Convert unmaintained files over to ISO-C90 and fix formatting.
[deliverable/binutils-gdb.git] / gas / config / tc-tic80.c
1 /* tc-tic80.c -- Assemble for the TI TMS320C80 (MV)
2 Copyright 1996, 1997, 2000, 2001, 2002, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "as.h"
23 #include "safe-ctype.h"
24 #include "opcode/tic80.h"
25
26 #define internal_error(what) \
27 as_fatal (_("internal error:%s:%d: %s\n"), __FILE__, __LINE__, what)
28
29 #define internal_error_a(what,arg) \
30 as_fatal (_("internal error:%s:%d: %s %ld\n"), __FILE__, __LINE__, what, arg)
31 \f
32 /* Generic assembler global variables which must be defined by all
33 targets. */
34
35 /* Characters which always start a comment. */
36 const char comment_chars[] = ";";
37
38 /* Characters which start a comment at the beginning of a line. */
39 const char line_comment_chars[] = ";*#";
40
41 /* Characters which may be used to separate multiple commands on a single
42 line. The semicolon is such a character by default and should not be
43 explicitly listed. */
44 const char line_separator_chars[] = "";
45
46 /* Characters which are used to indicate an exponent in a floating
47 point number. */
48 const char EXP_CHARS[] = "eE";
49
50 /* Characters which mean that a number is a floating point constant,
51 as in 0f1.0. */
52 const char FLT_CHARS[] = "fF";
53
54 /* This table describes all the machine specific pseudo-ops the assembler
55 has to support. The fields are:
56
57 pseudo-op name without dot
58 function to call to execute this pseudo-op
59 integer arg to pass to the function */
60
61 const pseudo_typeS md_pseudo_table[] =
62 {
63 { "align", s_align_bytes, 4 }, /* Do byte alignment, default is a 4 byte boundary. */
64 { "word", cons, 4 }, /* FIXME: Should this be machine independent? */
65 { "bss", s_lcomm_bytes, 1 },
66 { "sect", obj_coff_section, 0}, /* For compatibility with TI tools. */
67 { "section", obj_coff_section, 0}, /* Standard COFF .section pseudo-op. */
68 { NULL, NULL, 0 }
69 };
70
71 /* Opcode hash table. */
72 static struct hash_control *tic80_hash;
73
74 /* Replace short PC relative instructions with long form when
75 necessary. Currently this is off by default or when given the
76 -no-relax option. Turning it on by using the -relax option forces
77 all PC relative instructions to use the long form, which is why it
78 is currently not the default. */
79 static int tic80_relax = 0;
80 \f
81 int
82 md_estimate_size_before_relax (fragS *fragP ATTRIBUTE_UNUSED,
83 segT segment_type ATTRIBUTE_UNUSED)
84 {
85 internal_error (_("Relaxation is a luxury we can't afford"));
86 return -1;
87 }
88
89 /* We have no need to default values of symbols. */
90
91 symbolS *
92 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
93 {
94 return NULL;
95 }
96
97 /* Turn a string in input_line_pointer into a floating point constant
98 of type TYPE, and store the appropriate bytes in *LITP. The number
99 of LITTLENUMS emitted is stored in *SIZEP. An error message is
100 returned, or NULL on OK. */
101
102 #define MAX_LITTLENUMS 4
103
104 char *
105 md_atof (int type, char *litP, int *sizeP)
106 {
107 int prec;
108 LITTLENUM_TYPE words[MAX_LITTLENUMS];
109 LITTLENUM_TYPE *wordP;
110 char *t;
111
112 switch (type)
113 {
114 case 'f':
115 case 'F':
116 case 's':
117 case 'S':
118 prec = 2;
119 break;
120
121 case 'd':
122 case 'D':
123 case 'r':
124 case 'R':
125 prec = 4;
126 break;
127
128 default:
129 *sizeP = 0;
130 return _("bad call to md_atof ()");
131 }
132
133 t = atof_ieee (input_line_pointer, type, words);
134 if (t)
135 input_line_pointer = t;
136
137 *sizeP = prec * sizeof (LITTLENUM_TYPE);
138
139 for (wordP = words; prec--;)
140 {
141 md_number_to_chars (litP, (valueT) (*wordP++), sizeof (LITTLENUM_TYPE));
142 litP += sizeof (LITTLENUM_TYPE);
143 }
144
145 return NULL;
146 }
147
148 /* Check to see if the constant value in NUM will fit in a field of
149 width BITS if it has flags FLAGS. */
150
151 static int
152 const_overflow (unsigned long num, int bits, int flags)
153 {
154 long min, max;
155 int retval = 0;
156
157 /* Only need to check fields less than 32 bits wide. */
158 if (bits >= 32)
159 return retval;
160
161 if (flags & TIC80_OPERAND_SIGNED)
162 {
163 max = (1 << (bits - 1)) - 1;
164 min = - (1 << (bits - 1));
165 retval = (long) num > max || (long) num < min;
166 }
167 else
168 {
169 max = (1 << bits) - 1;
170 retval = num > (unsigned long) max;
171 }
172 return retval;
173 }
174
175 /* get_operands () parses a string of operands and fills in a passed
176 array of expressions in EXP.
