bfd/
[deliverable/binutils-gdb.git] / gas / config / tc-mn10300.c
1 /* tc-mn10300.c -- Assembler code for the Matsushita 10300
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include <stdio.h>
23 #include "as.h"
24 #include "safe-ctype.h"
25 #include "subsegs.h"
26 #include "opcode/mn10300.h"
27 #include "dwarf2dbg.h"
28 \f
29 /* Structure to hold information about predefined registers. */
30 struct reg_name
31 {
32 const char *name;
33 int value;
34 };
35
36 /* Generic assembler global variables which must be defined by all
37 targets. */
38
39 /* Characters which always start a comment. */
40 const char comment_chars[] = "#";
41
42 /* Characters which start a comment at the beginning of a line. */
43 const char line_comment_chars[] = ";#";
44
45 /* Characters which may be used to separate multiple commands on a
46 single line. */
47 const char line_separator_chars[] = ";";
48
49 /* Characters which are used to indicate an exponent in a floating
50 point number. */
51 const char EXP_CHARS[] = "eE";
52
53 /* Characters which mean that a number is a floating point constant,
54 as in 0d1.0. */
55 const char FLT_CHARS[] = "dD";
56 \f
57 const relax_typeS md_relax_table[] =
58 {
59 /* The plus values for the bCC and fBCC instructions in the table below
60 are because the branch instruction is translated into a jump
61 instruction that is now +2 or +3 bytes further on in memory, and the
62 correct size of jump instruction must be selected. */
63 /* bCC relaxing */
64 {0x7f, -0x80, 2, 1},
65 {0x7fff + 2, -0x8000 + 2, 5, 2},
66 {0x7fffffff, -0x80000000, 7, 0},
67
68 /* bCC relaxing (uncommon cases for 3byte length instructions) */
69 {0x7f, -0x80, 3, 4},
70 {0x7fff + 3, -0x8000 + 3, 6, 5},
71 {0x7fffffff, -0x80000000, 8, 0},
72
73 /* call relaxing */
74 {0x7fff, -0x8000, 5, 7},
75 {0x7fffffff, -0x80000000, 7, 0},
76
77 /* calls relaxing */
78 {0x7fff, -0x8000, 4, 9},
79 {0x7fffffff, -0x80000000, 6, 0},
80
81 /* jmp relaxing */
82 {0x7f, -0x80, 2, 11},
83 {0x7fff, -0x8000, 3, 12},
84 {0x7fffffff, -0x80000000, 5, 0},
85
86 /* fbCC relaxing */
87 {0x7f, -0x80, 3, 14},
88 {0x7fff + 3, -0x8000 + 3, 6, 15},
89 {0x7fffffff, -0x80000000, 8, 0},
90
91 };
92
93 /* Local functions. */
94 static void mn10300_insert_operand PARAMS ((unsigned long *, unsigned long *,
95 const struct mn10300_operand *,
96 offsetT, char *, unsigned,
97 unsigned));
98 static unsigned long check_operand PARAMS ((unsigned long,
99 const struct mn10300_operand *,
100 offsetT));
101 static int reg_name_search PARAMS ((const struct reg_name *, int, const char *));
102 static bfd_boolean data_register_name PARAMS ((expressionS *expressionP));
103 static bfd_boolean address_register_name PARAMS ((expressionS *expressionP));
104 static bfd_boolean other_register_name PARAMS ((expressionS *expressionP));
105 static bfd_boolean r_register_name PARAMS ((expressionS *expressionP));
106 static bfd_boolean xr_register_name PARAMS ((expressionS *expressionP));
107 static void set_arch_mach PARAMS ((int));
108
109 /* Set linkrelax here to avoid fixups in most sections. */
110 int linkrelax = 1;
111
112 static int current_machine;
113
114 /* Fixups. */
115 #define MAX_INSN_FIXUPS (5)
116 struct mn10300_fixup
117 {
118 expressionS exp;
119 int opindex;
120 bfd_reloc_code_real_type reloc;
121 };
122 struct mn10300_fixup fixups[MAX_INSN_FIXUPS];
123 static int fc;
124
125 /* We must store the value of each register operand so that we can
126 verify that certain registers do not match. */
127 int mn10300_reg_operands[MN10300_MAX_OPERANDS];
128 \f
129 const char *md_shortopts = "";
130 struct option md_longopts[] = {
131 {NULL, no_argument, NULL, 0}
132 };
133 size_t md_longopts_size = sizeof (md_longopts);
134
135 /* The target specific pseudo-ops which we support. */
136 const pseudo_typeS md_pseudo_table[] =
137 {
138 { "am30", set_arch_mach, AM30 },
139 { "am33", set_arch_mach, AM33 },
140 { "am33_2", (void (*) PARAMS ((int))) set_arch_mach, AM33_2 },
141 { "mn10300", set_arch_mach, MN103 },
142 {NULL, 0, 0}
143 };
144
145 #define HAVE_AM33_2 (current_machine == AM33_2)
146 #define HAVE_AM33 (current_machine == AM33 || HAVE_AM33_2)
147 #define HAVE_AM30 (current_machine == AM30)
148
149 /* Opcode hash table. */
150 static struct hash_control *mn10300_hash;
151
152 /* This table is sorted. Suitable for searching by a binary search. */
153 static const struct reg_name data_registers[] =
154 {
155 { "d0", 0 },
156 { "d1", 1 },
157 { "d2", 2 },
158 { "d3", 3 },
159 };
160 #define DATA_REG_NAME_CNT \
161 (sizeof (data_registers) / sizeof (struct reg_name))
162
163 static const struct reg_name address_registers[] =
164 {
165 { "a0", 0 },
166 { "a1", 1 },
167 { "a2", 2 },
168 { "a3", 3 },
169 };
170
171 #define ADDRESS_REG_NAME_CNT \
172 (sizeof (address_registers) / sizeof (struct reg_name))
173
174 static const struct reg_name r_registers[] =
175 {
176 { "a0", 8 },
177 { "a1", 9 },
178 { "a2", 10 },
179 { "a3", 11 },
180 { "d0", 12 },
181 { "d1", 13 },
182 { "d2", 14 },
183 { "d3", 15 },
184 { "e0", 0 },
185 { "e1", 1 },
186 { "e10", 10 },
187 { "e11", 11 },
188 { "e12", 12 },
189 { "e13", 13 },
190 { "e14", 14 },
191 { "e15", 15 },
192 { "e2", 2 },
193 { "e3", 3 },
194 { "e4", 4 },
195 { "e5", 5 },
196 { "e6", 6 },
197 { "e7", 7 },
198 { "e8", 8 },
199 { "e9", 9 },
200 { "r0", 0 },
201 { "r1", 1 },
202 { "r10", 10 },
203 { "r11", 11 },
204 { "r12", 12 },
205 { "r13", 13 },
206 { "r14", 14 },
207 { "r15", 15 },
208 { "r2", 2 },
209 { "r3", 3 },
210 { "r4", 4 },
211 { "r5", 5 },
212 { "r6", 6 },
213 { "r7", 7 },
214 { "r8", 8 },
215 { "r9", 9 },
216 };
217
218 #define R_REG_NAME_CNT \
219 (sizeof (r_registers) / sizeof (struct reg_name))
220
221 static const struct reg_name xr_registers[] =
222 {
223 { "mcrh", 2 },
224 { "mcrl", 3 },
225 { "mcvf", 4 },
226 { "mdrq", 1 },
227 { "sp", 0 },
228 { "xr0", 0 },
229 { "xr1", 1 },
230 { "xr10", 10 },
231 { "xr11", 11 },
232 { "xr12", 12 },
233 { "xr13", 13 },
234 { "xr14", 14 },
235 { "xr15", 15 },
236 { "xr2", 2 },
237 { "xr3", 3 },
238 { "xr4", 4 },
239 { "xr5", 5 },
240 { "xr6", 6 },
241 { "xr7", 7 },
242 { "xr8", 8 },
243 { "xr9", 9 },
244 };
245
246 #define XR_REG_NAME_CNT \
247 (sizeof (xr_registers) / sizeof (struct reg_name))
248
249 /* We abuse the `value' field, that would be otherwise unused, to
250 encode the architecture on which (access to) the register was
251 introduced. FIXME: we should probably warn when we encounter a
252 register name when assembling for an architecture that doesn't
253 support it, before parsing it as a symbol name. */
254 static const struct reg_name other_registers[] =
255 {
256 { "epsw", AM33 },
257 { "mdr", 0 },
258 { "pc", AM33 },
259 { "psw", 0 },
260 { "sp", 0 },
261 };
262
263 #define OTHER_REG_NAME_CNT \
264 (sizeof (other_registers) / sizeof (struct reg_name))
265
266 static const struct reg_name float_registers[] =
267 {
268 { "fs0", 0 },
269 { "fs1", 1 },
270 { "fs10", 10 },
271 { "fs11", 11 },
272 { "fs12", 12 },
273 { "fs13", 13 },
274 { "fs14", 14 },
275 { "fs15", 15 },
276 { "fs16", 16 },
277 { "fs17", 17 },
278 { "fs18", 18 },
279 { "fs19", 19 },
280 { "fs2", 2 },
281 { "fs20", 20 },
282 { "fs21", 21 },
283 { "fs22", 22 },
284 { "fs23", 23 },
285 { "fs24", 24 },
286 { "fs25", 25 },
287 { "fs26", 26 },
288 { "fs27", 27 },
289 { "fs28", 28 },
290 { "fs29", 29 },
291 { "fs3", 3 },
292 { "fs30", 30 },
293 { "fs31", 31 },
294 { "fs4", 4 },
295 { "fs5", 5 },
296 { "fs6", 6 },
297 { "fs7", 7 },
298 { "fs8", 8 },
299 { "fs9", 9 },
300 };
301
302 #define FLOAT_REG_NAME_CNT \
303 (sizeof (float_registers) / sizeof (struct reg_name))
304
305 static const struct reg_name double_registers[] =
306 {
307 { "fd0", 0 },
308 { "fd10", 10 },
309 { "fd12", 12 },
310 { "fd14", 14 },
311 { "fd16", 16 },
312 { "fd18", 18 },
313 { "fd2", 2 },
314 { "fd20", 20 },
315 { "fd22", 22 },
316 { "fd24", 24 },
317 { "fd26", 26 },
318 { "fd28", 28 },
319 { "fd30", 30 },
320 { "fd4", 4 },
321 { "fd6", 6 },
322 { "fd8", 8 },
323 };
324
325 #define DOUBLE_REG_NAME_CNT \
326 (sizeof (double_registers) / sizeof (struct reg_name))
327
328
329 /* reg_name_search does a binary search of the given register table
330 to see if "name" is a valid regiter name. Returns the register
331 number from the array on success, or -1 on failure. */
332
333 static int
334 reg_name_search (regs, regcount, name)
335 const struct reg_name *regs;
336 int regcount;
337 const char *name;
338 {
339 int middle, low, high;
340 int cmp;
341
342 low = 0;
343 high = regcount - 1;
344
345 do
346 {
347 middle = (low + high) / 2;
348 cmp = strcasecmp (name, regs[middle].name);
349 if (cmp < 0)
350 high = middle - 1;
351 else if (cmp > 0)
352 low = middle + 1;
353 else
354 return regs[middle].value;
355 }
356 while (low <= high);
357 return -1;
358 }
359
360 /* Summary of register_name().
