Locale changes from Bruno Haible <haible@clisp.cons.org>.
[deliverable/binutils-gdb.git] / gas / config / tc-ns32k.c
1 /* ns32k.c -- Assemble on the National Semiconductor 32k series
2 Copyright 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /*#define SHOW_NUM 1*//* Uncomment for debugging. */
24
25 #include <stdio.h>
26
27 #include "as.h"
28 #include "opcode/ns32k.h"
29
30 #include "obstack.h"
31
32 /* Macros. */
33 #define IIF_ENTRIES 13 /* Number of entries in iif. */
34 #define PRIVATE_SIZE 256 /* Size of my garbage memory. */
35 #define MAX_ARGS 4
36 #define DEFAULT -1 /* addr_mode returns this value when
37 plain constant or label is
38 encountered. */
39
40 #define IIF(ptr,a1,c1,e1,g1,i1,k1,m1,o1,q1,s1,u1) \
41 iif.iifP[ptr].type= a1; \
42 iif.iifP[ptr].size= c1; \
43 iif.iifP[ptr].object= e1; \
44 iif.iifP[ptr].object_adjust= g1; \
45 iif.iifP[ptr].pcrel= i1; \
46 iif.iifP[ptr].pcrel_adjust= k1; \
47 iif.iifP[ptr].im_disp= m1; \
48 iif.iifP[ptr].relax_substate= o1; \
49 iif.iifP[ptr].bit_fixP= q1; \
50 iif.iifP[ptr].addr_mode= s1; \
51 iif.iifP[ptr].bsr= u1;
52
53 #ifdef SEQUENT_COMPATABILITY
54 #define LINE_COMMENT_CHARS "|"
55 #define ABSOLUTE_PREFIX '@'
56 #define IMMEDIATE_PREFIX '#'
57 #endif
58
59 #ifndef LINE_COMMENT_CHARS
60 #define LINE_COMMENT_CHARS "#"
61 #endif
62
63 const char comment_chars[] = "#";
64 const char line_comment_chars[] = LINE_COMMENT_CHARS;
65 const char line_separator_chars[] = ";";
66
67 #if !defined(ABSOLUTE_PREFIX) && !defined(IMMEDIATE_PREFIX)
68 #define ABSOLUTE_PREFIX '@' /* One or the other MUST be defined */
69 #endif
70
71 struct addr_mode
72 {
73 char mode; /* addressing mode of operand (0-31) */
74 char scaled_mode; /* mode combined with scaled mode */
75 char scaled_reg; /* register used in scaled+1 (1-8) */
76 char float_flag; /* set if R0..R7 was F0..F7 ie a
77 floating-point-register */
78 char am_size; /* estimated max size of general addr-mode
79 parts */
80 char im_disp; /* if im_disp==1 we have a displacement */
81 char pcrel; /* 1 if pcrel, this is really redundant info */
82 char disp_suffix[2]; /* length of displacement(s), 0=undefined */
83 char *disp[2]; /* pointer(s) at displacement(s)
84 or immediates(s) (ascii) */
85 char index_byte; /* index byte */
86 };
87 typedef struct addr_mode addr_modeS;
88
89 char *freeptr, *freeptr_static; /* Points at some number of free bytes. */
90 struct hash_control *inst_hash_handle;
91
92 struct ns32k_opcode *desc; /* Pointer at description of instruction. */
93 addr_modeS addr_modeP;
94 const char EXP_CHARS[] = "eE";
95 const char FLT_CHARS[] = "fd"; /* We don't want to support lowercase,
96 do we? */
97
98 /* UPPERCASE denotes live names when an instruction is built, IIF is
99 * used as an intermediate form to store the actual parts of the
100 * instruction. A ns32k machine instruction can be divided into a
101 * couple of sub PARTs. When an instruction is assembled the
102 * appropriate PART get an assignment. When an IIF has been completed
103 * it is converted to a FRAGment as specified in AS.H. */
104
105 /* Internal structs. */
106 struct ns32k_option
107 {
108 char *pattern;
109 unsigned long or;
110 unsigned long and;
111 };
112
113 typedef struct
114 {
115 int type; /* how to interpret object */
116 int size; /* Estimated max size of object */
117 unsigned long object; /* binary data */
118 int object_adjust; /* number added to object */
119 int pcrel; /* True if object is pcrel */
120 int pcrel_adjust; /* length in bytes from the
121 instruction start to the
122 displacement */
123 int im_disp; /* True if the object is a displacement */
124 relax_substateT relax_substate; /* Initial relaxsubstate */
125 bit_fixS *bit_fixP; /* Pointer at bit_fix struct */
126 int addr_mode; /* What addrmode do we associate with this
127 iif-entry */
128 char bsr; /* Sequent hack */
129 } iif_entryT; /* Internal Instruction Format */
130
131 struct int_ins_form
132 {
133 int instr_size; /* Max size of instruction in bytes. */
134 iif_entryT iifP[IIF_ENTRIES + 1];
135 };
136
137 struct int_ins_form iif;
138 expressionS exprP;
139 char *input_line_pointer;
140
141 /* Description of the PARTs in IIF
142 object[n]:
143 0 total length in bytes of entries in iif
144 1 opcode
145 2 index_byte_a
146 3 index_byte_b
147 4 disp_a_1
148 5 disp_a_2
149 6 disp_b_1
150 7 disp_b_2
151 8 imm_a
152 9 imm_b
153 10 implied1
154 11 implied2
155
156 For every entry there is a datalength in bytes. This is stored in size[n].
157 0, the objectlength is not explicitly given by the instruction
158 and the operand is undefined. This is a case for relaxation.
159 Reserve 4 bytes for the final object.
160
161 1, the entry contains one byte
162 2, the entry contains two bytes
163 3, the entry contains three bytes
164 4, the entry contains four bytes
165 etc
166
167 Furthermore, every entry has a data type identifier in type[n].
168
169 0, the entry is void, ignore it.
170 1, the entry is a binary number.
171 2, the entry is a pointer at an expression.
172 Where expression may be as simple as a single '1',
173 and as complicated as foo-bar+12,
174 foo and bar may be undefined but suffixed by :{b|w|d} to
175 control the length of the object.
176
177 3, the entry is a pointer at a bignum struct
178
179 The low-order-byte coresponds to low physical memory.
180 Obviously a FRAGment must be created for each valid disp in PART whose
181 datalength is undefined (to bad) .
182 The case where just the expression is undefined is less severe and is
183 handled by fix. Here the number of bytes in the objectfile is known.
184 With this representation we simplify the assembly and separates the
185 machine dependent/independent parts in a more clean way (said OE). */
186 \f
187 struct ns32k_option opt1[] = /* restore, exit */
188 {
189 {"r0", 0x80, 0xff},
190 {"r1", 0x40, 0xff},
191 {"r2", 0x20, 0xff},
192 {"r3", 0x10, 0xff},
193 {"r4", 0x08, 0xff},
194 {"r5", 0x04, 0xff},
195 {"r6", 0x02, 0xff},
196 {"r7", 0x01, 0xff},
197 {0, 0x00, 0xff}
198 };
199 struct ns32k_option opt2[] = /* save, enter */
200 {
201 {"r0", 0x01, 0xff},
202 {"r1", 0x02, 0xff},
203 {"r2", 0x04, 0xff},
204 {"r3", 0x08, 0xff},
205 {"r4", 0x10, 0xff},
206 {"r5", 0x20, 0xff},
207 {"r6", 0x40, 0xff},
208 {"r7", 0x80, 0xff},
209 {0, 0x00, 0xff}
210 };
211 struct ns32k_option opt3[] = /* setcfg */
212 {
213 {"c", 0x8, 0xff},
214 {"m", 0x4, 0xff},
215 {"f", 0x2, 0xff},
216 {"i", 0x1, 0xff},
217 {0, 0x0, 0xff}
218 };
219 struct ns32k_option opt4[] = /* cinv */
220 {
221 {"a", 0x4, 0xff},
222 {"i", 0x2, 0xff},
223 {"d", 0x1, 0xff},
224 {0, 0x0, 0xff}
225 };
226 struct ns32k_option opt5[] = /* string inst */
227 {
228 {"b", 0x2, 0xff},
229 {"u", 0xc, 0xff},
230 {"w", 0x4, 0xff},
231 {0, 0x0, 0xff}
232 };
233 struct ns32k_option opt6[] = /* plain reg ext,cvtp etc */
234 {
235 {"r0", 0x00, 0xff},
236 {"r1", 0x01, 0xff},
237 {"r2", 0x02, 0xff},
238 {"r3", 0x03, 0xff},
239 {"r4", 0x04, 0xff},
240 {"r5", 0x05, 0xff},
241 {"r6", 0x06, 0xff},
242 {"r7", 0x07, 0xff},
243 {0, 0x00, 0xff}
244 };
245
246 #if !defined(NS32032) && !defined(NS32532)
247 #define NS32532
248 #endif
249
250 struct ns32k_option cpureg_532[] = /* lpr spr */
251 {
252 {"us", 0x0, 0xff},
253 {"dcr", 0x1, 0xff},
254 {"bpc", 0x2, 0xff},
255 {"dsr", 0x3, 0xff},
256 {"car", 0x4, 0xff},
257 {"fp", 0x8, 0xff},
258 {"sp", 0x9, 0xff},
259 {"sb", 0xa, 0xff},
260 {"usp", 0xb, 0xff},
261 {"cfg", 0xc, 0xff},
262 {"psr", 0xd, 0xff},
263 {"intbase", 0xe, 0xff},
264 {"mod", 0xf, 0xff},
265 {0, 0x00, 0xff}
266 };
267 struct ns32k_option mmureg_532[] = /* lmr smr */
268 {
269 {"mcr", 0x9, 0xff},
270 {"msr", 0xa, 0xff},
271 {"tear", 0xb, 0xff},
272 {"ptb0", 0xc, 0xff},
273 {"ptb1", 0xd, 0xff},
274 {"ivar0", 0xe, 0xff},
275 {"ivar1", 0xf, 0xff},
276 {0, 0x0, 0xff}
277 };
278
279 struct ns32k_option cpureg_032[] = /* lpr spr */
280 {
281 {"upsr", 0x0, 0xff},
282 {"fp", 0x8, 0xff},
283 {"sp", 0x9, 0xff},
284 {"sb", 0xa, 0xff},
285 {"psr", 0xd, 0xff},
286 {"intbase", 0xe, 0xff},
287 {"mod", 0xf, 0xff},
288 {0, 0x0, 0xff}
289 };
290 struct ns32k_option mmureg_032[] = /* lmr smr */
291 {
292 {"bpr0", 0x0, 0xff},
293 {"bpr1", 0x1, 0xff},
294 {"pf0", 0x4, 0xff},
295 {"pf1", 0x5, 0xff},
296 {"sc", 0x8, 0xff},
297 {"msr", 0xa, 0xff},
298 {"bcnt", 0xb, 0xff},
299 {"ptb0", 0xc, 0xff},
300 {"ptb1", 0xd, 0xff},
301 {"eia", 0xf, 0xff},
302 {0, 0x0, 0xff}
303 };
304
305 #if defined(NS32532)
306 struct ns32k_option *cpureg = cpureg_532;
307 struct ns32k_option *mmureg = mmureg_532;
308 #else
309 struct ns32k_option *cpureg = cpureg_032;
310 struct ns32k_option *mmureg = mmureg_032;
311 #endif
312 \f
313
314 const pseudo_typeS md_pseudo_table[] =
315 { /* So far empty. */
316 {0, 0, 0}
317 };
318
319 #define IND(x,y) (((x)<<2)+(y))
320
321 /* Those are index's to relax groups in md_relax_table ie it must be
322 multiplied by 4 to point at a group start. Viz IND(x,y) Se function
323 relax_segment in write.c for more info. */
324
325 #define BRANCH 1
326 #define PCREL 2
327
328 /* Those are index's to entries in a relax group. */
329
330 #define BYTE 0
331 #define WORD 1
332 #define DOUBLE 2
333 #define UNDEF 3
334 /* Those limits are calculated from the displacement start in memory.
