* scripttempl/armbpabi.sc: Replace DWARF sections with an
[deliverable/binutils-gdb.git] / gas / config / tc-nios2.c
1 /* Altera Nios II assembler.
2 Copyright (C) 2012, 2013 Free Software Foundation, Inc.
3 Contributed by Nigel Gray (ngray@altera.com).
4 Contributed by Mentor Graphics, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "as.h"
24 #include "opcode/nios2.h"
25 #include "elf/nios2.h"
26 #include "tc-nios2.h"
27 #include "bfd.h"
28 #include "dwarf2dbg.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31 #include "dw2gencfi.h"
32
33 #ifndef OBJ_ELF
34 /* We are not supporting any other target so we throw a compile time error. */
35 OBJ_ELF not defined
36 #endif
37
38 /* We can choose our endianness at run-time, regardless of configuration. */
39 extern int target_big_endian;
40
41 /* This array holds the chars that always start a comment. If the
42 pre-processor is disabled, these aren't very useful. */
43 const char comment_chars[] = "#";
44
45 /* This array holds the chars that only start a comment at the beginning of
46 a line. If the line seems to have the form '# 123 filename'
47 .line and .file directives will appear in the pre-processed output. */
48 /* Note that input_file.c hand checks for '#' at the beginning of the
49 first line of the input file. This is because the compiler outputs
50 #NO_APP at the beginning of its output. */
51 /* Also note that C style comments are always supported. */
52 const char line_comment_chars[] = "#";
53
54 /* This array holds machine specific line separator characters. */
55 const char line_separator_chars[] = ";";
56
57 /* Chars that can be used to separate mant from exp in floating point nums. */
58 const char EXP_CHARS[] = "eE";
59
60 /* Chars that mean this number is a floating point constant. */
61 /* As in 0f12.456 */
62 /* or 0d1.2345e12 */
63 const char FLT_CHARS[] = "rRsSfFdDxXpP";
64
65 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
66 changed in read.c. Ideally it shouldn't have to know about it at all,
67 but nothing is ideal around here. */
68
69 /* Machine-dependent command-line options. */
70
71 const char *md_shortopts = "r";
72
73 struct option md_longopts[] = {
74 #define OPTION_RELAX_ALL (OPTION_MD_BASE + 0)
75 {"relax-all", no_argument, NULL, OPTION_RELAX_ALL},
76 #define OPTION_NORELAX (OPTION_MD_BASE + 1)
77 {"no-relax", no_argument, NULL, OPTION_NORELAX},
78 #define OPTION_RELAX_SECTION (OPTION_MD_BASE + 2)
79 {"relax-section", no_argument, NULL, OPTION_RELAX_SECTION},
80 #define OPTION_EB (OPTION_MD_BASE + 3)
81 {"EB", no_argument, NULL, OPTION_EB},
82 #define OPTION_EL (OPTION_MD_BASE + 4)
83 {"EL", no_argument, NULL, OPTION_EL}
84 };
85
86 size_t md_longopts_size = sizeof (md_longopts);
87
88 /* The assembler supports three different relaxation modes, controlled by
89 command-line options. */
90 typedef enum
91 {
92 relax_section = 0,
93 relax_none,
94 relax_all
95 } relax_optionT;
96
97 /* Struct contains all assembler options set with .set. */
98 struct
99 {
100 /* .set noat -> noat = 1 allows assembly code to use at without warning
101 and macro expansions generate a warning.
102 .set at -> noat = 0, assembly code using at warn but macro expansions
103 do not generate warnings. */
104 bfd_boolean noat;
105
106 /* .set nobreak -> nobreak = 1 allows assembly code to use ba,bt without
107 warning.
108 .set break -> nobreak = 0, assembly code using ba,bt warns. */
109 bfd_boolean nobreak;
110
111 /* .cmd line option -relax-all allows all branches and calls to be replaced
112 with longer versions.
113 -no-relax inhibits branch/call conversion.
114 The default value is relax_section, which relaxes branches within
115 a section. */
116 relax_optionT relax;
117
118 } nios2_as_options = {FALSE, FALSE, relax_section};
119
120
121 typedef struct nios2_insn_reloc
122 {
123 /* Any expression in the instruction is parsed into this field,
124 which is passed to fix_new_exp() to generate a fixup. */
125 expressionS reloc_expression;
126
127 /* The type of the relocation to be applied. */
128 bfd_reloc_code_real_type reloc_type;
129
130 /* PC-relative. */
131 unsigned int reloc_pcrel;
132
133 /* The next relocation to be applied to the instruction. */
134 struct nios2_insn_reloc *reloc_next;
135 } nios2_insn_relocS;
136
137 /* This struct is used to hold state when assembling instructions. */
138 typedef struct nios2_insn_info
139 {
140 /* Assembled instruction. */
141 unsigned long insn_code;
142 /* Pointer to the relevant bit of the opcode table. */
143 const struct nios2_opcode *insn_nios2_opcode;
144 /* After parsing ptrs to the tokens in the instruction fill this array
145 it is terminated with a null pointer (hence the first +1).
146 The second +1 is because in some parts of the code the opcode
147 is not counted as a token, but still placed in this array. */
148 const char *insn_tokens[NIOS2_MAX_INSN_TOKENS + 1 + 1];
149
150 /* This holds information used to generate fixups
151 and eventually relocations if it is not null. */
152 nios2_insn_relocS *insn_reloc;
153 } nios2_insn_infoS;
154
155 /* This struct associates an argument assemble function with
156 an argument syntax string. Used by the assembler to find out
157 how to parse and assemble a set of instruction operands and
158 return the instruction field values. */
159 typedef struct nios2_arg_info
160 {
161 const char *args;
162 void (*assemble_args_func) (nios2_insn_infoS *insn_info);
163 } nios2_arg_infoS;
164
165 /* This struct is used to convert Nios II pseudo-ops into the
166 corresponding real op. */
167 typedef struct nios2_ps_insn_info
168 {
169 /* Map this pseudo_op... */
170 const char *pseudo_insn;
171
172 /* ...to this real instruction. */
173 const char *insn;
174
175 /* Call this function to modify the operands.... */
176 void (*arg_modifer_func) (char ** parsed_args, const char *arg, int num,
177 int start);
178
179 /* ...with these arguments. */
180 const char *arg_modifier;
181 int num;
182 int index;
183
184 /* If arg_modifier_func allocates new memory, provide this function
185 to free it afterwards. */
186 void (*arg_cleanup_func) (char **parsed_args, int num, int start);
187 } nios2_ps_insn_infoS;
188
189 /* Opcode hash table. */
190 static struct hash_control *nios2_opcode_hash = NULL;
191 #define nios2_opcode_lookup(NAME) \
192 ((struct nios2_opcode *) hash_find (nios2_opcode_hash, (NAME)))
193
194 /* Register hash table. */
195 static struct hash_control *nios2_reg_hash = NULL;
196 #define nios2_reg_lookup(NAME) \
197 ((struct nios2_reg *) hash_find (nios2_reg_hash, (NAME)))
198
199 /* Parse args hash table. */
200 static struct hash_control *nios2_arg_hash = NULL;
201 #define nios2_arg_lookup(NAME) \
202 ((nios2_arg_infoS *) hash_find (nios2_arg_hash, (NAME)))
203
204 /* Pseudo-op hash table. */
205 static struct hash_control *nios2_ps_hash = NULL;
206 #define nios2_ps_lookup(NAME) \
207 ((nios2_ps_insn_infoS *) hash_find (nios2_ps_hash, (NAME)))
208
209 /* The known current alignment of the current section. */
210 static int nios2_current_align;
211 static segT nios2_current_align_seg;
212
213 static int nios2_auto_align_on = 1;
214
215 /* The last seen label in the current section. This is used to auto-align
216 labels preceeding instructions. */
217 static symbolS *nios2_last_label;
218
219 #ifdef OBJ_ELF
220 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
221 symbolS *GOT_symbol;
222 #endif
223
224 \f
225 /** Utility routines. */
226 /* Function md_chars_to_number takes the sequence of
227 bytes in buf and returns the corresponding value
228 in an int. n must be 1, 2 or 4. */
229 static valueT
230 md_chars_to_number (char *buf, int n)
231 {
232 int i;
233 valueT val;
234
235 gas_assert (n == 1 || n == 2 || n == 4);
236
237 val = 0;
238 if (target_big_endian)
239 for (i = 0; i < n; ++i)
240 val = val | ((buf[i] & 0xff) << 8 * (n - (i + 1)));
241 else
242 for (i = 0; i < n; ++i)
243 val = val | ((buf[i] & 0xff) << 8 * i);
244 return val;
245 }
246
247
248 /* This function turns a C long int, short int or char
249 into the series of bytes that represent the number
250 on the target machine. */
251 void
252 md_number_to_chars (char *buf, valueT val, int n)
253 {
254 gas_assert (n == 1 || n == 2 || n == 4 || n == 8);
255 if (target_big_endian)
256 number_to_chars_bigendian (buf, val, n);
257 else
258 number_to_chars_littleendian (buf, val, n);
259 }
260
261 /* Turn a string in input_line_pointer into a floating point constant
262 of type TYPE, and store the appropriate bytes in *LITP. The number
263 of LITTLENUMS emitted is stored in *SIZEP. An error message is
264 returned, or NULL on OK. */
265 char *
266 md_atof (int type, char *litP, int *sizeP)
267 {
268 int prec;
269 LITTLENUM_TYPE words[4];
270 char *t;
271 int i;
272
273 switch (type)
274 {
275 case 'f':
276 prec = 2;
277 break;
278 case 'd':
279 prec = 4;
280 break;
281 default:
282 *sizeP = 0;
283 return _("bad call to md_atof");
284 }
285
286 t = atof_ieee (input_line_pointer, type, words);
287 if (t)
288 input_line_pointer = t;
289
290 *sizeP = prec * 2;
291
292 if (! target_big_endian)
293 for (i = prec - 1; i >= 0; i--, litP += 2)
294 md_number_to_chars (litP, (valueT) words[i], 2);
295 else
296 for (i = 0; i < prec; i++, litP += 2)
297 md_number_to_chars (litP, (valueT) words[i], 2);
298
299 return NULL;
300 }
301
302 /* Return true if STR starts with PREFIX, which should be a string literal. */
303 #define strprefix(STR, PREFIX) \
304 (strncmp ((STR), PREFIX, strlen (PREFIX)) == 0)
305
306 /* Return true if STR is prefixed with a control register name. */
307 static int
308 nios2_control_register_arg_p (const char *str)
309 {
310 return (strprefix (str, "ctl")
311 || strprefix (str, "cpuid")
312 || strprefix (str, "status")
313 || strprefix (str, "estatus")
314 || strprefix (str, "bstatus")
315 || strprefix (str, "ienable")
316 || strprefix (str, "ipending")
317 || strprefix (str, "exception")
318 || strprefix (str, "pteaddr")
319 || strprefix (str, "tlbacc")
320 || strprefix (str, "tlbmisc")
321 || strprefix (str, "fstatus")
322 || strprefix (str, "config")
323 || strprefix (str, "mpubase")
324 || strprefix (str, "mpuacc")
325 || strprefix (str, "badaddr"));
326 }
327
328 /* Return true if STR is prefixed with a special relocation operator. */
329 static int
330 nios2_special_relocation_p (const char *str)
331 {
332 return (strprefix (str, "%lo")
333 || strprefix (str, "%hi")
334 || strprefix (str, "%hiadj")
335 || strprefix (str, "%gprel")
336 || strprefix (str, "%got")
337 || strprefix (str, "%call")
338 || strprefix (str, "%gotoff_lo")
339 || strprefix (str, "%gotoff_hiadj")
340 || strprefix (str, "%tls_gd")
341 || strprefix (str, "%tls_ldm")
342 || strprefix (str, "%tls_ldo")
343 || strprefix (str, "%tls_ie")
344 || strprefix (str, "%tls_le")
345 || strprefix (str, "%gotoff"));
346 }
347
348 /* Checks whether the register name is a coprocessor
349 register - returns TRUE if it is, FALSE otherwise. */
350 static bfd_boolean
351 nios2_coproc_reg (const char *reg_name)
352 {
353 gas_assert (reg_name != NULL);
354
355 /* Check that we do have a valid register name and that it is a
356 coprocessor register.
357 It must begin with c, not be a control register, and be a valid
358 register name. */
359 if (strprefix (reg_name, "c")
360 && !strprefix (reg_name, "ctl")
361 && hash_find (nios2_reg_hash, reg_name) != NULL)
362 return TRUE;
363 else
364 return FALSE;
365 }
366
367 /* nop fill pattern for text section. */
368 static char const nop[4] = { 0x3a, 0x88, 0x01, 0x00 };
369
370 /* Handles all machine-dependent alignment needs. */
371 static void
372 nios2_align (int log_size, const char *pfill, symbolS *label)
373 {
374 int align;
375 long max_alignment = 15;
376
377 /* The front end is prone to changing segments out from under us
378 temporarily when -g is in effect. */
379 int switched_seg_p = (nios2_current_align_seg != now_seg);
380
381 align = log_size;
382 if (align > max_alignment)
383 {
384 align = max_alignment;
385 as_bad (_("Alignment too large: %d. assumed"), align);
386 }
387 else if (align < 0)
388 {
389 as_warn (_("Alignment negative: 0 assumed"));
390 align = 0;
391 }
392
393 if (align != 0)
394 {
395 if (subseg_text_p (now_seg) && align >= 2)
396 {
397 /* First, make sure we're on a four-byte boundary, in case
398 someone has been putting .byte values the text section. */
399 if (nios2_current_align < 2 || switched_seg_p)
400 frag_align (2, 0, 0);
401
402 /* Now fill in the alignment pattern. */
403 if (pfill != NULL)
404 frag_align_pattern (align, pfill, sizeof nop, 0);
405 else
406 frag_align (align, 0, 0);
407 }
408 else
409 frag_align (align, 0, 0);
410
411 if (!switched_seg_p)
412 nios2_current_align = align;
413
414 /* If the last label was in a different section we can't align it. */
415 if (label != NULL && !switched_seg_p)
416 {
417 symbolS *sym;
418 int label_seen = FALSE;
419 struct frag *old_frag;
420 valueT old_value;
421 valueT new_value;
422
423 gas_assert (S_GET_SEGMENT (label) == now_seg);
424
425 old_frag = symbol_get_frag (label);
426 old_value = S_GET_VALUE (label);
427 new_value = (valueT) frag_now_fix ();
428
429 /* It is possible to have more than one label at a particular
430 address, especially if debugging is enabled, so we must
431 take care to adjust all the labels at this address in this
432 fragment. To save time we search from the end of the symbol
433 list, backwards, since the symbols we are interested in are
434 almost certainly the ones that were most recently added.