361 *
362 * in: Input_line_pointer points to 1st char of operand.
363 *
364 * out: An expressionS.
365 * The operand may have been a register: in this case, X_op == O_register,
366 * X_add_number is set to the register number, and truth is returned.
367 * Input_line_pointer->(next non-blank) char after operand, or is in
368 * its original state.
369 */
370
371 static bfd_boolean
372 r_register_name (expressionP)
373 expressionS *expressionP;
374 {
375 int reg_number;
376 char *name;
377 char *start;
378 char c;
379
380 /* Find the spelling of the operand. */
381 start = name = input_line_pointer;
382
383 c = get_symbol_end ();
384 reg_number = reg_name_search (r_registers, R_REG_NAME_CNT, name);
385
386 /* Put back the delimiting char. */
387 *input_line_pointer = c;
388
389 /* Look to see if it's in the register table. */
390 if (reg_number >= 0)
391 {
392 expressionP->X_op = O_register;
393 expressionP->X_add_number = reg_number;
394
395 /* Make the rest nice. */
396 expressionP->X_add_symbol = NULL;
397 expressionP->X_op_symbol = NULL;
398
399 return TRUE;
400 }
401
402 /* Reset the line as if we had not done anything. */
403 input_line_pointer = start;
404 return FALSE;
405 }
406
407 /* Summary of register_name().
408 *
409 * in: Input_line_pointer points to 1st char of operand.
410 *
411 * out: An expressionS.
412 * The operand may have been a register: in this case, X_op == O_register,
413 * X_add_number is set to the register number, and truth is returned.
414 * Input_line_pointer->(next non-blank) char after operand, or is in
415 * its original state.
416 */
417
418 static bfd_boolean
419 xr_register_name (expressionP)
420 expressionS *expressionP;
421 {
422 int reg_number;
423 char *name;
424 char *start;
425 char c;
426
427 /* Find the spelling of the operand. */
428 start = name = input_line_pointer;
429
430 c = get_symbol_end ();
431 reg_number = reg_name_search (xr_registers, XR_REG_NAME_CNT, name);
432
433 /* Put back the delimiting char. */
434 *input_line_pointer = c;
435
436 /* Look to see if it's in the register table. */
437 if (reg_number >= 0)
438 {
439 expressionP->X_op = O_register;
440 expressionP->X_add_number = reg_number;
441
442 /* Make the rest nice. */
443 expressionP->X_add_symbol = NULL;
444 expressionP->X_op_symbol = NULL;
445
446 return TRUE;
447 }
448
449 /* Reset the line as if we had not done anything. */
450 input_line_pointer = start;
451 return FALSE;
452 }
453
454 /* Summary of register_name().
455 *
456 * in: Input_line_pointer points to 1st char of operand.
457 *
458 * out: An expressionS.
459 * The operand may have been a register: in this case, X_op == O_register,
460 * X_add_number is set to the register number, and truth is returned.
461 * Input_line_pointer->(next non-blank) char after operand, or is in
462 * its original state.
463 */
464
465 static bfd_boolean
466 data_register_name (expressionP)
467 expressionS *expressionP;
468 {
469 int reg_number;
470 char *name;
471 char *start;
472 char c;
473
474 /* Find the spelling of the operand. */
475 start = name = input_line_pointer;
476
477 c = get_symbol_end ();
478 reg_number = reg_name_search (data_registers, DATA_REG_NAME_CNT, name);
479
480 /* Put back the delimiting char. */
481 *input_line_pointer = c;
482
483 /* Look to see if it's in the register table. */
484 if (reg_number >= 0)
485 {
486 expressionP->X_op = O_register;
487 expressionP->X_add_number = reg_number;
488
489 /* Make the rest nice. */
490 expressionP->X_add_symbol = NULL;
491 expressionP->X_op_symbol = NULL;
492
493 return TRUE;
494 }
495
496 /* Reset the line as if we had not done anything. */
497 input_line_pointer = start;
498 return FALSE;
499 }
500
501 /* Summary of register_name().
502 *
503 * in: Input_line_pointer points to 1st char of operand.
504 *
505 * out: An expressionS.
506 * The operand may have been a register: in this case, X_op == O_register,
507 * X_add_number is set to the register number, and truth is returned.
508 * Input_line_pointer->(next non-blank) char after operand, or is in
509 * its original state.
510 */
511
512 static bfd_boolean
513 address_register_name (expressionP)
514 expressionS *expressionP;
515 {
516 int reg_number;
517 char *name;
518 char *start;
519 char c;
520
521 /* Find the spelling of the operand. */
522 start = name = input_line_pointer;
523
524 c = get_symbol_end ();
525 reg_number = reg_name_search (address_registers, ADDRESS_REG_NAME_CNT, name);
526
527 /* Put back the delimiting char. */
528 *input_line_pointer = c;
529
530 /* Look to see if it's in the register table. */
531 if (reg_number >= 0)
532 {
533 expressionP->X_op = O_register;
534 expressionP->X_add_number = reg_number;
535
536 /* Make the rest nice. */
537 expressionP->X_add_symbol = NULL;
538 expressionP->X_op_symbol = NULL;
539
540 return TRUE;
541 }
542
543 /* Reset the line as if we had not done anything. */
544 input_line_pointer = start;
545 return FALSE;
546 }
547
548 /* Summary of register_name().
549 *
550 * in: Input_line_pointer points to 1st char of operand.
551 *
552 * out: An expressionS.
553 * The operand may have been a register: in this case, X_op == O_register,
554 * X_add_number is set to the register number, and truth is returned.
555 * Input_line_pointer->(next non-blank) char after operand, or is in
556 * its original state.
557 */
558
559 static bfd_boolean
560 other_register_name (expressionP)
561 expressionS *expressionP;
562 {
563 int reg_number;
564 char *name;
565 char *start;
566 char c;
567
568 /* Find the spelling of the operand. */
569 start = name = input_line_pointer;
570
571 c = get_symbol_end ();
572 reg_number = reg_name_search (other_registers, OTHER_REG_NAME_CNT, name);
573
574 /* Put back the delimiting char. */
575 *input_line_pointer = c;
576
577 /* Look to see if it's in the register table. */
578 if (reg_number == 0
579 || (reg_number == AM33 && HAVE_AM33))
580 {
581 expressionP->X_op = O_register;
582 expressionP->X_add_number = 0;
583
584 /* Make the rest nice. */
585 expressionP->X_add_symbol = NULL;
586 expressionP->X_op_symbol = NULL;
587
588 return TRUE;
589 }
590
591 /* Reset the line as if we had not done anything. */
592 input_line_pointer = start;
593 return FALSE;
594 }
595
596 static bfd_boolean double_register_name PARAMS ((expressionS *));
597 static bfd_boolean float_register_name PARAMS ((expressionS *));
598
599 /* Summary of float_register_name:
600
601 in: Input_line_pointer points to 1st char of operand.
602
603 out: A expressionS.
604 The operand may have been a register: in this case, X_op == O_register,
605 X_add_number is set to the register number, and truth is returned.
606 Input_line_pointer->(next non-blank) char after operand, or is in
607 its original state. */
608
609 static bfd_boolean
610 float_register_name (expressionP)
611 expressionS *expressionP;
612 {
613 int reg_number;
614 char *name;
615 char *start;
616 char c;
617
618 /* Find the spelling of the operand. */
619 start = name = input_line_pointer;
620
621 c = get_symbol_end ();
622 reg_number = reg_name_search (float_registers, FLOAT_REG_NAME_CNT, name);
623
624 /* Put back the delimiting char. */
625 * input_line_pointer = c;
626
627 /* Look to see if it's in the register table. */
628 if (reg_number >= 0)
629 {
630 expressionP->X_op = O_register;
631 expressionP->X_add_number = reg_number;
632
633 /* Make the rest nice. */
634 expressionP->X_add_symbol = NULL;
635 expressionP->X_op_symbol = NULL;
636
637 return TRUE;
638 }
639
640 /* Reset the line as if we had not done anything. */
641 input_line_pointer = start;
642 return FALSE;
643 }
644
645 /* Summary of double_register_name:
646
647 in: Input_line_pointer points to 1st char of operand.
648
649 out: A expressionS.