335 The ns32k uses the begining of the instruction as displacement
336 base. This type of displacements could be handled here by moving
337 the limit window up or down. I choose to use an internal
338 displacement base-adjust as there are other routines that must
339 consider this. Also, as we have two various offset-adjusts in the
340 ns32k (acb versus br/brs/jsr/bcond), two set of limits would have
341 had to be used. Now we dont have to think about that. */
342
343 const relax_typeS md_relax_table[] =
344 {
345 {1, 1, 0, 0},
346 {1, 1, 0, 0},
347 {1, 1, 0, 0},
348 {1, 1, 0, 0},
349
350 {(63), (-64), 1, IND (BRANCH, WORD)},
351 {(8192), (-8192), 2, IND (BRANCH, DOUBLE)},
352 {0, 0, 4, 0},
353 {1, 1, 0, 0}
354 };
355
356 /* Array used to test if mode contains displacements.
357 Value is true if mode contains displacement. */
358
359 char disp_test[] =
360 {0, 0, 0, 0, 0, 0, 0, 0,
361 1, 1, 1, 1, 1, 1, 1, 1,
362 1, 1, 1, 0, 0, 1, 1, 0,
363 1, 1, 1, 1, 1, 1, 1, 1};
364
365 /* Array used to calculate max size of displacements. */
366
367 char disp_size[] =
368 {4, 1, 2, 0, 4};
369 \f
370 static void evaluate_expr PARAMS ((expressionS * resultP, char *ptr));
371 static void md_number_to_disp PARAMS ((char *buf, long val, int n));
372 static void md_number_to_imm PARAMS ((char *buf, long val, int n));
373
374 /* Parse a general operand into an addressingmode struct
375
376 In: pointer at operand in ascii form
377 pointer at addr_mode struct for result
378 the level of recursion. (always 0 or 1)
379
380 Out: data in addr_mode struct. */
381
382 int
383 addr_mode (operand, addr_modeP, recursive_level)
384 char *operand;
385 register addr_modeS *addr_modeP;
386 int recursive_level;
387 {
388 register char *str;
389 register int i;
390 register int strl;
391 register int mode;
392 int j;
393
394 mode = DEFAULT; /* default */
395 addr_modeP->scaled_mode = 0; /* why not */
396 addr_modeP->scaled_reg = 0; /* if 0, not scaled index */
397 addr_modeP->float_flag = 0;
398 addr_modeP->am_size = 0;
399 addr_modeP->im_disp = 0;
400 addr_modeP->pcrel = 0; /* not set in this function */
401 addr_modeP->disp_suffix[0] = 0;
402 addr_modeP->disp_suffix[1] = 0;
403 addr_modeP->disp[0] = NULL;
404 addr_modeP->disp[1] = NULL;
405 str = operand;
406
407 if (str[0] == 0)
408 return 0;
409
410 strl = strlen (str);
411
412 switch (str[0])
413 {
414 /* The following three case statements controls the mode-chars
415 this is the place to ed if you want to change them. */
416 #ifdef ABSOLUTE_PREFIX
417 case ABSOLUTE_PREFIX:
418 if (str[strl - 1] == ']')
419 break;
420 addr_modeP->mode = 21; /* absolute */
421 addr_modeP->disp[0] = str + 1;
422 return -1;
423 #endif
424 #ifdef IMMEDIATE_PREFIX
425 case IMMEDIATE_PREFIX:
426 if (str[strl - 1] == ']')
427 break;
428 addr_modeP->mode = 20; /* immediate */
429 addr_modeP->disp[0] = str + 1;
430 return -1;
431 #endif
432 case '.':
433 if (str[strl - 1] != ']')
434 {
435 switch (str[1])
436 {
437 case '-':
438 case '+':
439 if (str[2] != '\000')
440 {
441 addr_modeP->mode = 27; /* pc-relativ */
442 addr_modeP->disp[0] = str + 2;
443 return -1;
444 }
445 default:
446 as_warn (_("Invalid syntax in PC-relative addressing mode"));
447 return 0;
448 }
449 }
450 break;
451 case 'e':
452 if (str[strl - 1] != ']')
453 {
454 if ((!strncmp (str, "ext(", 4)) && strl > 7)
455 { /* external */
456 addr_modeP->disp[0] = str + 4;
457 i = 0;
458 j = 2;
459 do
460 { /* disp[0]'s termination point */
461 j += 1;
462 if (str[j] == '(')
463 i++;
464 if (str[j] == ')')
465 i--;
466 }
467 while (j < strl && i != 0);
468 if (i != 0 || !(str[j + 1] == '-' || str[j + 1] == '+'))
469 {
470 as_warn (_("Invalid syntax in External addressing mode"));
471 return (0);
472 }
473 str[j] = '\000'; /* null terminate disp[0] */
474 addr_modeP->disp[1] = str + j + 2;
475 addr_modeP->mode = 22;
476 return -1;
477 }
478 }
479 break;
480
481 default:
482 ;
483 }
484
485 strl = strlen (str);
486
487 switch (strl)
488 {
489 case 2:
490 switch (str[0])
491 {
492 case 'f':
493 addr_modeP->float_flag = 1;
494 /* Drop through. */
495 case 'r':
496 if (str[1] >= '0' && str[1] < '8')
497 {
498 addr_modeP->mode = str[1] - '0';
499 return -1;
500 }
501 break;
502 default:
503 break;
504 }
505 /* Drop through. */
506
507 case 3:
508 if (!strncmp (str, "tos", 3))
509 {
510 addr_modeP->mode = 23; /* TopOfStack */
511 return -1;
512 }
513 break;
514
515 default:
516 break;
517 }
518
519 if (strl > 4)
520 {
521 if (str[strl - 1] == ')')
522 {
523 if (str[strl - 2] == ')')
524 {
525 if (!strncmp (&str[strl - 5], "(fp", 3))
526 mode = 16; /* Memory Relative. */
527 else if (!strncmp (&str[strl - 5], "(sp", 3))
528 mode = 17;
529 else if (!strncmp (&str[strl - 5], "(sb", 3))
530 mode = 18;
531
532 if (mode != DEFAULT)
533 { /* Memory relative. */
534 addr_modeP->mode = mode;
535 j = strl - 5; /* Temp for end of disp[0]. */
536 i = 0;
537
538 do
539 {
540 strl -= 1;
541 if (str[strl] == ')')
542 i++;
543 if (str[strl] == '(')
544 i--;
545 }
546 while (strl > -1 && i != 0);
547
548 if (i != 0)
549 {
550 as_warn (_("Invalid syntax in Memory Relative addressing mode"));
551 return (0);
552 }
553
554 addr_modeP->disp[1] = str;
555 addr_modeP->disp[0] = str + strl + 1;
556 str[j] = '\000'; /* Null terminate disp[0] . */
557 str[strl] = '\000'; /* Null terminate disp[1]. */
558
559 return -1;
560 }
561 }
562
563 switch (str[strl - 3])
564 {
565 case 'r':
566 case 'R':
567 if (str[strl - 2] >= '0'
568 && str[strl - 2] < '8'
569 && str[strl - 4] == '(')
570 {
571 addr_modeP->mode = str[strl - 2] - '0' + 8;
572 addr_modeP->disp[0] = str;
573 str[strl - 4] = 0;
574 return -1; /* reg rel */
575 }
576 /* Drop through. */
577
578 default:
579 if (!strncmp (&str[strl - 4], "(fp", 3))
580 mode = 24;
581 else if (!strncmp (&str[strl - 4], "(sp", 3))
582 mode = 25;
583 else if (!strncmp (&str[strl - 4], "(sb", 3))
584 mode = 26;
585 else if (!strncmp (&str[strl - 4], "(pc", 3))
586 mode = 27;
587
588 if (mode != DEFAULT)
589 {
590 addr_modeP->mode = mode;
591 addr_modeP->disp[0] = str;
592 str[strl - 4] = '\0';
593
594 return -1; /* Memory space. */
595 }
596 }
597 }
598
599 /* No trailing ')' do we have a ']' ? */
600 if (str[strl - 1] == ']')
601 {
602 switch (str[strl - 2])
603 {
604 case 'b':
605 mode = 28;
606 break;
607 case 'w':
608 mode = 29;
609 break;
610 case 'd':
611 mode = 30;
612 break;
613 case 'q':
614 mode = 31;
615 break;
616 default:
617 as_warn (_("Invalid scaled-indexed mode, use (b,w,d,q)"));
618
619 if (str[strl - 3] != ':' || str[strl - 6] != '['
620 || str[strl - 5] == 'r' || str[strl - 4] < '0'
621 || str[strl - 4] > '7')
622 as_warn (_("Syntax in scaled-indexed mode, use [Rn:m] where n=[0..7] m={b,w,d,q}"));
623 } /* Scaled index. */
