Fix uninitialised VAX insn
[deliverable/binutils-gdb.git] / gas / config / tc-vax.c
1 /* tc-vax.c - vax-specific -
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "as.h"
22
23 #include "vax-inst.h"
24 #include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
25 #include "subsegs.h"
26 #include "safe-ctype.h"
27
28 #ifdef OBJ_ELF
29 #include "elf/vax.h"
30 #endif
31
32 /* These chars start a comment anywhere in a source file (except inside
33 another comment */
34 const char comment_chars[] = "#";
35
36 /* These chars only start a comment at the beginning of a line. */
37 /* Note that for the VAX the are the same as comment_chars above. */
38 const char line_comment_chars[] = "#";
39
40 const char line_separator_chars[] = ";";
41
42 /* Chars that can be used to separate mant from exp in floating point nums. */
43 const char EXP_CHARS[] = "eE";
44
45 /* Chars that mean this number is a floating point constant
46 as in 0f123.456
47 or 0H1.234E-12 (see exp chars above). */
48 const char FLT_CHARS[] = "dDfFgGhH";
49
50 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
51 changed in read.c . Ideally it shouldn't have to know about it at all,
52 but nothing is ideal around here. */
53
54 /* Hold details of an operand expression. */
55 static expressionS exp_of_operand[VIT_MAX_OPERANDS];
56 static segT seg_of_operand[VIT_MAX_OPERANDS];
57
58 /* A vax instruction after decoding. */
59 static struct vit v;
60
61 /* Hold details of big operands. */
62 LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
63 FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
64 /* Above is made to point into big_operand_bits by md_begin(). */
65
66 #ifdef OBJ_ELF
67 #define GLOBAL_OFFSET_TABLE_NAME "_GLOBAL_OFFSET_TABLE_"
68 #define PROCEDURE_LINKAGE_TABLE_NAME "_PROCEDURE_LINKAGE_TABLE_"
69 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
70 symbolS *PLT_symbol; /* Pre-defined "_PROCEDURE_LINKAGE_TABLE_". */
71 #endif
72
73 int flag_hash_long_names; /* -+ */
74 int flag_one; /* -1 */
75 int flag_show_after_trunc; /* -H */
76 int flag_no_hash_mixed_case; /* -h NUM */
77 #ifdef OBJ_ELF
78 int flag_want_pic; /* -k */
79 #endif
80 \f
81 /* For VAX, relative addresses of "just the right length" are easy.
82 The branch displacement is always the last operand, even in
83 synthetic instructions.
84 For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
85
86 4 3 2 1 0 bit number
87 ---/ /--+-------+-------+-------+-------+-------+
88 | what state ? | how long ? |
89 ---/ /--+-------+-------+-------+-------+-------+
90
91 The "how long" bits are 00=byte, 01=word, 10=long.
92 This is a Un*x convention.
93 Not all lengths are legit for a given value of (what state).
94 The "how long" refers merely to the displacement length.
95 The address usually has some constant bytes in it as well.
96
97 groups for VAX address relaxing.
98
99 1. "foo" pc-relative.
100 length of byte, word, long
101
102 2a. J<cond> where <cond> is a simple flag test.
103 length of byte, word, long.
104 VAX opcodes are: (Hex)
105 bneq/bnequ 12
106 beql/beqlu 13
107 bgtr 14
108 bleq 15
109 bgeq 18
110 blss 19
111 bgtru 1a
112 blequ 1b
113 bvc 1c
114 bvs 1d
115 bgequ/bcc 1e
116 blssu/bcs 1f
117 Always, you complement 0th bit to reverse condition.
118 Always, 1-byte opcode, then 1-byte displacement.
119
120 2b. J<cond> where cond tests a memory bit.
121 length of byte, word, long.
122 Vax opcodes are: (Hex)
123 bbs e0
124 bbc e1
125 bbss e2
126 bbcs e3
127 bbsc e4
128 bbcc e5
129 Always, you complement 0th bit to reverse condition.
130 Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
131
132 2c. J<cond> where cond tests low-order memory bit
133 length of byte,word,long.
134 Vax opcodes are: (Hex)
135 blbs e8
136 blbc e9
137 Always, you complement 0th bit to reverse condition.
138 Always, 1-byte opcode, longword-address, 1-byte displacement.
139
140 3. Jbs/Jbr.
141 length of byte,word,long.
142 Vax opcodes are: (Hex)
143 bsbb 10
144 brb 11
145 These are like (2) but there is no condition to reverse.
146 Always, 1 byte opcode, then displacement/absolute.
147
148 4a. JacbX
149 length of word, long.
150 Vax opcodes are: (Hex)
151 acbw 3d
152 acbf 4f
153 acbd 6f
154 abcb 9d
155 acbl f1
156 acbg 4ffd
157 acbh 6ffd
158 Always, we cannot reverse the sense of the branch; we have a word
159 displacement.
160 The double-byte op-codes don't hurt: we never want to modify the
161 opcode, so we don't care how many bytes are between the opcode and
162 the operand.
163
164 4b. JXobXXX
165 length of long, long, byte.
166 Vax opcodes are: (Hex)
167 aoblss f2
168 aobleq f3
169 sobgeq f4
170 sobgtr f5
171 Always, we cannot reverse the sense of the branch; we have a byte
172 displacement.
173
174 The only time we need to modify the opcode is for class 2 instructions.
175 After relax() we may complement the lowest order bit of such instruction
176 to reverse sense of branch.
177
178 For class 2 instructions, we store context of "where is the opcode literal".
179 We can change an opcode's lowest order bit without breaking anything else.
180
181 We sometimes store context in the operand literal. This way we can figure out
182 after relax() what the original addressing mode was. */
183 \f
184 /* These displacements are relative to the start address of the
185 displacement. The first letter is Byte, Word. 2nd letter is
186 Forward, Backward. */
187 #define BF (1+ 127)
188 #define BB (1+-128)
189 #define WF (2+ 32767)
190 #define WB (2+-32768)
191 /* Dont need LF, LB because they always reach. [They are coded as 0.] */
192
193 #define C(a,b) ENCODE_RELAX(a,b)
194 /* This macro has no side-effects. */
195 #define ENCODE_RELAX(what,length) (((what) << 2) + (length))
196 #define RELAX_STATE(s) ((s) >> 2)
197 #define RELAX_LENGTH(s) ((s) & 3)
198
199 const relax_typeS md_relax_table[] =
200 {
201 {1, 1, 0, 0}, /* error sentinel 0,0 */
202 {1, 1, 0, 0}, /* unused 0,1 */
203 {1, 1, 0, 0}, /* unused 0,2 */
204 {1, 1, 0, 0}, /* unused 0,3 */
205
206 {BF + 1, BB + 1, 2, C (1, 1)},/* B^"foo" 1,0 */
207 {WF + 1, WB + 1, 3, C (1, 2)},/* W^"foo" 1,1 */
208 {0, 0, 5, 0}, /* L^"foo" 1,2 */
209 {1, 1, 0, 0}, /* unused 1,3 */
210
211 {BF, BB, 1, C (2, 1)}, /* b<cond> B^"foo" 2,0 */
212 {WF + 2, WB + 2, 4, C (2, 2)},/* br.+? brw X 2,1 */
213 {0, 0, 7, 0}, /* br.+? jmp X 2,2 */
214 {1, 1, 0, 0}, /* unused 2,3 */
215
216 {BF, BB, 1, C (3, 1)}, /* brb B^foo 3,0 */
217 {WF, WB, 2, C (3, 2)}, /* brw W^foo 3,1 */
218 {0, 0, 5, 0}, /* Jmp L^foo 3,2 */
219 {1, 1, 0, 0}, /* unused 3,3 */
220
221 {1, 1, 0, 0}, /* unused 4,0 */
222 {WF, WB, 2, C (4, 2)}, /* acb_ ^Wfoo 4,1 */
223 {0, 0, 10, 0}, /* acb_,br,jmp L^foo4,2 */
224 {1, 1, 0, 0}, /* unused 4,3 */
225
226 {BF, BB, 1, C (5, 1)}, /* Xob___,,foo 5,0 */
227 {WF + 4, WB + 4, 6, C (5, 2)},/* Xob.+2,brb.+3,brw5,1 */
228 {0, 0, 9, 0}, /* Xob.+2,brb.+6,jmp5,2 */
229 {1, 1, 0, 0}, /* unused 5,3 */
230 };
231
232 #undef C
233 #undef BF
234 #undef BB
235 #undef WF
236 #undef WB
237
238 void float_cons (int);
239 int flonum_gen2vax (char, FLONUM_TYPE *, LITTLENUM_TYPE *);
240
241 const pseudo_typeS md_pseudo_table[] =
242 {
243 {"dfloat", float_cons, 'd'},
244 {"ffloat", float_cons, 'f'},
245 {"gfloat", float_cons, 'g'},
246 {"hfloat", float_cons, 'h'},
247 {"d_floating", float_cons, 'd'},
248 {"f_floating", float_cons, 'f'},
249 {"g_floating", float_cons, 'g'},
250 {"h_floating", float_cons, 'h'},
251 {NULL, NULL, 0},
252 };
253
254 #define STATE_PC_RELATIVE (1)
255 #define STATE_CONDITIONAL_BRANCH (2)
256 #define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
257 #define STATE_COMPLEX_BRANCH (4)
258 #define STATE_COMPLEX_HOP (5)
259
260 #define STATE_BYTE (0)
261 #define STATE_WORD (1)
262 #define STATE_LONG (2)