177
178 Note that we use O_absent expressions to record additional information
179 about the previous non-O_absent expression, such as ":m" or ":s"
180 modifiers or register numbers enclosed in parens like "(r10)".
181
182 Returns the number of expressions that were placed in EXP. */
183
184 static int
185 get_operands (expressionS exp[])
186 {
187 char *p = input_line_pointer;
188 int numexp = 0;
189 int parens = 0;
190
191 while (*p)
192 {
193 /* Skip leading whitespace. */
194 while (*p == ' ' || *p == '\t' || *p == ',')
195 p++;
196
197 /* Check to see if we have any operands left to parse. */
198 if (*p == 0 || *p == '\n' || *p == '\r')
199 break;
200
201 /* Notice scaling or direct memory operand modifiers and save them in
202 an O_absent expression after the expression that they modify. */
203
204 if (*p == ':')
205 {
206 p++;
207 exp[numexp].X_op = O_absent;
208 if (*p == 'm')
209 {
210 p++;
211 /* This is a ":m" modifier. */
212 exp[numexp].X_add_number = TIC80_OPERAND_M_SI | TIC80_OPERAND_M_LI;
213 }
214 else if (*p == 's')
215 {
216 p++;
217 /* This is a ":s" modifier. */
218 exp[numexp].X_add_number = TIC80_OPERAND_SCALED;
219 }
220 else
221 as_bad (_("':' not followed by 'm' or 's'"));
222
223 numexp++;
224 continue;
225 }
226
227 /* Handle leading '(' on operands that use them, by recording that we
228 have entered a paren nesting level and then continuing. We complain
229 about multiple nesting. */
230
231 if (*p == '(')
232 {
233 if (++parens != 1)
234 as_bad (_("paren nesting"));
235
236 p++;
237 continue;
238 }
239
240 /* Handle trailing ')' on operands that use them, by reducing the
241 nesting level and then continuing. We complain if there were too
242 many closures. */
243
244 if (*p == ')')
245 {
246 /* Record that we have left a paren group and continue. */
247 if (--parens < 0)
248 as_bad (_("mismatched parenthesis"));
249
250 p++;
251 continue;
252 }
253
254 /* Begin operand parsing at the current scan point. */
255 input_line_pointer = p;
256 expression (&exp[numexp]);
257
258 if (exp[numexp].X_op == O_illegal)
259 as_bad (_("illegal operand"));
260 else if (exp[numexp].X_op == O_absent)
261 as_bad (_("missing operand"));
262
263 numexp++;
264 p = input_line_pointer;
265 }
266
267 if (parens)
268 {
269 exp[numexp].X_op = O_absent;
270 exp[numexp++].X_add_number = TIC80_OPERAND_PARENS;
271 }
272
273 /* Mark the end of the valid operands with an illegal expression. */
274 exp[numexp].X_op = O_illegal;
275
276 return numexp;
277 }
278
279 /* find_opcode() gets a pointer to the entry in the opcode table that
280 matches the instruction being assembled, or returns NULL if no such match
281 is found.
282
283 First it parses all the operands and save them as expressions. Note that
284 we use O_absent expressions to record additional information about the
285 previous non-O_absent expression, such as ":m" or ":s" modifiers or
286 register numbers enclosed in parens like "(r10)".
