Update the address and phone number of the FSF
[deliverable/binutils-gdb.git] / gas / config / tc-ns32k.c
1 /* ns32k.c -- Assemble on the National Semiconductor 32k series
2 Copyright 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /*#define SHOW_NUM 1*//* Uncomment for debugging. */
24
25 #include <stdio.h>
26
27 #include "as.h"
28 #include "opcode/ns32k.h"
29
30 #include "obstack.h"
31
32 /* Macros. */
33 #define IIF_ENTRIES 13 /* Number of entries in iif. */
34 #define PRIVATE_SIZE 256 /* Size of my garbage memory. */
35 #define MAX_ARGS 4
36 #define DEFAULT -1 /* addr_mode returns this value when
37 plain constant or label is
38 encountered. */
39
40 #define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
41 iif.iifP[ptr].type = a1; \
42 iif.iifP[ptr].size = c1; \
43 iif.iifP[ptr].object = e1; \
44 iif.iifP[ptr].object_adjust = g1; \
45 iif.iifP[ptr].pcrel = i1; \
46 iif.iifP[ptr].pcrel_adjust = k1; \
47 iif.iifP[ptr].im_disp = m1; \
48 iif.iifP[ptr].relax_substate = o1; \
49 iif.iifP[ptr].bit_fixP = q1; \
50 iif.iifP[ptr].addr_mode = s1; \
51 iif.iifP[ptr].bsr = u1;
52
53 #ifdef SEQUENT_COMPATABILITY
54 #define LINE_COMMENT_CHARS "|"
55 #define ABSOLUTE_PREFIX '@'
56 #define IMMEDIATE_PREFIX '#'
57 #endif
58
59 #ifndef LINE_COMMENT_CHARS
60 #define LINE_COMMENT_CHARS "#"
61 #endif
62
63 const char comment_chars[] = "#";
64 const char line_comment_chars[] = LINE_COMMENT_CHARS;
65 const char line_separator_chars[] = ";";
66 static int default_disp_size = 4; /* Displacement size for external refs. */
67
68 #if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
69 #define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined. */
70 #endif
71
72 struct addr_mode
73 {
74 signed char mode; /* Addressing mode of operand (0-31). */
75 signed char scaled_mode; /* Mode combined with scaled mode. */
76 char scaled_reg; /* Register used in scaled+1 (1-8). */
77 char float_flag; /* Set if R0..R7 was F0..F7 ie a
78 floating-point-register. */
79 char am_size; /* Estimated max size of general addr-mode
80 parts. */
81 char im_disp; /* If im_disp==1 we have a displacement. */
82 char pcrel; /* 1 if pcrel, this is really redundant info. */
83 char disp_suffix[2]; /* Length of displacement(s), 0=undefined. */
84 char *disp[2]; /* Pointer(s) at displacement(s)
85 or immediates(s) (ascii). */
86 char index_byte; /* Index byte. */
87 };
88 typedef struct addr_mode addr_modeS;
89
90 char *freeptr, *freeptr_static; /* Points at some number of free bytes. */
91 struct hash_control *inst_hash_handle;
92
93 struct ns32k_opcode *desc; /* Pointer at description of instruction. */
94 addr_modeS addr_modeP;
95 const char EXP_CHARS[] = "eE";
96 const char FLT_CHARS[] = "fd"; /* We don't want to support lowercase,
97 do we? */
98
99 /* UPPERCASE denotes live names when an instruction is built, IIF is
100 used as an intermediate form to store the actual parts of the
101 instruction. A ns32k machine instruction can be divided into a
102 couple of sub PARTs. When an instruction is assembled the
103 appropriate PART get an assignment. When an IIF has been completed
104 it is converted to a FRAGment as specified in AS.H. */
105
106 /* Internal structs. */
107 struct ns32k_option
108 {
109 char *pattern;
110 unsigned long or;
111 unsigned long and;
112 };
113
114 typedef struct
115 {
116 int type; /* How to interpret object. */
117 int size; /* Estimated max size of object. */
118 unsigned long object; /* Binary data. */
119 int object_adjust; /* Number added to object. */
120 int pcrel; /* True if object is pcrel. */
121 int pcrel_adjust; /* Length in bytes from the instruction
122 start to the displacement. */
123 int im_disp; /* True if the object is a displacement. */
124 relax_substateT relax_substate;/*Initial relaxsubstate. */
125 bit_fixS *bit_fixP; /* Pointer at bit_fix struct. */
126 int addr_mode; /* What addrmode do we associate with this
127 iif-entry. */
128 char bsr; /* Sequent hack. */
129 } iif_entryT; /* Internal Instruction Format. */
130
131 struct int_ins_form
132 {
133 int instr_size; /* Max size of instruction in bytes. */
134 iif_entryT iifP[IIF_ENTRIES + 1];
135 };
136
137 struct int_ins_form iif;
138 expressionS exprP;
139 char *input_line_pointer;
140
141 /* Description of the PARTs in IIF
142 object[n]:
143 0 total length in bytes of entries in iif
144 1 opcode
145 2 index_byte_a
146 3 index_byte_b
147 4 disp_a_1
148 5 disp_a_2
149 6 disp_b_1
150 7 disp_b_2
151 8 imm_a
152 9 imm_b
153 10 implied1
154 11 implied2
155
156 For every entry there is a datalength in bytes. This is stored in size[n].
157 0, the objectlength is not explicitly given by the instruction
158 and the operand is undefined. This is a case for relaxation.
159 Reserve 4 bytes for the final object.
160
161 1, the entry contains one byte
162 2, the entry contains two bytes
163 3, the entry contains three bytes
164 4, the entry contains four bytes
165 etc
166
167 Furthermore, every entry has a data type identifier in type[n].
168
169 0, the entry is void, ignore it.
170 1, the entry is a binary number.
171 2, the entry is a pointer at an expression.
172 Where expression may be as simple as a single '1',
173 and as complicated as foo-bar+12,
174 foo and bar may be undefined but suffixed by :{b|w|d} to
175 control the length of the object.
176
177 3, the entry is a pointer at a bignum struct
178
179 The low-order-byte corresponds to low physical memory.
180 Obviously a FRAGment must be created for each valid disp in PART whose
181 datalength is undefined (to bad) .
182 The case where just the expression is undefined is less severe and is
183 handled by fix. Here the number of bytes in the objectfile is known.
184 With this representation we simplify the assembly and separates the
185 machine dependent/independent parts in a more clean way (said OE). */
186 \f
187 struct ns32k_option opt1[] = /* restore, exit. */
188 {
189 {"r0", 0x80, 0xff},
190 {"r1", 0x40, 0xff},
191 {"r2", 0x20, 0xff},
192 {"r3", 0x10, 0xff},
193 {"r4", 0x08, 0xff},
194 {"r5", 0x04, 0xff},
195 {"r6", 0x02, 0xff},
196 {"r7", 0x01, 0xff},
197 {0, 0x00, 0xff}
198 };
199 struct ns32k_option opt2[] = /* save, enter. */
200 {
201 {"r0", 0x01, 0xff},
202 {"r1", 0x02, 0xff},
203 {"r2", 0x04, 0xff},
204 {"r3", 0x08, 0xff},
205 {"r4", 0x10, 0xff},
206 {"r5", 0x20, 0xff},
207 {"r6", 0x40, 0xff},
208 {"r7", 0x80, 0xff},
209 {0, 0x00, 0xff}
210 };
211 struct ns32k_option opt3[] = /* setcfg. */
212 {
213 {"c", 0x8, 0xff},
214 {"m", 0x4, 0xff},
215 {"f", 0x2, 0xff},
216 {"i", 0x1, 0xff},
217 {0, 0x0, 0xff}
218 };
219 struct ns32k_option opt4[] = /* cinv. */
220 {
221 {"a", 0x4, 0xff},
222 {"i", 0x2, 0xff},
223 {"d", 0x1, 0xff},
224 {0, 0x0, 0xff}
225 };
226 struct ns32k_option opt5[] = /* String inst. */
227 {
228 {"b", 0x2, 0xff},
229 {"u", 0xc, 0xff},
230 {"w", 0x4, 0xff},
231 {0, 0x0, 0xff}
232 };
233 struct ns32k_option opt6[] = /* Plain reg ext,cvtp etc. */
234 {
235 {"r0", 0x00, 0xff},
236 {"r1", 0x01, 0xff},
237 {"r2", 0x02, 0xff},
238 {"r3", 0x03, 0xff},
239 {"r4", 0x04, 0xff},
240 {"r5", 0x05, 0xff},
241 {"r6", 0x06, 0xff},
242 {"r7", 0x07, 0xff},
243 {0, 0x00, 0xff}
244 };
245
246 #if !defined(NS32032) && !defined(NS32532)
247 #define NS32532
248 #endif
249
250 struct ns32k_option cpureg_532[] = /* lpr spr. */
251 {
252 {"us", 0x0, 0xff},
253 {"dcr", 0x1, 0xff},
254 {"bpc", 0x2, 0xff},
255 {"dsr", 0x3, 0xff},
256 {"car", 0x4, 0xff},
257 {"fp", 0x8, 0xff},
258 {"sp", 0x9, 0xff},
259 {"sb", 0xa, 0xff},
260 {"usp", 0xb, 0xff},
261 {"cfg", 0xc, 0xff},
262 {"psr", 0xd, 0xff},
263 {"intbase", 0xe, 0xff},
264 {"mod", 0xf, 0xff},
265 {0, 0x00, 0xff}
266 };
267 struct ns32k_option mmureg_532[] = /* lmr smr. */
268 {
269 {"mcr", 0x9, 0xff},
270 {"msr", 0xa, 0xff},
271 {"tear", 0xb, 0xff},
272 {"ptb0", 0xc, 0xff},
273 {"ptb1", 0xd, 0xff},
274 {"ivar0", 0xe, 0xff},
275 {"ivar1", 0xf, 0xff},
276 {0, 0x0, 0xff}
277 };
278
279 struct ns32k_option cpureg_032[] = /* lpr spr. */
280 {
281 {"upsr", 0x0, 0xff},
282 {"fp", 0x8, 0xff},
283 {"sp", 0x9, 0xff},
284 {"sb", 0xa, 0xff},
285 {"psr", 0xd, 0xff},
286 {"intbase", 0xe, 0xff},
287 {"mod", 0xf, 0xff},
288 {0, 0x0, 0xff}
289 };
290 struct ns32k_option mmureg_032[] = /* lmr smr. */
291 {
292 {"bpr0", 0x0, 0xff},
293 {"bpr1", 0x1, 0xff},
294 {"pf0", 0x4, 0xff},
295 {"pf1", 0x5, 0xff},
296 {"sc", 0x8, 0xff},
297 {"msr", 0xa, 0xff},
298 {"bcnt", 0xb, 0xff},
299 {"ptb0", 0xc, 0xff},
300 {"ptb1", 0xd, 0xff},
301 {"eia", 0xf, 0xff},
302 {0, 0x0, 0xff}
303 };
304
305 #if defined(NS32532)
306 struct ns32k_option *cpureg = cpureg_532;
307 struct ns32k_option *mmureg = mmureg_532;
308 #else
309 struct ns32k_option *cpureg = cpureg_032;
310 struct ns32k_option *mmureg = mmureg_032;
311 #endif
312 \f
313
314 const pseudo_typeS md_pseudo_table[] =
315 { /* So far empty. */
316 {0, 0, 0}
317 };
318
319 #define IND(x,y) (((x)<<2)+(y))
320
321 /* Those are index's to relax groups in md_relax_table ie it must be
322 multiplied by 4 to point at a group start. Viz IND(x,y) Se function
323 relax_segment in write.c for more info. */
324
325 #define BRANCH 1
326 #define PCREL 2
327
328 /* Those are index's to entries in a relax group. */
329
330 #define BYTE 0
331 #define WORD 1
332 #define DOUBLE 2
333 #define UNDEF 3
334 /* Those limits are calculated from the displacement start in memory.