263 #define STATE_UNDF (3) /* Symbol undefined in pass1. */
264
265 #define min(a, b) ((a) < (b) ? (a) : (b))
266 \f
267 void
268 md_number_to_chars (char con[], valueT value, int nbytes)
269 {
270 number_to_chars_littleendian (con, value, nbytes);
271 }
272
273 /* Fix up some data or instructions after we find out the value of a symbol
274 that they reference. */
275
276 void /* Knows about order of bytes in address. */
277 md_apply_fix (fixS *fixP, valueT *valueP, segT seg ATTRIBUTE_UNUSED)
278 {
279 valueT value = * valueP;
280
281 if (fixP->fx_subsy != (symbolS *) NULL)
282 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
283
284 if (fixP->fx_addsy == NULL)
285 fixP->fx_done = 1;
286
287 if (fixP->fx_done)
288 number_to_chars_littleendian (fixP->fx_where + fixP->fx_frag->fr_literal,
289 value, fixP->fx_size);
290 else
291 /* Initialise the part of an instruction frag covered by the
292 relocation. (Many occurrences of frag_more followed by fix_new
293 lack any init of the frag.) Since VAX uses RELA relocs the
294 value we write into this field doesn't really matter. */
295 memset (fixP->fx_where + fixP->fx_frag->fr_literal, 0, fixP->fx_size);
296 }
297
298 /* Convert a number from VAX byte order (little endian)
299 into host byte order.
300 con is the buffer to convert,
301 nbytes is the length of the given buffer. */
302 static long
303 md_chars_to_number (unsigned char con[], int nbytes)
304 {
305 long retval;
306
307 for (retval = 0, con += nbytes - 1; nbytes--; con--)
308 {
309 retval <<= BITS_PER_CHAR;
310 retval |= *con;
311 }
312 return retval;
313 }
314
315 /* Copy a bignum from in to out.
316 If the output is shorter than the input, copy lower-order
317 littlenums. Return 0 or the number of significant littlenums
318 dropped. Assumes littlenum arrays are densely packed: no unused
319 chars between the littlenums. Uses memcpy() to move littlenums, and
320 wants to know length (in chars) of the input bignum. */
321
322 static int
323 bignum_copy (LITTLENUM_TYPE *in,
324 int in_length, /* in sizeof(littlenum)s */
325 LITTLENUM_TYPE *out,
326 int out_length /* in sizeof(littlenum)s */)
327 {
328 int significant_littlenums_dropped;
329
330 if (out_length < in_length)
331 {
332 LITTLENUM_TYPE *p; /* -> most significant (non-zero) input
333 littlenum. */
334
335 memcpy ((void *) out, (void *) in,
336 (unsigned int) out_length << LITTLENUM_SHIFT);
337 for (p = in + in_length - 1; p >= in; --p)
338 {
339 if (*p)
340 break;
341 }
342 significant_littlenums_dropped = p - in - in_length + 1;
343
344 if (significant_littlenums_dropped < 0)
345 significant_littlenums_dropped = 0;
346 }
347 else
348 {
349 memcpy ((char *) out, (char *) in,
350 (unsigned int) in_length << LITTLENUM_SHIFT);
351
352 if (out_length > in_length)
353 memset ((char *) (out + in_length), '\0',
354 (unsigned int) (out_length - in_length) << LITTLENUM_SHIFT);
355
356 significant_littlenums_dropped = 0;
357 }
358
359 return significant_littlenums_dropped;
360 }
361 \f
362 /* md_estimate_size_before_relax(), called just before relax().
363 Any symbol that is now undefined will not become defined.
364 Return the correct fr_subtype in the frag and the growth beyond
365 fr_fix. */
366 int
367 md_estimate_size_before_relax (fragS *fragP, segT segment)
368 {
369 if (RELAX_LENGTH (fragP->fr_subtype) == STATE_UNDF)
370 {
371 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
372 #ifdef OBJ_ELF
373 || S_IS_WEAK (fragP->fr_symbol)
374 || S_IS_EXTERNAL (fragP->fr_symbol)
375 #endif
376 )
377 {
378 /* Non-relaxable cases. */
379 int reloc_type = NO_RELOC;
380 char *p;
381 int old_fr_fix;
382
383 old_fr_fix = fragP->fr_fix;
384 p = fragP->fr_literal + old_fr_fix;
385 #ifdef OBJ_ELF
386 /* If this is to an undefined symbol, then if it's an indirect
387 reference indicate that is can mutated into a GLOB_DAT or
388 JUMP_SLOT by the loader. We restrict ourselves to no offset
389 due to a limitation in the NetBSD linker. */
390
391 if (GOT_symbol == NULL)
392 GOT_symbol = symbol_find (GLOBAL_OFFSET_TABLE_NAME);
393 if (PLT_symbol == NULL)
394 PLT_symbol = symbol_find (PROCEDURE_LINKAGE_TABLE_NAME);
395 if ((GOT_symbol == NULL || fragP->fr_symbol != GOT_symbol)
396 && (PLT_symbol == NULL || fragP->fr_symbol != PLT_symbol)
397 && fragP->fr_symbol != NULL
398 && flag_want_pic
399 && (!S_IS_DEFINED (fragP->fr_symbol)
400 || S_IS_WEAK (fragP->fr_symbol)
401 || S_IS_EXTERNAL (fragP->fr_symbol)))
402 {
403 /* Indirect references cannot go through the GOT or PLT,
404 let's hope they'll become local in the final link. */
405 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragP->fr_symbol))
406 != STV_DEFAULT)
407 || (p[0] & 0x10))
408 reloc_type = BFD_RELOC_32_PCREL;
409 else if (((unsigned char *) fragP->fr_opcode)[0] == VAX_CALLS
410 || ((unsigned char *) fragP->fr_opcode)[0] == VAX_CALLG
411 || ((unsigned char *) fragP->fr_opcode)[0] == VAX_JSB
412 || ((unsigned char *) fragP->fr_opcode)[0] == VAX_JMP
413 || S_IS_FUNCTION (fragP->fr_symbol))
414 reloc_type = BFD_RELOC_32_PLT_PCREL;
415 else
416 reloc_type = BFD_RELOC_32_GOT_PCREL;
417 }
418 #endif
419 switch (RELAX_STATE (fragP->fr_subtype))
420 {
421 case STATE_PC_RELATIVE:
422 p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
423 fragP->fr_fix += 1 + 4;
424 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
425 fragP->fr_offset, 1, reloc_type);
426 break;
427
428 case STATE_CONDITIONAL_BRANCH:
429 *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
430 p[0] = 6;
431 p[1] = VAX_JMP;
432 p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
433 fragP->fr_fix += 1 + 1 + 1 + 4;
434 fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol,
435 fragP->fr_offset, 1, NO_RELOC);
436 break;
437
438 case STATE_COMPLEX_BRANCH:
439 p[0] = 2;
440 p[1] = 0;
441 p[2] = VAX_BRB;
442 p[3] = 6;
443 p[4] = VAX_JMP;
444 p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
445 fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
446 fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol,
447 fragP->fr_offset, 1, NO_RELOC);
448 break;
449
450 case STATE_COMPLEX_HOP:
451 p[0] = 2;
452 p[1] = VAX_BRB;
453 p[2] = 6;
454 p[3] = VAX_JMP;
455 p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
456 fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
457 fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol,
458 fragP->fr_offset, 1, NO_RELOC);
459 break;
460
461 case STATE_ALWAYS_BRANCH:
462 *fragP->fr_opcode += VAX_WIDEN_LONG;
463 p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
464 fragP->fr_fix += 1 + 4;
465 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol,
466 fragP->fr_offset, 1, NO_RELOC);
467 break;
468
469 default:
470 abort ();
471 }
472 frag_wane (fragP);
473
474 /* Return the growth in the fixed part of the frag. */
475 return fragP->fr_fix - old_fr_fix;
476 }
477
478 /* Relaxable cases. Set up the initial guess for the variable
479 part of the frag. */
480 switch (RELAX_STATE (fragP->fr_subtype))
481 {
482 case STATE_PC_RELATIVE:
483 fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
484 break;
485 case STATE_CONDITIONAL_BRANCH:
486 fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
487 break;
488 case STATE_COMPLEX_BRANCH:
489 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
490 break;
491 case STATE_COMPLEX_HOP:
492 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
493 break;
494 case STATE_ALWAYS_BRANCH:
495 fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
496 break;
497 }
498 }
499
500 if (fragP->fr_subtype >= sizeof (md_relax_table) / sizeof (md_relax_table[0]))
501 abort ();
502
503 /* Return the size of the variable part of the frag. */
504 return md_relax_table[fragP->fr_subtype].rlx_length;
505 }
506 \f
507 /* Called after relax() is finished.
