12647
12648 if (c > 7)
12649 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
12650 INSERT_OPERAND (mips_opts.micromips, SEL, *ip, c);
12651 continue;
12652
12653 case 'e':
12654 gas_assert (!mips_opts.micromips);
12655 /* Must be at least one digit. */
12656 my_getExpression (&imm_expr, s);
12657 check_absolute_expr (ip, &imm_expr);
12658
12659 if ((unsigned long) imm_expr.X_add_number
12660 > (unsigned long) OP_MASK_VECBYTE)
12661 {
12662 as_bad (_("bad byte vector index (%ld)"),
12663 (long) imm_expr.X_add_number);
12664 imm_expr.X_add_number = 0;
12665 }
12666
12667 INSERT_OPERAND (0, VECBYTE, *ip, imm_expr.X_add_number);
12668 imm_expr.X_op = O_absent;
12669 s = expr_end;
12670 continue;
12671
12672 case '%':
12673 gas_assert (!mips_opts.micromips);
12674 my_getExpression (&imm_expr, s);
12675 check_absolute_expr (ip, &imm_expr);
12676
12677 if ((unsigned long) imm_expr.X_add_number
12678 > (unsigned long) OP_MASK_VECALIGN)
12679 {
12680 as_bad (_("bad byte vector index (%ld)"),
12681 (long) imm_expr.X_add_number);
12682 imm_expr.X_add_number = 0;
12683 }
12684
12685 INSERT_OPERAND (0, VECALIGN, *ip, imm_expr.X_add_number);
12686 imm_expr.X_op = O_absent;
12687 s = expr_end;
12688 continue;
12689
12690 case 'm': /* Opcode extension character. */
12691 gas_assert (mips_opts.micromips);
12692 c = *++args;
12693 switch (c)
12694 {
12695 case 'r':
12696 if (strncmp (s, "$pc", 3) == 0)
12697 {
12698 s += 3;
12699 continue;
12700 }
12701 break;
12702
12703 case 'a':
12704 case 'b':
12705 case 'c':
12706 case 'd':
12707 case 'e':
12708 case 'f':
12709 case 'g':
12710 case 'h':
12711 case 'i':
12712 case 'j':
12713 case 'l':
12714 case 'm':
12715 case 'n':
12716 case 'p':
12717 case 'q':
12718 case 's':
12719 case 't':
12720 case 'x':
12721 case 'y':
12722 case 'z':
12723 s_reset = s;
12724 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
12725 if (regno == AT && mips_opts.at)
12726 {
12727 if (mips_opts.at == ATREG)
12728 as_warn (_("Used $at without \".set noat\""));
12729 else
12730 as_warn (_("Used $%u with \".set at=$%u\""),
12731 regno, mips_opts.at);
12732 }
12733 if (!ok)
12734 {
12735 if (c == 'c')
12736 {
12737 gas_assert (args[1] == ',');
12738 regno = lastregno;
12739 ++args;
12740 }
12741 else if (c == 't')
12742 {
12743 gas_assert (args[1] == ',');
12744 ++args;
12745 continue; /* Nothing to do. */
12746 }
12747 else
12748 break;
12749 }
12750
12751 if (c == 'j' && !strncmp (ip->insn_mo->name, "jalr", 4))
12752 {
12753 if (regno == lastregno)
12754 {
12755 insn_error
12756 = _("Source and destination must be different");
12757 continue;
12758 }
12759 if (regno == 31 && lastregno == 0xffffffff)
12760 {
12761 insn_error
12762 = _("A destination register must be supplied");
12763 continue;
12764 }
12765 }
12766
12767 if (*s == ' ')
12768 ++s;
12769 if (args[1] != *s)
12770 {
12771 if (c == 'e')
12772 {
12773 gas_assert (args[1] == ',');
12774 regno = lastregno;
12775 s = s_reset;
12776 ++args;
12777 }
12778 else if (c == 't')
12779 {
12780 gas_assert (args[1] == ',');
12781 s = s_reset;
12782 ++args;
12783 continue; /* Nothing to do. */
12784 }
12785 }
12786
12787 /* Make sure regno is the same as lastregno. */
12788 if (c == 't' && regno != lastregno)
12789 break;
12790
12791 /* Make sure regno is the same as destregno. */
12792 if (c == 'x' && regno != destregno)
12793 break;
12794
12795 /* We need to save regno, before regno maps to the
12796 microMIPS register encoding. */
12797 lastregno = regno;
12798
12799 if (c == 'f')
12800 destregno = regno;
12801
12802 switch (c)
12803 {
12804 case 'a':
12805 if (regno != GP)
12806 regno = ILLEGAL_REG;
12807 break;
12808
12809 case 'b':
12810 regno = mips32_to_micromips_reg_b_map[regno];
12811 break;
12812
12813 case 'c':
12814 regno = mips32_to_micromips_reg_c_map[regno];
12815 break;
12816
12817 case 'd':
12818 regno = mips32_to_micromips_reg_d_map[regno];
12819 break;
12820
12821 case 'e':
12822 regno = mips32_to_micromips_reg_e_map[regno];
12823 break;
12824
12825 case 'f':
12826 regno = mips32_to_micromips_reg_f_map[regno];
12827 break;
12828
12829 case 'g':
12830 regno = mips32_to_micromips_reg_g_map[regno];
12831 break;
12832
12833 case 'h':
12834 regno = mips32_to_micromips_reg_h_map[regno];
12835 break;
12836
12837 case 'i':
12838 switch (EXTRACT_OPERAND (1, MI, *ip))
12839 {
12840 case 4:
12841 if (regno == 21)
12842 regno = 3;
12843 else if (regno == 22)
12844 regno = 4;
12845 else if (regno == 5)
12846 regno = 5;
12847 else if (regno == 6)
12848 regno = 6;
12849 else if (regno == 7)
12850 regno = 7;
12851 else
12852 regno = ILLEGAL_REG;
12853 break;
12854
12855 case 5:
12856 if (regno == 6)
12857 regno = 0;
12858 else if (regno == 7)
12859 regno = 1;
12860 else
12861 regno = ILLEGAL_REG;
12862 break;
12863
12864 case 6:
12865 if (regno == 7)
12866 regno = 2;
12867 else
12868 regno = ILLEGAL_REG;
12869 break;
12870
12871 default:
12872 regno = ILLEGAL_REG;
12873 break;
12874 }
12875 break;
12876
12877 case 'l':
12878 regno = mips32_to_micromips_reg_l_map[regno];
12879 break;
12880
12881 case 'm':
12882 regno = mips32_to_micromips_reg_m_map[regno];
12883 break;
12884
12885 case 'n':
12886 regno = mips32_to_micromips_reg_n_map[regno];
12887 break;
12888
12889 case 'q':
12890 regno = mips32_to_micromips_reg_q_map[regno];
12891 break;
12892
12893 case 's':
12894 if (regno != SP)
12895 regno = ILLEGAL_REG;
12896 break;
12897
12898 case 'y':
12899 if (regno != 31)
12900 regno = ILLEGAL_REG;
12901 break;
12902
12903 case 'z':
12904 if (regno != ZERO)
12905 regno = ILLEGAL_REG;
12906 break;
12907
12908 case 'j': /* Do nothing. */
12909 case 'p':
12910 case 't':
12911 case 'x':
12912 break;
12913
12914 default:
12915 abort ();
12916 }
12917
12918 if (regno == ILLEGAL_REG)
12919 break;
12920
12921 switch (c)
12922 {
12923 case 'b':
12924 INSERT_OPERAND (1, MB, *ip, regno);
12925 break;
12926
12927 case 'c':
12928 INSERT_OPERAND (1, MC, *ip, regno);
12929 break;
12930
12931 case 'd':
12932 INSERT_OPERAND (1, MD, *ip, regno);
12933 break;
12934
12935 case 'e':
12936 INSERT_OPERAND (1, ME, *ip, regno);
12937 break;
12938
12939 case 'f':
12940 INSERT_OPERAND (1, MF, *ip, regno);
12941 break;
12942
12943 case 'g':
12944 INSERT_OPERAND (1, MG, *ip, regno);
12945 break;
12946
12947 case 'h':
12948 INSERT_OPERAND (1, MH, *ip, regno);
12949 break;
12950
12951 case 'i':
12952 INSERT_OPERAND (1, MI, *ip, regno);
12953 break;
12954
12955 case 'j':
12956 INSERT_OPERAND (1, MJ, *ip, regno);
12957 break;
12958
12959 case 'l':
12960 INSERT_OPERAND (1, ML, *ip, regno);
12961 break;
12962
12963 case 'm':
12964 INSERT_OPERAND (1, MM, *ip, regno);
12965 break;
12966
12967 case 'n':
12968 INSERT_OPERAND (1, MN, *ip, regno);
12969 break;
12970
12971 case 'p':
12972 INSERT_OPERAND (1, MP, *ip, regno);
12973 break;
12974
12975 case 'q':
12976 INSERT_OPERAND (1, MQ, *ip, regno);
12977 break;
12978
12979 case 'a': /* Do nothing. */
12980 case 's': /* Do nothing. */
12981 case 't': /* Do nothing. */
12982 case 'x': /* Do nothing. */
12983 case 'y': /* Do nothing. */
12984 case 'z': /* Do nothing. */
12985 break;
12986
12987 default:
12988 abort ();
12989 }
12990 continue;
12991
12992 case 'A':
12993 {
12994 bfd_reloc_code_real_type r[3];
12995 expressionS ep;
12996 int imm;
12997
12998 /* Check whether there is only a single bracketed
12999 expression left. If so, it must be the base register
13000 and the constant must be zero. */
13001 if (*s == '(' && strchr (s + 1, '(') == 0)
13002 {
13003 INSERT_OPERAND (1, IMMA, *ip, 0);
13004 continue;
13005 }
13006
13007 if (my_getSmallExpression (&ep, r, s) > 0
13008 || !expr_const_in_range (&ep, -64, 64, 2))
13009 break;
13010
13011 imm = ep.X_add_number >> 2;
13012 INSERT_OPERAND (1, IMMA, *ip, imm);
13013 }
13014 s = expr_end;
13015 continue;
13016
13017 case 'B':
13018 {
13019 bfd_reloc_code_real_type r[3];
13020 expressionS ep;
13021 int imm;
13022
13023 if (my_getSmallExpression (&ep, r, s) > 0
13024 || ep.X_op != O_constant)
13025 break;
13026
13027 for (imm = 0; imm < 8; imm++)
13028 if (micromips_imm_b_map[imm] == ep.X_add_number)
13029 break;
13030 if (imm >= 8)
13031 break;
13032
13033 INSERT_OPERAND (1, IMMB, *ip, imm);
13034 }
13035 s = expr_end;
13036 continue;
13037
13038 case 'C':
13039 {
13040 bfd_reloc_code_real_type r[3];
13041 expressionS ep;
13042 int imm;
13043
13044 if (my_getSmallExpression (&ep, r, s) > 0
13045 || ep.X_op != O_constant)
13046 break;
13047
13048 for (imm = 0; imm < 16; imm++)
13049 if (micromips_imm_c_map[imm] == ep.X_add_number)
13050 break;
13051 if (imm >= 16)
13052 break;
13053
13054 INSERT_OPERAND (1, IMMC, *ip, imm);
13055 }
13056 s = expr_end;
13057 continue;
13058
13059 case 'D': /* pc relative offset */
13060 case 'E': /* pc relative offset */
13061 my_getExpression (&offset_expr, s);
13062 if (offset_expr.X_op == O_register)
13063 break;
13064
13065 if (!forced_insn_length)
13066 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
13067 else if (c == 'D')
13068 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
13069 else
13070 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
13071 s = expr_end;
13072 continue;
13073
13074 case 'F':
13075 {
13076 bfd_reloc_code_real_type r[3];
13077 expressionS ep;
13078 int imm;
13079
13080 if (my_getSmallExpression (&ep, r, s) > 0
13081 || !expr_const_in_range (&ep, 0, 16, 0))
13082 break;
13083
13084 imm = ep.X_add_number;
13085 INSERT_OPERAND (1, IMMF, *ip, imm);
13086 }
13087 s = expr_end;
13088 continue;
13089
13090 case 'G':
13091 {
13092 bfd_reloc_code_real_type r[3];
13093 expressionS ep;
13094 int imm;
13095
13096 /* Check whether there is only a single bracketed
13097 expression left. If so, it must be the base register
13098 and the constant must be zero. */
13099 if (*s == '(' && strchr (s + 1, '(') == 0)
13100 {
13101 INSERT_OPERAND (1, IMMG, *ip, 0);
13102 continue;
13103 }
13104
13105 if (my_getSmallExpression (&ep, r, s) > 0
13106 || !expr_const_in_range (&ep, -1, 15, 0))
13107 break;
13108
13109 imm = ep.X_add_number & 15;
13110 INSERT_OPERAND (1, IMMG, *ip, imm);
13111 }
13112 s = expr_end;
13113 continue;
13114
13115 case 'H':
13116 {
13117 bfd_reloc_code_real_type r[3];
13118 expressionS ep;
13119 int imm;
13120
13121 /* Check whether there is only a single bracketed
13122 expression left. If so, it must be the base register
13123 and the constant must be zero. */
13124 if (*s == '(' && strchr (s + 1, '(') == 0)
13125 {
13126 INSERT_OPERAND (1, IMMH, *ip, 0);
13127 continue;
13128 }
13129
13130 if (my_getSmallExpression (&ep, r, s) > 0
13131 || !expr_const_in_range (&ep, 0, 16, 1))
13132 break;
13133
13134 imm = ep.X_add_number >> 1;
13135 INSERT_OPERAND (1, IMMH, *ip, imm);
13136 }
13137 s = expr_end;
13138 continue;
13139
13140 case 'I':
13141 {
13142 bfd_reloc_code_real_type r[3];
13143 expressionS ep;
13144 int imm;
13145
13146 if (my_getSmallExpression (&ep, r, s) > 0
13147 || !expr_const_in_range (&ep, -1, 127, 0))
13148 break;
13149
13150 imm = ep.X_add_number & 127;
13151 INSERT_OPERAND (1, IMMI, *ip, imm);
13152 }
13153 s = expr_end;
13154 continue;
13155
13156 case 'J':
13157 {
13158 bfd_reloc_code_real_type r[3];
13159 expressionS ep;
13160 int imm;
13161
13162 /* Check whether there is only a single bracketed
13163 expression left. If so, it must be the base register
13164 and the constant must be zero. */
13165 if (*s == '(' && strchr (s + 1, '(') == 0)
13166 {
13167 INSERT_OPERAND (1, IMMJ, *ip, 0);
13168 continue;
13169 }
13170
13171 if (my_getSmallExpression (&ep, r, s) > 0
13172 || !expr_const_in_range (&ep, 0, 16, 2))
13173 break;
13174
13175 imm = ep.X_add_number >> 2;
13176 INSERT_OPERAND (1, IMMJ, *ip, imm);
13177 }
13178 s = expr_end;
13179 continue;
13180
13181 case 'L':
13182 {
13183 bfd_reloc_code_real_type r[3];
13184 expressionS ep;
13185 int imm;
13186
13187 /* Check whether there is only a single bracketed
13188 expression left. If so, it must be the base register
13189 and the constant must be zero. */
13190 if (*s == '(' && strchr (s + 1, '(') == 0)
13191 {
13192 INSERT_OPERAND (1, IMML, *ip, 0);
13193 continue;
13194 }
13195
13196 if (my_getSmallExpression (&ep, r, s) > 0
13197 || !expr_const_in_range (&ep, 0, 16, 0))
13198 break;
13199
13200 imm = ep.X_add_number;
13201 INSERT_OPERAND (1, IMML, *ip, imm);
13202 }
13203 s = expr_end;
13204 continue;
13205
13206 case 'M':
13207 {
13208 bfd_reloc_code_real_type r[3];
13209 expressionS ep;
13210 int imm;
13211
13212 if (my_getSmallExpression (&ep, r, s) > 0
13213 || !expr_const_in_range (&ep, 1, 9, 0))
13214 break;
13215
13216 imm = ep.X_add_number & 7;
13217 INSERT_OPERAND (1, IMMM, *ip, imm);
13218 }
13219 s = expr_end;
13220 continue;
13221
13222 case 'N': /* Register list for lwm and swm. */
13223 {
13224 /* A comma-separated list of registers and/or
13225 dash-separated contiguous ranges including
13226 both ra and a set of one or more registers
13227 starting at s0 up to s3 which have to be
13228 consecutive, e.g.:
13229
13230 s0, ra
13231 s0, s1, ra, s2, s3
13232 s0-s2, ra
13233
13234 and any permutations of these. */
13235 unsigned int reglist;
13236 int imm;
13237
13238 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13239 break;
13240
13241 if ((reglist & 0xfff1ffff) != 0x80010000)
13242 break;
13243
13244 reglist = (reglist >> 17) & 7;
13245 reglist += 1;
13246 if ((reglist & -reglist) != reglist)
13247 break;
13248
13249 imm = ffs (reglist) - 1;
13250 INSERT_OPERAND (1, IMMN, *ip, imm);
13251 }
13252 continue;
13253
13254 case 'O': /* sdbbp 4-bit code. */
13255 {
13256 bfd_reloc_code_real_type r[3];
13257 expressionS ep;
13258 int imm;
13259
13260 if (my_getSmallExpression (&ep, r, s) > 0
13261 || !expr_const_in_range (&ep, 0, 16, 0))
13262 break;
13263
13264 imm = ep.X_add_number;
13265 INSERT_OPERAND (1, IMMO, *ip, imm);
13266 }
13267 s = expr_end;
13268 continue;
13269
13270 case 'P':
13271 {
13272 bfd_reloc_code_real_type r[3];
13273 expressionS ep;
13274 int imm;
13275
13276 if (my_getSmallExpression (&ep, r, s) > 0
13277 || !expr_const_in_range (&ep, 0, 32, 2))
13278 break;
13279
13280 imm = ep.X_add_number >> 2;
13281 INSERT_OPERAND (1, IMMP, *ip, imm);
13282 }
13283 s = expr_end;
13284 continue;
13285
13286 case 'Q':
13287 {
13288 bfd_reloc_code_real_type r[3];
13289 expressionS ep;
13290 int imm;
13291
13292 if (my_getSmallExpression (&ep, r, s) > 0
13293 || !expr_const_in_range (&ep, -0x400000, 0x400000, 2))
13294 break;
13295
13296 imm = ep.X_add_number >> 2;
13297 INSERT_OPERAND (1, IMMQ, *ip, imm);
13298 }
13299 s = expr_end;
13300 continue;
13301
13302 case 'U':
13303 {
13304 bfd_reloc_code_real_type r[3];
13305 expressionS ep;
13306 int imm;
13307
13308 /* Check whether there is only a single bracketed
13309 expression left. If so, it must be the base register
13310 and the constant must be zero. */
13311 if (*s == '(' && strchr (s + 1, '(') == 0)
13312 {
13313 INSERT_OPERAND (1, IMMU, *ip, 0);
13314 continue;
13315 }
13316
13317 if (my_getSmallExpression (&ep, r, s) > 0
13318 || !expr_const_in_range (&ep, 0, 32, 2))
13319 break;
13320
13321 imm = ep.X_add_number >> 2;
13322 INSERT_OPERAND (1, IMMU, *ip, imm);
13323 }
13324 s = expr_end;
13325 continue;
13326
13327 case 'W':
13328 {
13329 bfd_reloc_code_real_type r[3];
13330 expressionS ep;
13331 int imm;
13332
13333 if (my_getSmallExpression (&ep, r, s) > 0
13334 || !expr_const_in_range (&ep, 0, 64, 2))
13335 break;
13336
13337 imm = ep.X_add_number >> 2;
13338 INSERT_OPERAND (1, IMMW, *ip, imm);
13339 }
13340 s = expr_end;
13341 continue;
13342
13343 case 'X':
13344 {
13345 bfd_reloc_code_real_type r[3];
13346 expressionS ep;
13347 int imm;
13348
13349 if (my_getSmallExpression (&ep, r, s) > 0
13350 || !expr_const_in_range (&ep, -8, 8, 0))
13351 break;
13352
13353 imm = ep.X_add_number;
13354 INSERT_OPERAND (1, IMMX, *ip, imm);
13355 }
13356 s = expr_end;
13357 continue;
13358
13359 case 'Y':
13360 {
13361 bfd_reloc_code_real_type r[3];
13362 expressionS ep;
13363 int imm;
13364
13365 if (my_getSmallExpression (&ep, r, s) > 0
13366 || expr_const_in_range (&ep, -2, 2, 2)
13367 || !expr_const_in_range (&ep, -258, 258, 2))
13368 break;
13369
13370 imm = ep.X_add_number >> 2;
13371 imm = ((imm >> 1) & ~0xff) | (imm & 0xff);
13372 INSERT_OPERAND (1, IMMY, *ip, imm);
13373 }
13374 s = expr_end;
13375 continue;
13376
13377 case 'Z':
13378 {
13379 bfd_reloc_code_real_type r[3];
13380 expressionS ep;
13381
13382 if (my_getSmallExpression (&ep, r, s) > 0
13383 || !expr_const_in_range (&ep, 0, 1, 0))
13384 break;
13385 }
13386 s = expr_end;
13387 continue;
13388
13389 default:
13390 as_bad (_("Internal error: bad microMIPS opcode "
13391 "(unknown extension operand type `m%c'): %s %s"),
13392 *args, insn->name, insn->args);
13393 /* Further processing is fruitless. */
13394 return;
13395 }
13396 break;
13397
13398 case 'n': /* Register list for 32-bit lwm and swm. */
13399 gas_assert (mips_opts.micromips);
13400 {
13401 /* A comma-separated list of registers and/or
13402 dash-separated contiguous ranges including
13403 at least one of ra and a set of one or more
13404 registers starting at s0 up to s7 and then
13405 s8 which have to be consecutive, e.g.:
13406
13407 ra
13408 s0
13409 ra, s0, s1, s2
13410 s0-s8
13411 s0-s5, ra
13412
13413 and any permutations of these. */
13414 unsigned int reglist;
13415 int imm;
13416 int ra;
13417
13418 if (!reglist_lookup (&s, RTYPE_NUM | RTYPE_GP, &reglist))
13419 break;
13420
13421 if ((reglist & 0x3f00ffff) != 0)
13422 break;
13423
13424 ra = (reglist >> 27) & 0x10;
13425 reglist = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
13426 reglist += 1;
13427 if ((reglist & -reglist) != reglist)
13428 break;
13429
13430 imm = (ffs (reglist) - 1) | ra;
13431 INSERT_OPERAND (1, RT, *ip, imm);
13432 imm_expr.X_op = O_absent;
13433 }
13434 continue;
13435
13436 case '|': /* 4-bit trap code. */
13437 gas_assert (mips_opts.micromips);
13438 my_getExpression (&imm_expr, s);
13439 check_absolute_expr (ip, &imm_expr);
13440 if ((unsigned long) imm_expr.X_add_number
13441 > MICROMIPSOP_MASK_TRAP)
13442 as_bad (_("Trap code (%lu) for %s not in 0..15 range"),
13443 (unsigned long) imm_expr.X_add_number,
13444 ip->insn_mo->name);
13445 INSERT_OPERAND (1, TRAP, *ip, imm_expr.X_add_number);
13446 imm_expr.X_op = O_absent;
13447 s = expr_end;
13448 continue;
13449
13450 default:
13451 as_bad (_("Bad char = '%c'\n"), *args);
13452 abort ();
13453 }
13454 break;
13455 }
13456 /* Args don't match. */
13457 s = argsStart;
13458 insn_error = _("Illegal operands");
13459 if (insn + 1 < past && !strcmp (insn->name, insn[1].name))
13460 {
13461 ++insn;
13462 continue;
13463 }
13464 else if (wrong_delay_slot_insns && need_delay_slot_ok)
13465 {
13466 gas_assert (firstinsn);
13467 need_delay_slot_ok = FALSE;
13468 past = insn + 1;
13469 insn = firstinsn;
13470 continue;
13471 }
13472 return;
13473 }
13474 }
13475
13476 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
13477
13478 /* This routine assembles an instruction into its binary format when
13479 assembling for the mips16. As a side effect, it sets one of the
13480 global variables imm_reloc or offset_reloc to the type of relocation
13481 to do if one of the operands is an address expression. It also sets
13482 forced_insn_length to the resulting instruction size in bytes if the
13483 user explicitly requested a small or extended instruction. */
13484
13485 static void
13486 mips16_ip (char *str, struct mips_cl_insn *ip)
13487 {
13488 char *s;
13489 const char *args;
13490 struct mips_opcode *insn;
13491 char *argsstart;
13492 unsigned int regno;
13493 unsigned int lastregno = 0;
13494 char *s_reset;
13495 size_t i;
13496
13497 insn_error = NULL;
13498
13499 forced_insn_length = 0;
13500
13501 for (s = str; ISLOWER (*s); ++s)
13502 ;
13503 switch (*s)
13504 {
13505 case '\0':
13506 break;
13507
13508 case ' ':
13509 *s++ = '\0';
13510 break;
13511
13512 case '.':
13513 if (s[1] == 't' && s[2] == ' ')
13514 {
13515 *s = '\0';
13516 forced_insn_length = 2;
13517 s += 3;
13518 break;
13519 }
13520 else if (s[1] == 'e' && s[2] == ' ')
13521 {
13522 *s = '\0';
13523 forced_insn_length = 4;
13524 s += 3;
13525 break;
13526 }
13527 /* Fall through. */
13528 default:
13529 insn_error = _("unknown opcode");
13530 return;
13531 }
13532
13533 if (mips_opts.noautoextend && !forced_insn_length)
13534 forced_insn_length = 2;
13535
13536 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
13537 {
13538 insn_error = _("unrecognized opcode");
13539 return;
13540 }
13541
13542 argsstart = s;
13543 for (;;)
13544 {
13545 bfd_boolean ok;
13546
13547 gas_assert (strcmp (insn->name, str) == 0);
13548
13549 ok = is_opcode_valid_16 (insn);
13550 if (! ok)
13551 {
13552 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
13553 && strcmp (insn->name, insn[1].name) == 0)
13554 {
13555 ++insn;
13556 continue;
13557 }
13558 else
13559 {
13560 if (!insn_error)
13561 {
13562 static char buf[100];
13563 sprintf (buf,
13564 _("Opcode not supported on this processor: %s (%s)"),
13565 mips_cpu_info_from_arch (mips_opts.arch)->name,
13566 mips_cpu_info_from_isa (mips_opts.isa)->name);
13567 insn_error = buf;
13568 }
13569 return;
13570 }
13571 }
13572
13573 create_insn (ip, insn);
13574 imm_expr.X_op = O_absent;
13575 imm_reloc[0] = BFD_RELOC_UNUSED;
13576 imm_reloc[1] = BFD_RELOC_UNUSED;
13577 imm_reloc[2] = BFD_RELOC_UNUSED;
13578 imm2_expr.X_op = O_absent;
13579 offset_expr.X_op = O_absent;
13580 offset_reloc[0] = BFD_RELOC_UNUSED;
13581 offset_reloc[1] = BFD_RELOC_UNUSED;
13582 offset_reloc[2] = BFD_RELOC_UNUSED;
13583 for (args = insn->args; 1; ++args)
13584 {
13585 int c;
13586
13587 if (*s == ' ')
13588 ++s;
13589
13590 /* In this switch statement we call break if we did not find
13591 a match, continue if we did find a match, or return if we
13592 are done. */
13593
13594 c = *args;
13595 switch (c)
13596 {
13597 case '\0':
13598 if (*s == '\0')
13599 {
13600 offsetT value;
13601
13602 /* Stuff the immediate value in now, if we can. */
13603 if (imm_expr.X_op == O_constant
13604 && *imm_reloc > BFD_RELOC_UNUSED
