d669c604aaf893b1a25c7e5b20a53c3c22e18bf1
[deliverable/binutils-gdb.git] / gas / config / tc-nios2.c
1 /* Altera Nios II assembler.
2 Copyright (C) 2012, 2013 Free Software Foundation, Inc.
3 Contributed by Nigel Gray (ngray@altera.com).
4 Contributed by Mentor Graphics, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "as.h"
24 #include "opcode/nios2.h"
25 #include "elf/nios2.h"
26 #include "tc-nios2.h"
27 #include "bfd.h"
28 #include "dwarf2dbg.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31 #include "dw2gencfi.h"
32
33 #ifndef OBJ_ELF
34 /* We are not supporting any other target so we throw a compile time error. */
35 OBJ_ELF not defined
36 #endif
37
38 /* We can choose our endianness at run-time, regardless of configuration. */
39 extern int target_big_endian;
40
41 /* This array holds the chars that always start a comment. If the
42 pre-processor is disabled, these aren't very useful. */
43 const char comment_chars[] = "#";
44
45 /* This array holds the chars that only start a comment at the beginning of
46 a line. If the line seems to have the form '# 123 filename'
47 .line and .file directives will appear in the pre-processed output. */
48 /* Note that input_file.c hand checks for '#' at the beginning of the
49 first line of the input file. This is because the compiler outputs
50 #NO_APP at the beginning of its output. */
51 /* Also note that C style comments are always supported. */
52 const char line_comment_chars[] = "#";
53
54 /* This array holds machine specific line separator characters. */
55 const char line_separator_chars[] = ";";
56
57 /* Chars that can be used to separate mant from exp in floating point nums. */
58 const char EXP_CHARS[] = "eE";
59
60 /* Chars that mean this number is a floating point constant. */
61 /* As in 0f12.456 */
62 /* or 0d1.2345e12 */
63 const char FLT_CHARS[] = "rRsSfFdDxXpP";
64
65 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
66 changed in read.c. Ideally it shouldn't have to know about it at all,
67 but nothing is ideal around here. */
68
69 /* Machine-dependent command-line options. */
70
71 const char *md_shortopts = "r";
72
73 struct option md_longopts[] = {
74 #define OPTION_RELAX_ALL (OPTION_MD_BASE + 0)
75 {"relax-all", no_argument, NULL, OPTION_RELAX_ALL},
76 #define OPTION_NORELAX (OPTION_MD_BASE + 1)
77 {"no-relax", no_argument, NULL, OPTION_NORELAX},
78 #define OPTION_RELAX_SECTION (OPTION_MD_BASE + 2)
79 {"relax-section", no_argument, NULL, OPTION_RELAX_SECTION},
80 #define OPTION_EB (OPTION_MD_BASE + 3)
81 {"EB", no_argument, NULL, OPTION_EB},
82 #define OPTION_EL (OPTION_MD_BASE + 4)
83 {"EL", no_argument, NULL, OPTION_EL}
84 };
85
86 size_t md_longopts_size = sizeof (md_longopts);
87
88 /* The assembler supports three different relaxation modes, controlled by
89 command-line options. */
90 typedef enum
91 {
92 relax_section = 0,
93 relax_none,
94 relax_all
95 } relax_optionT;
96
97 /* Struct contains all assembler options set with .set. */
98 struct
99 {
100 /* .set noat -> noat = 1 allows assembly code to use at without warning
101 and macro expansions generate a warning.
102 .set at -> noat = 0, assembly code using at warn but macro expansions
103 do not generate warnings. */
104 bfd_boolean noat;
105
106 /* .set nobreak -> nobreak = 1 allows assembly code to use ba,bt without
107 warning.
108 .set break -> nobreak = 0, assembly code using ba,bt warns. */
109 bfd_boolean nobreak;
110
111 /* .cmd line option -relax-all allows all branches and calls to be replaced
112 with longer versions.
113 -no-relax inhibits branch/call conversion.
114 The default value is relax_section, which relaxes branches within
115 a section. */
116 relax_optionT relax;
117
118 } nios2_as_options = {FALSE, FALSE, relax_section};
119
120
121 typedef struct nios2_insn_reloc
122 {
123 /* Any expression in the instruction is parsed into this field,
124 which is passed to fix_new_exp() to generate a fixup. */
125 expressionS reloc_expression;
126
127 /* The type of the relocation to be applied. */
128 bfd_reloc_code_real_type reloc_type;
129
130 /* PC-relative. */
131 unsigned int reloc_pcrel;
132
133 /* The next relocation to be applied to the instruction. */
134 struct nios2_insn_reloc *reloc_next;
135 } nios2_insn_relocS;
136
137 /* This struct is used to hold state when assembling instructions. */
138 typedef struct nios2_insn_info
139 {
140 /* Assembled instruction. */
141 unsigned long insn_code;
142 /* Pointer to the relevant bit of the opcode table. */
143 const struct nios2_opcode *insn_nios2_opcode;
144 /* After parsing ptrs to the tokens in the instruction fill this array
145 it is terminated with a null pointer (hence the first +1).
146 The second +1 is because in some parts of the code the opcode
147 is not counted as a token, but still placed in this array. */
148 const char *insn_tokens[NIOS2_MAX_INSN_TOKENS + 1 + 1];
149
150 /* This holds information used to generate fixups
151 and eventually relocations if it is not null. */
152 nios2_insn_relocS *insn_reloc;
153 } nios2_insn_infoS;
154
155 /* This struct associates an argument assemble function with
156 an argument syntax string. Used by the assembler to find out
157 how to parse and assemble a set of instruction operands and
158 return the instruction field values. */
159 typedef struct nios2_arg_info
160 {
161 const char *args;
162 void (*assemble_args_func) (nios2_insn_infoS *insn_info);
163 } nios2_arg_infoS;
164
165 /* This struct is used to convert Nios II pseudo-ops into the
166 corresponding real op. */
167 typedef struct nios2_ps_insn_info
168 {
169 /* Map this pseudo_op... */
170 const char *pseudo_insn;
171
172 /* ...to this real instruction. */
173 const char *insn;
174
175 /* Call this function to modify the operands.... */
176 void (*arg_modifer_func) (char ** parsed_args, const char *arg, int num,
177 int start);
178
179 /* ...with these arguments. */
180 const char *arg_modifier;
181 int num;
182 int index;
183
184 /* If arg_modifier_func allocates new memory, provide this function
185 to free it afterwards. */
186 void (*arg_cleanup_func) (char **parsed_args, int num, int start);
187 } nios2_ps_insn_infoS;
188
189 /* Opcode hash table. */
190 static struct hash_control *nios2_opcode_hash = NULL;
191 #define nios2_opcode_lookup(NAME) \
192 ((struct nios2_opcode *) hash_find (nios2_opcode_hash, (NAME)))
193
194 /* Register hash table. */
195 static struct hash_control *nios2_reg_hash = NULL;
196 #define nios2_reg_lookup(NAME) \
197 ((struct nios2_reg *) hash_find (nios2_reg_hash, (NAME)))
198
199 /* Parse args hash table. */
200 static struct hash_control *nios2_arg_hash = NULL;
201 #define nios2_arg_lookup(NAME) \
202 ((nios2_arg_infoS *) hash_find (nios2_arg_hash, (NAME)))
203
204 /* Pseudo-op hash table. */
205 static struct hash_control *nios2_ps_hash = NULL;
206 #define nios2_ps_lookup(NAME) \
207 ((nios2_ps_insn_infoS *) hash_find (nios2_ps_hash, (NAME)))
208
209 /* The known current alignment of the current section. */
210 static int nios2_current_align;
211 static segT nios2_current_align_seg;
212
213 static int nios2_auto_align_on = 1;
214
215 /* The last seen label in the current section. This is used to auto-align
216 labels preceeding instructions. */
217 static symbolS *nios2_last_label;
218
219 #ifdef OBJ_ELF
220 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
221 symbolS *GOT_symbol;
222 #endif
223
224 \f
225 /** Utility routines. */
226 /* Function md_chars_to_number takes the sequence of
227 bytes in buf and returns the corresponding value
228 in an int. n must be 1, 2 or 4. */
229 static valueT
230 md_chars_to_number (char *buf, int n)
231 {
232 int i;
233 valueT val;
234
235 gas_assert (n == 1 || n == 2 || n == 4);
236
237 val = 0;
238 if (target_big_endian)
239 for (i = 0; i < n; ++i)
240 val = val | ((buf[i] & 0xff) << 8 * (n - (i + 1)));
241 else
242 for (i = 0; i < n; ++i)
243 val = val | ((buf[i] & 0xff) << 8 * i);
244 return val;
245 }
246
247
248 /* This function turns a C long int, short int or char
249 into the series of bytes that represent the number
250 on the target machine. */
251 void
252 md_number_to_chars (char *buf, valueT val, int n)
253 {
254 gas_assert (n == 1 || n == 2 || n == 4 || n == 8);
255 if (target_big_endian)
256 number_to_chars_bigendian (buf, val, n);
257 else
258 number_to_chars_littleendian (buf, val, n);
259 }
260
261 /* Turn a string in input_line_pointer into a floating point constant
262 of type TYPE, and store the appropriate bytes in *LITP. The number
263 of LITTLENUMS emitted is stored in *SIZEP. An error message is
264 returned, or NULL on OK. */
265 char *
266 md_atof (int type, char *litP, int *sizeP)
267 {
268 int prec;
269 LITTLENUM_TYPE words[4];
270 char *t;
271 int i;
272
273 switch (type)
274 {
275 case 'f':
276 prec = 2;
277 break;
278 case 'd':
279 prec = 4;
280 break;
281 default:
282 *sizeP = 0;
283 return _("bad call to md_atof");
284 }
285
286 t = atof_ieee (input_line_pointer, type, words);
287 if (t)
288 input_line_pointer = t;
289
290 *sizeP = prec * 2;
291
292 if (! target_big_endian)
293 for (i = prec - 1; i >= 0; i--, litP += 2)
294 md_number_to_chars (litP, (valueT) words[i], 2);
295 else
296 for (i = 0; i < prec; i++, litP += 2)
297 md_number_to_chars (litP, (valueT) words[i], 2);
298
299 return NULL;
300 }
301
302 /* Return true if STR starts with PREFIX, which should be a string literal. */
303 #define strprefix(STR, PREFIX) \
304 (strncmp ((STR), PREFIX, strlen (PREFIX)) == 0)
305
306 /* Return true if STR is prefixed with a control register name. */
307 static int
308 nios2_control_register_arg_p (const char *str)
309 {
310 return (strprefix (str, "ctl")
311 || strprefix (str, "cpuid")
312 || strprefix (str, "status")
313 || strprefix (str, "estatus")
314 || strprefix (str, "bstatus")
315 || strprefix (str, "ienable")
316 || strprefix (str, "ipending")
317 || strprefix (str, "exception")
318 || strprefix (str, "pteaddr")
319 || strprefix (str, "tlbacc")
320 || strprefix (str, "tlbmisc")
321 || strprefix (str, "fstatus")
322 || strprefix (str, "config")
323 || strprefix (str, "mpubase")
324 || strprefix (str, "mpuacc")
325 || strprefix (str, "badaddr"));
326 }
327
328 /* Return true if STR is prefixed with a special relocation operator. */
329 static int
330 nios2_special_relocation_p (const char *str)
331 {
332 return (strprefix (str, "%lo")
333 || strprefix (str, "%hi")
334 || strprefix (str, "%hiadj")
335 || strprefix (str, "%gprel")
336 || strprefix (str, "%got")
337 || strprefix (str, "%call")
338 || strprefix (str, "%gotoff_lo")
339 || strprefix (str, "%gotoff_hiadj")
340 || strprefix (str, "%tls_gd")
341 || strprefix (str, "%tls_ldm")
342 || strprefix (str, "%tls_ldo")
343 || strprefix (str, "%tls_ie")
344 || strprefix (str, "%tls_le")
345 || strprefix (str, "%gotoff"));
346 }
347
348 /* Checks whether the register name is a coprocessor
349 register - returns TRUE if it is, FALSE otherwise. */
350 static bfd_boolean
351 nios2_coproc_reg (const char *reg_name)
352 {
353 gas_assert (reg_name != NULL);
354
355 /* Check that we do have a valid register name and that it is a
356 coprocessor register.
357 It must begin with c, not be a control register, and be a valid
358 register name. */
359 if (strprefix (reg_name, "c")
360 && !strprefix (reg_name, "ctl")
361 && hash_find (nios2_reg_hash, reg_name) != NULL)
362 return TRUE;
363 else
364 return FALSE;
365 }
366
367 /* nop fill pattern for text section. */
368 static char const nop[4] = { 0x3a, 0x88, 0x01, 0x00 };
369
370 /* Handles all machine-dependent alignment needs. */
371 static void
372 nios2_align (int log_size, const char *pfill, symbolS *label)
373 {
374 int align;
375 long max_alignment = 15;
376
377 /* The front end is prone to changing segments out from under us
378 temporarily when -g is in effect. */
379 int switched_seg_p = (nios2_current_align_seg != now_seg);
380
381 align = log_size;
382 if (align > max_alignment)
383 {
384 align = max_alignment;
385 as_bad (_("Alignment too large: %d. assumed"), align);
386 }
387 else if (align < 0)
388 {
389 as_warn (_("Alignment negative: 0 assumed"));
390 align = 0;
391 }
392
393 if (align != 0)
394 {
395 if (subseg_text_p (now_seg) && align >= 2)
396 {
397 /* First, make sure we're on a four-byte boundary, in case
398 someone has been putting .byte values the text section. */
399 if (nios2_current_align < 2 || switched_seg_p)
400 frag_align (2, 0, 0);
401
402 /* Now fill in the alignment pattern. */
403 if (pfill != NULL)
404 frag_align_pattern (align, pfill, sizeof nop, 0);
405 else
406 frag_align (align, 0, 0);
407 }
408 else
409 frag_align (align, 0, 0);
410
411 if (!switched_seg_p)
412 nios2_current_align = align;
413
414 /* If the last label was in a different section we can't align it. */
415 if (label != NULL && !switched_seg_p)
416 {
417 symbolS *sym;
418 int label_seen = FALSE;
419 struct frag *old_frag;
420 valueT old_value;
421 valueT new_value;
422
423 gas_assert (S_GET_SEGMENT (label) == now_seg);
424
425 old_frag = symbol_get_frag (label);
426 old_value = S_GET_VALUE (label);
427 new_value = (valueT) frag_now_fix ();
428
429 /* It is possible to have more than one label at a particular
430 address, especially if debugging is enabled, so we must
431 take care to adjust all the labels at this address in this
432 fragment. To save time we search from the end of the symbol
433 list, backwards, since the symbols we are interested in are
434 almost certainly the ones that were most recently added.