624
625 if (recursive_level > 0)
626 {
627 as_warn (_("Scaled-indexed addressing mode combined with scaled-index"));
628 return 0;
629 }
630
631 addr_modeP->am_size += 1; /* scaled index byte */
632 j = str[strl - 4] - '0'; /* store temporary */
633 str[strl - 6] = '\000'; /* nullterminate for recursive call */
634 i = addr_mode (str, addr_modeP, 1);
635
636 if (!i || addr_modeP->mode == 20)
637 {
638 as_warn (_("Invalid or illegal addressing mode combined with scaled-index"));
639 return 0;
640 }
641
642 addr_modeP->scaled_mode = addr_modeP->mode; /* Store the inferior mode. */
643 addr_modeP->mode = mode;
644 addr_modeP->scaled_reg = j + 1;
645
646 return -1;
647 }
648 }
649
650 addr_modeP->mode = DEFAULT; /* Default to whatever. */
651 addr_modeP->disp[0] = str;
652
653 return -1;
654 }
655 \f
656 /* ptr points at string addr_modeP points at struct with result This
657 routine calls addr_mode to determine the general addr.mode of the
658 operand. When this is ready it parses the displacements for size
659 specifying suffixes and determines size of immediate mode via
660 ns32k-opcode. Also builds index bytes if needed. */
661
662 int
663 get_addr_mode (ptr, addr_modeP)
664 char *ptr;
665 addr_modeS *addr_modeP;
666 {
667 int tmp;
668
669 addr_mode (ptr, addr_modeP, 0);
670
671 if (addr_modeP->mode == DEFAULT || addr_modeP->scaled_mode == -1)
672 {
673 /* Resolve ambigious operands, this shouldn't be necessary if
674 one uses standard NSC operand syntax. But the sequent
675 compiler doesn't!!! This finds a proper addressinging mode
676 if it is implicitly stated. See ns32k-opcode.h. */
677 (void) evaluate_expr (&exprP, ptr); /* This call takes time Sigh! */
678
679 if (addr_modeP->mode == DEFAULT)
680 {
681 if (exprP.X_add_symbol || exprP.X_op_symbol)
682 addr_modeP->mode = desc->default_model; /* We have a label. */
683 else
684 addr_modeP->mode = desc->default_modec; /* We have a constant. */
685 }
686 else
687 {
688 if (exprP.X_add_symbol || exprP.X_op_symbol)
689 addr_modeP->scaled_mode = desc->default_model;
690 else
691 addr_modeP->scaled_mode = desc->default_modec;
692 }
693
694 /* Must put this mess down in addr_mode to handle the scaled
695 case better. */
696 }
697
698 /* It appears as the sequent compiler wants an absolute when we have
699 a label without @. Constants becomes immediates besides the addr
700 case. Think it does so with local labels too, not optimum, pcrel
701 is better. When I have time I will make gas check this and
702 select pcrel when possible Actually that is trivial. */
703 if (tmp = addr_modeP->scaled_reg)
704 { /* Build indexbyte. */
705 tmp--; /* Remember regnumber comes incremented for
706 flagpurpose. */
707 tmp |= addr_modeP->scaled_mode << 3;
708 addr_modeP->index_byte = (char) tmp;
709 addr_modeP->am_size += 1;
710 }
711
712 if (disp_test[addr_modeP->mode])
713 {
714 register char c;
715 register char suffix;
716 register char suffix_sub;
717 register int i;
718 register char *toP;
719 register char *fromP;
720
721 /* There was a displacement, probe for length specifying suffix. */
722 addr_modeP->pcrel = 0;
723
724 if (disp_test[addr_modeP->mode])
725 {
726 /* There is a displacement. */
727 if (addr_modeP->mode == 27 || addr_modeP->scaled_mode == 27)
728 /* Do we have pcrel. mode. */
729 addr_modeP->pcrel = 1;
730
731 addr_modeP->im_disp = 1;
732
733 for (i = 0; i < 2; i++)
734 {
735 suffix_sub = suffix = 0;
736
737 if (toP = addr_modeP->disp[i])
738 {
739 /* Suffix of expression, the largest size rules. */
740 fromP = toP;
741
742 while (c = *fromP++)
743 {
744 *toP++ = c;
745 if (c == ':')
746 {
747 switch (*fromP)
748 {
749 case '\0':
750 as_warn (_("Premature end of suffix -- Defaulting to d"));
751 suffix = 4;
752 continue;
753 case 'b':
754 suffix_sub = 1;
755 break;
756 case 'w':
757 suffix_sub = 2;
758 break;
759 case 'd':
760 suffix_sub = 4;
761 break;
762 default:
763 as_warn (_("Bad suffix after ':' use {b|w|d} Defaulting to d"));
764 suffix = 4;
765 }
766
767 fromP ++;
768 toP --; /* So we write over the ':' */
769
770 if (suffix < suffix_sub)
771 suffix = suffix_sub;
772 }
773 }
774
775 *toP = '\0'; /* Terminate properly. */
776 addr_modeP->disp_suffix[i] = suffix;
777 addr_modeP->am_size += suffix ? suffix : 4;
778 }
779 }
780 }
781 }
782 else
783 {
784 if (addr_modeP->mode == 20)
785 {
786 /* Look in ns32k_opcode for size. */
787 addr_modeP->disp_suffix[0] = addr_modeP->am_size = desc->im_size;
788 addr_modeP->im_disp = 0;
789 }
790 }
791
792 return addr_modeP->mode;
793 }
794
795 /* Read an optionlist. */
796
797 void
798 optlist (str, optionP, default_map)
799 char *str; /* The string to extract options from. */
800 struct ns32k_option *optionP; /* How to search the string. */
801 unsigned long *default_map; /* Default pattern and output. */
802 {
803 register int i, j, k, strlen1, strlen2;
804 register char *patternP, *strP;
805
806 strlen1 = strlen (str);
807
808 if (strlen1 < 1)
809 as_fatal (_("Very short instr to option, ie you can't do it on a NULLstr"));
810
811 for (i = 0; optionP[i].pattern != 0; i++)
812 {
813 strlen2 = strlen (optionP[i].pattern);
814
815 for (j = 0; j < strlen1; j++)
816 {
817 patternP = optionP[i].pattern;
818 strP = &str[j];
819
820 for (k = 0; k < strlen2; k++)
821 {
822 if (*(strP++) != *(patternP++))
823 break;
824 }
825
826 if (k == strlen2)
827 { /* match */
828 *default_map |= optionP[i].or;
829 *default_map &= optionP[i].and;
830 }
831 }
832 }
833 }
834
835 /* Search struct for symbols.
836 This function is used to get the short integer form of reg names in
837 the instructions lmr, smr, lpr, spr return true if str is found in
838 list. */
839
840 int
841 list_search (str, optionP, default_map)
842 char *str; /* The string to match. */
843 struct ns32k_option *optionP; /* List to search. */
844 unsigned long *default_map; /* Default pattern and output. */
845 {
846 register int i;
847
848 for (i = 0; optionP[i].pattern != 0; i++)
849 {
850 if (!strncmp (optionP[i].pattern, str, 20))
851 {
852 /* Use strncmp to be safe. */
853 *default_map |= optionP[i].or;
854 *default_map &= optionP[i].and;
855
856 return -1;
857 }
858 }
859
860 as_warn (_("No such entry in list. (cpu/mmu register)"));
861 return 0;
862 }
863
864 static void
865 evaluate_expr (resultP, ptr)
866 expressionS *resultP;
867 char *ptr;
868 {
869 register char *tmp_line;
870
871 tmp_line = input_line_pointer;
872 input_line_pointer = ptr;
873 expression (&exprP);
874 input_line_pointer = tmp_line;
875 }
876 \f
877 /* Convert operands to iif-format and adds bitfields to the opcode.
878 Operands are parsed in such an order that the opcode is updated from
879 its most significant bit, that is when the operand need to alter the
880 opcode.