335 The ns32k uses the beginning of the instruction as displacement
336 base. This type of displacements could be handled here by moving
337 the limit window up or down. I choose to use an internal
338 displacement base-adjust as there are other routines that must
339 consider this. Also, as we have two various offset-adjusts in the
340 ns32k (acb versus br/brs/jsr/bcond), two set of limits would have
341 had to be used. Now we dont have to think about that. */
342
343 const relax_typeS md_relax_table[] =
344 {
345 {1, 1, 0, 0},
346 {1, 1, 0, 0},
347 {1, 1, 0, 0},
348 {1, 1, 0, 0},
349
350 {(63), (-64), 1, IND (BRANCH, WORD)},
351 {(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
352 {0, 0, 4, 0},
353 {1, 1, 0, 0}
354 };
355
356 /* Array used to test if mode contains displacements.
357 Value is true if mode contains displacement. */
358
359 char disp_test[] =
360 {0, 0, 0, 0, 0, 0, 0, 0,
361 1, 1, 1, 1, 1, 1, 1, 1,
362 1, 1, 1, 0, 0, 1, 1, 0,
363 1, 1, 1, 1, 1, 1, 1, 1};
364
365 /* Array used to calculate max size of displacements. */
366
367 char disp_size[] =
368 {4, 1, 2, 0, 4};
369 \f
370 /* Parse a general operand into an addressingmode struct
371
372 In: pointer at operand in ascii form
373 pointer at addr_mode struct for result
374 the level of recursion. (always 0 or 1)
375
376 Out: data in addr_mode struct. */
377
378 static int
379 addr_mode (char *operand,
380 addr_modeS *addr_modeP,
381 int recursive_level)
382 {
383 char *str;
384 int i;
385 int strl;
386 int mode;
387 int j;
388
389 mode = DEFAULT; /* Default. */
390 addr_modeP->scaled_mode = 0; /* Why not. */
391 addr_modeP->scaled_reg = 0; /* If 0, not scaled index. */
392 addr_modeP->float_flag = 0;
393 addr_modeP->am_size = 0;
394 addr_modeP->im_disp = 0;
395 addr_modeP->pcrel = 0; /* Not set in this function. */
396 addr_modeP->disp_suffix[0] = 0;
397 addr_modeP->disp_suffix[1] = 0;
398 addr_modeP->disp[0] = NULL;
399 addr_modeP->disp[1] = NULL;
400 str = operand;
401
402 if (str[0] == 0)
403 return 0;
404
405 strl = strlen (str);
406
407 switch (str[0])
408 {
409 /* The following three case statements controls the mode-chars
410 this is the place to ed if you want to change them. */
411 #ifdef ABSOLUTE_PREFIX
412 case ABSOLUTE_PREFIX:
413 if (str[strl - 1] == ']')
414 break;
415 addr_modeP->mode = 21; /* absolute */
416 addr_modeP->disp[0] = str + 1;
417 return -1;
418 #endif
419 #ifdef IMMEDIATE_PREFIX
420 case IMMEDIATE_PREFIX:
421 if (str[strl - 1] == ']')
422 break;
423 addr_modeP->mode = 20; /* immediate */
424 addr_modeP->disp[0] = str + 1;
425 return -1;
426 #endif
427 case '.':
428 if (str[strl - 1] != ']')
429 {
430 switch (str[1])
431 {
432 case '-':
433 case '+':
434 if (str[2] != '\000')
435 {
436 addr_modeP->mode = 27; /* pc-relative */
437 addr_modeP->disp[0] = str + 2;
438 return -1;
439 }
440 default:
441 as_bad (_("Invalid syntax in PC-relative addressing mode"));
442 return 0;
443 }
444 }
445 break;
446 case 'e':
447 if (str[strl - 1] != ']')
448 {
449 if ((!strncmp (str, "ext(", 4)) && strl > 7)
450 { /* external */
451 addr_modeP->disp[0] = str + 4;
452 i = 0;
453 j = 2;
454 do
455 { /* disp[0]'s termination point. */
456 j += 1;
457 if (str[j] == '(')
458 i++;
459 if (str[j] == ')')
460 i--;
461 }
462 while (j < strl && i != 0);
463 if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
464 {
465 as_bad (_("Invalid syntax in External addressing mode"));
466 return (0);
467 }
468 str[j] = '\000'; /* null terminate disp[0] */
469 addr_modeP->disp[1] = str + j + 2;
470 addr_modeP->mode = 22;
471 return -1;
472 }
473 }
474 break;
475
476 default:
477 ;
478 }
479
480 strl = strlen (str);
481
482 switch (strl)
483 {
484 case 2:
485 switch (str[0])
486 {
487 case 'f':
488 addr_modeP->float_flag = 1;
489 /* Drop through. */
490 case 'r':
491 if (str[1] >= '0' && str[1] < '8')
492 {
493 addr_modeP->mode = str[1] - '0';
494 return -1;
495 }
496 break;
497 default:
498 break;
499 }
500 /* Drop through. */
501
502 case 3:
503 if (!strncmp (str, "tos", 3))
504 {
505 addr_modeP->mode = 23; /* TopOfStack */
506 return -1;
507 }
508 break;
509
510 default:
511 break;
512 }
513
514 if (strl > 4)
515 {
516 if (str[strl - 1] == ')')
517 {
518 if (str[strl - 2] == ')')
519 {
520 if (!strncmp (&str[strl - 5], "(fp", 3))
521 mode = 16; /* Memory Relative. */
522 else if (!strncmp (&str[strl - 5], "(sp", 3))
523 mode = 17;
524 else if (!strncmp (&str[strl - 5], "(sb", 3))
525 mode = 18;
526
527 if (mode != DEFAULT)
528 {
529 /* Memory relative. */
530 addr_modeP->mode = mode;
531 j = strl - 5; /* Temp for end of disp[0]. */
532 i = 0;
533
534 do
535 {
536 strl -= 1;
537 if (str[strl] == ')')
538 i++;
539 if (str[strl] == '(')
540 i--;
541 }
542 while (strl > -1 && i != 0);
543
544 if (i != 0)
545 {
546 as_bad (_("Invalid syntax in Memory Relative addressing mode"));
547 return (0);
548 }
549
550 addr_modeP->disp[1] = str;
551 addr_modeP->disp[0] = str + strl + 1;
552 str[j] = '\000'; /* Null terminate disp[0] . */
553 str[strl] = '\000'; /* Null terminate disp[1]. */
554
555 return -1;
556 }
557 }
558
559 switch (str[strl - 3])
560 {
561 case 'r':
562 case 'R':
563 if (str[strl - 2] >= '0'
564 && str[strl - 2] < '8'
565 && str[strl - 4] == '(')
566 {
567 addr_modeP->mode = str[strl - 2] - '0' + 8;
568 addr_modeP->disp[0] = str;
569 str[strl - 4] = 0;
570 return -1; /* reg rel */
571 }
572 /* Drop through. */
573
574 default:
575 if (!strncmp (&str[strl - 4], "(fp", 3))
576 mode = 24;
577 else if (!strncmp (&str[strl - 4], "(sp", 3))
578 mode = 25;
579 else if (!strncmp (&str[strl - 4], "(sb", 3))
580 mode = 26;
581 else if (!strncmp (&str[strl - 4], "(pc", 3))
582 mode = 27;
583
584 if (mode != DEFAULT)
585 {
586 addr_modeP->mode = mode;
587 addr_modeP->disp[0] = str;
588 str[strl - 4] = '\0';
589
590 return -1; /* Memory space. */
591 }
592 }
593 }
594
595 /* No trailing ')' do we have a ']' ? */
596 if (str[strl - 1] == ']')
597 {
598 switch (str[strl - 2])
599 {
600 case 'b':
601 mode = 28;
602 break;
603 case 'w':
604 mode = 29;
605 break;
606 case 'd':
607 mode = 30;
608 break;
609 case 'q':
610 mode = 31;
611 break;
612 default:
613 as_bad (_("Invalid scaled-indexed mode, use (b,w,d,q)"));
614
615 if (str[strl - 3] != ':' || str[strl - 6] != '['
616 || str[strl - 5] == 'r' || str[strl - 4] < '0'
617 || str[strl - 4] > '7')
618 as_bad (_("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}"));
619 } /* Scaled index. */
620
621 if (recursive_level > 0)
622 {
623 as_bad (_("Scaled-indexed addressing mode combined with scaled-index"));
624 return 0;
625 }
626
627 addr_modeP->am_size += 1; /* scaled index byte. */
628 j = str[strl - 4] - '0'; /* store temporary. */
629 str[strl - 6] = '\000'; /* nullterminate for recursive call. */
630 i = addr_mode (str, addr_modeP, 1);
631
632 if (!i || addr_modeP->mode == 20)
633 {
634 as_bad (_("Invalid or illegal addressing mode combined with scaled-index"));
635 return 0;
636 }
637