508 In: Address of frag.
509 fr_type == rs_machine_dependent.
510 fr_subtype is what the address relaxed to.
511
512 Out: Any fixSs and constants are set up.
513 Caller will turn frag into a ".space 0". */
514 void
515 md_convert_frag (bfd *headers ATTRIBUTE_UNUSED,
516 segT seg ATTRIBUTE_UNUSED,
517 fragS *fragP)
518 {
519 char *addressP; /* -> _var to change. */
520 char *opcodeP; /* -> opcode char(s) to change. */
521 short int extension = 0; /* Size of relaxed address. */
522 /* Added to fr_fix: incl. ALL var chars. */
523 symbolS *symbolP;
524 long where;
525
526 know (fragP->fr_type == rs_machine_dependent);
527 where = fragP->fr_fix;
528 addressP = fragP->fr_literal + where;
529 opcodeP = fragP->fr_opcode;
530 symbolP = fragP->fr_symbol;
531 know (symbolP);
532
533 switch (fragP->fr_subtype)
534 {
535 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
536 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
537 addressP[0] |= 0xAF; /* Byte displacement. */
538 fix_new (fragP, fragP->fr_fix + 1, 1, fragP->fr_symbol,
539 fragP->fr_offset, 1, NO_RELOC);
540 extension = 2;
541 break;
542
543 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
544 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
545 addressP[0] |= 0xCF; /* Word displacement. */
546 fix_new (fragP, fragP->fr_fix + 1, 2, fragP->fr_symbol,
547 fragP->fr_offset, 1, NO_RELOC);
548 extension = 3;
549 break;
550
551 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
552 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
553 addressP[0] |= 0xEF; /* Long word displacement. */
554 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
555 fragP->fr_offset, 1, NO_RELOC);
556 extension = 5;
557 break;
558
559 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
560 fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol,
561 fragP->fr_offset, 1, NO_RELOC);
562 extension = 1;
563 break;
564
565 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
566 opcodeP[0] ^= 1; /* Reverse sense of test. */
567 addressP[0] = 3;
568 addressP[1] = VAX_BRW;
569 fix_new (fragP, fragP->fr_fix + 2, 2, fragP->fr_symbol,
570 fragP->fr_offset, 1, NO_RELOC);
571 extension = 4;
572 break;
573
574 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
575 opcodeP[0] ^= 1; /* Reverse sense of test. */
576 addressP[0] = 6;
577 addressP[1] = VAX_JMP;
578 addressP[2] = VAX_PC_RELATIVE_MODE;
579 fix_new (fragP, fragP->fr_fix + 3, 4, fragP->fr_symbol,
580 fragP->fr_offset, 1, NO_RELOC);
581 extension = 7;
582 break;
583
584 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
585 fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol,
586 fragP->fr_offset, 1, NO_RELOC);
587 extension = 1;
588 break;
589
590 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
591 opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
592 fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol, fragP->fr_offset,
593 1, NO_RELOC);
594 extension = 2;
595 break;
596
597 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
598 opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
599 addressP[0] = VAX_PC_RELATIVE_MODE;
600 fix_new (fragP, fragP->fr_fix + 1, 4, fragP->fr_symbol,
601 fragP->fr_offset, 1, NO_RELOC);
602 extension = 5;
603 break;
604
605 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
606 fix_new (fragP, fragP->fr_fix, 2, fragP->fr_symbol,
607 fragP->fr_offset, 1, NO_RELOC);
608 extension = 2;
609 break;
610
611 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
612 addressP[0] = 2;
613 addressP[1] = 0;
614 addressP[2] = VAX_BRB;
615 addressP[3] = 6;
616 addressP[4] = VAX_JMP;
617 addressP[5] = VAX_PC_RELATIVE_MODE;
618 fix_new (fragP, fragP->fr_fix + 6, 4, fragP->fr_symbol,
619 fragP->fr_offset, 1, NO_RELOC);
620 extension = 10;
621 break;
622
623 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
624 fix_new (fragP, fragP->fr_fix, 1, fragP->fr_symbol,
625 fragP->fr_offset, 1, NO_RELOC);
626 extension = 1;
627 break;
628
629 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
630 addressP[0] = 2;
631 addressP[1] = VAX_BRB;
632 addressP[2] = 3;
633 addressP[3] = VAX_BRW;
634 fix_new (fragP, fragP->fr_fix + 4, 2, fragP->fr_symbol,
635 fragP->fr_offset, 1, NO_RELOC);
636 extension = 6;
637 break;
638
639 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
640 addressP[0] = 2;
641 addressP[1] = VAX_BRB;
642 addressP[2] = 6;
643 addressP[3] = VAX_JMP;
644 addressP[4] = VAX_PC_RELATIVE_MODE;
645 fix_new (fragP, fragP->fr_fix + 5, 4, fragP->fr_symbol,
646 fragP->fr_offset, 1, NO_RELOC);
647 extension = 9;
648 break;
649
650 default:
651 BAD_CASE (fragP->fr_subtype);
652 break;
653 }
654 fragP->fr_fix += extension;
655 }
656
657 /* Translate internal format of relocation info into target format.
658
659 On vax: first 4 bytes are normal unsigned long, next three bytes
660 are symbolnum, least sig. byte first. Last byte is broken up with
661 the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
662 bit 0 as pcrel. */
663 #ifdef comment
664 void
665 md_ri_to_chars (char *the_bytes, struct reloc_info_generic ri)
666 {
667 /* This is easy. */
668 md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
669 /* Now the fun stuff. */
670 the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
671 the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
672 the_bytes[4] = ri.r_symbolnum & 0x0ff;
673 the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06)
674 | ((ri.r_pcrel << 0) & 0x01)) & 0x0F;
675 }
676
677 #endif /* comment */
678
679 /* BUGS, GRIPES, APOLOGIA, etc.
680
681 The opcode table 'votstrs' needs to be sorted on opcode frequency.
682 That is, AFTER we hash it with hash_...(), we want most-used opcodes
683 to come out of the hash table faster.
684
685 I am sorry to inflict yet another VAX assembler on the world, but
686 RMS says we must do everything from scratch, to prevent pin-heads
687 restricting this software.