435 Also to save time we stop searching once we have seen at least
436 one matching label, and we encounter a label that is no longer
437 in the target fragment. Note, this search is guaranteed to
438 find at least one match when sym == label, so no special case
439 code is necessary. */
440 for (sym = symbol_lastP; sym != NULL; sym = symbol_previous (sym))
441 if (symbol_get_frag (sym) == old_frag
442 && S_GET_VALUE (sym) == old_value)
443 {
444 label_seen = TRUE;
445 symbol_set_frag (sym, frag_now);
446 S_SET_VALUE (sym, new_value);
447 }
448 else if (label_seen && symbol_get_frag (sym) != old_frag)
449 break;
450 }
451 record_alignment (now_seg, align);
452 }
453 }
454
455 \f
456 /** Support for self-check mode. */
457
458 /* Mode of the assembler. */
459 typedef enum
460 {
461 NIOS2_MODE_ASSEMBLE, /* Ordinary operation. */
462 NIOS2_MODE_TEST /* Hidden mode used for self testing. */
463 } NIOS2_MODE;
464
465 static NIOS2_MODE nios2_mode = NIOS2_MODE_ASSEMBLE;
466
467 /* This function is used to in self-checking mode
468 to check the assembled instruction
469 opcode should be the assembled opcode, and exp_opcode
470 the parsed string representing the expected opcode. */
471 static void
472 nios2_check_assembly (unsigned int opcode, const char *exp_opcode)
473 {
474 if (nios2_mode == NIOS2_MODE_TEST)
475 {
476 if (exp_opcode == NULL)
477 as_bad (_("expecting opcode string in self test mode"));
478 else if (opcode != strtoul (exp_opcode, NULL, 16))
479 as_bad (_("assembly 0x%08x, expected %s"), opcode, exp_opcode);
480 }
481 }
482
483 \f
484 /** Support for machine-dependent assembler directives. */
485 /* Handle the .align pseudo-op. This aligns to a power of two. It
486 also adjusts any current instruction label. We treat this the same
487 way the MIPS port does: .align 0 turns off auto alignment. */
488 static void
489 s_nios2_align (int ignore ATTRIBUTE_UNUSED)
490 {
491 int align;
492 char fill;
493 const char *pfill = NULL;
494 long max_alignment = 15;
495
496 align = get_absolute_expression ();
497 if (align > max_alignment)
498 {
499 align = max_alignment;
500 as_bad (_("Alignment too large: %d. assumed"), align);
501 }
502 else if (align < 0)
503 {
504 as_warn (_("Alignment negative: 0 assumed"));
505 align = 0;
506 }
507
508 if (*input_line_pointer == ',')
509 {
510 input_line_pointer++;
511 fill = get_absolute_expression ();
512 pfill = (const char *) &fill;
513 }
514 else if (subseg_text_p (now_seg))
515 pfill = (const char *) &nop;
516 else
517 {
518 pfill = NULL;
519 nios2_last_label = NULL;
520 }
521
522 if (align != 0)
523 {
524 nios2_auto_align_on = 1;
525 nios2_align (align, pfill, nios2_last_label);
526 nios2_last_label = NULL;
527 }
528 else
529 nios2_auto_align_on = 0;
530
531 demand_empty_rest_of_line ();
532 }
533
534 /* Handle the .text pseudo-op. This is like the usual one, but it
535 clears the saved last label and resets known alignment. */
536 static void
537 s_nios2_text (int i)
538 {
539 s_text (i);
540 nios2_last_label = NULL;
541 nios2_current_align = 0;
542 nios2_current_align_seg = now_seg;
543 }
544
545 /* Handle the .data pseudo-op. This is like the usual one, but it
546 clears the saved last label and resets known alignment. */
547 static void
548 s_nios2_data (int i)
549 {
550 s_data (i);
551 nios2_last_label = NULL;
552 nios2_current_align = 0;
553 nios2_current_align_seg = now_seg;
554 }
555
556 /* Handle the .section pseudo-op. This is like the usual one, but it
557 clears the saved last label and resets known alignment. */
558 static void
559 s_nios2_section (int ignore)
560 {
561 obj_elf_section (ignore);
562 nios2_last_label = NULL;
563 nios2_current_align = 0;
564 nios2_current_align_seg = now_seg;
565 }
566
567 /* Explicitly unaligned cons. */
568 static void
569 s_nios2_ucons (int nbytes)
570 {
571 int hold;
572 hold = nios2_auto_align_on;
573 nios2_auto_align_on = 0;
574 cons (nbytes);
575 nios2_auto_align_on = hold;
576 }
577
578 /* Handle the .sdata directive. */
579 static void
580 s_nios2_sdata (int ignore ATTRIBUTE_UNUSED)
581 {
582 get_absolute_expression (); /* Ignored. */
583 subseg_new (".sdata", 0);
584 demand_empty_rest_of_line ();
585 }
586
587 /* .set sets assembler options eg noat/at and is also used
588 to set symbol values (.equ, .equiv ). */
589 static void
590 s_nios2_set (int equiv)
591 {
592 char *directive = input_line_pointer;
593 char delim = get_symbol_end ();
594 char *endline = input_line_pointer;
595 *endline = delim;
596
597 /* We only want to handle ".set XXX" if the
598 user has tried ".set XXX, YYY" they are not
599 trying a directive. This prevents
600 us from polluting the name space. */
601 SKIP_WHITESPACE ();
602 if (is_end_of_line[(unsigned char) *input_line_pointer])
603 {
604 bfd_boolean done = TRUE;
605 *endline = 0;
606
607 if (!strcmp (directive, "noat"))
608 nios2_as_options.noat = TRUE;
609 else if (!strcmp (directive, "at"))
610 nios2_as_options.noat = FALSE;
611 else if (!strcmp (directive, "nobreak"))
612 nios2_as_options.nobreak = TRUE;
613 else if (!strcmp (directive, "break"))
614 nios2_as_options.nobreak = FALSE;
615 else if (!strcmp (directive, "norelax"))
616 nios2_as_options.relax = relax_none;
617 else if (!strcmp (directive, "relaxsection"))
618 nios2_as_options.relax = relax_section;
619 else if (!strcmp (directive, "relaxall"))
620 nios2_as_options.relax = relax_all;
621 else
622 done = FALSE;
623
624 if (done)
625 {
626 *endline = delim;
627 demand_empty_rest_of_line ();
628 return;
629 }
630 }
631
632 /* If we fall through to here, either we have ".set XXX, YYY"
633 or we have ".set XXX" where XXX is unknown or we have
634 a syntax error. */
635 input_line_pointer = directive;
636 *endline = delim;
637 s_set (equiv);
638 }
639
640 /* Machine-dependent assembler directives.
641 Format of each entry is:
642 { "directive", handler_func, param } */
643 const pseudo_typeS md_pseudo_table[] = {
644 {"align", s_nios2_align, 0},
645 {"text", s_nios2_text, 0},
646 {"data", s_nios2_data, 0},
647 {"section", s_nios2_section, 0},
648 {"section.s", s_nios2_section, 0},
649 {"sect", s_nios2_section, 0},
650 {"sect.s", s_nios2_section, 0},
651 /* .dword and .half are included for compatibility with MIPS. */
652 {"dword", cons, 8},
653 {"half", cons, 2},
654 /* NIOS2 native word size is 4 bytes, so we override
655 the GAS default of 2. */
656 {"word", cons, 4},
657 /* Explicitly unaligned directives. */
658 {"2byte", s_nios2_ucons, 2},
659 {"4byte", s_nios2_ucons, 4},
660 {"8byte", s_nios2_ucons, 8},
661 {"16byte", s_nios2_ucons, 16},
662 #ifdef OBJ_ELF
663 {"sdata", s_nios2_sdata, 0},
664 #endif
665 {"set", s_nios2_set, 0},
666 {NULL, NULL, 0}
667 };
668
669 \f
670 /** Relaxation support. */
671
672 /* We support two relaxation modes: a limited PC-relative mode with
673 -relax-section (the default), and an absolute jump mode with -relax-all.
674
675 Nios II PC-relative branch instructions only support 16-bit offsets.
676 And, there's no good way to add a 32-bit constant to the PC without
677 using two registers.
678
679 To deal with this, for the pc-relative relaxation mode we convert
680 br label
681 into a series of 16-bit adds, like:
682 nextpc at
683 addi at, at, 32767
684 ...
685 addi at, at, remainder
686 jmp at
687
688 Similarly, conditional branches are converted from
689 b(condition) r, s, label
690 into a series like:
691 b(opposite condition) r, s, skip
692 nextpc at
693 addi at, at, 32767
694 ...
695 addi at, at, remainder
696 jmp at
697 skip:
698
699 The compiler can do a better job, either by converting the branch
700 directly into a JMP (going through the GOT for PIC) or by allocating
701 a second register for the 32-bit displacement.
702
703 For the -relax-all relaxation mode, the conversions are
704 movhi at, %hi(symbol+offset)
705 ori at, %lo(symbol+offset)
706 jmp at
707 and
708 b(opposite condition), r, s, skip
709 movhi at, %hi(symbol+offset)
710 ori at, %lo(symbol+offset)
711 jmp at
712 skip:
713 respectively.
714 */
715
716 /* Arbitrarily limit the number of addis we can insert; we need to be able
717 to specify the maximum growth size for each frag that contains a
718 relaxable branch. There's no point in specifying a huge number here
719 since that means the assembler needs to allocate that much extra
720 memory for every branch, and almost no real code will ever need it.
721 Plus, as already noted a better solution is to just use a jmp, or
722 allocate a second register to hold a 32-bit displacement.
723 FIXME: Rather than making this a constant, it could be controlled by
724 a command-line argument. */
725 #define RELAX_MAX_ADDI 32
726
727 /* The fr_subtype field represents the target-specific relocation state.
728 It has type relax_substateT (unsigned int). We use it to track the
729 number of addis necessary, plus a bit to track whether this is a
730 conditional branch.
731 Regardless of the smaller RELAX_MAX_ADDI limit, we reserve 16 bits
732 in the fr_subtype to encode the number of addis so that the whole
733 theoretically-valid range is representable.
734 For the -relax-all mode, N = 0 represents an in-range branch and N = 1
735 represents a branch that needs to be relaxed. */
736 #define UBRANCH (0 << 16)
737 #define CBRANCH (1 << 16)
738 #define IS_CBRANCH(SUBTYPE) ((SUBTYPE) & CBRANCH)
739 #define IS_UBRANCH(SUBTYPE) (!IS_CBRANCH (SUBTYPE))
740 #define UBRANCH_SUBTYPE(N) (UBRANCH | (N))
741 #define CBRANCH_SUBTYPE(N) (CBRANCH | (N))
742 #define SUBTYPE_ADDIS(SUBTYPE) ((SUBTYPE) & 0xffff)
743
744 /* For the -relax-section mode, unconditional branches require 2 extra i
745 nstructions besides the addis, conditional branches require 3. */
746 #define UBRANCH_ADDIS_TO_SIZE(N) (((N) + 2) * 4)
747 #define CBRANCH_ADDIS_TO_SIZE(N) (((N) + 3) * 4)
748
749 /* For the -relax-all mode, unconditional branches require 3 instructions
750 and conditional branches require 4. */
751 #define UBRANCH_JUMP_SIZE 12
752 #define CBRANCH_JUMP_SIZE 16
753
754 /* Maximum sizes of relaxation sequences. */
755 #define UBRANCH_MAX_SIZE \
756 (nios2_as_options.relax == relax_all \
757 ? UBRANCH_JUMP_SIZE \
758 : UBRANCH_ADDIS_TO_SIZE (RELAX_MAX_ADDI))
759 #define CBRANCH_MAX_SIZE \
760 (nios2_as_options.relax == relax_all \
761 ? CBRANCH_JUMP_SIZE \
762 : CBRANCH_ADDIS_TO_SIZE (RELAX_MAX_ADDI))
763
764 /* Register number of AT, the assembler temporary. */
765 #define AT_REGNUM 1
766
767 /* Determine how many bytes are required to represent the sequence
768 indicated by SUBTYPE. */
769 static int
770 nios2_relax_subtype_size (relax_substateT subtype)
771 {
772 int n = SUBTYPE_ADDIS (subtype);
773 if (n == 0)
774 /* Regular conditional/unconditional branch instruction. */
775 return 4;
776 else if (nios2_as_options.relax == relax_all)
777 return (IS_CBRANCH (subtype) ? CBRANCH_JUMP_SIZE : UBRANCH_JUMP_SIZE);
778 else if (IS_CBRANCH (subtype))
779 return CBRANCH_ADDIS_TO_SIZE (n);
780 else
781 return UBRANCH_ADDIS_TO_SIZE (n);
782 }
783
784 /* Estimate size of fragp before relaxation.
