2003-05-01 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / gas / config / tc-tic80.c
1 /* tc-tic80.c -- Assemble for the TI TMS320C80 (MV)
2 Copyright 1996, 1997, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "as.h"
22 #include "safe-ctype.h"
23 #include "opcode/tic80.h"
24
25 #define internal_error(what) \
26 as_fatal (_("internal error:%s:%d: %s\n"), __FILE__, __LINE__, what)
27
28 #define internal_error_a(what,arg) \
29 as_fatal (_("internal error:%s:%d: %s %ld\n"), __FILE__, __LINE__, what, arg)
30 \f
31 /* Generic assembler global variables which must be defined by all
32 targets. */
33
34 /* Characters which always start a comment. */
35 const char comment_chars[] = ";";
36
37 /* Characters which start a comment at the beginning of a line. */
38 const char line_comment_chars[] = ";*#";
39
40 /* Characters which may be used to separate multiple commands on a single
41 line. The semicolon is such a character by default and should not be
42 explicitly listed. */
43 const char line_separator_chars[] = "";
44
45 /* Characters which are used to indicate an exponent in a floating
46 point number. */
47 const char EXP_CHARS[] = "eE";
48
49 /* Characters which mean that a number is a floating point constant,
50 as in 0f1.0. */
51 const char FLT_CHARS[] = "fF";
52
53 /* This table describes all the machine specific pseudo-ops the assembler
54 has to support. The fields are:
55
56 pseudo-op name without dot
57 function to call to execute this pseudo-op
58 integer arg to pass to the function */
59
60 const pseudo_typeS md_pseudo_table[] = {
61 { "align", s_align_bytes, 4 }, /* Do byte alignment, default is a 4 byte boundary */
62 { "word", cons, 4 }, /* FIXME: Should this be machine independent? */
63 { "bss", s_lcomm_bytes, 1 },
64 { "sect", obj_coff_section, 0}, /* For compatibility with TI tools */
65 { "section", obj_coff_section, 0}, /* Standard COFF .section pseudo-op */
66 { NULL, NULL, 0 }
67 };
68
69 /* Opcode hash table. */
70 static struct hash_control *tic80_hash;
71
72 static struct tic80_opcode * find_opcode PARAMS ((struct tic80_opcode *, expressionS []));
73 static void build_insn PARAMS ((struct tic80_opcode *, expressionS *));
74 static int get_operands PARAMS ((expressionS exp[]));
75 static int const_overflow PARAMS ((unsigned long num, int bits, int flags));
76
77 /* Replace short PC relative instructions with long form when
78 necessary. Currently this is off by default or when given the
79 -no-relax option. Turning it on by using the -relax option forces
80 all PC relative instructions to use the long form, which is why it
81 is currently not the default. */
82 static int tic80_relax = 0;
83 \f
84 int
85 md_estimate_size_before_relax (fragP, segment_type)
86 fragS *fragP ATTRIBUTE_UNUSED;
87 segT segment_type ATTRIBUTE_UNUSED;
88 {
89 internal_error (_("Relaxation is a luxury we can't afford"));
90 return (-1);
91 }
92
93 /* We have no need to default values of symbols. */
94
95 symbolS *
96 md_undefined_symbol (name)
97 char *name ATTRIBUTE_UNUSED;
98 {
99 return 0;
100 }
101
102 /* Turn a string in input_line_pointer into a floating point constant
103 of type TYPE, and store the appropriate bytes in *LITP. The number
104 of LITTLENUMS emitted is stored in *SIZEP. An error message is
105 returned, or NULL on OK. */
106
107 #define MAX_LITTLENUMS 4
108
109 char *
110 md_atof (type, litP, sizeP)
111 int type;
112 char *litP;
113 int *sizeP;
114 {
115 int prec;
116 LITTLENUM_TYPE words[MAX_LITTLENUMS];
117 LITTLENUM_TYPE *wordP;
118 char *t;
119
120 switch (type)
121 {
122 case 'f':
123 case 'F':
124 case 's':
125 case 'S':
126 prec = 2;
127 break;
128
129 case 'd':
130 case 'D':
131 case 'r':
132 case 'R':
133 prec = 4;
134 break;
135
136 default:
137 *sizeP = 0;
138 return _("bad call to md_atof ()");
139 }