13605 && insn->pinfo != INSN_MACRO
13606 && calculate_reloc (*offset_reloc,
13607 imm_expr.X_add_number, &value))
13608 {
13609 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
13610 *offset_reloc, value, forced_insn_length,
13611 &ip->insn_opcode);
13612 imm_expr.X_op = O_absent;
13613 *imm_reloc = BFD_RELOC_UNUSED;
13614 *offset_reloc = BFD_RELOC_UNUSED;
13615 }
13616
13617 return;
13618 }
13619 break;
13620
13621 case ',':
13622 if (*s++ == c)
13623 continue;
13624 s--;
13625 switch (*++args)
13626 {
13627 case 'v':
13628 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13629 continue;
13630 case 'w':
13631 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13632 continue;
13633 }
13634 break;
13635
13636 case '(':
13637 case ')':
13638 if (*s++ == c)
13639 continue;
13640 break;
13641
13642 case 'v':
13643 case 'w':
13644 if (s[0] != '$')
13645 {
13646 if (c == 'v')
13647 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13648 else
13649 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13650 ++args;
13651 continue;
13652 }
13653 /* Fall through. */
13654 case 'x':
13655 case 'y':
13656 case 'z':
13657 case 'Z':
13658 case '0':
13659 case 'S':
13660 case 'R':
13661 case 'X':
13662 case 'Y':
13663 s_reset = s;
13664 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
13665 {
13666 if (c == 'v' || c == 'w')
13667 {
13668 if (c == 'v')
13669 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
13670 else
13671 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
13672 ++args;
13673 continue;
13674 }
13675 break;
13676 }
13677
13678 if (*s == ' ')
13679 ++s;
13680 if (args[1] != *s)
13681 {
13682 if (c == 'v' || c == 'w')
13683 {
13684 regno = mips16_to_32_reg_map[lastregno];
13685 s = s_reset;
13686 ++args;
13687 }
13688 }
13689
13690 switch (c)
13691 {
13692 case 'x':
13693 case 'y':
13694 case 'z':
13695 case 'v':
13696 case 'w':
13697 case 'Z':
13698 regno = mips32_to_16_reg_map[regno];
13699 break;
13700
13701 case '0':
13702 if (regno != 0)
13703 regno = ILLEGAL_REG;
13704 break;
13705
13706 case 'S':
13707 if (regno != SP)
13708 regno = ILLEGAL_REG;
13709 break;
13710
13711 case 'R':
13712 if (regno != RA)
13713 regno = ILLEGAL_REG;
13714 break;
13715
13716 case 'X':
13717 case 'Y':
13718 if (regno == AT && mips_opts.at)
13719 {
13720 if (mips_opts.at == ATREG)
13721 as_warn (_("used $at without \".set noat\""));
13722 else
13723 as_warn (_("used $%u with \".set at=$%u\""),
13724 regno, mips_opts.at);
13725 }
13726 break;
13727
13728 default:
13729 abort ();
13730 }
13731
13732 if (regno == ILLEGAL_REG)
13733 break;
13734
13735 switch (c)
13736 {
13737 case 'x':
13738 case 'v':
13739 MIPS16_INSERT_OPERAND (RX, *ip, regno);
13740 break;
13741 case 'y':
13742 case 'w':
13743 MIPS16_INSERT_OPERAND (RY, *ip, regno);
13744 break;
13745 case 'z':
13746 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
13747 break;
13748 case 'Z':
13749 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
13750 case '0':
13751 case 'S':
13752 case 'R':
13753 break;
13754 case 'X':
13755 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
13756 break;
13757 case 'Y':
13758 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
13759 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
13760 break;
13761 default:
13762 abort ();
13763 }
13764
13765 lastregno = regno;
13766 continue;
13767
13768 case 'P':
13769 if (strncmp (s, "$pc", 3) == 0)
13770 {
13771 s += 3;
13772 continue;
13773 }
13774 break;
13775
13776 case '5':
13777 case 'H':
13778 case 'W':
13779 case 'D':
13780 case 'j':
13781 case 'V':
13782 case 'C':
13783 case 'U':
13784 case 'k':
13785 case 'K':
13786 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
13787 if (i > 0)
13788 {
13789 if (imm_expr.X_op != O_constant)
13790 {
13791 forced_insn_length = 4;
13792 ip->insn_opcode |= MIPS16_EXTEND;
13793 }
13794 else
13795 {
13796 /* We need to relax this instruction. */
13797 *offset_reloc = *imm_reloc;
13798 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13799 }
13800 s = expr_end;
13801 continue;
13802 }
13803 *imm_reloc = BFD_RELOC_UNUSED;
13804 /* Fall through. */
13805 case '<':
13806 case '>':
13807 case '[':
13808 case ']':
13809 case '4':
13810 case '8':
13811 my_getExpression (&imm_expr, s);
13812 if (imm_expr.X_op == O_register)
13813 {
13814 /* What we thought was an expression turned out to
13815 be a register. */
13816
13817 if (s[0] == '(' && args[1] == '(')
13818 {
13819 /* It looks like the expression was omitted
13820 before a register indirection, which means
13821 that the expression is implicitly zero. We
13822 still set up imm_expr, so that we handle
13823 explicit extensions correctly. */
13824 imm_expr.X_op = O_constant;
13825 imm_expr.X_add_number = 0;
13826 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13827 continue;
13828 }
13829
13830 break;
13831 }
13832
13833 /* We need to relax this instruction. */
13834 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
13835 s = expr_end;
13836 continue;
13837
13838 case 'p':
13839 case 'q':
13840 case 'A':
13841 case 'B':
13842 case 'E':
13843 /* We use offset_reloc rather than imm_reloc for the PC
13844 relative operands. This lets macros with both
13845 immediate and address operands work correctly. */
13846 my_getExpression (&offset_expr, s);
13847
13848 if (offset_expr.X_op == O_register)
13849 break;
13850
13851 /* We need to relax this instruction. */
13852 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
13853 s = expr_end;
13854 continue;
13855
13856 case '6': /* break code */
13857 my_getExpression (&imm_expr, s);
13858 check_absolute_expr (ip, &imm_expr);
13859 if ((unsigned long) imm_expr.X_add_number > 63)
13860 as_warn (_("Invalid value for `%s' (%lu)"),
13861 ip->insn_mo->name,
13862 (unsigned long) imm_expr.X_add_number);
13863 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
13864 imm_expr.X_op = O_absent;
13865 s = expr_end;
13866 continue;
13867
13868 case 'a': /* 26 bit address */
13869 my_getExpression (&offset_expr, s);
13870 s = expr_end;
13871 *offset_reloc = BFD_RELOC_MIPS16_JMP;
13872 ip->insn_opcode <<= 16;
13873 continue;
13874
13875 case 'l': /* register list for entry macro */
13876 case 'L': /* register list for exit macro */
13877 {
13878 int mask;
13879
13880 if (c == 'l')
13881 mask = 0;
13882 else
13883 mask = 7 << 3;
13884 while (*s != '\0')
13885 {
13886 unsigned int freg, reg1, reg2;
13887
13888 while (*s == ' ' || *s == ',')
13889 ++s;
13890 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
13891 freg = 0;
13892 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
13893 freg = 1;
13894 else
13895 {
13896 as_bad (_("can't parse register list"));
13897 break;
13898 }
13899 if (*s == ' ')
13900 ++s;
13901 if (*s != '-')
13902 reg2 = reg1;
13903 else
13904 {
13905 ++s;
13906 if (!reg_lookup (&s, freg ? RTYPE_FPU
13907 : (RTYPE_GP | RTYPE_NUM), &reg2))
13908 {
13909 as_bad (_("invalid register list"));
13910 break;
13911 }
13912 }
13913 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
13914 {
13915 mask &= ~ (7 << 3);
13916 mask |= 5 << 3;
13917 }
13918 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
13919 {
13920 mask &= ~ (7 << 3);
13921 mask |= 6 << 3;
13922 }
13923 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
13924 mask |= (reg2 - 3) << 3;
13925 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
13926 mask |= (reg2 - 15) << 1;
13927 else if (reg1 == RA && reg2 == RA)
13928 mask |= 1;
13929 else
13930 {
13931 as_bad (_("invalid register list"));
13932 break;
13933 }
13934 }
13935 /* The mask is filled in in the opcode table for the
13936 benefit of the disassembler. We remove it before
13937 applying the actual mask. */
13938 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
13939 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
13940 }
13941 continue;
13942
13943 case 'm': /* Register list for save insn. */
13944 case 'M': /* Register list for restore insn. */
13945 {
13946 int opcode = ip->insn_opcode;
13947 int framesz = 0, seen_framesz = 0;
13948 int nargs = 0, statics = 0, sregs = 0;
13949
13950 while (*s != '\0')
13951 {
13952 unsigned int reg1, reg2;
13953
13954 SKIP_SPACE_TABS (s);
13955 while (*s == ',')
13956 ++s;
13957 SKIP_SPACE_TABS (s);
13958
13959 my_getExpression (&imm_expr, s);
13960 if (imm_expr.X_op == O_constant)
13961 {
13962 /* Handle the frame size. */
13963 if (seen_framesz)
13964 {
13965 as_bad (_("more than one frame size in list"));
13966 break;
13967 }
13968 seen_framesz = 1;
13969 framesz = imm_expr.X_add_number;
13970 imm_expr.X_op = O_absent;
13971 s = expr_end;
13972 continue;
13973 }
13974
13975 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
13976 {
13977 as_bad (_("can't parse register list"));
13978 break;
13979 }
13980
13981 while (*s == ' ')
13982 ++s;
13983
13984 if (*s != '-')
13985 reg2 = reg1;
13986 else
13987 {
13988 ++s;
13989 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
13990 || reg2 < reg1)
13991 {
13992 as_bad (_("can't parse register list"));
13993 break;
13994 }
13995 }
13996
13997 while (reg1 <= reg2)
13998 {
13999 if (reg1 >= 4 && reg1 <= 7)
14000 {
14001 if (!seen_framesz)
14002 /* args $a0-$a3 */
14003 nargs |= 1 << (reg1 - 4);
14004 else
14005 /* statics $a0-$a3 */
14006 statics |= 1 << (reg1 - 4);
14007 }
14008 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
14009 {
14010 /* $s0-$s8 */
14011 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
14012 }
14013 else if (reg1 == 31)
14014 {
14015 /* Add $ra to insn. */
14016 opcode |= 0x40;
14017 }
14018 else
14019 {
14020 as_bad (_("unexpected register in list"));
14021 break;
14022 }
14023 if (++reg1 == 24)
14024 reg1 = 30;
14025 }
14026 }
14027
14028 /* Encode args/statics combination. */
14029 if (nargs & statics)
14030 as_bad (_("arg/static registers overlap"));
14031 else if (nargs == 0xf)
14032 /* All $a0-$a3 are args. */
14033 opcode |= MIPS16_ALL_ARGS << 16;
14034 else if (statics == 0xf)
14035 /* All $a0-$a3 are statics. */
14036 opcode |= MIPS16_ALL_STATICS << 16;
14037 else
14038 {
14039 int narg = 0, nstat = 0;
14040
14041 /* Count arg registers. */
14042 while (nargs & 0x1)
14043 {
14044 nargs >>= 1;
14045 narg++;
14046 }
14047 if (nargs != 0)
14048 as_bad (_("invalid arg register list"));
14049
14050 /* Count static registers. */
14051 while (statics & 0x8)
14052 {
14053 statics = (statics << 1) & 0xf;
14054 nstat++;
14055 }
14056 if (statics != 0)
14057 as_bad (_("invalid static register list"));
14058
14059 /* Encode args/statics. */
14060 opcode |= ((narg << 2) | nstat) << 16;
14061 }
14062
14063 /* Encode $s0/$s1. */
14064 if (sregs & (1 << 0)) /* $s0 */
14065 opcode |= 0x20;
14066 if (sregs & (1 << 1)) /* $s1 */
14067 opcode |= 0x10;
14068 sregs >>= 2;
14069
14070 if (sregs != 0)
14071 {
14072 /* Count regs $s2-$s8. */
14073 int nsreg = 0;
14074 while (sregs & 1)
14075 {
14076 sregs >>= 1;
14077 nsreg++;
14078 }
14079 if (sregs != 0)
14080 as_bad (_("invalid static register list"));
14081 /* Encode $s2-$s8. */
14082 opcode |= nsreg << 24;
14083 }
14084
14085 /* Encode frame size. */
14086 if (!seen_framesz)
14087 as_bad (_("missing frame size"));
14088 else if ((framesz & 7) != 0 || framesz < 0
14089 || framesz > 0xff * 8)
14090 as_bad (_("invalid frame size"));
14091 else if (framesz != 128 || (opcode >> 16) != 0)
14092 {
14093 framesz /= 8;
14094 opcode |= (((framesz & 0xf0) << 16)
14095 | (framesz & 0x0f));
14096 }
14097
14098 /* Finally build the instruction. */
14099 if ((opcode >> 16) != 0 || framesz == 0)
14100 opcode |= MIPS16_EXTEND;
14101 ip->insn_opcode = opcode;
14102 }
14103 continue;
14104
14105 case 'e': /* extend code */
14106 my_getExpression (&imm_expr, s);
14107 check_absolute_expr (ip, &imm_expr);
14108 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
14109 {
14110 as_warn (_("Invalid value for `%s' (%lu)"),
14111 ip->insn_mo->name,
14112 (unsigned long) imm_expr.X_add_number);
14113 imm_expr.X_add_number &= 0x7ff;
14114 }
14115 ip->insn_opcode |= imm_expr.X_add_number;
14116 imm_expr.X_op = O_absent;
14117 s = expr_end;
14118 continue;
14119
14120 default:
14121 abort ();
14122 }
14123 break;
14124 }
14125
14126 /* Args don't match. */
14127 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
14128 strcmp (insn->name, insn[1].name) == 0)
14129 {
14130 ++insn;
14131 s = argsstart;
14132 continue;
14133 }
14134
14135 insn_error = _("illegal operands");
14136
14137 return;
14138 }
14139 }
14140
14141 /* This structure holds information we know about a mips16 immediate
14142 argument type. */
14143
14144 struct mips16_immed_operand
14145 {
14146 /* The type code used in the argument string in the opcode table. */
14147 int type;
14148 /* The number of bits in the short form of the opcode. */
14149 int nbits;
14150 /* The number of bits in the extended form of the opcode. */
14151 int extbits;
14152 /* The amount by which the short form is shifted when it is used;
14153 for example, the sw instruction has a shift count of 2. */
14154 int shift;
14155 /* The amount by which the short form is shifted when it is stored
14156 into the instruction code. */
14157 int op_shift;
14158 /* Non-zero if the short form is unsigned. */
14159 int unsp;
14160 /* Non-zero if the extended form is unsigned. */
14161 int extu;
14162 /* Non-zero if the value is PC relative. */
14163 int pcrel;
14164 };
14165
14166 /* The mips16 immediate operand types. */
14167
14168 static const struct mips16_immed_operand mips16_immed_operands[] =
14169 {
14170 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14171 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14172 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
14173 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
14174 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
14175 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
14176 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
14177 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
14178 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
14179 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
14180 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
14181 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
14182 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
14183 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
14184 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
14185 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
14186 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14187 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
14188 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
14189 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
14190 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
14191 };
14192
14193 #define MIPS16_NUM_IMMED \
14194 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
14195
14196 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14197 NBITS is the number of significant bits in VAL. */
14198
14199 static unsigned long
14200 mips16_immed_extend (offsetT val, unsigned int nbits)
14201 {
14202 int extval;
14203 if (nbits == 16)
14204 {
14205 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14206 val &= 0x1f;
14207 }
14208 else if (nbits == 15)
14209 {
14210 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14211 val &= 0xf;
14212 }
14213 else
14214 {
14215 extval = ((val & 0x1f) << 6) | (val & 0x20);
14216 val = 0;
14217 }
14218 return (extval << 16) | val;
14219 }
14220
14221 /* Install immediate value VAL into MIPS16 instruction *INSN,
14222 extending it if necessary. The instruction in *INSN may
14223 already be extended.
14224
14225 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14226 if none. In the former case, VAL is a 16-bit number with no
14227 defined signedness.
14228
14229 TYPE is the type of the immediate field. USER_INSN_LENGTH
14230 is the length that the user requested, or 0 if none. */
14231
14232 static void
14233 mips16_immed (char *file, unsigned int line, int type,
14234 bfd_reloc_code_real_type reloc, offsetT val,
14235 unsigned int user_insn_length, unsigned long *insn)
14236 {
14237 const struct mips16_immed_operand *op;
14238 int mintiny, maxtiny;
14239
14240 op = mips16_immed_operands;
14241 while (op->type != type)
14242 {
14243 ++op;
14244 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
14245 }
14246
14247 if (op->unsp)
14248 {
14249 if (type == '<' || type == '>' || type == '[' || type == ']')
14250 {
14251 mintiny = 1;
14252 maxtiny = 1 << op->nbits;
14253 }
14254 else
14255 {
14256 mintiny = 0;
14257 maxtiny = (1 << op->nbits) - 1;
14258 }
14259 if (reloc != BFD_RELOC_UNUSED)
14260 val &= 0xffff;
14261 }
14262 else
14263 {
14264 mintiny = - (1 << (op->nbits - 1));
14265 maxtiny = (1 << (op->nbits - 1)) - 1;
14266 if (reloc != BFD_RELOC_UNUSED)
14267 val = SEXT_16BIT (val);
14268 }
14269
14270 /* Branch offsets have an implicit 0 in the lowest bit. */
14271 if (type == 'p' || type == 'q')
14272 val /= 2;
14273
14274 if ((val & ((1 << op->shift) - 1)) != 0
14275 || val < (mintiny << op->shift)
14276 || val > (maxtiny << op->shift))
14277 {
14278 /* We need an extended instruction. */
14279 if (user_insn_length == 2)
14280 as_bad_where (file, line, _("invalid unextended operand value"));
14281 else
14282 *insn |= MIPS16_EXTEND;
14283 }
14284 else if (user_insn_length == 4)
14285 {
14286 /* The operand doesn't force an unextended instruction to be extended.
14287 Warn if the user wanted an extended instruction anyway. */
14288 *insn |= MIPS16_EXTEND;
14289 as_warn_where (file, line,
14290 _("extended operand requested but not required"));
14291 }
14292
14293 if (mips16_opcode_length (*insn) == 2)
14294 {
14295 int insnval;
14296
14297 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
14298 insnval <<= op->op_shift;
14299 *insn |= insnval;
14300 }
14301 else
14302 {
14303 long minext, maxext;
14304
14305 if (reloc == BFD_RELOC_UNUSED)
14306 {
14307 if (op->extu)
14308 {
14309 minext = 0;
14310 maxext = (1 << op->extbits) - 1;
14311 }
14312 else
14313 {
14314 minext = - (1 << (op->extbits - 1));
14315 maxext = (1 << (op->extbits - 1)) - 1;
14316 }
14317 if (val < minext || val > maxext)
14318 as_bad_where (file, line,
14319 _("operand value out of range for instruction"));
14320 }
14321
14322 *insn |= mips16_immed_extend (val, op->extbits);
14323 }
14324 }
14325 \f
14326 struct percent_op_match
14327 {
14328 const char *str;
14329 bfd_reloc_code_real_type reloc;
14330 };
14331
14332 static const struct percent_op_match mips_percent_op[] =
14333 {
14334 {"%lo", BFD_RELOC_LO16},
14335 #ifdef OBJ_ELF
14336 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14337 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14338 {"%call16", BFD_RELOC_MIPS_CALL16},
14339 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14340 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14341 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14342 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14343 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14344 {"%got", BFD_RELOC_MIPS_GOT16},
14345 {"%gp_rel", BFD_RELOC_GPREL16},
14346 {"%half", BFD_RELOC_16},
14347 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14348 {"%higher", BFD_RELOC_MIPS_HIGHER},
14349 {"%neg", BFD_RELOC_MIPS_SUB},
14350 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14351 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14352 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14353 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14354 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14355 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14356 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14357 #endif
14358 {"%hi", BFD_RELOC_HI16_S}
14359 };
14360
14361 static const struct percent_op_match mips16_percent_op[] =
14362 {
14363 {"%lo", BFD_RELOC_MIPS16_LO16},
14364 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14365 {"%got", BFD_RELOC_MIPS16_GOT16},
14366 {"%call16", BFD_RELOC_MIPS16_CALL16},
14367 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14368 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14369 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14370 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14371 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14372 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14373 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14374 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14375 };
14376
14377
14378 /* Return true if *STR points to a relocation operator. When returning true,
14379 move *STR over the operator and store its relocation code in *RELOC.
14380 Leave both *STR and *RELOC alone when returning false. */
14381
14382 static bfd_boolean
14383 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14384 {
14385 const struct percent_op_match *percent_op;
14386 size_t limit, i;
14387
14388 if (mips_opts.mips16)
14389 {
14390 percent_op = mips16_percent_op;
14391 limit = ARRAY_SIZE (mips16_percent_op);
14392 }
14393 else
14394 {
14395 percent_op = mips_percent_op;
14396 limit = ARRAY_SIZE (mips_percent_op);
14397 }
14398
14399 for (i = 0; i < limit; i++)
14400 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14401 {
14402 int len = strlen (percent_op[i].str);
14403
14404 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14405 continue;
14406
14407 *str += strlen (percent_op[i].str);
14408 *reloc = percent_op[i].reloc;
14409
14410 /* Check whether the output BFD supports this relocation.
14411 If not, issue an error and fall back on something safe. */
14412 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14413 {
14414 as_bad (_("relocation %s isn't supported by the current ABI"),
14415 percent_op[i].str);
14416 *reloc = BFD_RELOC_UNUSED;
14417 }
14418 return TRUE;
14419 }
14420 return FALSE;
14421 }
14422
14423
14424 /* Parse string STR as a 16-bit relocatable operand. Store the
14425 expression in *EP and the relocations in the array starting
14426 at RELOC. Return the number of relocation operators used.