435 Also to save time we stop searching once we have seen at least
436 one matching label, and we encounter a label that is no longer
437 in the target fragment. Note, this search is guaranteed to
438 find at least one match when sym == label, so no special case
439 code is necessary. */
440 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym))
441 if (symbol_get_frag (sym) == old_frag
442 && S_GET_VALUE (sym) == old_value)
443 {
444 label_seen = TRUE;
445 symbol_set_frag (sym, frag_now);
446 S_SET_VALUE (sym, new_value);
447 }
448 else if (label_seen && symbol_get_frag (sym) != old_frag)
449 break;
450 }
451 record_alignment (now_seg, align);
452 }
453 }
454
455 \f
456 /** Support for self-check mode. */
457
458 /* Mode of the assembler. */
459 typedef enum
460 {
461 NIOS2_MODE_ASSEMBLE, /* Ordinary operation. */
462 NIOS2_MODE_TEST /* Hidden mode used for self testing. */
463 } NIOS2_MODE;
464
465 static NIOS2_MODE nios2_mode = NIOS2_MODE_ASSEMBLE;
466
467 /* This function is used to in self-checking mode
468 to check the assembled instruction
469 opcode should be the assembled opcode, and exp_opcode
470 the parsed string representing the expected opcode. */
471 static void
472 nios2_check_assembly (unsigned int opcode, const char *exp_opcode)
473 {
474 if (nios2_mode == NIOS2_MODE_TEST)
475 {
476 if (exp_opcode == NULL)
477 as_bad (_("expecting opcode string in self test mode"));
478 else if (opcode != strtoul (exp_opcode, NULL, 16))
479 as_bad (_("assembly 0x%08x, expected %s"), opcode, exp_opcode);
480 }
481 }
482
483 \f
484 /** Support for machine-dependent assembler directives. */
485 /* Handle the .align pseudo-op. This aligns to a power of two. It
486 also adjusts any current instruction label. We treat this the same
487 way the MIPS port does: .align 0 turns off auto alignment. */
488 static void
489 s_nios2_align (int ignore ATTRIBUTE_UNUSED)
490 {
491 int align;
492 char fill;
493 const char *pfill = NULL;
494 long max_alignment = 15;
495
496 align = get_absolute_expression ();
497 if (align > max_alignment)
498 {
499 align = max_alignment;
500 as_bad (_("Alignment too large: %d. assumed"), align);
501 }
502 else if (align < 0)
503 {
504 as_warn (_("Alignment negative: 0 assumed"));
505 align = 0;
506 }
507
508 if (*input_line_pointer == ',')
509 {
510 input_line_pointer++;
511 fill = get_absolute_expression ();
512 pfill = (const char *) &fill;
513 }
514 else if (subseg_text_p (now_seg))
515 pfill = (const char *) &nop;
516 else
517 {
518 pfill = NULL;
519 nios2_last_label = NULL;
520 }
521
522 if (align != 0)
523 {
524 nios2_auto_align_on = 1;
525 nios2_align (align, pfill, nios2_last_label);
526 nios2_last_label = NULL;
527 }
528 else
529 nios2_auto_align_on = 0;
530
531 demand_empty_rest_of_line ();
532 }
533
534 /* Handle the .text pseudo-op. This is like the usual one, but it
535 clears the saved last label and resets known alignment. */
536 static void
537 s_nios2_text (int i)
538 {
539 s_text (i);
540 nios2_last_label = NULL;
541 nios2_current_align = 0;
542 nios2_current_align_seg = now_seg;
543 }
544
545 /* Handle the .data pseudo-op. This is like the usual one, but it
546 clears the saved last label and resets known alignment. */
547 static void
548 s_nios2_data (int i)
549 {
550 s_data (i);
551 nios2_last_label = NULL;
552 nios2_current_align = 0;
553 nios2_current_align_seg = now_seg;
554 }
555
556 /* Handle the .section pseudo-op. This is like the usual one, but it
557 clears the saved last label and resets known alignment. */
558 static void
559 s_nios2_section (int ignore)
560 {
561 obj_elf_section (ignore);
562 nios2_last_label = NULL;
563 nios2_current_align = 0;
564 nios2_current_align_seg = now_seg;
565 }
566
567 /* Explicitly unaligned cons. */
568 static void
569 s_nios2_ucons (int nbytes)
570 {
571 int hold;
572 hold = nios2_auto_align_on;
573 nios2_auto_align_on = 0;
574 cons (nbytes);
575 nios2_auto_align_on = hold;
576 }
577
578 /* Handle the .sdata directive. */
579 static void
580 s_nios2_sdata (int ignore ATTRIBUTE_UNUSED)
581 {
582 get_absolute_expression (); /* Ignored. */
583 subseg_new (".sdata", 0);
584 demand_empty_rest_of_line ();
585 }
586
587 /* .set sets assembler options eg noat/at and is also used
588 to set symbol values (.equ, .equiv ). */
589 static void
590 s_nios2_set (int equiv)
591 {
592 char *directive = input_line_pointer;
593 char delim = get_symbol_end ();
594 char *endline = input_line_pointer;
595 *endline = delim;
596
597 /* We only want to handle ".set XXX" if the
598 user has tried ".set XXX, YYY" they are not
599 trying a directive. This prevents
600 us from polluting the name space. */
601 SKIP_WHITESPACE ();
602 if (is_end_of_line[(unsigned char) *input_line_pointer])
603 {
604 bfd_boolean done = TRUE;
605 *endline = 0;
606
607 if (!strcmp (directive, "noat"))
608 nios2_as_options.noat = TRUE;
609 else if (!strcmp (directive, "at"))
610 nios2_as_options.noat = FALSE;
611 else if (!strcmp (directive, "nobreak"))
612 nios2_as_options.nobreak = TRUE;
613 else if (!strcmp (directive, "break"))
614 nios2_as_options.nobreak = FALSE;
615 else if (!strcmp (directive, "norelax"))
616 nios2_as_options.relax = relax_none;
617 else if (!strcmp (directive, "relaxsection"))
618 nios2_as_options.relax = relax_section;
619 else if (!strcmp (directive, "relaxall"))
620 nios2_as_options.relax = relax_all;
621 else
622 done = FALSE;
623
624 if (done)
625 {
626 *endline = delim;
627 demand_empty_rest_of_line ();
628 return;
629 }
630 }
631
632 /* If we fall through to here, either we have ".set XXX, YYY"
633 or we have ".set XXX" where XXX is unknown or we have
634 a syntax error. */
635 input_line_pointer = directive;
636 *endline = delim;
637 s_set (equiv);
638 }
639
640 /* Machine-dependent assembler directives.
641 Format of each entry is:
642 { "directive", handler_func, param } */
643 const pseudo_typeS md_pseudo_table[] = {
644 {"align", s_nios2_align, 0},
645 {"text", s_nios2_text, 0},
646 {"data", s_nios2_data, 0},
647 {"section", s_nios2_section, 0},
648 {"section.s", s_nios2_section, 0},
649 {"sect", s_nios2_section, 0},
650 {"sect.s", s_nios2_section, 0},
651 /* .dword and .half are included for compatibility with MIPS. */
652 {"dword", cons, 8},
653 {"half", cons, 2},
654 /* NIOS2 native word size is 4 bytes, so we override
655 the GAS default of 2. */
656 {"word", cons, 4},
657 /* Explicitly unaligned directives. */
658 {"2byte", s_nios2_ucons, 2},
659 {"4byte", s_nios2_ucons, 4},
660 {"8byte", s_nios2_ucons, 8},
661 {"16byte", s_nios2_ucons, 16},
662 #ifdef OBJ_ELF
663 {"sdata", s_nios2_sdata, 0},
664 #endif
665 {"set", s_nios2_set, 0},
666 {NULL, NULL, 0}
667 };
668
669 \f
670 /** Relaxation support. */
671
672 /* We support two relaxation modes: a limited PC-relative mode with
673 -relax-section (the default), and an absolute jump mode with -relax-all.
674
675 Nios II PC-relative branch instructions only support 16-bit offsets.
676 And, there's no good way to add a 32-bit constant to the PC without
677 using two registers.
678
679 To deal with this, for the pc-relative relaxation mode we convert
680 br label
681 into a series of 16-bit adds, like:
682 nextpc at
683 addi at, at, 32767
684 ...
685 addi at, at, remainder
686 jmp at
687
688 Similarly, conditional branches are converted from
689 b(condition) r, s, label
690 into a series like:
691 b(opposite condition) r, s, skip
692 nextpc at
693 addi at, at, 32767
694 ...
695 addi at, at, remainder
696 jmp at
697 skip:
698
699 The compiler can do a better job, either by converting the branch
700 directly into a JMP (going through the GOT for PIC) or by allocating
701 a second register for the 32-bit displacement.
702
703 For the -relax-all relaxation mode, the conversions are
704 movhi at, %hi(symbol+offset)
705 ori at, %lo(symbol+offset)
706 jmp at
707 and
708 b(opposite condition), r, s, skip
709 movhi at, %hi(symbol+offset)
710 ori at, %lo(symbol+offset)
711 jmp at
712 skip:
713 respectively.
714 */
715
716 /* Arbitrarily limit the number of addis we can insert; we need to be able
717 to specify the maximum growth size for each frag that contains a
718 relaxable branch. There's no point in specifying a huge number here
719 since that means the assembler needs to allocate that much extra
720 memory for every branch, and almost no real code will ever need it.
721 Plus, as already noted a better solution is to just use a jmp, or
722 allocate a second register to hold a 32-bit displacement.
723 FIXME: Rather than making this a constant, it could be controlled by
724 a command-line argument. */
725 #define RELAX_MAX_ADDI 32
726
727 /* The fr_subtype field represents the target-specific relocation state.
728 It has type relax_substateT (unsigned int). We use it to track the
729 number of addis necessary, plus a bit to track whether this is a
730 conditional branch.
731 Regardless of the smaller RELAX_MAX_ADDI limit, we reserve 16 bits
732 in the fr_subtype to encode the number of addis so that the whole
733 theoretically-valid range is representable.
734 For the -relax-all mode, N = 0 represents an in-range branch and N = 1
735 represents a branch that needs to be relaxed. */
736 #define UBRANCH (0 << 16)
737 #define CBRANCH (1 << 16)
738 #define IS_CBRANCH(SUBTYPE) ((SUBTYPE) & CBRANCH)
739 #define IS_UBRANCH(SUBTYPE) (!IS_CBRANCH (SUBTYPE))
740 #define UBRANCH_SUBTYPE(N) (UBRANCH | (N))
741 #define CBRANCH_SUBTYPE(N) (CBRANCH | (N))
742 #define SUBTYPE_ADDIS(SUBTYPE) ((SUBTYPE) & 0xffff)
743
744 /* For the -relax-section mode, unconditional branches require 2 extra i
745 nstructions besides the addis, conditional branches require 3. */
746 #define UBRANCH_ADDIS_TO_SIZE(N) (((N) + 2) * 4)
747 #define CBRANCH_ADDIS_TO_SIZE(N) (((N) + 3) * 4)
748
749 /* For the -relax-all mode, unconditional branches require 3 instructions
750 and conditional branches require 4. */
751 #define UBRANCH_JUMP_SIZE 12
752 #define CBRANCH_JUMP_SIZE 16
753
754 /* Maximum sizes of relaxation sequences. */
755 #define UBRANCH_MAX_SIZE \
756 (nios2_as_options.relax == relax_all \
757 ? UBRANCH_JUMP_SIZE \
758 : UBRANCH_ADDIS_TO_SIZE (RELAX_MAX_ADDI))
759 #define CBRANCH_MAX_SIZE \
760 (nios2_as_options.relax == relax_all \
761 ? CBRANCH_JUMP_SIZE \
762 : CBRANCH_ADDIS_TO_SIZE (RELAX_MAX_ADDI))
763
764 /* Register number of AT, the assembler temporary. */
765 #define AT_REGNUM 1
766
767 /* Determine how many bytes are required to represent the sequence
768 indicated by SUBTYPE. */
769 static int
770 nios2_relax_subtype_size (relax_substateT subtype)
771 {
772 int n = SUBTYPE_ADDIS (subtype);
773 if (n == 0)
774 /* Regular conditional/unconditional branch instruction. */
775 return 4;
776 else if (nios2_as_options.relax == relax_all)
777 return (IS_CBRANCH (subtype) ? CBRANCH_JUMP_SIZE : UBRANCH_JUMP_SIZE);
778 else if (IS_CBRANCH (subtype))
779 return CBRANCH_ADDIS_TO_SIZE (n);
780 else
781 return UBRANCH_ADDIS_TO_SIZE (n);
782 }
783
784 /* Estimate size of fragp before relaxation.