688
689 This is a vaguely modular set of routines in C to parse VAX
690 assembly code using DEC mnemonics. It is NOT un*x specific.
691
692 The idea here is that the assembler has taken care of all:
693 labels
694 macros
695 listing
696 pseudo-ops
697 line continuation
698 comments
699 condensing any whitespace down to exactly one space
700 and all we have to do is parse 1 line into a vax instruction
701 partially formed. We will accept a line, and deliver:
702 an error message (hopefully empty)
703 a skeleton VAX instruction (tree structure)
704 textual pointers to all the operand expressions
705 a warning message that notes a silly operand (hopefully empty)
706
707 E D I T H I S T O R Y
708
709 17may86 Dean Elsner. Bug if line ends immediately after opcode.
710 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
711 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
712 2jan86 Dean Elsner. Invent synthetic opcodes.
713 Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
714 which means this is not a real opcode, it is like a macro; it will
715 be relax()ed into 1 or more instructions.
716 Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
717 like a regular branch instruction. Option added to vip_begin():
718 exclude synthetic opcodes. Invent synthetic_votstrs[].
719 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
720 Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
721 so caller's don't have to know the difference between a 1-byte & a
722 2-byte op-code. Still need vax_opcodeT concept, so we know how
723 big an object must be to hold an op.code.
724 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
725 because vax opcodes may be 16 bits. Our crufty C compiler was
726 happily initialising 8-bit vot_codes with 16-bit numbers!
727 (Wouldn't the 'phone company like to compress data so easily!)
728 29dec85 Dean Elsner. New static table vax_operand_width_size[].
729 Invented so we know hw many bytes a "I^#42" needs in its immediate
730 operand. Revised struct vop in "vax-inst.h": explicitly include
731 byte length of each operand, and it's letter-code datum type.
732 17nov85 Dean Elsner. Name Change.
733 Due to ar(1) truncating names, we learned the hard way that
734 "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
735 the archived object name. SO... we shortened the name of this
736 source file, and changed the makefile. */
737
738 /* Handle of the OPCODE hash table. */
739 static struct hash_control *op_hash;
740
741 /* In: 1 character, from "bdfghloqpw" being the data-type of an operand
742 of a vax instruction.
743
744 Out: the length of an operand of that type, in bytes.
745 Special branch operands types "-?!" have length 0. */
746
747 static const short int vax_operand_width_size[256] =
748 {
749 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
750 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
751 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
752 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
753 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */
754 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */
755 0, 0, 1, 0, 8, 0, 4, 8, 16, 0, 0, 0, 4, 0, 0,16, /* ..b.d.fgh...l..o */
756 0, 8, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* .q.....w........ */
757 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
758 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
759 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
760 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
761 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
762 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
763 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
764 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
765 };
766 \f
767 /* This perversion encodes all the vax opcodes as a bunch of strings.
768 RMS says we should build our hash-table at run-time. Hmm.
769 Please would someone arrange these in decreasing frequency of opcode?
770 Because of the way hash_...() works, the most frequently used opcode
771 should be textually first and so on.
772
773 Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
774 So change 'vax.opcodes', then re-generate this table. */
775
776 #include "opcode/vax.h"
777 \f
778 /* This is a table of optional op-codes. All of them represent
779 'synthetic' instructions that seem popular.
780
781 Here we make some pseudo op-codes. Every code has a bit set to say
782 it is synthetic. This lets you catch them if you want to
783 ban these opcodes. They are mnemonics for "elastic" instructions
784 that are supposed to assemble into the fewest bytes needed to do a
785 branch, or to do a conditional branch, or whatever.
786
787 The opcode is in the usual place [low-order n*8 bits]. This means
788 that if you mask off the bucky bits, the usual rules apply about
789 how long the opcode is.
790
791 All VAX branch displacements come at the end of the instruction.
792 For simple branches (1-byte opcode + 1-byte displacement) the last
793 operand is coded 'b?' where the "data type" '?' is a clue that we
794 may reverse the sense of the branch (complement lowest order bit)
795 and branch around a jump. This is by far the most common case.
796 That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
797 a 0-byte op-code followed by 2 or more bytes of operand address.
798
799 If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
800 case.
801
802 For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
803 option before (2) we can directly JSB/JMP because there is no condition.
804 These operands have 'b-' as their access/data type.
805
806 That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
807 cases, we do the same idea. JACBxxx are all marked with a 'b!'
808 JAOBxxx & JSOBxxx are marked with a 'b:'. */
809 #if (VIT_OPCODE_SYNTHETIC != 0x80000000)
810 #error "You have just broken the encoding below, which assumes the sign bit means 'I am an imaginary instruction'."
811 #endif
812
813 #if (VIT_OPCODE_SPECIAL != 0x40000000)
814 #error "You have just broken the encoding below, which assumes the 0x40 M bit means 'I am not to be "optimised" the way normal branches are'."
815 #endif
816
817 static const struct vot
818 synthetic_votstrs[] =
819 {
820 {"jbsb", {"b-", 0xC0000010}}, /* BSD 4.2 */
821 /* jsb used already */
822 {"jbr", {"b-", 0xC0000011}}, /* BSD 4.2 */
823 {"jr", {"b-", 0xC0000011}}, /* consistent */
824 {"jneq", {"b?", 0x80000012}},
825 {"jnequ", {"b?", 0x80000012}},
826 {"jeql", {"b?", 0x80000013}},
827 {"jeqlu", {"b?", 0x80000013}},
828 {"jgtr", {"b?", 0x80000014}},
829 {"jleq", {"b?", 0x80000015}},
830 /* un-used opcodes here */
831 {"jgeq", {"b?", 0x80000018}},
832 {"jlss", {"b?", 0x80000019}},
833 {"jgtru", {"b?", 0x8000001a}},
834 {"jlequ", {"b?", 0x8000001b}},
835 {"jvc", {"b?", 0x8000001c}},
836 {"jvs", {"b?", 0x8000001d}},
837 {"jgequ", {"b?", 0x8000001e}},
838 {"jcc", {"b?", 0x8000001e}},
839 {"jlssu", {"b?", 0x8000001f}},
840 {"jcs", {"b?", 0x8000001f}},
841
842 {"jacbw", {"rwrwmwb!", 0xC000003d}},
843 {"jacbf", {"rfrfmfb!", 0xC000004f}},
844 {"jacbd", {"rdrdmdb!", 0xC000006f}},
845 {"jacbb", {"rbrbmbb!", 0xC000009d}},
846 {"jacbl", {"rlrlmlb!", 0xC00000f1}},
847 {"jacbg", {"rgrgmgb!", 0xC0004ffd}},
848 {"jacbh", {"rhrhmhb!", 0xC0006ffd}},
849
850 {"jbs", {"rlvbb?", 0x800000e0}},
851 {"jbc", {"rlvbb?", 0x800000e1}},
852 {"jbss", {"rlvbb?", 0x800000e2}},
853 {"jbcs", {"rlvbb?", 0x800000e3}},
854 {"jbsc", {"rlvbb?", 0x800000e4}},
855 {"jbcc", {"rlvbb?", 0x800000e5}},
856 {"jbssi", {"rlvbb?", 0x800000e6}},
857 {"jbcci", {"rlvbb?", 0x800000e7}},
858 {"jlbs", {"rlb?", 0x800000e8}},
859 {"jlbc", {"rlb?", 0x800000e9}},
860
861 {"jaoblss", {"rlmlb:", 0xC00000f2}},
862 {"jaobleq", {"rlmlb:", 0xC00000f3}},
863 {"jsobgeq", {"mlb:", 0xC00000f4}},
864 {"jsobgtr", {"mlb:", 0xC00000f5}},
865
866 /* CASEx has no branch addresses in our conception of it. */
867 /* You should use ".word ..." statements after the "case ...". */
868
869 {"", {"", 0}} /* Empty is end sentinel. */
870 };