650 The operand may have been a register: in this case, X_op == O_register,
651 X_add_number is set to the register number, and truth is returned.
652 Input_line_pointer->(next non-blank) char after operand, or is in
653 its original state. */
654
655 static bfd_boolean
656 double_register_name (expressionP)
657 expressionS *expressionP;
658 {
659 int reg_number;
660 char *name;
661 char *start;
662 char c;
663
664 /* Find the spelling of the operand. */
665 start = name = input_line_pointer;
666
667 c = get_symbol_end ();
668 reg_number = reg_name_search (double_registers, DOUBLE_REG_NAME_CNT, name);
669
670 /* Put back the delimiting char. */
671 * input_line_pointer = c;
672
673 /* Look to see if it's in the register table. */
674 if (reg_number >= 0)
675 {
676 expressionP->X_op = O_register;
677 expressionP->X_add_number = reg_number;
678
679 /* Make the rest nice. */
680 expressionP->X_add_symbol = NULL;
681 expressionP->X_op_symbol = NULL;
682
683 return TRUE;
684 }
685
686 /* Reset the line as if we had not done anything. */
687 input_line_pointer = start;
688 return FALSE;
689 }
690
691 void
692 md_show_usage (stream)
693 FILE *stream;
694 {
695 fprintf (stream, _("MN10300 options:\n\
696 none yet\n"));
697 }
698
699 int
700 md_parse_option (c, arg)
701 int c ATTRIBUTE_UNUSED;
702 char *arg ATTRIBUTE_UNUSED;
703 {
704 return 0;
705 }
706
707 symbolS *
708 md_undefined_symbol (name)
709 char *name ATTRIBUTE_UNUSED;
710 {
711 return 0;
712 }
713
714 char *
715 md_atof (type, litp, sizep)
716 int type;
717 char *litp;
718 int *sizep;
719 {
720 int prec;
721 LITTLENUM_TYPE words[4];
722 char *t;
723 int i;
724
725 switch (type)
726 {
727 case 'f':
728 prec = 2;
729 break;
730
731 case 'd':
732 prec = 4;
733 break;
734
735 default:
736 *sizep = 0;
737 return "bad call to md_atof";
738 }
739
740 t = atof_ieee (input_line_pointer, type, words);
741 if (t)
742 input_line_pointer = t;
743
744 *sizep = prec * 2;
745
746 for (i = prec - 1; i >= 0; i--)
747 {
748 md_number_to_chars (litp, (valueT) words[i], 2);
749 litp += 2;
750 }
751
752 return NULL;
753 }
754
755 void
756 md_convert_frag (abfd, sec, fragP)
757 bfd *abfd ATTRIBUTE_UNUSED;
758 asection *sec;
759 fragS *fragP;
760 {
761 static unsigned long label_count = 0;
762 char buf[40];
763
764 subseg_change (sec, 0);
765 if (fragP->fr_subtype == 0)
766 {
767 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
768 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
769 fragP->fr_var = 0;
770 fragP->fr_fix += 2;
771 }
772 else if (fragP->fr_subtype == 1)
773 {
774 /* Reverse the condition of the first branch. */
775 int offset = fragP->fr_fix;
776 int opcode = fragP->fr_literal[offset] & 0xff;
777
778 switch (opcode)
779 {
780 case 0xc8:
781 opcode = 0xc9;
782 break;
783 case 0xc9:
784 opcode = 0xc8;
785 break;
786 case 0xc0:
787 opcode = 0xc2;
788 break;
789 case 0xc2:
790 opcode = 0xc0;
791 break;
792 case 0xc3:
793 opcode = 0xc1;
794 break;
795 case 0xc1:
796 opcode = 0xc3;
797 break;
798 case 0xc4:
799 opcode = 0xc6;
800 break;
801 case 0xc6:
802 opcode = 0xc4;
803 break;
804 case 0xc7:
805 opcode = 0xc5;
806 break;
807 case 0xc5:
808 opcode = 0xc7;
809 break;
810 default:
811 abort ();
812 }
813 fragP->fr_literal[offset] = opcode;
814
815 /* Create a fixup for the reversed conditional branch. */
816 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
817 fix_new (fragP, fragP->fr_fix + 1, 1,
818 symbol_new (buf, sec, 0, fragP->fr_next),
819 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
820
821 /* Now create the unconditional branch + fixup to the
822 final target. */
823 fragP->fr_literal[offset + 2] = 0xcc;
824 fix_new (fragP, fragP->fr_fix + 3, 2, fragP->fr_symbol,
825 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
826 fragP->fr_var = 0;
827 fragP->fr_fix += 5;
828 }
829 else if (fragP->fr_subtype == 2)
830 {
831 /* Reverse the condition of the first branch. */
832 int offset = fragP->fr_fix;
833 int opcode = fragP->fr_literal[offset] & 0xff;
834
835 switch (opcode)
836 {
837 case 0xc8:
838 opcode = 0xc9;
839 break;
840 case 0xc9:
841 opcode = 0xc8;
842 break;
843 case 0xc0:
844 opcode = 0xc2;
845 break;
846 case 0xc2:
847 opcode = 0xc0;
848 break;
849 case 0xc3:
850 opcode = 0xc1;
851 break;
852 case 0xc1:
853 opcode = 0xc3;
854 break;
855 case 0xc4:
856 opcode = 0xc6;
857 break;
858 case 0xc6:
859 opcode = 0xc4;
860 break;
861 case 0xc7:
862 opcode = 0xc5;
863 break;
864 case 0xc5:
865 opcode = 0xc7;
866 break;
867 default:
868 abort ();
869 }
870 fragP->fr_literal[offset] = opcode;
871
872 /* Create a fixup for the reversed conditional branch. */
873 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
874 fix_new (fragP, fragP->fr_fix + 1, 1,
875 symbol_new (buf, sec, 0, fragP->fr_next),
876 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
877
878 /* Now create the unconditional branch + fixup to the
879 final target. */
880 fragP->fr_literal[offset + 2] = 0xdc;
881 fix_new (fragP, fragP->fr_fix + 3, 4, fragP->fr_symbol,
882 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
883 fragP->fr_var = 0;
884 fragP->fr_fix += 7;
885 }
886 else if (fragP->fr_subtype == 3)
887 {
888 fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
889 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
890 fragP->fr_var = 0;
891 fragP->fr_fix += 3;
892 }
893 else if (fragP->fr_subtype == 4)
894 {
895 /* Reverse the condition of the first branch. */
896 int offset = fragP->fr_fix;
897 int opcode = fragP->fr_literal[offset + 1] & 0xff;
898
899 switch (opcode)
900 {
901 case 0xe8:
902 opcode = 0xe9;
903 break;
904 case 0xe9:
905 opcode = 0xe8;
906 break;
907 case 0xea:
908 opcode = 0xeb;
909 break;
910 case 0xeb:
911 opcode = 0xea;
912 break;
913 default:
914 abort ();
915 }
916 fragP->fr_literal[offset + 1] = opcode;
917
918 /* Create a fixup for the reversed conditional branch. */
919 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
920 fix_new (fragP, fragP->fr_fix + 2, 1,
921 symbol_new (buf, sec, 0, fragP->fr_next),
922 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
923
924 /* Now create the unconditional branch + fixup to the
925 final target. */
926 fragP->fr_literal[offset + 3] = 0xcc;
927 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
928 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
929 fragP->fr_var = 0;
930 fragP->fr_fix += 6;
931 }
932 else if (fragP->fr_subtype == 5)
933 {
934 /* Reverse the condition of the first branch. */
935 int offset = fragP->fr_fix;
936 int opcode = fragP->fr_literal[offset + 1] & 0xff;
937
938 switch (opcode)
939 {
940 case 0xe8:
941 opcode = 0xe9;
942 break;
943 case 0xea:
944 opcode = 0xeb;
945 break;
946 case 0xeb:
947 opcode = 0xea;
948 break;
949 default:
950 abort ();
951 }
952 fragP->fr_literal[offset + 1] = opcode;
953
954 /* Create a fixup for the reversed conditional branch. */
955 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
956 fix_new (fragP, fragP->fr_fix + 2, 1,
957 symbol_new (buf, sec, 0, fragP->fr_next),
958 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
959
960 /* Now create the unconditional branch + fixup to the
961 final target. */
962 fragP->fr_literal[offset + 3] = 0xdc;
963 fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
964 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
965 fragP->fr_var = 0;
966 fragP->fr_fix += 8;
967 }
968 else if (fragP->fr_subtype == 6)
969 {
970 int offset = fragP->fr_fix;
971 fragP->fr_literal[offset] = 0xcd;
972 fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
973 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
974 fragP->fr_var = 0;
975 fragP->fr_fix += 5;
976 }
977 else if (fragP->fr_subtype == 7)
978 {
979 int offset = fragP->fr_fix;
980 fragP->fr_literal[offset] = 0xdd;
981 fragP->fr_literal[offset + 5] = fragP->fr_literal[offset + 3];
982 fragP->fr_literal[offset + 6] = fragP->fr_literal[offset + 4];
983
984 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
985 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
986 fragP->fr_var = 0;
987 fragP->fr_fix += 7;
988 }
989 else if (fragP->fr_subtype == 8)
990 {
991 int offset = fragP->fr_fix;
992 fragP->fr_literal[offset] = 0xfa;
993 fragP->fr_literal[offset + 1] = 0xff;
994 fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
995 fragP->fr_offset + 2, 1, BFD_RELOC_16_PCREL);
996 fragP->fr_var = 0;
997 fragP->fr_fix += 4;
998 }
999 else if (fragP->fr_subtype == 9)
1000 {
1001 int offset = fragP->fr_fix;
1002 fragP->fr_literal[offset] = 0xfc;
1003 fragP->fr_literal[offset + 1] = 0xff;
1004
1005 fix_new (fragP, fragP->fr_fix + 2, 4, fragP->fr_symbol,
1006 fragP->fr_offset + 2, 1, BFD_RELOC_32_PCREL);
1007 fragP->fr_var = 0;
1008 fragP->fr_fix += 6;
1009 }
1010 else if (fragP->fr_subtype == 10)
1011 {
1012 fragP->fr_literal[fragP->fr_fix] = 0xca;
1013 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
1014 fragP->fr_offset + 1, 1, BFD_RELOC_8_PCREL);
1015 fragP->fr_var = 0;
1016 fragP->fr_fix += 2;
1017 }
1018 else if (fragP->fr_subtype == 11)
1019 {
1020 int offset = fragP->fr_fix;
1021 fragP->fr_literal[offset] = 0xcc;
1022
1023 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
1024 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
1025 fragP->fr_var = 0;
1026 fragP->fr_fix += 3;
1027 }
1028 else if (fragP->fr_subtype == 12)
1029 {
1030 int offset = fragP->fr_fix;
1031 fragP->fr_literal[offset] = 0xdc;
1032