785 This could also examine the offset in fragp and adjust
786 fragp->fr_subtype, but we will do that in nios2_relax_frag anyway. */
787 int
788 md_estimate_size_before_relax (fragS *fragp, segT segment ATTRIBUTE_UNUSED)
789 {
790 return nios2_relax_subtype_size (fragp->fr_subtype);
791 }
792
793 /* Implement md_relax_frag, returning the change in size of the frag. */
794 long
795 nios2_relax_frag (segT segment, fragS *fragp, long stretch)
796 {
797 addressT target = fragp->fr_offset;
798 relax_substateT subtype = fragp->fr_subtype;
799 symbolS *symbolp = fragp->fr_symbol;
800
801 if (symbolp)
802 {
803 fragS *sym_frag = symbol_get_frag (symbolp);
804 offsetT offset;
805 int n;
806
807 target += S_GET_VALUE (symbolp);
808
809 /* See comments in write.c:relax_frag about handling of stretch. */
810 if (stretch != 0
811 && sym_frag->relax_marker != fragp->relax_marker)
812 {
813 if (stretch < 0 || sym_frag->region == fragp->region)
814 target += stretch;
815 else if (target < fragp->fr_address)
816 target = fragp->fr_next->fr_address + stretch;
817 }
818
819 /* We subtract 4 because all pc relative branches are
820 from the next instruction. */
821 offset = target - fragp->fr_address - fragp->fr_fix - 4;
822 if (offset >= -32768 && offset <= 32764)
823 /* Fits in PC-relative branch. */
824 n = 0;
825 else if (nios2_as_options.relax == relax_all)
826 /* Convert to jump. */
827 n = 1;
828 else if (nios2_as_options.relax == relax_section
829 && S_GET_SEGMENT (symbolp) == segment
830 && S_IS_DEFINED (symbolp))
831 /* Attempt a PC-relative relaxation on a branch to a defined
832 symbol in the same segment. */
833 {
834 /* The relaxation for conditional branches is offset by 4
835 bytes because we insert the inverted branch around the
836 sequence. */
837 if (IS_CBRANCH (subtype))
838 offset = offset - 4;
839 if (offset > 0)
840 n = offset / 32767 + 1;
841 else
842 n = offset / -32768 + 1;
843
844 /* Bail out immediately if relaxation has failed. If we try to
845 defer the diagnostic to md_convert_frag, some pathological test
846 cases (e.g. gcc/testsuite/gcc.c-torture/compile/20001226-1.c)
847 apparently never converge. By returning 0 here we could pretend
848 to the caller that nothing has changed, but that leaves things
849 in an inconsistent state when we get to md_convert_frag. */
850 if (n > RELAX_MAX_ADDI)
851 {
852 as_bad_where (fragp->fr_file, fragp->fr_line,
853 _("branch offset out of range\n"));
854 as_fatal (_("branch relaxation failed\n"));
855 }
856 }
857 else
858 /* We cannot handle this case, diagnose overflow later. */
859 return 0;
860
861 if (IS_CBRANCH (subtype))
862 fragp->fr_subtype = CBRANCH_SUBTYPE (n);
863 else
864 fragp->fr_subtype = UBRANCH_SUBTYPE (n);
865
866 return (nios2_relax_subtype_size (fragp->fr_subtype)
867 - nios2_relax_subtype_size (subtype));
868 }
869
870 /* If we got here, it's probably an error. */
871 return 0;
872 }
873
874
875 /* Complete fragp using the data from the relaxation pass. */
876 void
877 md_convert_frag (bfd *headers ATTRIBUTE_UNUSED, segT segment ATTRIBUTE_UNUSED,
878 fragS *fragp)
879 {
880 char *buffer = fragp->fr_literal + fragp->fr_fix;
881 relax_substateT subtype = fragp->fr_subtype;
882 int n = SUBTYPE_ADDIS (subtype);
883 addressT target = fragp->fr_offset;
884 symbolS *symbolp = fragp->fr_symbol;
885 offsetT offset;
886 unsigned int addend_mask, addi_mask;
887 offsetT addend, remainder;
888 int i;
889
890 /* If we didn't or can't relax, this is a regular branch instruction.
891 We just need to generate the fixup for the symbol and offset. */
892 if (n == 0)
893 {
894 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset, 1,
895 BFD_RELOC_16_PCREL);
896 fragp->fr_fix += 4;
897 return;
898 }
899
900 /* Replace the cbranch at fr_fix with one that has the opposite condition
901 in order to jump around the block of instructions we'll be adding. */
902 if (IS_CBRANCH (subtype))
903 {
904 unsigned int br_opcode;
905 int nbytes;
906
907 /* Account for the nextpc and jmp in the pc-relative case, or the two
908 load instructions and jump in the absolute case. */
909 if (nios2_as_options.relax == relax_section)
910 nbytes = (n + 2) * 4;
911 else
912 nbytes = 12;
913
914 br_opcode = md_chars_to_number (buffer, 4);
915 switch (br_opcode & OP_MASK_OP)
916 {
917 case OP_MATCH_BEQ:
918 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BNE;
919 break;
920 case OP_MATCH_BNE:
921 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BEQ ;
922 break;
923 case OP_MATCH_BGE:
924 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BLT ;
925 break;
926 case OP_MATCH_BGEU:
927 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BLTU ;
928 break;
929 case OP_MATCH_BLT:
930 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BGE ;
931 break;
932 case OP_MATCH_BLTU:
933 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BGEU ;
934 break;
935 default:
936 as_bad_where (fragp->fr_file, fragp->fr_line,
937 _("expecting conditional branch for relaxation\n"));
938 abort ();
939 }
940
941 br_opcode = br_opcode | (nbytes << OP_SH_IMM16);
942 md_number_to_chars (buffer, br_opcode, 4);
943 fragp->fr_fix += 4;
944 buffer += 4;
945 }
946
947 /* Load at for the PC-relative case. */
948 if (nios2_as_options.relax == relax_section)
949 {
950 /* Insert the nextpc instruction. */
951 md_number_to_chars (buffer,
952 OP_MATCH_NEXTPC | (AT_REGNUM << OP_SH_RRD), 4);
953 fragp->fr_fix += 4;
954 buffer += 4;
955
956 /* We need to know whether the offset is positive or negative. */
957 target += S_GET_VALUE (symbolp);
958 offset = target - fragp->fr_address - fragp->fr_fix;
959 if (offset > 0)
960 addend = 32767;
961 else
962 addend = -32768;
963 addend_mask = (((unsigned int)addend) & 0xffff) << OP_SH_IMM16;
964
965 /* Insert n-1 addi instructions. */
966 addi_mask = (OP_MATCH_ADDI
967 | (AT_REGNUM << OP_SH_IRD)
968 | (AT_REGNUM << OP_SH_IRS));
969 for (i = 0; i < n - 1; i ++)
970 {
971 md_number_to_chars (buffer, addi_mask | addend_mask, 4);
972 fragp->fr_fix += 4;
973 buffer += 4;
974 }
975
976 /* Insert the last addi instruction to hold the remainder. */
977 remainder = offset - addend * (n - 1);
978 gas_assert (remainder >= -32768 && remainder <= 32767);
979 addend_mask = (((unsigned int)remainder) & 0xffff) << OP_SH_IMM16;
980 md_number_to_chars (buffer, addi_mask | addend_mask, 4);
981 fragp->fr_fix += 4;
982 buffer += 4;
983 }
984
985 /* Load at for the absolute case. */
986 else
987 {
988 md_number_to_chars (buffer, OP_MATCH_ORHI | 0x00400000, 4);
989 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset,
990 0, BFD_RELOC_NIOS2_HI16);
991 fragp->fr_fix += 4;
992 buffer += 4;
993 md_number_to_chars (buffer, OP_MATCH_ORI | 0x08400000, 4);
994 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset,
995 0, BFD_RELOC_NIOS2_LO16);
996 fragp->fr_fix += 4;
997 buffer += 4;
998 }
999
1000 /* Insert the jmp instruction. */
1001 md_number_to_chars (buffer, OP_MATCH_JMP | (AT_REGNUM << OP_SH_RRS), 4);
1002 fragp->fr_fix += 4;
1003 buffer += 4;
1004 }
1005
1006 \f
1007 /** Fixups and overflow checking. */
1008
1009 /* Check a fixup for overflow. */
1010 static bfd_boolean
1011 nios2_check_overflow (valueT fixup, reloc_howto_type *howto)
1012 {
1013 /* Apply the rightshift before checking for overflow. */
1014 fixup = ((signed)fixup) >> howto->rightshift;
1015
1016 /* Check for overflow - return TRUE if overflow, FALSE if not. */
1017 switch (howto->complain_on_overflow)
1018 {
1019 case complain_overflow_dont:
1020 break;
1021 case complain_overflow_bitfield:
1022 if ((fixup >> howto->bitsize) != 0
1023 && ((signed) fixup >> howto->bitsize) != -1)
1024 return TRUE;
1025 break;
1026 case complain_overflow_signed:
1027 if ((fixup & 0x80000000) > 0)
1028 {
1029 /* Check for negative overflow. */
1030 if ((signed) fixup < ((signed) 0x80000000 >> howto->bitsize))
1031 return TRUE;
1032 }
1033 else
1034 {
1035 /* Check for positive overflow. */
1036 if (fixup >= ((unsigned) 1 << (howto->bitsize - 1)))
1037 return TRUE;
1038 }
1039 break;
1040 case complain_overflow_unsigned:
1041 if ((fixup >> howto->bitsize) != 0)
1042 return TRUE;
1043 break;
1044 default:
1045 as_bad (_("error checking for overflow - broken assembler"));
1046 break;
1047 }
1048 return FALSE;
1049 }
1050
1051 /* Emit diagnostic for fixup overflow. */
1052 static void
1053 nios2_diagnose_overflow (valueT fixup, reloc_howto_type *howto,
1054 fixS *fixP, valueT value)
1055 {
1056 if (fixP->fx_r_type == BFD_RELOC_8
1057 || fixP->fx_r_type == BFD_RELOC_16
1058 || fixP->fx_r_type == BFD_RELOC_32)
1059 /* These relocs are against data, not instructions. */
1060 as_bad_where (fixP->fx_file, fixP->fx_line,
1061 _("immediate value 0x%x truncated to 0x%x"),
1062 (unsigned int) fixup,
1063 (unsigned int) (~(~(valueT) 0 << howto->bitsize) & fixup));
1064 else
1065 {
1066 /* What opcode is the instruction? This will determine
1067 whether we check for overflow in immediate values
1068 and what error message we get. */
1069 const struct nios2_opcode *opcode;
1070 enum overflow_type overflow_msg_type;
1071 unsigned int range_min;
1072 unsigned int range_max;
1073 unsigned int address;
1074 gas_assert (fixP->fx_size == 4);
1075 opcode = nios2_find_opcode_hash (value);
1076 gas_assert (opcode);
1077 overflow_msg_type = opcode->overflow_msg;
1078 switch (overflow_msg_type)
1079 {
1080 case call_target_overflow:
1081 range_min
1082 = ((fixP->fx_frag->fr_address + fixP->fx_where) & 0xf0000000);
1083 range_max = range_min + 0x0fffffff;
1084 address = fixup | range_min;
1085
1086 as_bad_where (fixP->fx_file, fixP->fx_line,
1087 _("call target address 0x%08x out of range 0x%08x to 0x%08x"),
1088 address, range_min, range_max);
1089 break;
1090 case branch_target_overflow:
1091 as_bad_where (fixP->fx_file, fixP->fx_line,
1092 _("branch offset %d out of range %d to %d"),
1093 (int)fixup, -32768, 32767);
1094 break;
1095 case address_offset_overflow:
1096 as_bad_where (fixP->fx_file, fixP->fx_line,
1097 _("%s offset %d out of range %d to %d"),
1098 opcode->name, (int)fixup, -32768, 32767);
1099 break;
1100 case signed_immed16_overflow:
1101 as_bad_where (fixP->fx_file, fixP->fx_line,
1102 _("immediate value %d out of range %d to %d"),
1103 (int)fixup, -32768, 32767);
1104 break;
1105 case unsigned_immed16_overflow:
1106 as_bad_where (fixP->fx_file, fixP->fx_line,
1107 _("immediate value %u out of range %u to %u"),
1108 (unsigned int)fixup, 0, 65535);
1109 break;
1110 case unsigned_immed5_overflow:
1111 as_bad_where (fixP->fx_file, fixP->fx_line,
1112 _("immediate value %u out of range %u to %u"),
1113 (unsigned int)fixup, 0, 31);
1114 break;
1115 case custom_opcode_overflow:
1116 as_bad_where (fixP->fx_file, fixP->fx_line,
1117 _("custom instruction opcode %u out of range %u to %u"),
1118 (unsigned int)fixup, 0, 255);
1119 break;
1120 default:
1121 as_bad_where (fixP->fx_file, fixP->fx_line,
1122 _("overflow in immediate argument"));
1123 break;
1124 }
1125 }
1126 }
1127
1128 /* Apply a fixup to the object file. */
1129 void
1130 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
1131 {
1132 /* Assert that the fixup is one we can handle. */
1133 gas_assert (fixP != NULL && valP != NULL
1134 && (fixP->fx_r_type == BFD_RELOC_8
1135 || fixP->fx_r_type == BFD_RELOC_16
1136 || fixP->fx_r_type == BFD_RELOC_32
1137 || fixP->fx_r_type == BFD_RELOC_64
1138 || fixP->fx_r_type == BFD_RELOC_NIOS2_S16
1139 || fixP->fx_r_type == BFD_RELOC_NIOS2_U16
1140 || fixP->fx_r_type == BFD_RELOC_16_PCREL
1141 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALL26
1142 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM5
1143 || fixP->fx_r_type == BFD_RELOC_NIOS2_CACHE_OPX
1144 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM6
1145 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM8
1146 || fixP->fx_r_type == BFD_RELOC_NIOS2_HI16
1147 || fixP->fx_r_type == BFD_RELOC_NIOS2_LO16
1148 || fixP->fx_r_type == BFD_RELOC_NIOS2_HIADJ16
1149 || fixP->fx_r_type == BFD_RELOC_NIOS2_GPREL
1150 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1151 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
1152 || fixP->fx_r_type == BFD_RELOC_NIOS2_UJMP
1153 || fixP->fx_r_type == BFD_RELOC_NIOS2_CJMP
1154 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALLR
1155 || fixP->fx_r_type == BFD_RELOC_NIOS2_ALIGN
1156 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOT16
1157 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALL16
1158 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_LO
1159 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_HA
1160 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_GD16
1161 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LDM16
1162 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LDO16
1163 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_IE16
1164 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LE16
1165 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF
1166 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPREL
1167 /* Add other relocs here as we generate them. */
1168 ));
1169
1170 if (fixP->fx_r_type == BFD_RELOC_64)
1171 {
1172 /* We may reach here due to .8byte directives, but we never output
1173 BFD_RELOC_64; it must be resolved. */
1174 if (fixP->fx_addsy != NULL)
1175 as_bad_where (fixP->fx_file, fixP->fx_line,
1176 _("cannot create 64-bit relocation"));
1177 else
1178 {
1179 md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
1180 *valP, 8);
1181 fixP->fx_done = 1;
1182 }
1183 return;
1184 }
1185
1186 /* The value passed in valP can be the value of a fully
1187 resolved expression, or it can be the value of a partially
1188 resolved expression. In the former case, both fixP->fx_addsy
1189 and fixP->fx_subsy are NULL, and fixP->fx_offset == *valP, and
1190 we can fix up the instruction that fixP relates to.