638 addr_modeP->scaled_mode = addr_modeP->mode; /* Store the inferior mode. */
639 addr_modeP->mode = mode;
640 addr_modeP->scaled_reg = j + 1;
641
642 return -1;
643 }
644 }
645
646 addr_modeP->mode = DEFAULT; /* Default to whatever. */
647 addr_modeP->disp[0] = str;
648
649 return -1;
650 }
651 \f
652 static void
653 evaluate_expr (expressionS *resultP, char *ptr)
654 {
655 char *tmp_line;
656
657 tmp_line = input_line_pointer;
658 input_line_pointer = ptr;
659 expression (resultP);
660 input_line_pointer = tmp_line;
661 }
662
663 /* ptr points at string addr_modeP points at struct with result This
664 routine calls addr_mode to determine the general addr.mode of the
665 operand. When this is ready it parses the displacements for size
666 specifying suffixes and determines size of immediate mode via
667 ns32k-opcode. Also builds index bytes if needed. */
668
669 static int
670 get_addr_mode (char *ptr, addr_modeS *addr_modeP)
671 {
672 int tmp;
673
674 addr_mode (ptr, addr_modeP, 0);
675
676 if (addr_modeP->mode == DEFAULT || addr_modeP->scaled_mode == -1)
677 {
678 /* Resolve ambiguous operands, this shouldn't be necessary if
679 one uses standard NSC operand syntax. But the sequent
680 compiler doesn't!!! This finds a proper addressing mode
681 if it is implicitly stated. See ns32k-opcode.h. */
682 (void) evaluate_expr (&exprP, ptr); /* This call takes time Sigh! */
683
684 if (addr_modeP->mode == DEFAULT)
685 {
686 if (exprP.X_add_symbol || exprP.X_op_symbol)
687 addr_modeP->mode = desc->default_model; /* We have a label. */
688 else
689 addr_modeP->mode = desc->default_modec; /* We have a constant. */
690 }
691 else
692 {
693 if (exprP.X_add_symbol || exprP.X_op_symbol)
694 addr_modeP->scaled_mode = desc->default_model;
695 else
696 addr_modeP->scaled_mode = desc->default_modec;
697 }
698
699 /* Must put this mess down in addr_mode to handle the scaled
700 case better. */
701 }
702
703 /* It appears as the sequent compiler wants an absolute when we have
704 a label without @. Constants becomes immediates besides the addr
705 case. Think it does so with local labels too, not optimum, pcrel
706 is better. When I have time I will make gas check this and
707 select pcrel when possible Actually that is trivial. */
708 if ((tmp = addr_modeP->scaled_reg))
709 { /* Build indexbyte. */
710 tmp--; /* Remember regnumber comes incremented for
711 flagpurpose. */
712 tmp |= addr_modeP->scaled_mode << 3;
713 addr_modeP->index_byte = (char) tmp;
714 addr_modeP->am_size += 1;
715 }
716
717 assert (addr_modeP->mode >= 0);
718 if (disp_test[(unsigned int) addr_modeP->mode])
719 {
720 char c;
721 char suffix;
722 char suffix_sub;
723 int i;
724 char *toP;
725 char *fromP;
726
727 /* There was a displacement, probe for length specifying suffix. */
728 addr_modeP->pcrel = 0;
729
730 assert(addr_modeP->mode >= 0);
731 if (disp_test[(unsigned int) addr_modeP->mode])
732 {
733 /* There is a displacement. */
734 if (addr_modeP->mode == 27 || addr_modeP->scaled_mode == 27)
735 /* Do we have pcrel. mode. */
736 addr_modeP->pcrel = 1;
737
738 addr_modeP->im_disp = 1;
739
740 for (i = 0; i < 2; i++)
741 {
742 suffix_sub = suffix = 0;
743
744 if ((toP = addr_modeP->disp[i]))
745 {
746 /* Suffix of expression, the largest size rules. */
747 fromP = toP;
748
749 while ((c = *fromP++))
750 {
751 *toP++ = c;
752 if (c == ':')
753 {
754 switch (*fromP)
755 {
756 case '\0':
757 as_warn (_("Premature end of suffix -- Defaulting to d"));
758 suffix = 4;
759 continue;
760 case 'b':
761 suffix_sub = 1;
762 break;
763 case 'w':
764 suffix_sub = 2;
765 break;
766 case 'd':
767 suffix_sub = 4;
768 break;
769 default:
770 as_warn (_("Bad suffix after ':' use {b|w|d} Defaulting to d"));
771 suffix = 4;
772 }
773
774 fromP ++;
775 toP --; /* So we write over the ':' */
776
777 if (suffix < suffix_sub)
778 suffix = suffix_sub;
779 }
780 }
781
782 *toP = '\0'; /* Terminate properly. */
783 addr_modeP->disp_suffix[i] = suffix;
784 addr_modeP->am_size += suffix ? suffix : 4;
785 }
786 }
787 }
788 }
789 else
790 {
791 if (addr_modeP->mode == 20)
792 {
793 /* Look in ns32k_opcode for size. */
794 addr_modeP->disp_suffix[0] = addr_modeP->am_size = desc->im_size;
795 addr_modeP->im_disp = 0;
796 }
797 }
798
799 return addr_modeP->mode;
800 }
801
802 /* Read an optionlist. */
803
804 static void
805 optlist (char *str, /* The string to extract options from. */
806 struct ns32k_option *optionP, /* How to search the string. */
807 unsigned long *default_map) /* Default pattern and output. */
808 {
809 int i, j, k, strlen1, strlen2;
810 char *patternP, *strP;
811
812 strlen1 = strlen (str);
813
814 if (strlen1 < 1)
815 as_fatal (_("Very short instr to option, ie you can't do it on a NULLstr"));
816
817 for (i = 0; optionP[i].pattern != 0; i++)
818 {
819 strlen2 = strlen (optionP[i].pattern);
820
821 for (j = 0; j < strlen1; j++)
822 {
823 patternP = optionP[i].pattern;
824 strP = &str[j];
825
826 for (k = 0; k < strlen2; k++)
827 {
828 if (*(strP++) != *(patternP++))
829 break;
830 }
831
832 if (k == strlen2)
833 { /* match */
834 *default_map |= optionP[i].or;
835 *default_map &= optionP[i].and;
836 }
837 }
838 }
839 }
840
841 /* Search struct for symbols.
842 This function is used to get the short integer form of reg names in
843 the instructions lmr, smr, lpr, spr return true if str is found in
844 list. */
845
846 static int
847 list_search (char *str, /* The string to match. */
848 struct ns32k_option *optionP, /* List to search. */
849 unsigned long *default_map) /* Default pattern and output. */
850 {
851 int i;
852
853 for (i = 0; optionP[i].pattern != 0; i++)
854 {
855 if (!strncmp (optionP[i].pattern, str, 20))
856 {
857 /* Use strncmp to be safe. */
858 *default_map |= optionP[i].or;
859 *default_map &= optionP[i].and;
860
861 return -1;
862 }
863 }
864
865 as_bad (_("No such entry in list. (cpu/mmu register)"));
866 return 0;
867 }
868 \f
869 /* Create a bit_fixS in obstack 'notes'.
870 This struct is used to profile the normal fix. If the bit_fixP is a
871 valid pointer (not NULL) the bit_fix data will be used to format
872 the fix. */
873
874 static bit_fixS *
875 bit_fix_new (int size, /* Length of bitfield. */
876 int offset, /* Bit offset to bitfield. */
877 long min, /* Signextended min for bitfield. */
878 long max, /* Signextended max for bitfield. */
879 long add, /* Add mask, used for huffman prefix. */
880 long base_type, /* 0 or 1, if 1 it's exploded to opcode ptr. */
881 long base_adj)
882 {
883 bit_fixS *bit_fixP;
884
885 bit_fixP = (bit_fixS *) obstack_alloc (&notes, sizeof (bit_fixS));
886
887 bit_fixP->fx_bit_size = size;
888 bit_fixP->fx_bit_offset = offset;
889 bit_fixP->fx_bit_base = base_type;
890 bit_fixP->fx_bit_base_adj = base_adj;
891 bit_fixP->fx_bit_max = max;
892 bit_fixP->fx_bit_min = min;
893 bit_fixP->fx_bit_add = add;
894
895 return bit_fixP;
896 }
897
898 /* Convert operands to iif-format and adds bitfields to the opcode.