287
288 It then looks at all opcodes with the same name and uses the operands to
289 choose the correct opcode. */
290
291 static struct tic80_opcode *
292 find_opcode (struct tic80_opcode *opcode, expressionS myops[])
293 {
294 int numexp; /* Number of expressions from parsing operands. */
295 int expi; /* Index of current expression to match. */
296 int opi; /* Index of current operand to match. */
297 int match = 0; /* Set to 1 when an operand match is found. */
298 struct tic80_opcode *opc = opcode; /* Pointer to current opcode table entry. */
299 const struct tic80_opcode *end; /* Pointer to end of opcode table. */
300
301 /* First parse all the operands so we only have to do it once. There may
302 be more expressions generated than there are operands. */
303 numexp = get_operands (myops);
304
305 /* For each opcode with the same name, try to match it against the parsed
306 operands. */
307 end = tic80_opcodes + tic80_num_opcodes;
308 while (!match && (opc < end) && (strcmp (opc->name, opcode->name) == 0))
309 {
310 /* Start off assuming a match. If we find a mismatch, then this is
311 reset and the operand/expr matching loop terminates with match
312 equal to zero, which allows us to try the next opcode. */
313 match = 1;
314
315 /* For each expression, try to match it against the current operand
316 for the current opcode. Upon any mismatch, we abandon further
317 matching for the current opcode table entry. */
318 for (expi = 0, opi = -1; (expi < numexp) && match; expi++)
319 {
320 int bits, flags, X_op, num;
321
322 X_op = myops[expi].X_op;
323 num = myops[expi].X_add_number;
324
325 /* The O_absent expressions apply to the same operand as the most
326 recent non O_absent expression. So only increment the operand
327 index when the current expression is not one of these special
328 expressions. */
329 if (X_op != O_absent)
330 opi++;
331
332 flags = tic80_operands[opc->operands[opi]].flags;
333 bits = tic80_operands[opc->operands[opi]].bits;
334
335 switch (X_op)
336 {
337 case O_register:
338 /* Also check that registers that are supposed to be
339 even actually are even. */
340 if (((flags & TIC80_OPERAND_GPR) != (num & TIC80_OPERAND_GPR)) ||
341 ((flags & TIC80_OPERAND_FPA) != (num & TIC80_OPERAND_FPA)) ||
342 ((flags & TIC80_OPERAND_CR) != (num & TIC80_OPERAND_CR)) ||
343 ((flags & TIC80_OPERAND_EVEN) && (num & 1)) ||
344 const_overflow (num & ~TIC80_OPERAND_MASK, bits, flags))
345 match = 0;
346 break;
347
348 case O_constant:
349 if ((flags & TIC80_OPERAND_ENDMASK) && (num == 32))
350 /* Endmask values of 0 and 32 give identical
351 results. */
352 num = 0;
353
354 if ((flags & (TIC80_OPERAND_FPA | TIC80_OPERAND_GPR)) ||
355 const_overflow (num, bits, flags))
356 match = 0;
357 break;
358
359 case O_symbol:
360 if ((bits < 32) && (flags & TIC80_OPERAND_PCREL)
361 && !tic80_relax)
362 {
363 /* The default is to prefer the short form of PC
364 relative relocations. This is the only form that
365 the TI assembler supports. If the -relax option
366 is given, we never use the short forms.
367 FIXME: Should be able to choose "best-fit". */
368 }
369 else if ((bits == 32))