785 This could also examine the offset in fragp and adjust
786 fragp->fr_subtype, but we will do that in nios2_relax_frag anyway. */
787 int
788 md_estimate_size_before_relax (fragS *fragp, segT segment ATTRIBUTE_UNUSED)
789 {
790 return nios2_relax_subtype_size (fragp->fr_subtype);
791 }
792
793 /* Implement md_relax_frag, returning the change in size of the frag. */
794 long
795 nios2_relax_frag (segT segment, fragS *fragp, long stretch)
796 {
797 addressT target = fragp->fr_offset;
798 relax_substateT subtype = fragp->fr_subtype;
799 symbolS *symbolp = fragp->fr_symbol;
800
801 if (symbolp)
802 {
803 fragS *sym_frag = symbol_get_frag (symbolp);
804 offsetT offset;
805 int n;
806
807 target += S_GET_VALUE (symbolp);
808
809 /* See comments in write.c:relax_frag about handling of stretch. */
810 if (stretch != 0
811 && sym_frag->relax_marker != fragp->relax_marker)
812 {
813 if (stretch < 0 || sym_frag->region == fragp->region)
814 target += stretch;
815 else if (target < fragp->fr_address)
816 target = fragp->fr_next->fr_address + stretch;
817 }
818
819 /* We subtract 4 because all pc relative branches are
820 from the next instruction. */
821 offset = target - fragp->fr_address - fragp->fr_fix - 4;
822 if (offset >= -32768 && offset <= 32764)
823 /* Fits in PC-relative branch. */
824 n = 0;
825 else if (nios2_as_options.relax == relax_all)
826 /* Convert to jump. */
827 n = 1;
828 else if (nios2_as_options.relax == relax_section
829 && S_GET_SEGMENT (symbolp) == segment
830 && S_IS_DEFINED (symbolp))
831 /* Attempt a PC-relative relaxation on a branch to a defined
832 symbol in the same segment. */
833 {
834 /* The relaxation for conditional branches is offset by 4
835 bytes because we insert the inverted branch around the
836 sequence. */
837 if (IS_CBRANCH (subtype))
838 offset = offset - 4;
839 if (offset > 0)
840 n = offset / 32767 + 1;
841 else
842 n = offset / -32768 + 1;
843
844 /* Bail out immediately if relaxation has failed. If we try to
845 defer the diagnostic to md_convert_frag, some pathological test
846 cases (e.g. gcc/testsuite/gcc.c-torture/compile/20001226-1.c)
847 apparently never converge. By returning 0 here we could pretend
848 to the caller that nothing has changed, but that leaves things
849 in an inconsistent state when we get to md_convert_frag. */
850 if (n > RELAX_MAX_ADDI)
851 {
852 as_bad_where (fragp->fr_file, fragp->fr_line,
853 _("branch offset out of range\n"));
854 as_fatal (_("branch relaxation failed\n"));
855 }
856 }
857 else
858 /* We cannot handle this case, diagnose overflow later. */
859 return 0;
860
861 if (IS_CBRANCH (subtype))
862 fragp->fr_subtype = CBRANCH_SUBTYPE (n);
863 else
864 fragp->fr_subtype = UBRANCH_SUBTYPE (n);
865
866 return (nios2_relax_subtype_size (fragp->fr_subtype)
867 - nios2_relax_subtype_size (subtype));
868 }
869
870 /* If we got here, it's probably an error. */
871 return 0;
872 }
873
874
875 /* Complete fragp using the data from the relaxation pass. */
876 void
877 md_convert_frag (bfd *headers ATTRIBUTE_UNUSED, segT segment ATTRIBUTE_UNUSED,
878 fragS *fragp)
879 {
880 char *buffer = fragp->fr_literal + fragp->fr_fix;
881 relax_substateT subtype = fragp->fr_subtype;
882 int n = SUBTYPE_ADDIS (subtype);
883 addressT target = fragp->fr_offset;
884 symbolS *symbolp = fragp->fr_symbol;
885 offsetT offset;
886 unsigned int addend_mask, addi_mask;
887 offsetT addend, remainder;
888 int i;
889
890 /* If we didn't or can't relax, this is a regular branch instruction.
891 We just need to generate the fixup for the symbol and offset. */
892 if (n == 0)
893 {
894 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset, 1,
895 BFD_RELOC_16_PCREL);
896 fragp->fr_fix += 4;
897 return;
898 }
899
900 /* Replace the cbranch at fr_fix with one that has the opposite condition
901 in order to jump around the block of instructions we'll be adding. */
902 if (IS_CBRANCH (subtype))
903 {
904 unsigned int br_opcode;
905 int nbytes;
906
907 /* Account for the nextpc and jmp in the pc-relative case, or the two
908 load instructions and jump in the absolute case. */
909 if (nios2_as_options.relax == relax_section)
910 nbytes = (n + 2) * 4;
911 else
912 nbytes = 12;
913
914 br_opcode = md_chars_to_number (buffer, 4);
915 switch (br_opcode & OP_MASK_OP)
916 {
917 case OP_MATCH_BEQ:
918 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BNE;
919 break;
920 case OP_MATCH_BNE:
921 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BEQ ;
922 break;
923 case OP_MATCH_BGE:
924 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BLT ;
925 break;
926 case OP_MATCH_BGEU:
927 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BLTU ;
928 break;
929 case OP_MATCH_BLT:
930 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BGE ;
931 break;
932 case OP_MATCH_BLTU:
933 br_opcode = (br_opcode & ~OP_MASK_OP) | OP_MATCH_BGEU ;
934 break;
935 default:
936 as_bad_where (fragp->fr_file, fragp->fr_line,
937 _("expecting conditional branch for relaxation\n"));
938 abort ();
939 }
940
941 br_opcode = br_opcode | (nbytes << OP_SH_IMM16);
942 md_number_to_chars (buffer, br_opcode, 4);
943 fragp->fr_fix += 4;
944 buffer += 4;
945 }
946
947 /* Load at for the PC-relative case. */
948 if (nios2_as_options.relax == relax_section)
949 {
950 /* Insert the nextpc instruction. */
951 md_number_to_chars (buffer,
952 OP_MATCH_NEXTPC | (AT_REGNUM << OP_SH_RRD), 4);
953 fragp->fr_fix += 4;
954 buffer += 4;
955
956 /* We need to know whether the offset is positive or negative. */
957 target += S_GET_VALUE (symbolp);
958 offset = target - fragp->fr_address - fragp->fr_fix;
959 if (offset > 0)
960 addend = 32767;
961 else
962 addend = -32768;
963 addend_mask = (((unsigned int)addend) & 0xffff) << OP_SH_IMM16;
964
965 /* Insert n-1 addi instructions. */
966 addi_mask = (OP_MATCH_ADDI
967 | (AT_REGNUM << OP_SH_IRD)
968 | (AT_REGNUM << OP_SH_IRS));
969 for (i = 0; i < n - 1; i ++)
970 {
971 md_number_to_chars (buffer, addi_mask | addend_mask, 4);
972 fragp->fr_fix += 4;
973 buffer += 4;
974 }
975
976 /* Insert the last addi instruction to hold the remainder. */
977 remainder = offset - addend * (n - 1);
978 gas_assert (remainder >= -32768 && remainder <= 32767);
979 addend_mask = (((unsigned int)remainder) & 0xffff) << OP_SH_IMM16;
980 md_number_to_chars (buffer, addi_mask | addend_mask, 4);
981 fragp->fr_fix += 4;
982 buffer += 4;
983 }
984
985 /* Load at for the absolute case. */
986 else
987 {
988 md_number_to_chars (buffer, OP_MATCH_ORHI | 0x00400000, 4);
989 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset,
990 0, BFD_RELOC_NIOS2_HI16);
991 fragp->fr_fix += 4;
992 buffer += 4;
993 md_number_to_chars (buffer, OP_MATCH_ORI | 0x08400000, 4);
994 fix_new (fragp, fragp->fr_fix, 4, fragp->fr_symbol, fragp->fr_offset,
995 0, BFD_RELOC_NIOS2_LO16);
996 fragp->fr_fix += 4;
997 buffer += 4;
998 }
999
1000 /* Insert the jmp instruction. */
1001 md_number_to_chars (buffer, OP_MATCH_JMP | (AT_REGNUM << OP_SH_RRS), 4);
1002 fragp->fr_fix += 4;
1003 buffer += 4;
1004 }
1005
1006 \f
1007 /** Fixups and overflow checking. */
1008
1009 /* Check a fixup for overflow. */
1010 static bfd_boolean
1011 nios2_check_overflow (valueT fixup, reloc_howto_type *howto)
1012 {
1013 /* Apply the rightshift before checking for overflow. */
1014 fixup = ((signed)fixup) >> howto->rightshift;
1015
1016 /* Check for overflow - return TRUE if overflow, FALSE if not. */
1017 switch (howto->complain_on_overflow)
1018 {
1019 case complain_overflow_dont:
1020 break;
1021 case complain_overflow_bitfield:
1022 if ((fixup >> howto->bitsize) != 0
1023 && ((signed) fixup >> howto->bitsize) != -1)
1024 return TRUE;
1025 break;
1026 case complain_overflow_signed:
1027 if ((fixup & 0x80000000) > 0)
1028 {
1029 /* Check for negative overflow. */
1030 if ((signed) fixup < ((signed) 0x80000000 >> howto->bitsize))
1031 return TRUE;
1032 }
1033 else
1034 {
1035 /* Check for positive overflow. */
1036 if (fixup >= ((unsigned) 1 << (howto->bitsize - 1)))
1037 return TRUE;
1038 }
1039 break;
1040 case complain_overflow_unsigned:
1041 if ((fixup >> howto->bitsize) != 0)
1042 return TRUE;
1043 break;
1044 default:
1045 as_bad (_("error checking for overflow - broken assembler"));
1046 break;
1047 }
1048 return FALSE;
1049 }
1050
1051 /* Emit diagnostic for fixup overflow. */
1052 static void
1053 nios2_diagnose_overflow (valueT fixup, reloc_howto_type *howto,
1054 fixS *fixP, valueT value)
1055 {
1056 if (fixP->fx_r_type == BFD_RELOC_8
1057 || fixP->fx_r_type == BFD_RELOC_16
1058 || fixP->fx_r_type == BFD_RELOC_32)
1059 /* These relocs are against data, not instructions. */
1060 as_bad_where (fixP->fx_file, fixP->fx_line,
1061 _("immediate value 0x%x truncated to 0x%x"),
1062 (unsigned int) fixup,
1063 (unsigned int) (~(~(valueT) 0 << howto->bitsize) & fixup));
1064 else
1065 {
1066 /* What opcode is the instruction? This will determine
1067 whether we check for overflow in immediate values
1068 and what error message we get. */
1069 const struct nios2_opcode *opcode;
1070 enum overflow_type overflow_msg_type;
1071 unsigned int range_min;
1072 unsigned int range_max;
1073 unsigned int address;
1074 gas_assert (fixP->fx_size == 4);
1075 opcode = nios2_find_opcode_hash (value);
1076 gas_assert (opcode);
1077 overflow_msg_type = opcode->overflow_msg;
1078 switch (overflow_msg_type)
1079 {
1080 case call_target_overflow:
1081 range_min
1082 = ((fixP->fx_frag->fr_address + fixP->fx_where) & 0xf0000000);
1083 range_max = range_min + 0x0fffffff;
1084 address = fixup | range_min;
1085
1086 as_bad_where (fixP->fx_file, fixP->fx_line,
1087 _("call target address 0x%08x out of range 0x%08x to 0x%08x"),
1088 address, range_min, range_max);
1089 break;
1090 case branch_target_overflow:
1091 as_bad_where (fixP->fx_file, fixP->fx_line,
1092 _("branch offset %d out of range %d to %d"),
1093 (int)fixup, -32768, 32767);
1094 break;
1095 case address_offset_overflow:
1096 as_bad_where (fixP->fx_file, fixP->fx_line,
1097 _("%s offset %d out of range %d to %d"),
1098 opcode->name, (int)fixup, -32768, 32767);
1099 break;
1100 case signed_immed16_overflow:
1101 as_bad_where (fixP->fx_file, fixP->fx_line,
1102 _("immediate value %d out of range %d to %d"),
1103 (int)fixup, -32768, 32767);
1104 break;
1105 case unsigned_immed16_overflow:
1106 as_bad_where (fixP->fx_file, fixP->fx_line,
1107 _("immediate value %u out of range %u to %u"),
1108 (unsigned int)fixup, 0, 65535);
1109 break;
1110 case unsigned_immed5_overflow:
1111 as_bad_where (fixP->fx_file, fixP->fx_line,
1112 _("immediate value %u out of range %u to %u"),
1113 (unsigned int)fixup, 0, 31);
1114 break;
1115 case custom_opcode_overflow:
1116 as_bad_where (fixP->fx_file, fixP->fx_line,
1117 _("custom instruction opcode %u out of range %u to %u"),
1118 (unsigned int)fixup, 0, 255);
1119 break;
1120 default:
1121 as_bad_where (fixP->fx_file, fixP->fx_line,
1122 _("overflow in immediate argument"));
1123 break;
1124 }
1125 }
1126 }
1127
1128 /* Apply a fixup to the object file. */
1129 void
1130 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
1131 {
1132 /* Assert that the fixup is one we can handle. */
1133 gas_assert (fixP != NULL && valP != NULL
1134 && (fixP->fx_r_type == BFD_RELOC_8
1135 || fixP->fx_r_type == BFD_RELOC_16
1136 || fixP->fx_r_type == BFD_RELOC_32
1137 || fixP->fx_r_type == BFD_RELOC_64
1138 || fixP->fx_r_type == BFD_RELOC_NIOS2_S16
1139 || fixP->fx_r_type == BFD_RELOC_NIOS2_U16
1140 || fixP->fx_r_type == BFD_RELOC_16_PCREL
1141 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALL26
1142 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM5
1143 || fixP->fx_r_type == BFD_RELOC_NIOS2_CACHE_OPX
1144 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM6
1145 || fixP->fx_r_type == BFD_RELOC_NIOS2_IMM8
1146 || fixP->fx_r_type == BFD_RELOC_NIOS2_HI16
1147 || fixP->fx_r_type == BFD_RELOC_NIOS2_LO16
1148 || fixP->fx_r_type == BFD_RELOC_NIOS2_HIADJ16
1149 || fixP->fx_r_type == BFD_RELOC_NIOS2_GPREL
1150 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1151 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
1152 || fixP->fx_r_type == BFD_RELOC_NIOS2_UJMP
1153 || fixP->fx_r_type == BFD_RELOC_NIOS2_CJMP
1154 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALLR
1155 || fixP->fx_r_type == BFD_RELOC_NIOS2_ALIGN
1156 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOT16
1157 || fixP->fx_r_type == BFD_RELOC_NIOS2_CALL16
1158 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_LO
1159 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_HA
1160 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_GD16
1161 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LDM16
1162 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LDO16
1163 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_IE16
1164 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_LE16
1165 || fixP->fx_r_type == BFD_RELOC_NIOS2_GOTOFF
1166 || fixP->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPREL
1167 /* Add other relocs here as we generate them. */
1168 ));
1169
1170 if (fixP->fx_r_type == BFD_RELOC_64)
1171 {
1172 /* We may reach here due to .8byte directives, but we never output
1173 BFD_RELOC_64; it must be resolved. */
1174 if (fixP->fx_addsy != NULL)
1175 as_bad_where (fixP->fx_file, fixP->fx_line,
1176 _("cannot create 64-bit relocation"));
1177 else
1178 {
1179 md_number_to_chars (fixP->fx_frag->fr_literal + fixP->fx_where,
1180 *valP, 8);
1181 fixP->fx_done = 1;
1182 }
1183 return;
1184 }
1185
1186 /* The value passed in valP can be the value of a fully
1187 resolved expression, or it can be the value of a partially
1188 resolved expression. In the former case, both fixP->fx_addsy
1189 and fixP->fx_subsy are NULL, and fixP->fx_offset == *valP, and
1190 we can fix up the instruction that fixP relates to.