1191 In the latter case, one or both of fixP->fx_addsy and
1192 fixP->fx_subsy are not NULL, and fixP->fx_offset may or may not
1193 equal *valP. We don't need to check for fixP->fx_subsy being null
1194 because the generic part of the assembler generates an error if
1195 it is not an absolute symbol. */
1196 if (fixP->fx_addsy != NULL)
1197 /* Partially resolved expression. */
1198 {
1199 fixP->fx_addnumber = fixP->fx_offset;
1200 fixP->fx_done = 0;
1201
1202 switch (fixP->fx_r_type)
1203 {
1204 case BFD_RELOC_NIOS2_TLS_GD16:
1205 case BFD_RELOC_NIOS2_TLS_LDM16:
1206 case BFD_RELOC_NIOS2_TLS_LDO16:
1207 case BFD_RELOC_NIOS2_TLS_IE16:
1208 case BFD_RELOC_NIOS2_TLS_LE16:
1209 case BFD_RELOC_NIOS2_TLS_DTPMOD:
1210 case BFD_RELOC_NIOS2_TLS_DTPREL:
1211 case BFD_RELOC_NIOS2_TLS_TPREL:
1212 S_SET_THREAD_LOCAL (fixP->fx_addsy);
1213 break;
1214 default:
1215 break;
1216 }
1217 }
1218 else
1219 /* Fully resolved fixup. */
1220 {
1221 reloc_howto_type *howto
1222 = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
1223
1224 if (howto == NULL)
1225 as_bad_where (fixP->fx_file, fixP->fx_line,
1226 _("relocation is not supported"));
1227 else
1228 {
1229 valueT fixup = *valP;
1230 valueT value;
1231 char *buf;
1232
1233 /* If this is a pc-relative relocation, we need to
1234 subtract the current offset within the object file
1235 FIXME : for some reason fixP->fx_pcrel isn't 1 when it should be
1236 so I'm using the howto structure instead to determine this. */
1237 if (howto->pc_relative == 1)
1238 fixup = fixup - (fixP->fx_frag->fr_address + fixP->fx_where + 4);
1239
1240 /* Get the instruction or data to be fixed up. */
1241 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
1242 value = md_chars_to_number (buf, fixP->fx_size);
1243
1244 /* Check for overflow, emitting a diagnostic if necessary. */
1245 if (nios2_check_overflow (fixup, howto))
1246 nios2_diagnose_overflow (fixup, howto, fixP, value);
1247
1248 /* Apply the right shift. */
1249 fixup = ((signed)fixup) >> howto->rightshift;
1250
1251 /* Truncate the fixup to right size. */
1252 switch (fixP->fx_r_type)
1253 {
1254 case BFD_RELOC_NIOS2_HI16:
1255 fixup = (fixup >> 16) & 0xFFFF;
1256 break;
1257 case BFD_RELOC_NIOS2_LO16:
1258 fixup = fixup & 0xFFFF;
1259 break;
1260 case BFD_RELOC_NIOS2_HIADJ16:
1261 fixup = ((fixup >> 16) & 0xFFFF) + ((fixup >> 15) & 0x01);
1262 break;
1263 default:
1264 {
1265 int n = sizeof (fixup) * 8 - howto->bitsize;
1266 fixup = (fixup << n) >> n;
1267 break;
1268 }
1269 }
1270
1271 /* Fix up the instruction. */
1272 value = (value & ~howto->dst_mask) | (fixup << howto->bitpos);
1273 md_number_to_chars (buf, value, fixP->fx_size);
1274 }
1275
1276 fixP->fx_done = 1;
1277 }
1278
1279 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT)
1280 {
1281 fixP->fx_done = 0;
1282 if (fixP->fx_addsy
1283 && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy))
1284 S_SET_WEAK (fixP->fx_addsy);
1285 }
1286 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1287 fixP->fx_done = 0;
1288 }
1289
1290
1291 \f
1292 /** Instruction parsing support. */
1293
1294 /* Special relocation directive strings. */
1295
1296 struct nios2_special_relocS
1297 {
1298 const char *string;
1299 bfd_reloc_code_real_type reloc_type;
1300 };
1301
1302 struct nios2_special_relocS nios2_special_reloc[] = {
1303 {"%hiadj", BFD_RELOC_NIOS2_HIADJ16},
1304 {"%hi", BFD_RELOC_NIOS2_HI16},
1305 {"%lo", BFD_RELOC_NIOS2_LO16},
1306 {"%gprel", BFD_RELOC_NIOS2_GPREL},
1307 {"%call", BFD_RELOC_NIOS2_CALL16},
1308 {"%gotoff_lo", BFD_RELOC_NIOS2_GOTOFF_LO},
1309 {"%gotoff_hiadj", BFD_RELOC_NIOS2_GOTOFF_HA},
1310 {"%tls_gd", BFD_RELOC_NIOS2_TLS_GD16},
1311 {"%tls_ldm", BFD_RELOC_NIOS2_TLS_LDM16},
1312 {"%tls_ldo", BFD_RELOC_NIOS2_TLS_LDO16},
1313 {"%tls_ie", BFD_RELOC_NIOS2_TLS_IE16},
1314 {"%tls_le", BFD_RELOC_NIOS2_TLS_LE16},
1315 {"%gotoff", BFD_RELOC_NIOS2_GOTOFF},
1316 {"%got", BFD_RELOC_NIOS2_GOT16}
1317 };
1318
1319 #define NIOS2_NUM_SPECIAL_RELOCS \
1320 (sizeof(nios2_special_reloc)/sizeof(nios2_special_reloc[0]))
1321 const int nios2_num_special_relocs = NIOS2_NUM_SPECIAL_RELOCS;
1322
1323 /* Creates a new nios2_insn_relocS and returns a pointer to it. */
1324 static nios2_insn_relocS *
1325 nios2_insn_reloc_new (bfd_reloc_code_real_type reloc_type, unsigned int pcrel)
1326 {
1327 nios2_insn_relocS *retval;
1328 retval = (nios2_insn_relocS *) malloc (sizeof (nios2_insn_relocS));
1329 if (retval == NULL)
1330 {
1331 as_bad (_("can't create relocation"));
1332 abort ();
1333 }
1334
1335 /* Fill out the fields with default values. */
1336 retval->reloc_next = NULL;
1337 retval->reloc_type = reloc_type;
1338 retval->reloc_pcrel = pcrel;
1339 return retval;
1340 }
1341
1342 /* Frees up memory previously allocated by nios2_insn_reloc_new(). */
1343 /* FIXME: this is never called; memory leak? */
1344 #if 0
1345 static void
1346 nios2_insn_reloc_destroy (nios2_insn_relocS *reloc)
1347 {
1348 gas_assert (reloc != NULL);
1349 free (reloc);
1350 }
1351 #endif
1352
1353 /* The various nios2_assemble_* functions call this
1354 function to generate an expression from a string representing an expression.
1355 It then tries to evaluate the expression, and if it can, returns its value.
1356 If not, it creates a new nios2_insn_relocS and stores the expression and
1357 reloc_type for future use. */
1358 static unsigned long
1359 nios2_assemble_expression (const char *exprstr,
1360 nios2_insn_infoS *insn,
1361 nios2_insn_relocS *prev_reloc,
1362 bfd_reloc_code_real_type reloc_type,
1363 unsigned int pcrel)
1364 {
1365 nios2_insn_relocS *reloc;
1366 char *saved_line_ptr;
1367 unsigned short value;
1368 int i;
1369
1370 gas_assert (exprstr != NULL);
1371 gas_assert (insn != NULL);
1372
1373 /* Check for relocation operators.
1374 Change the relocation type and advance the ptr to the start of
1375 the expression proper. */
1376 for (i = 0; i < nios2_num_special_relocs; i++)
1377 if (strstr (exprstr, nios2_special_reloc[i].string) != NULL)
1378 {
1379 reloc_type = nios2_special_reloc[i].reloc_type;
1380 exprstr += strlen (nios2_special_reloc[i].string) + 1;
1381
1382 /* %lo and %hiadj have different meanings for PC-relative
1383 expressions. */
1384 if (pcrel)
1385 {
1386 if (reloc_type == BFD_RELOC_NIOS2_LO16)
1387 reloc_type = BFD_RELOC_NIOS2_PCREL_LO;
1388 if (reloc_type == BFD_RELOC_NIOS2_HIADJ16)
1389 reloc_type = BFD_RELOC_NIOS2_PCREL_HA;
1390 }
1391
1392 break;
1393 }
1394
1395 /* We potentially have a relocation. */
1396 reloc = nios2_insn_reloc_new (reloc_type, pcrel);
1397 if (prev_reloc != NULL)
1398 prev_reloc->reloc_next = reloc;
1399 else
1400 insn->insn_reloc = reloc;
1401
1402 /* Parse the expression string. */
1403 saved_line_ptr = input_line_pointer;
1404 input_line_pointer = (char *) exprstr;
1405 expression (&reloc->reloc_expression);
1406 input_line_pointer = saved_line_ptr;
1407
1408 /* This is redundant as the fixup will put this into
1409 the instruction, but it is included here so that
1410 self-test mode (-r) works. */
1411 value = 0;
1412 if (nios2_mode == NIOS2_MODE_TEST
1413 && reloc->reloc_expression.X_op == O_constant)
1414 value = reloc->reloc_expression.X_add_number;
1415
1416 return (unsigned long) value;
1417 }
1418
1419 /* Argument assemble functions.
1420 All take an instruction argument string, and a pointer
1421 to an instruction opcode. Upon return the insn_opcode
1422 has the relevant fields filled in to represent the arg
1423 string. The return value is NULL if successful, or
1424 an error message if an error was detected.
1425
1426 The naming conventions for these functions match the args template
1427 in the nios2_opcode structure, as documented in include/opcode/nios2.h.
1428 For example, nios2_assemble_args_dst is used for instructions with
1429 "d,s,t" args.