881 Be carefull not to put to objects in the same iif-slot. */
882
883 void
884 encode_operand (argc, argv, operandsP, suffixP, im_size, opcode_bit_ptr)
885 int argc;
886 char **argv;
887 char *operandsP;
888 char *suffixP;
889 char im_size;
890 char opcode_bit_ptr;
891 {
892 register int i, j;
893 char d;
894 int pcrel, tmp, b, loop, pcrel_adjust;
895
896 for (loop = 0; loop < argc; loop++)
897 {
898 /* What operand are we supposed to work on. */
899 i = operandsP[loop << 1] - '1';
900 if (i > 3)
901 as_fatal (_("Internal consistency error. check ns32k-opcode.h"));
902
903 pcrel = 0;
904 pcrel_adjust = 0;
905 tmp = 0;
906
907 switch ((d = operandsP[(loop << 1) + 1]))
908 {
909 case 'f': /* operand of sfsr turns out to be a nasty
910 specialcase */
911 opcode_bit_ptr -= 5;
912 case 'Z': /* float not immediate */
913 case 'F': /* 32 bit float general form */
914 case 'L': /* 64 bit float */
915 case 'I': /* integer not immediate */
916 case 'B': /* byte */
917 case 'W': /* word */
918 case 'D': /* double-word */
919 case 'A': /* double-word gen-address-form ie no regs
920 allowed */
921 get_addr_mode (argv[i], &addr_modeP);
922
923 if ((addr_modeP.mode == 20) &&
924 (d == 'I' || d == 'Z' || d == 'A'))
925 as_fatal (d == 'A'? _("Address of immediate operand"):
926 _("Invalid immediate write operand."));
927
928 if (opcode_bit_ptr == desc->opcode_size)
929 b = 4;
930 else
931 b = 6;
932
933 for (j = b; j < (b + 2); j++)
934 {
935 if (addr_modeP.disp[j - b])
936 {
937 IIF (j,
938 2,
939 addr_modeP.disp_suffix[j - b],
940 (unsigned long) addr_modeP.disp[j - b],
941 0,
942 addr_modeP.pcrel,
943 iif.instr_size,
944 addr_modeP.im_disp,
945 IND (BRANCH, BYTE),
946 NULL,
947 (addr_modeP.scaled_reg ? addr_modeP.scaled_mode
948 : addr_modeP.mode),
949 0);
950 }
951 }
952
953 opcode_bit_ptr -= 5;
954 iif.iifP[1].object |= ((long) addr_modeP.mode) << opcode_bit_ptr;
955
956 if (addr_modeP.scaled_reg)
957 {
958 j = b / 2;
959 IIF (j, 1, 1, (unsigned long) addr_modeP.index_byte,
960 0, 0, 0, 0, 0, NULL, -1, 0);
961 }
962 break;
963
964 case 'b': /* multiple instruction disp */
965 freeptr++; /* OVE:this is an useful hack */
966 sprintf (freeptr, "((%s-1)*%d)\000", argv[i], desc->im_size);
967 argv[i] = freeptr;
968 pcrel -= 1; /* make pcrel 0 inspite of what case 'p':
969 wants */
970 /* fall thru */
971 case 'p': /* displacement - pc relative addressing */
972 pcrel += 1;
973 /* fall thru */
974 case 'd': /* displacement */
975 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
976 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
977 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 0);
978 break;
979 case 'H': /* sequent-hack: the linker wants a bit set
980 when bsr */
981 pcrel = 1;
982 iif.instr_size += suffixP[i] ? suffixP[i] : 4;
983 IIF (12, 2, suffixP[i], (unsigned long) argv[i], 0,
984 pcrel, pcrel_adjust, 1, IND (BRANCH, BYTE), NULL, -1, 1);
985 break;
986 case 'q': /* quick */
987 opcode_bit_ptr -= 4;
988 IIF (11, 2, 42, (unsigned long) argv[i], 0, 0, 0, 0, 0,
989 bit_fix_new (4, opcode_bit_ptr, -8, 7, 0, 1, 0), -1, 0);
990 break;
991 case 'r': /* register number (3 bits) */
992 list_search (argv[i], opt6, &tmp);
993 opcode_bit_ptr -= 3;
994 iif.iifP[1].object |= tmp << opcode_bit_ptr;
995 break;
996 case 'O': /* setcfg instruction optionslist */
997 optlist (argv[i], opt3, &tmp);
998 opcode_bit_ptr -= 4;
999 iif.iifP[1].object |= tmp << 15;
1000 break;
1001 case 'C': /* cinv instruction optionslist */
1002 optlist (argv[i], opt4, &tmp);
1003 opcode_bit_ptr -= 4;
1004 iif.iifP[1].object |= tmp << 15; /* insert the regtype in opcode */
1005 break;
1006 case 'S': /* stringinstruction optionslist */
1007 optlist (argv[i], opt5, &tmp);
1008 opcode_bit_ptr -= 4;
1009 iif.iifP[1].object |= tmp << 15;
1010 break;
1011 case 'u':
1012 case 'U': /* registerlist */
1013 IIF (10, 1, 1, 0, 0, 0, 0, 0, 0, NULL, -1, 0);
1014 switch (operandsP[(i << 1) + 1])
1015 {
1016 case 'u': /* restore, exit */
1017 optlist (argv[i], opt1, &iif.iifP[10].object);
1018 break;
1019 case 'U': /* save,enter */
1020 optlist (argv[i], opt2, &iif.iifP[10].object);
1021 break;
1022 }
1023 iif.instr_size += 1;
1024 break;
1025 case 'M': /* mmu register */
1026 list_search (argv[i], mmureg, &tmp);
1027 opcode_bit_ptr -= 4;
1028 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1029 break;
1030 case 'P': /* cpu register */
1031 list_search (argv[i], cpureg, &tmp);
1032 opcode_bit_ptr -= 4;
1033 iif.iifP[1].object |= tmp << opcode_bit_ptr;
1034 break;
1035 case 'g': /* inss exts */
1036 iif.instr_size += 1; /* 1 byte is allocated after the opcode */
1037 IIF (10, 2, 1,
1038 (unsigned long) argv[i], /* i always 2 here */
1039 0, 0, 0, 0, 0,
1040 bit_fix_new (3, 5, 0, 7, 0, 0, 0), /* a bit_fix is targeted to
1041 the byte */
1042 -1, 0);
1043 break;
1044 case 'G':
1045 IIF (11, 2, 42,
1046 (unsigned long) argv[i], /* i always 3 here */
1047 0, 0, 0, 0, 0,
1048 bit_fix_new (5, 0, 1, 32, -1, 0, -1), -1, 0);
1049 break;
1050 case 'i':
1051 iif.instr_size += 1;
1052 b = 2 + i; /* put the extension byte after opcode */
1053 IIF (b, 2, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0);
1054 break;
1055 default:
1056 as_fatal (_("Bad opcode-table-option, check in file ns32k-opcode.h"));
1057 }
1058 }
1059 }
1060 \f
1061 /* in: instruction line
1062 out: internal structure of instruction
1063 that has been prepared for direct conversion to fragment(s) and
1064 fixes in a systematical fashion
1065 Return-value = recursive_level. */
1066 /* Build iif of one assembly text line. */
1067
1068 int
1069 parse (line, recursive_level)
1070 char *line;
1071 int recursive_level;
1072 {
1073 register char *lineptr, c, suffix_separator;
1074 register int i;
1075 int argc, arg_type;
1076 char sqr, sep;
1077 char suffix[MAX_ARGS], *argv[MAX_ARGS]; /* No more than 4 operands. */
1078
1079 if (recursive_level <= 0)
1080 {
1081 /* Called from md_assemble. */
1082 for (lineptr = line; (*lineptr) != '\0' && (*lineptr) != ' '; lineptr++)
1083 continue;
1084
1085 c = *lineptr;
1086 *lineptr = '\0';
1087
1088 if (!(desc = (struct ns32k_opcode *) hash_find (inst_hash_handle, line)))
1089 as_fatal (_("No such opcode"));
1090
1091 *lineptr = c;
1092 }
1093 else
1094 {
1095 lineptr = line;
1096 }
1097
1098 argc = 0;
1099
1100 if (*desc->operands)
1101 {
1102 if (*lineptr++ != '\0')
1103 {
1104 sqr = '[';
1105 sep = ',';
1106
1107 while (*lineptr != '\0')
1108 {
1109 if (desc->operands[argc << 1])
1110 {
1111 suffix[argc] = 0;
1112 arg_type = desc->operands[(argc << 1) + 1];
1113
1114 switch (arg_type)
1115 {
1116 case 'd':
1117 case 'b':
1118 case 'p':
1119 case 'H':
1120 /* The operand is supposed to be a displacement. */
1121 /* Hackwarning: do not forget to update the 4
1122 cases above when editing ns32k-opcode.h. */
1123 suffix_separator = ':';
1124 break;
1125 default:
1126 /* If this char occurs we loose. */
1127 suffix_separator = '\255';
1128 break;
1129 }
1130
1131 suffix[argc] = 0; /* 0 when no ':' is encountered */
1132 argv[argc] = freeptr;
1133 *freeptr = '\0';
1134
1135 while ((c = *lineptr) != '\0' && c != sep)
1136 {
1137 if (c == sqr)
1138 {
1139 if (sqr == '[')
1140 {
1141 sqr = ']';
1142 sep = '\0';
1143 }
1144 else
1145 {
1146 sqr = '[';
1147 sep = ',';
1148 }
1149 }
1150
1151 if (c == suffix_separator)
1152 {
1153 /* ':' - label/suffix separator. */
1154 switch (lineptr[1])
1155 {
1156 case 'b':
1157 suffix[argc] = 1;
1158 break;
1159 case 'w':
1160 suffix[argc] = 2;
1161 break;
1162 case 'd':
1163 suffix[argc] = 4;
1164 break;
1165 default:
1166 as_warn (_("Bad suffix, defaulting to d"));
1167 suffix[argc] = 4;
1168 if (lineptr[1] == '\0' || lineptr[1] == sep)
1169 {
1170 lineptr += 1;
1171 continue;
1172 }
1173 break;
1174 }
1175
1176 lineptr += 2;
1177 continue;
1178 }
1179
1180 *freeptr++ = c;
1181 lineptr++;
1182 }
1183
1184 *freeptr++ = '\0';
1185 argc += 1;
1186
1187 if (*lineptr == '\0')
1188 continue;
1189
1190 lineptr += 1;
1191 }
1192 else
1193 {
1194 as_fatal (_("Too many operands passed to instruction"));
1195 }
1196 }
1197 }
1198 }
1199
1200 if (argc != strlen (desc->operands) / 2)
1201 {
1202 if (strlen (desc->default_args))
1203 {
1204 /* We can apply default, don't goof. */
1205 if (parse (desc->default_args, 1) != 1)
1206 /* Check error in default. */