140
141 t = atof_ieee (input_line_pointer, type, words);
142 if (t)
143 {
144 input_line_pointer = t;
145 }
146
147 *sizeP = prec * sizeof (LITTLENUM_TYPE);
148
149 for (wordP = words; prec--;)
150 {
151 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
152 litP += sizeof (LITTLENUM_TYPE);
153 }
154 return (NULL);
155 }
156
157 /* Check to see if the constant value in NUM will fit in a field of
158 width BITS if it has flags FLAGS. */
159
160 static int
161 const_overflow (num, bits, flags)
162 unsigned long num;
163 int bits;
164 int flags;
165 {
166 long min, max;
167 int retval = 0;
168
169 /* Only need to check fields less than 32 bits wide. */
170 if (bits >= 32)
171 return retval;
172
173 if (flags & TIC80_OPERAND_SIGNED)
174 {
175 max = (1 << (bits - 1)) - 1;
176 min = - (1 << (bits - 1));
177 retval = (long) num > max || (long) num < min;
178 }
179 else
180 {
181 max = (1 << bits) - 1;
182 retval = num > (unsigned long) max;
183 }
184 return retval;
185 }
186
187 /* get_operands () parses a string of operands and fills in a passed
188 array of expressions in EXP.
189
190 Note that we use O_absent expressions to record additional information
191 about the previous non-O_absent expression, such as ":m" or ":s"
192 modifiers or register numbers enclosed in parens like "(r10)".
193
194 Returns the number of expressions that were placed in EXP. */
195
196 static int
197 get_operands (exp)
198 expressionS exp[];
199 {
200 char *p = input_line_pointer;
201 int numexp = 0;
202 int parens = 0;
203
204 while (*p)
205 {
206 /* Skip leading whitespace. */
207 while (*p == ' ' || *p == '\t' || *p == ',')
208 p++;
209
210 /* Check to see if we have any operands left to parse. */
211 if (*p == 0 || *p == '\n' || *p == '\r')
212 break;
213
214 /* Notice scaling or direct memory operand modifiers and save them in
215 an O_absent expression after the expression that they modify. */
216
217 if (*p == ':')
218 {
219 p++;
220 exp[numexp].X_op = O_absent;
221 if (*p == 'm')
222 {
223 p++;
224 /* This is a ":m" modifier. */
225 exp[numexp].X_add_number = TIC80_OPERAND_M_SI | TIC80_OPERAND_M_LI;
226 }
227 else if (*p == 's')
228 {
229 p++;
230 /* This is a ":s" modifier. */
231 exp[numexp].X_add_number = TIC80_OPERAND_SCALED;
232 }
233 else
234 {
235 as_bad (_("':' not followed by 'm' or 's'"));
236 }
237 numexp++;
238 continue;
239 }
240
241 /* Handle leading '(' on operands that use them, by recording that we
242 have entered a paren nesting level and then continuing. We complain
243 about multiple nesting. */
244
245 if (*p == '(')
246 {
247 if (++parens != 1)
248 as_bad (_("paren nesting"));
249
250 p++;
251 continue;
252 }
253
254 /* Handle trailing ')' on operands that use them, by reducing the
255 nesting level and then continuing. We complain if there were too
256 many closures. */
257
258 if (*p == ')')
259 {
260 /* Record that we have left a paren group and continue. */
261 if (--parens < 0)
262 as_bad (_("mismatched parenthesis"));
263
264 p++;
265 continue;
266 }
267
268 /* Begin operand parsing at the current scan point. */
269
270 input_line_pointer = p;
271 expression (&exp[numexp]);
272
273 if (exp[numexp].X_op == O_illegal)
274 {
275 as_bad (_("illegal operand"));
276 }
277 else if (exp[numexp].X_op == O_absent)
278 {
279 as_bad (_("missing operand"));
280 }
281
282 numexp++;
283 p = input_line_pointer;
284 }
285
286 if (parens)
287 {
288 exp[numexp].X_op = O_absent;
289 exp[numexp++].X_add_number = TIC80_OPERAND_PARENS;
290 }
291
292 /* Mark the end of the valid operands with an illegal expression. */
293 exp[numexp].X_op = O_illegal;
294
295 return (numexp);
296 }
297
298 /* find_opcode() gets a pointer to the entry in the opcode table that
299 matches the instruction being assembled, or returns NULL if no such match
300 is found.