1033 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
1034 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
1035 fragP->fr_var = 0;
1036 fragP->fr_fix += 5;
1037 }
1038 else if (fragP->fr_subtype == 13)
1039 {
1040 fix_new (fragP, fragP->fr_fix + 2, 1, fragP->fr_symbol,
1041 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
1042 fragP->fr_var = 0;
1043 fragP->fr_fix += 3;
1044 }
1045 else if (fragP->fr_subtype == 14)
1046 {
1047 /* Reverse the condition of the first branch. */
1048 int offset = fragP->fr_fix;
1049 int opcode = fragP->fr_literal[offset + 1] & 0xff;
1050
1051 switch (opcode)
1052 {
1053 case 0xd0:
1054 opcode = 0xd1;
1055 break;
1056 case 0xd1:
1057 opcode = 0xd0;
1058 break;
1059 case 0xd2:
1060 opcode = 0xdc;
1061 break;
1062 case 0xd3:
1063 opcode = 0xdb;
1064 break;
1065 case 0xd4:
1066 opcode = 0xda;
1067 break;
1068 case 0xd5:
1069 opcode = 0xd9;
1070 break;
1071 case 0xd6:
1072 opcode = 0xd8;
1073 break;
1074 case 0xd7:
1075 opcode = 0xdd;
1076 break;
1077 case 0xd8:
1078 opcode = 0xd6;
1079 break;
1080 case 0xd9:
1081 opcode = 0xd5;
1082 break;
1083 case 0xda:
1084 opcode = 0xd4;
1085 break;
1086 case 0xdb:
1087 opcode = 0xd3;
1088 break;
1089 case 0xdc:
1090 opcode = 0xd2;
1091 break;
1092 case 0xdd:
1093 opcode = 0xd7;
1094 break;
1095 default:
1096 abort ();
1097 }
1098 fragP->fr_literal[offset + 1] = opcode;
1099
1100 /* Create a fixup for the reversed conditional branch. */
1101 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
1102 fix_new (fragP, fragP->fr_fix + 2, 1,
1103 symbol_new (buf, sec, 0, fragP->fr_next),
1104 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
1105
1106 /* Now create the unconditional branch + fixup to the
1107 final target. */
1108 fragP->fr_literal[offset + 3] = 0xcc;
1109 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
1110 fragP->fr_offset + 1, 1, BFD_RELOC_16_PCREL);
1111 fragP->fr_var = 0;
1112 fragP->fr_fix += 6;
1113 }
1114 else if (fragP->fr_subtype == 15)
1115 {
1116 /* Reverse the condition of the first branch. */
1117 int offset = fragP->fr_fix;
1118 int opcode = fragP->fr_literal[offset + 1] & 0xff;
1119
1120 switch (opcode)
1121 {
1122 case 0xd0:
1123 opcode = 0xd1;
1124 break;
1125 case 0xd1:
1126 opcode = 0xd0;
1127 break;
1128 case 0xd2:
1129 opcode = 0xdc;
1130 break;
1131 case 0xd3:
1132 opcode = 0xdb;
1133 break;
1134 case 0xd4:
1135 opcode = 0xda;
1136 break;
1137 case 0xd5:
1138 opcode = 0xd9;
1139 break;
1140 case 0xd6:
1141 opcode = 0xd8;
1142 break;
1143 case 0xd7:
1144 opcode = 0xdd;
1145 break;
1146 case 0xd8:
1147 opcode = 0xd6;
1148 break;
1149 case 0xd9:
1150 opcode = 0xd5;
1151 break;
1152 case 0xda:
1153 opcode = 0xd4;
1154 break;
1155 case 0xdb:
1156 opcode = 0xd3;
1157 break;
1158 case 0xdc:
1159 opcode = 0xd2;
1160 break;
1161 case 0xdd:
1162 opcode = 0xd7;
1163 break;
1164 default:
1165 abort ();
1166 }
1167 fragP->fr_literal[offset + 1] = opcode;
1168
1169 /* Create a fixup for the reversed conditional branch. */
1170 sprintf (buf, ".%s_%ld", FAKE_LABEL_NAME, label_count++);
1171 fix_new (fragP, fragP->fr_fix + 2, 1,
1172 symbol_new (buf, sec, 0, fragP->fr_next),
1173 fragP->fr_offset + 2, 1, BFD_RELOC_8_PCREL);
1174
1175 /* Now create the unconditional branch + fixup to the
1176 final target. */
1177 fragP->fr_literal[offset + 3] = 0xdc;
1178 fix_new (fragP, fragP->fr_fix + 4, 4, fragP->fr_symbol,
1179 fragP->fr_offset + 1, 1, BFD_RELOC_32_PCREL);
1180 fragP->fr_var = 0;
1181 fragP->fr_fix += 8;
1182 }
1183 else
1184 abort ();
1185 }
1186
1187 valueT
1188 md_section_align (seg, addr)
1189 asection *seg;
1190 valueT addr;
1191 {
1192 int align = bfd_get_section_alignment (stdoutput, seg);
1193 return ((addr + (1 << align) - 1) & (-1 << align));
1194 }
1195
1196 void
1197 md_begin ()
1198 {
1199 char *prev_name = "";
1200 register const struct mn10300_opcode *op;
1201
1202 mn10300_hash = hash_new ();
1203
1204 /* Insert unique names into hash table. The MN10300 instruction set
1205 has many identical opcode names that have different opcodes based
1206 on the operands. This hash table then provides a quick index to
1207 the first opcode with a particular name in the opcode table. */
1208
1209 op = mn10300_opcodes;
1210 while (op->name)
1211 {
1212 if (strcmp (prev_name, op->name))
1213 {
1214 prev_name = (char *) op->name;
1215 hash_insert (mn10300_hash, op->name, (char *) op);
1216 }
1217 op++;
1218 }
1219
1220 /* Set the default machine type. */
1221 #ifdef TE_LINUX
1222 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, AM33_2))
1223 as_warn (_("could not set architecture and machine"));
1224
1225 current_machine = AM33_2;
1226 #else
1227 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, MN103))
1228 as_warn (_("could not set architecture and machine"));
1229
1230 current_machine = MN103;
1231 #endif
1232 }
1233
1234 static symbolS *GOT_symbol;
1235
1236 static inline int mn10300_check_fixup PARAMS ((struct mn10300_fixup *));
1237 static inline int mn10300_PIC_related_p PARAMS ((symbolS *));
1238
1239 static inline int
1240 mn10300_PIC_related_p (sym)
1241 symbolS *sym;
1242 {
1243 expressionS *exp;
1244
1245 if (! sym)
1246 return 0;
1247
1248 if (sym == GOT_symbol)
1249 return 1;
1250
1251 exp = symbol_get_value_expression (sym);
1252
1253 return (exp->X_op == O_PIC_reloc
1254 || mn10300_PIC_related_p (exp->X_add_symbol)
1255 || mn10300_PIC_related_p (exp->X_op_symbol));
1256 }
1257
1258 static inline int
1259 mn10300_check_fixup (fixup)
1260 struct mn10300_fixup *fixup;
1261 {
1262 expressionS *exp = &fixup->exp;
1263
1264 repeat:
1265 switch (exp->X_op)
1266 {
1267 case O_add:
1268 case O_subtract: /* If we're sufficiently unlucky that the label
1269 and the expression that references it happen
1270 to end up in different frags, the subtract
1271 won't be simplified within expression(). */
1272 /* The PIC-related operand must be the first operand of a sum. */
1273 if (exp != &fixup->exp || mn10300_PIC_related_p (exp->X_op_symbol))
1274 return 1;
1275
1276 if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
1277 fixup->reloc = BFD_RELOC_32_GOT_PCREL;
1278
1279 exp = symbol_get_value_expression (exp->X_add_symbol);
1280 goto repeat;
1281
1282 case O_symbol:
1283 if (exp->X_add_symbol && exp->X_add_symbol == GOT_symbol)
1284 fixup->reloc = BFD_RELOC_32_GOT_PCREL;
1285 break;
1286
1287 case O_PIC_reloc:
1288 fixup->reloc = exp->X_md;
1289 exp->X_op = O_symbol;
1290 if (fixup->reloc == BFD_RELOC_32_PLT_PCREL
1291 && fixup->opindex >= 0
1292 && (mn10300_operands[fixup->opindex].flags
1293 & MN10300_OPERAND_RELAX))
1294 return 1;
1295 break;
1296
1297 default:
1298 return (mn10300_PIC_related_p (exp->X_add_symbol)
1299 || mn10300_PIC_related_p (exp->X_op_symbol));
1300 }
1301
1302 return 0;
1303 }
1304
1305 void
1306 mn10300_cons_fix_new (frag, off, size, exp)
1307 fragS *frag;
1308 int off, size;
1309 expressionS *exp;
1310 {
1311 struct mn10300_fixup fixup;
1312
1313 fixup.opindex = -1;
1314 fixup.exp = *exp;
1315 fixup.reloc = BFD_RELOC_UNUSED;
1316
1317 mn10300_check_fixup (&fixup);
1318
1319 if (fixup.reloc == BFD_RELOC_MN10300_GOT32)
1320 switch (size)
1321 {
1322 case 2:
1323 fixup.reloc = BFD_RELOC_MN10300_GOT16;
1324 break;
1325
1326 case 3:
1327 fixup.reloc = BFD_RELOC_MN10300_GOT24;
1328 break;
1329
1330 case 4:
1331 break;
1332
1333 default:
1334 goto error;
1335 }
1336 else if (fixup.reloc == BFD_RELOC_UNUSED)
1337 switch (size)
1338 {
1339 case 1:
1340 fixup.reloc = BFD_RELOC_8;
1341 break;
1342
1343 case 2:
1344 fixup.reloc = BFD_RELOC_16;
1345 break;
1346
1347 case 3:
1348 fixup.reloc = BFD_RELOC_24;
1349 break;
1350
1351 case 4:
1352 fixup.reloc = BFD_RELOC_32;
1353 break;
1354
1355 default:
1356 goto error;
1357 }
1358 else if (size != 4)
1359 {
1360 error:
1361 as_bad (_("unsupported BFD relocation size %u"), size);
1362 fixup.reloc = BFD_RELOC_UNUSED;
1363 }
1364
1365 fix_new_exp (frag, off, size, &fixup.exp, 0, fixup.reloc);
1366 }
1367
1368 void
1369 md_assemble (str)
1370 char *str;
1371 {
1372 char *s;
1373 struct mn10300_opcode *opcode;
1374 struct mn10300_opcode *next_opcode;
1375 const unsigned char *opindex_ptr;
1376 int next_opindex, relaxable;
1377 unsigned long insn, extension, size = 0;
1378 char *f;
1379 int i;
1380 int match;
1381
1382 /* Get the opcode. */
1383 for (s = str; *s != '\0' && !ISSPACE (*s); s++)
1384 ;
1385 if (*s != '\0')
1386 *s++ = '\0';
1387
1388 /* Find the first opcode with the proper name. */
1389 opcode = (struct mn10300_opcode *) hash_find (mn10300_hash, str);
1390 if (opcode == NULL)
1391 {
1392 as_bad (_("Unrecognized opcode: `%s'"), str);
1393 return;
1394 }
1395
1396 str = s;
1397 while (ISSPACE (*str))
1398 ++str;
1399
1400 input_line_pointer = str;
1401
1402 for (;;)
1403 {
1404 const char *errmsg;
1405 int op_idx;
1406 char *hold;
1407 int extra_shift = 0;
1408
1409 errmsg = _("Invalid opcode/operands");
1410
1411 /* Reset the array of register operands. */
1412 memset (mn10300_reg_operands, -1, sizeof (mn10300_reg_operands));
1413
1414 relaxable = 0;
1415 fc = 0;
1416 match = 0;
1417 next_opindex = 0;
1418 insn = opcode->opcode;
1419 extension = 0;
1420
1421 /* If the instruction is not available on the current machine
1422 then it can not possibly match. */
1423 if (opcode->machine
1424 && !(opcode->machine == AM33_2 && HAVE_AM33_2)
1425 && !(opcode->machine == AM33 && HAVE_AM33)
1426 && !(opcode->machine == AM30 && HAVE_AM30))