370 {
371 /* The default is to prefer the long form of base
372 relative relocations. This is the only form that
373 the TI assembler supports. If the -no-relax
374 option is given, we always use the long form of
375 PC relative relocations.
376 FIXME: Should be able to choose "best-fit". */
377 }
378 else
379 {
380 /* Symbols that don't match one of the above cases are
381 rejected as an operand. */
382 match = 0;
383 }
384 break;
385
386 case O_absent:
387 /* If this is an O_absent expression, then it may be an
388 expression that supplies additional information about
389 the operand, such as ":m" or ":s" modifiers. Check to
390 see that the operand matches this requirement. */
391 if (!((num & flags & TIC80_OPERAND_M_SI)
392 || (num & flags & TIC80_OPERAND_M_LI)
393 || (num & flags & TIC80_OPERAND_SCALED)))
394 match = 0;
395 break;
396
397 case O_big:
398 if ((num > 0) || !(flags & TIC80_OPERAND_FLOAT))
399 match = 0;
400 break;
401
402 case O_illegal:
403 case O_symbol_rva:
404 case O_uminus:
405 case O_bit_not:
406 case O_logical_not:
407 case O_multiply:
408 case O_divide:
409 case O_modulus:
410 case O_left_shift:
411 case O_right_shift:
412 case O_bit_inclusive_or:
413 case O_bit_or_not:
414 case O_bit_exclusive_or:
415 case O_bit_and:
416 case O_add:
417 case O_subtract:
418 case O_eq:
419 case O_ne:
420 case O_lt:
421 case O_le:
422 case O_ge:
423 case O_gt:
424 case O_logical_and:
425 case O_logical_or:
426 case O_max:
427 default:
428 internal_error_a (_("unhandled expression type"), (long) X_op);
429 }
430 }
431 if (!match)
432 opc++;
433 }
434
435 return match ? opc : NULL;
436
437 }
438
439 /* build_insn takes a pointer to the opcode entry in the opcode table
440 and the array of operand expressions and writes out the instruction.
441
442 Note that the opcode word and extended word may be written to different
443 frags, with the opcode at the end of one frag and the extension at the
444 beginning of the next. */
445
446 static void
447 build_insn (struct tic80_opcode *opcode, expressionS *opers)
448 {
449 int expi; /* Index of current expression to match. */
450 int opi; /* Index of current operand to match. */
451 unsigned long insn[2]; /* Instruction and long immediate (if any). */
452 char *f; /* Pointer to frag location for insn[0]. */
453 fragS *ffrag; /* Frag containing location f. */
454 char *fx = NULL; /* Pointer to frag location for insn[1]. */
455 fragS *fxfrag; /* Frag containing location fx. */
456
457 /* Start with the raw opcode bits from the opcode table. */
458 insn[0] = opcode->opcode;
459 insn[1] = 0;
460
461 /* We are going to insert at least one 32 bit opcode so get the
462 frag now. */
463 f = frag_more (4);
464 ffrag = frag_now;
465
466 /* For each operand expression, insert the appropriate bits into the
467 instruction. */
468 for (expi = 0, opi = -1; opers[expi].X_op != O_illegal; expi++)
469 {
470 int bits, shift, flags, X_op, num;
471
472 X_op = opers[expi].X_op;
473 num = opers[expi].X_add_number;
474
475 /* The O_absent expressions apply to the same operand as the most
476 recent non O_absent expression. So only increment the operand
477 index when the current expression is not one of these special
478 expressions. */
479 if (X_op != O_absent)
480 opi++;
481
482 flags = tic80_operands[opcode->operands[opi]].flags;
483 bits = tic80_operands[opcode->operands[opi]].bits;
484 shift = tic80_operands[opcode->operands[opi]].shift;
485
486 switch (X_op)
487 {
488 case O_register:
489 num &= ~TIC80_OPERAND_MASK;
490 insn[0] = insn[0] | (num << shift);
491 break;
492
493 case O_constant:
494 if ((flags & TIC80_OPERAND_ENDMASK) && (num == 32))
495 /* Endmask values of 0 and 32 give identical results. */
496 num = 0;
497 else if ((flags & TIC80_OPERAND_BITNUM))
498 /* BITNUM values are stored in one's complement form. */
499 num = (~num & 0x1F);
500
501 /* Mask off upper bits, just it case it is signed and is
502 negative. */
503 if (bits < 32)
504 {
505 num &= (1 << bits) - 1;
506 insn[0] = insn[0] | (num << shift);
507 }
508 else
509 {
510 fx = frag_more (4);
511 fxfrag = frag_now;