899 Operands are parsed in such an order that the opcode is updated from
900 its most significant bit, that is when the operand need to alter the
901 opcode.
902 Be careful not to put to objects in the same iif-slot. */
903
904 static void
905 encode_operand (int argc,
906 char **argv,
907 const char *operandsP,
908 const char *suffixP,
909 char im_size ATTRIBUTE_UNUSED,
910 char opcode_bit_ptr)
911 {
912 int i, j;
913 char d;
914 int pcrel, b, loop, pcrel_adjust;
915 unsigned long tmp;
916
917 for (loop = 0; loop < argc; loop++)
918 {
919 /* What operand are we supposed to work on. */
920 i = operandsP[loop << 1] - '1';
921 if (i > 3)
922 as_fatal (_("Internal consistency error. check ns32k-opcode.h"));
923
924 pcrel = 0;
925 pcrel_adjust = 0;
926 tmp = 0;
927
928 switch ((d = operandsP[(loop << 1) + 1]))
929 {
930 case 'f': /* Operand of sfsr turns out to be a nasty
931 specialcase. */
932 opcode_bit_ptr -= 5;
933 case 'Z': /* Float not immediate. */
934 case 'F': /* 32 bit float general form. */
935 case 'L': /* 64 bit float. */
936 case 'I': /* Integer not immediate. */
937 case 'B': /* Byte */
938 case 'W': /* Word */
939 case 'D': /* Double-word. */
940 case 'A': /* Double-word gen-address-form ie no regs
941 allowed. */
942 get_addr_mode (argv[i], &addr_modeP);
943
944 if ((addr_modeP.mode == 20) &&
945 (d == 'I' || d == 'Z' || d == 'A'))
946 as_fatal (d == 'A'? _("Address of immediate operand"):
947 _("Invalid immediate write operand."));
948
949 if (opcode_bit_ptr == desc->opcode_size)
950 b = 4;
951 else
952 b = 6;
953
954 for (j = b; j < (b + 2); j++)
955 {
956 if (addr_modeP.disp[j - b])
957 {
958 IIF (j,
959 2,
960 addr_modeP.disp_suffix[j - b],
961 (unsigned long) addr_modeP.disp[j - b],
962 0,
963 addr_modeP.pcrel,
964 iif.instr_size,
965 addr_modeP.im_disp,
966 IND (BRANCH, BYTE),
967 NULL,
968 (addr_modeP.scaled_reg ? addr_modeP.scaled_mode
969 : addr_modeP.mode),
970 0);
971 }
972 }
973
974 opcode_bit_ptr -= 5;
975 iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
976
977 if (addr_modeP.scaled_reg)
978 {
979 j = b / 2;
980 IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte,
981 0, 0, 0, 0, 0, NULL, -1, 0);
982 }
983 break;
984
985 case 'b': /* Multiple instruction disp. */
986 freeptr++; /* OVE:this is an useful hack. */
987 sprintf (freeptr, "((%s-1)*%d)", argv[i], desc->im_size);
988 argv[i] = freeptr;
989 pcrel -= 1; /* Make pcrel 0 in spite of what case 'p':
990 wants. */
991 /* fall thru */
992 case 'p': /* Displacement - pc relative addressing. */
993 pcrel += 1;
994 /* fall thru */
995 case 'd': /* Displacement. */
996 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
997 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
998 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
999 break;
1000 case 'H': /* Sequent-hack: the linker wants a bit set
1001 when bsr. */
1002 pcrel = 1;
1003 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
1004 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
1005 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
1006 break;
1007 case 'q': /* quick */
1008 opcode_bit_ptr -= 4;
1009 IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
1010 bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
1011 break;
1012 case 'r': /* Register number (3 bits). */
1013 list_search (argv[i], opt6, &tmp);
1014 opcode_bit_ptr -= 3;
1015 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1016 break;
1017 case 'O': /* Setcfg instruction optionslist. */
1018 optlist (argv[i], opt3, &tmp);
1019 opcode_bit_ptr -= 4;
1020 iif.iifP[1].object |= tmp << 15;
1021 break;
1022 case 'C': /* Cinv instruction optionslist. */
1023 optlist (argv[i], opt4, &tmp);
1024 opcode_bit_ptr -= 4;
1025 iif.iifP[1].object |= tmp << 15; /* Insert the regtype in opcode. */
1026 break;
1027 case 'S': /* String instruction options list. */
1028 optlist (argv[i], opt5, &tmp);
1029 opcode_bit_ptr -= 4;
1030 iif.iifP[1].object |= tmp << 15;
1031 break;
1032 case 'u':
1033 case 'U': /* Register list. */
1034 IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
1035 switch (operandsP[(i << 1) + 1])
1036 {
1037 case 'u': /* Restore, exit. */
1038 optlist (argv[i], opt1, &iif.iifP[10].object);
1039 break;
1040 case 'U': /* Save, enter. */
1041 optlist (argv[i], opt2, &iif.iifP[10].object);
1042 break;
1043 }
1044 iif.instr_size += 1;
1045 break;
1046 case 'M': /* MMU register. */
1047 list_search (argv[i], mmureg, &tmp);
1048 opcode_bit_ptr -= 4;
1049 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1050 break;
1051 case 'P': /* CPU register. */
1052 list_search (argv[i], cpureg, &tmp);
1053 opcode_bit_ptr -= 4;
1054 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1055 break;
1056 case 'g': /* Inss exts. */
1057 iif.instr_size += 1; /* 1 byte is allocated after the opcode. */
1058 IIF (10, 2, 1,
1059 (unsigned long) argv[i], /* i always 2 here. */
1060 0, 0, 0, 0, 0,
1061 bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* A bit_fix is targeted to
1062 the byte. */
1063 -1, 0);
1064 break;
1065 case 'G':
1066 IIF (11, 2, 42,
1067 (unsigned long) argv[i], /* i always 3 here. */
1068 0, 0, 0, 0, 0,
1069 bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
1070 break;
1071 case 'i':
1072 iif.instr_size += 1;
1073 b = 2 + i; /* Put the extension byte after opcode. */
1074 IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
1075 break;
1076 default:
1077 as_fatal (_("Bad opcode-table-option, check in file ns32k-opcode.h"));
1078 }
1079 }
1080 }
1081 \f
1082 /* in: instruction line
1083 out: internal structure of instruction
1084 that has been prepared for direct conversion to fragment(s) and
1085 fixes in a systematical fashion
1086 Return-value = recursive_level. */
1087 /* Build iif of one assembly text line. */
1088
1089 static int
1090 parse (const char *line, int recursive_level)
1091 {
1092 const char *lineptr;
1093 char c, suffix_separator;
1094 int i;
1095 unsigned int argc;
1096 int arg_type;
1097 char sqr, sep;
1098 char suffix[MAX_ARGS], *argv[MAX_ARGS]; /* No more than 4 operands. */
1099
1100 if (recursive_level <= 0)
1101 {
1102 /* Called from md_assemble. */
1103 for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++)
1104 continue;
1105
1106 c = *lineptr;
1107 *(char *) lineptr = '\0';
1108
1109 if (!(desc = (struct ns32k_opcode *) hash_find (inst_hash_handle, line)))
1110 as_fatal (_("No such opcode"));
1111
1112 *(char *) lineptr = c;
1113 }
1114 else
1115 lineptr = line;
1116
1117 argc = 0;
1118
1119 if (*desc->operands)
1120 {
1121 if (*lineptr++ != '\0')
1122 {
1123 sqr = '[';
1124 sep = ',';
1125
1126 while (*lineptr != '\0')
1127 {
1128 if (desc->operands[argc << 1])
1129 {
1130 suffix[argc] = 0;
1131 arg_type = desc->operands[(argc << 1) + 1];
1132
1133 switch (arg_type)
1134 {
1135 case 'd':
1136 case 'b':
1137 case 'p':
1138 case 'H':
1139 /* The operand is supposed to be a displacement. */
1140 /* Hackwarning: do not forget to update the 4
1141 cases above when editing ns32k-opcode.h. */
1142 suffix_separator = ':';
1143 break;
1144 default:
1145 /* If this char occurs we loose. */
1146 suffix_separator = '\255';
1147 break;
1148 }
1149
1150 suffix[argc] = 0; /* 0 when no ':' is encountered. */
1151 argv[argc] = freeptr;
1152 *freeptr = '\0';
1153
1154 while ((c = *lineptr) != '\0' && c != sep)
1155 {
1156 if (c == sqr)
1157 {
1158 if (sqr == '[')
1159 {
1160 sqr = ']';
1161 sep = '\0';
1162 }
1163 else
1164 {
1165 sqr = '[';
1166 sep = ',';
1167 }
1168 }
1169
1170 if (c == suffix_separator)
1171 {
1172 /* ':' - label/suffix separator. */
1173 switch (lineptr[1])
1174 {
1175 case 'b':
1176 suffix[argc] = 1;
1177 break;
1178 case 'w':
1179 suffix[argc] = 2;
1180 break;
1181 case 'd':
1182 suffix[argc] = 4;
1183 break;
1184 default:
1185 as_warn (_("Bad suffix, defaulting to d"));
1186 suffix[argc] = 4;
1187 if (lineptr[1] == '\0' || lineptr[1] == sep)
1188 {
1189 lineptr += 1;
1190 continue;
1191 }
1192 break;
1193 }
1194
1195 lineptr += 2;
1196 continue;
1197 }
1198
1199 *freeptr++ = c;
1200 lineptr++;
1201 }
1202
1203 *freeptr++ = '\0';
1204 argc += 1;
1205
1206 if (*lineptr == '\0')
1207 continue;
1208
1209 lineptr += 1;
1210 }
1211 else
1212 as_fatal (_("Too many operands passed to instruction"));
1213 }
1214 }
1215 }
1216
1217 if (argc != strlen (desc->operands) / 2)
1218 {
1219 if (strlen (desc->default_args))
1220 {
1221 /* We can apply default, don't goof. */
1222 if (parse (desc->default_args, 1) != 1)
1223 /* Check error in default. */
1224 as_fatal (_("Wrong numbers of operands in default, check ns32k-opcodes.h"));