1427 goto error;
1428
1429 for (op_idx = 1, opindex_ptr = opcode->operands;
1430 *opindex_ptr != 0;
1431 opindex_ptr++, op_idx++)
1432 {
1433 const struct mn10300_operand *operand;
1434 expressionS ex;
1435
1436 if (next_opindex == 0)
1437 {
1438 operand = &mn10300_operands[*opindex_ptr];
1439 }
1440 else
1441 {
1442 operand = &mn10300_operands[next_opindex];
1443 next_opindex = 0;
1444 }
1445
1446 while (*str == ' ' || *str == ',')
1447 ++str;
1448
1449 if (operand->flags & MN10300_OPERAND_RELAX)
1450 relaxable = 1;
1451
1452 /* Gather the operand. */
1453 hold = input_line_pointer;
1454 input_line_pointer = str;
1455
1456 if (operand->flags & MN10300_OPERAND_PAREN)
1457 {
1458 if (*input_line_pointer != ')' && *input_line_pointer != '(')
1459 {
1460 input_line_pointer = hold;
1461 str = hold;
1462 goto error;
1463 }
1464 input_line_pointer++;
1465 goto keep_going;
1466 }
1467 /* See if we can match the operands. */
1468 else if (operand->flags & MN10300_OPERAND_DREG)
1469 {
1470 if (!data_register_name (&ex))
1471 {
1472 input_line_pointer = hold;
1473 str = hold;
1474 goto error;
1475 }
1476 }
1477 else if (operand->flags & MN10300_OPERAND_AREG)
1478 {
1479 if (!address_register_name (&ex))
1480 {
1481 input_line_pointer = hold;
1482 str = hold;
1483 goto error;
1484 }
1485 }
1486 else if (operand->flags & MN10300_OPERAND_SP)
1487 {
1488 char *start = input_line_pointer;
1489 char c = get_symbol_end ();
1490
1491 if (strcasecmp (start, "sp") != 0)
1492 {
1493 *input_line_pointer = c;
1494 input_line_pointer = hold;
1495 str = hold;
1496 goto error;
1497 }
1498 *input_line_pointer = c;
1499 goto keep_going;
1500 }
1501 else if (operand->flags & MN10300_OPERAND_RREG)
1502 {
1503 if (!r_register_name (&ex))
1504 {
1505 input_line_pointer = hold;
1506 str = hold;
1507 goto error;
1508 }
1509 }
1510 else if (operand->flags & MN10300_OPERAND_XRREG)
1511 {
1512 if (!xr_register_name (&ex))
1513 {
1514 input_line_pointer = hold;
1515 str = hold;
1516 goto error;
1517 }
1518 }
1519 else if (operand->flags & MN10300_OPERAND_FSREG)
1520 {
1521 if (!float_register_name (&ex))
1522 {
1523 input_line_pointer = hold;
1524 str = hold;
1525 goto error;
1526 }
1527 }
1528 else if (operand->flags & MN10300_OPERAND_FDREG)
1529 {
1530 if (!double_register_name (&ex))
1531 {
1532 input_line_pointer = hold;
1533 str = hold;
1534 goto error;
1535 }
1536 }
1537 else if (operand->flags & MN10300_OPERAND_FPCR)
1538 {
1539 char *start = input_line_pointer;
1540 char c = get_symbol_end ();
1541
1542 if (strcasecmp (start, "fpcr") != 0)
1543 {
1544 *input_line_pointer = c;
1545 input_line_pointer = hold;
1546 str = hold;
1547 goto error;
1548 }
1549 *input_line_pointer = c;
1550 goto keep_going;
1551 }
1552 else if (operand->flags & MN10300_OPERAND_USP)
1553 {
1554 char *start = input_line_pointer;
1555 char c = get_symbol_end ();
1556
1557 if (strcasecmp (start, "usp") != 0)
1558 {
1559 *input_line_pointer = c;
1560 input_line_pointer = hold;
1561 str = hold;
1562 goto error;
1563 }
1564 *input_line_pointer = c;
1565 goto keep_going;
1566 }
1567 else if (operand->flags & MN10300_OPERAND_SSP)
1568 {
1569 char *start = input_line_pointer;
1570 char c = get_symbol_end ();
1571
1572 if (strcasecmp (start, "ssp") != 0)
1573 {
1574 *input_line_pointer = c;
1575 input_line_pointer = hold;
1576 str = hold;
1577 goto error;
1578 }
1579 *input_line_pointer = c;
1580 goto keep_going;
1581 }
1582 else if (operand->flags & MN10300_OPERAND_MSP)
1583 {
1584 char *start = input_line_pointer;
1585 char c = get_symbol_end ();
1586
1587 if (strcasecmp (start, "msp") != 0)
1588 {
1589 *input_line_pointer = c;
1590 input_line_pointer = hold;
1591 str = hold;
1592 goto error;
1593 }
1594 *input_line_pointer = c;
1595 goto keep_going;
1596 }
1597 else if (operand->flags & MN10300_OPERAND_PC)
1598 {
1599 char *start = input_line_pointer;
1600 char c = get_symbol_end ();
1601
1602 if (strcasecmp (start, "pc") != 0)
1603 {
1604 *input_line_pointer = c;
1605 input_line_pointer = hold;
1606 str = hold;
1607 goto error;
1608 }
1609 *input_line_pointer = c;
1610 goto keep_going;
1611 }
1612 else if (operand->flags & MN10300_OPERAND_EPSW)
1613 {
1614 char *start = input_line_pointer;
1615 char c = get_symbol_end ();
1616
1617 if (strcasecmp (start, "epsw") != 0)
1618 {
1619 *input_line_pointer = c;
1620 input_line_pointer = hold;
1621 str = hold;
1622 goto error;
1623 }
1624 *input_line_pointer = c;
1625 goto keep_going;
1626 }
1627 else if (operand->flags & MN10300_OPERAND_PLUS)
1628 {
1629 if (*input_line_pointer != '+')
1630 {
1631 input_line_pointer = hold;
1632 str = hold;
1633 goto error;
1634 }
1635 input_line_pointer++;
1636 goto keep_going;
1637 }
1638 else if (operand->flags & MN10300_OPERAND_PSW)
1639 {
1640 char *start = input_line_pointer;
1641 char c = get_symbol_end ();
1642
1643 if (strcasecmp (start, "psw") != 0)
1644 {
1645 *input_line_pointer = c;
1646 input_line_pointer = hold;
1647 str = hold;
1648 goto error;
1649 }
1650 *input_line_pointer = c;
1651 goto keep_going;
1652 }
1653 else if (operand->flags & MN10300_OPERAND_MDR)
1654 {
1655 char *start = input_line_pointer;
1656 char c = get_symbol_end ();
1657
1658 if (strcasecmp (start, "mdr") != 0)
1659 {
1660 *input_line_pointer = c;
1661 input_line_pointer = hold;
1662 str = hold;
1663 goto error;
1664 }
1665 *input_line_pointer = c;
1666 goto keep_going;
1667 }
1668 else if (operand->flags & MN10300_OPERAND_REG_LIST)
1669 {
1670 unsigned int value = 0;
1671 if (*input_line_pointer != '[')
1672 {
1673 input_line_pointer = hold;
1674 str = hold;
1675 goto error;
1676 }
1677
1678 /* Eat the '['. */
1679 input_line_pointer++;
1680
1681 /* We used to reject a null register list here; however,
1682 we accept it now so the compiler can emit "call"
1683 instructions for all calls to named functions.
1684
1685 The linker can then fill in the appropriate bits for the
1686 register list and stack size or change the instruction
1687 into a "calls" if using "call" is not profitable. */
1688 while (*input_line_pointer != ']')
1689 {
1690 char *start;
1691 char c;
1692
1693 if (*input_line_pointer == ',')
1694 input_line_pointer++;
1695
1696 start = input_line_pointer;
1697 c = get_symbol_end ();
1698
1699 if (strcasecmp (start, "d2") == 0)
1700 {
1701 value |= 0x80;
1702 *input_line_pointer = c;
1703 }
1704 else if (strcasecmp (start, "d3") == 0)
1705 {
1706 value |= 0x40;
1707 *input_line_pointer = c;
1708 }
1709 else if (strcasecmp (start, "a2") == 0)
1710 {
1711 value |= 0x20;
1712 *input_line_pointer = c;
1713 }
1714 else if (strcasecmp (start, "a3") == 0)
1715 {
1716 value |= 0x10;
1717 *input_line_pointer = c;
1718 }
1719 else if (strcasecmp (start, "other") == 0)
1720 {
1721 value |= 0x08;
1722 *input_line_pointer = c;
1723 }
1724 else if (HAVE_AM33
1725 && strcasecmp (start, "exreg0") == 0)
1726 {
1727 value |= 0x04;
1728 *input_line_pointer = c;
1729 }
1730 else if (HAVE_AM33
1731 && strcasecmp (start, "exreg1") == 0)
1732 {
1733 value |= 0x02;
1734 *input_line_pointer = c;
1735 }
1736 else if (HAVE_AM33
1737 && strcasecmp (start, "exother") == 0)
1738 {
1739 value |= 0x01;
1740 *input_line_pointer = c;
1741 }
1742 else if (HAVE_AM33
1743 && strcasecmp (start, "all") == 0)
1744 {
1745 value |= 0xff;
1746 *input_line_pointer = c;
1747 }
1748 else
1749 {
1750 input_line_pointer = hold;
1751 str = hold;
1752 goto error;
1753 }
1754 }
1755 input_line_pointer++;
1756 mn10300_insert_operand (&insn, &extension, operand,
1757 value, (char *) NULL, 0, 0);
1758 goto keep_going;
1759
1760 }
1761 else if (data_register_name (&ex))
1762 {
1763 input_line_pointer = hold;
1764 str = hold;
1765 goto error;
1766 }
1767 else if (address_register_name (&ex))
1768 {
1769 input_line_pointer = hold;
1770 str = hold;
1771 goto error;
1772 }
1773 else if (other_register_name (&ex))
1774 {
1775 input_line_pointer = hold;
1776 str = hold;
1777 goto error;
1778 }
1779 else if (HAVE_AM33 && r_register_name (&ex))
1780 {
1781 input_line_pointer = hold;
1782 str = hold;
1783 goto error;
1784 }
1785 else if (HAVE_AM33 && xr_register_name (&ex))
1786 {
1787 input_line_pointer = hold;
1788 str = hold;
1789 goto error;
1790 }
1791 else if (HAVE_AM33_2 && float_register_name (&ex))
1792 {
1793 input_line_pointer = hold;
1794 str = hold;
1795 goto error;
1796 }
1797 else if (HAVE_AM33_2 && double_register_name (&ex))
1798 {
1799 input_line_pointer = hold;
1800 str = hold;
1801 goto error;
1802 }
1803 else if (*str == ')' || *str == '(')
1804 {
1805 input_line_pointer = hold;
1806 str = hold;
1807 goto error;
1808 }
1809 else
1810 {
1811 expression (&ex);
1812 }
1813
1814 switch (ex.X_op)
1815 {
1816 case O_illegal:
1817 errmsg = _("illegal operand");
1818 goto error;
1819 case O_absent:
1820 errmsg = _("missing operand");
1821 goto error;
1822 case O_register:
1823 {
1824 int mask;
1825
1826 mask = MN10300_OPERAND_DREG | MN10300_OPERAND_AREG;
1827 if (HAVE_AM33)
1828 mask |= MN10300_OPERAND_RREG | MN10300_OPERAND_XRREG;
1829 if (HAVE_AM33_2)
1830 mask |= MN10300_OPERAND_FSREG | MN10300_OPERAND_FDREG;
1831 if ((operand->flags & mask) == 0)
1832 {
1833 input_line_pointer = hold;
1834 str = hold;
1835 goto error;
1836 }
1837
1838 if (opcode->format == FMT_D1 || opcode->format == FMT_S1)
1839 extra_shift = 8;
1840 else if (opcode->format == FMT_D2
1841 || opcode->format == FMT_D4
1842 || opcode->format == FMT_S2
1843 || opcode->format == FMT_S4