512 insn[1] = num;
513 }
514 break;
515
516 case O_symbol:
517 if (bits == 32)
518 {
519 fx = frag_more (4);
520 fxfrag = frag_now;
521 insn[1] = 0;
522
523 if (flags & TIC80_OPERAND_PCREL)
524 fix_new_exp (fxfrag, fx - (fxfrag->fr_literal),
525 4, &opers[expi], 1, R_MPPCR);
526 else
527 fix_new_exp (fxfrag, fx - (fxfrag->fr_literal),
528 4, &opers[expi], 0, R_RELLONGX);
529 }
530 else if (flags & TIC80_OPERAND_PCREL)
531 fix_new_exp (ffrag, f - (ffrag->fr_literal),
532 4, /* FIXME! how is this used? */
533 &opers[expi], 1, R_MPPCR15W);
534 else
535 internal_error (_("symbol reloc that is not PC relative or 32 bits"));
536 break;
537
538 case O_absent:
539 /* Each O_absent expression can indicate exactly one
540 possible modifier. */
541 if ((num & TIC80_OPERAND_M_SI)
542 && (flags & TIC80_OPERAND_M_SI))
543 insn[0] = insn[0] | (1 << 17);
544 else if ((num & TIC80_OPERAND_M_LI)
545 && (flags & TIC80_OPERAND_M_LI))
546 insn[0] = insn[0] | (1 << 15);
547 else if ((num & TIC80_OPERAND_SCALED)
548 && (flags & TIC80_OPERAND_SCALED))
549 insn[0] = insn[0] | (1 << 11);
550 else if ((num & TIC80_OPERAND_PARENS)
551 && (flags & TIC80_OPERAND_PARENS))
552 /* No code to generate, just accept and discard this
553 expression. */
554 ;
555 else
556 internal_error_a (_("unhandled operand modifier"),
557 (long) opers[expi].X_add_number);
558 break;
559
560 case O_big:
561 fx = frag_more (4);
562 fxfrag = frag_now;
563
564 {
565 int precision = 2;
566 long exponent_bits = 8L;
567 LITTLENUM_TYPE words[2];
568
569 /* Value is still in generic_floating_point_number. */
570 gen_to_words (words, precision, exponent_bits);
571 insn[1] = (words[0] << 16) | words[1];
572 }
573 break;
574
575 case O_illegal:
576 case O_symbol_rva:
577 case O_uminus:
578 case O_bit_not:
579 case O_logical_not:
580 case O_multiply:
581 case O_divide:
582 case O_modulus:
583 case O_left_shift:
584 case O_right_shift:
585 case O_bit_inclusive_or:
586 case O_bit_or_not:
587 case O_bit_exclusive_or:
588 case O_bit_and:
589 case O_add:
590 case O_subtract:
591 case O_eq:
592 case O_ne:
593 case O_lt:
594 case O_le:
595 case O_ge:
596 case O_gt:
597 case O_logical_and:
598 case O_logical_or:
599 case O_max:
600 default:
601 internal_error_a (_("unhandled expression"), (long) X_op);
602 break;
603 }
604 }
605
606 /* Write out the instruction, either 4 or 8 bytes. */
607
608 md_number_to_chars (f, insn[0], 4);
609 if (fx != NULL)
610 md_number_to_chars (fx, insn[1], 4);
611 }
612
613 /* This is the main entry point for the machine-dependent assembler. Gas
614 calls this function for each input line which does not contain a
615 pseudoop.
616
617 STR points to a NULL terminated machine dependent instruction. This
618 function is supposed to emit the frags/bytes it assembles to. */
619
620 void
621 md_assemble (char *str)
622 {
623 char *scan;
624 char *input_line_save;
625 struct tic80_opcode *opcode;
626 expressionS myops[16];
627
628 /* Ensure there is something there to assemble. */
629 assert (str);
630
631 /* Drop any leading whitespace. */
632 while (ISSPACE (*str))
633 str++;
634
635 /* Isolate the mnemonic from the rest of the string by finding the first
636 whitespace character and zapping it to a null byte. */
637 for (scan = str; *scan != '\000' && !ISSPACE (*scan); scan++)
638 ;
639
640 if (*scan != '\000')
641 *scan++ = '\000';
642
643 /* Try to find this mnemonic in the hash table. */
644 if ((opcode = (struct tic80_opcode *) hash_find (tic80_hash, str)) == NULL)
645 {
646 as_bad (_("Invalid mnemonic: '%s'"), str);
647 return;
648 }
649
650 str = scan;
651 while (ISSPACE (*scan))
652 scan++;
653
654 input_line_save = input_line_pointer;
655 input_line_pointer = str;
656
657 opcode = find_opcode (opcode, myops);
658 if (opcode == NULL)
659 as_bad (_("Invalid operands: '%s'"), input_line_save);
660
661 input_line_pointer = input_line_save;
662 build_insn (opcode, myops);
663 }
664
665 /* This function is called once at the start of assembly, after the command
666 line arguments have been parsed and all the machine independent
667 initializations have been completed.