301
302 First it parses all the operands and save them as expressions. Note that
303 we use O_absent expressions to record additional information about the
304 previous non-O_absent expression, such as ":m" or ":s" modifiers or
305 register numbers enclosed in parens like "(r10)".
306
307 It then looks at all opcodes with the same name and uses the operands to
308 choose the correct opcode. */
309
310 static struct tic80_opcode *
311 find_opcode (opcode, myops)
312 struct tic80_opcode *opcode;
313 expressionS myops[];
314 {
315 int numexp; /* Number of expressions from parsing operands */
316 int expi; /* Index of current expression to match */
317 int opi; /* Index of current operand to match */
318 int match = 0; /* Set to 1 when an operand match is found */
319 struct tic80_opcode *opc = opcode; /* Pointer to current opcode table entry */
320 const struct tic80_opcode *end; /* Pointer to end of opcode table */
321
322 /* First parse all the operands so we only have to do it once. There may
323 be more expressions generated than there are operands. */
324
325 numexp = get_operands (myops);
326
327 /* For each opcode with the same name, try to match it against the parsed
328 operands. */
329
330 end = tic80_opcodes + tic80_num_opcodes;
331 while (!match && (opc < end) && (strcmp (opc->name, opcode->name) == 0))
332 {
333 /* Start off assuming a match. If we find a mismatch, then this is
334 reset and the operand/expr matching loop terminates with match
335 equal to zero, which allows us to try the next opcode. */
336
337 match = 1;
338
339 /* For each expression, try to match it against the current operand
340 for the current opcode. Upon any mismatch, we abandon further
341 matching for the current opcode table entry. */
342
343 for (expi = 0, opi = -1; (expi < numexp) && match; expi++)
344 {
345 int bits, flags, X_op, num;
346
347 X_op = myops[expi].X_op;
348 num = myops[expi].X_add_number;
349
350 /* The O_absent expressions apply to the same operand as the most
351 recent non O_absent expression. So only increment the operand
352 index when the current expression is not one of these special
353 expressions. */
354
355 if (X_op != O_absent)
356 {
357 opi++;
358 }
359
360 flags = tic80_operands[opc->operands[opi]].flags;
361 bits = tic80_operands[opc->operands[opi]].bits;
362
363 switch (X_op)
364 {
365 case O_register:
366 /* Also check that registers that are supposed to be
367 even actually are even. */
368 if (((flags & TIC80_OPERAND_GPR) != (num & TIC80_OPERAND_GPR)) ||
369 ((flags & TIC80_OPERAND_FPA) != (num & TIC80_OPERAND_FPA)) ||
370 ((flags & TIC80_OPERAND_CR) != (num & TIC80_OPERAND_CR)) ||
371 ((flags & TIC80_OPERAND_EVEN) && (num & 1)) ||
372 const_overflow (num & ~TIC80_OPERAND_MASK, bits, flags))
373 {
374 match = 0;
375 }
376 break;
377 case O_constant:
378 if ((flags & TIC80_OPERAND_ENDMASK) && (num == 32))
379 {
380 /* Endmask values of 0 and 32 give identical
381 results. */
382 num = 0;
383 }
384 if ((flags & (TIC80_OPERAND_FPA | TIC80_OPERAND_GPR)) ||
385 const_overflow (num, bits, flags))
386 {
387 match = 0;
388 }
389 break;
390 case O_symbol:
391 if ((bits < 32) && (flags & TIC80_OPERAND_PCREL)
392 && !tic80_relax)
393 {
394 /* The default is to prefer the short form of PC
395 relative relocations. This is the only form that
396 the TI assembler supports. If the -relax option
397 is given, we never use the short forms.