14427
14428 On exit, EXPR_END points to the first character after the expression. */
14429
14430 static size_t
14431 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14432 char *str)
14433 {
14434 bfd_reloc_code_real_type reversed_reloc[3];
14435 size_t reloc_index, i;
14436 int crux_depth, str_depth;
14437 char *crux;
14438
14439 /* Search for the start of the main expression, recoding relocations
14440 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14441 of the main expression and with CRUX_DEPTH containing the number
14442 of open brackets at that point. */
14443 reloc_index = -1;
14444 str_depth = 0;
14445 do
14446 {
14447 reloc_index++;
14448 crux = str;
14449 crux_depth = str_depth;
14450
14451 /* Skip over whitespace and brackets, keeping count of the number
14452 of brackets. */
14453 while (*str == ' ' || *str == '\t' || *str == '(')
14454 if (*str++ == '(')
14455 str_depth++;
14456 }
14457 while (*str == '%'
14458 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14459 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14460
14461 my_getExpression (ep, crux);
14462 str = expr_end;
14463
14464 /* Match every open bracket. */
14465 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14466 if (*str++ == ')')
14467 crux_depth--;
14468
14469 if (crux_depth > 0)
14470 as_bad (_("unclosed '('"));
14471
14472 expr_end = str;
14473
14474 if (reloc_index != 0)
14475 {
14476 prev_reloc_op_frag = frag_now;
14477 for (i = 0; i < reloc_index; i++)
14478 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14479 }
14480
14481 return reloc_index;
14482 }
14483
14484 static void
14485 my_getExpression (expressionS *ep, char *str)
14486 {
14487 char *save_in;
14488
14489 save_in = input_line_pointer;
14490 input_line_pointer = str;
14491 expression (ep);
14492 expr_end = input_line_pointer;
14493 input_line_pointer = save_in;
14494 }
14495
14496 char *
14497 md_atof (int type, char *litP, int *sizeP)
14498 {
14499 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14500 }
14501
14502 void
14503 md_number_to_chars (char *buf, valueT val, int n)
14504 {
14505 if (target_big_endian)
14506 number_to_chars_bigendian (buf, val, n);
14507 else
14508 number_to_chars_littleendian (buf, val, n);
14509 }
14510 \f
14511 #ifdef OBJ_ELF
14512 static int support_64bit_objects(void)
14513 {
14514 const char **list, **l;
14515 int yes;
14516
14517 list = bfd_target_list ();
14518 for (l = list; *l != NULL; l++)
14519 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14520 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14521 break;
14522 yes = (*l != NULL);
14523 free (list);
14524 return yes;
14525 }
14526 #endif /* OBJ_ELF */
14527
14528 const char *md_shortopts = "O::g::G:";
14529
14530 enum options
14531 {
14532 OPTION_MARCH = OPTION_MD_BASE,
14533 OPTION_MTUNE,
14534 OPTION_MIPS1,
14535 OPTION_MIPS2,
14536 OPTION_MIPS3,
14537 OPTION_MIPS4,
14538 OPTION_MIPS5,
14539 OPTION_MIPS32,
14540 OPTION_MIPS64,
14541 OPTION_MIPS32R2,
14542 OPTION_MIPS64R2,
14543 OPTION_MIPS16,
14544 OPTION_NO_MIPS16,
14545 OPTION_MIPS3D,
14546 OPTION_NO_MIPS3D,
14547 OPTION_MDMX,
14548 OPTION_NO_MDMX,
14549 OPTION_DSP,
14550 OPTION_NO_DSP,
14551 OPTION_MT,
14552 OPTION_NO_MT,
14553 OPTION_VIRT,
14554 OPTION_NO_VIRT,
14555 OPTION_SMARTMIPS,
14556 OPTION_NO_SMARTMIPS,
14557 OPTION_DSPR2,
14558 OPTION_NO_DSPR2,
14559 OPTION_MICROMIPS,
14560 OPTION_NO_MICROMIPS,
14561 OPTION_MCU,
14562 OPTION_NO_MCU,
14563 OPTION_COMPAT_ARCH_BASE,
14564 OPTION_M4650,
14565 OPTION_NO_M4650,
14566 OPTION_M4010,
14567 OPTION_NO_M4010,
14568 OPTION_M4100,
14569 OPTION_NO_M4100,
14570 OPTION_M3900,
14571 OPTION_NO_M3900,
14572 OPTION_M7000_HILO_FIX,
14573 OPTION_MNO_7000_HILO_FIX,
14574 OPTION_FIX_24K,
14575 OPTION_NO_FIX_24K,
14576 OPTION_FIX_LOONGSON2F_JUMP,
14577 OPTION_NO_FIX_LOONGSON2F_JUMP,
14578 OPTION_FIX_LOONGSON2F_NOP,
14579 OPTION_NO_FIX_LOONGSON2F_NOP,
14580 OPTION_FIX_VR4120,
14581 OPTION_NO_FIX_VR4120,
14582 OPTION_FIX_VR4130,
14583 OPTION_NO_FIX_VR4130,
14584 OPTION_FIX_CN63XXP1,
14585 OPTION_NO_FIX_CN63XXP1,
14586 OPTION_TRAP,
14587 OPTION_BREAK,
14588 OPTION_EB,
14589 OPTION_EL,
14590 OPTION_FP32,
14591 OPTION_GP32,
14592 OPTION_CONSTRUCT_FLOATS,
14593 OPTION_NO_CONSTRUCT_FLOATS,
14594 OPTION_FP64,
14595 OPTION_GP64,
14596 OPTION_RELAX_BRANCH,
14597 OPTION_NO_RELAX_BRANCH,
14598 OPTION_MSHARED,
14599 OPTION_MNO_SHARED,
14600 OPTION_MSYM32,
14601 OPTION_MNO_SYM32,
14602 OPTION_SOFT_FLOAT,
14603 OPTION_HARD_FLOAT,
14604 OPTION_SINGLE_FLOAT,
14605 OPTION_DOUBLE_FLOAT,
14606 OPTION_32,
14607 #ifdef OBJ_ELF
14608 OPTION_CALL_SHARED,
14609 OPTION_CALL_NONPIC,
14610 OPTION_NON_SHARED,
14611 OPTION_XGOT,
14612 OPTION_MABI,
14613 OPTION_N32,
14614 OPTION_64,
14615 OPTION_MDEBUG,
14616 OPTION_NO_MDEBUG,
14617 OPTION_PDR,
14618 OPTION_NO_PDR,
14619 OPTION_MVXWORKS_PIC,
14620 #endif /* OBJ_ELF */
14621 OPTION_END_OF_ENUM
14622 };
14623
14624 struct option md_longopts[] =
14625 {
14626 /* Options which specify architecture. */
14627 {"march", required_argument, NULL, OPTION_MARCH},
14628 {"mtune", required_argument, NULL, OPTION_MTUNE},
14629 {"mips0", no_argument, NULL, OPTION_MIPS1},
14630 {"mips1", no_argument, NULL, OPTION_MIPS1},
14631 {"mips2", no_argument, NULL, OPTION_MIPS2},
14632 {"mips3", no_argument, NULL, OPTION_MIPS3},
14633 {"mips4", no_argument, NULL, OPTION_MIPS4},
14634 {"mips5", no_argument, NULL, OPTION_MIPS5},
14635 {"mips32", no_argument, NULL, OPTION_MIPS32},
14636 {"mips64", no_argument, NULL, OPTION_MIPS64},
14637 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
14638 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
14639
14640 /* Options which specify Application Specific Extensions (ASEs). */
14641 {"mips16", no_argument, NULL, OPTION_MIPS16},
14642 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
14643 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
14644 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
14645 {"mdmx", no_argument, NULL, OPTION_MDMX},
14646 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
14647 {"mdsp", no_argument, NULL, OPTION_DSP},
14648 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
14649 {"mmt", no_argument, NULL, OPTION_MT},
14650 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
14651 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
14652 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
14653 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
14654 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
14655 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
14656 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
14657 {"mmcu", no_argument, NULL, OPTION_MCU},
14658 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
14659 {"mvirt", no_argument, NULL, OPTION_VIRT},
14660 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
14661
14662 /* Old-style architecture options. Don't add more of these. */
14663 {"m4650", no_argument, NULL, OPTION_M4650},
14664 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
14665 {"m4010", no_argument, NULL, OPTION_M4010},
14666 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
14667 {"m4100", no_argument, NULL, OPTION_M4100},
14668 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
14669 {"m3900", no_argument, NULL, OPTION_M3900},
14670 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
14671
14672 /* Options which enable bug fixes. */
14673 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
14674 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14675 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
14676 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
14677 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
14678 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
14679 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
14680 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
14681 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
14682 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
14683 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
14684 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
14685 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
14686 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
14687 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
14688
14689 /* Miscellaneous options. */
14690 {"trap", no_argument, NULL, OPTION_TRAP},
14691 {"no-break", no_argument, NULL, OPTION_TRAP},
14692 {"break", no_argument, NULL, OPTION_BREAK},
14693 {"no-trap", no_argument, NULL, OPTION_BREAK},
14694 {"EB", no_argument, NULL, OPTION_EB},
14695 {"EL", no_argument, NULL, OPTION_EL},
14696 {"mfp32", no_argument, NULL, OPTION_FP32},
14697 {"mgp32", no_argument, NULL, OPTION_GP32},
14698 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
14699 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
14700 {"mfp64", no_argument, NULL, OPTION_FP64},
14701 {"mgp64", no_argument, NULL, OPTION_GP64},
14702 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
14703 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
14704 {"mshared", no_argument, NULL, OPTION_MSHARED},
14705 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
14706 {"msym32", no_argument, NULL, OPTION_MSYM32},
14707 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
14708 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
14709 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
14710 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
14711 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
14712
14713 /* Strictly speaking this next option is ELF specific,
14714 but we allow it for other ports as well in order to
14715 make testing easier. */
14716 {"32", no_argument, NULL, OPTION_32},
14717
14718 /* ELF-specific options. */
14719 #ifdef OBJ_ELF
14720 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
14721 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
14722 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
14723 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
14724 {"xgot", no_argument, NULL, OPTION_XGOT},
14725 {"mabi", required_argument, NULL, OPTION_MABI},
14726 {"n32", no_argument, NULL, OPTION_N32},
14727 {"64", no_argument, NULL, OPTION_64},
14728 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
14729 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
14730 {"mpdr", no_argument, NULL, OPTION_PDR},
14731 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
14732 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
14733 #endif /* OBJ_ELF */
14734
14735 {NULL, no_argument, NULL, 0}
14736 };
14737 size_t md_longopts_size = sizeof (md_longopts);
14738
14739 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14740 NEW_VALUE. Warn if another value was already specified. Note:
14741 we have to defer parsing the -march and -mtune arguments in order
14742 to handle 'from-abi' correctly, since the ABI might be specified
14743 in a later argument. */
14744
14745 static void
14746 mips_set_option_string (const char **string_ptr, const char *new_value)
14747 {
14748 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14749 as_warn (_("A different %s was already specified, is now %s"),
14750 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14751 new_value);
14752
14753 *string_ptr = new_value;
14754 }
14755
14756 int
14757 md_parse_option (int c, char *arg)
14758 {
14759 switch (c)
14760 {
14761 case OPTION_CONSTRUCT_FLOATS:
14762 mips_disable_float_construction = 0;
14763 break;
14764
14765 case OPTION_NO_CONSTRUCT_FLOATS:
14766 mips_disable_float_construction = 1;
14767 break;
14768
14769 case OPTION_TRAP:
14770 mips_trap = 1;
14771 break;
14772
14773 case OPTION_BREAK:
14774 mips_trap = 0;
14775 break;
14776
14777 case OPTION_EB:
14778 target_big_endian = 1;
14779 break;
14780
14781 case OPTION_EL:
14782 target_big_endian = 0;
14783 break;
14784
14785 case 'O':
14786 if (arg == NULL)
14787 mips_optimize = 1;
14788 else if (arg[0] == '0')
14789 mips_optimize = 0;
14790 else if (arg[0] == '1')
14791 mips_optimize = 1;
14792 else
14793 mips_optimize = 2;
14794 break;
14795
14796 case 'g':
14797 if (arg == NULL)
14798 mips_debug = 2;
14799 else
14800 mips_debug = atoi (arg);
14801 break;
14802
14803 case OPTION_MIPS1:
14804 file_mips_isa = ISA_MIPS1;
14805 break;
14806
14807 case OPTION_MIPS2:
14808 file_mips_isa = ISA_MIPS2;
14809 break;
14810
14811 case OPTION_MIPS3:
14812 file_mips_isa = ISA_MIPS3;
14813 break;
14814
14815 case OPTION_MIPS4:
14816 file_mips_isa = ISA_MIPS4;
14817 break;
14818
14819 case OPTION_MIPS5:
14820 file_mips_isa = ISA_MIPS5;
14821 break;
14822
14823 case OPTION_MIPS32:
14824 file_mips_isa = ISA_MIPS32;
14825 break;
14826
14827 case OPTION_MIPS32R2:
14828 file_mips_isa = ISA_MIPS32R2;
14829 break;
14830
14831 case OPTION_MIPS64R2:
14832 file_mips_isa = ISA_MIPS64R2;
14833 break;
14834
14835 case OPTION_MIPS64:
14836 file_mips_isa = ISA_MIPS64;
14837 break;
14838
14839 case OPTION_MTUNE:
14840 mips_set_option_string (&mips_tune_string, arg);
14841 break;
14842
14843 case OPTION_MARCH:
14844 mips_set_option_string (&mips_arch_string, arg);
14845 break;
14846
14847 case OPTION_M4650:
14848 mips_set_option_string (&mips_arch_string, "4650");
14849 mips_set_option_string (&mips_tune_string, "4650");
14850 break;
14851
14852 case OPTION_NO_M4650:
14853 break;
14854
14855 case OPTION_M4010:
14856 mips_set_option_string (&mips_arch_string, "4010");
14857 mips_set_option_string (&mips_tune_string, "4010");
14858 break;
14859
14860 case OPTION_NO_M4010:
14861 break;
14862
14863 case OPTION_M4100:
14864 mips_set_option_string (&mips_arch_string, "4100");
14865 mips_set_option_string (&mips_tune_string, "4100");
14866 break;
14867
14868 case OPTION_NO_M4100:
14869 break;
14870
14871 case OPTION_M3900:
14872 mips_set_option_string (&mips_arch_string, "3900");
14873 mips_set_option_string (&mips_tune_string, "3900");
14874 break;
14875
14876 case OPTION_NO_M3900:
14877 break;
14878
14879 case OPTION_MDMX:
14880 mips_opts.ase_mdmx = 1;
14881 break;
14882
14883 case OPTION_NO_MDMX:
14884 mips_opts.ase_mdmx = 0;
14885 break;
14886
14887 case OPTION_DSP:
14888 mips_opts.ase_dsp = 1;
14889 mips_opts.ase_dspr2 = 0;
14890 break;
14891
14892 case OPTION_NO_DSP:
14893 mips_opts.ase_dsp = 0;
14894 mips_opts.ase_dspr2 = 0;
14895 break;
14896
14897 case OPTION_DSPR2:
14898 mips_opts.ase_dspr2 = 1;
14899 mips_opts.ase_dsp = 1;
14900 break;
14901
14902 case OPTION_NO_DSPR2:
14903 mips_opts.ase_dspr2 = 0;
14904 mips_opts.ase_dsp = 0;
14905 break;
14906
14907 case OPTION_MT:
14908 mips_opts.ase_mt = 1;
14909 break;
14910
14911 case OPTION_NO_MT:
14912 mips_opts.ase_mt = 0;
14913 break;
14914
14915 case OPTION_MCU:
14916 mips_opts.ase_mcu = 1;
14917 break;
14918
14919 case OPTION_NO_MCU:
14920 mips_opts.ase_mcu = 0;
14921 break;
14922
14923 case OPTION_MICROMIPS:
14924 if (mips_opts.mips16 == 1)
14925 {
14926 as_bad (_("-mmicromips cannot be used with -mips16"));
14927 return 0;
14928 }
14929 mips_opts.micromips = 1;
14930 mips_no_prev_insn ();
14931 break;
14932
14933 case OPTION_NO_MICROMIPS:
14934 mips_opts.micromips = 0;
14935 mips_no_prev_insn ();
14936 break;
14937
14938 case OPTION_VIRT:
14939 mips_opts.ase_virt = 1;
14940 break;
14941
14942 case OPTION_NO_VIRT:
14943 mips_opts.ase_virt = 0;
14944 break;
14945
14946 case OPTION_MIPS16:
14947 if (mips_opts.micromips == 1)
14948 {
14949 as_bad (_("-mips16 cannot be used with -micromips"));
14950 return 0;
14951 }
14952 mips_opts.mips16 = 1;
14953 mips_no_prev_insn ();
14954 break;
14955
14956 case OPTION_NO_MIPS16:
14957 mips_opts.mips16 = 0;
14958 mips_no_prev_insn ();
14959 break;
14960
14961 case OPTION_MIPS3D:
14962 mips_opts.ase_mips3d = 1;
14963 break;
14964
14965 case OPTION_NO_MIPS3D:
14966 mips_opts.ase_mips3d = 0;
14967 break;
14968
14969 case OPTION_SMARTMIPS:
14970 mips_opts.ase_smartmips = 1;
14971 break;
14972
14973 case OPTION_NO_SMARTMIPS:
14974 mips_opts.ase_smartmips = 0;
14975 break;
14976
14977 case OPTION_FIX_24K:
14978 mips_fix_24k = 1;
14979 break;
14980
14981 case OPTION_NO_FIX_24K:
14982 mips_fix_24k = 0;
14983 break;
14984
14985 case OPTION_FIX_LOONGSON2F_JUMP:
14986 mips_fix_loongson2f_jump = TRUE;
14987 break;
14988
14989 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14990 mips_fix_loongson2f_jump = FALSE;
14991 break;
14992
14993 case OPTION_FIX_LOONGSON2F_NOP:
14994 mips_fix_loongson2f_nop = TRUE;
14995 break;
14996
14997 case OPTION_NO_FIX_LOONGSON2F_NOP:
14998 mips_fix_loongson2f_nop = FALSE;
14999 break;
15000
15001 case OPTION_FIX_VR4120:
15002 mips_fix_vr4120 = 1;
15003 break;
15004
15005 case OPTION_NO_FIX_VR4120:
15006 mips_fix_vr4120 = 0;
15007 break;
15008
15009 case OPTION_FIX_VR4130:
15010 mips_fix_vr4130 = 1;
15011 break;
15012
15013 case OPTION_NO_FIX_VR4130:
15014 mips_fix_vr4130 = 0;
15015 break;
15016
15017 case OPTION_FIX_CN63XXP1:
15018 mips_fix_cn63xxp1 = TRUE;
15019 break;
15020
15021 case OPTION_NO_FIX_CN63XXP1:
15022 mips_fix_cn63xxp1 = FALSE;
15023 break;
15024
15025 case OPTION_RELAX_BRANCH:
15026 mips_relax_branch = 1;
15027 break;
15028
15029 case OPTION_NO_RELAX_BRANCH:
15030 mips_relax_branch = 0;
15031 break;
15032
15033 case OPTION_MSHARED:
15034 mips_in_shared = TRUE;
15035 break;
15036
15037 case OPTION_MNO_SHARED:
15038 mips_in_shared = FALSE;
15039 break;
15040
15041 case OPTION_MSYM32:
15042 mips_opts.sym32 = TRUE;
15043 break;
15044
15045 case OPTION_MNO_SYM32:
15046 mips_opts.sym32 = FALSE;
15047 break;
15048
15049 #ifdef OBJ_ELF
15050 /* When generating ELF code, we permit -KPIC and -call_shared to
15051 select SVR4_PIC, and -non_shared to select no PIC. This is
15052 intended to be compatible with Irix 5. */
15053 case OPTION_CALL_SHARED:
15054 if (!IS_ELF)
15055 {
15056 as_bad (_("-call_shared is supported only for ELF format"));
15057 return 0;
15058 }
15059 mips_pic = SVR4_PIC;
15060 mips_abicalls = TRUE;
15061 break;
15062
15063 case OPTION_CALL_NONPIC:
15064 if (!IS_ELF)
15065 {
15066 as_bad (_("-call_nonpic is supported only for ELF format"));
15067 return 0;
15068 }
15069 mips_pic = NO_PIC;
15070 mips_abicalls = TRUE;
15071 break;
15072
15073 case OPTION_NON_SHARED:
15074 if (!IS_ELF)
15075 {
15076 as_bad (_("-non_shared is supported only for ELF format"));
15077 return 0;
15078 }
15079 mips_pic = NO_PIC;
15080 mips_abicalls = FALSE;
15081 break;
15082
15083 /* The -xgot option tells the assembler to use 32 bit offsets
15084 when accessing the got in SVR4_PIC mode. It is for Irix
15085 compatibility. */
15086 case OPTION_XGOT:
15087 mips_big_got = 1;
15088 break;
15089 #endif /* OBJ_ELF */
15090
15091 case 'G':
15092 g_switch_value = atoi (arg);
15093 g_switch_seen = 1;
15094 break;
15095
15096 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15097 and -mabi=64. */
15098 case OPTION_32:
15099 if (IS_ELF)
15100 mips_abi = O32_ABI;
15101 /* We silently ignore -32 for non-ELF targets. This greatly
15102 simplifies the construction of the MIPS GAS test cases. */
15103 break;
15104
15105 #ifdef OBJ_ELF
15106 case OPTION_N32:
15107 if (!IS_ELF)
15108 {
15109 as_bad (_("-n32 is supported for ELF format only"));
15110 return 0;
15111 }
15112 mips_abi = N32_ABI;
15113 break;
15114
15115 case OPTION_64:
15116 if (!IS_ELF)
15117 {
15118 as_bad (_("-64 is supported for ELF format only"));
15119 return 0;
15120 }
15121 mips_abi = N64_ABI;
15122 if (!support_64bit_objects())
15123 as_fatal (_("No compiled in support for 64 bit object file format"));
15124 break;
15125 #endif /* OBJ_ELF */
15126
15127 case OPTION_GP32:
15128 file_mips_gp32 = 1;
15129 break;
15130
15131 case OPTION_GP64:
15132 file_mips_gp32 = 0;
15133 break;
15134
15135 case OPTION_FP32:
15136 file_mips_fp32 = 1;
15137 break;
15138
15139 case OPTION_FP64:
15140 file_mips_fp32 = 0;
15141 break;
15142
15143 case OPTION_SINGLE_FLOAT:
15144 file_mips_single_float = 1;
15145 break;
15146
15147 case OPTION_DOUBLE_FLOAT:
15148 file_mips_single_float = 0;
15149 break;
15150
15151 case OPTION_SOFT_FLOAT:
15152 file_mips_soft_float = 1;
15153 break;
15154
15155 case OPTION_HARD_FLOAT:
15156 file_mips_soft_float = 0;
15157 break;
15158
15159 #ifdef OBJ_ELF
15160 case OPTION_MABI:
15161 if (!IS_ELF)
15162 {
15163 as_bad (_("-mabi is supported for ELF format only"));
15164 return 0;
15165 }
15166 if (strcmp (arg, "32") == 0)
15167 mips_abi = O32_ABI;
15168 else if (strcmp (arg, "o64") == 0)
15169 mips_abi = O64_ABI;
15170 else if (strcmp (arg, "n32") == 0)
15171 mips_abi = N32_ABI;
15172 else if (strcmp (arg, "64") == 0)
15173 {
15174 mips_abi = N64_ABI;
15175 if (! support_64bit_objects())
15176 as_fatal (_("No compiled in support for 64 bit object file "
15177 "format"));
15178 }
15179 else if (strcmp (arg, "eabi") == 0)
15180 mips_abi = EABI_ABI;
15181 else
15182 {
15183 as_fatal (_("invalid abi -mabi=%s"), arg);
15184 return 0;
15185 }
15186 break;
15187 #endif /* OBJ_ELF */
15188
15189 case OPTION_M7000_HILO_FIX:
15190 mips_7000_hilo_fix = TRUE;
15191 break;
15192
15193 case OPTION_MNO_7000_HILO_FIX:
15194 mips_7000_hilo_fix = FALSE;
15195 break;
15196
15197 #ifdef OBJ_ELF
15198 case OPTION_MDEBUG:
15199 mips_flag_mdebug = TRUE;
15200 break;
15201
15202 case OPTION_NO_MDEBUG:
15203 mips_flag_mdebug = FALSE;
15204 break;
15205
15206 case OPTION_PDR:
15207 mips_flag_pdr = TRUE;
15208 break;
15209
15210 case OPTION_NO_PDR:
15211 mips_flag_pdr = FALSE;
15212 break;
15213
15214 case OPTION_MVXWORKS_PIC:
15215 mips_pic = VXWORKS_PIC;
15216 break;
15217 #endif /* OBJ_ELF */
15218
15219 default:
15220 return 0;
15221 }
15222
15223 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15224
15225 return 1;
15226 }
15227 \f
15228 /* Set up globals to generate code for the ISA or processor
15229 described by INFO. */
15230
15231 static void
15232 mips_set_architecture (const struct mips_cpu_info *info)
15233 {
15234 if (info != 0)
15235 {
15236 file_mips_arch = info->cpu;
15237 mips_opts.arch = info->cpu;
15238 mips_opts.isa = info->isa;
15239 }
15240 }
15241
15242
15243 /* Likewise for tuning. */
15244
15245 static void
15246 mips_set_tune (const struct mips_cpu_info *info)
15247 {
15248 if (info != 0)
15249 mips_tune = info->cpu;
15250 }
15251
15252
15253 void
15254 mips_after_parse_args (void)
15255 {
15256 const struct mips_cpu_info *arch_info = 0;
15257 const struct mips_cpu_info *tune_info = 0;
15258
15259 /* GP relative stuff not working for PE */
15260 if (strncmp (TARGET_OS, "pe", 2) == 0)
15261 {
15262 if (g_switch_seen && g_switch_value != 0)
15263 as_bad (_("-G not supported in this configuration."));
15264 g_switch_value = 0;
15265 }
15266
15267 if (mips_abi == NO_ABI)
15268 mips_abi = MIPS_DEFAULT_ABI;
15269
15270 /* The following code determines the architecture and register size.
15271 Similar code was added to GCC 3.3 (see override_options() in
15272 config/mips/mips.c). The GAS and GCC code should be kept in sync
15273 as much as possible. */
15274
15275 if (mips_arch_string != 0)
15276 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15277
15278 if (file_mips_isa != ISA_UNKNOWN)
15279 {
15280 /* Handle -mipsN. At this point, file_mips_isa contains the
15281 ISA level specified by -mipsN, while arch_info->isa contains
15282 the -march selection (if any). */
15283 if (arch_info != 0)
15284 {
15285 /* -march takes precedence over -mipsN, since it is more descriptive.
15286 There's no harm in specifying both as long as the ISA levels
15287 are the same. */
15288 if (file_mips_isa != arch_info->isa)
15289 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
15290 mips_cpu_info_from_isa (file_mips_isa)->name,
15291 mips_cpu_info_from_isa (arch_info->isa)->name);
15292 }
15293 else
15294 arch_info = mips_cpu_info_from_isa (file_mips_isa);
15295 }
15296
15297 if (arch_info == 0)
15298 {
15299 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15300 gas_assert (arch_info);
15301 }
15302
15303 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15304 as_bad (_("-march=%s is not compatible with the selected ABI"),
15305 arch_info->name);
15306
15307 mips_set_architecture (arch_info);
15308
15309 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
15310 if (mips_tune_string != 0)
15311 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15312
15313 if (tune_info == 0)
15314 mips_set_tune (arch_info);
15315 else
15316 mips_set_tune (tune_info);
15317
15318 if (file_mips_gp32 >= 0)
15319 {
15320 /* The user specified the size of the integer registers. Make sure
15321 it agrees with the ABI and ISA. */
15322 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
15323 as_bad (_("-mgp64 used with a 32-bit processor"));
15324 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
15325 as_bad (_("-mgp32 used with a 64-bit ABI"));
15326 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
15327 as_bad (_("-mgp64 used with a 32-bit ABI"));
15328 }
15329 else
15330 {
15331 /* Infer the integer register size from the ABI and processor.
15332 Restrict ourselves to 32-bit registers if that's all the
15333 processor has, or if the ABI cannot handle 64-bit registers. */
15334 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
15335 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
15336 }
15337
15338 switch (file_mips_fp32)
15339 {
15340 default:
15341 case -1:
15342 /* No user specified float register size.
15343 ??? GAS treats single-float processors as though they had 64-bit
15344 float registers (although it complains when double-precision
15345 instructions are used). As things stand, saying they have 32-bit
15346 registers would lead to spurious "register must be even" messages.