668
669 It should set up all the tables, etc., that the machine dependent part of
670 the assembler will need. */
671
672 void
673 md_begin (void)
674 {
675 char *prev_name = "";
676 register const struct tic80_opcode *op;
677 register const struct tic80_opcode *op_end;
678 const struct predefined_symbol *pdsp;
679 extern int coff_flags; /* Defined in obj-coff.c */
680
681 /* Set F_AR32WR in coff_flags, which will end up in the file header
682 f_flags field. */
683
684 coff_flags |= F_AR32WR; /* TIc80 is 32 bit little endian. */
685
686 /* Insert unique names into hash table. The TIc80 instruction set
687 has many identical opcode names that have different opcodes based
688 on the operands. This hash table then provides a quick index to
689 the first opcode with a particular name in the opcode table. */
690
691 tic80_hash = hash_new ();
692 op_end = tic80_opcodes + tic80_num_opcodes;
693 for (op = tic80_opcodes; op < op_end; op++)
694 {
695 if (strcmp (prev_name, op->name) != 0)
696 {
697 prev_name = (char *) op->name;
698 hash_insert (tic80_hash, op->name, (char *) op);
699 }
700 }
701
702 /* Insert the predefined symbols into the symbol table. We use
703 symbol_create rather than symbol_new so that these symbols don't
704 end up in the object files' symbol table. Note that the values
705 of the predefined symbols include some upper bits that
706 distinguish the type of the symbol (register, bitnum, condition
707 code, etc) and these bits must be masked away before actually
708 inserting the values into the instruction stream. For registers
709 we put these bits in the symbol table since we use them later and
710 there is no question that they aren't part of the register
711 number. For constants we can't do that since the constant can be
712 any value, so they are masked off before putting them into the
713 symbol table. */
714
715 pdsp = NULL;
716 while ((pdsp = tic80_next_predefined_symbol (pdsp)) != NULL)
717 {
718 segT segment;
719 valueT valu;
720 int symtype;
721
722 symtype = PDS_VALUE (pdsp) & TIC80_OPERAND_MASK;
723 switch (symtype)
724 {
725 case TIC80_OPERAND_GPR:
726 case TIC80_OPERAND_FPA:
727 case TIC80_OPERAND_CR:
728 segment = reg_section;
729 valu = PDS_VALUE (pdsp);
730 break;
731 case TIC80_OPERAND_CC:
732 case TIC80_OPERAND_BITNUM:
733 segment = absolute_section;
734 valu = PDS_VALUE (pdsp) & ~TIC80_OPERAND_MASK;
735 break;
736 default:
737 internal_error_a (_("unhandled predefined symbol bits"),
738 (long) symtype);
739 break;
740 }
741 symbol_table_insert (symbol_create (PDS_NAME (pdsp), segment, valu,
742 &zero_address_frag));
743 }
744 }
745 \f
746 /* The assembler adds md_shortopts to the string passed to getopt. */
747
748 const char *md_shortopts = "";
749
750 /* The assembler adds md_longopts to the machine independent long options
751 that are passed to getopt. */
752
753 struct option md_longopts[] =
754 {
755 #define OPTION_RELAX (OPTION_MD_BASE)
756 {"relax", no_argument, NULL, OPTION_RELAX},
757
758 #define OPTION_NO_RELAX (OPTION_RELAX + 1)
759 {"no-relax", no_argument, NULL, OPTION_NO_RELAX},
760
761 {NULL, no_argument, NULL, 0}
762 };
763
764 size_t md_longopts_size = sizeof (md_longopts);
765
766 /* The md_parse_option function will be called whenever getopt returns an
767 unrecognized code, presumably indicating a special code value which
768 appears in md_longopts for machine specific command line options. */
769
770 int
771 md_parse_option (int c, char *arg ATTRIBUTE_UNUSED)
772 {
773 switch (c)
774 {
775 case OPTION_RELAX:
776 tic80_relax = 1;
777 break;
778 case OPTION_NO_RELAX:
779 tic80_relax = 0;
780 break;
781 default:
782 return 0;
783 }
784 return 1;
785 }
786
787 /* The md_show_usage function will be called whenever a usage message is
788 printed. It should print a description of the machine specific options
789 found in md_longopts. */
790
791 void
792 md_show_usage (FILE *stream)
793 {
794 fprintf (stream, "\
795 TIc80 options:\n\
796 -relax alter PC relative branch instructions to use long form when needed\n\
797 -no-relax always use short PC relative branch instructions, error on overflow\n");
798 }
799 \f
800 /* Attempt to simplify or even eliminate a fixup. The return value is
801 ignored; perhaps it was once meaningful, but now it is historical.