398 FIXME: Should be able to choose "best-fit". */
399 }
400 else if ((bits == 32)
401 #if 0
402 && (flags & TIC80_OPERAND_BASEREL)
403 #endif
404 )
405 {
406 /* The default is to prefer the long form of base
407 relative relocations. This is the only form that
408 the TI assembler supports. If the -no-relax
409 option is given, we always use the long form of
410 PC relative relocations.
411 FIXME: Should be able to choose "best-fit". */
412 }
413 else
414 {
415 /* Symbols that don't match one of the above cases are
416 rejected as an operand. */
417 match = 0;
418 }
419 break;
420 case O_absent:
421 /* If this is an O_absent expression, then it may be an
422 expression that supplies additional information about
423 the operand, such as ":m" or ":s" modifiers. Check to
424 see that the operand matches this requirement. */
425 if (!((num & flags & TIC80_OPERAND_M_SI)
426 || (num & flags & TIC80_OPERAND_M_LI)
427 || (num & flags & TIC80_OPERAND_SCALED)))
428 {
429 match = 0;
430 }
431 break;
432 case O_big:
433 if ((num > 0) || !(flags & TIC80_OPERAND_FLOAT))
434 {
435 match = 0;
436 }
437 break;
438 case O_illegal:
439 case O_symbol_rva:
440 case O_uminus:
441 case O_bit_not:
442 case O_logical_not:
443 case O_multiply:
444 case O_divide:
445 case O_modulus:
446 case O_left_shift:
447 case O_right_shift:
448 case O_bit_inclusive_or:
449 case O_bit_or_not:
450 case O_bit_exclusive_or:
451 case O_bit_and:
452 case O_add:
453 case O_subtract:
454 case O_eq:
455 case O_ne:
456 case O_lt:
457 case O_le:
458 case O_ge:
459 case O_gt:
460 case O_logical_and:
461 case O_logical_or:
462 case O_max:
463 default:
464 internal_error_a (_("unhandled expression type"), (long) X_op);
465 }
466 }
467 if (!match)
468 opc++;
469 }
470
471 return (match ? opc : NULL);
472
473 #if 0
474 /* Now search the opcode table table for one with operands that
475 matches what we've got. */
476
477 while (!match)
478 {
479 match = 1;
480 for (i = 0; opcode->operands[i]; i++)
481 {
482 int flags = tic80_operands[opcode->operands[i]].flags;
483 int X_op = myops[i].X_op;
484 int num = myops[i].X_add_number;
485
486 if (X_op == 0)
487 {
488 match = 0;
489 break;
490 }
491
492 if (flags
493 & (TIC80_OPERAND_GPR | TIC80_OPERAND_FPA | TIC80_OPERAND_CR))
494 {
495 if ((X_op != O_register) ||
496 ((flags & TIC80_OPERAND_GPR) != (num & TIC80_OPERAND_GPR)) ||
497 ((flags & TIC80_OPERAND_FPA) != (num & TIC80_OPERAND_FPA)) ||
498 ((flags & TIC80_OPERAND_CR) != (num & TIC80_OPERAND_CR)))
499 {
500 match = 0;
501 break;
502 }
503 }
504
505 if (((flags & TIC80_OPERAND_MINUS) && ((X_op != O_absent) || (num != TIC80_OPERAND_MINUS))) ||
506 ((flags & TIC80_OPERAND_PLUS) && ((X_op != O_absent) || (num != TIC80_OPERAND_PLUS))) ||
507 ((flags & TIC80_OPERAND_ATMINUS) && ((X_op != O_absent) || (num != TIC80_OPERAND_ATMINUS))) ||
508 ((flags & TIC80_OPERAND_ATPAR) && ((X_op != O_absent) || (num != TIC80_OPERAND_ATPAR))) ||
509 ((flags & TIC80_OPERAND_ATSIGN) && ((X_op != O_absent) || (num != TIC80_OPERAND_ATSIGN))))
510 {
511 match = 0;
512 break;
513 }
514 }
515 /* We're only done if the operands matched so far AND there
516 are no more to check. */
517 if (match && myops[i].X_op == 0)
518 break;
519 else
520 match = 0;
521
522 next_opcode = opcode + 1;
523 if (next_opcode->opcode == 0)
524 break;
525 if (strcmp (next_opcode->name, opcode->name))
526 break;
527 opcode = next_opcode;
528 }
529
530 if (!match)
531 {
532 as_bad (_("bad opcode or operands"));
533 return (0);
534 }
535
536 /* Check that all registers that are required to be even are.