1207 as_fatal (_("Wrong numbers of operands in default, check ns32k-opcodes.h"));
1208 }
1209 else
1210 {
1211 as_fatal (_("Wrong number of operands"));
1212 }
1213 }
1214
1215 for (i = 0; i < IIF_ENTRIES; i++)
1216 /* Mark all entries as void. */
1217 iif.iifP[i].type = 0;
1218
1219 /* Build opcode iif-entry. */
1220 iif.instr_size = desc->opcode_size / 8;
1221 IIF (1, 1, iif.instr_size, desc->opcode_seed, 0, 0, 0, 0, 0, 0, -1, 0);
1222
1223 /* This call encodes operands to iif format. */
1224 if (argc)
1225 {
1226 encode_operand (argc,
1227 argv,
1228 &desc->operands[0],
1229 &suffix[0],
1230 desc->im_size,
1231 desc->opcode_size);
1232 }
1233 return recursive_level;
1234 }
1235 \f
1236 /* Convert iif to fragments. From this point we start to dribble with
1237 functions in other files than this one.(Except hash.c) So, if it's
1238 possible to make an iif for an other CPU, you don't need to know
1239 what frags, relax, obstacks, etc is in order to port this
1240 assembler. You only need to know if it's possible to reduce your
1241 cpu-instruction to iif-format (takes some work) and adopt the other
1242 md_? parts according to given instructions Note that iif was
1243 invented for the clean ns32k`s architecure. */
1244
1245 /* GAS for the ns32k has a problem. PC relative displacements are
1246 relative to the address of the opcode, not the address of the
1247 operand. We used to keep track of the offset between the operand
1248 and the opcode in pcrel_adjust for each frag and each fix. However,
1249 we get into trouble where there are two or more pc-relative
1250 operands and the size of the first one can't be determined. Then in
1251 the relax phase, the size of the first operand will change and
1252 pcrel_adjust will no longer be correct. The current solution is
1253 keep a pointer to the frag with the opcode in it and the offset in
1254 that frag for each frag and each fix. Then, when needed, we can
1255 always figure out how far it is between the opcode and the pcrel
1256 object. See also md_pcrel_adjust and md_fix_pcrel_adjust. For
1257 objects not part of an instruction, the pointer to the opcode frag
1258 is always zero. */
1259
1260 void
1261 convert_iif ()
1262 {
1263 int i;
1264 bit_fixS *j;
1265 fragS *inst_frag;
1266 unsigned int inst_offset;
1267 char *inst_opcode;
1268 char *memP;
1269 int l;
1270 int k;
1271 char type;
1272 char size = 0;
1273 int size_so_far;
1274
1275 memP = frag_more (0);
1276 inst_opcode = memP;
1277 inst_offset = (memP - frag_now->fr_literal);
1278 inst_frag = frag_now;
1279
1280 for (i = 0; i < IIF_ENTRIES; i++)
1281 {
1282 if (type = iif.iifP[i].type)
1283 {
1284 /* The object exist, so handle it. */
1285 switch (size = iif.iifP[i].size)
1286 {
1287 case 42:
1288 size = 0;
1289 /* It's a bitfix that operates on an existing object. */
1290 if (iif.iifP[i].bit_fixP->fx_bit_base)
1291 /* Expand fx_bit_base to point at opcode. */
1292 iif.iifP[i].bit_fixP->fx_bit_base = (long) inst_opcode;
1293 /* Fall through. */
1294
1295 case 8: /* bignum or doublefloat */
1296 case 1:
1297 case 2:
1298 case 3:
1299 case 4:
1300 /* The final size in objectmemory is known. */
1301 memP = frag_more (size);
1302 j = iif.iifP[i].bit_fixP;
1303
1304 switch (type)
1305 {
1306 case 1: /* The object is pure binary. */
1307 if (j || iif.iifP[i].pcrel)
1308 {
1309 fix_new_ns32k (frag_now,
1310 (long) (memP - frag_now->fr_literal),
1311 size,
1312 0,
1313 iif.iifP[i].object,
1314 iif.iifP[i].pcrel,
1315 iif.iifP[i].im_disp,
1316 j,
1317 iif.iifP[i].bsr, /* sequent hack */
1318 inst_frag, inst_offset);
1319 }
1320 else
1321 {
1322 /* Good, just put them bytes out. */
1323 switch (iif.iifP[i].im_disp)
1324 {
1325 case 0:
1326 md_number_to_chars (memP, iif.iifP[i].object, size);
1327 break;
1328 case 1:
1329 md_number_to_disp (memP, iif.iifP[i].object, size);
1330 break;
1331 default:
1332 as_fatal (_("iif convert internal pcrel/binary"));
1333 }
1334 }
1335 break;
1336
1337 case 2:
1338 /* The object is a pointer at an expression, so
1339 unpack it, note that bignums may result from the
1340 expression. */
1341 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1342 if (exprP.X_op == O_big || size == 8)
1343 {
1344 if ((k = exprP.X_add_number) > 0)
1345 {
1346 /* We have a bignum ie a quad. This can only
1347 happens in a long suffixed instruction. */
1348 if (k * 2 > size)
1349 as_warn (_("Bignum too big for long"));
1350
1351 if (k == 3)
1352 memP += 2;
1353
1354 for (l = 0; k > 0; k--, l += 2)
1355 {
1356 md_number_to_chars (memP + l,
1357 generic_bignum[l >> 1],
1358 sizeof (LITTLENUM_TYPE));
1359 }
1360 }
1361 else
1362 {
1363 /* flonum. */
1364 LITTLENUM_TYPE words[4];
1365
1366 switch (size)
1367 {
1368 case 4:
1369 gen_to_words (words, 2, 8);
1370 md_number_to_imm (memP, (long) words[0],
1371 sizeof (LITTLENUM_TYPE));
1372 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1373 (long) words[1],
1374 sizeof (LITTLENUM_TYPE));
1375 break;
1376 case 8:
1377 gen_to_words (words, 4, 11);
1378 md_number_to_imm (memP, (long) words[0],
1379 sizeof (LITTLENUM_TYPE));
1380 md_number_to_imm (memP + sizeof (LITTLENUM_TYPE),
1381 (long) words[1],
1382 sizeof (LITTLENUM_TYPE));
1383 md_number_to_imm ((memP + 2
1384 * sizeof (LITTLENUM_TYPE)),
1385 (long) words[2],
1386 sizeof (LITTLENUM_TYPE));
1387 md_number_to_imm ((memP + 3
1388 * sizeof (LITTLENUM_TYPE)),
1389 (long) words[3],
1390 sizeof (LITTLENUM_TYPE));
1391 break;
1392 }
1393 }
1394 break;
1395 }
1396 if (j ||
1397 exprP.X_add_symbol ||
1398 exprP.X_op_symbol ||
1399 iif.iifP[i].pcrel)
1400 {
1401 /* The expression was undefined due to an
1402 undefined label. Create a fix so we can fix
1403 the object later. */
1404 exprP.X_add_number += iif.iifP[i].object_adjust;
1405 fix_new_ns32k_exp (frag_now,
1406 (long) (memP - frag_now->fr_literal),
1407 size,
1408 &exprP,
1409 iif.iifP[i].pcrel,
1410 iif.iifP[i].im_disp,
1411 j,
1412 iif.iifP[i].bsr,
1413 inst_frag, inst_offset);
1414 }
1415 else
1416 {
1417 /* Good, just put them bytes out. */
1418 switch (iif.iifP[i].im_disp)
1419 {
1420 case 0:
1421 md_number_to_imm (memP, exprP.X_add_number, size);
1422 break;
1423 case 1:
1424 md_number_to_disp (memP, exprP.X_add_number, size);
1425 break;
1426 default:
1427 as_fatal (_("iif convert internal pcrel/pointer"));
1428 }
1429 }
1430 break;
1431 default:
1432 as_fatal (_("Internal logic error in iif.iifP[n].type"));
1433 }
1434 break;
1435
1436 case 0:
1437 /* Too bad, the object may be undefined as far as its
1438 final nsize in object memory is concerned. The size
1439 of the object in objectmemory is not explicitly
1440 given. If the object is defined its length can be
1441 determined and a fix can replace the frag. */
1442 {
1443 evaluate_expr (&exprP, (char *) iif.iifP[i].object);
1444
1445 if ((exprP.X_add_symbol || exprP.X_op_symbol) &&
1446 !iif.iifP[i].pcrel)
1447 {
1448 /* Size is unknown until link time so have to
1449 allow 4 bytes. */
1450 size = 4;
1451 memP = frag_more (size);
1452 fix_new_ns32k_exp (frag_now,
1453 (long) (memP - frag_now->fr_literal),
1454 size,
1455 &exprP,
1456 0, /* never iif.iifP[i].pcrel, */
1457 1, /* always iif.iifP[i].im_disp */
1458 (bit_fixS *) 0, 0,
1459 inst_frag,
1460 inst_offset);
1461 break; /* exit this absolute hack */
1462 }
1463
1464 if (exprP.X_add_symbol || exprP.X_op_symbol)
1465 {
1466 /* Frag it. */
1467 if (exprP.X_op_symbol)
1468 {
1469 /* We cant relax this case. */
1470 as_fatal (_("Can't relax difference"));
1471 }
1472 else
1473 {
1474 /* Size is not important. This gets fixed by
1475 relax, but we assume 0 in what follows. */
1476 memP = frag_more (4); /* Max size. */
1477 size = 0;
1478
1479 {
1480 fragS *old_frag = frag_now;
1481 frag_variant (rs_machine_dependent,
1482 4, /* Max size. */
1483 0, /* Size. */
1484 IND (BRANCH, UNDEF), /* Expecting
1485 the worst. */
1486 exprP.X_add_symbol,
1487 exprP.X_add_number,
1488 inst_opcode);
1489 frag_opcode_frag (old_frag) = inst_frag;
1490 frag_opcode_offset (old_frag) = inst_offset;
1491 frag_bsr (old_frag) = iif.iifP[i].bsr;
1492 }
1493 }
1494 }
1495 else
1496 {
1497 /* This duplicates code in md_number_to_disp. */
1498 if (-64 <= exprP.X_add_number && exprP.X_add_number <= 63)
1499 {
1500 size = 1;
1501 }
1502 else
1503 {
1504 if (-8192 <= exprP.X_add_number
1505 && exprP.X_add_number <= 8191)