1844 || opcode->format == FMT_S6
1845 || opcode->format == FMT_D5)
1846 extra_shift = 16;
1847 else if (opcode->format == FMT_D7)
1848 extra_shift = 8;
1849 else if (opcode->format == FMT_D8 || opcode->format == FMT_D9)
1850 extra_shift = 8;
1851 else
1852 extra_shift = 0;
1853
1854 mn10300_insert_operand (&insn, &extension, operand,
1855 ex.X_add_number, (char *) NULL,
1856 0, extra_shift);
1857
1858 /* And note the register number in the register array. */
1859 mn10300_reg_operands[op_idx - 1] = ex.X_add_number;
1860 break;
1861 }
1862
1863 case O_constant:
1864 /* If this operand can be promoted, and it doesn't
1865 fit into the allocated bitfield for this insn,
1866 then promote it (ie this opcode does not match). */
1867 if (operand->flags
1868 & (MN10300_OPERAND_PROMOTE | MN10300_OPERAND_RELAX)
1869 && !check_operand (insn, operand, ex.X_add_number))
1870 {
1871 input_line_pointer = hold;
1872 str = hold;
1873 goto error;
1874 }
1875
1876 mn10300_insert_operand (&insn, &extension, operand,
1877 ex.X_add_number, (char *) NULL,
1878 0, 0);
1879 break;
1880
1881 default:
1882 /* If this operand can be promoted, then this opcode didn't
1883 match since we can't know if it needed promotion! */
1884 if (operand->flags & MN10300_OPERAND_PROMOTE)
1885 {
1886 input_line_pointer = hold;
1887 str = hold;
1888 goto error;
1889 }
1890
1891 /* We need to generate a fixup for this expression. */
1892 if (fc >= MAX_INSN_FIXUPS)
1893 as_fatal (_("too many fixups"));
1894 fixups[fc].exp = ex;
1895 fixups[fc].opindex = *opindex_ptr;
1896 fixups[fc].reloc = BFD_RELOC_UNUSED;
1897 if (mn10300_check_fixup (& fixups[fc]))
1898 goto error;
1899 ++fc;
1900 break;
1901 }
1902
1903 keep_going:
1904 str = input_line_pointer;
1905 input_line_pointer = hold;
1906
1907 while (*str == ' ' || *str == ',')
1908 ++str;
1909
1910 }
1911
1912 /* Make sure we used all the operands! */
1913 if (*str != ',')
1914 match = 1;
1915
1916 /* If this instruction has registers that must not match, verify
1917 that they do indeed not match. */
1918 if (opcode->no_match_operands)
1919 {
1920 int i;
1921
1922 /* Look at each operand to see if it's marked. */
1923 for (i = 0; i < MN10300_MAX_OPERANDS; i++)
1924 {
1925 if ((1 << i) & opcode->no_match_operands)
1926 {
1927 int j;
1928
1929 /* operand I is marked. Check that it does not match any
1930 operands > I which are marked. */
1931 for (j = i + 1; j < MN10300_MAX_OPERANDS; j++)
1932 {
1933 if (((1 << j) & opcode->no_match_operands)
1934 && mn10300_reg_operands[i] == mn10300_reg_operands[j])
1935 {
1936 errmsg = _("Invalid register specification.");
1937 match = 0;
1938 goto error;
1939 }
1940 }
1941 }
1942 }
1943 }
1944
1945 error:
1946 if (match == 0)
1947 {
1948 next_opcode = opcode + 1;
1949 if (!strcmp (next_opcode->name, opcode->name))
1950 {
1951 opcode = next_opcode;
1952 continue;
1953 }
1954
1955 as_bad ("%s", errmsg);
1956 return;
1957 }
1958 break;
1959 }
1960
1961 while (ISSPACE (*str))
1962 ++str;
1963
1964 if (*str != '\0')
1965 as_bad (_("junk at end of line: `%s'"), str);
1966
1967 input_line_pointer = str;
1968
1969 /* Determine the size of the instruction. */
1970 if (opcode->format == FMT_S0)
1971 size = 1;
1972
1973 if (opcode->format == FMT_S1 || opcode->format == FMT_D0)
1974 size = 2;
1975
1976 if (opcode->format == FMT_S2 || opcode->format == FMT_D1)
1977 size = 3;
1978
1979 if (opcode->format == FMT_D6)
1980 size = 3;
1981
1982 if (opcode->format == FMT_D7 || opcode->format == FMT_D10)
1983 size = 4;
1984
1985 if (opcode->format == FMT_D8)
1986 size = 6;
1987
1988 if (opcode->format == FMT_D9)
1989 size = 7;
1990
1991 if (opcode->format == FMT_S4)
1992 size = 5;
1993
1994 if (opcode->format == FMT_S6 || opcode->format == FMT_D5)
1995 size = 7;
1996
1997 if (opcode->format == FMT_D2)
1998 size = 4;
1999
2000 if (opcode->format == FMT_D3)
2001 size = 5;
2002
2003 if (opcode->format == FMT_D4)
2004 size = 6;
2005
2006 if (relaxable && fc > 0)
2007 {
2008 /* On a 64-bit host the size of an 'int' is not the same
2009 as the size of a pointer, so we need a union to convert
2010 the opindex field of the fr_cgen structure into a char *
2011 so that it can be stored in the frag. We do not have
2012 to worry about loosing accuracy as we are not going to
2013 be even close to the 32bit limit of the int. */
2014 union
2015 {
2016 int opindex;
2017 char * ptr;
2018 }
2019 opindex_converter;
2020 int type;
2021
2022 /* We want to anchor the line info to the previous frag (if
2023 there isn't one, create it), so that, when the insn is
2024 resized, we still get the right address for the beginning of
2025 the region. */
2026 f = frag_more (0);
2027 dwarf2_emit_insn (0);
2028
2029 /* bCC */
2030 if (size == 2)
2031 {
2032 /* Handle bra specially. Basically treat it like jmp so
2033 that we automatically handle 8, 16 and 32 bit offsets
2034 correctly as well as jumps to an undefined address.
2035
2036 It is also important to not treat it like other bCC
2037 instructions since the long forms of bra is different
2038 from other bCC instructions. */
2039 if (opcode->opcode == 0xca00)
2040 type = 10;
2041 else
2042 type = 0;
2043 }
2044 /* call */
2045 else if (size == 5)
2046 type = 6;
2047 /* calls */
2048 else if (size == 4)
2049 type = 8;
2050 /* jmp */
2051 else if (size == 3 && opcode->opcode == 0xcc0000)
2052 type = 10;
2053 else if (size == 3 && (opcode->opcode & 0xfff000) == 0xf8d000)
2054 type = 13;
2055 /* bCC (uncommon cases) */
2056 else
2057 type = 3;
2058
2059 opindex_converter.opindex = fixups[0].opindex;
2060 f = frag_var (rs_machine_dependent, 8, 8 - size, type,
2061 fixups[0].exp.X_add_symbol,
2062 fixups[0].exp.X_add_number,
2063 opindex_converter.ptr);
2064
2065 /* This is pretty hokey. We basically just care about the
2066 opcode, so we have to write out the first word big endian.
2067
2068 The exception is "call", which has two operands that we
2069 care about.
2070
2071 The first operand (the register list) happens to be in the
2072 first instruction word, and will be in the right place if
2073 we output the first word in big endian mode.
2074
2075 The second operand (stack size) is in the extension word,
2076 and we want it to appear as the first character in the extension
2077 word (as it appears in memory). Luckily, writing the extension
2078 word in big endian format will do what we want. */
2079 number_to_chars_bigendian (f, insn, size > 4 ? 4 : size);
2080 if (size > 8)
2081 {
2082 number_to_chars_bigendian (f + 4, extension, 4);
2083 number_to_chars_bigendian (f + 8, 0, size - 8);
2084 }
2085 else if (size > 4)
2086 number_to_chars_bigendian (f + 4, extension, size - 4);
2087 }
2088 else
2089 {
2090 /* Allocate space for the instruction. */
2091 f = frag_more (size);
2092
2093 /* Fill in bytes for the instruction. Note that opcode fields
2094 are written big-endian, 16 & 32bit immediates are written
2095 little endian. Egad. */
2096 if (opcode->format == FMT_S0
2097 || opcode->format == FMT_S1
2098 || opcode->format == FMT_D0
2099 || opcode->format == FMT_D6
2100 || opcode->format == FMT_D7
2101 || opcode->format == FMT_D10
2102 || opcode->format == FMT_D1)
2103 {
2104 number_to_chars_bigendian (f, insn, size);
2105 }
2106 else if (opcode->format == FMT_S2
2107 && opcode->opcode != 0xdf0000
2108 && opcode->opcode != 0xde0000)
2109 {
2110 /* A format S2 instruction that is _not_ "ret" and "retf". */
2111 number_to_chars_bigendian (f, (insn >> 16) & 0xff, 1);
2112 number_to_chars_littleendian (f + 1, insn & 0xffff, 2);
2113 }
2114 else if (opcode->format == FMT_S2)
2115 {
2116 /* This must be a ret or retf, which is written entirely in
2117 big-endian format. */
2118 number_to_chars_bigendian (f, insn, 3);
2119 }
2120 else if (opcode->format == FMT_S4
2121 && opcode->opcode != 0xdc000000)
2122 {
2123 /* This must be a format S4 "call" instruction. What a pain. */
2124 unsigned long temp = (insn >> 8) & 0xffff;
2125 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
2126 number_to_chars_littleendian (f + 1, temp, 2);
2127 number_to_chars_bigendian (f + 3, insn & 0xff, 1);
2128 number_to_chars_bigendian (f + 4, extension & 0xff, 1);
2129 }
2130 else if (opcode->format == FMT_S4)
2131 {
2132 /* This must be a format S4 "jmp" instruction. */
2133 unsigned long temp = ((insn & 0xffffff) << 8) | (extension & 0xff);
2134 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
2135 number_to_chars_littleendian (f + 1, temp, 4);
2136 }
2137 else if (opcode->format == FMT_S6)
2138 {
2139 unsigned long temp = ((insn & 0xffffff) << 8)
2140 | ((extension >> 16) & 0xff);
2141 number_to_chars_bigendian (f, (insn >> 24) & 0xff, 1);
2142 number_to_chars_littleendian (f + 1, temp, 4);
2143 number_to_chars_bigendian (f + 5, (extension >> 8) & 0xff, 1);
2144 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
2145 }
2146 else if (opcode->format == FMT_D2
2147 && opcode->opcode != 0xfaf80000
2148 && opcode->opcode != 0xfaf00000
2149 && opcode->opcode != 0xfaf40000)
2150 {
2151 /* A format D2 instruction where the 16bit immediate is
2152 really a single 16bit value, not two 8bit values. */
2153 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2154 number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
2155 }
2156 else if (opcode->format == FMT_D2)
2157 {
2158 /* A format D2 instruction where the 16bit immediate
2159 is really two 8bit immediates. */