537 Also, if any operands were marked as registers, but were really
538 symbols, fix that here. */
539 for (i = 0; opcode->operands[i]; i++)
540 {
541 if ((tic80_operands[opcode->operands[i]].flags & TIC80_OPERAND_EVEN)
542 && (myops[i].X_add_number & 1))
543 as_fatal (_("Register number must be EVEN"));
544 if (myops[i].X_op == O_register)
545 {
546 if (!(tic80_operands[opcode->operands[i]].flags & TIC80_OPERAND_REG))
547 {
548 myops[i].X_op = O_symbol;
549 myops[i].X_add_symbol =
550 symbol_find_or_make ((char *) myops[i].X_op_symbol);
551 myops[i].X_add_number = 0;
552 myops[i].X_op_symbol = NULL;
553 }
554 }
555 }
556 #endif
557 }
558
559 /* build_insn takes a pointer to the opcode entry in the opcode table
560 and the array of operand expressions and writes out the instruction.
561
562 Note that the opcode word and extended word may be written to different
563 frags, with the opcode at the end of one frag and the extension at the
564 beginning of the next. */
565
566 static void
567 build_insn (opcode, opers)
568 struct tic80_opcode *opcode;
569 expressionS *opers;
570 {
571 int expi; /* Index of current expression to match */
572 int opi; /* Index of current operand to match */
573 unsigned long insn[2]; /* Instruction and long immediate (if any) */
574 char *f; /* Pointer to frag location for insn[0] */
575 fragS *ffrag; /* Frag containing location f */
576 char *fx = NULL; /* Pointer to frag location for insn[1] */
577 fragS *fxfrag; /* Frag containing location fx */
578
579 /* Start with the raw opcode bits from the opcode table. */
580 insn[0] = opcode->opcode;
581
582 /* We are going to insert at least one 32 bit opcode so get the
583 frag now. */
584
585 f = frag_more (4);
586 ffrag = frag_now;
587
588 /* For each operand expression, insert the appropriate bits into the
589 instruction. */
590 for (expi = 0, opi = -1; opers[expi].X_op != O_illegal; expi++)
591 {
592 int bits, shift, flags, X_op, num;
593
594 X_op = opers[expi].X_op;
595 num = opers[expi].X_add_number;
596
597 /* The O_absent expressions apply to the same operand as the most
598 recent non O_absent expression. So only increment the operand
599 index when the current expression is not one of these special
600 expressions. */
601
602 if (X_op != O_absent)
603 {
604 opi++;
605 }
606
607 flags = tic80_operands[opcode->operands[opi]].flags;
608 bits = tic80_operands[opcode->operands[opi]].bits;
609 shift = tic80_operands[opcode->operands[opi]].shift;
610
611 switch (X_op)
612 {
613 case O_register:
614 num &= ~TIC80_OPERAND_MASK;
615 insn[0] = insn[0] | (num << shift);
616 break;
617 case O_constant:
618 if ((flags & TIC80_OPERAND_ENDMASK) && (num == 32))
619 {
620 /* Endmask values of 0 and 32 give identical results. */
621 num = 0;
622 }
623 else if ((flags & TIC80_OPERAND_BITNUM))
624 {
625 /* BITNUM values are stored in one's complement form. */
626 num = (~num & 0x1F);
627 }
628 /* Mask off upper bits, just it case it is signed and is
629 negative. */
630 if (bits < 32)
631 {
632 num &= (1 << bits) - 1;
633 insn[0] = insn[0] | (num << shift);
634 }
635 else
636 {
637 fx = frag_more (4);
638 fxfrag = frag_now;
639 insn[1] = num;
640 }
641 break;
642 case O_symbol:
643 if (bits == 32)
644 {
645 fx = frag_more (4);
646 fxfrag = frag_now;
647 insn[1] = 0;
648 if (flags & TIC80_OPERAND_PCREL)
649 {
650 fix_new_exp (fxfrag,
651 fx - (fxfrag->fr_literal),
652 4,
653 &opers[expi],
654 1,
655 R_MPPCR);
656 }
657 else
658 {
659 fix_new_exp (fxfrag,
660 fx - (fxfrag->fr_literal),
661 4,
662 &opers[expi],
663 0,
664 R_RELLONGX);
665 }
666 }
667 else if (flags & TIC80_OPERAND_PCREL)
668 {
669 fix_new_exp (ffrag,
670 f - (ffrag->fr_literal),
671 4, /* FIXME! how is this used? */