15347 So here we assume float registers are never smaller than the
15348 integer ones. */
15349 if (file_mips_gp32 == 0)
15350 /* 64-bit integer registers implies 64-bit float registers. */
15351 file_mips_fp32 = 0;
15352 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
15353 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
15354 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
15355 file_mips_fp32 = 0;
15356 else
15357 /* 32-bit float registers. */
15358 file_mips_fp32 = 1;
15359 break;
15360
15361 /* The user specified the size of the float registers. Check if it
15362 agrees with the ABI and ISA. */
15363 case 0:
15364 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
15365 as_bad (_("-mfp64 used with a 32-bit fpu"));
15366 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
15367 && !ISA_HAS_MXHC1 (mips_opts.isa))
15368 as_warn (_("-mfp64 used with a 32-bit ABI"));
15369 break;
15370 case 1:
15371 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15372 as_warn (_("-mfp32 used with a 64-bit ABI"));
15373 break;
15374 }
15375
15376 /* End of GCC-shared inference code. */
15377
15378 /* This flag is set when we have a 64-bit capable CPU but use only
15379 32-bit wide registers. Note that EABI does not use it. */
15380 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
15381 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
15382 || mips_abi == O32_ABI))
15383 mips_32bitmode = 1;
15384
15385 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
15386 as_bad (_("trap exception not supported at ISA 1"));
15387
15388 /* If the selected architecture includes support for ASEs, enable
15389 generation of code for them. */
15390 if (mips_opts.mips16 == -1)
15391 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
15392 if (mips_opts.micromips == -1)
15393 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
15394 if (mips_opts.ase_mips3d == -1)
15395 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
15396 && file_mips_fp32 == 0) ? 1 : 0;
15397 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
15398 as_bad (_("-mfp32 used with -mips3d"));
15399
15400 if (mips_opts.ase_mdmx == -1)
15401 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
15402 && file_mips_fp32 == 0) ? 1 : 0;
15403 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
15404 as_bad (_("-mfp32 used with -mdmx"));
15405
15406 if (mips_opts.ase_smartmips == -1)
15407 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
15408 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
15409 as_warn (_("%s ISA does not support SmartMIPS"),
15410 mips_cpu_info_from_isa (mips_opts.isa)->name);
15411
15412 if (mips_opts.ase_dsp == -1)
15413 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15414 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
15415 as_warn (_("%s ISA does not support DSP ASE"),
15416 mips_cpu_info_from_isa (mips_opts.isa)->name);
15417
15418 if (mips_opts.ase_dspr2 == -1)
15419 {
15420 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
15421 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
15422 }
15423 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
15424 as_warn (_("%s ISA does not support DSP R2 ASE"),
15425 mips_cpu_info_from_isa (mips_opts.isa)->name);
15426
15427 if (mips_opts.ase_mt == -1)
15428 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
15429 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
15430 as_warn (_("%s ISA does not support MT ASE"),
15431 mips_cpu_info_from_isa (mips_opts.isa)->name);
15432
15433 if (mips_opts.ase_mcu == -1)
15434 mips_opts.ase_mcu = (arch_info->flags & MIPS_CPU_ASE_MCU) ? 1 : 0;
15435 if (mips_opts.ase_mcu && !ISA_SUPPORTS_MCU_ASE)
15436 as_warn (_("%s ISA does not support MCU ASE"),
15437 mips_cpu_info_from_isa (mips_opts.isa)->name);
15438
15439 if (mips_opts.ase_virt == -1)
15440 mips_opts.ase_virt = (arch_info->flags & MIPS_CPU_ASE_VIRT) ? 1 : 0;
15441 if (mips_opts.ase_virt && !ISA_SUPPORTS_VIRT_ASE)
15442 as_warn (_("%s ISA does not support Virtualization ASE"),
15443 mips_cpu_info_from_isa (mips_opts.isa)->name);
15444
15445 file_mips_isa = mips_opts.isa;
15446 file_ase_mips3d = mips_opts.ase_mips3d;
15447 file_ase_mdmx = mips_opts.ase_mdmx;
15448 file_ase_smartmips = mips_opts.ase_smartmips;
15449 file_ase_dsp = mips_opts.ase_dsp;
15450 file_ase_dspr2 = mips_opts.ase_dspr2;
15451 file_ase_mt = mips_opts.ase_mt;
15452 file_ase_virt = mips_opts.ase_virt;
15453 mips_opts.gp32 = file_mips_gp32;
15454 mips_opts.fp32 = file_mips_fp32;
15455 mips_opts.soft_float = file_mips_soft_float;
15456 mips_opts.single_float = file_mips_single_float;
15457
15458 if (mips_flag_mdebug < 0)
15459 {
15460 #ifdef OBJ_MAYBE_ECOFF
15461 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
15462 mips_flag_mdebug = 1;
15463 else
15464 #endif /* OBJ_MAYBE_ECOFF */
15465 mips_flag_mdebug = 0;
15466 }
15467 }
15468 \f
15469 void
15470 mips_init_after_args (void)
15471 {
15472 /* initialize opcodes */
15473 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15474 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15475 }
15476
15477 long
15478 md_pcrel_from (fixS *fixP)
15479 {
15480 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15481 switch (fixP->fx_r_type)
15482 {
15483 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15484 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15485 /* Return the address of the delay slot. */
15486 return addr + 2;
15487
15488 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15489 case BFD_RELOC_MICROMIPS_JMP:
15490 case BFD_RELOC_16_PCREL_S2:
15491 case BFD_RELOC_MIPS_JMP:
15492 /* Return the address of the delay slot. */
15493 return addr + 4;
15494
15495 case BFD_RELOC_32_PCREL:
15496 return addr;
15497
15498 default:
15499 /* We have no relocation type for PC relative MIPS16 instructions. */
15500 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
15501 as_bad_where (fixP->fx_file, fixP->fx_line,
15502 _("PC relative MIPS16 instruction references a different section"));
15503 return addr;
15504 }
15505 }
15506
15507 /* This is called before the symbol table is processed. In order to
15508 work with gcc when using mips-tfile, we must keep all local labels.
15509 However, in other cases, we want to discard them. If we were
15510 called with -g, but we didn't see any debugging information, it may
15511 mean that gcc is smuggling debugging information through to
15512 mips-tfile, in which case we must generate all local labels. */
15513
15514 void
15515 mips_frob_file_before_adjust (void)
15516 {
15517 #ifndef NO_ECOFF_DEBUGGING
15518 if (ECOFF_DEBUGGING
15519 && mips_debug != 0
15520 && ! ecoff_debugging_seen)
15521 flag_keep_locals = 1;
15522 #endif
15523 }
15524
15525 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15526 the corresponding LO16 reloc. This is called before md_apply_fix and
15527 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15528 relocation operators.
15529
15530 For our purposes, a %lo() expression matches a %got() or %hi()
15531 expression if:
15532
15533 (a) it refers to the same symbol; and
15534 (b) the offset applied in the %lo() expression is no lower than
15535 the offset applied in the %got() or %hi().
15536
15537 (b) allows us to cope with code like:
15538
15539 lui $4,%hi(foo)
15540 lh $4,%lo(foo+2)($4)
15541
15542 ...which is legal on RELA targets, and has a well-defined behaviour
15543 if the user knows that adding 2 to "foo" will not induce a carry to
15544 the high 16 bits.
15545
15546 When several %lo()s match a particular %got() or %hi(), we use the
15547 following rules to distinguish them:
15548
15549 (1) %lo()s with smaller offsets are a better match than %lo()s with
15550 higher offsets.
15551
15552 (2) %lo()s with no matching %got() or %hi() are better than those
15553 that already have a matching %got() or %hi().
15554
15555 (3) later %lo()s are better than earlier %lo()s.
15556
15557 These rules are applied in order.
15558
15559 (1) means, among other things, that %lo()s with identical offsets are
15560 chosen if they exist.
15561
15562 (2) means that we won't associate several high-part relocations with
15563 the same low-part relocation unless there's no alternative. Having
15564 several high parts for the same low part is a GNU extension; this rule
15565 allows careful users to avoid it.
15566
15567 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15568 with the last high-part relocation being at the front of the list.
15569 It therefore makes sense to choose the last matching low-part
15570 relocation, all other things being equal. It's also easier
15571 to code that way. */
15572
15573 void
15574 mips_frob_file (void)
15575 {
15576 struct mips_hi_fixup *l;
15577 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15578
15579 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15580 {
15581 segment_info_type *seginfo;
15582 bfd_boolean matched_lo_p;
15583 fixS **hi_pos, **lo_pos, **pos;
15584
15585 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15586
15587 /* If a GOT16 relocation turns out to be against a global symbol,
15588 there isn't supposed to be a matching LO. Ignore %gots against
15589 constants; we'll report an error for those later. */
15590 if (got16_reloc_p (l->fixp->fx_r_type)
15591 && !(l->fixp->fx_addsy
15592 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
15593 continue;
15594
15595 /* Check quickly whether the next fixup happens to be a matching %lo. */
15596 if (fixup_has_matching_lo_p (l->fixp))
15597 continue;
15598
15599 seginfo = seg_info (l->seg);
15600
15601 /* Set HI_POS to the position of this relocation in the chain.
15602 Set LO_POS to the position of the chosen low-part relocation.
15603 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15604 relocation that matches an immediately-preceding high-part
15605 relocation. */
15606 hi_pos = NULL;
15607 lo_pos = NULL;
15608 matched_lo_p = FALSE;
15609 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15610
15611 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15612 {
15613 if (*pos == l->fixp)
15614 hi_pos = pos;
15615
15616 if ((*pos)->fx_r_type == looking_for_rtype
15617 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15618 && (*pos)->fx_offset >= l->fixp->fx_offset
15619 && (lo_pos == NULL
15620 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15621 || (!matched_lo_p
15622 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15623 lo_pos = pos;
15624
15625 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15626 && fixup_has_matching_lo_p (*pos));
15627 }
15628
15629 /* If we found a match, remove the high-part relocation from its
15630 current position and insert it before the low-part relocation.
15631 Make the offsets match so that fixup_has_matching_lo_p()
15632 will return true.
15633
15634 We don't warn about unmatched high-part relocations since some
15635 versions of gcc have been known to emit dead "lui ...%hi(...)"
15636 instructions. */
15637 if (lo_pos != NULL)
15638 {
15639 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15640 if (l->fixp->fx_next != *lo_pos)
15641 {
15642 *hi_pos = l->fixp->fx_next;
15643 l->fixp->fx_next = *lo_pos;
15644 *lo_pos = l->fixp;
15645 }
15646 }
15647 }
15648 }
15649
15650 int
15651 mips_force_relocation (fixS *fixp)
15652 {
15653 if (generic_force_reloc (fixp))
15654 return 1;
15655
15656 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15657 so that the linker relaxation can update targets. */
15658 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15659 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15660 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15661 return 1;
15662
15663 return 0;
15664 }
15665
15666 /* Read the instruction associated with RELOC from BUF. */
15667
15668 static unsigned int
15669 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15670 {
15671 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15672 return read_compressed_insn (buf, 4);
15673 else
15674 return read_insn (buf);
15675 }
15676
15677 /* Write instruction INSN to BUF, given that it has been relocated
15678 by RELOC. */
15679
15680 static void
15681 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15682 unsigned long insn)
15683 {
15684 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15685 write_compressed_insn (buf, insn, 4);
15686 else
15687 write_insn (buf, insn);
15688 }
15689
15690 /* Apply a fixup to the object file. */
15691
15692 void
15693 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15694 {
15695 char *buf;
15696 unsigned long insn;
15697 reloc_howto_type *howto;
15698
15699 /* We ignore generic BFD relocations we don't know about. */
15700 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15701 if (! howto)
15702 return;
15703
15704 gas_assert (fixP->fx_size == 2
15705 || fixP->fx_size == 4
15706 || fixP->fx_r_type == BFD_RELOC_16
15707 || fixP->fx_r_type == BFD_RELOC_64
15708 || fixP->fx_r_type == BFD_RELOC_CTOR
15709 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15710 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15711 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15712 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15713 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
15714
15715 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15716
15717 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
15718 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15719 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15720 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
15721 || fixP->fx_r_type == BFD_RELOC_32_PCREL);
15722
15723 /* Don't treat parts of a composite relocation as done. There are two
15724 reasons for this:
15725
15726 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15727 should nevertheless be emitted if the first part is.
15728
15729 (2) In normal usage, composite relocations are never assembly-time
15730 constants. The easiest way of dealing with the pathological
15731 exceptions is to generate a relocation against STN_UNDEF and
15732 leave everything up to the linker. */
15733 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15734 fixP->fx_done = 1;
15735
15736 switch (fixP->fx_r_type)
15737 {
15738 case BFD_RELOC_MIPS_TLS_GD:
15739 case BFD_RELOC_MIPS_TLS_LDM:
15740 case BFD_RELOC_MIPS_TLS_DTPREL32:
15741 case BFD_RELOC_MIPS_TLS_DTPREL64:
15742 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15743 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15744 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15745 case BFD_RELOC_MIPS_TLS_TPREL32:
15746 case BFD_RELOC_MIPS_TLS_TPREL64:
15747 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15748 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15749 case BFD_RELOC_MICROMIPS_TLS_GD:
15750 case BFD_RELOC_MICROMIPS_TLS_LDM:
15751 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15752 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15753 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15754 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15755 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15756 case BFD_RELOC_MIPS16_TLS_GD:
15757 case BFD_RELOC_MIPS16_TLS_LDM:
15758 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15759 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15760 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15761 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15762 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15763 if (!fixP->fx_addsy)
15764 {
15765 as_bad_where (fixP->fx_file, fixP->fx_line,
15766 _("TLS relocation against a constant"));
15767 break;
15768 }
15769 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15770 /* fall through */
15771
15772 case BFD_RELOC_MIPS_JMP:
15773 case BFD_RELOC_MIPS_SHIFT5:
15774 case BFD_RELOC_MIPS_SHIFT6:
15775 case BFD_RELOC_MIPS_GOT_DISP:
15776 case BFD_RELOC_MIPS_GOT_PAGE:
15777 case BFD_RELOC_MIPS_GOT_OFST:
15778 case BFD_RELOC_MIPS_SUB:
15779 case BFD_RELOC_MIPS_INSERT_A:
15780 case BFD_RELOC_MIPS_INSERT_B:
15781 case BFD_RELOC_MIPS_DELETE:
15782 case BFD_RELOC_MIPS_HIGHEST:
15783 case BFD_RELOC_MIPS_HIGHER:
15784 case BFD_RELOC_MIPS_SCN_DISP:
15785 case BFD_RELOC_MIPS_REL16:
15786 case BFD_RELOC_MIPS_RELGOT:
15787 case BFD_RELOC_MIPS_JALR:
15788 case BFD_RELOC_HI16:
15789 case BFD_RELOC_HI16_S:
15790 case BFD_RELOC_LO16:
15791 case BFD_RELOC_GPREL16:
15792 case BFD_RELOC_MIPS_LITERAL:
15793 case BFD_RELOC_MIPS_CALL16:
15794 case BFD_RELOC_MIPS_GOT16:
15795 case BFD_RELOC_GPREL32:
15796 case BFD_RELOC_MIPS_GOT_HI16:
15797 case BFD_RELOC_MIPS_GOT_LO16:
15798 case BFD_RELOC_MIPS_CALL_HI16:
15799 case BFD_RELOC_MIPS_CALL_LO16:
15800 case BFD_RELOC_MIPS16_GPREL:
15801 case BFD_RELOC_MIPS16_GOT16:
15802 case BFD_RELOC_MIPS16_CALL16:
15803 case BFD_RELOC_MIPS16_HI16:
15804 case BFD_RELOC_MIPS16_HI16_S:
15805 case BFD_RELOC_MIPS16_LO16:
15806 case BFD_RELOC_MIPS16_JMP:
15807 case BFD_RELOC_MICROMIPS_JMP:
15808 case BFD_RELOC_MICROMIPS_GOT_DISP:
15809 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15810 case BFD_RELOC_MICROMIPS_GOT_OFST:
15811 case BFD_RELOC_MICROMIPS_SUB:
15812 case BFD_RELOC_MICROMIPS_HIGHEST:
15813 case BFD_RELOC_MICROMIPS_HIGHER:
15814 case BFD_RELOC_MICROMIPS_SCN_DISP:
15815 case BFD_RELOC_MICROMIPS_JALR:
15816 case BFD_RELOC_MICROMIPS_HI16:
15817 case BFD_RELOC_MICROMIPS_HI16_S:
15818 case BFD_RELOC_MICROMIPS_LO16:
15819 case BFD_RELOC_MICROMIPS_GPREL16:
15820 case BFD_RELOC_MICROMIPS_LITERAL:
15821 case BFD_RELOC_MICROMIPS_CALL16:
15822 case BFD_RELOC_MICROMIPS_GOT16:
15823 case BFD_RELOC_MICROMIPS_GOT_HI16:
15824 case BFD_RELOC_MICROMIPS_GOT_LO16:
15825 case BFD_RELOC_MICROMIPS_CALL_HI16:
15826 case BFD_RELOC_MICROMIPS_CALL_LO16:
15827 if (fixP->fx_done)
15828 {
15829 offsetT value;
15830
15831 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15832 {
15833 insn = read_reloc_insn (buf, fixP->fx_r_type);
15834 if (mips16_reloc_p (fixP->fx_r_type))
15835 insn |= mips16_immed_extend (value, 16);
15836 else
15837 insn |= (value & 0xffff);
15838 write_reloc_insn (buf, fixP->fx_r_type, insn);
15839 }
15840 else
15841 as_bad_where (fixP->fx_file, fixP->fx_line,
15842 _("Unsupported constant in relocation"));
15843 }
15844 break;
15845
15846 case BFD_RELOC_64:
15847 /* This is handled like BFD_RELOC_32, but we output a sign
15848 extended value if we are only 32 bits. */
15849 if (fixP->fx_done)
15850 {
15851 if (8 <= sizeof (valueT))
15852 md_number_to_chars (buf, *valP, 8);
15853 else
15854 {
15855 valueT hiv;
15856
15857 if ((*valP & 0x80000000) != 0)
15858 hiv = 0xffffffff;
15859 else
15860 hiv = 0;
15861 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15862 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15863 }
15864 }
15865 break;
15866
15867 case BFD_RELOC_RVA:
15868 case BFD_RELOC_32:
15869 case BFD_RELOC_32_PCREL:
15870 case BFD_RELOC_16:
15871 /* If we are deleting this reloc entry, we must fill in the
15872 value now. This can happen if we have a .word which is not
15873 resolved when it appears but is later defined. */
15874 if (fixP->fx_done)
15875 md_number_to_chars (buf, *valP, fixP->fx_size);
15876 break;
15877
15878 case BFD_RELOC_16_PCREL_S2:
15879 if ((*valP & 0x3) != 0)
15880 as_bad_where (fixP->fx_file, fixP->fx_line,
15881 _("Branch to misaligned address (%lx)"), (long) *valP);
15882
15883 /* We need to save the bits in the instruction since fixup_segment()
15884 might be deleting the relocation entry (i.e., a branch within
15885 the current segment). */
15886 if (! fixP->fx_done)
15887 break;
15888
15889 /* Update old instruction data. */
15890 insn = read_insn (buf);
15891
15892 if (*valP + 0x20000 <= 0x3ffff)
15893 {
15894 insn |= (*valP >> 2) & 0xffff;
15895 write_insn (buf, insn);
15896 }
15897 else if (mips_pic == NO_PIC
15898 && fixP->fx_done
15899 && fixP->fx_frag->fr_address >= text_section->vma
15900 && (fixP->fx_frag->fr_address
15901 < text_section->vma + bfd_get_section_size (text_section))
15902 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15903 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15904 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15905 {
15906 /* The branch offset is too large. If this is an
15907 unconditional branch, and we are not generating PIC code,
15908 we can convert it to an absolute jump instruction. */
15909 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15910 insn = 0x0c000000; /* jal */
15911 else
15912 insn = 0x08000000; /* j */
15913 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15914 fixP->fx_done = 0;
15915 fixP->fx_addsy = section_symbol (text_section);
15916 *valP += md_pcrel_from (fixP);
15917 write_insn (buf, insn);
15918 }
15919 else
15920 {
15921 /* If we got here, we have branch-relaxation disabled,
15922 and there's nothing we can do to fix this instruction
15923 without turning it into a longer sequence. */
15924 as_bad_where (fixP->fx_file, fixP->fx_line,
15925 _("Branch out of range"));
15926 }
15927 break;
15928
15929 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15930 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15931 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15932 /* We adjust the offset back to even. */
15933 if ((*valP & 0x1) != 0)
15934 --(*valP);
15935
15936 if (! fixP->fx_done)
15937 break;
15938
15939 /* Should never visit here, because we keep the relocation. */
15940 abort ();
15941 break;
15942
15943 case BFD_RELOC_VTABLE_INHERIT:
15944 fixP->fx_done = 0;
15945 if (fixP->fx_addsy
15946 && !S_IS_DEFINED (fixP->fx_addsy)
15947 && !S_IS_WEAK (fixP->fx_addsy))
15948 S_SET_WEAK (fixP->fx_addsy);
15949 break;
15950
15951 case BFD_RELOC_VTABLE_ENTRY:
15952 fixP->fx_done = 0;
15953 break;
15954
15955 default:
15956 abort ();
15957 }
15958
15959 /* Remember value for tc_gen_reloc. */
15960 fixP->fx_addnumber = *valP;
15961 }
15962
15963 static symbolS *
15964 get_symbol (void)
15965 {
15966 int c;
15967 char *name;
15968 symbolS *p;
15969
15970 name = input_line_pointer;
15971 c = get_symbol_end ();
15972 p = (symbolS *) symbol_find_or_make (name);
15973 *input_line_pointer = c;
15974 return p;
15975 }
15976
15977 /* Align the current frag to a given power of two. If a particular
15978 fill byte should be used, FILL points to an integer that contains
15979 that byte, otherwise FILL is null.
15980
15981 This function used to have the comment:
15982
15983 The MIPS assembler also automatically adjusts any preceding label.
15984
15985 The implementation therefore applied the adjustment to a maximum of
15986 one label. However, other label adjustments are applied to batches
15987 of labels, and adjusting just one caused problems when new labels
15988 were added for the sake of debugging or unwind information.
15989 We therefore adjust all preceding labels (given as LABELS) instead. */
15990
15991 static void
15992 mips_align (int to, int *fill, struct insn_label_list *labels)
15993 {
15994 mips_emit_delays ();
15995 mips_record_compressed_mode ();
15996 if (fill == NULL && subseg_text_p (now_seg))
15997 frag_align_code (to, 0);
15998 else
15999 frag_align (to, fill ? *fill : 0, 0);
16000 record_alignment (now_seg, to);
16001 mips_move_labels (labels, FALSE);
16002 }
16003
16004 /* Align to a given power of two. .align 0 turns off the automatic
16005 alignment used by the data creating pseudo-ops. */
16006
16007 static void
16008 s_align (int x ATTRIBUTE_UNUSED)
16009 {
16010 int temp, fill_value, *fill_ptr;
16011 long max_alignment = 28;
16012
16013 /* o Note that the assembler pulls down any immediately preceding label
16014 to the aligned address.
16015 o It's not documented but auto alignment is reinstated by
16016 a .align pseudo instruction.
16017 o Note also that after auto alignment is turned off the mips assembler
16018 issues an error on attempt to assemble an improperly aligned data item.
16019 We don't. */
16020
16021 temp = get_absolute_expression ();
16022 if (temp > max_alignment)
16023 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
16024 else if (temp < 0)
16025 {
16026 as_warn (_("Alignment negative: 0 assumed."));
16027 temp = 0;
16028 }
16029 if (*input_line_pointer == ',')
16030 {
16031 ++input_line_pointer;
16032 fill_value = get_absolute_expression ();
16033 fill_ptr = &fill_value;
16034 }
16035 else
16036 fill_ptr = 0;
16037 if (temp)
16038 {
16039 segment_info_type *si = seg_info (now_seg);
16040 struct insn_label_list *l = si->label_list;
16041 /* Auto alignment should be switched on by next section change. */
16042 auto_align = 1;
16043 mips_align (temp, fill_ptr, l);
16044 }
16045 else
16046 {
16047 auto_align = 0;
16048 }
16049
16050 demand_empty_rest_of_line ();
16051 }
16052
16053 static void
16054 s_change_sec (int sec)
16055 {
16056 segT seg;
16057
16058 #ifdef OBJ_ELF
16059 /* The ELF backend needs to know that we are changing sections, so
16060 that .previous works correctly. We could do something like check
16061 for an obj_section_change_hook macro, but that might be confusing
16062 as it would not be appropriate to use it in the section changing
16063 functions in read.c, since obj-elf.c intercepts those. FIXME:
16064 This should be cleaner, somehow. */
16065 if (IS_ELF)
16066 obj_elf_section_change_hook ();
16067 #endif
16068
16069 mips_emit_delays ();
16070
16071 switch (sec)
16072 {
16073 case 't':
16074 s_text (0);
16075 break;
16076 case 'd':
16077 s_data (0);
16078 break;
16079 case 'b':
16080 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16081 demand_empty_rest_of_line ();
16082 break;
16083
16084 case 'r':
16085 seg = subseg_new (RDATA_SECTION_NAME,
16086 (subsegT) get_absolute_expression ());
16087 if (IS_ELF)
16088 {
16089 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16090 | SEC_READONLY | SEC_RELOC
16091 | SEC_DATA));
16092 if (strncmp (TARGET_OS, "elf", 3) != 0)
16093 record_alignment (seg, 4);
16094 }
16095 demand_empty_rest_of_line ();
16096 break;
16097
16098 case 's':
16099 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16100 if (IS_ELF)
16101 {
16102 bfd_set_section_flags (stdoutput, seg,
16103 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16104 if (strncmp (TARGET_OS, "elf", 3) != 0)
16105 record_alignment (seg, 4);
16106 }
16107 demand_empty_rest_of_line ();
16108 break;
16109
16110 case 'B':
16111 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16112 if (IS_ELF)
16113 {
16114 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16115 if (strncmp (TARGET_OS, "elf", 3) != 0)
16116 record_alignment (seg, 4);
16117 }
16118 demand_empty_rest_of_line ();
16119 break;
16120 }
16121
16122 auto_align = 1;
16123 }
16124
16125 void
16126 s_change_section (int ignore ATTRIBUTE_UNUSED)
16127 {
16128 #ifdef OBJ_ELF
16129 char *section_name;
16130 char c;
16131 char next_c = 0;
16132 int section_type;
16133 int section_flag;
16134 int section_entry_size;
16135 int section_alignment;
16136
16137 if (!IS_ELF)
16138 return;
16139
16140 section_name = input_line_pointer;
16141 c = get_symbol_end ();
16142 if (c)
16143 next_c = *(input_line_pointer + 1);
16144
16145 /* Do we have .section Name<,"flags">? */
16146 if (c != ',' || (c == ',' && next_c == '"'))
16147 {
16148 /* just after name is now '\0'. */
16149 *input_line_pointer = c;
16150 input_line_pointer = section_name;
16151 obj_elf_section (ignore);
16152 return;
16153 }
16154 input_line_pointer++;
16155
16156 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16157 if (c == ',')
16158 section_type = get_absolute_expression ();
16159 else
16160 section_type = 0;
16161 if (*input_line_pointer++ == ',')
16162 section_flag = get_absolute_expression ();
16163 else
16164 section_flag = 0;
16165 if (*input_line_pointer++ == ',')
16166 section_entry_size = get_absolute_expression ();
16167 else
16168 section_entry_size = 0;
16169 if (*input_line_pointer++ == ',')
16170 section_alignment = get_absolute_expression ();
16171 else
16172 section_alignment = 0;
16173 /* FIXME: really ignore? */
16174 (void) section_alignment;
16175
16176 section_name = xstrdup (section_name);
16177
16178 /* When using the generic form of .section (as implemented by obj-elf.c),
16179 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16180 traditionally had to fall back on the more common @progbits instead.