2160 number_to_chars_bigendian (f, insn, 4);
2161 }
2162 else if (opcode->format == FMT_D3)
2163 {
2164 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2165 number_to_chars_littleendian (f + 2, insn & 0xffff, 2);
2166 number_to_chars_bigendian (f + 4, extension & 0xff, 1);
2167 }
2168 else if (opcode->format == FMT_D4)
2169 {
2170 unsigned long temp = ((insn & 0xffff) << 16) | (extension & 0xffff);
2171
2172 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2173 number_to_chars_littleendian (f + 2, temp, 4);
2174 }
2175 else if (opcode->format == FMT_D5)
2176 {
2177 unsigned long temp = (((insn & 0xffff) << 16)
2178 | ((extension >> 8) & 0xffff));
2179
2180 number_to_chars_bigendian (f, (insn >> 16) & 0xffff, 2);
2181 number_to_chars_littleendian (f + 2, temp, 4);
2182 number_to_chars_bigendian (f + 6, extension & 0xff, 1);
2183 }
2184 else if (opcode->format == FMT_D8)
2185 {
2186 unsigned long temp = ((insn & 0xff) << 16) | (extension & 0xffff);
2187
2188 number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
2189 number_to_chars_bigendian (f + 3, (temp & 0xff), 1);
2190 number_to_chars_littleendian (f + 4, temp >> 8, 2);
2191 }
2192 else if (opcode->format == FMT_D9)
2193 {
2194 unsigned long temp = ((insn & 0xff) << 24) | (extension & 0xffffff);
2195
2196 number_to_chars_bigendian (f, (insn >> 8) & 0xffffff, 3);
2197 number_to_chars_littleendian (f + 3, temp, 4);
2198 }
2199
2200 /* Create any fixups. */
2201 for (i = 0; i < fc; i++)
2202 {
2203 const struct mn10300_operand *operand;
2204
2205 operand = &mn10300_operands[fixups[i].opindex];
2206 if (fixups[i].reloc != BFD_RELOC_UNUSED
2207 && fixups[i].reloc != BFD_RELOC_32_GOT_PCREL
2208 && fixups[i].reloc != BFD_RELOC_32_GOTOFF
2209 && fixups[i].reloc != BFD_RELOC_32_PLT_PCREL
2210 && fixups[i].reloc != BFD_RELOC_MN10300_GOT32)
2211 {
2212 reloc_howto_type *reloc_howto;
2213 int size;
2214 int offset;
2215 fixS *fixP;
2216
2217 reloc_howto = bfd_reloc_type_lookup (stdoutput,
2218 fixups[i].reloc);
2219
2220 if (!reloc_howto)
2221 abort ();
2222
2223 size = bfd_get_reloc_size (reloc_howto);
2224
2225 if (size < 1 || size > 4)
2226 abort ();
2227
2228 offset = 4 - size;
2229 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
2230 size, &fixups[i].exp,
2231 reloc_howto->pc_relative,
2232 fixups[i].reloc);
2233 }
2234 else
2235 {
2236 int reloc, pcrel, reloc_size, offset;
2237 fixS *fixP;
2238
2239 reloc = BFD_RELOC_NONE;
2240 if (fixups[i].reloc != BFD_RELOC_UNUSED)
2241 reloc = fixups[i].reloc;
2242 /* How big is the reloc? Remember SPLIT relocs are
2243 implicitly 32bits. */
2244 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
2245 reloc_size = 32;
2246 else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
2247 reloc_size = 24;
2248 else
2249 reloc_size = operand->bits;
2250
2251 /* Is the reloc pc-relative? */
2252 pcrel = (operand->flags & MN10300_OPERAND_PCREL) != 0;
2253 if (reloc != BFD_RELOC_NONE)
2254 pcrel = bfd_reloc_type_lookup (stdoutput, reloc)->pc_relative;
2255
2256 offset = size - (reloc_size + operand->shift) / 8;
2257
2258 /* Choose a proper BFD relocation type. */
2259 if (reloc != BFD_RELOC_NONE)
2260 ;
2261 else if (pcrel)
2262 {
2263 if (reloc_size == 32)
2264 reloc = BFD_RELOC_32_PCREL;
2265 else if (reloc_size == 16)
2266 reloc = BFD_RELOC_16_PCREL;
2267 else if (reloc_size == 8)
2268 reloc = BFD_RELOC_8_PCREL;
2269 else
2270 abort ();
2271 }
2272 else
2273 {
2274 if (reloc_size == 32)
2275 reloc = BFD_RELOC_32;
2276 else if (reloc_size == 16)
2277 reloc = BFD_RELOC_16;
2278 else if (reloc_size == 8)
2279 reloc = BFD_RELOC_8;
2280 else
2281 abort ();
2282 }
2283
2284 /* Convert the size of the reloc into what fix_new_exp wants. */
2285 reloc_size = reloc_size / 8;
2286 if (reloc_size == 8)
2287 reloc_size = 0;
2288 else if (reloc_size == 16)
2289 reloc_size = 1;
2290 else if (reloc_size == 32)
2291 reloc_size = 2;
2292
2293 fixP = fix_new_exp (frag_now, f - frag_now->fr_literal + offset,
2294 reloc_size, &fixups[i].exp, pcrel,
2295 ((bfd_reloc_code_real_type) reloc));
2296
2297 if (pcrel)
2298 fixP->fx_offset += offset;
2299 }
2300 }
2301
2302 dwarf2_emit_insn (size);
2303 }
2304 }
2305
2306 /* If while processing a fixup, a reloc really needs to be created
2307 then it is done here. */
2308
2309 arelent *
2310 tc_gen_reloc (seg, fixp)
2311 asection *seg ATTRIBUTE_UNUSED;
2312 fixS *fixp;
2313 {
2314 arelent *reloc;
2315 reloc = (arelent *) xmalloc (sizeof (arelent));
2316
2317 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
2318 if (reloc->howto == (reloc_howto_type *) NULL)
2319 {
2320 as_bad_where (fixp->fx_file, fixp->fx_line,
2321 _("reloc %d not supported by object file format"),
2322 (int) fixp->fx_r_type);
2323 return NULL;
2324 }
2325 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2326
2327 if (fixp->fx_subsy
2328 && S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
2329 {
2330 fixp->fx_offset -= S_GET_VALUE (fixp->fx_subsy);
2331 fixp->fx_subsy = 0;
2332 }
2333
2334 if (fixp->fx_addsy && fixp->fx_subsy)
2335 {
2336 reloc->sym_ptr_ptr = NULL;
2337
2338 /* If we got a difference between two symbols, and the
2339 subtracted symbol is in the current section, use a
2340 PC-relative relocation. If both symbols are in the same
2341 section, the difference would have already been simplified
2342 to a constant. */
2343 if (S_GET_SEGMENT (fixp->fx_subsy) == seg)
2344 {
2345 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2346 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2347 reloc->addend = (reloc->address - S_GET_VALUE (fixp->fx_subsy)
2348 + fixp->fx_offset);
2349
2350 switch (fixp->fx_r_type)
2351 {
2352 case BFD_RELOC_8:
2353 reloc->howto = bfd_reloc_type_lookup (stdoutput,
2354 BFD_RELOC_8_PCREL);
2355 return reloc;
2356
2357 case BFD_RELOC_16:
2358 reloc->howto = bfd_reloc_type_lookup (stdoutput,
2359 BFD_RELOC_16_PCREL);
2360 return reloc;
2361
2362 case BFD_RELOC_24:
2363 reloc->howto = bfd_reloc_type_lookup (stdoutput,
2364 BFD_RELOC_24_PCREL);
2365 return reloc;
2366
2367 case BFD_RELOC_32:
2368 reloc->howto = bfd_reloc_type_lookup (stdoutput,
2369 BFD_RELOC_32_PCREL);
2370 return reloc;
2371
2372 default:
2373 /* Try to compute the absolute value below. */
2374 break;
2375 }
2376 }
2377
2378 if ((S_GET_SEGMENT (fixp->fx_addsy) != S_GET_SEGMENT (fixp->fx_subsy))
2379 || S_GET_SEGMENT (fixp->fx_addsy) == undefined_section)
2380 {
2381 as_bad_where (fixp->fx_file, fixp->fx_line,
2382 "Difference of symbols in different sections is not supported");
2383 }
2384 else
2385 {
2386 char *fixpos = fixp->fx_where + fixp->fx_frag->fr_literal;
2387
2388 reloc->addend = (S_GET_VALUE (fixp->fx_addsy)
2389 - S_GET_VALUE (fixp->fx_subsy) + fixp->fx_offset);
2390
2391 switch (fixp->fx_r_type)
2392 {
2393 case BFD_RELOC_8:
2394 md_number_to_chars (fixpos, reloc->addend, 1);
2395 break;
2396
2397 case BFD_RELOC_16:
2398 md_number_to_chars (fixpos, reloc->addend, 2);
2399 break;
2400
2401 case BFD_RELOC_24:
2402 md_number_to_chars (fixpos, reloc->addend, 3);
2403 break;
2404
2405 case BFD_RELOC_32:
2406 md_number_to_chars (fixpos, reloc->addend, 4);
2407 break;
2408
2409 default:
2410 reloc->sym_ptr_ptr
2411 = (asymbol **) bfd_abs_section_ptr->symbol_ptr_ptr;
2412 return reloc;
2413 }
2414 }
2415
2416 if (reloc->sym_ptr_ptr)
2417 free (reloc->sym_ptr_ptr);
2418 free (reloc);
2419 return NULL;
2420 }
2421 else
2422 {
2423 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2424 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2425 reloc->addend = fixp->fx_offset;
2426 }
2427 return reloc;
2428 }
2429
2430 int
2431 md_estimate_size_before_relax (fragp, seg)
2432 fragS *fragp;
2433 asection *seg;
2434 {
2435 if (fragp->fr_subtype == 6
2436 && (!S_IS_DEFINED (fragp->fr_symbol)
2437 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
2438 fragp->fr_subtype = 7;
2439 else if (fragp->fr_subtype == 8
2440 && (!S_IS_DEFINED (fragp->fr_symbol)
2441 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
2442 fragp->fr_subtype = 9;
2443 else if (fragp->fr_subtype == 10
2444 && (!S_IS_DEFINED (fragp->fr_symbol)
2445 || seg != S_GET_SEGMENT (fragp->fr_symbol)))
2446 fragp->fr_subtype = 12;
2447
2448 if (fragp->fr_subtype == 13)
2449 return 3;
2450 if (fragp->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2451 abort ();
2452
2453 return md_relax_table[fragp->fr_subtype].rlx_length;
2454 }
2455
2456 long
2457 md_pcrel_from (fixp)
2458 fixS *fixp;
2459 {
2460 if (fixp->fx_addsy != (symbolS *) NULL && !S_IS_DEFINED (fixp->fx_addsy))
2461 {
2462 /* The symbol is undefined. Let the linker figure it out. */
2463 return 0;
2464 }
2465 return fixp->fx_frag->fr_address + fixp->fx_where;
2466 }
2467
2468 void
2469 md_apply_fix (fixP, valP, seg)
2470 fixS * fixP;
2471 valueT * valP;
2472 segT seg;
2473 {
2474 char * fixpos = fixP->fx_where + fixP->fx_frag->fr_literal;
2475 int size = 0;
2476 int value = (int) * valP;
2477
2478 assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
2479
2480 /* This should never happen. */
2481 if (seg->flags & SEC_ALLOC)
2482 abort ();
2483
2484 /* The value we are passed in *valuep includes the symbol values.
2485 If we are doing this relocation the code in write.c is going to
2486 call bfd_install_relocation, which is also going to use the symbol
2487 value. That means that if the reloc is fully resolved we want to
2488 use *valuep since bfd_install_relocation is not being used.