672 &opers[expi],
673 1,
674 R_MPPCR15W);
675 }
676 else
677 {
678 internal_error (_("symbol reloc that is not PC relative or 32 bits"));
679 }
680 break;
681 case O_absent:
682 /* Each O_absent expression can indicate exactly one
683 possible modifier. */
684 if ((num & TIC80_OPERAND_M_SI)
685 && (flags & TIC80_OPERAND_M_SI))
686 {
687 insn[0] = insn[0] | (1 << 17);
688 }
689 else if ((num & TIC80_OPERAND_M_LI)
690 && (flags & TIC80_OPERAND_M_LI))
691 {
692 insn[0] = insn[0] | (1 << 15);
693 }
694 else if ((num & TIC80_OPERAND_SCALED)
695 && (flags & TIC80_OPERAND_SCALED))
696 {
697 insn[0] = insn[0] | (1 << 11);
698 }
699 else if ((num & TIC80_OPERAND_PARENS)
700 && (flags & TIC80_OPERAND_PARENS))
701 {
702 /* No code to generate, just accept and discard this
703 expression. */
704 }
705 else
706 {
707 internal_error_a (_("unhandled operand modifier"),
708 (long) opers[expi].X_add_number);
709 }
710 break;
711 case O_big:
712 fx = frag_more (4);
713 fxfrag = frag_now;
714 {
715 int precision = 2;
716 long exponent_bits = 8L;
717 LITTLENUM_TYPE words[2];
718 /* Value is still in generic_floating_point_number. */
719 gen_to_words (words, precision, exponent_bits);
720 insn[1] = (words[0] << 16) | words[1];
721 }
722 break;
723 case O_illegal:
724 case O_symbol_rva:
725 case O_uminus:
726 case O_bit_not:
727 case O_logical_not:
728 case O_multiply:
729 case O_divide:
730 case O_modulus:
731 case O_left_shift:
732 case O_right_shift:
733 case O_bit_inclusive_or:
734 case O_bit_or_not:
735 case O_bit_exclusive_or:
736 case O_bit_and:
737 case O_add:
738 case O_subtract:
739 case O_eq:
740 case O_ne:
741 case O_lt:
742 case O_le:
743 case O_ge:
744 case O_gt:
745 case O_logical_and:
746 case O_logical_or:
747 case O_max:
748 default:
749 internal_error_a (_("unhandled expression"), (long) X_op);
750 break;
751 }
752 }
753
754 /* Write out the instruction, either 4 or 8 bytes. */
755
756 md_number_to_chars (f, insn[0], 4);
757 if (fx != NULL)
758 {
759 md_number_to_chars (fx, insn[1], 4);
760 }
761 }
762
763 /* This is the main entry point for the machine-dependent assembler. Gas
764 calls this function for each input line which does not contain a
765 pseudoop.
766
767 STR points to a NULL terminated machine dependent instruction. This
768 function is supposed to emit the frags/bytes it assembles to. */
769
770 void
771 md_assemble (str)
772 char *str;
773 {
774 char *scan;
775 unsigned char *input_line_save;
776 struct tic80_opcode *opcode;
777 expressionS myops[16];
778
779 /* Ensure there is something there to assemble. */
780 assert (str);
781
782 /* Drop any leading whitespace. */
783 while (ISSPACE (*str))
784 str++;
785
786 /* Isolate the mnemonic from the rest of the string by finding the first
787 whitespace character and zapping it to a null byte. */
788 for (scan = str; *scan != '\000' && !ISSPACE (*scan); scan++)
789 ;
790
791 if (*scan != '\000')
792 *scan++ = '\000';
793
794 /* Try to find this mnemonic in the hash table. */
795 if ((opcode = (struct tic80_opcode *) hash_find (tic80_hash, str)) == NULL)
796 {
797 as_bad (_("Invalid mnemonic: '%s'"), str);
798 return;
799 }
800
801 str = scan;
802 while (ISSPACE (*scan))
803 scan++;
804
805 input_line_save = input_line_pointer;
806 input_line_pointer = str;
807
808 opcode = find_opcode (opcode, myops);
809 if (opcode == NULL)
810 as_bad (_("Invalid operands: '%s'"), input_line_save);
811
812 input_line_pointer = input_line_save;
813 build_insn (opcode, myops);
814 }
815
816 /* This function is called once at the start of assembly, after the command
817 line arguments have been parsed and all the machine independent
818 initializations have been completed.