871 \f
872 /* Because this module is useful for both VMS and UN*X style assemblers
873 and because of the variety of UN*X assemblers we must recognise
874 the different conventions for assembler operand notation. For example
875 VMS says "#42" for immediate mode, while most UN*X say "$42".
876 We permit arbitrary sets of (single) characters to represent the
877 3 concepts that DEC writes '#', '@', '^'. */
878
879 /* Character tests. */
880 #define VIP_IMMEDIATE 01 /* Character is like DEC # */
881 #define VIP_INDIRECT 02 /* Char is like DEC @ */
882 #define VIP_DISPLEN 04 /* Char is like DEC ^ */
883
884 #define IMMEDIATEP(c) (vip_metacharacters [(c) & 0xff] & VIP_IMMEDIATE)
885 #define INDIRECTP(c) (vip_metacharacters [(c) & 0xff] & VIP_INDIRECT)
886 #define DISPLENP(c) (vip_metacharacters [(c) & 0xff] & VIP_DISPLEN)
887
888 /* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
889 are ever called. */
890
891 #if defined(CONST_TABLE)
892 #define _ 0,
893 #define I VIP_IMMEDIATE,
894 #define S VIP_INDIRECT,
895 #define D VIP_DISPLEN,
896 static const char
897 vip_metacharacters[256] =
898 {
899 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
900 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /* ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_ */
901 _ _ _ _ I _ _ _ _ _ S _ _ _ _ _ /* sp ! " # $ % & ' ( ) * + , - . / */
902 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
903 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*@ A B C D E F G H I J K L M N O*/
904 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*P Q R S T U V W X Y Z [ \ ] ^ _*/
905 D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*` a b c d e f g h i j k l m n o*/
906 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /*p q r s t u v w x y z { | } ~ ^?*/
907
908 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
909 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
910 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
911 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
912 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
913 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
914 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
915 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
916 };
917 #undef _
918 #undef I
919 #undef S
920 #undef D
921
922 #else
923
924 static char vip_metacharacters[256];
925
926 static void
927 vip_op_1 (int bit, const char *syms)
928 {
929 unsigned char t;
930
931 while ((t = *syms++) != 0)
932 vip_metacharacters[t] |= bit;
933 }
934
935 /* Can be called any time. More arguments may appear in future. */
936 static void
937 vip_op_defaults (const char *immediate, const char *indirect, const char *displen)
938 {
939 vip_op_1 (VIP_IMMEDIATE, immediate);
940 vip_op_1 (VIP_INDIRECT, indirect);
941 vip_op_1 (VIP_DISPLEN, displen);
942 }
943
944 #endif
945
946 /* Call me once before you decode any lines.
947 I decode votstrs into a hash table at op_hash (which I create).
948 I return an error text or null.
949 If you want, I will include the 'synthetic' jXXX instructions in the
950 instruction table.
951 You must nominate metacharacters for eg DEC's "#", "@", "^". */
952
953 static const char *
954 vip_begin (int synthetic_too, /* 1 means include jXXX op-codes. */
955 const char *immediate,
956 const char *indirect,
957 const char *displen)
958 {
959 const struct vot *vP; /* scan votstrs */
960 const char *retval = 0; /* error text */
961
962 op_hash = hash_new ();
963
964 for (vP = votstrs; *vP->vot_name && !retval; vP++)
965 retval = hash_insert (op_hash, vP->vot_name, (void *) &vP->vot_detail);
966
967 if (synthetic_too)
968 for (vP = synthetic_votstrs; *vP->vot_name && !retval; vP++)
969 retval = hash_insert (op_hash, vP->vot_name, (void *) &vP->vot_detail);
970
971 #ifndef CONST_TABLE
972 vip_op_defaults (immediate, indirect, displen);
973 #endif
974
975 return retval;
976 }
977
978 /* Take 3 char.s, the last of which may be `\0` (non-existent)
979 and return the VAX register number that they represent.
980
981 Return -1 if they don't form a register name. Good names return
982 a number from 0:15 inclusive.
983
984 Case is not important in a name.
985
986 Register names understood are:
987
988 R0
989 R1
990 R2
991 R3
992 R4
993 R5
994 R6
995 R7
996 R8
997 R9
998 R10
999 R11
1000 R12 AP
1001 R13 FP
1002 R14 SP
1003 R15 PC */
1004
1005 #define AP 12
1006 #define FP 13
1007 #define SP 14
1008 #define PC 15
1009
1010 /* Returns the register number of something like '%r15' or 'ap', supplied
1011 in four single chars. Returns -1 if the register isn't recognized,
1012 0..15 otherwise. */
1013 static int
1014 vax_reg_parse (char c1, char c2, char c3, char c4)
1015 {
1016 int retval = -1;
1017
1018 #ifdef OBJ_ELF
1019 if (c1 != '%') /* Register prefixes are mandatory for ELF. */
1020 return retval;
1021 c1 = c2;
1022 c2 = c3;
1023 c3 = c4;
1024 #endif
1025 #ifdef OBJ_VMS
1026 if (c4 != 0) /* Register prefixes are not allowed under VMS. */
1027 return retval;
1028 #endif
1029 #ifdef OBJ_AOUT
1030 if (c1 == '%') /* Register prefixes are optional under a.out. */
1031 {
1032 c1 = c2;
1033 c2 = c3;
1034 c3 = c4;
1035 }
1036 else if (c3 && c4) /* Can't be 4 characters long. */
1037 return retval;
1038 #endif
1039
1040 c1 = TOLOWER (c1);
1041 c2 = TOLOWER (c2);
1042 if (ISDIGIT (c2) && c1 == 'r')
1043 {
1044 retval = c2 - '0';
1045 if (ISDIGIT (c3))
1046 {
1047 retval = retval * 10 + c3 - '0';
1048 retval = (retval > 15) ? -1 : retval;
1049 /* clamp the register value to 1 hex digit */
1050 }
1051 else if (c3)
1052 retval = -1; /* c3 must be '\0' or a digit. */
1053 }
1054 else if (c3) /* There are no three letter regs. */
1055 retval = -1;
1056 else if (c2 == 'p')
1057 {
1058 switch (c1)
1059 {
1060 case 's':
1061 retval = SP;
1062 break;
1063 case 'f':
1064 retval = FP;
1065 break;
1066 case 'a':
1067 retval = AP;
1068 break;
1069 default:
1070 retval = -1;
1071 }
1072 }
1073 else if (c1 == 'p' && c2 == 'c')
1074 retval = PC;
1075 else
1076 retval = -1;
1077 return retval;
1078 }
1079
1080 /* Parse a vax operand in DEC assembler notation.
1081 For speed, expect a string of whitespace to be reduced to a single ' '.
1082 This is the case for GNU AS, and is easy for other DEC-compatible
1083 assemblers.
1084
1085 Knowledge about DEC VAX assembler operand notation lives here.
1086 This doesn't even know what a register name is, except it believes
1087 all register names are 2 or 3 characters, and lets vax_reg_parse() say
1088 what number each name represents.
1089 It does, however, know that PC, SP etc are special registers so it can
1090 detect addressing modes that are silly for those registers.
1091
1092 Where possible, it delivers 1 fatal or 1 warning message if the operand
1093 is suspect. Exactly what we test for is still evolving.
1094
1095 ---
1096 Arg block.
1097
1098 There were a number of 'mismatched argument type' bugs to vip_op.
1099 The most general solution is to typedef each (of many) arguments.
1100 We used instead a typedef'd argument block. This is less modular
1101 than using separate return pointers for each result, but runs faster
1102 on most engines, and seems to keep programmers happy. It will have
1103 to be done properly if we ever want to use vip_op as a general-purpose
1104 module (it was designed to be).
1105
1106 G^
1107
1108 Doesn't support DEC "G^" format operands. These always take 5 bytes
1109 to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
1110 optimising to (say) a "B^" if you are lucky in the way you link.
1111 When someone builds a linker smart enough to convert "G^" to "B^", "W^"
1112 whenever possible, then we should implement it.
1113 If there is some other use for "G^", feel free to code it in!
1114
1115 speed
1116
1117 If I nested if()s more, I could avoid testing (*err) which would save
1118 time, space and page faults. I didn't nest all those if()s for clarity
1119 and because I think the mode testing can be re-arranged 1st to test the
1120 commoner constructs 1st. Does anybody have statistics on this?