1430 See nios2_arg_info_structs below for the exact correspondence. */
1431
1432 static void
1433 nios2_assemble_args_dst (nios2_insn_infoS *insn_info)
1434 {
1435 if (insn_info->insn_tokens[1] != NULL
1436 && insn_info->insn_tokens[2] != NULL
1437 && insn_info->insn_tokens[3] != NULL)
1438 {
1439 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1440 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1441 struct nios2_reg *src2 = nios2_reg_lookup (insn_info->insn_tokens[3]);
1442
1443 if (dst == NULL)
1444 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1445 else
1446 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1447
1448 if (src1 == NULL)
1449 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1450 else
1451 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1452
1453 if (src2 == NULL)
1454 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1455 else
1456 SET_INSN_FIELD (RRT, insn_info->insn_code, src2->index);
1457
1458 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1459 }
1460 }
1461
1462 static void
1463 nios2_assemble_args_tsi (nios2_insn_infoS *insn_info)
1464 {
1465 if (insn_info->insn_tokens[1] != NULL &&
1466 insn_info->insn_tokens[2] != NULL && insn_info->insn_tokens[3] != NULL)
1467 {
1468 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1469 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1470 unsigned int src2
1471 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1472 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1473 0);
1474
1475 if (dst == NULL)
1476 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1477 else
1478 SET_INSN_FIELD (IRT, insn_info->insn_code, dst->index);
1479
1480 if (src1 == NULL)
1481 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1482 else
1483 SET_INSN_FIELD (IRS, insn_info->insn_code, src1->index);
1484
1485 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1486 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1487 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1488 }
1489 }
1490
1491 static void
1492 nios2_assemble_args_tsu (nios2_insn_infoS *insn_info)
1493 {
1494 if (insn_info->insn_tokens[1] != NULL
1495 && insn_info->insn_tokens[2] != NULL
1496 && insn_info->insn_tokens[3] != NULL)
1497 {
1498 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1499 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1500 unsigned int src2
1501 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1502 insn_info->insn_reloc, BFD_RELOC_NIOS2_U16,
1503 0);
1504
1505 if (dst == NULL)
1506 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1507 else
1508 SET_INSN_FIELD (IRT, insn_info->insn_code, dst->index);
1509
1510 if (src1 == NULL)
1511 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1512 else
1513 SET_INSN_FIELD (IRS, insn_info->insn_code, src1->index);
1514
1515 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1516 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1517 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1518 }
1519 }
1520
1521 static void
1522 nios2_assemble_args_sto (nios2_insn_infoS *insn_info)
1523 {
1524 if (insn_info->insn_tokens[1] != NULL
1525 && insn_info->insn_tokens[2] != NULL
1526 && insn_info->insn_tokens[3] != NULL)
1527 {
1528 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1529 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1530 unsigned int src2
1531 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1532 insn_info->insn_reloc, BFD_RELOC_16_PCREL,
1533 1);
1534
1535 if (dst == NULL)
1536 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1537 else
1538 SET_INSN_FIELD (IRS, insn_info->insn_code, dst->index);
1539
1540 if (src1 == NULL)
1541 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1542 else
1543 SET_INSN_FIELD (IRT, insn_info->insn_code, src1->index);
1544
1545 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1546 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1547 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1548 }
1549 }
1550
1551 static void
1552 nios2_assemble_args_o (nios2_insn_infoS *insn_info)
1553 {
1554 if (insn_info->insn_tokens[1] != NULL)
1555 {
1556 unsigned long immed
1557 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1558 insn_info->insn_reloc, BFD_RELOC_16_PCREL,
1559 1);
1560 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1561 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1562 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1563 }
1564 }
1565
1566 static void
1567 nios2_assemble_args_is (nios2_insn_infoS *insn_info)
1568 {
1569 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1570 {
1571 struct nios2_reg *addr_src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1572 unsigned long immed
1573 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1574 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1575 0);
1576
1577 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1578
1579 if (addr_src == NULL)
1580 as_bad (_("unknown base register %s"), insn_info->insn_tokens[2]);
1581 else
1582 SET_INSN_FIELD (RRS, insn_info->insn_code, addr_src->index);
1583
1584 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1585 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1586 }
1587 }
1588
1589 static void
1590 nios2_assemble_args_m (nios2_insn_infoS *insn_info)
1591 {
1592 if (insn_info->insn_tokens[1] != NULL)
1593 {
1594 unsigned long immed
1595 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1596 insn_info->insn_reloc,
1597 BFD_RELOC_NIOS2_CALL26, 0);
1598
1599 SET_INSN_FIELD (IMM26, insn_info->insn_code, immed);
1600 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1601 SET_INSN_FIELD (IMM26, insn_info->insn_code, 0);
1602 }
1603 }
1604
1605 static void
1606 nios2_assemble_args_s (nios2_insn_infoS *insn_info)
1607 {
1608 if (insn_info->insn_tokens[1] != NULL)
1609 {
1610 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[1]);
1611 if (src == NULL)
1612 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1613 else
1614 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1615
1616 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1617 }
1618 }
1619
1620 static void
1621 nios2_assemble_args_tis (nios2_insn_infoS *insn_info)
1622 {
1623 if (insn_info->insn_tokens[1] != NULL
1624 && insn_info->insn_tokens[2] != NULL
1625 && insn_info->insn_tokens[3] != NULL)
1626 {
1627 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1628 struct nios2_reg *addr_src = nios2_reg_lookup (insn_info->insn_tokens[3]);
1629 unsigned long immed
1630 = nios2_assemble_expression (insn_info->insn_tokens[2], insn_info,
1631 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1632 0);
1633
1634 if (addr_src == NULL)
1635 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1636 else
1637 SET_INSN_FIELD (RRS, insn_info->insn_code, addr_src->index);
1638
1639 if (dst == NULL)
1640 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1641 else
1642 SET_INSN_FIELD (RRT, insn_info->insn_code, dst->index);
1643
1644 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1645 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1646 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1647 }
1648 }
1649
1650 static void
1651 nios2_assemble_args_dc (nios2_insn_infoS *insn_info)
1652 {
1653 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1654 {
1655 struct nios2_reg *ctl = nios2_reg_lookup (insn_info->insn_tokens[2]);
1656 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1657
1658 if (ctl == NULL)
1659 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1660 else
1661 SET_INSN_FIELD (RCTL, insn_info->insn_code, ctl->index);
1662
1663 if (dst == NULL)
1664 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1665 else
1666 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1667
1668 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1669 }
1670 }
1671
1672 static void
1673 nios2_assemble_args_cs (nios2_insn_infoS *insn_info)
1674 {
1675 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1676 {
1677 struct nios2_reg *ctl = nios2_reg_lookup (insn_info->insn_tokens[1]);
1678 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1679
1680 if (ctl == NULL)
1681 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1682 else if (ctl->index == 4)
1683 as_bad (_("ipending control register (ctl4) is read-only\n"));
1684 else
1685 SET_INSN_FIELD (RCTL, insn_info->insn_code, ctl->index);
1686
1687 if (src == NULL)
1688 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1689 else
1690 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1691
1692 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1693 }
1694 }
1695
1696 static void
1697 nios2_assemble_args_ds (nios2_insn_infoS * insn_info)
1698 {
1699 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1700 {
1701 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1702 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1703
1704 if (dst == NULL)
1705 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1706 else
1707 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1708
1709 if (src == NULL)
1710 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1711 else
1712 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1713
1714 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1715 }
1716 }
1717
1718 static void
1719 nios2_assemble_args_ldst (nios2_insn_infoS *insn_info)
1720 {
1721 if (insn_info->insn_tokens[1] != NULL
1722 && insn_info->insn_tokens[2] != NULL
1723 && insn_info->insn_tokens[3] != NULL
1724 && insn_info->insn_tokens[4] != NULL)
1725 {
1726 unsigned long custom_n
1727 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1728 insn_info->insn_reloc,
1729 BFD_RELOC_NIOS2_IMM8, 0);
1730
1731 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[2]);
1732 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[3]);
1733 struct nios2_reg *src2 = nios2_reg_lookup (insn_info->insn_tokens[4]);
1734
1735 SET_INSN_FIELD (CUSTOM_N, insn_info->insn_code, custom_n);
1736
1737 if (dst == NULL)
1738 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1739 else
1740 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1741
1742 if (src1 == NULL)
1743 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1744 else
1745 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1746
1747 if (src2 == NULL)
1748 as_bad (_("unknown register %s"), insn_info->insn_tokens[4]);
1749 else
1750 SET_INSN_FIELD (RRT, insn_info->insn_code, src2->index);
1751
1752 /* Set or clear the bits to indicate whether coprocessor registers are
1753 used. */
1754 if (nios2_coproc_reg (insn_info->insn_tokens[2]))
1755 SET_INSN_FIELD (CUSTOM_C, insn_info->insn_code, 0);
1756 else
1757 SET_INSN_FIELD (CUSTOM_C, insn_info->insn_code, 1);
1758
1759 if (nios2_coproc_reg (insn_info->insn_tokens[3]))
1760 SET_INSN_FIELD (CUSTOM_A, insn_info->insn_code, 0);
1761 else
1762 SET_INSN_FIELD (CUSTOM_A, insn_info->insn_code, 1);
1763
1764 if (nios2_coproc_reg (insn_info->insn_tokens[4]))
1765 SET_INSN_FIELD (CUSTOM_B, insn_info->insn_code, 0);
1766 else
1767 SET_INSN_FIELD (CUSTOM_B, insn_info->insn_code, 1);
1768
1769 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[5]);
1770 }
1771 }
1772
1773 static void
1774 nios2_assemble_args_none (nios2_insn_infoS *insn_info ATTRIBUTE_UNUSED)
1775 {
1776 /* Nothing to do. */
1777 }
1778
1779 static void
1780 nios2_assemble_args_dsj (nios2_insn_infoS *insn_info)
1781 {
1782 if (insn_info->insn_tokens[1] != NULL
1783 && insn_info->insn_tokens[2] != NULL
1784 && insn_info->insn_tokens[3] != NULL)
1785 {
1786 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1787 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1788
1789 /* A 5-bit constant expression. */
1790 unsigned int src2 =
1791 nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1792 insn_info->insn_reloc,
1793 BFD_RELOC_NIOS2_IMM5, 0);
1794
1795 if (dst == NULL)
1796 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1797 else
1798 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1799
1800 if (src1 == NULL)
1801 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1802 else
1803 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1804
1805 SET_INSN_FIELD (IMM5, insn_info->insn_code, src2);
1806 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1807 SET_INSN_FIELD (IMM5, insn_info->insn_code, 0);
1808 }
1809 }
1810
1811 static void
1812 nios2_assemble_args_d (nios2_insn_infoS *insn_info)
1813 {
1814 if (insn_info->insn_tokens[1] != NULL)
1815 {
1816 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1817
1818 if (dst == NULL)
1819 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1820 else
1821 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1822
1823 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1824 }
1825 }
1826
1827 static void
1828 nios2_assemble_args_b (nios2_insn_infoS *insn_info)
1829 {
1830 unsigned int imm5 = 0;
1831
1832 if (insn_info->insn_tokens[1] != NULL)
1833 {
1834 /* A 5-bit constant expression. */
1835 imm5 = nios2_assemble_expression (insn_info->insn_tokens[1],
1836 insn_info, insn_info->insn_reloc,
1837 BFD_RELOC_NIOS2_IMM5, 0);
1838 SET_INSN_FIELD (TRAP_IMM5, insn_info->insn_code, imm5);
1839 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1840 }
1841
1842 SET_INSN_FIELD (TRAP_IMM5, insn_info->insn_code, imm5);
1843
1844 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1845 }
1846
1847 /* This table associates pointers to functions that parse the arguments to an
1848 instruction and fill in the relevant fields of the instruction. */
1849 const nios2_arg_infoS nios2_arg_info_structs[] = {
1850 /* args, assemble_args_func */
1851 {"d,s,t", nios2_assemble_args_dst},
1852 {"d,s,t,E", nios2_assemble_args_dst},
1853 {"t,s,i", nios2_assemble_args_tsi},
1854 {"t,s,i,E", nios2_assemble_args_tsi},
1855 {"t,s,u", nios2_assemble_args_tsu},
1856 {"t,s,u,E", nios2_assemble_args_tsu},
1857 {"s,t,o", nios2_assemble_args_sto},
1858 {"s,t,o,E", nios2_assemble_args_sto},
1859 {"o", nios2_assemble_args_o},
1860 {"o,E", nios2_assemble_args_o},
1861 {"s", nios2_assemble_args_s},
1862 {"s,E", nios2_assemble_args_s},
1863 {"", nios2_assemble_args_none},
1864 {"E", nios2_assemble_args_none},
1865 {"i(s)", nios2_assemble_args_is},
1866 {"i(s)E", nios2_assemble_args_is},
1867 {"m", nios2_assemble_args_m},
1868 {"m,E", nios2_assemble_args_m},
1869 {"t,i(s)", nios2_assemble_args_tis},
1870 {"t,i(s)E", nios2_assemble_args_tis},
1871 {"d,c", nios2_assemble_args_dc},
1872 {"d,c,E", nios2_assemble_args_dc},
1873 {"c,s", nios2_assemble_args_cs},
1874 {"c,s,E", nios2_assemble_args_cs},
1875 {"d,s", nios2_assemble_args_ds},
1876 {"d,s,E", nios2_assemble_args_ds},
1877 {"l,d,s,t", nios2_assemble_args_ldst},
1878 {"l,d,s,t,E", nios2_assemble_args_ldst},
1879 {"d,s,j", nios2_assemble_args_dsj},
1880 {"d,s,j,E", nios2_assemble_args_dsj},
1881 {"d", nios2_assemble_args_d},
1882 {"d,E", nios2_assemble_args_d},
1883 {"b", nios2_assemble_args_b},
1884 {"b,E", nios2_assemble_args_b}
1885 };
1886
1887 #define NIOS2_NUM_ARGS \
1888 ((sizeof(nios2_arg_info_structs)/sizeof(nios2_arg_info_structs[0])))
1889 const int nios2_num_arg_info_structs = NIOS2_NUM_ARGS;
1890
1891 /* The function consume_arg takes a pointer into a string
1892 of instruction tokens (args) and a pointer into a string
1893 representing the expected sequence of tokens and separators.