1225 }
1226 else
1227 as_fatal (_("Wrong number of operands"));
1228 }
1229
1230 for (i = 0; i < IIF_ENTRIES; i++)
1231 /* Mark all entries as void. */
1232 iif.iifP[i].type = 0;
1233
1234 /* Build opcode iif-entry. */
1235 iif.instr_size = desc->opcode_size / 8;
1236 IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
1237
1238 /* This call encodes operands to iif format. */
1239 if (argc)
1240 encode_operand (argc, argv, &desc->operands[0],
1241 &suffix[0], desc->im_size, desc->opcode_size);
1242
1243 return recursive_level;
1244 }
1245 \f
1246 #ifdef BFD_ASSEMBLER
1247 /* This functionality should really be in the bfd library. */
1248
1249 static bfd_reloc_code_real_type
1250 reloc (int size, int pcrel, int type)
1251 {
1252 int length, index;
1253 bfd_reloc_code_real_type relocs[] =
1254 {
1255 BFD_RELOC_NS32K_IMM_8,
1256 BFD_RELOC_NS32K_IMM_16,
1257 BFD_RELOC_NS32K_IMM_32,
1258 BFD_RELOC_NS32K_IMM_8_PCREL,
1259 BFD_RELOC_NS32K_IMM_16_PCREL,
1260 BFD_RELOC_NS32K_IMM_32_PCREL,
1261
1262 /* ns32k displacements. */
1263 BFD_RELOC_NS32K_DISP_8,
1264 BFD_RELOC_NS32K_DISP_16,
1265 BFD_RELOC_NS32K_DISP_32,
1266 BFD_RELOC_NS32K_DISP_8_PCREL,
1267 BFD_RELOC_NS32K_DISP_16_PCREL,
1268 BFD_RELOC_NS32K_DISP_32_PCREL,
1269
1270 /* Normal 2's complement. */
1271 BFD_RELOC_8,
1272 BFD_RELOC_16,
1273 BFD_RELOC_32,
1274 BFD_RELOC_8_PCREL,
1275 BFD_RELOC_16_PCREL,
1276 BFD_RELOC_32_PCREL
1277 };
1278
1279 switch (size)
1280 {
1281 case 1:
1282 length = 0;
1283 break;
1284 case 2:
1285 length = 1;
1286 break;
1287 case 4:
1288 length = 2;
1289 break;
1290 default:
1291 length = -1;
1292 break;
1293 }
1294
1295 index = length + 3 * pcrel + 6 * type;
1296
1297 if (index >= 0 && (unsigned int) index < sizeof (relocs) / sizeof (relocs[0]))
1298 return relocs[index];
1299
1300 if (pcrel)
1301 as_bad (_("Can not do %d byte pc-relative relocation for storage type %d"),
1302 size, type);
1303 else
1304 as_bad (_("Can not do %d byte relocation for storage type %d"),
1305 size, type);
1306
1307 return BFD_RELOC_NONE;
1308
1309 }
1310 #endif
1311
1312 static void
1313 fix_new_ns32k (fragS *frag, /* Which frag? */
1314 int where, /* Where in that frag? */
1315 int size, /* 1, 2 or 4 usually. */
1316 symbolS *add_symbol, /* X_add_symbol. */
1317 long offset, /* X_add_number. */
1318 int pcrel, /* True if PC-relative relocation. */
1319 char im_disp, /* True if the value to write is a
1320 displacement. */
1321 bit_fixS *bit_fixP, /* Pointer at struct of bit_fix's, ignored if
1322 NULL. */
1323 char bsr, /* Sequent-linker-hack: 1 when relocobject is
1324 a bsr. */
1325 fragS *opcode_frag,
1326 unsigned int opcode_offset)
1327 {
1328 fixS *fixP = fix_new (frag, where, size, add_symbol,
1329 offset, pcrel,
1330 #ifdef BFD_ASSEMBLER
1331 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
1332 #else
1333 NO_RELOC
1334 #endif
1335 );
1336
1337 fix_opcode_frag (fixP) = opcode_frag;
1338 fix_opcode_offset (fixP) = opcode_offset;
1339 fix_im_disp (fixP) = im_disp;
1340 fix_bsr (fixP) = bsr;
1341 fix_bit_fixP (fixP) = bit_fixP;
1342 /* We have a MD overflow check for displacements. */
1343 fixP->fx_no_overflow = (im_disp != 0);
1344 }
1345
1346 static void
1347 fix_new_ns32k_exp (fragS *frag, /* Which frag? */
1348 int where, /* Where in that frag? */
1349 int size, /* 1, 2 or 4 usually. */
1350 expressionS *exp, /* Expression. */
1351 int pcrel, /* True if PC-relative relocation. */
1352 char im_disp, /* True if the value to write is a
1353 displacement. */
1354 bit_fixS *bit_fixP, /* Pointer at struct of bit_fix's, ignored if
1355 NULL. */
1356 char bsr, /* Sequent-linker-hack: 1 when relocobject is
1357 a bsr. */
1358 fragS *opcode_frag,
1359 unsigned int opcode_offset)
1360 {
1361 fixS *fixP = fix_new_exp (frag, where, size, exp, pcrel,
1362 #ifdef BFD_ASSEMBLER
1363 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
1364 #else
1365 NO_RELOC
1366 #endif
1367 );
1368
1369 fix_opcode_frag (fixP) = opcode_frag;
1370 fix_opcode_offset (fixP) = opcode_offset;
1371 fix_im_disp (fixP) = im_disp;
1372 fix_bsr (fixP) = bsr;
1373 fix_bit_fixP (fixP) = bit_fixP;
1374 /* We have a MD overflow check for displacements. */
1375 fixP->fx_no_overflow = (im_disp != 0);
1376 }
1377
1378 /* Convert number to chars in correct order. */
1379
1380 void
1381 md_number_to_chars (char *buf, valueT value, int nbytes)
1382 {
1383 number_to_chars_littleendian (buf, value, nbytes);
1384 }
1385
1386 /* This is a variant of md_numbers_to_chars. The reason for its'
1387 existence is the fact that ns32k uses Huffman coded
1388 displacements. This implies that the bit order is reversed in
1389 displacements and that they are prefixed with a size-tag.
1390
1391 binary: msb -> lsb
1392 0xxxxxxx byte
1393 10xxxxxx xxxxxxxx word
1394 11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
1395
1396 This must be taken care of and we do it here! */
1397
1398 static void
1399 md_number_to_disp (char *buf, long val, int n)
1400 {
1401 switch (n)
1402 {
1403 case 1:
1404 if (val < -64 || val > 63)
1405 as_bad (_("value of %ld out of byte displacement range."), val);
1406 val &= 0x7f;
1407 #ifdef SHOW_NUM
1408 printf ("%x ", val & 0xff);
1409 #endif
1410 *buf++ = val;
1411 break;
1412
1413 case 2:
1414 if (val < -8192 || val > 8191)
1415 as_bad (_("value of %ld out of word displacement range."), val);
1416 val &= 0x3fff;
1417 val |= 0x8000;
1418 #ifdef SHOW_NUM
1419 printf ("%x ", val >> 8 & 0xff);
1420 #endif
1421 *buf++ = (val >> 8);
1422 #ifdef SHOW_NUM
1423 printf ("%x ", val & 0xff);
1424 #endif
1425 *buf++ = val;
1426 break;
1427
1428 case 4:
1429 if (val < -0x20000000 || val >= 0x20000000)
1430 as_bad (_("value of %ld out of double word displacement range."), val);
1431 val |= 0xc0000000;
1432 #ifdef SHOW_NUM
1433 printf ("%x ", val >> 24 & 0xff);
1434 #endif
1435 *buf++ = (val >> 24);
1436 #ifdef SHOW_NUM
1437 printf ("%x ", val >> 16 & 0xff);
1438 #endif
1439 *buf++ = (val >> 16);
1440 #ifdef SHOW_NUM
1441 printf ("%x ", val >> 8 & 0xff);
1442 #endif
1443 *buf++ = (val >> 8);
1444 #ifdef SHOW_NUM
1445 printf ("%x ", val & 0xff);
1446 #endif
1447 *buf++ = val;
1448 break;
1449
1450 default:
1451 as_fatal (_("Internal logic error. line %d, file \"%s\""),
1452 __LINE__, __FILE__);
1453 }
1454 }
1455
1456 static void
1457 md_number_to_imm (char *buf, long val, int n)
1458 {
1459 switch (n)
1460 {
1461 case 1:
1462 #ifdef SHOW_NUM
1463 printf ("%x ", val & 0xff);
1464 #endif
1465 *buf++ = val;
1466 break;
1467
1468 case 2:
1469 #ifdef SHOW_NUM
1470 printf ("%x ", val >> 8 & 0xff);
1471 #endif
1472 *buf++ = (val >> 8);
1473 #ifdef SHOW_NUM
1474 printf ("%x ", val & 0xff);
1475 #endif
1476 *buf++ = val;
1477 break;
1478
1479 case 4:
1480 #ifdef SHOW_NUM
1481 printf ("%x ", val >> 24 & 0xff);
1482 #endif
1483 *buf++ = (val >> 24);
1484 #ifdef SHOW_NUM
1485 printf ("%x ", val >> 16 & 0xff);
1486 #endif
1487 *buf++ = (val >> 16);
1488 #ifdef SHOW_NUM
1489 printf ("%x ", val >> 8 & 0xff);
1490 #endif
1491 *buf++ = (val >> 8);
1492 #ifdef SHOW_NUM
1493 printf ("%x ", val & 0xff);
1494 #endif
1495 *buf++ = val;
1496 break;
1497
1498 default:
1499 as_fatal (_("Internal logic error. line %d, file \"%s\""),
1500 __LINE__, __FILE__);
1501 }
1502 }
1503
1504 /* Fast bitfiddling support. */
1505 /* Mask used to zero bitfield before oring in the true field. */
1506
1507 static unsigned long l_mask[] =
1508 {
1509 0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
1510 0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
1511 0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
1512 0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
1513 0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
1514 0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
1515 0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
1516 0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
1517 };
1518 static unsigned long r_mask[] =
1519 {
1520 0x00000000, 0x00000001, 0x00000003, 0x00000007,
1521 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
1522 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
1523 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
1524 0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
1525 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
1526 0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
1527 0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
1528 };
1529 #define MASK_BITS 31
1530 /* Insert bitfield described by field_ptr and val at buf
1531 This routine is written for modification of the first 4 bytes pointed
1532 to by buf, to yield speed.