1191 In the latter case, one or both of fixP->fx_addsy and
1192 fixP->fx_subsy are not NULL, and fixP->fx_offset may or may not
1193 equal *valP. We don't need to check for fixP->fx_subsy being null
1194 because the generic part of the assembler generates an error if
1195 it is not an absolute symbol. */
1196 if (fixP->fx_addsy != NULL)
1197 /* Partially resolved expression. */
1198 {
1199 fixP->fx_addnumber = fixP->fx_offset;
1200 fixP->fx_done = 0;
1201
1202 switch (fixP->fx_r_type)
1203 {
1204 case BFD_RELOC_NIOS2_TLS_GD16:
1205 case BFD_RELOC_NIOS2_TLS_LDM16:
1206 case BFD_RELOC_NIOS2_TLS_LDO16:
1207 case BFD_RELOC_NIOS2_TLS_IE16:
1208 case BFD_RELOC_NIOS2_TLS_LE16:
1209 case BFD_RELOC_NIOS2_TLS_DTPMOD:
1210 case BFD_RELOC_NIOS2_TLS_DTPREL:
1211 case BFD_RELOC_NIOS2_TLS_TPREL:
1212 S_SET_THREAD_LOCAL (fixP->fx_addsy);
1213 break;
1214 default:
1215 break;
1216 }
1217 }
1218 else
1219 /* Fully resolved fixup. */
1220 {
1221 reloc_howto_type *howto
1222 = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
1223
1224 if (howto == NULL)
1225 as_bad_where (fixP->fx_file, fixP->fx_line,
1226 _("relocation is not supported"));
1227 else
1228 {
1229 valueT fixup = *valP;
1230 valueT value;
1231 char *buf;
1232
1233 /* If this is a pc-relative relocation, we need to
1234 subtract the current offset within the object file
1235 FIXME : for some reason fixP->fx_pcrel isn't 1 when it should be
1236 so I'm using the howto structure instead to determine this. */
1237 if (howto->pc_relative == 1)
1238 fixup = fixup - (fixP->fx_frag->fr_address + fixP->fx_where + 4);
1239
1240 /* Get the instruction or data to be fixed up. */
1241 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
1242 value = md_chars_to_number (buf, fixP->fx_size);
1243
1244 /* Check for overflow, emitting a diagnostic if necessary. */
1245 if (nios2_check_overflow (fixup, howto))
1246 nios2_diagnose_overflow (fixup, howto, fixP, value);
1247
1248 /* Apply the right shift. */
1249 fixup = ((signed)fixup) >> howto->rightshift;
1250
1251 /* Truncate the fixup to right size. */
1252 switch (fixP->fx_r_type)
1253 {
1254 case BFD_RELOC_NIOS2_HI16:
1255 fixup = (fixup >> 16) & 0xFFFF;
1256 break;
1257 case BFD_RELOC_NIOS2_LO16:
1258 fixup = fixup & 0xFFFF;
1259 break;
1260 case BFD_RELOC_NIOS2_HIADJ16:
1261 fixup = ((fixup >> 16) & 0xFFFF) + ((fixup >> 15) & 0x01);
1262 break;
1263 default:
1264 {
1265 int n = sizeof (fixup) * 8 - howto->bitsize;
1266 fixup = (fixup << n) >> n;
1267 break;
1268 }
1269 }
1270
1271 /* Fix up the instruction. */
1272 value = (value & ~howto->dst_mask) | (fixup << howto->bitpos);
1273 md_number_to_chars (buf, value, fixP->fx_size);
1274 }
1275
1276 fixP->fx_done = 1;
1277 }
1278
1279 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT)
1280 {
1281 fixP->fx_done = 0;
1282 if (fixP->fx_addsy
1283 && !S_IS_DEFINED (fixP->fx_addsy) && !S_IS_WEAK (fixP->fx_addsy))
1284 S_SET_WEAK (fixP->fx_addsy);
1285 }
1286 else if (fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1287 fixP->fx_done = 0;
1288 }
1289
1290
1291 \f
1292 /** Instruction parsing support. */
1293
1294 /* Special relocation directive strings. */
1295
1296 struct nios2_special_relocS
1297 {
1298 const char *string;
1299 bfd_reloc_code_real_type reloc_type;
1300 };
1301
1302 struct nios2_special_relocS nios2_special_reloc[] = {
1303 {"%hiadj", BFD_RELOC_NIOS2_HIADJ16},
1304 {"%hi", BFD_RELOC_NIOS2_HI16},
1305 {"%lo", BFD_RELOC_NIOS2_LO16},
1306 {"%gprel", BFD_RELOC_NIOS2_GPREL},
1307 {"%call", BFD_RELOC_NIOS2_CALL16},
1308 {"%gotoff_lo", BFD_RELOC_NIOS2_GOTOFF_LO},
1309 {"%gotoff_hiadj", BFD_RELOC_NIOS2_GOTOFF_HA},
1310 {"%tls_gd", BFD_RELOC_NIOS2_TLS_GD16},
1311 {"%tls_ldm", BFD_RELOC_NIOS2_TLS_LDM16},
1312 {"%tls_ldo", BFD_RELOC_NIOS2_TLS_LDO16},
1313 {"%tls_ie", BFD_RELOC_NIOS2_TLS_IE16},
1314 {"%tls_le", BFD_RELOC_NIOS2_TLS_LE16},
1315 {"%gotoff", BFD_RELOC_NIOS2_GOTOFF},
1316 {"%got", BFD_RELOC_NIOS2_GOT16}
1317 };
1318
1319 #define NIOS2_NUM_SPECIAL_RELOCS \
1320 (sizeof(nios2_special_reloc)/sizeof(nios2_special_reloc[0]))
1321 const int nios2_num_special_relocs = NIOS2_NUM_SPECIAL_RELOCS;
1322
1323 /* Creates a new nios2_insn_relocS and returns a pointer to it. */
1324 static nios2_insn_relocS *
1325 nios2_insn_reloc_new (bfd_reloc_code_real_type reloc_type, unsigned int pcrel)
1326 {
1327 nios2_insn_relocS *retval;
1328 retval = (nios2_insn_relocS *) malloc (sizeof (nios2_insn_relocS));
1329 if (retval == NULL)
1330 {
1331 as_bad (_("can't create relocation"));
1332 abort ();
1333 }
1334
1335 /* Fill out the fields with default values. */
1336 retval->reloc_next = NULL;
1337 retval->reloc_type = reloc_type;
1338 retval->reloc_pcrel = pcrel;
1339 return retval;
1340 }
1341
1342 /* Frees up memory previously allocated by nios2_insn_reloc_new(). */
1343 /* FIXME: this is never called; memory leak? */
1344 #if 0
1345 static void
1346 nios2_insn_reloc_destroy (nios2_insn_relocS *reloc)
1347 {
1348 gas_assert (reloc != NULL);
1349 free (reloc);
1350 }
1351 #endif
1352
1353 /* The various nios2_assemble_* functions call this
1354 function to generate an expression from a string representing an expression.
1355 It then tries to evaluate the expression, and if it can, returns its value.
1356 If not, it creates a new nios2_insn_relocS and stores the expression and
1357 reloc_type for future use. */
1358 static unsigned long
1359 nios2_assemble_expression (const char *exprstr,
1360 nios2_insn_infoS *insn,
1361 nios2_insn_relocS *prev_reloc,
1362 bfd_reloc_code_real_type reloc_type,
1363 unsigned int pcrel)
1364 {
1365 nios2_insn_relocS *reloc;
1366 char *saved_line_ptr;
1367 unsigned short value;
1368 int i;
1369
1370 gas_assert (exprstr != NULL);
1371 gas_assert (insn != NULL);
1372
1373 /* Check for relocation operators.
1374 Change the relocation type and advance the ptr to the start of
1375 the expression proper. */
1376 for (i = 0; i < nios2_num_special_relocs; i++)
1377 if (strstr (exprstr, nios2_special_reloc[i].string) != NULL)
1378 {
1379 reloc_type = nios2_special_reloc[i].reloc_type;
1380 exprstr += strlen (nios2_special_reloc[i].string) + 1;
1381
1382 /* %lo and %hiadj have different meanings for PC-relative
1383 expressions. */
1384 if (pcrel)
1385 {
1386 if (reloc_type == BFD_RELOC_NIOS2_LO16)
1387 reloc_type = BFD_RELOC_NIOS2_PCREL_LO;
1388 if (reloc_type == BFD_RELOC_NIOS2_HIADJ16)
1389 reloc_type = BFD_RELOC_NIOS2_PCREL_HA;
1390 }
1391
1392 break;
1393 }
1394
1395 /* We potentially have a relocation. */
1396 reloc = nios2_insn_reloc_new (reloc_type, pcrel);
1397 if (prev_reloc != NULL)
1398 prev_reloc->reloc_next = reloc;
1399 else
1400 insn->insn_reloc = reloc;
1401
1402 /* Parse the expression string. */
1403 saved_line_ptr = input_line_pointer;
1404 input_line_pointer = (char *) exprstr;
1405 expression (&reloc->reloc_expression);
1406 input_line_pointer = saved_line_ptr;
1407
1408 /* This is redundant as the fixup will put this into
1409 the instruction, but it is included here so that
1410 self-test mode (-r) works. */
1411 value = 0;
1412 if (nios2_mode == NIOS2_MODE_TEST
1413 && reloc->reloc_expression.X_op == O_constant)
1414 value = reloc->reloc_expression.X_add_number;
1415
1416 return (unsigned long) value;
1417 }
1418
1419 /* Argument assemble functions.
1420 All take an instruction argument string, and a pointer
1421 to an instruction opcode. Upon return the insn_opcode
1422 has the relevant fields filled in to represent the arg
1423 string. The return value is NULL if successful, or
1424 an error message if an error was detected.
1425
1426 The naming conventions for these functions match the args template
1427 in the nios2_opcode structure, as documented in include/opcode/nios2.h.
1428 For example, nios2_assemble_args_dst is used for instructions with
1429 "d,s,t" args.