16181
16182 There's nothing really harmful in this, since bfd will correct
16183 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16184 means that, for backwards compatibility, the special_section entries
16185 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16186
16187 Even so, we shouldn't force users of the MIPS .section syntax to
16188 incorrectly label the sections as SHT_PROGBITS. The best compromise
16189 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16190 generic type-checking code. */
16191 if (section_type == SHT_MIPS_DWARF)
16192 section_type = SHT_PROGBITS;
16193
16194 obj_elf_change_section (section_name, section_type, section_flag,
16195 section_entry_size, 0, 0, 0);
16196
16197 if (now_seg->name != section_name)
16198 free (section_name);
16199 #endif /* OBJ_ELF */
16200 }
16201
16202 void
16203 mips_enable_auto_align (void)
16204 {
16205 auto_align = 1;
16206 }
16207
16208 static void
16209 s_cons (int log_size)
16210 {
16211 segment_info_type *si = seg_info (now_seg);
16212 struct insn_label_list *l = si->label_list;
16213
16214 mips_emit_delays ();
16215 if (log_size > 0 && auto_align)
16216 mips_align (log_size, 0, l);
16217 cons (1 << log_size);
16218 mips_clear_insn_labels ();
16219 }
16220
16221 static void
16222 s_float_cons (int type)
16223 {
16224 segment_info_type *si = seg_info (now_seg);
16225 struct insn_label_list *l = si->label_list;
16226
16227 mips_emit_delays ();
16228
16229 if (auto_align)
16230 {
16231 if (type == 'd')
16232 mips_align (3, 0, l);
16233 else
16234 mips_align (2, 0, l);
16235 }
16236
16237 float_cons (type);
16238 mips_clear_insn_labels ();
16239 }
16240
16241 /* Handle .globl. We need to override it because on Irix 5 you are
16242 permitted to say
16243 .globl foo .text
16244 where foo is an undefined symbol, to mean that foo should be
16245 considered to be the address of a function. */
16246
16247 static void
16248 s_mips_globl (int x ATTRIBUTE_UNUSED)
16249 {
16250 char *name;
16251 int c;
16252 symbolS *symbolP;
16253 flagword flag;
16254
16255 do
16256 {
16257 name = input_line_pointer;
16258 c = get_symbol_end ();
16259 symbolP = symbol_find_or_make (name);
16260 S_SET_EXTERNAL (symbolP);
16261
16262 *input_line_pointer = c;
16263 SKIP_WHITESPACE ();
16264
16265 /* On Irix 5, every global symbol that is not explicitly labelled as
16266 being a function is apparently labelled as being an object. */
16267 flag = BSF_OBJECT;
16268
16269 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16270 && (*input_line_pointer != ','))
16271 {
16272 char *secname;
16273 asection *sec;
16274
16275 secname = input_line_pointer;
16276 c = get_symbol_end ();
16277 sec = bfd_get_section_by_name (stdoutput, secname);
16278 if (sec == NULL)
16279 as_bad (_("%s: no such section"), secname);
16280 *input_line_pointer = c;
16281
16282 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16283 flag = BSF_FUNCTION;
16284 }
16285
16286 symbol_get_bfdsym (symbolP)->flags |= flag;
16287
16288 c = *input_line_pointer;
16289 if (c == ',')
16290 {
16291 input_line_pointer++;
16292 SKIP_WHITESPACE ();
16293 if (is_end_of_line[(unsigned char) *input_line_pointer])
16294 c = '\n';
16295 }
16296 }
16297 while (c == ',');
16298
16299 demand_empty_rest_of_line ();
16300 }
16301
16302 static void
16303 s_option (int x ATTRIBUTE_UNUSED)
16304 {
16305 char *opt;
16306 char c;
16307
16308 opt = input_line_pointer;
16309 c = get_symbol_end ();
16310
16311 if (*opt == 'O')
16312 {
16313 /* FIXME: What does this mean? */
16314 }
16315 else if (strncmp (opt, "pic", 3) == 0)
16316 {
16317 int i;
16318
16319 i = atoi (opt + 3);
16320 if (i == 0)
16321 mips_pic = NO_PIC;
16322 else if (i == 2)
16323 {
16324 mips_pic = SVR4_PIC;
16325 mips_abicalls = TRUE;
16326 }
16327 else
16328 as_bad (_(".option pic%d not supported"), i);
16329
16330 if (mips_pic == SVR4_PIC)
16331 {
16332 if (g_switch_seen && g_switch_value != 0)
16333 as_warn (_("-G may not be used with SVR4 PIC code"));
16334 g_switch_value = 0;
16335 bfd_set_gp_size (stdoutput, 0);
16336 }
16337 }
16338 else
16339 as_warn (_("Unrecognized option \"%s\""), opt);
16340
16341 *input_line_pointer = c;
16342 demand_empty_rest_of_line ();
16343 }
16344
16345 /* This structure is used to hold a stack of .set values. */
16346
16347 struct mips_option_stack
16348 {
16349 struct mips_option_stack *next;
16350 struct mips_set_options options;
16351 };
16352
16353 static struct mips_option_stack *mips_opts_stack;
16354
16355 /* Handle the .set pseudo-op. */
16356
16357 static void
16358 s_mipsset (int x ATTRIBUTE_UNUSED)
16359 {
16360 char *name = input_line_pointer, ch;
16361
16362 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16363 ++input_line_pointer;
16364 ch = *input_line_pointer;
16365 *input_line_pointer = '\0';
16366
16367 if (strcmp (name, "reorder") == 0)
16368 {
16369 if (mips_opts.noreorder)
16370 end_noreorder ();
16371 }
16372 else if (strcmp (name, "noreorder") == 0)
16373 {
16374 if (!mips_opts.noreorder)
16375 start_noreorder ();
16376 }
16377 else if (strncmp (name, "at=", 3) == 0)
16378 {
16379 char *s = name + 3;
16380
16381 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16382 as_bad (_("Unrecognized register name `%s'"), s);
16383 }
16384 else if (strcmp (name, "at") == 0)
16385 {
16386 mips_opts.at = ATREG;
16387 }
16388 else if (strcmp (name, "noat") == 0)
16389 {
16390 mips_opts.at = ZERO;
16391 }
16392 else if (strcmp (name, "macro") == 0)
16393 {
16394 mips_opts.warn_about_macros = 0;
16395 }
16396 else if (strcmp (name, "nomacro") == 0)
16397 {
16398 if (mips_opts.noreorder == 0)
16399 as_bad (_("`noreorder' must be set before `nomacro'"));
16400 mips_opts.warn_about_macros = 1;
16401 }
16402 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16403 {
16404 mips_opts.nomove = 0;
16405 }
16406 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16407 {
16408 mips_opts.nomove = 1;
16409 }
16410 else if (strcmp (name, "bopt") == 0)
16411 {
16412 mips_opts.nobopt = 0;
16413 }
16414 else if (strcmp (name, "nobopt") == 0)
16415 {
16416 mips_opts.nobopt = 1;
16417 }
16418 else if (strcmp (name, "gp=default") == 0)
16419 mips_opts.gp32 = file_mips_gp32;
16420 else if (strcmp (name, "gp=32") == 0)
16421 mips_opts.gp32 = 1;
16422 else if (strcmp (name, "gp=64") == 0)
16423 {
16424 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
16425 as_warn (_("%s isa does not support 64-bit registers"),
16426 mips_cpu_info_from_isa (mips_opts.isa)->name);
16427 mips_opts.gp32 = 0;
16428 }
16429 else if (strcmp (name, "fp=default") == 0)
16430 mips_opts.fp32 = file_mips_fp32;
16431 else if (strcmp (name, "fp=32") == 0)
16432 mips_opts.fp32 = 1;
16433 else if (strcmp (name, "fp=64") == 0)
16434 {
16435 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
16436 as_warn (_("%s isa does not support 64-bit floating point registers"),
16437 mips_cpu_info_from_isa (mips_opts.isa)->name);
16438 mips_opts.fp32 = 0;
16439 }
16440 else if (strcmp (name, "softfloat") == 0)
16441 mips_opts.soft_float = 1;
16442 else if (strcmp (name, "hardfloat") == 0)
16443 mips_opts.soft_float = 0;
16444 else if (strcmp (name, "singlefloat") == 0)
16445 mips_opts.single_float = 1;
16446 else if (strcmp (name, "doublefloat") == 0)
16447 mips_opts.single_float = 0;
16448 else if (strcmp (name, "mips16") == 0
16449 || strcmp (name, "MIPS-16") == 0)
16450 {
16451 if (mips_opts.micromips == 1)
16452 as_fatal (_("`mips16' cannot be used with `micromips'"));
16453 mips_opts.mips16 = 1;
16454 }
16455 else if (strcmp (name, "nomips16") == 0
16456 || strcmp (name, "noMIPS-16") == 0)
16457 mips_opts.mips16 = 0;
16458 else if (strcmp (name, "micromips") == 0)
16459 {
16460 if (mips_opts.mips16 == 1)
16461 as_fatal (_("`micromips' cannot be used with `mips16'"));
16462 mips_opts.micromips = 1;
16463 }
16464 else if (strcmp (name, "nomicromips") == 0)
16465 mips_opts.micromips = 0;
16466 else if (strcmp (name, "smartmips") == 0)
16467 {
16468 if (!ISA_SUPPORTS_SMARTMIPS)
16469 as_warn (_("%s ISA does not support SmartMIPS ASE"),
16470 mips_cpu_info_from_isa (mips_opts.isa)->name);
16471 mips_opts.ase_smartmips = 1;
16472 }
16473 else if (strcmp (name, "nosmartmips") == 0)
16474 mips_opts.ase_smartmips = 0;
16475 else if (strcmp (name, "mips3d") == 0)
16476 mips_opts.ase_mips3d = 1;
16477 else if (strcmp (name, "nomips3d") == 0)
16478 mips_opts.ase_mips3d = 0;
16479 else if (strcmp (name, "mdmx") == 0)
16480 mips_opts.ase_mdmx = 1;
16481 else if (strcmp (name, "nomdmx") == 0)
16482 mips_opts.ase_mdmx = 0;
16483 else if (strcmp (name, "dsp") == 0)
16484 {
16485 if (!ISA_SUPPORTS_DSP_ASE)
16486 as_warn (_("%s ISA does not support DSP ASE"),
16487 mips_cpu_info_from_isa (mips_opts.isa)->name);
16488 mips_opts.ase_dsp = 1;
16489 mips_opts.ase_dspr2 = 0;
16490 }
16491 else if (strcmp (name, "nodsp") == 0)
16492 {
16493 mips_opts.ase_dsp = 0;
16494 mips_opts.ase_dspr2 = 0;
16495 }
16496 else if (strcmp (name, "dspr2") == 0)
16497 {
16498 if (!ISA_SUPPORTS_DSPR2_ASE)
16499 as_warn (_("%s ISA does not support DSP R2 ASE"),
16500 mips_cpu_info_from_isa (mips_opts.isa)->name);
16501 mips_opts.ase_dspr2 = 1;
16502 mips_opts.ase_dsp = 1;
16503 }
16504 else if (strcmp (name, "nodspr2") == 0)
16505 {
16506 mips_opts.ase_dspr2 = 0;
16507 mips_opts.ase_dsp = 0;
16508 }
16509 else if (strcmp (name, "mt") == 0)
16510 {
16511 if (!ISA_SUPPORTS_MT_ASE)
16512 as_warn (_("%s ISA does not support MT ASE"),
16513 mips_cpu_info_from_isa (mips_opts.isa)->name);
16514 mips_opts.ase_mt = 1;
16515 }
16516 else if (strcmp (name, "nomt") == 0)
16517 mips_opts.ase_mt = 0;
16518 else if (strcmp (name, "mcu") == 0)
16519 mips_opts.ase_mcu = 1;
16520 else if (strcmp (name, "nomcu") == 0)
16521 mips_opts.ase_mcu = 0;
16522 else if (strcmp (name, "virt") == 0)
16523 {
16524 if (!ISA_SUPPORTS_VIRT_ASE)
16525 as_warn (_("%s ISA does not support Virtualization ASE"),
16526 mips_cpu_info_from_isa (mips_opts.isa)->name);
16527 mips_opts.ase_virt = 1;
16528 }
16529 else if (strcmp (name, "novirt") == 0)
16530 mips_opts.ase_virt = 0;
16531 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16532 {
16533 int reset = 0;
16534
16535 /* Permit the user to change the ISA and architecture on the fly.
16536 Needless to say, misuse can cause serious problems. */
16537 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16538 {
16539 reset = 1;
16540 mips_opts.isa = file_mips_isa;
16541 mips_opts.arch = file_mips_arch;
16542 }
16543 else if (strncmp (name, "arch=", 5) == 0)
16544 {
16545 const struct mips_cpu_info *p;
16546
16547 p = mips_parse_cpu("internal use", name + 5);
16548 if (!p)
16549 as_bad (_("unknown architecture %s"), name + 5);
16550 else
16551 {
16552 mips_opts.arch = p->cpu;
16553 mips_opts.isa = p->isa;
16554 }
16555 }
16556 else if (strncmp (name, "mips", 4) == 0)
16557 {
16558 const struct mips_cpu_info *p;
16559
16560 p = mips_parse_cpu("internal use", name);
16561 if (!p)
16562 as_bad (_("unknown ISA level %s"), name + 4);
16563 else
16564 {
16565 mips_opts.arch = p->cpu;
16566 mips_opts.isa = p->isa;
16567 }
16568 }
16569 else
16570 as_bad (_("unknown ISA or architecture %s"), name);
16571
16572 switch (mips_opts.isa)
16573 {
16574 case 0:
16575 break;
16576 case ISA_MIPS1:
16577 case ISA_MIPS2:
16578 case ISA_MIPS32:
16579 case ISA_MIPS32R2:
16580 mips_opts.gp32 = 1;
16581 mips_opts.fp32 = 1;
16582 break;
16583 case ISA_MIPS3:
16584 case ISA_MIPS4:
16585 case ISA_MIPS5:
16586 case ISA_MIPS64:
16587 case ISA_MIPS64R2:
16588 mips_opts.gp32 = 0;
16589 if (mips_opts.arch == CPU_R5900)
16590 {
16591 mips_opts.fp32 = 1;
16592 }
16593 else
16594 {
16595 mips_opts.fp32 = 0;
16596 }
16597 break;
16598 default:
16599 as_bad (_("unknown ISA level %s"), name + 4);
16600 break;
16601 }
16602 if (reset)
16603 {
16604 mips_opts.gp32 = file_mips_gp32;
16605 mips_opts.fp32 = file_mips_fp32;
16606 }
16607 }
16608 else if (strcmp (name, "autoextend") == 0)
16609 mips_opts.noautoextend = 0;
16610 else if (strcmp (name, "noautoextend") == 0)
16611 mips_opts.noautoextend = 1;
16612 else if (strcmp (name, "push") == 0)
16613 {
16614 struct mips_option_stack *s;
16615
16616 s = (struct mips_option_stack *) xmalloc (sizeof *s);
16617 s->next = mips_opts_stack;
16618 s->options = mips_opts;
16619 mips_opts_stack = s;
16620 }
16621 else if (strcmp (name, "pop") == 0)
16622 {
16623 struct mips_option_stack *s;
16624
16625 s = mips_opts_stack;
16626 if (s == NULL)
16627 as_bad (_(".set pop with no .set push"));
16628 else
16629 {
16630 /* If we're changing the reorder mode we need to handle
16631 delay slots correctly. */
16632 if (s->options.noreorder && ! mips_opts.noreorder)
16633 start_noreorder ();
16634 else if (! s->options.noreorder && mips_opts.noreorder)
16635 end_noreorder ();
16636
16637 mips_opts = s->options;
16638 mips_opts_stack = s->next;
16639 free (s);
16640 }
16641 }
16642 else if (strcmp (name, "sym32") == 0)
16643 mips_opts.sym32 = TRUE;
16644 else if (strcmp (name, "nosym32") == 0)
16645 mips_opts.sym32 = FALSE;
16646 else if (strchr (name, ','))
16647 {
16648 /* Generic ".set" directive; use the generic handler. */
16649 *input_line_pointer = ch;
16650 input_line_pointer = name;
16651 s_set (0);
16652 return;
16653 }
16654 else
16655 {
16656 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
16657 }
16658 *input_line_pointer = ch;
16659 demand_empty_rest_of_line ();
16660 }
16661
16662 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16663 .option pic2. It means to generate SVR4 PIC calls. */
16664
16665 static void
16666 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16667 {
16668 mips_pic = SVR4_PIC;
16669 mips_abicalls = TRUE;
16670
16671 if (g_switch_seen && g_switch_value != 0)
16672 as_warn (_("-G may not be used with SVR4 PIC code"));
16673 g_switch_value = 0;
16674
16675 bfd_set_gp_size (stdoutput, 0);
16676 demand_empty_rest_of_line ();
16677 }
16678
16679 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16680 PIC code. It sets the $gp register for the function based on the
16681 function address, which is in the register named in the argument.
16682 This uses a relocation against _gp_disp, which is handled specially
16683 by the linker. The result is:
16684 lui $gp,%hi(_gp_disp)
16685 addiu $gp,$gp,%lo(_gp_disp)
16686 addu $gp,$gp,.cpload argument
16687 The .cpload argument is normally $25 == $t9.
16688
16689 The -mno-shared option changes this to:
16690 lui $gp,%hi(__gnu_local_gp)
16691 addiu $gp,$gp,%lo(__gnu_local_gp)
16692 and the argument is ignored. This saves an instruction, but the
16693 resulting code is not position independent; it uses an absolute
16694 address for __gnu_local_gp. Thus code assembled with -mno-shared
16695 can go into an ordinary executable, but not into a shared library. */
16696
16697 static void
16698 s_cpload (int ignore ATTRIBUTE_UNUSED)
16699 {
16700 expressionS ex;
16701 int reg;
16702 int in_shared;
16703
16704 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16705 .cpload is ignored. */
16706 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16707 {
16708 s_ignore (0);
16709 return;
16710 }
16711
16712 if (mips_opts.mips16)
16713 {
16714 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16715 ignore_rest_of_line ();
16716 return;
16717 }
16718
16719 /* .cpload should be in a .set noreorder section. */
16720 if (mips_opts.noreorder == 0)
16721 as_warn (_(".cpload not in noreorder section"));
16722
16723 reg = tc_get_register (0);
16724
16725 /* If we need to produce a 64-bit address, we are better off using
16726 the default instruction sequence. */
16727 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16728
16729 ex.X_op = O_symbol;
16730 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16731 "__gnu_local_gp");
16732 ex.X_op_symbol = NULL;
16733 ex.X_add_number = 0;
16734
16735 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16736 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16737
16738 mips_mark_labels ();
16739 mips_assembling_insn = TRUE;
16740
16741 macro_start ();
16742 macro_build_lui (&ex, mips_gp_register);
16743 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16744 mips_gp_register, BFD_RELOC_LO16);
16745 if (in_shared)
16746 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16747 mips_gp_register, reg);
16748 macro_end ();
16749
16750 mips_assembling_insn = FALSE;
16751 demand_empty_rest_of_line ();
16752 }
16753
16754 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16755 .cpsetup $reg1, offset|$reg2, label
16756
16757 If offset is given, this results in:
16758 sd $gp, offset($sp)
16759 lui $gp, %hi(%neg(%gp_rel(label)))
16760 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16761 daddu $gp, $gp, $reg1
16762
16763 If $reg2 is given, this results in:
16764 daddu $reg2, $gp, $0
16765 lui $gp, %hi(%neg(%gp_rel(label)))
16766 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16767 daddu $gp, $gp, $reg1
16768 $reg1 is normally $25 == $t9.