1533 The ifdef stuff is for selection between a ns32k-dependent routine
1534 and a general version. (My advice: use the general version!). */
1535
1536 static void
1537 md_number_to_field (char *buf, long val, bit_fixS *field_ptr)
1538 {
1539 unsigned long object;
1540 unsigned long mask;
1541 /* Define ENDIAN on a ns32k machine. */
1542 #ifdef ENDIAN
1543 unsigned long *mem_ptr;
1544 #else
1545 char *mem_ptr;
1546 #endif
1547
1548 if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
1549 {
1550 #ifdef ENDIAN
1551 if (field_ptr->fx_bit_base)
1552 /* Override buf. */
1553 mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
1554 else
1555 mem_ptr = (unsigned long *) buf;
1556
1557 mem_ptr = ((unsigned long *)
1558 ((char *) mem_ptr + field_ptr->fx_bit_base_adj));
1559 #else
1560 if (field_ptr->fx_bit_base)
1561 mem_ptr = (char *) field_ptr->fx_bit_base;
1562 else
1563 mem_ptr = buf;
1564
1565 mem_ptr += field_ptr->fx_bit_base_adj;
1566 #endif
1567 #ifdef ENDIAN
1568 /* We have a nice ns32k machine with lowbyte at low-physical mem. */
1569 object = *mem_ptr; /* get some bytes */
1570 #else /* OVE Goof! the machine is a m68k or dito. */
1571 /* That takes more byte fiddling. */
1572 object = 0;
1573 object |= mem_ptr[3] & 0xff;
1574 object <<= 8;
1575 object |= mem_ptr[2] & 0xff;
1576 object <<= 8;
1577 object |= mem_ptr[1] & 0xff;
1578 object <<= 8;
1579 object |= mem_ptr[0] & 0xff;
1580 #endif
1581 mask = 0;
1582 mask |= (r_mask[field_ptr->fx_bit_offset]);
1583 mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
1584 object &= mask;
1585 val += field_ptr->fx_bit_add;
1586 object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
1587 #ifdef ENDIAN
1588 *mem_ptr = object;
1589 #else
1590 mem_ptr[0] = (char) object;
1591 object >>= 8;
1592 mem_ptr[1] = (char) object;
1593 object >>= 8;
1594 mem_ptr[2] = (char) object;
1595 object >>= 8;
1596 mem_ptr[3] = (char) object;
1597 #endif
1598 }
1599 else
1600 as_bad (_("Bit field out of range"));
1601 }
1602
1603 /* Convert iif to fragments. From this point we start to dribble with
1604 functions in other files than this one.(Except hash.c) So, if it's
1605 possible to make an iif for an other CPU, you don't need to know
1606 what frags, relax, obstacks, etc is in order to port this
1607 assembler. You only need to know if it's possible to reduce your
1608 cpu-instruction to iif-format (takes some work) and adopt the other
1609 md_? parts according to given instructions Note that iif was
1610 invented for the clean ns32k`s architecture. */
1611
1612 /* GAS for the ns32k has a problem. PC relative displacements are
1613 relative to the address of the opcode, not the address of the
1614 operand. We used to keep track of the offset between the operand
1615 and the opcode in pcrel_adjust for each frag and each fix. However,
1616 we get into trouble where there are two or more pc-relative
1617 operands and the size of the first one can't be determined. Then in
1618 the relax phase, the size of the first operand will change and
1619 pcrel_adjust will no longer be correct. The current solution is
1620 keep a pointer to the frag with the opcode in it and the offset in
1621 that frag for each frag and each fix. Then, when needed, we can
1622 always figure out how far it is between the opcode and the pcrel
1623 object. See also md_pcrel_adjust and md_fix_pcrel_adjust. For
1624 objects not part of an instruction, the pointer to the opcode frag
1625 is always zero. */
1626
1627 static void
1628 convert_iif (void)
1629 {
1630 int i;
1631 bit_fixS *j;
1632 fragS *inst_frag;
1633 unsigned int inst_offset;
1634 char *inst_opcode;
1635 char *memP;
1636 int l;
1637 int k;
1638 char type;
1639 char size = 0;
1640
1641 frag_grow (iif.instr_size); /* This is important. */
1642 memP = frag_more (0);
1643 inst_opcode = memP;
1644 inst_offset = (memP - frag_now->fr_literal);
1645 inst_frag = frag_now;
1646
1647 for (i = 0; i < IIF_ENTRIES; i++)
1648 {
1649 if ((type = iif.iifP[i].type))
1650 {
1651 /* The object exist, so handle it. */
1652 switch (size = iif.iifP[i].size)
1653 {
1654 case 42:
1655 size = 0;
1656 /* It's a bitfix that operates on an existing object. */
1657 if (iif.iifP[i].bit_fixP->fx_bit_base)
1658 /* Expand fx_bit_base to point at opcode. */
1659 iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
1660 /* Fall through. */
1661
1662 case 8: /* bignum or doublefloat. */
1663 case 1:
1664 case 2:
1665 case 3:
1666 case 4:
1667 /* The final size in objectmemory is known. */
1668 memP = frag_more (size);
1669 j = iif.iifP[i].bit_fixP;
1670
1671 switch (type)
1672 {
1673 case 1: /* The object is pure binary. */
1674 if (j)
1675 md_number_to_field (memP, exprP.X_add_number, j);
1676
1677 else if (iif.iifP[i].pcrel)
1678 fix_new_ns32k (frag_now,
1679 (long) (memP - frag_now->fr_literal),
1680 size,
1681 0,
1682 iif.iifP[i].object,
1683 iif.iifP[i].pcrel,
1684 iif.iifP[i].im_disp,
1685 0,
1686 iif.iifP[i].bsr, /* Sequent hack. */
1687 inst_frag, inst_offset);
1688 else
1689 {
1690 /* Good, just put them bytes out. */
1691 switch (iif.iifP[i].im_disp)
1692 {
1693 case 0:
1694 md_number_to_chars (memP, iif.iifP[i].object, size);
1695 break;
1696 case 1:
1697 md_number_to_disp (memP, iif.iifP[i].object, size);
1698 break;
1699 default:
1700 as_fatal (_("iif convert internal pcrel/binary"));
1701 }
1702 }
1703 break;
1704
1705 case 2:
1706 /* The object is a pointer at an expression, so
1707 unpack it, note that bignums may result from the
1708 expression. */
1709 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1710 if (exprP.X_op == O_big || size == 8)
1711 {
1712 if ((k = exprP.X_add_number) > 0)
1713 {
1714 /* We have a bignum ie a quad. This can only
1715 happens in a long suffixed instruction. */
1716 if (k * 2 > size)
1717 as_bad (_("Bignum too big for long"));
1718
1719 if (k == 3)
1720 memP += 2;
1721
1722 for (l = 0; k > 0; k--, l += 2)
1723 md_number_to_chars (memP + l,
1724 generic_bignum[l >> 1],
1725 sizeof (LITTLENUM_TYPE));
1726 }
1727 else
1728 {
1729 /* flonum. */
1730 LITTLENUM_TYPE words[4];
1731
1732 switch (size)
1733 {
1734 case 4:
1735 gen_to_words (words, 2, 8);
1736 md_number_to_imm (memP, (long) words[0],
1737 sizeof (LITTLENUM_TYPE));
1738 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1739 (long) words[1],
1740 sizeof (LITTLENUM_TYPE));
1741 break;
1742 case 8:
1743 gen_to_words (words, 4, 11);
1744 md_number_to_imm (memP, (long) words[0],
1745 sizeof (LITTLENUM_TYPE));
1746 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1747 (long) words[1],
1748 sizeof (LITTLENUM_TYPE));
1749 md_number_to_imm ((memP + 2
1750 * sizeof (LITTLENUM_TYPE)),
1751 (long) words[2],
1752 sizeof (LITTLENUM_TYPE));