1121
1122 error messages
1123
1124 In future, we should be able to 'compose' error messages in a scratch area
1125 and give the user MUCH more informative error messages. Although this takes
1126 a little more code at run-time, it will make this module much more self-
1127 documenting. As an example of what sucks now: most error messages have
1128 hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
1129 the Un*x characters "$`*", that most users will expect from this AS.
1130
1131 ----
1132
1133 The input is a string, ending with '\0'.
1134
1135 We also require a 'hint' of what kind of operand is expected: so
1136 we can remind caller not to write into literals for instance.
1137
1138 The output is a skeletal instruction.
1139
1140 The algorithm has two parts.
1141 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
1142 2. express the @^#-()+[] as some parameters suited to further analysis.
1143
1144 2nd step is where we detect the googles of possible invalid combinations
1145 a human (or compiler) might write. Note that if we do a half-way
1146 decent assembler, we don't know how long to make (eg) displacement
1147 fields when we first meet them (because they may not have defined values).
1148 So we must wait until we know how many bits are needed for each address,
1149 then we can know both length and opcodes of instructions.
1150 For reason(s) above, we will pass to our caller a 'broken' instruction
1151 of these major components, from which our caller can generate instructions:
1152 - displacement length I^ S^ L^ B^ W^ unspecified
1153 - mode (many)
1154 - register R0-R15 or absent
1155 - index register R0-R15 or absent
1156 - expression text what we don't parse
1157 - error text(s) why we couldn't understand the operand
1158
1159 ----
1160
1161 To decode output of this, test errtxt. If errtxt[0] == '\0', then
1162 we had no errors that prevented parsing. Also, if we ever report
1163 an internal bug, errtxt[0] is set non-zero. So one test tells you
1164 if the other outputs are to be taken seriously.
1165
1166 ----
1167
1168 Dec defines the semantics of address modes (and values)
1169 by a two-letter code, explained here.
1170
1171 letter 1: access type
1172
1173 a address calculation - no data access, registers forbidden
1174 b branch displacement
1175 m read - let go of bus - write back "modify"
1176 r read
1177 v bit field address: like 'a' but registers are OK
1178 w write
1179 space no operator (eg ".long foo") [our convention]
1180
1181 letter 2: data type (i.e. width, alignment)
1182
1183 b byte
1184 d double precision floating point (D format)
1185 f single precision floating point (F format)
1186 g G format floating
1187 h H format floating
1188 l longword
1189 o octaword
1190 q quadword
1191 w word
1192 ? simple synthetic branch operand
1193 - unconditional synthetic JSB/JSR operand
1194 ! complex synthetic branch operand
1195
1196 The '-?!' letter 2's are not for external consumption. They are used
1197 for various assemblers. Generally, all unknown widths are assumed 0.
1198 We don't limit your choice of width character.
1199
1200 DEC operands are hard work to parse. For example, '@' as the first
1201 character means indirect (deferred) mode but elsewhere it is a shift
1202 operator.
1203 The long-winded explanation of how this is supposed to work is
1204 cancelled. Read a DEC vax manual.
1205 We try hard not to parse anything that MIGHT be part of the expression
1206 buried in that syntax. For example if we see @...(Rn) we don't check
1207 for '-' before the '(' because mode @-(Rn) does not exist.
1208
1209 After parsing we have:
1210
1211 at 1 if leading '@' (or Un*x '*')
1212 len takes one value from " bilsw". eg B^ -> 'b'.
1213 hash 1 if leading '#' (or Un*x '$')
1214 expr_begin, expr_end the expression we did not parse
1215 even though we don't interpret it, we make use
1216 of its presence or absence.
1217 sign -1: -(Rn) 0: absent +1: (Rn)+
1218 paren 1 if () are around register
1219 reg major register number 0:15 -1 means absent
1220 ndx index register number 0:15 -1 means absent
1221
1222 Again, I dare not explain it: just trace ALL the code!
1223
1224 Summary of vip_op outputs.
1225
1226 mode reg len ndx
1227 (Rn) => @Rn
1228 {@}Rn 5+@ n ' ' optional
1229 branch operand 0 -1 ' ' -1
1230 S^#foo 0 -1 's' -1
1231 -(Rn) 7 n ' ' optional
1232 {@}(Rn)+ 8+@ n ' ' optional
1233 {@}#foo, no S^ 8+@ PC " i" optional
1234 {@}{q^}{(Rn)} 10+@+q option " bwl" optional */
1235
1236 /* Dissect user-input 'optext' (which is something like "@B^foo@bar(AP)[FP]:")
1237 using the vop in vopP. vopP's vop_access and vop_width. We fill _ndx, _reg,
1238 _mode, _short, _warn, _error, _expr_begin, _expr_end and _nbytes. */
1239
1240 static void
1241 vip_op (char *optext, struct vop *vopP)
1242 {
1243 /* Track operand text forward. */
1244 char *p;
1245 /* Track operand text backward. */
1246 char *q;
1247 /* 1 if leading '@' ('*') seen. */
1248 int at;
1249 /* one of " bilsw" */
1250 char len;
1251 /* 1 if leading '#' ('$') seen. */
1252 int hash;
1253 /* -1, 0 or +1. */
1254 int sign = 0;
1255 /* 1 if () surround register. */
1256 int paren = 0;
1257 /* Register number, -1:absent. */
1258 int reg = 0;
1259 /* Index register number -1:absent. */
1260 int ndx = 0;
1261 /* Report illegal operand, ""==OK. */
1262 /* " " is a FAKE error: means we won. */
1263 /* ANY err that begins with ' ' is a fake. */
1264 /* " " is converted to "" before return. */
1265 const char *err;
1266 /* Warn about weird modes pf address. */
1267 const char *wrn;
1268 /* Preserve q in case we backup. */
1269 char *oldq = NULL;
1270 /* Build up 4-bit operand mode here. */
1271 /* Note: index mode is in ndx, this is. */
1272 /* The major mode of operand address. */
1273 int mode = 0;
1274 /* Notice how we move wrong-arg-type bugs INSIDE this module: if we
1275 get the types wrong below, we lose at compile time rather than at
1276 lint or run time. */
1277 char access_mode; /* vop_access. */
1278
1279 access_mode = vopP->vop_access;
1280 /* None of our code bugs (yet), no user text errors, no warnings
1281 even. */
1282 err = wrn = 0;
1283
1284 p = optext;
1285
1286 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
1287 p++; /* skip over whitespace */
1288
1289 if ((at = INDIRECTP (*p)) != 0)
1290 { /* 1 if *p=='@'(or '*' for Un*x) */
1291 p++; /* at is determined */
1292 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
1293 p++; /* skip over whitespace */
1294 }
1295
1296 /* This code is subtle. It tries to detect all legal (letter)'^'
1297 but it doesn't waste time explicitly testing for premature '\0' because
1298 this case is rejected as a mismatch against either (letter) or '^'. */
1299 {
1300 char c;
1301
1302 c = *p;
1303 c = TOLOWER (c);
1304 if (DISPLENP (p[1]) && strchr ("bilws", len = c))
1305 p += 2; /* Skip (letter) '^'. */
1306 else /* No (letter) '^' seen. */
1307 len = ' '; /* Len is determined. */
1308 }
1309
1310 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
1311 p++;
1312
1313 if ((hash = IMMEDIATEP (*p)) != 0) /* 1 if *p=='#' ('$' for Un*x) */
1314 p++; /* Hash is determined. */
1315
1316 /* p points to what may be the beginning of an expression.
1317 We have peeled off the front all that is peelable.
1318 We know at, len, hash.
1319
1320 Lets point q at the end of the text and parse that (backwards). */
1321
1322 for (q = p; *q; q++)
1323 ;
1324 q--; /* Now q points at last char of text. */
1325
1326 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
1327 q--;
1328
1329 /* Reverse over whitespace, but don't. */
1330 /* Run back over *p. */
1331
1332 /* As a matter of policy here, we look for [Rn], although both Rn and S^#
1333 forbid [Rn]. This is because it is easy, and because only a sick
1334 cyborg would have [...] trailing an expression in a VAX-like assembler.