1430 See nios2_arg_info_structs below for the exact correspondence. */
1431
1432 static void
1433 nios2_assemble_args_dst (nios2_insn_infoS *insn_info)
1434 {
1435 if (insn_info->insn_tokens[1] != NULL
1436 && insn_info->insn_tokens[2] != NULL
1437 && insn_info->insn_tokens[3] != NULL)
1438 {
1439 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1440 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1441 struct nios2_reg *src2 = nios2_reg_lookup (insn_info->insn_tokens[3]);
1442
1443 if (dst == NULL)
1444 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1445 else
1446 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1447
1448 if (src1 == NULL)
1449 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1450 else
1451 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1452
1453 if (src2 == NULL)
1454 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1455 else
1456 SET_INSN_FIELD (RRT, insn_info->insn_code, src2->index);
1457
1458 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1459 }
1460 }
1461
1462 static void
1463 nios2_assemble_args_tsi (nios2_insn_infoS *insn_info)
1464 {
1465 if (insn_info->insn_tokens[1] != NULL &&
1466 insn_info->insn_tokens[2] != NULL && insn_info->insn_tokens[3] != NULL)
1467 {
1468 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1469 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1470 unsigned int src2
1471 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1472 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1473 0);
1474
1475 if (dst == NULL)
1476 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1477 else
1478 SET_INSN_FIELD (IRT, insn_info->insn_code, dst->index);
1479
1480 if (src1 == NULL)
1481 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1482 else
1483 SET_INSN_FIELD (IRS, insn_info->insn_code, src1->index);
1484
1485 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1486 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1487 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1488 }
1489 }
1490
1491 static void
1492 nios2_assemble_args_tsu (nios2_insn_infoS *insn_info)
1493 {
1494 if (insn_info->insn_tokens[1] != NULL
1495 && insn_info->insn_tokens[2] != NULL
1496 && insn_info->insn_tokens[3] != NULL)
1497 {
1498 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1499 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1500 unsigned int src2
1501 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1502 insn_info->insn_reloc, BFD_RELOC_NIOS2_U16,
1503 0);
1504
1505 if (dst == NULL)
1506 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1507 else
1508 SET_INSN_FIELD (IRT, insn_info->insn_code, dst->index);
1509
1510 if (src1 == NULL)
1511 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1512 else
1513 SET_INSN_FIELD (IRS, insn_info->insn_code, src1->index);
1514
1515 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1516 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1517 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1518 }
1519 }
1520
1521 static void
1522 nios2_assemble_args_sto (nios2_insn_infoS *insn_info)
1523 {
1524 if (insn_info->insn_tokens[1] != NULL
1525 && insn_info->insn_tokens[2] != NULL
1526 && insn_info->insn_tokens[3] != NULL)
1527 {
1528 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1529 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1530 unsigned int src2
1531 = nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1532 insn_info->insn_reloc, BFD_RELOC_16_PCREL,
1533 1);
1534
1535 if (dst == NULL)
1536 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1537 else
1538 SET_INSN_FIELD (IRS, insn_info->insn_code, dst->index);
1539
1540 if (src1 == NULL)
1541 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1542 else
1543 SET_INSN_FIELD (IRT, insn_info->insn_code, src1->index);
1544
1545 SET_INSN_FIELD (IMM16, insn_info->insn_code, src2);
1546 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1547 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1548 }
1549 }
1550
1551 static void
1552 nios2_assemble_args_o (nios2_insn_infoS *insn_info)
1553 {
1554 if (insn_info->insn_tokens[1] != NULL)
1555 {
1556 unsigned long immed
1557 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1558 insn_info->insn_reloc, BFD_RELOC_16_PCREL,
1559 1);
1560 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1561 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1562 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1563 }
1564 }
1565
1566 static void
1567 nios2_assemble_args_is (nios2_insn_infoS *insn_info)
1568 {
1569 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1570 {
1571 struct nios2_reg *addr_src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1572 unsigned long immed
1573 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1574 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1575 0);
1576
1577 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1578
1579 if (addr_src == NULL)
1580 as_bad (_("unknown base register %s"), insn_info->insn_tokens[2]);
1581 else
1582 SET_INSN_FIELD (RRS, insn_info->insn_code, addr_src->index);
1583
1584 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1585 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1586 }
1587 }
1588
1589 static void
1590 nios2_assemble_args_m (nios2_insn_infoS *insn_info)
1591 {
1592 if (insn_info->insn_tokens[1] != NULL)
1593 {
1594 unsigned long immed
1595 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1596 insn_info->insn_reloc,
1597 BFD_RELOC_NIOS2_CALL26, 0);
1598
1599 SET_INSN_FIELD (IMM26, insn_info->insn_code, immed);
1600 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1601 SET_INSN_FIELD (IMM26, insn_info->insn_code, 0);
1602 }
1603 }
1604
1605 static void
1606 nios2_assemble_args_s (nios2_insn_infoS *insn_info)
1607 {
1608 if (insn_info->insn_tokens[1] != NULL)
1609 {
1610 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[1]);
1611 if (src == NULL)
1612 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1613 else
1614 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1615
1616 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1617 }
1618 }
1619
1620 static void
1621 nios2_assemble_args_tis (nios2_insn_infoS *insn_info)
1622 {
1623 if (insn_info->insn_tokens[1] != NULL
1624 && insn_info->insn_tokens[2] != NULL
1625 && insn_info->insn_tokens[3] != NULL)
1626 {
1627 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1628 struct nios2_reg *addr_src = nios2_reg_lookup (insn_info->insn_tokens[3]);
1629 unsigned long immed
1630 = nios2_assemble_expression (insn_info->insn_tokens[2], insn_info,
1631 insn_info->insn_reloc, BFD_RELOC_NIOS2_S16,
1632 0);
1633
1634 if (addr_src == NULL)
1635 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1636 else
1637 SET_INSN_FIELD (RRS, insn_info->insn_code, addr_src->index);
1638
1639 if (dst == NULL)
1640 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1641 else
1642 SET_INSN_FIELD (RRT, insn_info->insn_code, dst->index);
1643
1644 SET_INSN_FIELD (IMM16, insn_info->insn_code, immed);
1645 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1646 SET_INSN_FIELD (IMM16, insn_info->insn_code, 0);
1647 }
1648 }
1649
1650 static void
1651 nios2_assemble_args_dc (nios2_insn_infoS *insn_info)
1652 {
1653 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1654 {
1655 struct nios2_reg *ctl = nios2_reg_lookup (insn_info->insn_tokens[2]);
1656 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1657
1658 if (ctl == NULL)
1659 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1660 else
1661 SET_INSN_FIELD (RCTL, insn_info->insn_code, ctl->index);
1662
1663 if (dst == NULL)
1664 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1665 else
1666 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1667
1668 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1669 }
1670 }
1671
1672 static void
1673 nios2_assemble_args_cs (nios2_insn_infoS *insn_info)
1674 {
1675 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1676 {
1677 struct nios2_reg *ctl = nios2_reg_lookup (insn_info->insn_tokens[1]);
1678 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1679
1680 if (ctl == NULL)
1681 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1682 else if (ctl->index == 4)
1683 as_bad (_("ipending control register (ctl4) is read-only\n"));
1684 else
1685 SET_INSN_FIELD (RCTL, insn_info->insn_code, ctl->index);
1686
1687 if (src == NULL)
1688 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1689 else
1690 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1691
1692 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1693 }
1694 }
1695
1696 static void
1697 nios2_assemble_args_ds (nios2_insn_infoS * insn_info)
1698 {
1699 if (insn_info->insn_tokens[1] != NULL && insn_info->insn_tokens[2] != NULL)
1700 {
1701 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1702 struct nios2_reg *src = nios2_reg_lookup (insn_info->insn_tokens[2]);
1703
1704 if (dst == NULL)
1705 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1706 else
1707 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1708
1709 if (src == NULL)
1710 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1711 else
1712 SET_INSN_FIELD (RRS, insn_info->insn_code, src->index);
1713
1714 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[3]);
1715 }
1716 }
1717
1718 static void
1719 nios2_assemble_args_ldst (nios2_insn_infoS *insn_info)
1720 {
1721 if (insn_info->insn_tokens[1] != NULL
1722 && insn_info->insn_tokens[2] != NULL
1723 && insn_info->insn_tokens[3] != NULL
1724 && insn_info->insn_tokens[4] != NULL)
1725 {
1726 unsigned long custom_n
1727 = nios2_assemble_expression (insn_info->insn_tokens[1], insn_info,
1728 insn_info->insn_reloc,
1729 BFD_RELOC_NIOS2_IMM8, 0);
1730
1731 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[2]);
1732 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[3]);
1733 struct nios2_reg *src2 = nios2_reg_lookup (insn_info->insn_tokens[4]);
1734
1735 SET_INSN_FIELD (CUSTOM_N, insn_info->insn_code, custom_n);
1736
1737 if (dst == NULL)
1738 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1739 else
1740 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1741
1742 if (src1 == NULL)
1743 as_bad (_("unknown register %s"), insn_info->insn_tokens[3]);
1744 else
1745 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1746
1747 if (src2 == NULL)
1748 as_bad (_("unknown register %s"), insn_info->insn_tokens[4]);
1749 else
1750 SET_INSN_FIELD (RRT, insn_info->insn_code, src2->index);
1751
1752 /* Set or clear the bits to indicate whether coprocessor registers are
1753 used. */
1754 if (nios2_coproc_reg (insn_info->insn_tokens[2]))
1755 SET_INSN_FIELD (CUSTOM_C, insn_info->insn_code, 0);
1756 else
1757 SET_INSN_FIELD (CUSTOM_C, insn_info->insn_code, 1);
1758
1759 if (nios2_coproc_reg (insn_info->insn_tokens[3]))
1760 SET_INSN_FIELD (CUSTOM_A, insn_info->insn_code, 0);
1761 else
1762 SET_INSN_FIELD (CUSTOM_A, insn_info->insn_code, 1);
1763
1764 if (nios2_coproc_reg (insn_info->insn_tokens[4]))
1765 SET_INSN_FIELD (CUSTOM_B, insn_info->insn_code, 0);
1766 else
1767 SET_INSN_FIELD (CUSTOM_B, insn_info->insn_code, 1);
1768
1769 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[5]);
1770 }
1771 }
1772
1773 static void
1774 nios2_assemble_args_none (nios2_insn_infoS *insn_info ATTRIBUTE_UNUSED)
1775 {
1776 /* Nothing to do. */
1777 }
1778
1779 static void
1780 nios2_assemble_args_dsj (nios2_insn_infoS *insn_info)
1781 {
1782 if (insn_info->insn_tokens[1] != NULL
1783 && insn_info->insn_tokens[2] != NULL
1784 && insn_info->insn_tokens[3] != NULL)
1785 {
1786 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1787 struct nios2_reg *src1 = nios2_reg_lookup (insn_info->insn_tokens[2]);
1788
1789 /* A 5-bit constant expression. */
1790 unsigned int src2 =
1791 nios2_assemble_expression (insn_info->insn_tokens[3], insn_info,
1792 insn_info->insn_reloc,
1793 BFD_RELOC_NIOS2_IMM5, 0);
1794
1795 if (dst == NULL)
1796 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1797 else
1798 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1799
1800 if (src1 == NULL)
1801 as_bad (_("unknown register %s"), insn_info->insn_tokens[2]);
1802 else
1803 SET_INSN_FIELD (RRS, insn_info->insn_code, src1->index);
1804
1805 SET_INSN_FIELD (IMM5, insn_info->insn_code, src2);
1806 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[4]);
1807 SET_INSN_FIELD (IMM5, insn_info->insn_code, 0);
1808 }
1809 }
1810
1811 static void
1812 nios2_assemble_args_d (nios2_insn_infoS *insn_info)
1813 {
1814 if (insn_info->insn_tokens[1] != NULL)
1815 {
1816 struct nios2_reg *dst = nios2_reg_lookup (insn_info->insn_tokens[1]);
1817
1818 if (dst == NULL)
1819 as_bad (_("unknown register %s"), insn_info->insn_tokens[1]);
1820 else
1821 SET_INSN_FIELD (RRD, insn_info->insn_code, dst->index);
1822
1823 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1824 }
1825 }
1826
1827 static void
1828 nios2_assemble_args_b (nios2_insn_infoS *insn_info)
1829 {
1830 unsigned int imm5 = 0;
1831
1832 if (insn_info->insn_tokens[1] != NULL)
1833 {
1834 /* A 5-bit constant expression. */
1835 imm5 = nios2_assemble_expression (insn_info->insn_tokens[1],
1836 insn_info, insn_info->insn_reloc,
1837 BFD_RELOC_NIOS2_IMM5, 0);
1838 SET_INSN_FIELD (TRAP_IMM5, insn_info->insn_code, imm5);
1839 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1840 }
1841
1842 SET_INSN_FIELD (TRAP_IMM5, insn_info->insn_code, imm5);
1843
1844 nios2_check_assembly (insn_info->insn_code, insn_info->insn_tokens[2]);
1845 }
1846
1847 /* This table associates pointers to functions that parse the arguments to an
1848 instruction and fill in the relevant fields of the instruction. */
1849 const nios2_arg_infoS nios2_arg_info_structs[] = {
1850 /* args, assemble_args_func */
1851 {"d,s,t", nios2_assemble_args_dst},
1852 {"d,s,t,E", nios2_assemble_args_dst},
1853 {"t,s,i", nios2_assemble_args_tsi},
1854 {"t,s,i,E", nios2_assemble_args_tsi},
1855 {"t,s,u", nios2_assemble_args_tsu},
1856 {"t,s,u,E", nios2_assemble_args_tsu},
1857 {"s,t,o", nios2_assemble_args_sto},
1858 {"s,t,o,E", nios2_assemble_args_sto},
1859 {"o", nios2_assemble_args_o},
1860 {"o,E", nios2_assemble_args_o},
1861 {"s", nios2_assemble_args_s},
1862 {"s,E", nios2_assemble_args_s},
1863 {"", nios2_assemble_args_none},
1864 {"E", nios2_assemble_args_none},
1865 {"i(s)", nios2_assemble_args_is},
1866 {"i(s)E", nios2_assemble_args_is},
1867 {"m", nios2_assemble_args_m},
1868 {"m,E", nios2_assemble_args_m},
1869 {"t,i(s)", nios2_assemble_args_tis},
1870 {"t,i(s)E", nios2_assemble_args_tis},
1871 {"d,c", nios2_assemble_args_dc},
1872 {"d,c,E", nios2_assemble_args_dc},
1873 {"c,s", nios2_assemble_args_cs},
1874 {"c,s,E", nios2_assemble_args_cs},
1875 {"d,s", nios2_assemble_args_ds},
1876 {"d,s,E", nios2_assemble_args_ds},
1877 {"l,d,s,t", nios2_assemble_args_ldst},
1878 {"l,d,s,t,E", nios2_assemble_args_ldst},
1879 {"d,s,j", nios2_assemble_args_dsj},
1880 {"d,s,j,E", nios2_assemble_args_dsj},
1881 {"d", nios2_assemble_args_d},
1882 {"d,E", nios2_assemble_args_d},
1883 {"b", nios2_assemble_args_b},
1884 {"b,E", nios2_assemble_args_b}
1885 };
1886
1887 #define NIOS2_NUM_ARGS \
1888 ((sizeof(nios2_arg_info_structs)/sizeof(nios2_arg_info_structs[0])))
1889 const int nios2_num_arg_info_structs = NIOS2_NUM_ARGS;
1890
1891 /* The function consume_arg takes a pointer into a string
1892 of instruction tokens (args) and a pointer into a string
1893 representing the expected sequence of tokens and separators.