1753 md_number_to_imm ((memP + 3
1754 * sizeof (LITTLENUM_TYPE)),
1755 (long) words[3],
1756 sizeof (LITTLENUM_TYPE));
1757 break;
1758 }
1759 }
1760 break;
1761 }
1762 if (exprP.X_add_symbol ||
1763 exprP.X_op_symbol ||
1764 iif.iifP[i].pcrel)
1765 {
1766 /* The expression was undefined due to an
1767 undefined label. Create a fix so we can fix
1768 the object later. */
1769 exprP.X_add_number += iif.iifP[i].object_adjust;
1770 fix_new_ns32k_exp (frag_now,
1771 (long) (memP - frag_now->fr_literal),
1772 size,
1773 &exprP,
1774 iif.iifP[i].pcrel,
1775 iif.iifP[i].im_disp,
1776 j,
1777 iif.iifP[i].bsr,
1778 inst_frag, inst_offset);
1779 }
1780 else if (j)
1781 md_number_to_field (memP, exprP.X_add_number, j);
1782 else
1783 {
1784 /* Good, just put them bytes out. */
1785 switch (iif.iifP[i].im_disp)
1786 {
1787 case 0:
1788 md_number_to_imm (memP, exprP.X_add_number, size);
1789 break;
1790 case 1:
1791 md_number_to_disp (memP, exprP.X_add_number, size);
1792 break;
1793 default:
1794 as_fatal (_("iif convert internal pcrel/pointer"));
1795 }
1796 }
1797 break;
1798 default:
1799 as_fatal (_("Internal logic error in iif.iifP[n].type"));
1800 }
1801 break;
1802
1803 case 0:
1804 /* Too bad, the object may be undefined as far as its
1805 final nsize in object memory is concerned. The size
1806 of the object in objectmemory is not explicitly
1807 given. If the object is defined its length can be
1808 determined and a fix can replace the frag. */
1809 {
1810 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1811
1812 if ((exprP.X_add_symbol || exprP.X_op_symbol) &&
1813 !iif.iifP[i].pcrel)
1814 {
1815 /* Size is unknown until link time so have to default. */
1816 size = default_disp_size; /* Normally 4 bytes. */
1817 memP = frag_more (size);
1818 fix_new_ns32k_exp (frag_now,
1819 (long) (memP - frag_now->fr_literal),
1820 size,
1821 &exprP,
1822 0, /* never iif.iifP[i].pcrel, */
1823 1, /* always iif.iifP[i].im_disp */
1824 (bit_fixS *) 0, 0,
1825 inst_frag,
1826 inst_offset);
1827 break; /* Exit this absolute hack. */
1828 }
1829
1830 if (exprP.X_add_symbol || exprP.X_op_symbol)
1831 {
1832 /* Frag it. */
1833 if (exprP.X_op_symbol)
1834 /* We cant relax this case. */
1835 as_fatal (_("Can't relax difference"));
1836 else
1837 {
1838 /* Size is not important. This gets fixed by
1839 relax, but we assume 0 in what follows. */
1840 memP = frag_more (4); /* Max size. */
1841 size = 0;
1842
1843 {
1844 fragS *old_frag = frag_now;
1845 frag_variant (rs_machine_dependent,
1846 4, /* Max size. */
1847 0, /* Size. */
1848 IND (BRANCH, UNDEF), /* Expecting
1849 the worst. */
1850 exprP.X_add_symbol,
1851 exprP.X_add_number,
1852 inst_opcode);
1853 frag_opcode_frag (old_frag) = inst_frag;
1854 frag_opcode_offset (old_frag) = inst_offset;
1855 frag_bsr (old_frag) = iif.iifP[i].bsr;
1856 }
1857 }
1858 }
1859 else
1860 {
1861 /* This duplicates code in md_number_to_disp. */
1862 if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
1863 size = 1;
1864 else
1865 {
1866 if (-8192 <= exprP.X_add_number
1867 && exprP.X_add_number <= 8191)
1868 size = 2;
1869 else
1870 {
1871 if (-0x20000000 <= exprP.X_add_number
1872 && exprP.X_add_number<=0x1fffffff)
1873 size = 4;
1874 else
1875 {
1876 as_bad (_("Displacement to large for :d"));
1877 size = 4;
1878 }
1879 }
1880 }
1881
1882 memP = frag_more (size);
1883 md_number_to_disp (memP, exprP.X_add_number, size);
1884 }
1885 }
1886 break;
1887
1888 default:
1889 as_fatal (_("Internal logic error in iif.iifP[].type"));
1890 }
1891 }
1892 }
1893 }
1894 \f
1895 void
1896 md_assemble (char *line)
1897 {
1898 freeptr = freeptr_static;
1899 parse (line, 0); /* Explode line to more fix form in iif. */
1900 convert_iif (); /* Convert iif to frags, fix's etc. */
1901 #ifdef SHOW_NUM
1902 printf (" \t\t\t%s\n", line);
1903 #endif
1904 }
1905
1906 void
1907 md_begin (void)
1908 {
1909 /* Build a hashtable of the instructions. */
1910 const struct ns32k_opcode *ptr;
1911 const char *stat;
1912 const struct ns32k_opcode *endop;
1913
1914 inst_hash_handle = hash_new ();
1915
1916 endop = ns32k_opcodes + sizeof (ns32k_opcodes) / sizeof (ns32k_opcodes[0]);
1917 for (ptr = ns32k_opcodes; ptr < endop; ptr++)
1918 {
1919 if ((stat = hash_insert (inst_hash_handle, ptr->name, (char *) ptr)))
1920 /* Fatal. */
1921 as_fatal (_("Can't hash %s: %s"), ptr->name, stat);
1922 }
1923
1924 /* Some private space please! */
1925 freeptr_static = (char *) malloc (PRIVATE_SIZE);
1926 }
1927
1928 /* Must be equal to MAX_PRECISON in atof-ieee.c. */
1929 #define MAX_LITTLENUMS 6
1930
1931 /* Turn the string pointed to by litP into a floating point constant
1932 of type TYPE, and emit the appropriate bytes. The number of
1933 LITTLENUMS emitted is stored in *SIZEP. An error message is
1934 returned, or NULL on OK. */
1935
1936 char *
1937 md_atof (int type, char *litP, int *sizeP)
1938 {
1939 int prec;
1940 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1941 LITTLENUM_TYPE *wordP;
1942 char *t;
1943
1944 switch (type)
1945 {
1946 case 'f':
1947 prec = 2;
1948 break;
1949
1950 case 'd':
1951 prec = 4;
1952 break;
1953 default:
1954 *sizeP = 0;
1955 return _("Bad call to MD_ATOF()");
1956 }
1957
1958 t = atof_ieee (input_line_pointer, type, words);
1959 if (t)
1960 input_line_pointer = t;
1961
1962 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1963
1964 for (wordP = words + prec; prec--;)
1965 {
1966 md_number_to_chars (litP, (long) (*--wordP), sizeof (LITTLENUM_TYPE));
1967 litP += sizeof (LITTLENUM_TYPE);
1968 }
1969
1970 return 0;
1971 }
1972 \f
1973 int
1974 md_pcrel_adjust (fragS *fragP)
1975 {
1976 fragS *opcode_frag;
1977 addressT opcode_address;
1978 unsigned int offset;
1979
1980 opcode_frag = frag_opcode_frag (fragP);
1981 if (opcode_frag == 0)
1982 return 0;
1983
1984 offset = frag_opcode_offset (fragP);
1985 opcode_address = offset + opcode_frag->fr_address;
1986
1987 return fragP->fr_address + fragP->fr_fix - opcode_address;
1988 }
1989
1990 static int
1991 md_fix_pcrel_adjust (fixS *fixP)
1992 {
1993 fragS *opcode_frag;
1994 addressT opcode_address;
1995 unsigned int offset;
1996
1997 opcode_frag = fix_opcode_frag (fixP);
1998 if (opcode_frag == 0)
1999 return 0;
2000
2001 offset = fix_opcode_offset (fixP);
2002 opcode_address = offset + opcode_frag->fr_address;
2003
2004 return fixP->fx_where + fixP->fx_frag->fr_address - opcode_address;
2005 }
2006
2007 /* Apply a fixS (fixup of an instruction or data that we didn't have
2008 enough info to complete immediately) to the data in a frag.
2009
2010 On the ns32k, everything is in a different format, so we have broken
2011 out separate functions for each kind of thing we could be fixing.