1335 A meticulous parser would first check for Rn followed by '(' or '['
1336 and not parse a trailing ']' if it found another. We just ban expressions
1337 ending in ']'. */
1338 if (*q == ']')
1339 {
1340 while (q >= p && *q != '[')
1341 q--;
1342 /* Either q<p or we got matching '['. */
1343 if (q < p)
1344 err = _("no '[' to match ']'");
1345 else
1346 {
1347 /* Confusers like "[]" will eventually lose with a bad register
1348 * name error. So again we don't need to check for early '\0'. */
1349 if (q[3] == ']')
1350 ndx = vax_reg_parse (q[1], q[2], 0, 0);
1351 else if (q[4] == ']')
1352 ndx = vax_reg_parse (q[1], q[2], q[3], 0);
1353 else if (q[5] == ']')
1354 ndx = vax_reg_parse (q[1], q[2], q[3], q[4]);
1355 else
1356 ndx = -1;
1357 /* Since we saw a ']' we will demand a register name in the [].
1358 * If luser hasn't given us one: be rude. */
1359 if (ndx < 0)
1360 err = _("bad register in []");
1361 else if (ndx == PC)
1362 err = _("[PC] index banned");
1363 else
1364 /* Point q just before "[...]". */
1365 q--;
1366 }
1367 }
1368 else
1369 /* No ']', so no iNDeX register. */
1370 ndx = -1;
1371
1372 /* If err = "..." then we lost: run away.
1373 Otherwise ndx == -1 if there was no "[...]".
1374 Otherwise, ndx is index register number, and q points before "[...]". */
1375
1376 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
1377 q--;
1378 /* Reverse over whitespace, but don't. */
1379 /* Run back over *p. */
1380 if (!err || !*err)
1381 {
1382 /* no ()+ or -() seen yet */
1383 sign = 0;
1384
1385 if (q > p + 3 && *q == '+' && q[-1] == ')')
1386 {
1387 sign = 1; /* we saw a ")+" */
1388 q--; /* q points to ')' */
1389 }
1390
1391 if (*q == ')' && q > p + 2)
1392 {
1393 paren = 1; /* assume we have "(...)" */
1394 while (q >= p && *q != '(')
1395 q--;
1396 /* either q<p or we got matching '(' */
1397 if (q < p)
1398 err = _("no '(' to match ')'");
1399 else
1400 {
1401 /* Confusers like "()" will eventually lose with a bad register
1402 name error. So again we don't need to check for early '\0'. */
1403 if (q[3] == ')')
1404 reg = vax_reg_parse (q[1], q[2], 0, 0);
1405 else if (q[4] == ')')
1406 reg = vax_reg_parse (q[1], q[2], q[3], 0);
1407 else if (q[5] == ')')
1408 reg = vax_reg_parse (q[1], q[2], q[3], q[4]);
1409 else
1410 reg = -1;
1411 /* Since we saw a ')' we will demand a register name in the ')'.
1412 This is nasty: why can't our hypothetical assembler permit
1413 parenthesised expressions? BECAUSE I AM LAZY! That is why.
1414 Abuse luser if we didn't spy a register name. */
1415 if (reg < 0)
1416 {
1417 /* JF allow parenthesized expressions. I hope this works. */
1418 paren = 0;
1419 while (*q != ')')
1420 q++;
1421 /* err = "unknown register in ()"; */
1422 }
1423 else
1424 q--; /* point just before '(' of "(...)" */
1425 /* If err == "..." then we lost. Run away.
1426 Otherwise if reg >= 0 then we saw (Rn). */
1427 }
1428 /* If err == "..." then we lost.
1429 Otherwise paren==1 and reg = register in "()". */
1430 }
1431 else
1432 paren = 0;
1433 /* If err == "..." then we lost.
1434 Otherwise, q points just before "(Rn)", if any.
1435 If there was a "(...)" then paren==1, and reg is the register. */
1436
1437 /* We should only seek '-' of "-(...)" if:
1438 we saw "(...)" paren == 1
1439 we have no errors so far ! *err
1440 we did not see '+' of "(...)+" sign < 1
1441 We don't check len. We want a specific error message later if
1442 user tries "x^...-(Rn)". This is a feature not a bug. */
1443 if (!err || !*err)
1444 {
1445 if (paren && sign < 1)/* !sign is adequate test */
1446 {
1447 if (*q == '-')
1448 {
1449 sign = -1;
1450 q--;
1451 }
1452 }
1453 /* We have back-tracked over most
1454 of the crud at the end of an operand.
1455 Unless err, we know: sign, paren. If paren, we know reg.
1456 The last case is of an expression "Rn".
1457 This is worth hunting for if !err, !paren.
1458 We wouldn't be here if err.
1459 We remember to save q, in case we didn't want "Rn" anyway. */
1460 if (!paren)
1461 {
1462 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
1463 q--;
1464 /* Reverse over whitespace, but don't. */
1465 /* Run back over *p. */
1466 /* Room for Rn or Rnn (include prefix) exactly? */
1467 if (q > p && q < p + 4)
1468 reg = vax_reg_parse (p[0], p[1],
1469 q < p + 2 ? 0 : p[2],
1470 q < p + 3 ? 0 : p[3]);
1471 else
1472 reg = -1; /* Always comes here if no register at all. */
1473 /* Here with a definitive reg value. */
1474 if (reg >= 0)
1475 {
1476 oldq = q;
1477 q = p - 1;
1478 }
1479 }
1480 }
1481 }
1482 /* have reg. -1:absent; else 0:15. */
1483
1484 /* We have: err, at, len, hash, ndx, sign, paren, reg.
1485 Also, any remaining expression is from *p through *q inclusive.
1486 Should there be no expression, q==p-1. So expression length = q-p+1.
1487 This completes the first part: parsing the operand text. */
1488 \f
1489 /* We now want to boil the data down, checking consistency on the way.
1490 We want: len, mode, reg, ndx, err, p, q, wrn, bug.
1491 We will deliver a 4-bit reg, and a 4-bit mode. */
1492
1493 /* Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
1494
1495 in: at ?
1496 len ?
1497 hash ?
1498 p:q ?
1499 sign ?
1500 paren ?
1501 reg ?
1502 ndx ?
1503
1504 out: mode 0
1505 reg -1
1506 len ' '
1507 p:q whatever was input
1508 ndx -1
1509 err " " or error message, and other outputs trashed. */
1510 /* Branch operands have restricted forms. */
1511 if ((!err || !*err) && access_mode == 'b')
1512 {
1513 if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
1514 err = _("invalid branch operand");
1515 else
1516 err = " ";
1517 }
1518
1519 /* Since nobody seems to use it: comment this 'feature'(?) out for now. */
1520 #ifdef NEVER
1521 /* Case of stand-alone operand. e.g. ".long foo"
1522
1523 in: at ?
1524 len ?
1525 hash ?
1526 p:q ?
1527 sign ?
1528 paren ?
1529 reg ?
1530 ndx ?
1531
1532 out: mode 0
1533 reg -1
1534 len ' '
1535 p:q whatever was input
1536 ndx -1
1537 err " " or error message, and other outputs trashed. */
1538 if ((!err || !*err) && access_mode == ' ')
1539 {
1540 if (at)
1541 err = _("address prohibits @");
1542 else if (hash)
1543 err = _("address prohibits #");
1544 else if (sign)
1545 {
1546 if (sign < 0)
1547 err = _("address prohibits -()");
1548 else
1549 err = _("address prohibits ()+");
1550 }
1551 else if (paren)
1552 err = _("address prohibits ()");
1553 else if (ndx >= 0)
1554 err = _("address prohibits []");
1555 else if (reg >= 0)
1556 err = _("address prohibits register");
1557 else if (len != ' ')
1558 err = _("address prohibits displacement length specifier");
1559 else
1560 {
1561 err = " "; /* succeed */
1562 mode = 0;
1563 }
1564 }
1565 #endif
1566
1567 /* Case of S^#.