819
820 It should set up all the tables, etc., that the machine dependent part of
821 the assembler will need. */
822
823 void
824 md_begin ()
825 {
826 char *prev_name = "";
827 register const struct tic80_opcode *op;
828 register const struct tic80_opcode *op_end;
829 const struct predefined_symbol *pdsp;
830 extern int coff_flags; /* Defined in obj-coff.c */
831
832 /* Set F_AR32WR in coff_flags, which will end up in the file header
833 f_flags field. */
834
835 coff_flags |= F_AR32WR; /* TIc80 is 32 bit little endian. */
836
837 /* Insert unique names into hash table. The TIc80 instruction set
838 has many identical opcode names that have different opcodes based
839 on the operands. This hash table then provides a quick index to
840 the first opcode with a particular name in the opcode table. */
841
842 tic80_hash = hash_new ();
843 op_end = tic80_opcodes + tic80_num_opcodes;
844 for (op = tic80_opcodes; op < op_end; op++)
845 {
846 if (strcmp (prev_name, op->name) != 0)
847 {
848 prev_name = (char *) op->name;
849 hash_insert (tic80_hash, op->name, (char *) op);
850 }
851 }
852
853 /* Insert the predefined symbols into the symbol table. We use
854 symbol_create rather than symbol_new so that these symbols don't
855 end up in the object files' symbol table. Note that the values
856 of the predefined symbols include some upper bits that
857 distinguish the type of the symbol (register, bitnum, condition
858 code, etc) and these bits must be masked away before actually
859 inserting the values into the instruction stream. For registers
860 we put these bits in the symbol table since we use them later and
861 there is no question that they aren't part of the register
862 number. For constants we can't do that since the constant can be
863 any value, so they are masked off before putting them into the
864 symbol table. */
865
866 pdsp = NULL;
867 while ((pdsp = tic80_next_predefined_symbol (pdsp)) != NULL)
868 {
869 segT segment;
870 valueT valu;
871 int symtype;
872
873 symtype = PDS_VALUE (pdsp) & TIC80_OPERAND_MASK;
874 switch (symtype)
875 {
876 case TIC80_OPERAND_GPR:
877 case TIC80_OPERAND_FPA:
878 case TIC80_OPERAND_CR:
879 segment = reg_section;
880 valu = PDS_VALUE (pdsp);
881 break;
882 case TIC80_OPERAND_CC:
883 case TIC80_OPERAND_BITNUM:
884 segment = absolute_section;
885 valu = PDS_VALUE (pdsp) & ~TIC80_OPERAND_MASK;
886 break;
887 default:
888 internal_error_a (_("unhandled predefined symbol bits"),
889 (long) symtype);
890 break;
891 }
892 symbol_table_insert (symbol_create (PDS_NAME (pdsp), segment, valu,
893 &zero_address_frag));
894 }
895 }
896 \f
897 /* The assembler adds md_shortopts to the string passed to getopt. */
898
899 const char *md_shortopts = "";
900
901 /* The assembler adds md_longopts to the machine independent long options
902 that are passed to getopt. */
903
904 struct option md_longopts[] = {
905
906 #define OPTION_RELAX (OPTION_MD_BASE)
907 {"relax", no_argument, NULL, OPTION_RELAX},
908
909 #define OPTION_NO_RELAX (OPTION_RELAX + 1)
910 {"no-relax", no_argument, NULL, OPTION_NO_RELAX},
911
912 {NULL, no_argument, NULL, 0}
913 };
914
915 size_t md_longopts_size = sizeof (md_longopts);
916
917 /* The md_parse_option function will be called whenever getopt returns an
918 unrecognized code, presumably indicating a special code value which
919 appears in md_longopts for machine specific command line options. */
920
921 int
922 md_parse_option (c, arg)
923 int c;
924 char *arg ATTRIBUTE_UNUSED;
925 {
926 switch (c)
927 {
928 case OPTION_RELAX:
929 tic80_relax = 1;
930 break;
931 case OPTION_NO_RELAX:
932 tic80_relax = 0;
933 break;
934 default:
935 return (0);
936 }
937 return (1);
938 }
939
940 /* The md_show_usage function will be called whenever a usage message is
941 printed. It should print a description of the machine specific options
942 found in md_longopts. */
943
944 void
945 md_show_usage (stream)
946 FILE *stream;
947 {
948 fprintf (stream, "\
949 TIc80 options:\n\
950 -relax alter PC relative branch instructions to use long form when needed\n\
951 -no-relax always use short PC relative branch instructions, error on overflow\n");
952 }
953 \f
954 /* Attempt to simplify or even eliminate a fixup. The return value is
955 ignored; perhaps it was once meaningful, but now it is historical.