16769
16770 The -mno-shared option replaces the last three instructions with
16771 lui $gp,%hi(_gp)
16772 addiu $gp,$gp,%lo(_gp) */
16773
16774 static void
16775 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16776 {
16777 expressionS ex_off;
16778 expressionS ex_sym;
16779 int reg1;
16780
16781 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16782 We also need NewABI support. */
16783 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16784 {
16785 s_ignore (0);
16786 return;
16787 }
16788
16789 if (mips_opts.mips16)
16790 {
16791 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16792 ignore_rest_of_line ();
16793 return;
16794 }
16795
16796 reg1 = tc_get_register (0);
16797 SKIP_WHITESPACE ();
16798 if (*input_line_pointer != ',')
16799 {
16800 as_bad (_("missing argument separator ',' for .cpsetup"));
16801 return;
16802 }
16803 else
16804 ++input_line_pointer;
16805 SKIP_WHITESPACE ();
16806 if (*input_line_pointer == '$')
16807 {
16808 mips_cpreturn_register = tc_get_register (0);
16809 mips_cpreturn_offset = -1;
16810 }
16811 else
16812 {
16813 mips_cpreturn_offset = get_absolute_expression ();
16814 mips_cpreturn_register = -1;
16815 }
16816 SKIP_WHITESPACE ();
16817 if (*input_line_pointer != ',')
16818 {
16819 as_bad (_("missing argument separator ',' for .cpsetup"));
16820 return;
16821 }
16822 else
16823 ++input_line_pointer;
16824 SKIP_WHITESPACE ();
16825 expression (&ex_sym);
16826
16827 mips_mark_labels ();
16828 mips_assembling_insn = TRUE;
16829
16830 macro_start ();
16831 if (mips_cpreturn_register == -1)
16832 {
16833 ex_off.X_op = O_constant;
16834 ex_off.X_add_symbol = NULL;
16835 ex_off.X_op_symbol = NULL;
16836 ex_off.X_add_number = mips_cpreturn_offset;
16837
16838 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16839 BFD_RELOC_LO16, SP);
16840 }
16841 else
16842 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
16843 mips_gp_register, 0);
16844
16845 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16846 {
16847 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16848 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16849 BFD_RELOC_HI16_S);
16850
16851 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16852 mips_gp_register, -1, BFD_RELOC_GPREL16,
16853 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16854
16855 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16856 mips_gp_register, reg1);
16857 }
16858 else
16859 {
16860 expressionS ex;
16861
16862 ex.X_op = O_symbol;
16863 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16864 ex.X_op_symbol = NULL;
16865 ex.X_add_number = 0;
16866
16867 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16868 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16869
16870 macro_build_lui (&ex, mips_gp_register);
16871 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16872 mips_gp_register, BFD_RELOC_LO16);
16873 }
16874
16875 macro_end ();
16876
16877 mips_assembling_insn = FALSE;
16878 demand_empty_rest_of_line ();
16879 }
16880
16881 static void
16882 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16883 {
16884 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16885 .cplocal is ignored. */
16886 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16887 {
16888 s_ignore (0);
16889 return;
16890 }
16891
16892 if (mips_opts.mips16)
16893 {
16894 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16895 ignore_rest_of_line ();
16896 return;
16897 }
16898
16899 mips_gp_register = tc_get_register (0);
16900 demand_empty_rest_of_line ();
16901 }
16902
16903 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16904 offset from $sp. The offset is remembered, and after making a PIC
16905 call $gp is restored from that location. */
16906
16907 static void
16908 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16909 {
16910 expressionS ex;
16911
16912 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16913 .cprestore is ignored. */
16914 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16915 {
16916 s_ignore (0);
16917 return;
16918 }
16919
16920 if (mips_opts.mips16)
16921 {
16922 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16923 ignore_rest_of_line ();
16924 return;
16925 }
16926
16927 mips_cprestore_offset = get_absolute_expression ();
16928 mips_cprestore_valid = 1;
16929
16930 ex.X_op = O_constant;
16931 ex.X_add_symbol = NULL;
16932 ex.X_op_symbol = NULL;
16933 ex.X_add_number = mips_cprestore_offset;
16934
16935 mips_mark_labels ();
16936 mips_assembling_insn = TRUE;
16937
16938 macro_start ();
16939 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16940 SP, HAVE_64BIT_ADDRESSES);
16941 macro_end ();
16942
16943 mips_assembling_insn = FALSE;
16944 demand_empty_rest_of_line ();
16945 }
16946
16947 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16948 was given in the preceding .cpsetup, it results in:
16949 ld $gp, offset($sp)
16950
16951 If a register $reg2 was given there, it results in:
16952 daddu $gp, $reg2, $0 */
16953
16954 static void
16955 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16956 {
16957 expressionS ex;
16958
16959 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16960 We also need NewABI support. */
16961 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16962 {
16963 s_ignore (0);
16964 return;
16965 }
16966
16967 if (mips_opts.mips16)
16968 {
16969 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16970 ignore_rest_of_line ();
16971 return;
16972 }
16973
16974 mips_mark_labels ();
16975 mips_assembling_insn = TRUE;
16976
16977 macro_start ();
16978 if (mips_cpreturn_register == -1)
16979 {
16980 ex.X_op = O_constant;
16981 ex.X_add_symbol = NULL;
16982 ex.X_op_symbol = NULL;
16983 ex.X_add_number = mips_cpreturn_offset;
16984
16985 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16986 }
16987 else
16988 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
16989 mips_cpreturn_register, 0);
16990 macro_end ();
16991
16992 mips_assembling_insn = FALSE;
16993 demand_empty_rest_of_line ();
16994 }
16995
16996 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16997 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16998 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16999 debug information or MIPS16 TLS. */
17000
17001 static void
17002 s_tls_rel_directive (const size_t bytes, const char *dirstr,
17003 bfd_reloc_code_real_type rtype)
17004 {
17005 expressionS ex;
17006 char *p;
17007
17008 expression (&ex);
17009
17010 if (ex.X_op != O_symbol)
17011 {
17012 as_bad (_("Unsupported use of %s"), dirstr);
17013 ignore_rest_of_line ();
17014 }
17015
17016 p = frag_more (bytes);
17017 md_number_to_chars (p, 0, bytes);
17018 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
17019 demand_empty_rest_of_line ();
17020 mips_clear_insn_labels ();
17021 }
17022
17023 /* Handle .dtprelword. */
17024
17025 static void
17026 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17027 {
17028 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
17029 }
17030
17031 /* Handle .dtpreldword. */
17032
17033 static void
17034 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17035 {
17036 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17037 }
17038
17039 /* Handle .tprelword. */
17040
17041 static void
17042 s_tprelword (int ignore ATTRIBUTE_UNUSED)
17043 {
17044 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17045 }
17046
17047 /* Handle .tpreldword. */
17048
17049 static void
17050 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17051 {
17052 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
17053 }
17054
17055 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17056 code. It sets the offset to use in gp_rel relocations. */
17057
17058 static void
17059 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17060 {
17061 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17062 We also need NewABI support. */
17063 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17064 {
17065 s_ignore (0);
17066 return;
17067 }
17068
17069 mips_gprel_offset = get_absolute_expression ();
17070
17071 demand_empty_rest_of_line ();
17072 }
17073
17074 /* Handle the .gpword pseudo-op. This is used when generating PIC
17075 code. It generates a 32 bit GP relative reloc. */
17076
17077 static void
17078 s_gpword (int ignore ATTRIBUTE_UNUSED)
17079 {
17080 segment_info_type *si;
17081 struct insn_label_list *l;
17082 expressionS ex;
17083 char *p;
17084
17085 /* When not generating PIC code, this is treated as .word. */
17086 if (mips_pic != SVR4_PIC)
17087 {
17088 s_cons (2);
17089 return;
17090 }
17091
17092 si = seg_info (now_seg);
17093 l = si->label_list;
17094 mips_emit_delays ();
17095 if (auto_align)
17096 mips_align (2, 0, l);
17097
17098 expression (&ex);
17099 mips_clear_insn_labels ();
17100
17101 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17102 {
17103 as_bad (_("Unsupported use of .gpword"));
17104 ignore_rest_of_line ();
17105 }
17106
17107 p = frag_more (4);
17108 md_number_to_chars (p, 0, 4);
17109 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17110 BFD_RELOC_GPREL32);
17111
17112 demand_empty_rest_of_line ();
17113 }
17114
17115 static void
17116 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17117 {
17118 segment_info_type *si;
17119 struct insn_label_list *l;
17120 expressionS ex;
17121 char *p;
17122
17123 /* When not generating PIC code, this is treated as .dword. */
17124 if (mips_pic != SVR4_PIC)
17125 {
17126 s_cons (3);
17127 return;
17128 }
17129
17130 si = seg_info (now_seg);
17131 l = si->label_list;
17132 mips_emit_delays ();
17133 if (auto_align)
17134 mips_align (3, 0, l);
17135
17136 expression (&ex);
17137 mips_clear_insn_labels ();
17138
17139 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17140 {
17141 as_bad (_("Unsupported use of .gpdword"));
17142 ignore_rest_of_line ();
17143 }
17144
17145 p = frag_more (8);
17146 md_number_to_chars (p, 0, 8);
17147 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17148 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17149
17150 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17151 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17152 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17153
17154 demand_empty_rest_of_line ();
17155 }
17156
17157 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17158 tables in SVR4 PIC code. */
17159
17160 static void
17161 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17162 {
17163 int reg;
17164
17165 /* This is ignored when not generating SVR4 PIC code. */
17166 if (mips_pic != SVR4_PIC)
17167 {
17168 s_ignore (0);
17169 return;
17170 }
17171
17172 mips_mark_labels ();
17173 mips_assembling_insn = TRUE;
17174
17175 /* Add $gp to the register named as an argument. */
17176 macro_start ();
17177 reg = tc_get_register (0);
17178 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17179 macro_end ();
17180
17181 mips_assembling_insn = FALSE;
17182 demand_empty_rest_of_line ();
17183 }
17184
17185 /* Handle the .insn pseudo-op. This marks instruction labels in
17186 mips16/micromips mode. This permits the linker to handle them specially,
17187 such as generating jalx instructions when needed. We also make
17188 them odd for the duration of the assembly, in order to generate the
17189 right sort of code. We will make them even in the adjust_symtab
17190 routine, while leaving them marked. This is convenient for the
17191 debugger and the disassembler. The linker knows to make them odd
17192 again. */
17193
17194 static void
17195 s_insn (int ignore ATTRIBUTE_UNUSED)
17196 {
17197 mips_mark_labels ();
17198
17199 demand_empty_rest_of_line ();
17200 }
17201
17202 /* Handle a .stab[snd] directive. Ideally these directives would be
17203 implemented in a transparent way, so that removing them would not
17204 have any effect on the generated instructions. However, s_stab
17205 internally changes the section, so in practice we need to decide
17206 now whether the preceding label marks compressed code. We do not
17207 support changing the compression mode of a label after a .stab*
17208 directive, such as in:
17209
17210 foo:
17211 .stabs ...
17212 .set mips16
17213
17214 so the current mode wins. */
17215
17216 static void
17217 s_mips_stab (int type)
17218 {
17219 mips_mark_labels ();
17220 s_stab (type);
17221 }
17222
17223 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17224
17225 static void
17226 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17227 {
17228 char *name;
17229 int c;
17230 symbolS *symbolP;
17231 expressionS exp;
17232
17233 name = input_line_pointer;
17234 c = get_symbol_end ();
17235 symbolP = symbol_find_or_make (name);
17236 S_SET_WEAK (symbolP);
17237 *input_line_pointer = c;
17238
17239 SKIP_WHITESPACE ();
17240
17241 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17242 {
17243 if (S_IS_DEFINED (symbolP))
17244 {
17245 as_bad (_("ignoring attempt to redefine symbol %s"),
17246 S_GET_NAME (symbolP));
17247 ignore_rest_of_line ();
17248 return;
17249 }
17250
17251 if (*input_line_pointer == ',')
17252 {
17253 ++input_line_pointer;
17254 SKIP_WHITESPACE ();
17255 }
17256
17257 expression (&exp);
17258 if (exp.X_op != O_symbol)
17259 {
17260 as_bad (_("bad .weakext directive"));
17261 ignore_rest_of_line ();
17262 return;
17263 }
17264 symbol_set_value_expression (symbolP, &exp);
17265 }
17266
17267 demand_empty_rest_of_line ();
17268 }
17269
17270 /* Parse a register string into a number. Called from the ECOFF code
17271 to parse .frame. The argument is non-zero if this is the frame
17272 register, so that we can record it in mips_frame_reg. */
17273
17274 int
17275 tc_get_register (int frame)
17276 {
17277 unsigned int reg;
17278
17279 SKIP_WHITESPACE ();
17280 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17281 reg = 0;
17282 if (frame)
17283 {
17284 mips_frame_reg = reg != 0 ? reg : SP;
17285 mips_frame_reg_valid = 1;
17286 mips_cprestore_valid = 0;
17287 }
17288 return reg;
17289 }
17290
17291 valueT
17292 md_section_align (asection *seg, valueT addr)
17293 {
17294 int align = bfd_get_section_alignment (stdoutput, seg);
17295
17296 if (IS_ELF)
17297 {
17298 /* We don't need to align ELF sections to the full alignment.
17299 However, Irix 5 may prefer that we align them at least to a 16
17300 byte boundary. We don't bother to align the sections if we
17301 are targeted for an embedded system. */
17302 if (strncmp (TARGET_OS, "elf", 3) == 0)
17303 return addr;
17304 if (align > 4)
17305 align = 4;
17306 }
17307
17308 return ((addr + (1 << align) - 1) & (-1 << align));
17309 }
17310
17311 /* Utility routine, called from above as well. If called while the
17312 input file is still being read, it's only an approximation. (For
17313 example, a symbol may later become defined which appeared to be
17314 undefined earlier.) */
17315
17316 static int
17317 nopic_need_relax (symbolS *sym, int before_relaxing)
17318 {
17319 if (sym == 0)
17320 return 0;
17321
17322 if (g_switch_value > 0)
17323 {
17324 const char *symname;
17325 int change;
17326
17327 /* Find out whether this symbol can be referenced off the $gp
17328 register. It can be if it is smaller than the -G size or if
17329 it is in the .sdata or .sbss section. Certain symbols can
17330 not be referenced off the $gp, although it appears as though
17331 they can. */
17332 symname = S_GET_NAME (sym);
17333 if (symname != (const char *) NULL
17334 && (strcmp (symname, "eprol") == 0
17335 || strcmp (symname, "etext") == 0
17336 || strcmp (symname, "_gp") == 0
17337 || strcmp (symname, "edata") == 0
17338 || strcmp (symname, "_fbss") == 0
17339 || strcmp (symname, "_fdata") == 0
17340 || strcmp (symname, "_ftext") == 0
17341 || strcmp (symname, "end") == 0
17342 || strcmp (symname, "_gp_disp") == 0))
17343 change = 1;
17344 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17345 && (0
17346 #ifndef NO_ECOFF_DEBUGGING
17347 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17348 && (symbol_get_obj (sym)->ecoff_extern_size
17349 <= g_switch_value))
17350 #endif
17351 /* We must defer this decision until after the whole
17352 file has been read, since there might be a .extern
17353 after the first use of this symbol. */
17354 || (before_relaxing
17355 #ifndef NO_ECOFF_DEBUGGING
17356 && symbol_get_obj (sym)->ecoff_extern_size == 0
17357 #endif
17358 && S_GET_VALUE (sym) == 0)
17359 || (S_GET_VALUE (sym) != 0
17360 && S_GET_VALUE (sym) <= g_switch_value)))
17361 change = 0;
17362 else
17363 {
17364 const char *segname;
17365
17366 segname = segment_name (S_GET_SEGMENT (sym));
17367 gas_assert (strcmp (segname, ".lit8") != 0
17368 && strcmp (segname, ".lit4") != 0);
17369 change = (strcmp (segname, ".sdata") != 0
17370 && strcmp (segname, ".sbss") != 0
17371 && strncmp (segname, ".sdata.", 7) != 0
17372 && strncmp (segname, ".sbss.", 6) != 0
17373 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17374 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17375 }
17376 return change;
17377 }
17378 else
17379 /* We are not optimizing for the $gp register. */
17380 return 1;
17381 }
17382
17383
17384 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17385
17386 static bfd_boolean
17387 pic_need_relax (symbolS *sym, asection *segtype)
17388 {
17389 asection *symsec;
17390
17391 /* Handle the case of a symbol equated to another symbol. */
17392 while (symbol_equated_reloc_p (sym))
17393 {
17394 symbolS *n;
17395
17396 /* It's possible to get a loop here in a badly written program. */
17397 n = symbol_get_value_expression (sym)->X_add_symbol;
17398 if (n == sym)
17399 break;
17400 sym = n;
17401 }
17402
17403 if (symbol_section_p (sym))
17404 return TRUE;
17405
17406 symsec = S_GET_SEGMENT (sym);
17407
17408 /* This must duplicate the test in adjust_reloc_syms. */
17409 return (!bfd_is_und_section (symsec)
17410 && !bfd_is_abs_section (symsec)
17411 && !bfd_is_com_section (symsec)
17412 && !s_is_linkonce (sym, segtype)
17413 #ifdef OBJ_ELF
17414 /* A global or weak symbol is treated as external. */
17415 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
17416 #endif
17417 );
17418 }
17419
17420
17421 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17422 extended opcode. SEC is the section the frag is in. */
17423
17424 static int
17425 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17426 {
17427 int type;
17428 const struct mips16_immed_operand *op;
17429 offsetT val;
17430 int mintiny, maxtiny;
17431 segT symsec;
17432 fragS *sym_frag;
17433
17434 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17435 return 0;
17436 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17437 return 1;
17438
17439 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17440 op = mips16_immed_operands;
17441 while (op->type != type)
17442 {
17443 ++op;
17444 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
17445 }
17446
17447 if (op->unsp)
17448 {
17449 if (type == '<' || type == '>' || type == '[' || type == ']')
17450 {
17451 mintiny = 1;
17452 maxtiny = 1 << op->nbits;
17453 }
17454 else
17455 {
17456 mintiny = 0;
17457 maxtiny = (1 << op->nbits) - 1;
17458 }
17459 }
17460 else
17461 {
17462 mintiny = - (1 << (op->nbits - 1));
17463 maxtiny = (1 << (op->nbits - 1)) - 1;
17464 }
17465
17466 sym_frag = symbol_get_frag (fragp->fr_symbol);
17467 val = S_GET_VALUE (fragp->fr_symbol);
17468 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17469
17470 if (op->pcrel)
17471 {
17472 addressT addr;
17473
17474 /* We won't have the section when we are called from
17475 mips_relax_frag. However, we will always have been called
17476 from md_estimate_size_before_relax first. If this is a
17477 branch to a different section, we mark it as such. If SEC is
17478 NULL, and the frag is not marked, then it must be a branch to
17479 the same section. */
17480 if (sec == NULL)
17481 {
17482 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17483 return 1;
17484 }
17485 else
17486 {
17487 /* Must have been called from md_estimate_size_before_relax. */
17488 if (symsec != sec)
17489 {
17490 fragp->fr_subtype =
17491 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17492
17493 /* FIXME: We should support this, and let the linker
17494 catch branches and loads that are out of range. */
17495 as_bad_where (fragp->fr_file, fragp->fr_line,
17496 _("unsupported PC relative reference to different section"));
17497
17498 return 1;
17499 }
17500 if (fragp != sym_frag && sym_frag->fr_address == 0)
17501 /* Assume non-extended on the first relaxation pass.
17502 The address we have calculated will be bogus if this is
17503 a forward branch to another frag, as the forward frag
17504 will have fr_address == 0. */
17505 return 0;
17506 }
17507
17508 /* In this case, we know for sure that the symbol fragment is in
17509 the same section. If the relax_marker of the symbol fragment
17510 differs from the relax_marker of this fragment, we have not
17511 yet adjusted the symbol fragment fr_address. We want to add
17512 in STRETCH in order to get a better estimate of the address.
17513 This particularly matters because of the shift bits. */
17514 if (stretch != 0
17515 && sym_frag->relax_marker != fragp->relax_marker)
17516 {
17517 fragS *f;
17518
17519 /* Adjust stretch for any alignment frag. Note that if have
17520 been expanding the earlier code, the symbol may be
17521 defined in what appears to be an earlier frag. FIXME:
17522 This doesn't handle the fr_subtype field, which specifies
17523 a maximum number of bytes to skip when doing an
17524 alignment. */
17525 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17526 {
17527 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17528 {
17529 if (stretch < 0)
17530 stretch = - ((- stretch)
17531 & ~ ((1 << (int) f->fr_offset) - 1));
17532 else
17533 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17534 if (stretch == 0)
17535 break;
17536 }
17537 }
17538 if (f != NULL)
17539 val += stretch;
17540 }
17541
17542 addr = fragp->fr_address + fragp->fr_fix;
17543
17544 /* The base address rules are complicated. The base address of
17545 a branch is the following instruction. The base address of a
17546 PC relative load or add is the instruction itself, but if it
17547 is in a delay slot (in which case it can not be extended) use
17548 the address of the instruction whose delay slot it is in. */
17549 if (type == 'p' || type == 'q')
17550 {
17551 addr += 2;
17552
17553 /* If we are currently assuming that this frag should be
17554 extended, then, the current address is two bytes
17555 higher. */
17556 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17557 addr += 2;
17558
17559 /* Ignore the low bit in the target, since it will be set
17560 for a text label. */
17561 if ((val & 1) != 0)
17562 --val;
17563 }
17564 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17565 addr -= 4;
17566 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17567 addr -= 2;
17568
17569 val -= addr & ~ ((1 << op->shift) - 1);
17570
17571 /* Branch offsets have an implicit 0 in the lowest bit. */
17572 if (type == 'p' || type == 'q')
17573 val /= 2;
17574
17575 /* If any of the shifted bits are set, we must use an extended
17576 opcode. If the address depends on the size of this
17577 instruction, this can lead to a loop, so we arrange to always
17578 use an extended opcode. We only check this when we are in
17579 the main relaxation loop, when SEC is NULL. */
17580 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
17581 {
17582 fragp->fr_subtype =
17583 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17584 return 1;
17585 }
17586
17587 /* If we are about to mark a frag as extended because the value
17588 is precisely maxtiny + 1, then there is a chance of an
17589 infinite loop as in the following code:
17590 la $4,foo
17591 .skip 1020
17592 .align 2
17593 foo:
17594 In this case when the la is extended, foo is 0x3fc bytes
17595 away, so the la can be shrunk, but then foo is 0x400 away, so
17596 the la must be extended. To avoid this loop, we mark the
17597 frag as extended if it was small, and is about to become
17598 extended with a value of maxtiny + 1. */
17599 if (val == ((maxtiny + 1) << op->shift)
17600 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
17601 && sec == NULL)
17602 {
17603 fragp->fr_subtype =
17604 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17605 return 1;
17606 }
17607 }
17608 else if (symsec != absolute_section && sec != NULL)
17609 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
17610
17611 if ((val & ((1 << op->shift) - 1)) != 0
17612 || val < (mintiny << op->shift)
17613 || val > (maxtiny << op->shift))
17614 return 1;
17615 else
17616 return 0;
17617 }
17618
17619 /* Compute the length of a branch sequence, and adjust the
17620 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17621 worst-case length is computed, with UPDATE being used to indicate
17622 whether an unconditional (-1), branch-likely (+1) or regular (0)
17623 branch is to be computed. */
17624 static int
17625 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17626 {
17627 bfd_boolean toofar;
17628 int length;
17629
17630 if (fragp
17631 && S_IS_DEFINED (fragp->fr_symbol)
17632 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17633 {
17634 addressT addr;
17635 offsetT val;
17636
17637 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17638
17639 addr = fragp->fr_address + fragp->fr_fix + 4;
17640
17641 val -= addr;
17642
17643 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17644 }
17645 else if (fragp)
17646 /* If the symbol is not defined or it's in a different segment,
17647 assume the user knows what's going on and emit a short
17648 branch. */
17649 toofar = FALSE;
17650 else
17651 toofar = TRUE;
17652
17653 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17654 fragp->fr_subtype
17655 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17656 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17657 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17658 RELAX_BRANCH_LINK (fragp->fr_subtype),
17659 toofar);
17660
17661 length = 4;
17662 if (toofar)
17663 {
17664 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17665 length += 8;
17666
17667 if (mips_pic != NO_PIC)
17668 {
17669 /* Additional space for PIC loading of target address. */
17670 length += 8;
17671 if (mips_opts.isa == ISA_MIPS1)
17672 /* Additional space for $at-stabilizing nop. */
17673 length += 4;
17674 }
17675
17676 /* If branch is conditional. */
17677 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17678 length += 8;
17679 }
17680
17681 return length;
17682 }
17683
17684 /* Compute the length of a branch sequence, and adjust the
17685 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17686 worst-case length is computed, with UPDATE being used to indicate
17687 whether an unconditional (-1), or regular (0) branch is to be
17688 computed. */
17689
17690 static int
17691 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17692 {
17693 bfd_boolean toofar;
17694 int length;
17695
17696 if (fragp
17697 && S_IS_DEFINED (fragp->fr_symbol)
17698 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17699 {
17700 addressT addr;
17701 offsetT val;
17702
17703 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17704 /* Ignore the low bit in the target, since it will be set
17705 for a text label. */
17706 if ((val & 1) != 0)
17707 --val;
17708
17709 addr = fragp->fr_address + fragp->fr_fix + 4;
17710
17711 val -= addr;
17712
17713 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17714 }
17715 else if (fragp)
17716 /* If the symbol is not defined or it's in a different segment,
17717 assume the user knows what's going on and emit a short
17718 branch. */
17719 toofar = FALSE;
17720 else
17721 toofar = TRUE;
17722
17723 if (fragp && update
17724 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17725 fragp->fr_subtype = (toofar
17726 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17727 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17728
17729 length = 4;
17730 if (toofar)
17731 {
17732 bfd_boolean compact_known = fragp != NULL;
17733 bfd_boolean compact = FALSE;
17734 bfd_boolean uncond;
17735
17736 if (compact_known)
17737 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17738 if (fragp)
17739 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17740 else
17741 uncond = update < 0;
17742
17743 /* If label is out of range, we turn branch <br>:
17744
17745 <br> label # 4 bytes
17746 0:
17747
17748 into:
17749
17750 j label # 4 bytes
17751 nop # 2 bytes if compact && !PIC
17752 0:
17753 */
17754 if (mips_pic == NO_PIC && (!compact_known || compact))
17755 length += 2;
17756
17757 /* If assembling PIC code, we further turn:
17758
17759 j label # 4 bytes
17760
17761 into:
17762
17763 lw/ld at, %got(label)(gp) # 4 bytes
17764 d/addiu at, %lo(label) # 4 bytes
17765 jr/c at # 2 bytes
17766 */
17767 if (mips_pic != NO_PIC)
17768 length += 6;
17769
17770 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17771
17772 <brneg> 0f # 4 bytes
17773 nop # 2 bytes if !compact
17774 */
17775 if (!uncond)
17776 length += (compact_known && compact) ? 4 : 6;
17777 }
17778
17779 return length;
17780 }
17781
17782 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17783 bit accordingly. */
17784
17785 static int
17786 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17787 {
17788 bfd_boolean toofar;
17789
17790 if (fragp
17791 && S_IS_DEFINED (fragp->fr_symbol)
17792 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17793 {
17794 addressT addr;
17795 offsetT val;
17796 int type;
17797
17798 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17799 /* Ignore the low bit in the target, since it will be set
17800 for a text label. */
17801 if ((val & 1) != 0)
17802 --val;
17803
17804 /* Assume this is a 2-byte branch. */
17805 addr = fragp->fr_address + fragp->fr_fix + 2;
17806
17807 /* We try to avoid the infinite loop by not adding 2 more bytes for
17808 long branches. */
17809
17810 val -= addr;
17811
17812 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17813 if (type == 'D')
17814 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17815 else if (type == 'E')
17816 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17817 else
17818 abort ();
17819 }
17820 else
17821 /* If the symbol is not defined or it's in a different segment,
17822 we emit a normal 32-bit branch. */
17823 toofar = TRUE;
17824
17825 if (fragp && update
17826 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17827 fragp->fr_subtype
17828 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17829 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17830
17831 if (toofar)
17832 return 4;
17833
17834 return 2;
17835 }
17836
17837 /* Estimate the size of a frag before relaxing. Unless this is the
17838 mips16, we are not really relaxing here, and the final size is
17839 encoded in the subtype information. For the mips16, we have to
17840 decide whether we are using an extended opcode or not. */
17841
17842 int
17843 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17844 {
17845 int change;
17846
17847 if (RELAX_BRANCH_P (fragp->fr_subtype))
17848 {
17849
17850 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17851
17852 return fragp->fr_var;
17853 }
17854
17855 if (RELAX_MIPS16_P (fragp->fr_subtype))
17856 /* We don't want to modify the EXTENDED bit here; it might get us
17857 into infinite loops. We change it only in mips_relax_frag(). */
17858 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17859
17860 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17861 {
17862 int length = 4;
17863
17864 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17865 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17866 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17867 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17868 fragp->fr_var = length;
17869
17870 return length;
17871 }
17872
17873 if (mips_pic == NO_PIC)
17874 change = nopic_need_relax (fragp->fr_symbol, 0);
17875 else if (mips_pic == SVR4_PIC)
17876 change = pic_need_relax (fragp->fr_symbol, segtype);
17877 else if (mips_pic == VXWORKS_PIC)
17878 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17879 change = 0;
17880 else
17881 abort ();
17882
17883 if (change)
17884 {
17885 fragp->fr_subtype |= RELAX_USE_SECOND;
17886 return -RELAX_FIRST (fragp->fr_subtype);
17887 }
17888 else
17889 return -RELAX_SECOND (fragp->fr_subtype);
17890 }
17891
17892 /* This is called to see whether a reloc against a defined symbol
17893 should be converted into a reloc against a section. */
17894
17895 int
17896 mips_fix_adjustable (fixS *fixp)
17897 {
17898 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17899 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17900 return 0;
17901
17902 if (fixp->fx_addsy == NULL)
17903 return 1;
17904
17905 /* If symbol SYM is in a mergeable section, relocations of the form
17906 SYM + 0 can usually be made section-relative. The mergeable data
17907 is then identified by the section offset rather than by the symbol.
17908
17909 However, if we're generating REL LO16 relocations, the offset is split
17910 between the LO16 and parterning high part relocation. The linker will
17911 need to recalculate the complete offset in order to correctly identify
17912 the merge data.
17913
17914 The linker has traditionally not looked for the parterning high part
17915 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17916 placed anywhere. Rather than break backwards compatibility by changing
17917 this, it seems better not to force the issue, and instead keep the
17918 original symbol. This will work with either linker behavior. */
17919 if ((lo16_reloc_p (fixp->fx_r_type)
17920 || reloc_needs_lo_p (fixp->fx_r_type))
17921 && HAVE_IN_PLACE_ADDENDS
17922 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17923 return 0;
17924
17925 /* There is no place to store an in-place offset for JALR relocations.
17926 Likewise an in-range offset of limited PC-relative relocations may
17927 overflow the in-place relocatable field if recalculated against the
17928 start address of the symbol's containing section. */
17929 if (HAVE_IN_PLACE_ADDENDS
17930 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17931 || jalr_reloc_p (fixp->fx_r_type)))
17932 return 0;
17933
17934 #ifdef OBJ_ELF
17935 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17936 to a floating-point stub. The same is true for non-R_MIPS16_26
17937 relocations against MIPS16 functions; in this case, the stub becomes
17938 the function's canonical address.