2489
2490 However, if the reloc is not fully resolved we do not want to use
2491 *valuep, and must use fx_offset instead. However, if the reloc
2492 is PC relative, we do want to use *valuep since it includes the
2493 result of md_pcrel_from. */
2494 if (fixP->fx_addsy != (symbolS *) NULL && ! fixP->fx_pcrel)
2495 value = fixP->fx_offset;
2496
2497 /* If the fix is relative to a symbol which is not defined, or not
2498 in the same segment as the fix, we cannot resolve it here. */
2499 if (fixP->fx_addsy != NULL
2500 && (! S_IS_DEFINED (fixP->fx_addsy)
2501 || (S_GET_SEGMENT (fixP->fx_addsy) != seg)))
2502 {
2503 fixP->fx_done = 0;
2504 return;
2505 }
2506
2507 switch (fixP->fx_r_type)
2508 {
2509 case BFD_RELOC_8:
2510 case BFD_RELOC_8_PCREL:
2511 size = 1;
2512 break;
2513
2514 case BFD_RELOC_16:
2515 case BFD_RELOC_16_PCREL:
2516 size = 2;
2517 break;
2518
2519 case BFD_RELOC_32:
2520 case BFD_RELOC_32_PCREL:
2521 size = 4;
2522 break;
2523
2524 case BFD_RELOC_VTABLE_INHERIT:
2525 case BFD_RELOC_VTABLE_ENTRY:
2526 fixP->fx_done = 0;
2527 return;
2528
2529 case BFD_RELOC_NONE:
2530 default:
2531 as_bad_where (fixP->fx_file, fixP->fx_line,
2532 _("Bad relocation fixup type (%d)"), fixP->fx_r_type);
2533 }
2534
2535 md_number_to_chars (fixpos, value, size);
2536
2537 /* If a symbol remains, pass the fixup, as a reloc, onto the linker. */
2538 if (fixP->fx_addsy == NULL)
2539 fixP->fx_done = 1;
2540 }
2541
2542 /* Return zero if the fixup in fixp should be left alone and not
2543 adjusted. */
2544
2545 bfd_boolean
2546 mn10300_fix_adjustable (fixp)
2547 struct fix *fixp;
2548 {
2549 if (! TC_RELOC_RTSYM_LOC_FIXUP (fixp))
2550 return 0;
2551
2552 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2553 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2554 return 0;
2555
2556 /* Do not adjust relocations involving symbols in code sections,
2557 because it breaks linker relaxations. This could be fixed in the
2558 linker, but this fix is simpler, and it pretty much only affects
2559 object size a little bit. */
2560 if (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_CODE)
2561 return 0;
2562
2563 /* Likewise, do not adjust symbols that won't be merged, or debug
2564 symbols, because they too break relaxation. We do want to adjust
2565 other mergable symbols, like .rodata, because code relaxations
2566 need section-relative symbols to properly relax them. */
2567 if (! (S_GET_SEGMENT(fixp->fx_addsy)->flags & SEC_MERGE))
2568 return 0;
2569 if (strncmp (S_GET_SEGMENT (fixp->fx_addsy)->name, ".debug", 6) == 0)
2570 return 0;
2571
2572 return 1;
2573 }
2574
2575 /* Insert an operand value into an instruction. */
2576
2577 static void
2578 mn10300_insert_operand (insnp, extensionp, operand, val, file, line, shift)
2579 unsigned long *insnp;
2580 unsigned long *extensionp;
2581 const struct mn10300_operand *operand;
2582 offsetT val;
2583 char *file;
2584 unsigned int line;
2585 unsigned int shift;
2586 {
2587 /* No need to check 32bit operands for a bit. Note that
2588 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
2589 if (operand->bits != 32
2590 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
2591 {
2592 long min, max;
2593 offsetT test;
2594 int bits;
2595
2596 bits = operand->bits;
2597 if (operand->flags & MN10300_OPERAND_24BIT)
2598 bits = 24;
2599
2600 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
2601 {
2602 max = (1 << (bits - 1)) - 1;
2603 min = - (1 << (bits - 1));
2604 }
2605 else
2606 {
2607 max = (1 << bits) - 1;
2608 min = 0;
2609 }
2610
2611 test = val;
2612
2613 if (test < (offsetT) min || test > (offsetT) max)
2614 as_warn_value_out_of_range (_("operand"), test, (offsetT) min, (offsetT) max, file, line);
2615 }
2616
2617 if ((operand->flags & MN10300_OPERAND_SPLIT) != 0)
2618 {
2619 *insnp |= (val >> (32 - operand->bits)) & ((1 << operand->bits) - 1);
2620 *extensionp |= ((val & ((1 << (32 - operand->bits)) - 1))
2621 << operand->shift);
2622 }
2623 else if ((operand->flags & MN10300_OPERAND_24BIT) != 0)
2624 {
2625 *insnp |= (val >> (24 - operand->bits)) & ((1 << operand->bits) - 1);
2626 *extensionp |= ((val & ((1 << (24 - operand->bits)) - 1))
2627 << operand->shift);
2628 }
2629 else if ((operand->flags & (MN10300_OPERAND_FSREG | MN10300_OPERAND_FDREG)))
2630 {
2631 /* See devo/opcodes/m10300-opc.c just before #define FSM0 for an
2632 explanation of these variables. Note that FMT-implied shifts
2633 are not taken into account for FP registers. */
2634 unsigned long mask_low, mask_high;
2635 int shl_low, shr_high, shl_high;
2636
2637 switch (operand->bits)
2638 {
2639 case 5:
2640 /* Handle regular FP registers. */
2641 if (operand->shift >= 0)
2642 {
2643 /* This is an `m' register. */
2644 shl_low = operand->shift;
2645 shl_high = 8 + (8 & shl_low) + (shl_low & 4) / 4;
2646 }
2647 else
2648 {
2649 /* This is an `n' register. */
2650 shl_low = -operand->shift;
2651 shl_high = shl_low / 4;
2652 }
2653
2654 mask_low = 0x0f;
2655 mask_high = 0x10;
2656 shr_high = 4;
2657 break;
2658
2659 case 3:
2660 /* Handle accumulators. */
2661 shl_low = -operand->shift;
2662 shl_high = 0;
2663 mask_low = 0x03;
2664 mask_high = 0x04;
2665 shr_high = 2;
2666 break;
2667
2668 default:
2669 abort ();
2670 }
2671 *insnp |= ((((val & mask_high) >> shr_high) << shl_high)
2672 | ((val & mask_low) << shl_low));
2673 }
2674 else if ((operand->flags & MN10300_OPERAND_EXTENDED) == 0)
2675 {
2676 *insnp |= (((long) val & ((1 << operand->bits) - 1))
2677 << (operand->shift + shift));
2678
2679 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
2680 *insnp |= (((long) val & ((1 << operand->bits) - 1))
2681 << (operand->shift + shift + operand->bits));
2682 }
2683 else
2684 {
2685 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
2686 << (operand->shift + shift));
2687
2688 if ((operand->flags & MN10300_OPERAND_REPEATED) != 0)
2689 *extensionp |= (((long) val & ((1 << operand->bits) - 1))
2690 << (operand->shift + shift + operand->bits));
2691 }
2692 }
2693
2694 static unsigned long
2695 check_operand (insn, operand, val)
2696 unsigned long insn ATTRIBUTE_UNUSED;
2697 const struct mn10300_operand *operand;
2698 offsetT val;
2699 {
2700 /* No need to check 32bit operands for a bit. Note that
2701 MN10300_OPERAND_SPLIT is an implicit 32bit operand. */
2702 if (operand->bits != 32
2703 && (operand->flags & MN10300_OPERAND_SPLIT) == 0)
2704 {
2705 long min, max;
2706 offsetT test;
2707 int bits;
2708
2709 bits = operand->bits;
2710 if (operand->flags & MN10300_OPERAND_24BIT)
2711 bits = 24;
2712
2713 if ((operand->flags & MN10300_OPERAND_SIGNED) != 0)
2714 {
2715 max = (1 << (bits - 1)) - 1;
2716 min = - (1 << (bits - 1));
2717 }
2718 else
2719 {
2720 max = (1 << bits) - 1;
2721 min = 0;
2722 }
2723
2724 test = val;
2725
2726 if (test < (offsetT) min || test > (offsetT) max)
2727 return 0;
2728 else
2729 return 1;
2730 }
2731 return 1;
2732 }
2733
2734 static void
2735 set_arch_mach (mach)
2736 int mach;
2737 {
2738 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mn10300, mach))
2739 as_warn (_("could not set architecture and machine"));
2740
2741 current_machine = mach;
2742 }
2743
2744 static inline char * mn10300_end_of_match PARAMS ((char *, char *));
2745
2746 static inline char *
2747 mn10300_end_of_match (cont, what)
2748 char *cont, *what;
2749 {
2750 int len = strlen (what);
2751
2752 if (strncmp (cont, what, strlen (what)) == 0
2753 && ! is_part_of_name (cont[len]))
2754 return cont + len;
2755
2756 return NULL;
2757 }
2758
2759 int
2760 mn10300_parse_name (name, exprP, mode, nextcharP)
2761 char const *name;
2762 expressionS *exprP;
2763 enum expr_mode mode;
2764 char *nextcharP;
2765 {
2766 char *next = input_line_pointer;
2767 char *next_end;
2768 int reloc_type;
2769 segT segment;
2770
2771 exprP->X_op_symbol = NULL;
2772
2773 if (strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
2774 {
2775 if (! GOT_symbol)
2776 GOT_symbol = symbol_find_or_make (name);
2777
2778 exprP->X_add_symbol = GOT_symbol;
2779 no_suffix:
2780 /* If we have an absolute symbol or a reg,
2781 then we know its value now. */
2782 segment = S_GET_SEGMENT (exprP->X_add_symbol);
2783 if (mode != expr_defer && segment == absolute_section)
2784 {
2785 exprP->X_op = O_constant;
2786 exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
2787 exprP->X_add_symbol = NULL;
2788 }
2789 else if (mode != expr_defer && segment == reg_section)
2790 {
2791 exprP->X_op = O_register;
2792 exprP->X_add_number = S_GET_VALUE (exprP->X_add_symbol);
2793 exprP->X_add_symbol = NULL;
2794 }
2795 else
2796 {
2797 exprP->X_op = O_symbol;
2798 exprP->X_add_number = 0;
2799 }
2800
2801 return 1;
2802 }
2803
2804 exprP->X_add_symbol = symbol_find_or_make (name);
2805
2806 if (*nextcharP != '@')
2807 goto no_suffix;
2808 else if ((next_end = mn10300_end_of_match (next + 1, "GOTOFF")))
2809 reloc_type = BFD_RELOC_32_GOTOFF;
2810 else if ((next_end = mn10300_end_of_match (next + 1, "GOT")))
2811 reloc_type = BFD_RELOC_MN10300_GOT32;
2812 else if ((next_end = mn10300_end_of_match (next + 1, "PLT")))
2813 reloc_type = BFD_RELOC_32_PLT_PCREL;
2814 else
2815 goto no_suffix;
2816
2817 *input_line_pointer = *nextcharP;
2818 input_line_pointer = next_end;
2819 *nextcharP = *input_line_pointer;
2820 *input_line_pointer = '\0';
2821
2822 exprP->X_op = O_PIC_reloc;
2823 exprP->X_add_number = 0;
2824 exprP->X_md = reloc_type;
2825
2826 return 1;
2827 }
This page took 0.140863 seconds and 4 git commands to generate.