956 To indicate that a fixup has been eliminated, set fixP->fx_done. */
957
958 void
959 md_apply_fix3 (fixP, valP, seg)
960 fixS *fixP;
961 valueT * valP;
962 segT seg ATTRIBUTE_UNUSED;
963 {
964 long val = * (long *) valP;
965 char *dest = fixP->fx_frag->fr_literal + fixP->fx_where;
966 int overflow;
967
968 switch (fixP->fx_r_type)
969 {
970 case R_RELLONGX:
971 md_number_to_chars (dest, (valueT) val, 4);
972 break;
973 case R_MPPCR:
974 val >>= 2;
975 val += 1; /* Target address computed from inst start */
976 md_number_to_chars (dest, (valueT) val, 4);
977 break;
978 case R_MPPCR15W:
979 overflow = (val < -65536L) || (val > 65532L);
980 if (overflow)
981 {
982 as_bad_where (fixP->fx_file, fixP->fx_line,
983 _("PC offset 0x%lx outside range 0x%lx-0x%lx"),
984 val, -65536L, 65532L);
985 }
986 else
987 {
988 val >>= 2;
989 *dest++ = val & 0xFF;
990 val >>= 8;
991 *dest = (*dest & 0x80) | (val & 0x7F);
992 }
993 break;
994 case R_ABS:
995 md_number_to_chars (dest, (valueT) val, fixP->fx_size);
996 break;
997 default:
998 internal_error_a (_("unhandled relocation type in fixup"),
999 (long) fixP->fx_r_type);
1000 break;
1001 }
1002
1003 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
1004 fixP->fx_done = 1;
1005 }
1006 \f
1007 /* Functions concerning relocs. */
1008
1009 /* The location from which a PC relative jump should be calculated,
1010 given a PC relative reloc.
1011
1012 For the TIc80, this is the address of the 32 bit opcode containing
1013 the PC relative field. */
1014
1015 long
1016 md_pcrel_from (fixP)
1017 fixS *fixP;
1018 {
1019 return (fixP->fx_frag->fr_address + fixP->fx_where);
1020 }
1021
1022 /* Called after relax() is finished.
1023 * In: Address of frag.
1024 * fr_type == rs_machine_dependent.
1025 * fr_subtype is what the address relaxed to.
1026 *
1027 * Out: Any fixSs and constants are set up.
1028 * Caller will turn frag into a ".space 0".
1029 */
1030
1031 void
1032 md_convert_frag (headers, seg, fragP)
1033 object_headers *headers ATTRIBUTE_UNUSED;
1034 segT seg ATTRIBUTE_UNUSED;
1035 fragS *fragP ATTRIBUTE_UNUSED;
1036 {
1037 internal_error (_("md_convert_frag() not implemented yet"));
1038 abort ();
1039 }
1040 \f
1041 void
1042 tc_coff_symbol_emit_hook (ignore)
1043 symbolS *ignore ATTRIBUTE_UNUSED;
1044 {
1045 }
1046
1047 #if defined OBJ_COFF
1048
1049 short
1050 tc_coff_fix2rtype (fixP)
1051 fixS *fixP;
1052 {
1053 return (fixP->fx_r_type);
1054 }
1055
1056 #endif /* OBJ_COFF */
This page took 0.05706 seconds and 4 git commands to generate.