17939
17940 Floating-point stubs are stored in unique .mips16.call.* or
17941 .mips16.fn.* sections. If a stub T for function F is in section S,
17942 the first relocation in section S must be against F; this is how the
17943 linker determines the target function. All relocations that might
17944 resolve to T must also be against F. We therefore have the following
17945 restrictions, which are given in an intentionally-redundant way:
17946
17947 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17948 symbols.
17949
17950 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17951 if that stub might be used.
17952
17953 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17954 symbols.
17955
17956 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17957 that stub might be used.
17958
17959 There is a further restriction:
17960
17961 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17962 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17963 targets with in-place addends; the relocation field cannot
17964 encode the low bit.
17965
17966 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17967 against a MIPS16 symbol. We deal with (5) by by not reducing any
17968 such relocations on REL targets.
17969
17970 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17971 relocation against some symbol R, no relocation against R may be
17972 reduced. (Note that this deals with (2) as well as (1) because
17973 relocations against global symbols will never be reduced on ELF
17974 targets.) This approach is a little simpler than trying to detect
17975 stub sections, and gives the "all or nothing" per-symbol consistency
17976 that we have for MIPS16 symbols. */
17977 if (IS_ELF
17978 && fixp->fx_subsy == NULL
17979 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17980 || *symbol_get_tc (fixp->fx_addsy)
17981 || (HAVE_IN_PLACE_ADDENDS
17982 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17983 && jmp_reloc_p (fixp->fx_r_type))))
17984 return 0;
17985 #endif
17986
17987 return 1;
17988 }
17989
17990 /* Translate internal representation of relocation info to BFD target
17991 format. */
17992
17993 arelent **
17994 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17995 {
17996 static arelent *retval[4];
17997 arelent *reloc;
17998 bfd_reloc_code_real_type code;
17999
18000 memset (retval, 0, sizeof(retval));
18001 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
18002 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
18003 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18004 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18005
18006 if (fixp->fx_pcrel)
18007 {
18008 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18009 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18010 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18011 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18012 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
18013
18014 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18015 Relocations want only the symbol offset. */
18016 reloc->addend = fixp->fx_addnumber + reloc->address;
18017 if (!IS_ELF)
18018 {
18019 /* A gruesome hack which is a result of the gruesome gas
18020 reloc handling. What's worse, for COFF (as opposed to
18021 ECOFF), we might need yet another copy of reloc->address.
18022 See bfd_install_relocation. */
18023 reloc->addend += reloc->address;
18024 }
18025 }
18026 else
18027 reloc->addend = fixp->fx_addnumber;
18028
18029 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18030 entry to be used in the relocation's section offset. */
18031 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18032 {
18033 reloc->address = reloc->addend;
18034 reloc->addend = 0;
18035 }
18036
18037 code = fixp->fx_r_type;
18038
18039 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18040 if (reloc->howto == NULL)
18041 {
18042 as_bad_where (fixp->fx_file, fixp->fx_line,
18043 _("Can not represent %s relocation in this object file format"),
18044 bfd_get_reloc_code_name (code));
18045 retval[0] = NULL;
18046 }
18047
18048 return retval;
18049 }
18050
18051 /* Relax a machine dependent frag. This returns the amount by which
18052 the current size of the frag should change. */
18053
18054 int
18055 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18056 {
18057 if (RELAX_BRANCH_P (fragp->fr_subtype))
18058 {
18059 offsetT old_var = fragp->fr_var;
18060
18061 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18062
18063 return fragp->fr_var - old_var;
18064 }
18065
18066 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18067 {
18068 offsetT old_var = fragp->fr_var;
18069 offsetT new_var = 4;
18070
18071 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18072 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18073 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18074 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18075 fragp->fr_var = new_var;
18076
18077 return new_var - old_var;
18078 }
18079
18080 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18081 return 0;
18082
18083 if (mips16_extended_frag (fragp, NULL, stretch))
18084 {
18085 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18086 return 0;
18087 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18088 return 2;
18089 }
18090 else
18091 {
18092 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18093 return 0;
18094 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18095 return -2;
18096 }
18097
18098 return 0;
18099 }
18100
18101 /* Convert a machine dependent frag. */
18102
18103 void
18104 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18105 {
18106 if (RELAX_BRANCH_P (fragp->fr_subtype))
18107 {
18108 char *buf;
18109 unsigned long insn;
18110 expressionS exp;
18111 fixS *fixp;
18112
18113 buf = fragp->fr_literal + fragp->fr_fix;
18114 insn = read_insn (buf);
18115
18116 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18117 {
18118 /* We generate a fixup instead of applying it right now
18119 because, if there are linker relaxations, we're going to
18120 need the relocations. */
18121 exp.X_op = O_symbol;
18122 exp.X_add_symbol = fragp->fr_symbol;
18123 exp.X_add_number = fragp->fr_offset;
18124
18125 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18126 BFD_RELOC_16_PCREL_S2);
18127 fixp->fx_file = fragp->fr_file;
18128 fixp->fx_line = fragp->fr_line;
18129
18130 buf = write_insn (buf, insn);
18131 }
18132 else
18133 {
18134 int i;
18135
18136 as_warn_where (fragp->fr_file, fragp->fr_line,
18137 _("Relaxed out-of-range branch into a jump"));
18138
18139 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18140 goto uncond;
18141
18142 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18143 {
18144 /* Reverse the branch. */
18145 switch ((insn >> 28) & 0xf)
18146 {
18147 case 4:
18148 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
18149 have the condition reversed by tweaking a single
18150 bit, and their opcodes all have 0x4???????. */
18151 gas_assert ((insn & 0xf1000000) == 0x41000000);
18152 insn ^= 0x00010000;
18153 break;
18154
18155 case 0:
18156 /* bltz 0x04000000 bgez 0x04010000
18157 bltzal 0x04100000 bgezal 0x04110000 */
18158 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18159 insn ^= 0x00010000;
18160 break;
18161
18162 case 1:
18163 /* beq 0x10000000 bne 0x14000000
18164 blez 0x18000000 bgtz 0x1c000000 */
18165 insn ^= 0x04000000;
18166 break;
18167
18168 default:
18169 abort ();
18170 }
18171 }
18172
18173 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18174 {
18175 /* Clear the and-link bit. */
18176 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18177
18178 /* bltzal 0x04100000 bgezal 0x04110000
18179 bltzall 0x04120000 bgezall 0x04130000 */
18180 insn &= ~0x00100000;
18181 }
18182
18183 /* Branch over the branch (if the branch was likely) or the
18184 full jump (not likely case). Compute the offset from the
18185 current instruction to branch to. */
18186 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18187 i = 16;
18188 else
18189 {
18190 /* How many bytes in instructions we've already emitted? */
18191 i = buf - fragp->fr_literal - fragp->fr_fix;
18192 /* How many bytes in instructions from here to the end? */
18193 i = fragp->fr_var - i;
18194 }
18195 /* Convert to instruction count. */
18196 i >>= 2;
18197 /* Branch counts from the next instruction. */
18198 i--;
18199 insn |= i;
18200 /* Branch over the jump. */
18201 buf = write_insn (buf, insn);
18202
18203 /* nop */
18204 buf = write_insn (buf, 0);
18205
18206 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18207 {
18208 /* beql $0, $0, 2f */
18209 insn = 0x50000000;
18210 /* Compute the PC offset from the current instruction to
18211 the end of the variable frag. */
18212 /* How many bytes in instructions we've already emitted? */
18213 i = buf - fragp->fr_literal - fragp->fr_fix;
18214 /* How many bytes in instructions from here to the end? */
18215 i = fragp->fr_var - i;
18216 /* Convert to instruction count. */
18217 i >>= 2;
18218 /* Don't decrement i, because we want to branch over the
18219 delay slot. */
18220 insn |= i;
18221
18222 buf = write_insn (buf, insn);
18223 buf = write_insn (buf, 0);
18224 }
18225
18226 uncond:
18227 if (mips_pic == NO_PIC)
18228 {
18229 /* j or jal. */
18230 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18231 ? 0x0c000000 : 0x08000000);
18232 exp.X_op = O_symbol;
18233 exp.X_add_symbol = fragp->fr_symbol;
18234 exp.X_add_number = fragp->fr_offset;
18235
18236 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18237 FALSE, BFD_RELOC_MIPS_JMP);
18238 fixp->fx_file = fragp->fr_file;
18239 fixp->fx_line = fragp->fr_line;
18240
18241 buf = write_insn (buf, insn);
18242 }
18243 else
18244 {
18245 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18246
18247 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18248 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18249 insn |= at << OP_SH_RT;
18250 exp.X_op = O_symbol;
18251 exp.X_add_symbol = fragp->fr_symbol;
18252 exp.X_add_number = fragp->fr_offset;
18253
18254 if (fragp->fr_offset)
18255 {
18256 exp.X_add_symbol = make_expr_symbol (&exp);
18257 exp.X_add_number = 0;
18258 }
18259
18260 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18261 FALSE, BFD_RELOC_MIPS_GOT16);
18262 fixp->fx_file = fragp->fr_file;
18263 fixp->fx_line = fragp->fr_line;
18264
18265 buf = write_insn (buf, insn);
18266
18267 if (mips_opts.isa == ISA_MIPS1)
18268 /* nop */
18269 buf = write_insn (buf, 0);
18270
18271 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18272 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18273 insn |= at << OP_SH_RS | at << OP_SH_RT;
18274
18275 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18276 FALSE, BFD_RELOC_LO16);
18277 fixp->fx_file = fragp->fr_file;
18278 fixp->fx_line = fragp->fr_line;
18279
18280 buf = write_insn (buf, insn);
18281
18282 /* j(al)r $at. */
18283 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18284 insn = 0x0000f809;
18285 else
18286 insn = 0x00000008;
18287 insn |= at << OP_SH_RS;
18288
18289 buf = write_insn (buf, insn);
18290 }
18291 }
18292
18293 fragp->fr_fix += fragp->fr_var;
18294 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18295 return;
18296 }
18297
18298 /* Relax microMIPS branches. */
18299 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18300 {
18301 char *buf = fragp->fr_literal + fragp->fr_fix;
18302 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18303 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18304 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18305 bfd_boolean short_ds;
18306 unsigned long insn;
18307 expressionS exp;
18308 fixS *fixp;
18309
18310 exp.X_op = O_symbol;
18311 exp.X_add_symbol = fragp->fr_symbol;
18312 exp.X_add_number = fragp->fr_offset;
18313
18314 fragp->fr_fix += fragp->fr_var;
18315
18316 /* Handle 16-bit branches that fit or are forced to fit. */
18317 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18318 {
18319 /* We generate a fixup instead of applying it right now,
18320 because if there is linker relaxation, we're going to
18321 need the relocations. */
18322 if (type == 'D')
18323 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18324 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18325 else if (type == 'E')
18326 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18327 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18328 else
18329 abort ();
18330
18331 fixp->fx_file = fragp->fr_file;
18332 fixp->fx_line = fragp->fr_line;
18333
18334 /* These relocations can have an addend that won't fit in
18335 2 octets. */
18336 fixp->fx_no_overflow = 1;
18337
18338 return;
18339 }
18340
18341 /* Handle 32-bit branches that fit or are forced to fit. */
18342 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18343 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18344 {
18345 /* We generate a fixup instead of applying it right now,
18346 because if there is linker relaxation, we're going to
18347 need the relocations. */
18348 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18349 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18350 fixp->fx_file = fragp->fr_file;
18351 fixp->fx_line = fragp->fr_line;
18352
18353 if (type == 0)
18354 return;
18355 }
18356
18357 /* Relax 16-bit branches to 32-bit branches. */
18358 if (type != 0)
18359 {
18360 insn = read_compressed_insn (buf, 2);
18361
18362 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18363 insn = 0x94000000; /* beq */
18364 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18365 {
18366 unsigned long regno;
18367
18368 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18369 regno = micromips_to_32_reg_d_map [regno];
18370 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18371 insn |= regno << MICROMIPSOP_SH_RS;
18372 }
18373 else
18374 abort ();
18375
18376 /* Nothing else to do, just write it out. */
18377 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18378 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18379 {
18380 buf = write_compressed_insn (buf, insn, 4);
18381 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18382 return;
18383 }
18384 }
18385 else
18386 insn = read_compressed_insn (buf, 4);
18387
18388 /* Relax 32-bit branches to a sequence of instructions. */
18389 as_warn_where (fragp->fr_file, fragp->fr_line,
18390 _("Relaxed out-of-range branch into a jump"));
18391
18392 /* Set the short-delay-slot bit. */
18393 short_ds = al && (insn & 0x02000000) != 0;
18394
18395 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18396 {
18397 symbolS *l;
18398
18399 /* Reverse the branch. */
18400 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18401 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18402 insn ^= 0x20000000;
18403 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18404 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18405 || (insn & 0xffe00000) == 0x40800000 /* blez */
18406 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18407 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18408 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18409 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18410 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18411 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18412 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18413 insn ^= 0x00400000;
18414 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18415 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18416 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18417 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18418 insn ^= 0x00200000;
18419 else
18420 abort ();
18421
18422 if (al)
18423 {
18424 /* Clear the and-link and short-delay-slot bits. */
18425 gas_assert ((insn & 0xfda00000) == 0x40200000);
18426
18427 /* bltzal 0x40200000 bgezal 0x40600000 */
18428 /* bltzals 0x42200000 bgezals 0x42600000 */
18429 insn &= ~0x02200000;
18430 }
18431
18432 /* Make a label at the end for use with the branch. */
18433 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18434 micromips_label_inc ();
18435 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
18436 if (IS_ELF)
18437 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18438 #endif
18439
18440 /* Refer to it. */
18441 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18442 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18443 fixp->fx_file = fragp->fr_file;
18444 fixp->fx_line = fragp->fr_line;
18445
18446 /* Branch over the jump. */
18447 buf = write_compressed_insn (buf, insn, 4);
18448 if (!compact)
18449 /* nop */
18450 buf = write_compressed_insn (buf, 0x0c00, 2);
18451 }
18452
18453 if (mips_pic == NO_PIC)
18454 {
18455 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
18456
18457 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18458 insn = al ? jal : 0xd4000000;
18459
18460 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18461 BFD_RELOC_MICROMIPS_JMP);
18462 fixp->fx_file = fragp->fr_file;
18463 fixp->fx_line = fragp->fr_line;
18464
18465 buf = write_compressed_insn (buf, insn, 4);
18466 if (compact)
18467 /* nop */
18468 buf = write_compressed_insn (buf, 0x0c00, 2);
18469 }
18470 else
18471 {
18472 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18473 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18474 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
18475
18476 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18477 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18478 insn |= at << MICROMIPSOP_SH_RT;
18479
18480 if (exp.X_add_number)
18481 {
18482 exp.X_add_symbol = make_expr_symbol (&exp);
18483 exp.X_add_number = 0;
18484 }
18485
18486 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18487 BFD_RELOC_MICROMIPS_GOT16);
18488 fixp->fx_file = fragp->fr_file;
18489 fixp->fx_line = fragp->fr_line;
18490
18491 buf = write_compressed_insn (buf, insn, 4);
18492
18493 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18494 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18495 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18496
18497 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18498 BFD_RELOC_MICROMIPS_LO16);
18499 fixp->fx_file = fragp->fr_file;
18500 fixp->fx_line = fragp->fr_line;
18501
18502 buf = write_compressed_insn (buf, insn, 4);
18503
18504 /* jr/jrc/jalr/jalrs $at */
18505 insn = al ? jalr : jr;
18506 insn |= at << MICROMIPSOP_SH_MJ;
18507
18508 buf = write_compressed_insn (buf, insn, 2);
18509 }
18510
18511 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18512 return;
18513 }
18514
18515 if (RELAX_MIPS16_P (fragp->fr_subtype))
18516 {
18517 int type;
18518 const struct mips16_immed_operand *op;
18519 offsetT val;
18520 char *buf;
18521 unsigned int user_length, length;
18522 unsigned long insn;
18523 bfd_boolean ext;
18524
18525 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18526 op = mips16_immed_operands;
18527 while (op->type != type)
18528 ++op;
18529
18530 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18531 val = resolve_symbol_value (fragp->fr_symbol);
18532 if (op->pcrel)
18533 {
18534 addressT addr;
18535
18536 addr = fragp->fr_address + fragp->fr_fix;
18537
18538 /* The rules for the base address of a PC relative reloc are
18539 complicated; see mips16_extended_frag. */
18540 if (type == 'p' || type == 'q')
18541 {
18542 addr += 2;
18543 if (ext)
18544 addr += 2;
18545 /* Ignore the low bit in the target, since it will be
18546 set for a text label. */
18547 if ((val & 1) != 0)
18548 --val;
18549 }
18550 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18551 addr -= 4;
18552 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18553 addr -= 2;
18554
18555 addr &= ~ (addressT) ((1 << op->shift) - 1);
18556 val -= addr;
18557
18558 /* Make sure the section winds up with the alignment we have
18559 assumed. */
18560 if (op->shift > 0)
18561 record_alignment (asec, op->shift);
18562 }
18563
18564 if (ext
18565 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18566 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18567 as_warn_where (fragp->fr_file, fragp->fr_line,
18568 _("extended instruction in delay slot"));
18569
18570 buf = fragp->fr_literal + fragp->fr_fix;
18571
18572 insn = read_compressed_insn (buf, 2);
18573 if (ext)
18574 insn |= MIPS16_EXTEND;
18575
18576 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18577 user_length = 4;
18578 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18579 user_length = 2;
18580 else
18581 user_length = 0;
18582
18583 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18584 BFD_RELOC_UNUSED, val, user_length, &insn);
18585
18586 length = (ext ? 4 : 2);
18587 gas_assert (mips16_opcode_length (insn) == length);
18588 write_compressed_insn (buf, insn, length);
18589 fragp->fr_fix += length;
18590 }
18591 else
18592 {
18593 relax_substateT subtype = fragp->fr_subtype;
18594 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18595 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18596 int first, second;
18597 fixS *fixp;
18598
18599 first = RELAX_FIRST (subtype);
18600 second = RELAX_SECOND (subtype);
18601 fixp = (fixS *) fragp->fr_opcode;
18602
18603 /* If the delay slot chosen does not match the size of the instruction,
18604 then emit a warning. */
18605 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18606 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18607 {
18608 relax_substateT s;
18609 const char *msg;
18610
18611 s = subtype & (RELAX_DELAY_SLOT_16BIT
18612 | RELAX_DELAY_SLOT_SIZE_FIRST
18613 | RELAX_DELAY_SLOT_SIZE_SECOND);
18614 msg = macro_warning (s);
18615 if (msg != NULL)
18616 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18617 subtype &= ~s;
18618 }
18619
18620 /* Possibly emit a warning if we've chosen the longer option. */
18621 if (use_second == second_longer)
18622 {
18623 relax_substateT s;
18624 const char *msg;
18625
18626 s = (subtype
18627 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18628 msg = macro_warning (s);
18629 if (msg != NULL)
18630 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18631 subtype &= ~s;
18632 }
18633
18634 /* Go through all the fixups for the first sequence. Disable them
18635 (by marking them as done) if we're going to use the second
18636 sequence instead. */
18637 while (fixp
18638 && fixp->fx_frag == fragp
18639 && fixp->fx_where < fragp->fr_fix - second)
18640 {
18641 if (subtype & RELAX_USE_SECOND)
18642 fixp->fx_done = 1;
18643 fixp = fixp->fx_next;
18644 }
18645
18646 /* Go through the fixups for the second sequence. Disable them if
18647 we're going to use the first sequence, otherwise adjust their
18648 addresses to account for the relaxation. */
18649 while (fixp && fixp->fx_frag == fragp)
18650 {
18651 if (subtype & RELAX_USE_SECOND)
18652 fixp->fx_where -= first;
18653 else
18654 fixp->fx_done = 1;
18655 fixp = fixp->fx_next;
18656 }
18657
18658 /* Now modify the frag contents. */
18659 if (subtype & RELAX_USE_SECOND)
18660 {
18661 char *start;
18662
18663 start = fragp->fr_literal + fragp->fr_fix - first - second;
18664 memmove (start, start + first, second);
18665 fragp->fr_fix -= first;
18666 }
18667 else
18668 fragp->fr_fix -= second;
18669 }
18670 }
18671
18672 #ifdef OBJ_ELF
18673
18674 /* This function is called after the relocs have been generated.
18675 We've been storing mips16 text labels as odd. Here we convert them
18676 back to even for the convenience of the debugger. */
18677
18678 void
18679 mips_frob_file_after_relocs (void)
18680 {
18681 asymbol **syms;
18682 unsigned int count, i;
18683
18684 if (!IS_ELF)
18685 return;
18686
18687 syms = bfd_get_outsymbols (stdoutput);
18688 count = bfd_get_symcount (stdoutput);
18689 for (i = 0; i < count; i++, syms++)
18690 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18691 && ((*syms)->value & 1) != 0)
18692 {
18693 (*syms)->value &= ~1;
18694 /* If the symbol has an odd size, it was probably computed
18695 incorrectly, so adjust that as well. */
18696 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18697 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18698 }
18699 }
18700
18701 #endif
18702
18703 /* This function is called whenever a label is defined, including fake
18704 labels instantiated off the dot special symbol. It is used when
18705 handling branch delays; if a branch has a label, we assume we cannot
18706 move it. This also bumps the value of the symbol by 1 in compressed
18707 code. */
18708
18709 static void
18710 mips_record_label (symbolS *sym)
18711 {
18712 segment_info_type *si = seg_info (now_seg);
18713 struct insn_label_list *l;
18714
18715 if (free_insn_labels == NULL)
18716 l = (struct insn_label_list *) xmalloc (sizeof *l);
18717 else
18718 {
18719 l = free_insn_labels;
18720 free_insn_labels = l->next;
18721 }
18722
18723 l->label = sym;
18724 l->next = si->label_list;
18725 si->label_list = l;
18726 }
18727
18728 /* This function is called as tc_frob_label() whenever a label is defined
18729 and adds a DWARF-2 record we only want for true labels. */
18730
18731 void
18732 mips_define_label (symbolS *sym)
18733 {
18734 mips_record_label (sym);
18735 #ifdef OBJ_ELF
18736 dwarf2_emit_label (sym);
18737 #endif
18738 }
18739
18740 /* This function is called by tc_new_dot_label whenever a new dot symbol
18741 is defined. */
18742
18743 void
18744 mips_add_dot_label (symbolS *sym)
18745 {
18746 mips_record_label (sym);
18747 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18748 mips_compressed_mark_label (sym);
18749 }
18750 \f
18751 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
18752
18753 /* Some special processing for a MIPS ELF file. */
18754
18755 void
18756 mips_elf_final_processing (void)
18757 {
18758 /* Write out the register information. */
18759 if (mips_abi != N64_ABI)
18760 {
18761 Elf32_RegInfo s;
18762
18763 s.ri_gprmask = mips_gprmask;
18764 s.ri_cprmask[0] = mips_cprmask[0];
18765 s.ri_cprmask[1] = mips_cprmask[1];
18766 s.ri_cprmask[2] = mips_cprmask[2];
18767 s.ri_cprmask[3] = mips_cprmask[3];
18768 /* The gp_value field is set by the MIPS ELF backend. */
18769
18770 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18771 ((Elf32_External_RegInfo *)
18772 mips_regmask_frag));
18773 }
18774 else
18775 {
18776 Elf64_Internal_RegInfo s;
18777
18778 s.ri_gprmask = mips_gprmask;
18779 s.ri_pad = 0;
18780 s.ri_cprmask[0] = mips_cprmask[0];
18781 s.ri_cprmask[1] = mips_cprmask[1];
18782 s.ri_cprmask[2] = mips_cprmask[2];
18783 s.ri_cprmask[3] = mips_cprmask[3];
18784 /* The gp_value field is set by the MIPS ELF backend. */
18785
18786 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18787 ((Elf64_External_RegInfo *)
18788 mips_regmask_frag));
18789 }
18790
18791 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18792 sort of BFD interface for this. */
18793 if (mips_any_noreorder)
18794 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18795 if (mips_pic != NO_PIC)
18796 {
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18798 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18799 }
18800 if (mips_abicalls)
18801 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18802
18803 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18804 defined at present; this might need to change in future. */
18805 if (file_ase_mips16)
18806 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18807 if (file_ase_micromips)
18808 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18809 #if 0 /* XXX FIXME */
18810 if (file_ase_mips3d)
18811 elf_elfheader (stdoutput)->e_flags |= ???;
18812 #endif
18813 if (file_ase_mdmx)
18814 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18815
18816 /* Set the MIPS ELF ABI flags. */
18817 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18818 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18819 else if (mips_abi == O64_ABI)
18820 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18821 else if (mips_abi == EABI_ABI)
18822 {
18823 if (!file_mips_gp32)
18824 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18825 else
18826 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18827 }
18828 else if (mips_abi == N32_ABI)
18829 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18830
18831 /* Nothing to do for N64_ABI. */
18832
18833 if (mips_32bitmode)
18834 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18835
18836 #if 0 /* XXX FIXME */
18837 /* 32 bit code with 64 bit FP registers. */
18838 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
18839 elf_elfheader (stdoutput)->e_flags |= ???;
18840 #endif
18841 }
18842
18843 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
18844 \f
18845 typedef struct proc {
18846 symbolS *func_sym;
18847 symbolS *func_end_sym;
18848 unsigned long reg_mask;
18849 unsigned long reg_offset;
18850 unsigned long fpreg_mask;
18851 unsigned long fpreg_offset;
18852 unsigned long frame_offset;
18853 unsigned long frame_reg;
18854 unsigned long pc_reg;
18855 } procS;
18856
18857 static procS cur_proc;
18858 static procS *cur_proc_ptr;
18859 static int numprocs;
18860
18861 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18862 as "2", and a normal nop as "0". */
18863
18864 #define NOP_OPCODE_MIPS 0
18865 #define NOP_OPCODE_MIPS16 1
18866 #define NOP_OPCODE_MICROMIPS 2
18867
18868 char
18869 mips_nop_opcode (void)
18870 {
18871 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18872 return NOP_OPCODE_MICROMIPS;
18873 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18874 return NOP_OPCODE_MIPS16;
18875 else
18876 return NOP_OPCODE_MIPS;
18877 }
18878
18879 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18880 32-bit microMIPS NOPs here (if applicable). */
18881
18882 void
18883 mips_handle_align (fragS *fragp)
18884 {
18885 char nop_opcode;
18886 char *p;
18887 int bytes, size, excess;
18888 valueT opcode;
18889
18890 if (fragp->fr_type != rs_align_code)
18891 return;
18892
18893 p = fragp->fr_literal + fragp->fr_fix;
18894 nop_opcode = *p;
18895 switch (nop_opcode)
18896 {
18897 case NOP_OPCODE_MICROMIPS:
18898 opcode = micromips_nop32_insn.insn_opcode;
18899 size = 4;
18900 break;
18901 case NOP_OPCODE_MIPS16:
18902 opcode = mips16_nop_insn.insn_opcode;
18903 size = 2;
18904 break;
18905 case NOP_OPCODE_MIPS:
18906 default:
18907 opcode = nop_insn.insn_opcode;
18908 size = 4;
18909 break;
18910 }
18911
18912 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18913 excess = bytes % size;
18914
18915 /* Handle the leading part if we're not inserting a whole number of
18916 instructions, and make it the end of the fixed part of the frag.