1894 It checks whether the first argument in argstr is of the
1895 expected type, throwing an error if it is not, and returns
1896 the pointer argstr. */
1897 static char *
1898 nios2_consume_arg (nios2_insn_infoS *insn, char *argstr, const char *parsestr)
1899 {
1900 char *temp;
1901 int regno = -1;
1902
1903 switch (*parsestr)
1904 {
1905 case 'c':
1906 if (!nios2_control_register_arg_p (argstr))
1907 as_bad (_("expecting control register"));
1908 break;
1909 case 'd':
1910 case 's':
1911 case 't':
1912
1913 /* We check to make sure we don't have a control register. */
1914 if (nios2_control_register_arg_p (argstr))
1915 as_bad (_("illegal use of control register"));
1916
1917 /* And whether coprocessor registers are valid here. */
1918 if (nios2_coproc_reg (argstr)
1919 && insn->insn_nios2_opcode->match != OP_MATCH_CUSTOM)
1920 as_bad (_("illegal use of coprocessor register\n"));
1921
1922 /* Extract a register number if the register is of the
1923 form r[0-9]+, if it is a normal register, set
1924 regno to its number (0-31), else set regno to -1. */
1925 if (argstr[0] == 'r' && ISDIGIT (argstr[1]))
1926 {
1927 char *p = argstr;
1928
1929 ++p;
1930 regno = 0;
1931 do
1932 {
1933 regno *= 10;
1934 regno += *p - '0';
1935 ++p;
1936 }
1937 while (ISDIGIT (*p));
1938 }
1939 else
1940 regno = -1;
1941
1942 /* And whether we are using at. */
1943 if (!nios2_as_options.noat
1944 && (regno == 1 || strprefix (argstr, "at")))
1945 as_warn (_("Register at (r1) can sometimes be corrupted by assembler "
1946 "optimizations.\n"
1947 "Use .set noat to turn off those optimizations (and this "
1948 "warning)."));
1949
1950 /* And whether we are using oci registers. */
1951 if (!nios2_as_options.nobreak
1952 && (regno == 25 || strprefix (argstr, "bt")))
1953 as_warn (_("The debugger will corrupt bt (r25). If you don't need to "
1954 "debug this\n"
1955 "code then use .set nobreak to turn off this warning."));
1956
1957 if (!nios2_as_options.nobreak
1958 && (regno == 30 || strprefix (argstr, "ba")))
1959 as_warn (_("The debugger will corrupt ba (r30). If you don't need to "
1960 "debug this\n"
1961 "code then use .set nobreak to turn off this warning."));
1962 break;
1963 case 'i':
1964 case 'u':
1965 if (*argstr == '%')
1966 {
1967 if (nios2_special_relocation_p (argstr))
1968 {
1969 /* We zap the parentheses because we don't want them confused
1970 with separators. */
1971 temp = strchr (argstr, '(');
1972 if (temp != NULL)
1973 *temp = ' ';
1974 temp = strchr (argstr, ')');
1975 if (temp != NULL)
1976 *temp = ' ';
1977 }
1978 else
1979 as_bad (_("badly formed expression near %s"), argstr);
1980 }
1981 break;
1982 case 'm':
1983 case 'j':
1984 case 'k':
1985 case 'l':
1986 case 'b':
1987 /* We can't have %hi, %lo or %hiadj here. */
1988 if (*argstr == '%')
1989 as_bad (_("badly formed expression near %s"), argstr);
1990 break;
1991 default:
1992 break;
1993 }
1994
1995 return argstr;
1996 }
1997
1998 /* The function consume_separator takes a pointer into a string
1999 of instruction tokens (args) and a pointer into a string representing
2000 the expected sequence of tokens and separators. It finds the first
2001 instance of the character pointed to by separator in argstr, and
2002 returns a pointer to the next element of argstr, which is the
2003 following token in the sequence. */
2004 static char *
2005 nios2_consume_separator (char *argstr, const char *separator)
2006 {
2007 char *p;
2008
2009 /* If we have a opcode reg, expr(reg) type instruction, and
2010 * we are separating the expr from the (reg), we find the last
2011 * (, just in case the expression has parentheses. */
2012
2013 if (*separator == '(')
2014 p = strrchr (argstr, *separator);
2015 else
2016 p = strchr (argstr, *separator);
2017
2018 if (p != NULL)
2019 *p++ = 0;
2020 else
2021 as_bad (_("expecting %c near %s"), *separator, argstr);
2022 return p;
2023 }
2024
2025
2026 /* The principal argument parsing function which takes a string argstr
2027 representing the instruction arguments for insn, and extracts the argument
2028 tokens matching parsestr into parsed_args. */
2029 static void
2030 nios2_parse_args (nios2_insn_infoS *insn, char *argstr,
2031 const char *parsestr, char **parsed_args)
2032 {
2033 char *p;
2034 char *end = NULL;
2035 int i;
2036 p = argstr;
2037 i = 0;
2038 bfd_boolean terminate = FALSE;
2039
2040 /* This rest of this function is it too fragile and it mostly works,
2041 therefore special case this one. */
2042 if (*parsestr == 0 && argstr != 0)
2043 {
2044 as_bad (_("too many arguments"));
2045 parsed_args[0] = NULL;
2046 return;
2047 }
2048
2049 while (p != NULL && !terminate && i < NIOS2_MAX_INSN_TOKENS)
2050 {
2051 parsed_args[i] = nios2_consume_arg (insn, p, parsestr);
2052 ++parsestr;
2053 if (*parsestr != '\0')
2054 {
2055 p = nios2_consume_separator (p, parsestr);
2056 ++parsestr;
2057 }
2058 else
2059 {
2060 /* Check that the argument string has no trailing arguments. */
2061 /* If we've got a %lo etc relocation, we've zapped the parens with
2062 spaces. */
2063 if (nios2_special_relocation_p (p))
2064 end = strpbrk (p, ",");
2065 else
2066 end = strpbrk (p, " ,");
2067
2068 if (end != NULL)
2069 as_bad (_("too many arguments"));
2070 }
2071
2072 if (*parsestr == '\0' || (p != NULL && *p == '\0'))
2073 terminate = TRUE;
2074 ++i;
2075 }
2076
2077 parsed_args[i] = NULL;
2078
2079 if (*parsestr != '\0' && insn->insn_nios2_opcode->match != OP_MATCH_BREAK)
2080 as_bad (_("missing argument"));
2081 }
2082
2083
2084 \f
2085 /** Support for pseudo-op parsing. These are macro-like opcodes that
2086 expand into real insns by suitable fiddling with the operands. */
2087
2088 /* Append the string modifier to the string contained in the argument at
2089 parsed_args[ndx]. */
2090 static void
2091 nios2_modify_arg (char **parsed_args, const char *modifier,
2092 int unused ATTRIBUTE_UNUSED, int ndx)
2093 {
2094 char *tmp = parsed_args[ndx];
2095
2096 parsed_args[ndx]
2097 = (char *) malloc (strlen (parsed_args[ndx]) + strlen (modifier) + 1);
2098 strcpy (parsed_args[ndx], tmp);
2099 strcat (parsed_args[ndx], modifier);
2100 }
2101
2102 /* Modify parsed_args[ndx] by negating that argument. */
2103 static void
2104 nios2_negate_arg (char **parsed_args, const char *modifier ATTRIBUTE_UNUSED,
2105 int unused ATTRIBUTE_UNUSED, int ndx)
2106 {
2107 char *tmp = parsed_args[ndx];
2108
2109 parsed_args[ndx]
2110 = (char *) malloc (strlen ("~(") + strlen (parsed_args[ndx]) +
2111 strlen (")+1") + 1);
2112
2113 strcpy (parsed_args[ndx], "~(");
2114 strcat (parsed_args[ndx], tmp);
2115 strcat (parsed_args[ndx], ")+1");
2116 }
2117
2118 /* The function nios2_swap_args swaps the pointers at indices index_1 and
2119 index_2 in the array parsed_args[] - this is used for operand swapping
2120 for comparison operations. */
2121 static void
2122 nios2_swap_args (char **parsed_args, const char *unused ATTRIBUTE_UNUSED,
2123 int index_1, int index_2)
2124 {
2125 char *tmp;
2126 gas_assert (index_1 < NIOS2_MAX_INSN_TOKENS
2127 && index_2 < NIOS2_MAX_INSN_TOKENS);
2128 tmp = parsed_args[index_1];
2129 parsed_args[index_1] = parsed_args[index_2];
2130 parsed_args[index_2] = tmp;
2131 }
2132
2133 /* This function appends the string appnd to the array of strings in
2134 parsed_args num times starting at index start in the array. */
2135 static void
2136 nios2_append_arg (char **parsed_args, const char *appnd, int num,
2137 int start)
2138 {
2139 int i, count;
2140 char *tmp;
2141
2142 gas_assert ((start + num) < NIOS2_MAX_INSN_TOKENS);
2143
2144 if (nios2_mode == NIOS2_MODE_TEST)
2145 tmp = parsed_args[start];
2146 else
2147 tmp = NULL;
2148
2149 for (i = start, count = num; count > 0; ++i, --count)
2150 parsed_args[i] = (char *) appnd;
2151
2152 gas_assert (i == (start + num));
2153 parsed_args[i] = tmp;
2154 parsed_args[i + 1] = NULL;
2155 }
2156
2157 /* This function inserts the string insert num times in the array
2158 parsed_args, starting at the index start. */
2159 static void
2160 nios2_insert_arg (char **parsed_args, const char *insert, int num,
2161 int start)
2162 {
2163 int i, count;
2164
2165 gas_assert ((start + num) < NIOS2_MAX_INSN_TOKENS);
2166
2167 /* Move the existing arguments up to create space. */
2168 for (i = NIOS2_MAX_INSN_TOKENS; i - num >= start; --i)
2169 parsed_args[i] = parsed_args[i - num];
2170
2171 for (i = start, count = num; count > 0; ++i, --count)
2172 parsed_args[i] = (char *) insert;
2173 }
2174
2175 /* Cleanup function to free malloc'ed arg strings. */
2176 static void
2177 nios2_free_arg (char **parsed_args, int num ATTRIBUTE_UNUSED, int start)
2178 {
2179 if (parsed_args[start])
2180 {
2181 free (parsed_args[start]);
2182 parsed_args[start] = NULL;
2183 }
2184 }
2185
2186 /* This function swaps the pseudo-op for a real op. */
2187 static nios2_ps_insn_infoS*
2188 nios2_translate_pseudo_insn (nios2_insn_infoS *insn)
2189 {
2190
2191 nios2_ps_insn_infoS *ps_insn;
2192
2193 /* Find which real insn the pseudo-op transates to and
2194 switch the insn_info ptr to point to it. */
2195 ps_insn = nios2_ps_lookup (insn->insn_nios2_opcode->name);
2196
2197 if (ps_insn != NULL)
2198 {
2199 insn->insn_nios2_opcode = nios2_opcode_lookup (ps_insn->insn);
2200 insn->insn_tokens[0] = insn->insn_nios2_opcode->name;
2201 /* Modify the args so they work with the real insn. */
2202 ps_insn->arg_modifer_func ((char **) insn->insn_tokens,
2203 ps_insn->arg_modifier, ps_insn->num,
2204 ps_insn->index);
2205 }
2206 else
2207 /* we cannot recover from this. */
2208 as_fatal (_("unrecognized pseudo-instruction %s"),
2209 ps_insn->pseudo_insn);
2210 return ps_insn;
2211 }
2212
2213 /* Invoke the cleanup handler for pseudo-insn ps_insn on insn. */
2214 static void
2215 nios2_cleanup_pseudo_insn (nios2_insn_infoS *insn,
2216 nios2_ps_insn_infoS *ps_insn)
2217 {
2218 if (ps_insn->arg_cleanup_func)
2219 (ps_insn->arg_cleanup_func) ((char **) insn->insn_tokens,
2220 ps_insn->num, ps_insn->index);
2221 }
2222
2223 const nios2_ps_insn_infoS nios2_ps_insn_info_structs[] = {
2224 /* pseudo-op, real-op, arg, arg_modifier_func, num, index, arg_cleanup_func */
2225 {"mov", "add", nios2_append_arg, "zero", 1, 3, NULL},
2226 {"movi", "addi", nios2_insert_arg, "zero", 1, 2, NULL},
2227 {"movhi", "orhi", nios2_insert_arg, "zero", 1, 2, NULL},
2228 {"movui", "ori", nios2_insert_arg, "zero", 1, 2, NULL},
2229 {"movia", "orhi", nios2_insert_arg, "zero", 1, 2, NULL},
2230 {"nop", "add", nios2_append_arg, "zero", 3, 1, NULL},
2231 {"bgt", "blt", nios2_swap_args, "", 1, 2, NULL},
2232 {"bgtu", "bltu", nios2_swap_args, "", 1, 2, NULL},
2233 {"ble", "bge", nios2_swap_args, "", 1, 2, NULL},
2234 {"bleu", "bgeu", nios2_swap_args, "", 1, 2, NULL},
2235 {"cmpgt", "cmplt", nios2_swap_args, "", 2, 3, NULL},
2236 {"cmpgtu", "cmpltu", nios2_swap_args, "", 2, 3, NULL},
2237 {"cmple", "cmpge", nios2_swap_args, "", 2, 3, NULL},
2238 {"cmpleu", "cmpgeu", nios2_swap_args, "", 2, 3, NULL},
2239 {"cmpgti", "cmpgei", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2240 {"cmpgtui", "cmpgeui", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2241 {"cmplei", "cmplti", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2242 {"cmpleui", "cmpltui", nios2_modify_arg, "+1", 0, 3, nios2_free_arg},
2243 {"subi", "addi", nios2_negate_arg, "", 0, 3, nios2_free_arg}
2244 /* Add further pseudo-ops here. */
2245 };
2246
2247 #define NIOS2_NUM_PSEUDO_INSNS \
2248 ((sizeof(nios2_ps_insn_info_structs)/ \
2249 sizeof(nios2_ps_insn_info_structs[0])))
2250 const int nios2_num_ps_insn_info_structs = NIOS2_NUM_PSEUDO_INSNS;
2251
2252 \f
2253 /** Assembler output support. */
2254
2255 static int
2256 can_evaluate_expr (nios2_insn_infoS *insn)
2257 {
2258 /* Remove this check for null and the invalid insn "ori r9, 1234" seg faults. */
2259 if (!insn->insn_reloc)
2260 /* ??? Ideally we should do something other than as_fatal here as we can
2261 continue to assemble.
2262 However this function (actually the output_* functions) should not
2263 have been called in the first place once an illegal instruction had
2264 been encountered. */
2265 as_fatal (_("Invalid instruction encountered, cannot recover. No assembly attempted."));
2266
2267 if (insn->insn_reloc->reloc_expression.X_op == O_constant)
2268 return 1;
2269
2270 return 0;
2271 }
2272
2273 static int
2274 get_expr_value (nios2_insn_infoS *insn)
2275 {
2276 int value = 0;
2277
2278 if (insn->insn_reloc->reloc_expression.X_op == O_constant)
2279 value = insn->insn_reloc->reloc_expression.X_add_number;
2280 return value;
2281 }
2282
2283 /* Output a normal instruction. */
2284 static void
2285 output_insn (nios2_insn_infoS *insn)
2286 {
2287 char *f;
2288 nios2_insn_relocS *reloc;
2289
2290 f = frag_more (4);
2291 /* This allocates enough space for the instruction
2292 and puts it in the current frag. */
2293 md_number_to_chars (f, insn->insn_code, 4);
2294 /* Emit debug info. */
2295 dwarf2_emit_insn (4);
2296 /* Create any fixups to be acted on later. */
2297 for (reloc = insn->insn_reloc; reloc != NULL; reloc = reloc->reloc_next)
2298 fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
2299 &reloc->reloc_expression, reloc->reloc_pcrel,
2300 reloc->reloc_type);
2301 }
2302
2303 /* Output an unconditional branch. */
2304 static void
2305 output_ubranch (nios2_insn_infoS *insn)
2306 {
2307 nios2_insn_relocS *reloc = insn->insn_reloc;
2308
2309 /* If the reloc is NULL, there was an error assembling the branch. */
2310 if (reloc != NULL)
2311 {
2312 symbolS *symp = reloc->reloc_expression.X_add_symbol;
2313 offsetT offset = reloc->reloc_expression.X_add_number;
2314 char *f;
2315
2316 /* Tag dwarf2 debug info to the address at the start of the insn.