1894 It checks whether the first argument in argstr is of the
1895 expected type, throwing an error if it is not, and returns
1896 the pointer argstr. */
1897 static char *
1898 nios2_consume_arg (nios2_insn_infoS *insn, char *argstr, const char *parsestr)
1899 {
1900 char *temp;
1901 int regno = -1;
1902
1903 switch (*parsestr)
1904 {
1905 case 'c':
1906 if (!nios2_control_register_arg_p (argstr))
1907 as_bad (_("expecting control register"));
1908 break;
1909 case 'd':
1910 case 's':
1911 case 't':
1912
1913 /* We check to make sure we don't have a control register. */
1914 if (nios2_control_register_arg_p (argstr))
1915 as_bad (_("illegal use of control register"));
1916
1917 /* And whether coprocessor registers are valid here. */
1918 if (nios2_coproc_reg (argstr)
1919 && insn->insn_nios2_opcode->match != OP_MATCH_CUSTOM)
1920 as_bad (_("illegal use of coprocessor register\n"));
1921
1922 /* Extract a register number if the register is of the
1923 form r[0-9]+, if it is a normal register, set
1924 regno to its number (0-31), else set regno to -1. */
1925 if (argstr[0] == 'r' && ISDIGIT (argstr[1]))
1926 {
1927 char *p = argstr;
1928
1929 ++p;
1930 regno = 0;
1931 do
1932 {
1933 regno *= 10;
1934 regno += *p - '0';
1935 ++p;
1936 }
1937 while (ISDIGIT (*p));
1938 }
1939 else
1940 regno = -1;
1941
1942 /* And whether we are using at. */
1943 if (!nios2_as_options.noat
1944 && (regno == 1 || strprefix (argstr, "at")))
1945 as_warn (_("Register at (r1) can sometimes be corrupted by assembler "
1946 "optimizations.\n"
1947 "Use .set noat to turn off those optimizations (and this "
1948 "warning)."));
1949
1950 /* And whether we are using oci registers. */
1951 if (!nios2_as_options.nobreak
1952 && (regno == 25 || strprefix (argstr, "bt")))
1953 as_warn (_("The debugger will corrupt bt (r25). If you don't need to "
1954 "debug this\n"
1955 "code then use .set nobreak to turn off this warning."));
1956
1957 if (!nios2_as_options.nobreak
1958 && (regno == 30 || strprefix (argstr, "ba")))
1959 as_warn (_("The debugger will corrupt ba (r30). If you don't need to "
1960 "debug this\n"
1961 "code then use .set nobreak to turn off this warning."));
1962 break;
1963 case 'i':
1964 case 'u':
1965 if (*argstr == '%')
1966 {
1967 if (nios2_special_relocation_p (argstr))
1968 {
1969 /* We zap the parentheses because we don't want them confused
1970 with separators. */
1971 temp = strchr (argstr, '(');
1972 if (temp != NULL)
1973 *temp = ' ';
1974 temp = strchr (argstr, ')');
1975 if (temp != NULL)
1976 *temp = ' ';
1977 }
1978 else
1979 as_bad (_("badly formed expression near %s"), argstr);
1980 }
1981 break;
1982 case 'm':
1983 case 'j':
1984 case 'l':
1985 case 'b':
1986 /* We can't have %hi, %lo or %hiadj here. */
1987 if (*argstr == '%')
1988 as_bad (_("badly formed expression near %s"), argstr);
1989 break;
1990 case 'o':
1991 break;
1992 default:
1993 BAD_CASE (*parsestr);
1994 break;
1995 }
1996
1997 return argstr;
1998 }
1999
2000 /* The function consume_separator takes a pointer into a string
2001 of instruction tokens (args) and a pointer into a string representing
2002 the expected sequence of tokens and separators. It finds the first
2003 instance of the character pointed to by separator in argstr, and
2004 returns a pointer to the next element of argstr, which is the
2005 following token in the sequence. */
2006 static char *
2007 nios2_consume_separator (char *argstr, const char *separator)
2008 {
2009 char *p;
2010
2011 /* If we have a opcode reg, expr(reg) type instruction, and
2012 * we are separating the expr from the (reg), we find the last
2013 * (, just in case the expression has parentheses. */
2014
2015 if (*separator == '(')
2016 p = strrchr (argstr, *separator);
2017 else
2018 p = strchr (argstr, *separator);
2019
2020 if (p != NULL)
2021 *p++ = 0;
2022 else
2023 as_bad (_("expecting %c near %s"), *separator, argstr);
2024 return p;
2025 }
2026
2027
2028 /* The principal argument parsing function which takes a string argstr
2029 representing the instruction arguments for insn, and extracts the argument
2030 tokens matching parsestr into parsed_args. */
2031 static void
2032 nios2_parse_args (nios2_insn_infoS *insn, char *argstr,
2033 const char *parsestr, char **parsed_args)
2034 {
2035 char *p;
2036 char *end = NULL;
2037 int i;
2038 p = argstr;
2039 i = 0;
2040 bfd_boolean terminate = FALSE;
2041
2042 /* This rest of this function is it too fragile and it mostly works,
2043 therefore special case this one. */
2044 if (*parsestr == 0 && argstr != 0)
2045 {
2046 as_bad (_("too many arguments"));
2047 parsed_args[0] = NULL;
2048 return;
2049 }
2050
2051 while (p != NULL && !terminate && i < NIOS2_MAX_INSN_TOKENS)
2052 {
2053 parsed_args[i] = nios2_consume_arg (insn, p, parsestr);
2054 ++parsestr;
2055 if (*parsestr != '\0')
2056 {
2057 p = nios2_consume_separator (p, parsestr);
2058 ++parsestr;
2059 }
2060 else
2061 {
2062 /* Check that the argument string has no trailing arguments. */
2063 /* If we've got a %lo etc relocation, we've zapped the parens with
2064 spaces. */
2065 if (nios2_special_relocation_p (p))
2066 end = strpbrk (p, ",");
2067 else
2068 end = strpbrk (p, " ,");
2069
2070 if (end != NULL)
2071 as_bad (_("too many arguments"));
2072 }
2073
2074 if (*parsestr == '\0' || (p != NULL && *p == '\0'))
2075 terminate = TRUE;
2076 ++i;
2077 }
2078
2079 parsed_args[i] = NULL;
2080
2081 if (*parsestr != '\0' && insn->insn_nios2_opcode->match != OP_MATCH_BREAK)
2082 as_bad (_("missing argument"));
2083 }
2084
2085
2086 \f
2087 /** Support for pseudo-op parsing. These are macro-like opcodes that
2088 expand into real insns by suitable fiddling with the operands. */
2089
2090 /* Append the string modifier to the string contained in the argument at
2091 parsed_args[ndx]. */
2092 static void
2093 nios2_modify_arg (char **parsed_args, const char *modifier,
2094 int unused ATTRIBUTE_UNUSED, int ndx)
2095 {
2096 char *tmp = parsed_args[ndx];
2097
2098 parsed_args[ndx]
2099 = (char *) malloc (strlen (parsed_args[ndx]) + strlen (modifier) + 1);
2100 strcpy (parsed_args[ndx], tmp);
2101 strcat (parsed_args[ndx], modifier);
2102 }
2103
2104 /* Modify parsed_args[ndx] by negating that argument. */
2105 static void
2106 nios2_negate_arg (char **parsed_args, const char *modifier ATTRIBUTE_UNUSED,
2107 int unused ATTRIBUTE_UNUSED, int ndx)
2108 {
2109 char *tmp = parsed_args[ndx];
2110
2111 parsed_args[ndx]
2112 = (char *) malloc (strlen ("~(") + strlen (parsed_args[ndx]) +
2113 strlen (")+1") + 1);
2114
2115 strcpy (parsed_args[ndx], "~(");
2116 strcat (parsed_args[ndx], tmp);
2117 strcat (parsed_args[ndx], ")+1");
2118 }
2119
2120 /* The function nios2_swap_args swaps the pointers at indices index_1 and
2121 index_2 in the array parsed_args[] - this is used for operand swapping
2122 for comparison operations. */
2123 static void
2124 nios2_swap_args (char **parsed_args, const char *unused ATTRIBUTE_UNUSED,
2125 int index_1, int index_2)
2126 {
2127 char *tmp;
2128 gas_assert (index_1 < NIOS2_MAX_INSN_TOKENS
2129 && index_2 < NIOS2_MAX_INSN_TOKENS);
2130 tmp = parsed_args[index_1];
2131 parsed_args[index_1] = parsed_args[index_2];
2132 parsed_args[index_2] = tmp;
2133 }
2134
2135 /* This function appends the string appnd to the array of strings in
2136 parsed_args num times starting at index start in the array. */
2137 static void
2138 nios2_append_arg (char **parsed_args, const char *appnd, int num,
2139 int start)
2140 {
2141 int i, count;
2142 char *tmp;
2143
2144 gas_assert ((start + num) < NIOS2_MAX_INSN_TOKENS);
2145
2146 if (nios2_mode == NIOS2_MODE_TEST)
2147 tmp = parsed_args[start];
2148 else
2149 tmp = NULL;
2150
2151 for (i = start, count = num; count > 0; ++i, --count)
2152 parsed_args[i] = (char *) appnd;
2153
2154 gas_assert (i == (start + num));
2155 parsed_args[i] = tmp;
2156 parsed_args[i + 1] = NULL;
2157 }
2158
2159 /* This function inserts the string insert num times in the array
2160 parsed_args, starting at the index start. */
2161 static void
2162 nios2_insert_arg (char **parsed_args, const char *insert, int num,
2163 int start)
2164 {
2165 int i, count;
2166
2167 gas_assert ((start + num) < NIOS2_MAX_INSN_TOKENS);
2168
2169 /* Move the existing arguments up to create space. */
2170 for (i = NIOS2_MAX_INSN_TOKENS; i - num >= start; --i)
2171 parsed_args[i] = parsed_args[i - num];
2172
2173 for (i = start, count = num; count > 0; ++i, --count)
2174 parsed_args[i] = (char *) insert;
2175 }
2176
2177 /* Cleanup function to free malloc'ed arg strings. */
2178 static void
2179 nios2_free_arg (char **parsed_args, int num ATTRIBUTE_UNUSED, int start)
2180 {
2181 if (parsed_args[start])
2182 {
2183 free (parsed_args[start]);
2184 parsed_args[start] = NULL;
2185 }
2186 }
2187
2188 /* This function swaps the pseudo-op for a real op. */
2189 static nios2_ps_insn_infoS*
2190 nios2_translate_pseudo_insn (nios2_insn_infoS *insn)
2191 {
2192
2193 nios2_ps_insn_infoS *ps_insn;
2194
2195 /* Find which real insn the pseudo-op transates to and
2196 switch the insn_info ptr to point to it. */
2197 ps_insn = nios2_ps_lookup (insn->insn_nios2_opcode->name);
2198
2199 if (ps_insn != NULL)
2200 {
2201 insn->insn_nios2_opcode = nios2_opcode_lookup (ps_insn->insn);
2202 insn->insn_tokens[0] = insn->insn_nios2_opcode->name;
2203 /* Modify the args so they work with the real insn. */
2204 ps_insn->arg_modifer_func ((char **) insn->insn_tokens,
2205 ps_insn->arg_modifier, ps_insn->num,
2206 ps_insn->index);
2207 }
2208 else
2209 /* we cannot recover from this. */
2210 as_fatal (_("unrecognized pseudo-instruction %s"),
2211 ps_insn->pseudo_insn);
2212 return ps_insn;
2213 }
2214
2215 /* Invoke the cleanup handler for pseudo-insn ps_insn on insn. */
2216 static void
2217 nios2_cleanup_pseudo_insn (nios2_insn_infoS *insn,
2218 nios2_ps_insn_infoS *ps_insn)
2219 {
2220 if (ps_insn->arg_cleanup_func)
2221 (ps_insn->arg_cleanup_func) ((char **) insn->insn_tokens,
2222 ps_insn->num, ps_insn->index);
2223 }
2224
2225 const nios2_ps_insn_infoS nios2_ps_insn_info_structs[] = {
2226 /* pseudo-op, real-op, arg, arg_modifier_func, num, index, arg_cleanup_func */
2227 {"mov", "add", nios2_append_arg, "zero", 1, 3, NULL},
2228 {"movi", "addi", nios2_insert_arg, "zero", 1, 2, NULL},
2229 {"movhi", "orhi", nios2_insert_arg, "zero", 1, 2, NULL},
2230 {"movui", "ori", nios2_insert_arg, "zero", 1, 2, NULL},
2231 {"movia", "orhi", nios2_insert_arg, "zero", 1, 2, NULL},
2232 {"nop", "add", nios2_append_arg, "zero", 3, 1, NULL},
2233 {"bgt", "blt", nios2_swap_args, "", 1, 2, NULL},
2234 {"bgtu", "bltu", nios2_swap_args, "", 1, 2, NULL},
2235 {"ble", "bge", nios2_swap_args, "", 1, 2, NULL},
2236 {"bleu", "bgeu", nios2_swap_args, "", 1, 2, NULL},
2237 {"cmpgt", "cmplt", nios2_swap_args, "", 2, 3, NULL},
2238 {"cmpgtu", "cmpltu", nios2_swap_args, "", 2, 3, NULL},
2239 {"cmple", "cmpge", nios2_swap_args, "", 2, 3, NULL},
2240 {"cmpleu", "cmpgeu", nios2_swap_args, "", 2, 3, NULL},
2241 {"cmpgti", "cmpgei", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2242 {"cmpgtui", "cmpgeui", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2243 {"cmplei", "cmplti", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2244 {"cmpleui", "cmpltui", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2245 {"subi", "addi", nios2_negate_arg, "", 0, 3, nios2_free_arg}
2246 /* Add further pseudo-ops here. */
2247 };
2248
2249 #define NIOS2_NUM_PSEUDO_INSNS \
2250 ((sizeof(nios2_ps_insn_info_structs)/ \
2251 sizeof(nios2_ps_insn_info_structs[0])))
2252 const int nios2_num_ps_insn_info_structs = NIOS2_NUM_PSEUDO_INSNS;
2253
2254 \f
2255 /** Assembler output support. */
2256
2257 static int
2258 can_evaluate_expr (nios2_insn_infoS *insn)
2259 {
2260 /* Remove this check for null and the invalid insn "ori r9, 1234" seg faults. */
2261 if (!insn->insn_reloc)
2262 /* ??? Ideally we should do something other than as_fatal here as we can
2263 continue to assemble.
2264 However this function (actually the output_* functions) should not
2265 have been called in the first place once an illegal instruction had
2266 been encountered. */
2267 as_fatal (_("Invalid instruction encountered, cannot recover. No assembly attempted."));
2268
2269 if (insn->insn_reloc->reloc_expression.X_op == O_constant)
2270 return 1;
2271
2272 return 0;
2273 }
2274
2275 static int
2276 get_expr_value (nios2_insn_infoS *insn)
2277 {
2278 int value = 0;
2279
2280 if (insn->insn_reloc->reloc_expression.X_op == O_constant)
2281 value = insn->insn_reloc->reloc_expression.X_add_number;
2282 return value;
2283 }
2284
2285 /* Output a normal instruction. */
2286 static void
2287 output_insn (nios2_insn_infoS *insn)
2288 {
2289 char *f;
2290 nios2_insn_relocS *reloc;
2291
2292 f = frag_more (4);
2293 /* This allocates enough space for the instruction
2294 and puts it in the current frag. */
2295 md_number_to_chars (f, insn->insn_code, 4);
2296 /* Emit debug info. */
2297 dwarf2_emit_insn (4);
2298 /* Create any fixups to be acted on later. */
2299 for (reloc = insn->insn_reloc; reloc != NULL; reloc = reloc->reloc_next)
2300 fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
2301 &reloc->reloc_expression, reloc->reloc_pcrel,
2302 reloc->reloc_type);
2303 }
2304
2305 /* Output an unconditional branch. */
2306 static void
2307 output_ubranch (nios2_insn_infoS *insn)
2308 {
2309 nios2_insn_relocS *reloc = insn->insn_reloc;
2310
2311 /* If the reloc is NULL, there was an error assembling the branch. */
2312 if (reloc != NULL)
2313 {
2314 symbolS *symp = reloc->reloc_expression.X_add_symbol;
2315 offsetT offset = reloc->reloc_expression.X_add_number;
2316 char *f;
2317
2318 /* Tag dwarf2 debug info to the address at the start of the insn.