1506 {
1507 size = 2;
1508 }
1509 else
1510 {
1511 if (-0x20000000 <= exprP.X_add_number
1512 && exprP.X_add_number<=0x1fffffff)
1513 {
1514 size = 4;
1515 }
1516 else
1517 {
1518 as_warn (_("Displacement to large for :d"));
1519 size = 4;
1520 }
1521 }
1522 }
1523
1524 memP = frag_more (size);
1525 md_number_to_disp (memP, exprP.X_add_number, size);
1526 }
1527 }
1528 break;
1529
1530 default:
1531 as_fatal (_("Internal logic error in iif.iifP[].type"));
1532 }
1533 }
1534 }
1535 }
1536 \f
1537 #ifdef BFD_ASSEMBLER
1538 /* This functionality should really be in the bfd library. */
1539 static bfd_reloc_code_real_type
1540 reloc (int size, int pcrel, int type)
1541 {
1542 int length, index;
1543 bfd_reloc_code_real_type relocs[] =
1544 {
1545 BFD_RELOC_NS32K_IMM_8,
1546 BFD_RELOC_NS32K_IMM_16,
1547 BFD_RELOC_NS32K_IMM_32,
1548 BFD_RELOC_NS32K_IMM_8_PCREL,
1549 BFD_RELOC_NS32K_IMM_16_PCREL,
1550 BFD_RELOC_NS32K_IMM_32_PCREL,
1551
1552 /* ns32k displacements. */
1553 BFD_RELOC_NS32K_DISP_8,
1554 BFD_RELOC_NS32K_DISP_16,
1555 BFD_RELOC_NS32K_DISP_32,
1556 BFD_RELOC_NS32K_DISP_8_PCREL,
1557 BFD_RELOC_NS32K_DISP_16_PCREL,
1558 BFD_RELOC_NS32K_DISP_32_PCREL,
1559
1560 /* Normal 2's complement. */
1561 BFD_RELOC_8,
1562 BFD_RELOC_16,
1563 BFD_RELOC_32,
1564 BFD_RELOC_8_PCREL,
1565 BFD_RELOC_16_PCREL,
1566 BFD_RELOC_32_PCREL
1567 };
1568
1569 switch (size)
1570 {
1571 case 1:
1572 length = 0;
1573 break;
1574 case 2:
1575 length = 1;
1576 break;
1577 case 4:
1578 length = 2;
1579 break;
1580 default:
1581 length = -1;
1582 break;
1583 }
1584
1585 index = length + 3 * pcrel + 6 * type;
1586
1587 if (index >= 0 && index < sizeof (relocs) / sizeof (relocs[0]))
1588 return relocs[index];
1589
1590 if (pcrel)
1591 as_bad (_("Can not do %d byte pc-relative relocation for storage type %d"),
1592 size, type);
1593 else
1594 as_bad (_("Can not do %d byte relocation for storage type %d"),
1595 size, type);
1596
1597 return BFD_RELOC_NONE;
1598
1599 }
1600 #endif
1601
1602 void
1603 md_assemble (line)
1604 char *line;
1605 {
1606 freeptr = freeptr_static;
1607 parse (line, 0); /* Explode line to more fix form in iif. */
1608 convert_iif (); /* Convert iif to frags, fix's etc. */
1609 #ifdef SHOW_NUM
1610 printf (" \t\t\t%s\n", line);
1611 #endif
1612 }
1613
1614 void
1615 md_begin ()
1616 {
1617 /* Build a hashtable of the instructions. */
1618 const struct ns32k_opcode *ptr;
1619 const char *stat;
1620 inst_hash_handle = hash_new ();
1621
1622 for (ptr = ns32k_opcodes; ptr < endop; ptr++)
1623 {
1624 if ((stat = hash_insert (inst_hash_handle, ptr->name, (char *) ptr)))
1625 /* Fatal. */
1626 as_fatal (_("Can't hash %s: %s"), ptr->name, stat);
1627 }
1628
1629 /* Some private space please! */
1630 freeptr_static = (char *) malloc (PRIVATE_SIZE);
1631 }
1632
1633 /* Must be equal to MAX_PRECISON in atof-ieee.c. */
1634 #define MAX_LITTLENUMS 6
1635
1636 /* Turn the string pointed to by litP into a floating point constant
1637 of type TYPE, and emit the appropriate bytes. The number of
1638 LITTLENUMS emitted is stored in *SIZEP. An error message is
1639 returned, or NULL on OK. */
1640
1641 char *
1642 md_atof (type, litP, sizeP)
1643 char type;
1644 char *litP;
1645 int *sizeP;
1646 {
1647 int prec;
1648 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1649 LITTLENUM_TYPE *wordP;
1650 char *t;
1651
1652 switch (type)
1653 {
1654 case 'f':
1655 prec = 2;
1656 break;
1657
1658 case 'd':
1659 prec = 4;
1660 break;
1661 default:
1662 *sizeP = 0;
1663 return _("Bad call to MD_ATOF()");
1664 }
1665
1666 t = atof_ieee (input_line_pointer, type, words);
1667 if (t)
1668 input_line_pointer = t;
1669
1670 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1671
1672 for (wordP = words + prec; prec--;)
1673 {
1674 md_number_to_chars (litP, (long) (*--wordP), sizeof (LITTLENUM_TYPE));
1675 litP += sizeof (LITTLENUM_TYPE);
1676 }
1677
1678 return 0;
1679 }
1680 \f
1681 /* Convert number to chars in correct order. */
1682
1683 void
1684 md_number_to_chars (buf, value, nbytes)
1685 char *buf;
1686 valueT value;
1687 int nbytes;
1688 {
1689 number_to_chars_littleendian (buf, value, nbytes);
1690 }
1691
1692 /* This is a variant of md_numbers_to_chars. The reason for its'
1693 existence is the fact that ns32k uses Huffman coded
1694 displacements. This implies that the bit order is reversed in
1695 displacements and that they are prefixed with a size-tag.
1696
1697 binary: msb -> lsb
1698 0xxxxxxx byte
1699 10xxxxxx xxxxxxxx word
1700 11xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx double word
1701
1702 This must be taken care of and we do it here! */
1703
1704 static void
1705 md_number_to_disp (buf, val, n)
1706 char *buf;
1707 long val;
1708 char n;
1709 {
1710 switch (n)
1711 {
1712 case 1:
1713 if (val < -64 || val > 63)
1714 as_warn (_("Byte displacement out of range. line number not valid"));
1715 val &= 0x7f;
1716 #ifdef SHOW_NUM
1717 printf ("%x ", val & 0xff);
1718 #endif
1719 *buf++ = val;
1720 break;
1721 case 2:
1722 if (val < -8192 || val > 8191)
1723 as_warn (_("Word displacement out of range. line number not valid"));
1724 val &= 0x3fff;
1725 val |= 0x8000;
1726 #ifdef SHOW_NUM
1727 printf ("%x ", val >> 8 & 0xff);
1728 #endif
1729 *buf++ = (val >> 8);
1730 #ifdef SHOW_NUM
1731 printf ("%x ", val & 0xff);
1732 #endif
1733 *buf++ = val;
1734 break;
1735 case 4:
1736 if (val < -0x20000000 || val >= 0x20000000)
1737 as_warn (_("Double word displacement out of range"));
1738 val |= 0xc0000000;
1739 #ifdef SHOW_NUM
1740 printf ("%x ", val >> 24 & 0xff);
1741 #endif
1742 *buf++ = (val >> 24);
1743 #ifdef SHOW_NUM
1744 printf ("%x ", val >> 16 & 0xff);
1745 #endif
1746 *buf++ = (val >> 16);
1747 #ifdef SHOW_NUM
1748 printf ("%x ", val >> 8 & 0xff);
1749 #endif
1750 *buf++ = (val >> 8);
1751 #ifdef SHOW_NUM
1752 printf ("%x ", val & 0xff);
1753 #endif
1754 *buf++ = val;
1755 break;
1756 default:
1757 as_fatal (_("Internal logic error. line %s, file \"%s\""),
1758 __LINE__, __FILE__);
1759 }
1760 }
1761
1762 static void
1763 md_number_to_imm (buf, val, n)
1764 char *buf;
1765 long val;
1766 char n;
1767 {
1768 switch (n)
1769 {
1770 case 1:
1771 #ifdef SHOW_NUM
1772 printf ("%x ", val & 0xff);
1773 #endif
1774 *buf++ = val;
1775 break;
1776 case 2:
1777 #ifdef SHOW_NUM
1778 printf ("%x ", val >> 8 & 0xff);
1779 #endif
1780 *buf++ = (val >> 8);
1781 #ifdef SHOW_NUM
1782 printf ("%x ", val & 0xff);
1783 #endif
1784 *buf++ = val;
1785 break;
1786 case 4:
1787 #ifdef SHOW_NUM
1788 printf ("%x ", val >> 24 & 0xff);
1789 #endif
1790 *buf++ = (val >> 24);
1791 #ifdef SHOW_NUM
1792 printf ("%x ", val >> 16 & 0xff);
1793 #endif
1794 *buf++ = (val >> 16);
1795 #ifdef SHOW_NUM
1796 printf ("%x ", val >> 8 & 0xff);
1797 #endif
1798 *buf++ = (val >> 8);
1799 #ifdef SHOW_NUM
1800 printf ("%x ", val & 0xff);
1801 #endif
1802 *buf++ = val;
1803 break;
1804 default:
1805 as_fatal (_("Internal logic error. line %s, file \"%s\""),
1806 __LINE__, __FILE__);
1807 }
1808 }
1809
1810 /* Fast bitfiddling support. */
1811 /* Mask used to zero bitfield before oring in the true field. */
1812
1813 static unsigned long l_mask[] =
1814 {
1815 0xffffffff, 0xfffffffe, 0xfffffffc, 0xfffffff8,
1816 0xfffffff0, 0xffffffe0, 0xffffffc0, 0xffffff80,
1817 0xffffff00, 0xfffffe00, 0xfffffc00, 0xfffff800,
1818 0xfffff000, 0xffffe000, 0xffffc000, 0xffff8000,
1819 0xffff0000, 0xfffe0000, 0xfffc0000, 0xfff80000,
1820 0xfff00000, 0xffe00000, 0xffc00000, 0xff800000,
1821 0xff000000, 0xfe000000, 0xfc000000, 0xf8000000,
1822 0xf0000000, 0xe0000000, 0xc0000000, 0x80000000,
1823 };
1824 static unsigned long r_mask[] =
1825 {
1826 0x00000000, 0x00000001, 0x00000003, 0x00000007,
1827 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f,
1828 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff,
1829 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff,
1830 0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff,
1831 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff,
1832 0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff,
1833 0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff,
1834 };
1835 #define MASK_BITS 31
1836 /* Insert bitfield described by field_ptr and val at buf
1837 This routine is written for modification of the first 4 bytes pointed
1838 to by buf, to yield speed.