2317 We must do it before frag_var() below closes off the frag. */
2318 dwarf2_emit_insn (0);
2319
2320 /* We create a machine dependent frag which can grow
2321 to accommodate the largest possible instruction sequence
2322 this may generate. */
2323 f = frag_var (rs_machine_dependent,
2324 UBRANCH_MAX_SIZE, 4, UBRANCH_SUBTYPE (0),
2325 symp, offset, NULL);
2326
2327 md_number_to_chars (f, insn->insn_code, 4);
2328
2329 /* We leave fixup generation to md_convert_frag. */
2330 }
2331 }
2332
2333 /* Output a conditional branch. */
2334 static void
2335 output_cbranch (nios2_insn_infoS *insn)
2336 {
2337 nios2_insn_relocS *reloc = insn->insn_reloc;
2338
2339 /* If the reloc is NULL, there was an error assembling the branch. */
2340 if (reloc != NULL)
2341 {
2342 symbolS *symp = reloc->reloc_expression.X_add_symbol;
2343 offsetT offset = reloc->reloc_expression.X_add_number;
2344 char *f;
2345
2346 /* Tag dwarf2 debug info to the address at the start of the insn.
2347 We must do it before frag_var() below closes off the frag. */
2348 dwarf2_emit_insn (0);
2349
2350 /* We create a machine dependent frag which can grow
2351 to accommodate the largest possible instruction sequence
2352 this may generate. */
2353 f = frag_var (rs_machine_dependent,
2354 CBRANCH_MAX_SIZE, 4, CBRANCH_SUBTYPE (0),
2355 symp, offset, NULL);
2356
2357 md_number_to_chars (f, insn->insn_code, 4);
2358
2359 /* We leave fixup generation to md_convert_frag. */
2360 }
2361 }
2362
2363 /* Output a call sequence. Since calls are not pc-relative for NIOS2,
2364 but are page-relative, we cannot tell at any stage in assembly
2365 whether a call will be out of range since a section may be linked
2366 at any address. So if we are relaxing, we convert all call instructions
2367 to long call sequences, and rely on the linker to relax them back to
2368 short calls. */
2369 static void
2370 output_call (nios2_insn_infoS *insn)
2371 {
2372 /* This allocates enough space for the instruction
2373 and puts it in the current frag. */
2374 char *f = frag_more (12);
2375 nios2_insn_relocS *reloc = insn->insn_reloc;
2376
2377 md_number_to_chars (f, OP_MATCH_ORHI | 0x00400000, 4);
2378 dwarf2_emit_insn (4);
2379 fix_new_exp (frag_now, f - frag_now->fr_literal, 4,
2380 &reloc->reloc_expression, 0, BFD_RELOC_NIOS2_HI16);
2381 md_number_to_chars (f + 4, OP_MATCH_ORI | 0x08400000, 4);
2382 dwarf2_emit_insn (4);
2383 fix_new_exp (frag_now, f - frag_now->fr_literal + 4, 4,
2384 &reloc->reloc_expression, 0, BFD_RELOC_NIOS2_LO16);
2385 md_number_to_chars (f + 8, OP_MATCH_CALLR | 0x08000000, 4);
2386 dwarf2_emit_insn (4);
2387 }
2388
2389 /* Output an addi - will silently convert to
2390 orhi if rA = r0 and (expr & 0xffff0000) == 0. */
2391 static void
2392 output_addi (nios2_insn_infoS *insn)
2393 {
2394 if (can_evaluate_expr (insn))
2395 {
2396 int expr_val = get_expr_value (insn);
2397 if (GET_INSN_FIELD (RRS, insn->insn_code) == 0
2398 && (expr_val & 0xffff) == 0
2399 && expr_val != 0)
2400 {
2401 /* We really want a movhi (orhi) here. */
2402 insn->insn_code = (insn->insn_code & ~OP_MATCH_ADDI) | OP_MATCH_ORHI;
2403 insn->insn_reloc->reloc_expression.X_add_number =
2404 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2405 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2406 }
2407 }
2408
2409 /* Output an instruction. */
2410 output_insn (insn);
2411 }
2412
2413 static void
2414 output_andi (nios2_insn_infoS *insn)
2415 {
2416 if (can_evaluate_expr (insn))
2417 {
2418 int expr_val = get_expr_value (insn);
2419 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2420 {
2421 /* We really want a movhi (orhi) here. */
2422 insn->insn_code = (insn->insn_code & ~OP_MATCH_ANDI) | OP_MATCH_ANDHI;
2423 insn->insn_reloc->reloc_expression.X_add_number =
2424 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2425 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2426 }
2427 }
2428
2429 /* Output an instruction. */
2430 output_insn (insn);
2431 }
2432
2433 static void
2434 output_ori (nios2_insn_infoS *insn)
2435 {
2436 if (can_evaluate_expr (insn))
2437 {
2438 int expr_val = get_expr_value (insn);
2439 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2440 {
2441 /* We really want a movhi (orhi) here. */
2442 insn->insn_code = (insn->insn_code & ~OP_MATCH_ORI) | OP_MATCH_ORHI;
2443 insn->insn_reloc->reloc_expression.X_add_number =
2444 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2445 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2446 }
2447 }
2448
2449 /* Output an instruction. */
2450 output_insn (insn);
2451 }
2452
2453 static void
2454 output_xori (nios2_insn_infoS *insn)
2455 {
2456 if (can_evaluate_expr (insn))
2457 {
2458 int expr_val = get_expr_value (insn);
2459 if (expr_val != 0 && (expr_val & 0xffff) == 0)
2460 {
2461 /* We really want a movhi (orhi) here. */
2462 insn->insn_code = (insn->insn_code & ~OP_MATCH_XORI) | OP_MATCH_XORHI;
2463 insn->insn_reloc->reloc_expression.X_add_number =
2464 (insn->insn_reloc->reloc_expression.X_add_number >> 16) & 0xffff;
2465 insn->insn_reloc->reloc_type = BFD_RELOC_NIOS2_U16;
2466 }
2467 }
2468
2469 /* Output an instruction. */
2470 output_insn (insn);
2471 }
2472
2473
2474 /* Output a movhi/addi pair for the movia pseudo-op. */
2475 static void
2476 output_movia (nios2_insn_infoS *insn)
2477 {
2478 /* This allocates enough space for the instruction
2479 and puts it in the current frag. */
2480 char *f = frag_more (8);
2481 nios2_insn_relocS *reloc = insn->insn_reloc;
2482 unsigned long reg_index = GET_INSN_FIELD (IRT, insn->insn_code);
2483
2484 /* If the reloc is NULL, there was an error assembling the movia. */
2485 if (reloc != NULL)
2486 {
2487 md_number_to_chars (f, insn->insn_code, 4);
2488 dwarf2_emit_insn (4);
2489 md_number_to_chars (f + 4,
2490 (OP_MATCH_ADDI | (reg_index << OP_SH_IRT)
2491 | (reg_index << OP_SH_IRS)),
2492 4);
2493 dwarf2_emit_insn (4);
2494 fix_new (frag_now, f - frag_now->fr_literal, 4,
2495 reloc->reloc_expression.X_add_symbol,
2496 reloc->reloc_expression.X_add_number, 0,
2497 BFD_RELOC_NIOS2_HIADJ16);
2498 fix_new (frag_now, f + 4 - frag_now->fr_literal, 4,
2499 reloc->reloc_expression.X_add_symbol,
2500 reloc->reloc_expression.X_add_number, 0, BFD_RELOC_NIOS2_LO16);
2501 }
2502 }
2503
2504
2505 \f
2506 /** External interfaces. */
2507
2508 /* The following functions are called by machine-independent parts of
2509 the assembler. */
2510 int
2511 md_parse_option (int c, char *arg ATTRIBUTE_UNUSED)
2512 {
2513 switch (c)
2514 {
2515 case 'r':
2516 /* Hidden option for self-test mode. */
2517 nios2_mode = NIOS2_MODE_TEST;
2518 break;
2519 case OPTION_RELAX_ALL:
2520 nios2_as_options.relax = relax_all;
2521 break;
2522 case OPTION_NORELAX:
2523 nios2_as_options.relax = relax_none;
2524 break;
2525 case OPTION_RELAX_SECTION:
2526 nios2_as_options.relax = relax_section;
2527 break;
2528 case OPTION_EB:
2529 target_big_endian = 1;
2530 break;
2531 case OPTION_EL:
2532 target_big_endian = 0;
2533 break;
2534 default:
2535 return 0;
2536 break;
2537 }
2538
2539 return 1;
2540 }
2541
2542 /* Implement TARGET_FORMAT. We can choose to be big-endian or
2543 little-endian at runtime based on a switch. */
2544 const char *
2545 nios2_target_format (void)
2546 {
2547 return target_big_endian ? "elf32-bignios2" : "elf32-littlenios2";
2548 }
2549
2550 /* Machine-dependent usage message. */
2551 void
2552 md_show_usage (FILE *stream)
2553 {
2554 fprintf (stream, " NIOS2 options:\n"
2555 " -relax-all replace all branch and call "
2556 "instructions with jmp and callr sequences\n"
2557 " -relax-section replace identified out of range "
2558 "branches with jmp sequences (default)\n"
2559 " -no-relax do not replace any branches or calls\n"
2560 " -EB force big-endian byte ordering\n"
2561 " -EL force little-endian byte ordering\n");
2562 }
2563
2564 /* This function is called once, at assembler startup time.
2565 It should set up all the tables, etc. that the MD part of the
2566 assembler will need. */
2567 void
2568 md_begin (void)
2569 {
2570 int i;
2571 const char *inserted;
2572
2573 /* Create and fill a hashtable for the Nios II opcodes, registers and
2574 arguments. */
2575 nios2_opcode_hash = hash_new ();
2576 nios2_reg_hash = hash_new ();
2577 nios2_arg_hash = hash_new ();
2578 nios2_ps_hash = hash_new ();
2579
2580 for (i = 0; i < NUMOPCODES; ++i)
2581 {
2582 inserted
2583 = hash_insert (nios2_opcode_hash, nios2_opcodes[i].name,
2584 (PTR) & nios2_opcodes[i]);
2585 if (inserted != NULL)
2586 {
2587 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2588 nios2_opcodes[i].name, inserted);
2589 /* Probably a memory allocation problem? Give up now. */
2590 as_fatal (_("Broken assembler. No assembly attempted."));
2591 }
2592 }
2593
2594 for (i = 0; i < nios2_num_regs; ++i)
2595 {
2596 inserted
2597 = hash_insert (nios2_reg_hash, nios2_regs[i].name,
2598 (PTR) & nios2_regs[i]);
2599 if (inserted != NULL)
2600 {
2601 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2602 nios2_regs[i].name, inserted);
2603 /* Probably a memory allocation problem? Give up now. */
2604 as_fatal (_("Broken assembler. No assembly attempted."));
2605 }
2606
2607 }
2608
2609 for (i = 0; i < nios2_num_arg_info_structs; ++i)
2610 {
2611 inserted
2612 = hash_insert (nios2_arg_hash, nios2_arg_info_structs[i].args,
2613 (PTR) & nios2_arg_info_structs[i]);
2614 if (inserted != NULL)
2615 {
2616 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2617 nios2_arg_info_structs[i].args, inserted);
2618 /* Probably a memory allocation problem? Give up now. */
2619 as_fatal (_("Broken assembler. No assembly attempted."));
2620 }
2621 }
2622
2623 for (i = 0; i < nios2_num_ps_insn_info_structs; ++i)
2624 {
2625 inserted
2626 = hash_insert (nios2_ps_hash, nios2_ps_insn_info_structs[i].pseudo_insn,
2627 (PTR) & nios2_ps_insn_info_structs[i]);
2628 if (inserted != NULL)
2629 {
2630 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2631 nios2_ps_insn_info_structs[i].pseudo_insn, inserted);
2632 /* Probably a memory allocation problem? Give up now. */
2633 as_fatal (_("Broken assembler. No assembly attempted."));
2634 }
2635 }
2636
2637 /* Assembler option defaults. */
2638 nios2_as_options.noat = FALSE;
2639 nios2_as_options.nobreak = FALSE;
2640
2641 /* Debug information is incompatible with relaxation. */
2642 if (debug_type != DEBUG_UNSPECIFIED)
2643 nios2_as_options.relax = relax_none;
2644
2645 /* Initialize the alignment data. */
2646 nios2_current_align_seg = now_seg;
2647 nios2_last_label = NULL;
2648 nios2_current_align = 0;
2649 }
2650
2651
2652 /* Assembles a single line of Nios II assembly language. */
2653 void
2654 md_assemble (char *op_str)
2655 {
2656 char *argstr;
2657 char *op_strdup = NULL;
2658 nios2_arg_infoS *arg_info;
2659 unsigned long saved_pinfo = 0;
2660 nios2_insn_infoS thisinsn;
2661 nios2_insn_infoS *insn = &thisinsn;
2662
2663 /* Make sure we are aligned on a 4-byte boundary. */
2664 if (nios2_current_align < 2)
2665 nios2_align (2, NULL, nios2_last_label);
2666 else if (nios2_current_align > 2)
2667 nios2_current_align = 2;
2668 nios2_last_label = NULL;
2669
2670 /* We don't want to clobber to op_str
2671 because we want to be able to use it in messages. */
2672 op_strdup = strdup (op_str);
2673 insn->insn_tokens[0] = strtok (op_strdup, " ");
2674 argstr = strtok (NULL, "");
2675
2676 /* Assemble the opcode. */
2677 insn->insn_nios2_opcode = nios2_opcode_lookup (insn->insn_tokens[0]);
2678 insn->insn_reloc = NULL;
2679
2680 if (insn->insn_nios2_opcode != NULL)
2681 {
2682 nios2_ps_insn_infoS *ps_insn = NULL;
2683 /* Set the opcode for the instruction. */
2684 insn->insn_code = insn->insn_nios2_opcode->match;
2685
2686 /* Parse the arguments pointed to by argstr. */
2687 if (nios2_mode == NIOS2_MODE_ASSEMBLE)
2688 nios2_parse_args (insn, argstr, insn->insn_nios2_opcode->args,
2689 (char **) &insn->insn_tokens[1]);
2690 else
2691 nios2_parse_args (insn, argstr, insn->insn_nios2_opcode->args_test,