802 To indicate that a fixup has been eliminated, set fixP->fx_done. */
803
804 void
805 md_apply_fix3 (fixS *fixP, valueT * valP, segT seg ATTRIBUTE_UNUSED)
806 {
807 long val = * (long *) valP;
808 char *dest = fixP->fx_frag->fr_literal + fixP->fx_where;
809 int overflow;
810
811 switch (fixP->fx_r_type)
812 {
813 case R_RELLONGX:
814 md_number_to_chars (dest, (valueT) val, 4);
815 break;
816 case R_MPPCR:
817 val >>= 2;
818 val += 1; /* Target address computed from inst start. */
819 md_number_to_chars (dest, (valueT) val, 4);
820 break;
821 case R_MPPCR15W:
822 overflow = (val < -65536L) || (val > 65532L);
823 if (overflow)
824 as_bad_where (fixP->fx_file, fixP->fx_line,
825 _("PC offset 0x%lx outside range 0x%lx-0x%lx"),
826 val, -65536L, 65532L);
827 else
828 {
829 val >>= 2;
830 *dest++ = val & 0xFF;
831 val >>= 8;
832 *dest = (*dest & 0x80) | (val & 0x7F);
833 }
834 break;
835
836 case R_ABS:
837 md_number_to_chars (dest, (valueT) val, fixP->fx_size);
838 break;
839
840 default:
841 internal_error_a (_("unhandled relocation type in fixup"),
842 (long) fixP->fx_r_type);
843 break;
844 }
845
846 if (fixP->fx_addsy == NULL && fixP->fx_pcrel == 0)
847 fixP->fx_done = 1;
848 }
849 \f
850 /* Functions concerning relocs. */
851
852 /* The location from which a PC relative jump should be calculated,
853 given a PC relative reloc.
854
855 For the TIc80, this is the address of the 32 bit opcode containing
856 the PC relative field. */
857
858 long
859 md_pcrel_from (fixS *fixP)
860 {
861 return (fixP->fx_frag->fr_address + fixP->fx_where);
862 }
863
864 /* Called after relax() is finished.
865 In: Address of frag.
866 fr_type == rs_machine_dependent.
867 fr_subtype is what the address relaxed to.
868
869 Out: Any fixSs and constants are set up.
870 Caller will turn frag into a ".space 0". */
871
872 void
873 md_convert_frag (object_headers *headers ATTRIBUTE_UNUSED,
874 segT seg ATTRIBUTE_UNUSED,
875 fragS *fragP ATTRIBUTE_UNUSED)
876 {
877 internal_error (_("md_convert_frag() not implemented yet"));
878 abort ();
879 }
880 \f
881 void
882 tc_coff_symbol_emit_hook (symbolS *ignore ATTRIBUTE_UNUSED)
883 {
884 }
885
886 #if defined OBJ_COFF
887
888 short
889 tc_coff_fix2rtype (fixS *fixP)
890 {
891 return (fixP->fx_r_type);
892 }
893
894 #endif /* OBJ_COFF */
This page took 0.095072 seconds and 4 git commands to generate.