1839 The ifdef stuff is for selection between a ns32k-dependent routine
1840 and a general version. (My advice: use the general version!). */
1841
1842 static void
1843 md_number_to_field (buf, val, field_ptr)
1844 register char *buf;
1845 register long val;
1846 register bit_fixS *field_ptr;
1847 {
1848 register unsigned long object;
1849 register unsigned long mask;
1850 /* define ENDIAN on a ns32k machine */
1851 #ifdef ENDIAN
1852 register unsigned long *mem_ptr;
1853 #else
1854 register char *mem_ptr;
1855 #endif
1856 if (field_ptr->fx_bit_min <= val && val <= field_ptr->fx_bit_max)
1857 {
1858 #ifdef ENDIAN
1859 if (field_ptr->fx_bit_base)
1860 /* Override buf. */
1861 mem_ptr = (unsigned long *) field_ptr->fx_bit_base;
1862 else
1863 mem_ptr = (unsigned long *) buf;
1864
1865 mem_ptr = ((unsigned long *)
1866 ((char *) mem_ptr + field_ptr->fx_bit_base_adj));
1867 #else
1868 if (field_ptr->fx_bit_base)
1869 mem_ptr = (char *) field_ptr->fx_bit_base;
1870 else
1871 mem_ptr = buf;
1872
1873 mem_ptr += field_ptr->fx_bit_base_adj;
1874 #endif
1875 #ifdef ENDIAN
1876 /* We have a nice ns32k machine with lowbyte at low-physical mem. */
1877 object = *mem_ptr; /* get some bytes */
1878 #else /* OVE Goof! the machine is a m68k or dito */
1879 /* That takes more byte fiddling. */
1880 object = 0;
1881 object |= mem_ptr[3] & 0xff;
1882 object <<= 8;
1883 object |= mem_ptr[2] & 0xff;
1884 object <<= 8;
1885 object |= mem_ptr[1] & 0xff;
1886 object <<= 8;
1887 object |= mem_ptr[0] & 0xff;
1888 #endif
1889 mask = 0;
1890 mask |= (r_mask[field_ptr->fx_bit_offset]);
1891 mask |= (l_mask[field_ptr->fx_bit_offset + field_ptr->fx_bit_size]);
1892 object &= mask;
1893 val += field_ptr->fx_bit_add;
1894 object |= ((val << field_ptr->fx_bit_offset) & (mask ^ 0xffffffff));
1895 #ifdef ENDIAN
1896 *mem_ptr = object;
1897 #else
1898 mem_ptr[0] = (char) object;
1899 object >>= 8;
1900 mem_ptr[1] = (char) object;
1901 object >>= 8;
1902 mem_ptr[2] = (char) object;
1903 object >>= 8;
1904 mem_ptr[3] = (char) object;
1905 #endif
1906 }
1907 else
1908 {
1909 as_warn (_("Bit field out of range"));
1910 }
1911 }
1912
1913 int
1914 md_pcrel_adjust (fragP)
1915 fragS *fragP;
1916 {
1917 fragS *opcode_frag;
1918 addressT opcode_address;
1919 unsigned int offset;
1920
1921 opcode_frag = frag_opcode_frag (fragP);
1922 if (opcode_frag == 0)
1923 return 0;
1924
1925 offset = frag_opcode_offset (fragP);
1926 opcode_address = offset + opcode_frag->fr_address;
1927
1928 return fragP->fr_address + fragP->fr_fix - opcode_address;
1929 }
1930
1931 int
1932 md_fix_pcrel_adjust (fixP)
1933 fixS *fixP;
1934 {
1935 fragS *fragP = fixP->fx_frag;
1936 fragS *opcode_frag;
1937 addressT opcode_address;
1938 unsigned int offset;
1939
1940 opcode_frag = fix_opcode_frag (fixP);
1941 if (opcode_frag == 0)
1942 return 0;
1943
1944 offset = fix_opcode_offset (fixP);
1945 opcode_address = offset + opcode_frag->fr_address;
1946
1947 return fixP->fx_where + fixP->fx_frag->fr_address - opcode_address;
1948 }
1949
1950 /* Apply a fixS (fixup of an instruction or data that we didn't have
1951 enough info to complete immediately) to the data in a frag.
1952
1953 On the ns32k, everything is in a different format, so we have broken
1954 out separate functions for each kind of thing we could be fixing.
1955 They all get called from here. */
1956
1957 #ifdef BFD_ASSEMBLER
1958 int
1959 md_apply_fix (fixP, valp)
1960 fixS *fixP;
1961 valueT *valp;
1962 #else
1963 void
1964 md_apply_fix (fixP, val)
1965 fixS *fixP;
1966 long val;
1967 #endif
1968 {
1969 #ifdef BFD_ASSEMBLER
1970 long val = *valp;
1971 #endif
1972 fragS *fragP = fixP->fx_frag;
1973
1974 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
1975
1976 if (fix_bit_fixP (fixP))
1977 { /* Bitfields to fix, sigh. */
1978 md_number_to_field (buf, val, fix_bit_fixP (fixP));
1979 }
1980 else
1981 switch (fix_im_disp (fixP))
1982 {
1983 case 0: /* Immediate field. */
1984 md_number_to_imm (buf, val, fixP->fx_size);
1985 break;
1986
1987 case 1: /* Displacement field. */
1988 /* Calculate offset */
1989 {
1990 md_number_to_disp (buf,
1991 (fixP->fx_pcrel ? val + md_fix_pcrel_adjust (fixP)
1992 : val), fixP->fx_size);
1993 }
1994 break;
1995
1996 case 2: /* Pointer in a data object. */
1997 md_number_to_chars (buf, val, fixP->fx_size);
1998 break;
1999 }
2000 #ifdef BSD_ASSEMBLER
2001 return 1;
2002 #endif
2003 }
2004 \f
2005 /* Convert a relaxed displacement to ditto in final output */
2006
2007 #ifndef BFD_ASSEMBLER
2008 void
2009 md_convert_frag (headers, sec, fragP)
2010 object_headers *headers;
2011 segT sec;
2012 register fragS *fragP;
2013 #else
2014 void
2015 md_convert_frag (abfd, sec, fragP)
2016 bfd *abfd;
2017 segT sec;
2018 register fragS *fragP;
2019 #endif
2020 {
2021 long disp;
2022 long ext = 0;
2023
2024 /* Address in gas core of the place to store the displacement. */
2025 register char *buffer_address = fragP->fr_fix + fragP->fr_literal;
2026 /* Address in object code of the displacement. */
2027 int object_address;
2028
2029 fragS *opcode_frag;
2030
2031 switch (fragP->fr_subtype)
2032 {
2033 case IND (BRANCH, BYTE):
2034 ext = 1;
2035 break;
2036 case IND (BRANCH, WORD):
2037 ext = 2;
2038 break;
2039 case IND (BRANCH, DOUBLE):
2040 ext = 4;
2041 break;
2042 }
2043
2044 if (ext == 0)
2045 return;
2046
2047 know (fragP->fr_symbol);
2048
2049 object_address = fragP->fr_fix + fragP->fr_address;
2050
2051 /* The displacement of the address, from current location. */
2052 disp = (S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset) - object_address;
2053 disp += md_pcrel_adjust (fragP);
2054
2055 md_number_to_disp (buffer_address, (long) disp, (int) ext);
2056 fragP->fr_fix += ext;
2057 }
2058
2059 /* This function returns the estimated size a variable object will occupy,
2060 one can say that we tries to guess the size of the objects before we
2061 actually know it. */
2062
2063 int
2064 md_estimate_size_before_relax (fragP, segment)
2065 register fragS *fragP;
2066 segT segment;
2067 {
2068 if (fragP->fr_subtype == IND (BRANCH, UNDEF))
2069 {
2070 if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
2071 {
2072 /* We don't relax symbols defined in another segment. The
2073 thing to do is to assume the object will occupy 4 bytes. */
2074 fix_new_ns32k (fragP,
2075 (int) (fragP->fr_fix),
2076 4,
2077 fragP->fr_symbol,
2078 fragP->fr_offset,
2079 1,
2080 1,
2081 0,
2082 frag_bsr(fragP), /*sequent hack */
2083 frag_opcode_frag (fragP),
2084 frag_opcode_offset (fragP));
2085 fragP->fr_fix += 4;
2086 #if 0
2087 fragP->fr_opcode[1] = 0xff;
2088 #endif
2089 frag_wane (fragP);
2090 return 4;
2091 }
2092
2093 /* Relaxable case. Set up the initial guess for the variable
2094 part of the frag. */
2095 fragP->fr_subtype = IND (BRANCH, BYTE);
2096 }
2097
2098 if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
2099 abort ();
2100
2101 /* Return the size of the variable part of the frag. */
2102 return md_relax_table[fragP->fr_subtype].rlx_length;
2103 }
2104
2105 int md_short_jump_size = 3;
2106 int md_long_jump_size = 5;
2107 const int md_reloc_size = 8; /* Size of relocation record. */
2108
2109 void
2110 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
2111 char *ptr;
2112 addressT from_addr, to_addr;
2113 fragS *frag;
2114 symbolS *to_symbol;
2115 {
2116 valueT offset;
2117
2118 offset = to_addr - from_addr;
2119 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2120 md_number_to_disp (ptr + 1, (valueT) offset, 2);
2121 }
2122
2123 void
2124 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
2125 char *ptr;
2126 addressT from_addr, to_addr;
2127 fragS *frag;
2128 symbolS *to_symbol;
2129 {
2130 valueT offset;
2131
2132 offset = to_addr - from_addr;
2133 md_number_to_chars (ptr, (valueT) 0xEA, 1);
2134 md_number_to_disp (ptr + 1, (valueT) offset, 4);
2135 }
2136 \f
2137 CONST char *md_shortopts = "m:";
2138
2139 struct option md_longopts[] =
2140 {
2141 {NULL, no_argument, NULL, 0}
2142 };
2143
2144 size_t md_longopts_size = sizeof (md_longopts);
2145
2146 int
2147 md_parse_option (c, arg)
2148 int c;
2149 char *arg;
2150 {
2151 switch (c)
2152 {
2153 case 'm':
2154 if (!strcmp (arg, "32032"))
2155 {
2156 cpureg = cpureg_032;
2157 mmureg = mmureg_032;
2158 }
2159 else if (!strcmp (arg, "32532"))
2160 {
2161 cpureg = cpureg_532;
2162 mmureg = mmureg_532;
2163 }
2164 else
2165 {
2166 as_bad (_("invalid architecture option -m%s"), arg);
2167 return 0;
2168 }
2169 break;
2170
2171 default:
2172 return 0;
2173 }
2174
2175 return 1;
2176 }
2177
2178 void
2179 md_show_usage (stream)
2180 FILE *stream;
2181 {
2182 fprintf (stream, _("\
2183 NS32K options:\n\
2184 -m32032 | -m32532 select variant of NS32K architecture\n"));
2185 }
2186 \f
2187 /* Create a bit_fixS in obstack 'notes'.