2692 (char **) &insn->insn_tokens[1]);
2693
2694 /* We need to preserve the MOVIA macro as this is clobbered by
2695 translate_pseudo_insn. */
2696 if (insn->insn_nios2_opcode->pinfo == NIOS2_INSN_MACRO_MOVIA)
2697 saved_pinfo = NIOS2_INSN_MACRO_MOVIA;
2698 /* If the instruction is an pseudo-instruction, we want to replace it
2699 with its real equivalent, and then continue. */
2700 if ((insn->insn_nios2_opcode->pinfo & NIOS2_INSN_MACRO)
2701 == NIOS2_INSN_MACRO)
2702 ps_insn = nios2_translate_pseudo_insn (insn);
2703
2704 /* Find the assemble function, and call it. */
2705 arg_info = nios2_arg_lookup (insn->insn_nios2_opcode->args);
2706 if (arg_info != NULL)
2707 {
2708 arg_info->assemble_args_func (insn);
2709
2710 if (nios2_as_options.relax != relax_none
2711 && !nios2_as_options.noat
2712 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_UBRANCH)
2713 output_ubranch (insn);
2714 else if (nios2_as_options.relax != relax_none
2715 && !nios2_as_options.noat
2716 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_CBRANCH)
2717 output_cbranch (insn);
2718 else if (nios2_as_options.relax == relax_all
2719 && !nios2_as_options.noat
2720 && insn->insn_nios2_opcode->pinfo & NIOS2_INSN_CALL
2721 && insn->insn_reloc
2722 && insn->insn_reloc->reloc_type == BFD_RELOC_NIOS2_CALL26)
2723 output_call (insn);
2724 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ANDI)
2725 output_andi (insn);
2726 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ORI)
2727 output_ori (insn);
2728 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_XORI)
2729 output_xori (insn);
2730 else if (insn->insn_nios2_opcode->pinfo & NIOS2_INSN_ADDI)
2731 output_addi (insn);
2732 else if (saved_pinfo == NIOS2_INSN_MACRO_MOVIA)
2733 output_movia (insn);
2734 else
2735 output_insn (insn);
2736 if (ps_insn)
2737 nios2_cleanup_pseudo_insn (insn, ps_insn);
2738 }
2739 else
2740 {
2741 /* The assembler is broken. */
2742 fprintf (stderr,
2743 _("internal error: %s is not a valid argument syntax\n"),
2744 insn->insn_nios2_opcode->args);
2745 /* Probably a memory allocation problem. Give up now. */
2746 as_fatal (_("Broken assembler. No assembly attempted."));
2747 }
2748 }
2749 else
2750 /* Unrecognised instruction - error. */
2751 as_bad (_("unrecognised instruction %s"), insn->insn_tokens[0]);
2752
2753 /* Don't leak memory. */
2754 free (op_strdup);
2755 }
2756
2757 /* Round up section size. */
2758 valueT
2759 md_section_align (asection *seg ATTRIBUTE_UNUSED, valueT size)
2760 {
2761 /* I think byte alignment is fine here. */
2762 return size;
2763 }
2764
2765 /* Implement TC_FORCE_RELOCATION. */
2766 int
2767 nios2_force_relocation (fixS *fixp)
2768 {
2769 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2770 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2771 || fixp->fx_r_type == BFD_RELOC_NIOS2_ALIGN)
2772 return 1;
2773
2774 return generic_force_reloc (fixp);
2775 }
2776
2777 /* Implement tc_fix_adjustable. */
2778 int
2779 nios2_fix_adjustable (fixS *fixp)
2780 {
2781 if (fixp->fx_addsy == NULL)
2782 return 1;
2783
2784 #ifdef OBJ_ELF
2785 /* Prevent all adjustments to global symbols. */
2786 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
2787 && (S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)))
2788 return 0;
2789 #endif
2790 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2791 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2792 return 0;
2793
2794 /* Preserve relocations against symbols with function type. */
2795 if (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION)
2796 return 0;
2797
2798 /* Don't allow symbols to be discarded on GOT related relocs. */
2799 if (fixp->fx_r_type == BFD_RELOC_NIOS2_GOT16
2800 || fixp->fx_r_type == BFD_RELOC_NIOS2_CALL16
2801 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_LO
2802 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF_HA
2803 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_GD16
2804 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LDM16
2805 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LDO16
2806 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_IE16
2807 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_LE16
2808 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPMOD
2809 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_DTPREL
2810 || fixp->fx_r_type == BFD_RELOC_NIOS2_TLS_TPREL
2811 || fixp->fx_r_type == BFD_RELOC_NIOS2_GOTOFF)
2812 return 0;
2813
2814 return 1;
2815 }
2816
2817 /* Implement tc_frob_symbol. This is called in adjust_reloc_syms;
2818 it is used to remove *ABS* references from the symbol table. */
2819 int
2820 nios2_frob_symbol (symbolS *symp)
2821 {
2822 if ((OUTPUT_FLAVOR == bfd_target_elf_flavour
2823 && symp == section_symbol (absolute_section))
2824 || !S_IS_DEFINED (symp))
2825 return 1;
2826 else
2827 return 0;
2828 }
2829
2830 /* The function tc_gen_reloc creates a relocation structure for the
2831 fixup fixp, and returns a pointer to it. This structure is passed
2832 to bfd_install_relocation so that it can be written to the object
2833 file for linking. */
2834 arelent *
2835 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2836 {
2837 arelent *reloc = (arelent *) xmalloc (sizeof (arelent));
2838 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2839 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2840
2841 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2842 reloc->addend = fixp->fx_offset; /* fixp->fx_addnumber; */
2843
2844 if (fixp->fx_pcrel)
2845 {
2846 switch (fixp->fx_r_type)
2847 {
2848 case BFD_RELOC_16:
2849 fixp->fx_r_type = BFD_RELOC_16_PCREL;
2850 break;
2851 case BFD_RELOC_NIOS2_LO16:
2852 fixp->fx_r_type = BFD_RELOC_NIOS2_PCREL_LO;
2853 break;
2854 case BFD_RELOC_NIOS2_HIADJ16:
2855 fixp->fx_r_type = BFD_RELOC_NIOS2_PCREL_HA;
2856 break;
2857 default:
2858 break;
2859 }
2860 }
2861
2862 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
2863 if (reloc->howto == NULL)
2864 {
2865 as_bad_where (fixp->fx_file, fixp->fx_line,
2866 _("can't represent relocation type %s"),
2867 bfd_get_reloc_code_name (fixp->fx_r_type));
2868
2869 /* Set howto to a garbage value so that we can keep going. */
2870 reloc->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
2871 gas_assert (reloc->howto != NULL);
2872 }
2873 return reloc;
2874 }
2875
2876 long
2877 md_pcrel_from (fixS *fixP ATTRIBUTE_UNUSED)
2878 {
2879 return 0;
2880 }
2881
2882 /* Called just before the assembler exits. */
2883 void
2884 md_end ()
2885 {
2886 /* FIXME - not yet implemented */
2887 }
2888
2889 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
2890 Otherwise we have no need to default values of symbols. */
2891 symbolS *
2892 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2893 {
2894 #ifdef OBJ_ELF
2895 if (name[0] == '_' && name[1] == 'G'
2896 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
2897 {
2898 if (!GOT_symbol)
2899 {
2900 if (symbol_find (name))
2901 as_bad ("GOT already in the symbol table");
2902
2903 GOT_symbol = symbol_new (name, undefined_section,
2904 (valueT) 0, &zero_address_frag);
2905 }
2906
2907 return GOT_symbol;
2908 }
2909 #endif
2910
2911 return 0;
2912 }
2913
2914 /* Implement tc_frob_label. */
2915 void
2916 nios2_frob_label (symbolS *lab)
2917 {
2918 /* Emit dwarf information. */
2919 dwarf2_emit_label (lab);
2920
2921 /* Update the label's address with the current output pointer. */
2922 symbol_set_frag (lab, frag_now);
2923 S_SET_VALUE (lab, (valueT) frag_now_fix ());
2924
2925 /* Record this label for future adjustment after we find out what
2926 kind of data it references, and the required alignment therewith. */
2927 nios2_last_label = lab;
2928 }
2929
2930 /* Implement md_cons_align. */
2931 void
2932 nios2_cons_align (int size)
2933 {
2934 int log_size = 0;
2935 const char *pfill = NULL;
2936
2937 while ((size >>= 1) != 0)
2938 ++log_size;
2939
2940 if (subseg_text_p (now_seg))
2941 pfill = (const char *) &nop;
2942 else
2943 pfill = NULL;
2944
2945 if (nios2_auto_align_on)
2946 nios2_align (log_size, pfill, NULL);
2947
2948 nios2_last_label = NULL;
2949 }
2950
2951 /* Map 's' to SHF_NIOS2_GPREL. */
2952 /* This is from the Alpha code tc-alpha.c. */
2953 int
2954 nios2_elf_section_letter (int letter, char **ptr_msg)
2955 {
2956 if (letter == 's')
2957 return SHF_NIOS2_GPREL;
2958
2959 *ptr_msg = _("Bad .section directive: want a,s,w,x,M,S,G,T in string");
2960 return -1;
2961 }
2962
2963 /* Map SHF_ALPHA_GPREL to SEC_SMALL_DATA. */
2964 /* This is from the Alpha code tc-alpha.c. */
2965 flagword
2966 nios2_elf_section_flags (flagword flags, int attr, int type ATTRIBUTE_UNUSED)
2967 {
2968 if (attr & SHF_NIOS2_GPREL)
2969 flags |= SEC_SMALL_DATA;
2970 return flags;
2971 }
2972
2973 /* Implement TC_PARSE_CONS_EXPRESSION to handle %tls_ldo(...) */
2974 static int nios2_tls_ldo_reloc;
2975
2976 void
2977 nios2_cons (expressionS *exp, int size)
2978 {
2979 nios2_tls_ldo_reloc = 0;
2980
2981 SKIP_WHITESPACE ();
2982 if (input_line_pointer[0] == '%')
2983 {
2984 if (strprefix (input_line_pointer + 1, "tls_ldo"))
2985 {
2986 if (size != 4)
2987 as_bad (_("Illegal operands: %%tls_ldo in %d-byte data field"),
2988 size);
2989 else
2990 {
2991 input_line_pointer += 8;
2992 nios2_tls_ldo_reloc = 1;
2993 }
2994 }
2995 if (nios2_tls_ldo_reloc)
2996 {
2997 SKIP_WHITESPACE ();
2998 if (input_line_pointer[0] != '(')
2999 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3000 else
3001 {
3002 int c;
3003 char *end = ++input_line_pointer;
3004 int npar = 0;
3005
3006 for (c = *end; !is_end_of_line[c]; end++, c = *end)
3007 if (c == '(')
3008 npar++;
3009 else if (c == ')')
3010 {
3011 if (!npar)
3012 break;
3013 npar--;
3014 }
3015
3016 if (c != ')')
3017 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3018 else
3019 {
3020 *end = '\0';
3021 expression (exp);
3022 *end = c;
3023 if (input_line_pointer != end)
3024 as_bad (_("Illegal operands: %%tls_ldo requires arguments in ()"));
3025 else
3026 {
3027 input_line_pointer++;
3028 SKIP_WHITESPACE ();
3029 c = *input_line_pointer;
3030 if (! is_end_of_line[c] && c != ',')
3031 as_bad (_("Illegal operands: garbage after %%tls_ldo()"));
3032 }
3033 }
3034 }
3035 }
3036 }
3037 if (!nios2_tls_ldo_reloc)
3038 expression (exp);
3039 }
3040
3041 /* Implement TC_CONS_FIX_NEW. */
3042 void
3043 nios2_cons_fix_new (fragS *frag, int where, unsigned int nbytes,
3044 expressionS *exp)
3045 {
3046 bfd_reloc_code_real_type r;
3047
3048 r = (nbytes == 1 ? BFD_RELOC_8
3049 : (nbytes == 2 ? BFD_RELOC_16
3050 : (nbytes == 4 ? BFD_RELOC_32 : BFD_RELOC_64)));
3051
3052 if (nios2_tls_ldo_reloc)
3053 r = BFD_RELOC_NIOS2_TLS_DTPREL;
3054
3055 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
3056 nios2_tls_ldo_reloc = 0;
3057 }
3058
3059 /* Implement HANDLE_ALIGN. */
3060 void
3061 nios2_handle_align (fragS *fragp)
3062 {
3063 /* If we are expecting to relax in the linker, then we must output a
3064 relocation to tell the linker we are aligning code. */
3065 if (nios2_as_options.relax == relax_all
3066 && (fragp->fr_type == rs_align || fragp->fr_type == rs_align_code)
3067 && fragp->fr_address + fragp->fr_fix > 0
3068 && fragp->fr_offset > 1
3069 && now_seg != bss_section)
3070 fix_new (fragp, fragp->fr_fix, 0, &abs_symbol, fragp->fr_offset, 0,
3071 BFD_RELOC_NIOS2_ALIGN);
3072 }
3073
3074 /* Implement tc_regname_to_dw2regnum, to convert REGNAME to a DWARF-2
3075 register number. */
3076 int
3077 nios2_regname_to_dw2regnum (char *regname)
3078 {
3079 struct nios2_reg *r = nios2_reg_lookup (regname);
3080 if (r == NULL)
3081 return -1;
3082 return r->index;
3083 }
3084
3085 /* Implement tc_cfi_frame_initial_instructions, to initialize the DWARF-2
3086 unwind information for this procedure. */
3087 void
3088 nios2_frame_initial_instructions (void)
3089 {
3090 cfi_add_CFA_def_cfa (27, 0);
3091 }
This page took 0.086998 seconds and 3 git commands to generate.