2012 They all get called from here. */
2013
2014 void
2015 md_apply_fix3 (fixS *fixP, valueT * valP, segT seg ATTRIBUTE_UNUSED)
2016 {
2017 long val = * (long *) valP;
2018 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
2019
2020 if (fix_bit_fixP (fixP))
2021 /* Bitfields to fix, sigh. */
2022 md_number_to_field (buf, val, fix_bit_fixP (fixP));
2023 else switch (fix_im_disp (fixP))
2024 {
2025 case 0:
2026 /* Immediate field. */
2027 md_number_to_imm (buf, val, fixP->fx_size);
2028 break;
2029
2030 case 1:
2031 /* Displacement field. */
2032 /* Calculate offset. */
2033 md_number_to_disp (buf,
2034 (fixP->fx_pcrel ? val + md_fix_pcrel_adjust (fixP)
2035 : val), fixP->fx_size);
2036 break;
2037
2038 case 2:
2039 /* Pointer in a data object. */
2040 md_number_to_chars (buf, val, fixP->fx_size);
2041 break;
2042 }
2043
2044 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
2045 fixP->fx_done = 1;
2046 }
2047 \f
2048 /* Convert a relaxed displacement to ditto in final output. */
2049
2050 #ifndef BFD_ASSEMBLER
2051 void
2052 md_convert_frag (object_headers *headers,
2053 segT sec,
2054 fragS *fragP)
2055 #else
2056 void
2057 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED,
2058 segT sec ATTRIBUTE_UNUSED,
2059 fragS *fragP)
2060 #endif
2061 {
2062 long disp;
2063 long ext = 0;
2064 /* Address in gas core of the place to store the displacement. */
2065 char *buffer_address = fragP->fr_fix + fragP->fr_literal;
2066 /* Address in object code of the displacement. */
2067 int object_address;
2068
2069 switch (fragP->fr_subtype)
2070 {
2071 case IND (BRANCH, BYTE):
2072 ext = 1;
2073 break;
2074 case IND (BRANCH, WORD):
2075 ext = 2;
2076 break;
2077 case IND (BRANCH, DOUBLE):
2078 ext = 4;
2079 break;
2080 }
2081
2082 if (ext == 0)
2083 return;
2084
2085 know (fragP->fr_symbol);
2086
2087 object_address = fragP->fr_fix + fragP->fr_address;
2088
2089 /* The displacement of the address, from current location. */
2090 disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
2091 disp += md_pcrel_adjust (fragP);
2092
2093 md_number_to_disp (buffer_address, (long) disp, (int) ext);
2094 fragP->fr_fix += ext;
2095 }
2096
2097 /* This function returns the estimated size a variable object will occupy,
2098 one can say that we tries to guess the size of the objects before we
2099 actually know it. */
2100
2101 int
2102 md_estimate_size_before_relax (fragS *fragP, segT segment)
2103 {
2104 if (fragP->fr_subtype == IND (BRANCH, UNDEF))
2105 {
2106 if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
2107 {
2108 /* We don't relax symbols defined in another segment. The
2109 thing to do is to assume the object will occupy 4 bytes. */
2110 fix_new_ns32k (fragP,
2111 (int) (fragP->fr_fix),
2112 4,
2113 fragP->fr_symbol,
2114 fragP->fr_offset,
2115 1,
2116 1,
2117 0,
2118 frag_bsr(fragP), /* Sequent hack. */
2119 frag_opcode_frag (fragP),
2120 frag_opcode_offset (fragP));
2121 fragP->fr_fix += 4;
2122 frag_wane (fragP);
2123 return 4;
2124 }
2125
2126 /* Relaxable case. Set up the initial guess for the variable
2127 part of the frag. */
2128 fragP->fr_subtype = IND (BRANCH, BYTE);
2129 }
2130
2131 if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2132 abort ();
2133
2134 /* Return the size of the variable part of the frag. */
2135 return md_relax_table[fragP->fr_subtype].rlx_length;
2136 }
2137
2138 int md_short_jump_size = 3;
2139 int md_long_jump_size = 5;
2140 const int md_reloc_size = 8; /* Size of relocation record. */
2141
2142 void
2143 md_create_short_jump (char *ptr,
2144 addressT from_addr,
2145 addressT to_addr,
2146 fragS *frag ATTRIBUTE_UNUSED,
2147 symbolS *to_symbol ATTRIBUTE_UNUSED)
2148 {
2149 valueT offset;
2150
2151 offset = to_addr - from_addr;
2152 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2153 md_number_to_disp (ptr + 1, (valueT) offset, 2);
2154 }
2155
2156 void
2157 md_create_long_jump (char *ptr,
2158 addressT from_addr,
2159 addressT to_addr,
2160 fragS *frag ATTRIBUTE_UNUSED,
2161 symbolS *to_symbol ATTRIBUTE_UNUSED)
2162 {
2163 valueT offset;
2164
2165 offset = to_addr - from_addr;
2166 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2167 md_number_to_disp (ptr + 1, (valueT) offset, 4);
2168 }
2169 \f
2170 const char *md_shortopts = "m:";
2171
2172 struct option md_longopts[] =
2173 {
2174 #define OPTION_DISP_SIZE (OPTION_MD_BASE)
2175 {"disp-size-default", required_argument , NULL, OPTION_DISP_SIZE},
2176 {NULL, no_argument, NULL, 0}
2177 };
2178
2179 size_t md_longopts_size = sizeof (md_longopts);
2180
2181 int
2182 md_parse_option (int c, char *arg)
2183 {
2184 switch (c)
2185 {
2186 case 'm':
2187 if (!strcmp (arg, "32032"))
2188 {
2189 cpureg = cpureg_032;
2190 mmureg = mmureg_032;
2191 }
2192 else if (!strcmp (arg, "32532"))
2193 {
2194 cpureg = cpureg_532;
2195 mmureg = mmureg_532;
2196 }
2197 else
2198 {
2199 as_warn (_("invalid architecture option -m%s, ignored"), arg);
2200 return 0;
2201 }
2202 break;
2203 case OPTION_DISP_SIZE:
2204 {
2205 int size = atoi(arg);
2206 switch (size)
2207 {
2208 case 1: case 2: case 4:
2209 default_disp_size = size;
2210 break;
2211 default:
2212 as_warn (_("invalid default displacement size \"%s\". Defaulting to %d."),
2213 arg, default_disp_size);
2214 }
2215 break;
2216 }
2217
2218 default:
2219 return 0;
2220 }
2221
2222 return 1;
2223 }
2224
2225 void
2226 md_show_usage (FILE *stream)
2227 {
2228 fprintf (stream, _("\
2229 NS32K options:\n\
2230 -m32032 | -m32532 select variant of NS32K architecture\n\
2231 --disp-size-default=<1|2|4>\n"));
2232 }
2233 \f
2234 /* This is TC_CONS_FIX_NEW, called by emit_expr in read.c. */
2235
2236 void
2237 cons_fix_new_ns32k (fragS *frag, /* Which frag? */
2238 int where, /* Where in that frag? */
2239 int size, /* 1, 2 or 4 usually. */
2240 expressionS *exp) /* Expression. */
2241 {
2242 fix_new_ns32k_exp (frag, where, size, exp,
2243 0, 2, 0, 0, 0, 0);
2244 }
2245
2246 /* We have no need to default values of symbols. */
2247
2248 symbolS *
2249 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2250 {
2251 return 0;
2252 }
2253
2254 /* Round up a section size to the appropriate boundary. */
2255
2256 valueT
2257 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
2258 {
2259 return size; /* Byte alignment is fine. */
2260 }
2261
2262 /* Exactly what point is a PC-relative offset relative TO? On the
2263 ns32k, they're relative to the start of the instruction. */
2264
2265 long
2266 md_pcrel_from (fixS *fixP)
2267 {
2268 long res;
2269
2270 res = fixP->fx_where + fixP->fx_frag->fr_address;
2271 #ifdef SEQUENT_COMPATABILITY
2272 if (frag_bsr (fixP->fx_frag))
2273 res += 0x12 /* FOO Kludge alert! */
2274 #endif
2275 return res;
2276 }
2277
2278 #ifdef BFD_ASSEMBLER
2279
2280 arelent *
2281 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2282 {
2283 arelent *rel;
2284 bfd_reloc_code_real_type code;
2285
2286 code = reloc (fixp->fx_size, fixp->fx_pcrel, fix_im_disp (fixp));
2287
2288 rel = xmalloc (sizeof (arelent));
2289 rel->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
2290 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2291 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2292 if (fixp->fx_pcrel)
2293 rel->addend = fixp->fx_addnumber;
2294 else
2295 rel->addend = 0;
2296
2297 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2298 if (!rel->howto)
2299 {
2300 const char *name;
2301
2302 name = S_GET_NAME (fixp->fx_addsy);
2303 if (name == NULL)
2304 name = _("<unknown>");
2305 as_fatal (_("Cannot find relocation type for symbol %s, code %d"),
2306 name, (int) code);
2307 }
2308
2309 return rel;
2310 }
2311 #else /* BFD_ASSEMBLER */
2312
2313 #ifdef OBJ_AOUT
2314 void
2315 cons_fix_new_ns32k (char *where,
2316 struct fix *fixP,
2317 relax_addressT segment_address_in_file)
2318 {
2319 /* In: Length of relocation (or of address) in chars: 1, 2 or 4.
2320 Out: GNU LD relocation length code: 0, 1, or 2. */
2321
2322 static unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
2323 long r_symbolnum;
2324
2325 know (fixP->fx_addsy != NULL);
2326
2327 md_number_to_chars (where,
2328 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
2329 4);
2330
2331 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
2332 ? S_GET_TYPE (fixP->fx_addsy)
2333 : fixP->fx_addsy->sy_number);
2334
2335 md_number_to_chars (where + 4,
2336 ((long) (r_symbolnum)
2337 | (long) (fixP->fx_pcrel << 24)
2338 | (long) (nbytes_r_length[fixP->fx_size] << 25)
2339 | (long) ((!S_IS_DEFINED (fixP->fx_addsy)) << 27)
2340 | (long) (fix_bsr (fixP) << 28)
2341 | (long) (fix_im_disp (fixP) << 29)),
2342 4);
2343 }
2344
2345 #endif /* OBJ_AOUT */
2346 #endif /* BFD_ASSEMBLER */
This page took 0.158075 seconds and 4 git commands to generate.