2319 We must do it before frag_var() below closes off the frag. */
2320 dwarf2_emit_insn (0);
2321
2322 /* We create a machine dependent frag which can grow
2323 to accommodate the largest possible instruction sequence
2324 this may generate. */
2325 f = frag_var (rs_machine_dependent,
2326 UBRANCH_MAX_SIZE, 4, UBRANCH_SUBTYPE (0),
2327 symp, offset, NULL);
2328
2329 md_number_to_chars (f, insn->insn_code, 4);
2330
2331 /* We leave fixup generation to md_convert_frag. */
2332 }
2333 }
2334
2335 /* Output a conditional branch. */
2336 static void
2337 output_cbranch (nios2_insn_infoS *insn)
2338 {
2339 nios2_insn_relocS *reloc = insn->insn_reloc;
2340
2341 /* If the reloc is NULL, there was an error assembling the branch. */
2342 if (reloc != NULL)
2343 {
2344 symbolS *symp = reloc->reloc_expression.X_add_symbol;
2345 offsetT offset = reloc->reloc_expression.X_add_number;
2346 char *f;
2347
2348 /* Tag dwarf2 debug info to the address at the start of the insn.
2349 We must do it before frag_var() below closes off the frag. */
2350 dwarf2_emit_insn (0);
2351
2352 /* We create a machine dependent frag which can grow
2353 to accommodate the largest possible instruction sequence
2354 this may generate. */
2355 f = frag_var (rs_machine_dependent,
2356 CBRANCH_MAX_SIZE, 4, CBRANCH_SUBTYPE (0),
2357 symp, offset, NULL);
2358
2359 md_number_to_chars (f, insn->insn_code, 4);
2360
2361 /* We leave fixup generation to md_convert_frag. */
2362 }
2363 }
2364
2365 /* Output a call sequence. Since calls are not pc-relative for NIOS2,
2366 but are page-relative, we cannot tell at any stage in assembly
2367 whether a call will be out of range since a section may be linked
2368 at any address. So if we are relaxing, we convert all call instructions
2369 to long call sequences, and rely on the linker to relax them back to
2370 short calls. */
2371 static void
2372 output_call (nios2_insn_infoS *insn)
2373 {
2374 /* This allocates enough space for the instruction
2375 and puts it in the current frag. */
2376 char *f = frag_more (12);
2377 nios2_insn_relocS *reloc = insn->insn_reloc;
2378
2379 md_number_to_chars (f, OP_MATCH_ORHI | 0x00400000, 4);
2380 dwarf2_emit_insn (4);
2381 fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
2382 &reloc->reloc_expression, 0, BFD_RELOC_NIOS2_HI16);
2383 md_number_to_chars (f + 4, OP_MATCH_ORI | 0x08400000, 4);
2384 dwarf2_emit_insn (4);
2385 fix_new_exp (frag_now, f - frag_now->fr_literal + 4, 4,
2386 &reloc->reloc_expression, 0, BFD_RELOC_NIOS2_LO16);
2387 md_number_to_chars (f + 8, OP_MATCH_CALLR | 0x08000000, 4);
2388 dwarf2_emit_insn (4);
2389 }
2390
2391 /* Output an addi - will silently convert to
2392 orhi if rA = r0 and (expr & 0xffff0000) == 0. */
2393 static void
2394 output_addi (nios2_insn_infoS *insn)
2395 {
2396 if (can_evaluate_expr (insn))
2397 {
2398 int expr_val = get_expr_value (insn);
2399 if (GET_INSN_FIELD (RRS, insn->insn_code) == 0
2400 && (expr_val & 0xffff) == 0
2401 && expr_val != 0)
2402 {
2403 /* We really want a movhi (orhi) here. */
2404 insn->insn_code = (insn->insn_code & ~OP_MATCH_ADDI) | OP_MATCH_ORHI;
2405 insn->insn_reloc->reloc_expression.X_add_number =
2406 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2407 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2408 }
2409 }
2410
2411 /* Output an instruction. */
2412 output_insn (insn);
2413 }
2414
2415 static void
2416 output_andi (nios2_insn_infoS *insn)
2417 {
2418 if (can_evaluate_expr (insn))
2419 {
2420 int expr_val = get_expr_value (insn);
2421 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2422 {
2423 /* We really want a movhi (orhi) here. */
2424 insn->insn_code = (insn->insn_code & ~OP_MATCH_ANDI) | OP_MATCH_ANDHI;
2425 insn->insn_reloc->reloc_expression.X_add_number =
2426 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2427 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2428 }
2429 }
2430
2431 /* Output an instruction. */
2432 output_insn (insn);
2433 }
2434
2435 static void
2436 output_ori (nios2_insn_infoS *insn)
2437 {
2438 if (can_evaluate_expr (insn))
2439 {
2440 int expr_val = get_expr_value (insn);
2441 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2442 {
2443 /* We really want a movhi (orhi) here. */
2444 insn->insn_code = (insn->insn_code & ~OP_MATCH_ORI) | OP_MATCH_ORHI;
2445 insn->insn_reloc->reloc_expression.X_add_number =
2446 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2447 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2448 }
2449 }
2450
2451 /* Output an instruction. */
2452 output_insn (insn);
2453 }
2454
2455 static void
2456 output_xori (nios2_insn_infoS *insn)
2457 {
2458 if (can_evaluate_expr (insn))
2459 {
2460 int expr_val = get_expr_value (insn);
2461 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2462 {
2463 /* We really want a movhi (orhi) here. */
2464 insn->insn_code = (insn->insn_code & ~OP_MATCH_XORI) | OP_MATCH_XORHI;
2465 insn->insn_reloc->reloc_expression.X_add_number =
2466 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2467 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2468 }
2469 }
2470
2471 /* Output an instruction. */
2472 output_insn (insn);
2473 }
2474
2475
2476 /* Output a movhi/addi pair for the movia pseudo-op. */
2477 static void
2478 output_movia (nios2_insn_infoS *insn)
2479 {
2480 /* This allocates enough space for the instruction
2481 and puts it in the current frag. */
2482 char *f = frag_more (8);
2483 nios2_insn_relocS *reloc = insn->insn_reloc;
2484 unsigned long reg_index = GET_INSN_FIELD (IRT, insn->insn_code);
2485
2486 /* If the reloc is NULL, there was an error assembling the movia. */
2487 if (reloc != NULL)
2488 {
2489 md_number_to_chars (f, insn->insn_code, 4);
2490 dwarf2_emit_insn (4);
2491 md_number_to_chars (f + 4,
2492 (OP_MATCH_ADDI | (reg_index << OP_SH_IRT)
2493 | (reg_index << OP_SH_IRS)),
2494 4);
2495 dwarf2_emit_insn (4);
2496 fix_new (frag_now, f - frag_now->fr_literal, 4,
2497 reloc->reloc_expression.X_add_symbol,
2498 reloc->reloc_expression.X_add_number, 0,
2499 BFD_RELOC_NIOS2_HIADJ16);
2500 fix_new (frag_now, f + 4 - frag_now->fr_literal, 4,
2501 reloc->reloc_expression.X_add_symbol,
2502 reloc->reloc_expression.X_add_number, 0, BFD_RELOC_NIOS2_LO16);
2503 }
2504 }
2505
2506
2507 \f
2508 /** External interfaces. */
2509
2510 /* The following functions are called by machine-independent parts of
2511 the assembler. */
2512 int
2513 md_parse_option (int c, char *arg ATTRIBUTE_UNUSED)
2514 {
2515 switch (c)
2516 {
2517 case 'r':
2518 /* Hidden option for self-test mode. */
2519 nios2_mode = NIOS2_MODE_TEST;
2520 break;
2521 case OPTION_RELAX_ALL:
2522 nios2_as_options.relax = relax_all;
2523 break;
2524 case OPTION_NORELAX:
2525 nios2_as_options.relax = relax_none;
2526 break;
2527 case OPTION_RELAX_SECTION:
2528 nios2_as_options.relax = relax_section;
2529 break;
2530 case OPTION_EB:
2531 target_big_endian = 1;
2532 break;
2533 case OPTION_EL:
2534 target_big_endian = 0;
2535 break;
2536 default:
2537 return 0;
2538 break;
2539 }
2540
2541 return 1;
2542 }
2543
2544 /* Implement TARGET_FORMAT. We can choose to be big-endian or
2545 little-endian at runtime based on a switch. */
2546 const char *
2547 nios2_target_format (void)
2548 {
2549 return target_big_endian ? "elf32-bignios2" : "elf32-littlenios2";
2550 }
2551
2552 /* Machine-dependent usage message. */
2553 void
2554 md_show_usage (FILE *stream)
2555 {
2556 fprintf (stream, " NIOS2 options:\n"
2557 " -relax-all replace all branch and call "
2558 "instructions with jmp and callr sequences\n"
2559 " -relax-section replace identified out of range "
2560 "branches with jmp sequences (default)\n"
2561 " -no-relax do not replace any branches or calls\n"
2562 " -EB force big-endian byte ordering\n"
2563 " -EL force little-endian byte ordering\n");
2564 }
2565
2566 /* This function is called once, at assembler startup time.
2567 It should set up all the tables, etc. that the MD part of the
2568 assembler will need. */
2569 void
2570 md_begin (void)
2571 {
2572 int i;
2573 const char *inserted;
2574
2575 /* Create and fill a hashtable for the Nios II opcodes, registers and
2576 arguments. */
2577 nios2_opcode_hash = hash_new ();
2578 nios2_reg_hash = hash_new ();
2579 nios2_arg_hash = hash_new ();
2580 nios2_ps_hash = hash_new ();
2581
2582 for (i = 0; i < NUMOPCODES; ++i)
2583 {
2584 inserted
2585 = hash_insert (nios2_opcode_hash, nios2_opcodes[i].name,
2586 (PTR) & nios2_opcodes[i]);
2587 if (inserted != NULL)
2588 {
2589 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2590 nios2_opcodes[i].name, inserted);
2591 /* Probably a memory allocation problem? Give up now. */
2592 as_fatal (_("Broken assembler. No assembly attempted."));
2593 }
2594 }
2595
2596 for (i = 0; i < nios2_num_regs; ++i)
2597 {
2598 inserted
2599 = hash_insert (nios2_reg_hash, nios2_regs[i].name,
2600 (PTR) & nios2_regs[i]);
2601 if (inserted != NULL)
2602 {
2603 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2604 nios2_regs[i].name, inserted);
2605 /* Probably a memory allocation problem? Give up now. */
2606 as_fatal (_("Broken assembler. No assembly attempted."));
2607 }
2608
2609 }
2610
2611 for (i = 0; i < nios2_num_arg_info_structs; ++i)
2612 {
2613 inserted
2614 = hash_insert (nios2_arg_hash, nios2_arg_info_structs[i].args,
2615 (PTR) & nios2_arg_info_structs[i]);
2616 if (inserted != NULL)
2617 {
2618 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2619 nios2_arg_info_structs[i].args, inserted);
2620 /* Probably a memory allocation problem? Give up now. */
2621 as_fatal (_("Broken assembler. No assembly attempted."));
2622 }
2623 }
2624
2625 for (i = 0; i < nios2_num_ps_insn_info_structs; ++i)
2626 {
2627 inserted
2628 = hash_insert (nios2_ps_hash, nios2_ps_insn_info_structs[i].pseudo_insn,
2629 (PTR) & nios2_ps_insn_info_structs[i]);
2630 if (inserted != NULL)
2631 {
2632 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2633 nios2_ps_insn_info_structs[i].pseudo_insn, inserted);
2634 /* Probably a memory allocation problem? Give up now. */
2635 as_fatal (_("Broken assembler. No assembly attempted."));
2636 }
2637 }
2638
2639 /* Assembler option defaults. */
2640 nios2_as_options.noat = FALSE;
2641 nios2_as_options.nobreak = FALSE;
2642
2643 /* Debug information is incompatible with relaxation. */
2644 if (debug_type != DEBUG_UNSPECIFIED)
2645 nios2_as_options.relax = relax_none;
2646
2647 /* Initialize the alignment data. */
2648 nios2_current_align_seg = now_seg;
2649 nios2_last_label = NULL;
2650 nios2_current_align = 0;
2651 }
2652
2653
2654 /* Assembles a single line of Nios II assembly language. */
2655 void
2656 md_assemble (char *op_str)
2657 {
2658 char *argstr;
2659 char *op_strdup = NULL;
2660 nios2_arg_infoS *arg_info;
2661 unsigned long saved_pinfo = 0;
2662 nios2_insn_infoS thisinsn;
2663 nios2_insn_infoS *insn = &thisinsn;
2664
2665 /* Make sure we are aligned on a 4-byte boundary. */
2666 if (nios2_current_align < 2)
2667 nios2_align (2, NULL, nios2_last_label);
2668 else if (nios2_current_align > 2)
2669 nios2_current_align = 2;
2670 nios2_last_label = NULL;
2671
2672 /* We don't want to clobber to op_str
2673 because we want to be able to use it in messages. */
2674 op_strdup = strdup (op_str);
2675 insn->insn_tokens[0] = strtok (op_strdup, " ");
2676 argstr = strtok (NULL, "");
2677
2678 /* Assemble the opcode. */
2679 insn->insn_nios2_opcode = nios2_opcode_lookup (insn->insn_tokens[0]);
2680 insn->insn_reloc = NULL;
2681
2682 if (insn->insn_nios2_opcode != NULL)
2683 {
2684 nios2_ps_insn_infoS *ps_insn = NULL;
2685 /* Set the opcode for the instruction. */
2686 insn->insn_code = insn->insn_nios2_opcode->match;
2687
2688 /* Parse the arguments pointed to by argstr. */
2689 if (nios2_mode == NIOS2_MODE_ASSEMBLE)
2690 nios2_parse_args (insn, argstr, insn->insn_nios2_opcode->args,
2691 (char **) &insn->insn_tokens[1]);
2692 else
2693 nios2_parse_args (insn, argstr, insn->insn_nios2_opcode->args_test,