2188 This struct is used to profile the normal fix. If the bit_fixP is a
2189 valid pointer (not NULL) the bit_fix data will be used to format
2190 the fix. */
2191
2192 bit_fixS *
2193 bit_fix_new (size, offset, min, max, add, base_type, base_adj)
2194 char size; /* Length of bitfield */
2195 char offset; /* Bit offset to bitfield */
2196 long min; /* Signextended min for bitfield */
2197 long max; /* Signextended max for bitfield */
2198 long add; /* Add mask, used for huffman prefix */
2199 long base_type; /* 0 or 1, if 1 it's exploded to opcode ptr */
2200 long base_adj;
2201 {
2202 register bit_fixS *bit_fixP;
2203
2204 bit_fixP = (bit_fixS *) obstack_alloc (&notes, sizeof (bit_fixS));
2205
2206 bit_fixP->fx_bit_size = size;
2207 bit_fixP->fx_bit_offset = offset;
2208 bit_fixP->fx_bit_base = base_type;
2209 bit_fixP->fx_bit_base_adj = base_adj;
2210 bit_fixP->fx_bit_max = max;
2211 bit_fixP->fx_bit_min = min;
2212 bit_fixP->fx_bit_add = add;
2213
2214 return (bit_fixP);
2215 }
2216
2217 void
2218 fix_new_ns32k (frag, where, size, add_symbol, offset, pcrel,
2219 im_disp, bit_fixP, bsr, opcode_frag, opcode_offset)
2220 fragS *frag; /* Which frag? */
2221 int where; /* Where in that frag? */
2222 int size; /* 1, 2 or 4 usually. */
2223 symbolS *add_symbol; /* X_add_symbol. */
2224 long offset; /* X_add_number. */
2225 int pcrel; /* TRUE if PC-relative relocation. */
2226 char im_disp; /* true if the value to write is a
2227 displacement */
2228 bit_fixS *bit_fixP; /* pointer at struct of bit_fix's, ignored if
2229 NULL */
2230 char bsr; /* sequent-linker-hack: 1 when relocobject is
2231 a bsr */
2232 fragS *opcode_frag;
2233 unsigned int opcode_offset;
2234 {
2235 fixS *fixP = fix_new (frag, where, size, add_symbol,
2236 offset, pcrel,
2237 #ifdef BFD_ASSEMBLER
2238 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
2239 #else
2240 NO_RELOC
2241 #endif
2242 );
2243
2244 fix_opcode_frag (fixP) = opcode_frag;
2245 fix_opcode_offset (fixP) = opcode_offset;
2246 fix_im_disp (fixP) = im_disp;
2247 fix_bsr (fixP) = bsr;
2248 fix_bit_fixP (fixP) = bit_fixP;
2249 }
2250
2251 void
2252 fix_new_ns32k_exp (frag, where, size, exp, pcrel,
2253 im_disp, bit_fixP, bsr, opcode_frag, opcode_offset)
2254 fragS *frag; /* Which frag? */
2255 int where; /* Where in that frag? */
2256 int size; /* 1, 2 or 4 usually. */
2257 expressionS *exp; /* Expression. */
2258 int pcrel; /* TRUE if PC-relative relocation. */
2259 char im_disp; /* true if the value to write is a
2260 displacement */
2261 bit_fixS *bit_fixP; /* pointer at struct of bit_fix's, ignored if
2262 NULL */
2263 char bsr; /* sequent-linker-hack: 1 when relocobject is
2264 a bsr */
2265 fragS *opcode_frag;
2266 unsigned int opcode_offset;
2267 {
2268 fixS *fixP = fix_new_exp (frag, where, size, exp, pcrel,
2269 #ifdef BFD_ASSEMBLER
2270 bit_fixP ? NO_RELOC : reloc (size, pcrel, im_disp)
2271 #else
2272 NO_RELOC
2273 #endif
2274 );
2275
2276 fix_opcode_frag (fixP) = opcode_frag;
2277 fix_opcode_offset (fixP) = opcode_offset;
2278 fix_im_disp (fixP) = im_disp;
2279 fix_bsr (fixP) = bsr;
2280 fix_bit_fixP (fixP) = bit_fixP;
2281 }
2282
2283 /* This is TC_CONS_FIX_NEW, called by emit_expr in read.c. */
2284
2285 void
2286 cons_fix_new_ns32k (frag, where, size, exp)
2287 fragS *frag; /* Which frag? */
2288 int where; /* Where in that frag? */
2289 int size; /* 1, 2 or 4 usually. */
2290 expressionS *exp; /* Expression. */
2291 {
2292 fix_new_ns32k_exp (frag, where, size, exp,
2293 0, 2, 0, 0, 0, 0);
2294 }
2295
2296 /* We have no need to default values of symbols. */
2297
2298 symbolS *
2299 md_undefined_symbol (name)
2300 char *name;
2301 {
2302 return 0;
2303 }
2304
2305 /* Round up a section size to the appropriate boundary. */
2306
2307 valueT
2308 md_section_align (segment, size)
2309 segT segment;
2310 valueT size;
2311 {
2312 return size; /* Byte alignment is fine. */
2313 }
2314
2315 /* Exactly what point is a PC-relative offset relative TO? On the
2316 ns32k, they're relative to the start of the instruction. */
2317
2318 long
2319 md_pcrel_from (fixP)
2320 fixS *fixP;
2321 {
2322 long res;
2323 res = fixP->fx_where + fixP->fx_frag->fr_address;
2324 #ifdef SEQUENT_COMPATABILITY
2325 if (frag_bsr (fixP->fx_frag))
2326 res += 0x12 /* FOO Kludge alert! */
2327 #endif
2328 return res;
2329 }
2330
2331 #ifdef BFD_ASSEMBLER
2332
2333 arelent *
2334 tc_gen_reloc (section, fixp)
2335 asection *section;
2336 fixS *fixp;
2337 {
2338 arelent *rel;
2339 bfd_reloc_code_real_type code;
2340
2341 code = reloc (fixp->fx_size, fixp->fx_pcrel, fix_im_disp (fixp));
2342
2343 rel = (arelent *) xmalloc (sizeof (arelent));
2344 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
2345 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2346 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
2347 if (fixp->fx_pcrel)
2348 rel->addend = fixp->fx_addnumber;
2349 else
2350 rel->addend = 0;
2351
2352 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
2353 if (!rel->howto)
2354 {
2355 const char *name;
2356
2357 name = S_GET_NAME (fixp->fx_addsy);
2358 if (name == NULL)
2359 name = _("<unknown>");
2360 as_fatal (_("Cannot find relocation type for symbol %s, code %d"),
2361 name, (int) code);
2362 }
2363
2364 return rel;
2365 }
2366 #else /* BFD_ASSEMBLER */
2367
2368 #ifdef OBJ_AOUT
2369 void
2370 cons_fix_new_ns32k (where, fixP, segment_address_in_file)
2371 char *where;
2372 struct fix *fixP;
2373 relax_addressT segment_address_in_file;
2374 {
2375 /* In: Length of relocation (or of address) in chars: 1, 2 or 4.
2376 Out: GNU LD relocation length code: 0, 1, or 2. */
2377
2378 static unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
2379 long r_symbolnum;
2380
2381 know (fixP->fx_addsy != NULL);
2382
2383 md_number_to_chars (where,
2384 fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
2385 4);
2386
2387 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
2388 ? S_GET_TYPE (fixP->fx_addsy)
2389 : fixP->fx_addsy->sy_number);
2390
2391 md_number_to_chars (where + 4,
2392 ((long) (r_symbolnum)
2393 | (long) (fixP->fx_pcrel << 24)
2394 | (long) (nbytes_r_length[fixP->fx_size] << 25)
2395 | (long) ((!S_IS_DEFINED (fixP->fx_addsy)) << 27)
2396 | (long) (fix_bsr (fixP) << 28)
2397 | (long) (fix_im_disp (fixP) << 29)),
2398 4);
2399 }
2400
2401 #endif /* OBJ_AOUT */
2402 #endif /* BFD_ASSMEBLER */
This page took 0.079433 seconds and 5 git commands to generate.