18917 Try to fit in a short microMIPS NOP if applicable and possible,
18918 and use zeroes otherwise. */
18919 gas_assert (excess < 4);
18920 fragp->fr_fix += excess;
18921 switch (excess)
18922 {
18923 case 3:
18924 *p++ = '\0';
18925 /* Fall through. */
18926 case 2:
18927 if (nop_opcode == NOP_OPCODE_MICROMIPS)
18928 {
18929 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18930 break;
18931 }
18932 *p++ = '\0';
18933 /* Fall through. */
18934 case 1:
18935 *p++ = '\0';
18936 /* Fall through. */
18937 case 0:
18938 break;
18939 }
18940
18941 md_number_to_chars (p, opcode, size);
18942 fragp->fr_var = size;
18943 }
18944
18945 static void
18946 md_obj_begin (void)
18947 {
18948 }
18949
18950 static void
18951 md_obj_end (void)
18952 {
18953 /* Check for premature end, nesting errors, etc. */
18954 if (cur_proc_ptr)
18955 as_warn (_("missing .end at end of assembly"));
18956 }
18957
18958 static long
18959 get_number (void)
18960 {
18961 int negative = 0;
18962 long val = 0;
18963
18964 if (*input_line_pointer == '-')
18965 {
18966 ++input_line_pointer;
18967 negative = 1;
18968 }
18969 if (!ISDIGIT (*input_line_pointer))
18970 as_bad (_("expected simple number"));
18971 if (input_line_pointer[0] == '0')
18972 {
18973 if (input_line_pointer[1] == 'x')
18974 {
18975 input_line_pointer += 2;
18976 while (ISXDIGIT (*input_line_pointer))
18977 {
18978 val <<= 4;
18979 val |= hex_value (*input_line_pointer++);
18980 }
18981 return negative ? -val : val;
18982 }
18983 else
18984 {
18985 ++input_line_pointer;
18986 while (ISDIGIT (*input_line_pointer))
18987 {
18988 val <<= 3;
18989 val |= *input_line_pointer++ - '0';
18990 }
18991 return negative ? -val : val;
18992 }
18993 }
18994 if (!ISDIGIT (*input_line_pointer))
18995 {
18996 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18997 *input_line_pointer, *input_line_pointer);
18998 as_warn (_("invalid number"));
18999 return -1;
19000 }
19001 while (ISDIGIT (*input_line_pointer))
19002 {
19003 val *= 10;
19004 val += *input_line_pointer++ - '0';
19005 }
19006 return negative ? -val : val;
19007 }
19008
19009 /* The .file directive; just like the usual .file directive, but there
19010 is an initial number which is the ECOFF file index. In the non-ECOFF
19011 case .file implies DWARF-2. */
19012
19013 static void
19014 s_mips_file (int x ATTRIBUTE_UNUSED)
19015 {
19016 static int first_file_directive = 0;
19017
19018 if (ECOFF_DEBUGGING)
19019 {
19020 get_number ();
19021 s_app_file (0);
19022 }
19023 else
19024 {
19025 char *filename;
19026
19027 filename = dwarf2_directive_file (0);
19028
19029 /* Versions of GCC up to 3.1 start files with a ".file"
19030 directive even for stabs output. Make sure that this
19031 ".file" is handled. Note that you need a version of GCC
19032 after 3.1 in order to support DWARF-2 on MIPS. */
19033 if (filename != NULL && ! first_file_directive)
19034 {
19035 (void) new_logical_line (filename, -1);
19036 s_app_file_string (filename, 0);
19037 }
19038 first_file_directive = 1;
19039 }
19040 }
19041
19042 /* The .loc directive, implying DWARF-2. */
19043
19044 static void
19045 s_mips_loc (int x ATTRIBUTE_UNUSED)
19046 {
19047 if (!ECOFF_DEBUGGING)
19048 dwarf2_directive_loc (0);
19049 }
19050
19051 /* The .end directive. */
19052
19053 static void
19054 s_mips_end (int x ATTRIBUTE_UNUSED)
19055 {
19056 symbolS *p;
19057
19058 /* Following functions need their own .frame and .cprestore directives. */
19059 mips_frame_reg_valid = 0;
19060 mips_cprestore_valid = 0;
19061
19062 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19063 {
19064 p = get_symbol ();
19065 demand_empty_rest_of_line ();
19066 }
19067 else
19068 p = NULL;
19069
19070 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19071 as_warn (_(".end not in text section"));
19072
19073 if (!cur_proc_ptr)
19074 {
19075 as_warn (_(".end directive without a preceding .ent directive."));
19076 demand_empty_rest_of_line ();
19077 return;
19078 }
19079
19080 if (p != NULL)
19081 {
19082 gas_assert (S_GET_NAME (p));
19083 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19084 as_warn (_(".end symbol does not match .ent symbol."));
19085
19086 if (debug_type == DEBUG_STABS)
19087 stabs_generate_asm_endfunc (S_GET_NAME (p),
19088 S_GET_NAME (p));
19089 }
19090 else
19091 as_warn (_(".end directive missing or unknown symbol"));
19092
19093 #ifdef OBJ_ELF
19094 /* Create an expression to calculate the size of the function. */
19095 if (p && cur_proc_ptr)
19096 {
19097 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19098 expressionS *exp = xmalloc (sizeof (expressionS));
19099
19100 obj->size = exp;
19101 exp->X_op = O_subtract;
19102 exp->X_add_symbol = symbol_temp_new_now ();
19103 exp->X_op_symbol = p;
19104 exp->X_add_number = 0;
19105
19106 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19107 }
19108
19109 /* Generate a .pdr section. */
19110 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
19111 {
19112 segT saved_seg = now_seg;
19113 subsegT saved_subseg = now_subseg;
19114 expressionS exp;
19115 char *fragp;
19116
19117 #ifdef md_flush_pending_output
19118 md_flush_pending_output ();
19119 #endif
19120
19121 gas_assert (pdr_seg);
19122 subseg_set (pdr_seg, 0);
19123
19124 /* Write the symbol. */
19125 exp.X_op = O_symbol;
19126 exp.X_add_symbol = p;
19127 exp.X_add_number = 0;
19128 emit_expr (&exp, 4);
19129
19130 fragp = frag_more (7 * 4);
19131
19132 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19133 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19134 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19135 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19136 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19137 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19138 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19139
19140 subseg_set (saved_seg, saved_subseg);
19141 }
19142 #endif /* OBJ_ELF */
19143
19144 cur_proc_ptr = NULL;
19145 }
19146
19147 /* The .aent and .ent directives. */
19148
19149 static void
19150 s_mips_ent (int aent)
19151 {
19152 symbolS *symbolP;
19153
19154 symbolP = get_symbol ();
19155 if (*input_line_pointer == ',')
19156 ++input_line_pointer;
19157 SKIP_WHITESPACE ();
19158 if (ISDIGIT (*input_line_pointer)
19159 || *input_line_pointer == '-')
19160 get_number ();
19161
19162 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19163 as_warn (_(".ent or .aent not in text section."));
19164
19165 if (!aent && cur_proc_ptr)
19166 as_warn (_("missing .end"));
19167
19168 if (!aent)
19169 {
19170 /* This function needs its own .frame and .cprestore directives. */
19171 mips_frame_reg_valid = 0;
19172 mips_cprestore_valid = 0;
19173
19174 cur_proc_ptr = &cur_proc;
19175 memset (cur_proc_ptr, '\0', sizeof (procS));
19176
19177 cur_proc_ptr->func_sym = symbolP;
19178
19179 ++numprocs;
19180
19181 if (debug_type == DEBUG_STABS)
19182 stabs_generate_asm_func (S_GET_NAME (symbolP),
19183 S_GET_NAME (symbolP));
19184 }
19185
19186 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19187
19188 demand_empty_rest_of_line ();
19189 }
19190
19191 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19192 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19193 s_mips_frame is used so that we can set the PDR information correctly.
19194 We can't use the ecoff routines because they make reference to the ecoff
19195 symbol table (in the mdebug section). */
19196
19197 static void
19198 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19199 {
19200 #ifdef OBJ_ELF
19201 if (IS_ELF && !ECOFF_DEBUGGING)
19202 {
19203 long val;
19204
19205 if (cur_proc_ptr == (procS *) NULL)
19206 {
19207 as_warn (_(".frame outside of .ent"));
19208 demand_empty_rest_of_line ();
19209 return;
19210 }
19211
19212 cur_proc_ptr->frame_reg = tc_get_register (1);
19213
19214 SKIP_WHITESPACE ();
19215 if (*input_line_pointer++ != ','
19216 || get_absolute_expression_and_terminator (&val) != ',')
19217 {
19218 as_warn (_("Bad .frame directive"));
19219 --input_line_pointer;
19220 demand_empty_rest_of_line ();
19221 return;
19222 }
19223
19224 cur_proc_ptr->frame_offset = val;
19225 cur_proc_ptr->pc_reg = tc_get_register (0);
19226
19227 demand_empty_rest_of_line ();
19228 }
19229 else
19230 #endif /* OBJ_ELF */
19231 s_ignore (ignore);
19232 }
19233
19234 /* The .fmask and .mask directives. If the mdebug section is present
19235 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19236 embedded targets, s_mips_mask is used so that we can set the PDR
19237 information correctly. We can't use the ecoff routines because they
19238 make reference to the ecoff symbol table (in the mdebug section). */
19239
19240 static void
19241 s_mips_mask (int reg_type)
19242 {
19243 #ifdef OBJ_ELF
19244 if (IS_ELF && !ECOFF_DEBUGGING)
19245 {
19246 long mask, off;
19247
19248 if (cur_proc_ptr == (procS *) NULL)
19249 {
19250 as_warn (_(".mask/.fmask outside of .ent"));
19251 demand_empty_rest_of_line ();
19252 return;
19253 }
19254
19255 if (get_absolute_expression_and_terminator (&mask) != ',')
19256 {
19257 as_warn (_("Bad .mask/.fmask directive"));
19258 --input_line_pointer;
19259 demand_empty_rest_of_line ();
19260 return;
19261 }
19262
19263 off = get_absolute_expression ();
19264
19265 if (reg_type == 'F')
19266 {
19267 cur_proc_ptr->fpreg_mask = mask;
19268 cur_proc_ptr->fpreg_offset = off;
19269 }
19270 else
19271 {
19272 cur_proc_ptr->reg_mask = mask;
19273 cur_proc_ptr->reg_offset = off;
19274 }
19275
19276 demand_empty_rest_of_line ();
19277 }
19278 else
19279 #endif /* OBJ_ELF */
19280 s_ignore (reg_type);
19281 }
19282
19283 /* A table describing all the processors gas knows about. Names are
19284 matched in the order listed.
19285
19286 To ease comparison, please keep this table in the same order as
19287 gcc's mips_cpu_info_table[]. */
19288 static const struct mips_cpu_info mips_cpu_info_table[] =
19289 {
19290 /* Entries for generic ISAs */
19291 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
19292 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
19293 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
19294 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
19295 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
19296 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
19297 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
19298 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
19299 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
19300
19301 /* MIPS I */
19302 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
19303 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
19304 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
19305
19306 /* MIPS II */
19307 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
19308
19309 /* MIPS III */
19310 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
19311 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
19312 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
19313 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
19314 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
19315 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
19316 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
19317 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
19318 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
19319 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
19320 { "orion", 0, ISA_MIPS3, CPU_R4600 },
19321 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
19322 { "r5900", 0, ISA_MIPS3, CPU_R5900 },
19323 /* ST Microelectronics Loongson 2E and 2F cores */
19324 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
19325 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
19326
19327 /* MIPS IV */
19328 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
19329 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
19330 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
19331 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
19332 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
19333 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
19334 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
19335 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
19336 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
19337 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
19338 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
19339 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
19340 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
19341 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
19342 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
19343
19344 /* MIPS 32 */
19345 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
19346 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
19347 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
19348 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19349
19350 /* MIPS 32 Release 2 */
19351 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19353 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19354 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19355 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19356 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19357 { "m14k", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19358 { "m14kc", MIPS_CPU_ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19359 { "m14ke", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19360 ISA_MIPS32R2, CPU_MIPS32R2 },
19361 { "m14kec", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2 | MIPS_CPU_ASE_MCU,
19362 ISA_MIPS32R2, CPU_MIPS32R2 },
19363 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19364 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19365 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19366 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19367 /* Deprecated forms of the above. */
19368 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19369 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19370 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19371 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19372 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19373 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19374 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19375 /* Deprecated forms of the above. */
19376 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19377 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19378 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19379 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19380 ISA_MIPS32R2, CPU_MIPS32R2 },
19381 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19382 ISA_MIPS32R2, CPU_MIPS32R2 },
19383 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19384 ISA_MIPS32R2, CPU_MIPS32R2 },
19385 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19386 ISA_MIPS32R2, CPU_MIPS32R2 },
19387 /* Deprecated forms of the above. */
19388 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19389 ISA_MIPS32R2, CPU_MIPS32R2 },
19390 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19391 ISA_MIPS32R2, CPU_MIPS32R2 },
19392 /* 34Kn is a 34kc without DSP. */
19393 { "34kn", MIPS_CPU_ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19394 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19395 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19396 ISA_MIPS32R2, CPU_MIPS32R2 },
19397 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19398 ISA_MIPS32R2, CPU_MIPS32R2 },
19399 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19400 ISA_MIPS32R2, CPU_MIPS32R2 },
19401 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19402 ISA_MIPS32R2, CPU_MIPS32R2 },
19403 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19404 ISA_MIPS32R2, CPU_MIPS32R2 },
19405 /* Deprecated forms of the above. */
19406 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19407 ISA_MIPS32R2, CPU_MIPS32R2 },
19408 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
19409 ISA_MIPS32R2, CPU_MIPS32R2 },
19410 /* 1004K cores are multiprocessor versions of the 34K. */
19411 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19412 ISA_MIPS32R2, CPU_MIPS32R2 },
19413 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19414 ISA_MIPS32R2, CPU_MIPS32R2 },
19415 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19416 ISA_MIPS32R2, CPU_MIPS32R2 },
19417 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
19418 ISA_MIPS32R2, CPU_MIPS32R2 },
19419
19420 /* MIPS 64 */
19421 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
19422 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
19423 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19424 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19425
19426 /* Broadcom SB-1 CPU core */
19427 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19428 ISA_MIPS64, CPU_SB1 },
19429 /* Broadcom SB-1A CPU core */
19430 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
19431 ISA_MIPS64, CPU_SB1 },
19432
19433 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
19434
19435 /* MIPS 64 Release 2 */
19436
19437 /* Cavium Networks Octeon CPU core */
19438 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
19439 { "octeon+", 0, ISA_MIPS64R2, CPU_OCTEONP },
19440 { "octeon2", 0, ISA_MIPS64R2, CPU_OCTEON2 },
19441
19442 /* RMI Xlr */
19443 { "xlr", 0, ISA_MIPS64, CPU_XLR },
19444
19445 /* Broadcom XLP.
19446 XLP is mostly like XLR, with the prominent exception that it is
19447 MIPS64R2 rather than MIPS64. */
19448 { "xlp", 0, ISA_MIPS64R2, CPU_XLR },
19449
19450 /* End marker */
19451 { NULL, 0, 0, 0 }
19452 };
19453
19454
19455 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19456 with a final "000" replaced by "k". Ignore case.
19457
19458 Note: this function is shared between GCC and GAS. */
19459
19460 static bfd_boolean
19461 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19462 {
19463 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19464 given++, canonical++;
19465
19466 return ((*given == 0 && *canonical == 0)
19467 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19468 }
19469
19470
19471 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19472 CPU name. We've traditionally allowed a lot of variation here.
19473
19474 Note: this function is shared between GCC and GAS. */
19475
19476 static bfd_boolean
19477 mips_matching_cpu_name_p (const char *canonical, const char *given)
19478 {
19479 /* First see if the name matches exactly, or with a final "000"
19480 turned into "k". */
19481 if (mips_strict_matching_cpu_name_p (canonical, given))
19482 return TRUE;
19483
19484 /* If not, try comparing based on numerical designation alone.
19485 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19486 if (TOLOWER (*given) == 'r')
19487 given++;
19488 if (!ISDIGIT (*given))
19489 return FALSE;
19490
19491 /* Skip over some well-known prefixes in the canonical name,
19492 hoping to find a number there too. */
19493 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19494 canonical += 2;
19495 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19496 canonical += 2;
19497 else if (TOLOWER (canonical[0]) == 'r')
19498 canonical += 1;
19499
19500 return mips_strict_matching_cpu_name_p (canonical, given);
19501 }
19502
19503
19504 /* Parse an option that takes the name of a processor as its argument.
19505 OPTION is the name of the option and CPU_STRING is the argument.
19506 Return the corresponding processor enumeration if the CPU_STRING is
19507 recognized, otherwise report an error and return null.
19508
19509 A similar function exists in GCC. */
19510
19511 static const struct mips_cpu_info *
19512 mips_parse_cpu (const char *option, const char *cpu_string)
19513 {
19514 const struct mips_cpu_info *p;
19515
19516 /* 'from-abi' selects the most compatible architecture for the given
19517 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19518 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19519 version. Look first at the -mgp options, if given, otherwise base
19520 the choice on MIPS_DEFAULT_64BIT.
19521
19522 Treat NO_ABI like the EABIs. One reason to do this is that the
19523 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19524 architecture. This code picks MIPS I for 'mips' and MIPS III for
19525 'mips64', just as we did in the days before 'from-abi'. */
19526 if (strcasecmp (cpu_string, "from-abi") == 0)
19527 {
19528 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19529 return mips_cpu_info_from_isa (ISA_MIPS1);
19530
19531 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19532 return mips_cpu_info_from_isa (ISA_MIPS3);
19533
19534 if (file_mips_gp32 >= 0)
19535 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
19536
19537 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19538 ? ISA_MIPS3
19539 : ISA_MIPS1);
19540 }
19541
19542 /* 'default' has traditionally been a no-op. Probably not very useful. */
19543 if (strcasecmp (cpu_string, "default") == 0)
19544 return 0;
19545
19546 for (p = mips_cpu_info_table; p->name != 0; p++)
19547 if (mips_matching_cpu_name_p (p->name, cpu_string))
19548 return p;
19549
19550 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
19551 return 0;
19552 }
19553
19554 /* Return the canonical processor information for ISA (a member of the
19555 ISA_MIPS* enumeration). */
19556
19557 static const struct mips_cpu_info *
19558 mips_cpu_info_from_isa (int isa)
19559 {
19560 int i;
19561
19562 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19563 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19564 && isa == mips_cpu_info_table[i].isa)
19565 return (&mips_cpu_info_table[i]);
19566
19567 return NULL;
19568 }
19569
19570 static const struct mips_cpu_info *
19571 mips_cpu_info_from_arch (int arch)
19572 {
19573 int i;
19574
19575 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19576 if (arch == mips_cpu_info_table[i].cpu)
19577 return (&mips_cpu_info_table[i]);
19578
19579 return NULL;
19580 }
19581 \f
19582 static void
19583 show (FILE *stream, const char *string, int *col_p, int *first_p)
19584 {
19585 if (*first_p)
19586 {
19587 fprintf (stream, "%24s", "");
19588 *col_p = 24;
19589 }
19590 else
19591 {
19592 fprintf (stream, ", ");
19593 *col_p += 2;
19594 }
19595
19596 if (*col_p + strlen (string) > 72)
19597 {
19598 fprintf (stream, "\n%24s", "");
19599 *col_p = 24;
19600 }
19601
19602 fprintf (stream, "%s", string);
19603 *col_p += strlen (string);
19604
19605 *first_p = 0;
19606 }
19607
19608 void
19609 md_show_usage (FILE *stream)
19610 {
19611 int column, first;
19612 size_t i;
19613
19614 fprintf (stream, _("\
19615 MIPS options:\n\
19616 -EB generate big endian output\n\
19617 -EL generate little endian output\n\
19618 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19619 -G NUM allow referencing objects up to NUM bytes\n\
19620 implicitly with the gp register [default 8]\n"));
19621 fprintf (stream, _("\
19622 -mips1 generate MIPS ISA I instructions\n\
19623 -mips2 generate MIPS ISA II instructions\n\
19624 -mips3 generate MIPS ISA III instructions\n\
19625 -mips4 generate MIPS ISA IV instructions\n\
19626 -mips5 generate MIPS ISA V instructions\n\
19627 -mips32 generate MIPS32 ISA instructions\n\
19628 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19629 -mips64 generate MIPS64 ISA instructions\n\
19630 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19631 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19632
19633 first = 1;
19634
19635 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19636 show (stream, mips_cpu_info_table[i].name, &column, &first);
19637 show (stream, "from-abi", &column, &first);
19638 fputc ('\n', stream);
19639
19640 fprintf (stream, _("\
19641 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19642 -no-mCPU don't generate code specific to CPU.\n\
19643 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19644
19645 first = 1;
19646
19647 show (stream, "3900", &column, &first);
19648 show (stream, "4010", &column, &first);
19649 show (stream, "4100", &column, &first);
19650 show (stream, "4650", &column, &first);
19651 fputc ('\n', stream);
19652
19653 fprintf (stream, _("\
19654 -mips16 generate mips16 instructions\n\
19655 -no-mips16 do not generate mips16 instructions\n"));
19656 fprintf (stream, _("\
19657 -mmicromips generate microMIPS instructions\n\
19658 -mno-micromips do not generate microMIPS instructions\n"));
19659 fprintf (stream, _("\
19660 -msmartmips generate smartmips instructions\n\
19661 -mno-smartmips do not generate smartmips instructions\n"));
19662 fprintf (stream, _("\
19663 -mdsp generate DSP instructions\n\
19664 -mno-dsp do not generate DSP instructions\n"));
19665 fprintf (stream, _("\
19666 -mdspr2 generate DSP R2 instructions\n\
19667 -mno-dspr2 do not generate DSP R2 instructions\n"));
19668 fprintf (stream, _("\
19669 -mmt generate MT instructions\n\
19670 -mno-mt do not generate MT instructions\n"));
19671 fprintf (stream, _("\
19672 -mmcu generate MCU instructions\n\
19673 -mno-mcu do not generate MCU instructions\n"));
19674 fprintf (stream, _("\
19675 -mvirt generate Virtualization instructions\n\
19676 -mno-virt do not generate Virtualization instructions\n"));
19677 fprintf (stream, _("\
19678 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19679 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19680 -mfix-vr4120 work around certain VR4120 errata\n\
19681 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19682 -mfix-24k insert a nop after ERET and DERET instructions\n\
19683 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19684 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19685 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19686 -msym32 assume all symbols have 32-bit values\n\
19687 -O0 remove unneeded NOPs, do not swap branches\n\
19688 -O remove unneeded NOPs and swap branches\n\
19689 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19690 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19691 fprintf (stream, _("\
19692 -mhard-float allow floating-point instructions\n\
19693 -msoft-float do not allow floating-point instructions\n\
19694 -msingle-float only allow 32-bit floating-point operations\n\
19695 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19696 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
19697 ));
19698 #ifdef OBJ_ELF
19699 fprintf (stream, _("\
19700 -KPIC, -call_shared generate SVR4 position independent code\n\
19701 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19702 -mvxworks-pic generate VxWorks position independent code\n\
19703 -non_shared do not generate code that can operate with DSOs\n\
19704 -xgot assume a 32 bit GOT\n\
19705 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19706 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19707 position dependent (non shared) code\n\
19708 -mabi=ABI create ABI conformant object file for:\n"));
19709
19710 first = 1;
19711
19712 show (stream, "32", &column, &first);
19713 show (stream, "o64", &column, &first);
19714 show (stream, "n32", &column, &first);
19715 show (stream, "64", &column, &first);
19716 show (stream, "eabi", &column, &first);
19717
19718 fputc ('\n', stream);
19719
19720 fprintf (stream, _("\
19721 -32 create o32 ABI object file (default)\n\
19722 -n32 create n32 ABI object file\n\
19723 -64 create 64 ABI object file\n"));
19724 #endif
19725 }
19726
19727 #ifdef TE_IRIX
19728 enum dwarf2_format
19729 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19730 {
19731 if (HAVE_64BIT_SYMBOLS)
19732 return dwarf2_format_64bit_irix;
19733 else
19734 return dwarf2_format_32bit;
19735 }
19736 #endif
19737
19738 int
19739 mips_dwarf2_addr_size (void)
19740 {
19741 if (HAVE_64BIT_OBJECTS)
19742 return 8;
19743 else
19744 return 4;
19745 }
19746
19747 /* Standard calling conventions leave the CFA at SP on entry. */
19748 void
19749 mips_cfi_frame_initial_instructions (void)
19750 {
19751 cfi_add_CFA_def_cfa_register (SP);
19752 }
19753
19754 int
19755 tc_mips_regname_to_dw2regnum (char *regname)
19756 {
19757 unsigned int regnum = -1;
19758 unsigned int reg;
19759
19760 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19761 regnum = reg;
19762
19763 return regnum;
19764 }
This page took 0.52388 seconds and 5 git commands to generate.