2694 (char **) &insn->insn_tokens[1]);
2695
2696 /* We need to preserve the MOVIA macro as this is clobbered by
2697 translate_pseudo_insn. */
2698 if (insn->insn_nios2_opcode->pinfo == NIOS2_INSN_MACRO_MOVIA)
2699 saved_pinfo = NIOS2_INSN_MACRO_MOVIA;
2700 /* If the instruction is an pseudo-instruction, we want to replace it
2701 with its real equivalent, and then continue. */
2702 if ((insn->insn_nios2_opcode->pinfo & NIOS2_INSN_MACRO)
2703 == NIOS2_INSN_MACRO)
2704 ps_insn = nios2_translate_pseudo_insn (insn);
2705
2706 /* Find the assemble function, and call it. */
2707 arg_info = nios2_arg_lookup (insn->insn_nios2_opcode->args);
2708 if (arg_info != NULL)
2709 {
2710 arg_info->assemble_args_func (insn);
2711
2712 if (nios2_as_options.relax != relax_none
2713 && !nios2_as_options.noat
2714 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_UBRANCH)
2715 output_ubranch (insn);
2716 else if (nios2_as_options.relax != relax_none
2717 && !nios2_as_options.noat
2718 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_CBRANCH)
2719 output_cbranch (insn);
2720 else if (nios2_as_options.relax == relax_all
2721 && !nios2_as_options.noat
2722 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_CALL
2723 && insn->insn_reloc
2724 && insn->insn_reloc->reloc_type == BFD_RELOC_NIOS2_CALL26)
2725 output_call (insn);
2726 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ANDI)
2727 output_andi (insn);
2728 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ORI)
2729 output_ori (insn);
2730 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_XORI)
2731 output_xori (insn);
2732 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ADDI)
2733 output_addi (insn);
2734 else if (saved_pinfo == NIOS2_INSN_MACRO_MOVIA)
2735 output_movia (insn);
2736 else
2737 output_insn (insn);
2738 if (ps_insn)
2739 nios2_cleanup_pseudo_insn (insn, ps_insn);
2740 }
2741 else
2742 {
2743 /* The assembler is broken. */
2744 fprintf (stderr,
2745 _("internal error: %s is not a valid argument syntax\n"),
2746 insn->insn_nios2_opcode->args);
2747 /* Probably a memory allocation problem. Give up now. */
2748 as_fatal (_("Broken assembler. No assembly attempted."));
2749 }
2750 }
2751 else
2752 /* Unrecognised instruction - error. */
2753 as_bad (_("unrecognised instruction %s"), insn->insn_tokens[0]);
2754
2755 /* Don't leak memory. */
2756 free (op_strdup);
2757 }
2758
2759 /* Round up section size. */
2760 valueT
2761 md_section_align (asection *seg ATTRIBUTE_UNUSED, valueT size)
2762 {
2763 /* I think byte alignment is fine here. */
2764 return size;
2765 }
2766
2767 /* Implement TC_FORCE_RELOCATION. */
2768 int
2769 nios2_force_relocation (fixS *fixp)
2770 {
2771 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2772 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2773 || fixp->fx_r_type == BFD_RELOC_NIOS2_ALIGN)
2774 return 1;
2775
2776 return generic_force_reloc (fixp);
2777 }
2778
2779 /* Implement tc_fix_adjustable. */
2780 int
2781 nios2_fix_adjustable (fixS *fixp)
2782 {
2783 if (fixp->fx_addsy == NULL)
2784 return 1;
2785
2786 #ifdef OBJ_ELF
2787 /* Prevent all adjustments to global symbols. */
2788 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
2789 && (S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)))
2790 return 0;
2791 #endif
2792 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2793 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2794 return 0;
2795
2796 /* Preserve relocations against symbols with function type. */
2797 if (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION)
2798 return 0;
2799
2800 /* Don't allow symbols to be discarded on GOT related relocs. */
2801 if (fixp->fx_r_type == BFD_RELOC_NIOS2_GOT16
2802 || fixp->fx_r_type == BFD_RELOC_NIOS2_CALL16
2803 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_LO
2804 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_HA
2805 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_GD16
2806 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LDM16
2807 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LDO16
2808 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_IE16
2809 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LE16
2810 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPMOD
2811 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPREL
2812 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_TPREL
2813 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF)
2814 return 0;
2815
2816 return 1;
2817 }
2818
2819 /* Implement tc_frob_symbol. This is called in adjust_reloc_syms;
2820 it is used to remove *ABS* references from the symbol table. */
2821 int
2822 nios2_frob_symbol (symbolS *symp)
2823 {
2824 if ((OUTPUT_FLAVOR == bfd_target_elf_flavour
2825 && symp == section_symbol (absolute_section))
2826 || !S_IS_DEFINED (symp))
2827 return 1;
2828 else
2829 return 0;
2830 }
2831
2832 /* The function tc_gen_reloc creates a relocation structure for the
2833 fixup fixp, and returns a pointer to it. This structure is passed
2834 to bfd_install_relocation so that it can be written to the object
2835 file for linking. */
2836 arelent *
2837 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2838 {
2839 arelent *reloc = (arelent *) xmalloc (sizeof (arelent));
2840 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2841 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2842
2843 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2844 reloc->addend = fixp->fx_offset; /* fixp->fx_addnumber; */
2845
2846 if (fixp->fx_pcrel)
2847 {
2848 switch (fixp->fx_r_type)
2849 {
2850 case BFD_RELOC_16:
2851 fixp->fx_r_type = BFD_RELOC_16_PCREL;
2852 break;
2853 case BFD_RELOC_NIOS2_LO16:
2854 fixp->fx_r_type = BFD_RELOC_NIOS2_PCREL_LO;
2855 break;
2856 case BFD_RELOC_NIOS2_HIADJ16:
2857 fixp->fx_r_type = BFD_RELOC_NIOS2_PCREL_HA;
2858 break;
2859 default:
2860 break;
2861 }
2862 }
2863
2864 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
2865 if (reloc->howto == NULL)
2866 {
2867 as_bad_where (fixp->fx_file, fixp->fx_line,
2868 _("can't represent relocation type %s"),
2869 bfd_get_reloc_code_name (fixp->fx_r_type));
2870
2871 /* Set howto to a garbage value so that we can keep going. */
2872 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
2873 gas_assert (reloc->howto != NULL);
2874 }
2875 return reloc;
2876 }
2877
2878 long
2879 md_pcrel_from (fixS *fixP ATTRIBUTE_UNUSED)
2880 {
2881 return 0;
2882 }
2883
2884 /* Called just before the assembler exits. */
2885 void
2886 md_end ()
2887 {
2888 /* FIXME - not yet implemented */
2889 }
2890
2891 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
2892 Otherwise we have no need to default values of symbols. */
2893 symbolS *
2894 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2895 {
2896 #ifdef OBJ_ELF
2897 if (name[0] == '_' && name[1] == 'G'
2898 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
2899 {
2900 if (!GOT_symbol)
2901 {
2902 if (symbol_find (name))
2903 as_bad ("GOT already in the symbol table");
2904
2905 GOT_symbol = symbol_new (name, undefined_section,
2906 (valueT) 0, &zero_address_frag);
2907 }
2908
2909 return GOT_symbol;
2910 }
2911 #endif
2912
2913 return 0;
2914 }
2915
2916 /* Implement tc_frob_label. */
2917 void
2918 nios2_frob_label (symbolS *lab)
2919 {
2920 /* Emit dwarf information. */
2921 dwarf2_emit_label (lab);
2922
2923 /* Update the label's address with the current output pointer. */
2924 symbol_set_frag (lab, frag_now);
2925 S_SET_VALUE (lab, (valueT) frag_now_fix ());
2926
2927 /* Record this label for future adjustment after we find out what
2928 kind of data it references, and the required alignment therewith. */
2929 nios2_last_label = lab;
2930 }
2931
2932 /* Implement md_cons_align. */
2933 void
2934 nios2_cons_align (int size)
2935 {
2936 int log_size = 0;
2937 const char *pfill = NULL;
2938
2939 while ((size >>= 1) != 0)
2940 ++log_size;
2941
2942 if (subseg_text_p (now_seg))
2943 pfill = (const char *) &nop;
2944 else
2945 pfill = NULL;
2946
2947 if (nios2_auto_align_on)
2948 nios2_align (log_size, pfill, NULL);
2949
2950 nios2_last_label = NULL;
2951 }
2952
2953 /* Map 's' to SHF_NIOS2_GPREL. */
2954 /* This is from the Alpha code tc-alpha.c. */
2955 int
2956 nios2_elf_section_letter (int letter, char **ptr_msg)
2957 {
2958 if (letter == 's')
2959 return SHF_NIOS2_GPREL;
2960
2961 *ptr_msg = _("Bad .section directive: want a,s,w,x,M,S,G,T in string");
2962 return -1;
2963 }
2964
2965 /* Map SHF_ALPHA_GPREL to SEC_SMALL_DATA. */
2966 /* This is from the Alpha code tc-alpha.c. */
2967 flagword
2968 nios2_elf_section_flags (flagword flags, int attr, int type ATTRIBUTE_UNUSED)
2969 {
2970 if (attr & SHF_NIOS2_GPREL)
2971 flags |= SEC_SMALL_DATA;
2972 return flags;
2973 }
2974
2975 /* Implement TC_PARSE_CONS_EXPRESSION to handle %tls_ldo(...) */
2976 static int nios2_tls_ldo_reloc;
2977
2978 void
2979 nios2_cons (expressionS *exp, int size)
2980 {
2981 nios2_tls_ldo_reloc = 0;
2982
2983 SKIP_WHITESPACE ();
2984 if (input_line_pointer[0] == '%')
2985 {
2986 if (strprefix (input_line_pointer + 1, "tls_ldo"))
2987 {
2988 if (size != 4)
2989 as_bad (_("Illegal operands: %%tls_ldo in %d-byte data field"),
2990 size);
2991 else
2992 {
2993 input_line_pointer += 8;
2994 nios2_tls_ldo_reloc = 1;
2995 }
2996 }
2997 if (nios2_tls_ldo_reloc)
2998 {
2999 SKIP_WHITESPACE ();
3000 if (input_line_pointer[0] != '(')
3001 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3002 else
3003 {
3004 int c;
3005 char *end = ++input_line_pointer;
3006 int npar = 0;
3007
3008 for (c = *end; !is_end_of_line[c]; end++, c = *end)
3009 if (c == '(')
3010 npar++;
3011 else if (c == ')')
3012 {
3013 if (!npar)
3014 break;
3015 npar--;
3016 }
3017
3018 if (c != ')')
3019 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3020 else
3021 {
3022 *end = '\0';
3023 expression (exp);
3024 *end = c;
3025 if (input_line_pointer != end)
3026 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3027 else
3028 {
3029 input_line_pointer++;
3030 SKIP_WHITESPACE ();
3031 c = *input_line_pointer;
3032 if (! is_end_of_line[c] && c != ',')
3033 as_bad (_("Illegal operands: garbage after %%tls_ldo()"));
3034 }
3035 }
3036 }
3037 }
3038 }
3039 if (!nios2_tls_ldo_reloc)
3040 expression (exp);
3041 }
3042
3043 /* Implement TC_CONS_FIX_NEW. */
3044 void
3045 nios2_cons_fix_new (fragS *frag, int where, unsigned int nbytes,
3046 expressionS *exp)
3047 {
3048 bfd_reloc_code_real_type r;
3049
3050 r = (nbytes == 1 ? BFD_RELOC_8
3051 : (nbytes == 2 ? BFD_RELOC_16
3052 : (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
3053
3054 if (nios2_tls_ldo_reloc)
3055 r = BFD_RELOC_NIOS2_TLS_DTPREL;
3056
3057 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
3058 nios2_tls_ldo_reloc = 0;
3059 }
3060
3061 /* Implement HANDLE_ALIGN. */
3062 void
3063 nios2_handle_align (fragS *fragp)
3064 {
3065 /* If we are expecting to relax in the linker, then we must output a
3066 relocation to tell the linker we are aligning code. */
3067 if (nios2_as_options.relax == relax_all
3068 && (fragp->fr_type == rs_align || fragp->fr_type == rs_align_code)
3069 && fragp->fr_address + fragp->fr_fix > 0
3070 && fragp->fr_offset > 1
3071 && now_seg != bss_section)
3072 fix_new (fragp, fragp->fr_fix, 0, &abs_symbol, fragp->fr_offset, 0,
3073 BFD_RELOC_NIOS2_ALIGN);
3074 }
3075
3076 /* Implement tc_regname_to_dw2regnum, to convert REGNAME to a DWARF-2
3077 register number. */
3078 int
3079 nios2_regname_to_dw2regnum (char *regname)
3080 {
3081 struct nios2_reg *r = nios2_reg_lookup (regname);
3082 if (r == NULL)
3083 return -1;
3084 return r->index;
3085 }
3086
3087 /* Implement tc_cfi_frame_initial_instructions, to initialize the DWARF-2
3088 unwind information for this procedure. */
3089 void
3090 nios2_frame_initial_instructions (void)
3091 {
3092 cfi_add_CFA_def_cfa (27, 0);
3093 }
This page took 0.093736 seconds and 4 git commands to generate.