1568
1569 in: at 0
1570 len 's' definition
1571 hash 1 demand
1572 p:q demand not empty
1573 sign 0 by paren==0
1574 paren 0 by "()" scan logic because "S^" seen
1575 reg -1 or nn by mistake
1576 ndx -1
1577
1578 out: mode 0
1579 reg -1
1580 len 's'
1581 exp
1582 ndx -1 */
1583 if ((!err || !*err) && len == 's')
1584 {
1585 if (!hash || paren || at || ndx >= 0)
1586 err = _("invalid operand of S^#");
1587 else
1588 {
1589 if (reg >= 0)
1590 {
1591 /* Darn! we saw S^#Rnn ! put the Rnn back in
1592 expression. KLUDGE! Use oldq so we don't
1593 need to know exact length of reg name. */
1594 q = oldq;
1595 reg = 0;
1596 }
1597 /* We have all the expression we will ever get. */
1598 if (p > q)
1599 err = _("S^# needs expression");
1600 else if (access_mode == 'r')
1601 {
1602 err = " "; /* WIN! */
1603 mode = 0;
1604 }
1605 else
1606 err = _("S^# may only read-access");
1607 }
1608 }
1609
1610 /* Case of -(Rn), which is weird case.
1611
1612 in: at 0
1613 len '
1614 hash 0
1615 p:q q<p
1616 sign -1 by definition
1617 paren 1 by definition
1618 reg present by definition
1619 ndx optional
1620
1621 out: mode 7
1622 reg present
1623 len ' '
1624 exp "" enforce empty expression
1625 ndx optional warn if same as reg. */
1626 if ((!err || !*err) && sign < 0)
1627 {
1628 if (len != ' ' || hash || at || p <= q)
1629 err = _("invalid operand of -()");
1630 else
1631 {
1632 err = " "; /* win */
1633 mode = 7;
1634 if (reg == PC)
1635 wrn = _("-(PC) unpredictable");
1636 else if (reg == ndx)
1637 wrn = _("[]index same as -()register: unpredictable");
1638 }
1639 }
1640
1641 /* We convert "(Rn)" to "@Rn" for our convenience.
1642 (I hope this is convenient: has someone got a better way to parse this?)
1643 A side-effect of this is that "@Rn" is a valid operand. */
1644 if (paren && !sign && !hash && !at && len == ' ' && p > q)
1645 {
1646 at = 1;
1647 paren = 0;
1648 }
1649
1650 /* Case of (Rn)+, which is slightly different.
1651
1652 in: at
1653 len ' '
1654 hash 0
1655 p:q q<p
1656 sign +1 by definition
1657 paren 1 by definition
1658 reg present by definition
1659 ndx optional
1660
1661 out: mode 8+@
1662 reg present
1663 len ' '
1664 exp "" enforce empty expression
1665 ndx optional warn if same as reg. */
1666 if ((!err || !*err) && sign > 0)
1667 {
1668 if (len != ' ' || hash || p <= q)
1669 err = _("invalid operand of ()+");
1670 else
1671 {
1672 err = " "; /* win */
1673 mode = 8 + (at ? 1 : 0);
1674 if (reg == PC)
1675 wrn = _("(PC)+ unpredictable");
1676 else if (reg == ndx)
1677 wrn = _("[]index same as ()+register: unpredictable");
1678 }
1679 }
1680
1681 /* Case of #, without S^.
1682
1683 in: at
1684 len ' ' or 'i'
1685 hash 1 by definition
1686 p:q
1687 sign 0
1688 paren 0
1689 reg absent
1690 ndx optional
1691
1692 out: mode 8+@
1693 reg PC
1694 len ' ' or 'i'
1695 exp
1696 ndx optional. */
1697 if ((!err || !*err) && hash)
1698 {
1699 if (len != 'i' && len != ' ')
1700 err = _("# conflicts length");
1701 else if (paren)
1702 err = _("# bars register");
1703 else
1704 {
1705 if (reg >= 0)
1706 {
1707 /* Darn! we saw #Rnn! Put the Rnn back into the expression.
1708 By using oldq, we don't need to know how long Rnn was.
1709 KLUDGE! */
1710 q = oldq;
1711 reg = -1; /* No register any more. */
1712 }
1713 err = " "; /* Win. */
1714
1715 /* JF a bugfix, I think! */
1716 if (at && access_mode == 'a')
1717 vopP->vop_nbytes = 4;
1718
1719 mode = (at ? 9 : 8);
1720 reg = PC;
1721 if ((access_mode == 'm' || access_mode == 'w') && !at)
1722 wrn = _("writing or modifying # is unpredictable");
1723 }
1724 }
1725 /* If !*err, then sign == 0
1726 hash == 0 */
1727
1728 /* Case of Rn. We separate this one because it has a few special
1729 errors the remaining modes lack.
1730
1731 in: at optional
1732 len ' '
1733 hash 0 by program logic
1734 p:q empty
1735 sign 0 by program logic
1736 paren 0 by definition
1737 reg present by definition
1738 ndx optional
1739
1740 out: mode 5+@
1741 reg present
1742 len ' ' enforce no length
1743 exp "" enforce empty expression
1744 ndx optional warn if same as reg. */
1745 if ((!err || !*err) && !paren && reg >= 0)
1746 {
1747 if (len != ' ')
1748 err = _("length not needed");
1749 else if (at)
1750 {
1751 err = " "; /* win */
1752 mode = 6; /* @Rn */
1753 }
1754 else if (ndx >= 0)
1755 err = _("can't []index a register, because it has no address");
1756 else if (access_mode == 'a')
1757 err = _("a register has no address");
1758 else
1759 {
1760 /* Idea here is to detect from length of datum
1761 and from register number if we will touch PC.
1762 Warn if we do.
1763 vop_nbytes is number of bytes in operand.
1764 Compute highest byte affected, compare to PC0. */
1765 if ((vopP->vop_nbytes + reg * 4) > 60)
1766 wrn = _("PC part of operand unpredictable");
1767 err = " "; /* win */
1768 mode = 5; /* Rn */
1769 }
1770 }
1771 /* If !*err, sign == 0
1772 hash == 0
1773 paren == 1 OR reg==-1 */
1774
1775 /* Rest of cases fit into one bunch.
1776
1777 in: at optional
1778 len ' ' or 'b' or 'w' or 'l'
1779 hash 0 by program logic
1780 p:q expected (empty is not an error)
1781 sign 0 by program logic
1782 paren optional
1783 reg optional
1784 ndx optional
1785
1786 out: mode 10 + @ + len
1787 reg optional
1788 len ' ' or 'b' or 'w' or 'l'
1789 exp maybe empty
1790 ndx optional warn if same as reg. */
1791 if (!err || !*err)
1792 {
1793 err = " "; /* win (always) */
1794 mode = 10 + (at ? 1 : 0);
1795 switch (len)
1796 {
1797 case 'l':
1798 mode += 2;
1799 case 'w':
1800 mode += 2;
1801 case ' ': /* Assumed B^ until our caller changes it. */
1802 case 'b':
1803 break;
1804 }
1805 }
1806
1807 /* here with completely specified mode
1808 len
1809 reg
1810 expression p,q
1811 ndx. */
1812
1813 if (*err == ' ')
1814 err = 0; /* " " is no longer an error. */
1815
1816 vopP->vop_mode = mode;
1817 vopP->vop_reg = reg;
1818 vopP->vop_short = len;
1819 vopP->vop_expr_begin = p;
1820 vopP->vop_expr_end = q;
1821 vopP->vop_ndx = ndx;
1822 vopP->vop_error = err;
1823 vopP->vop_warn = wrn;
1824 }
1825
1826 /* This converts a string into a vax instruction.
1827 The string must be a bare single instruction in dec-vax (with BSD4 frobs)
1828 format.
1829 It provides some error messages: at most one fatal error message (which
1830 stops the scan) and at most one warning message for each operand.
1831 The vax instruction is returned in exploded form, since we have no
1832 knowledge of how you parse (or evaluate) your expressions.
1833 We do however strip off and decode addressing modes and operation
1834 mnemonic.
1835
1836 The exploded instruction is returned to a struct vit of your choice.
1837 #include "vax-inst.h" to know what a struct vit is.
1838
1839 This function's value is a string. If it is not "" then an internal
1840 logic error was found: read this code to assign meaning to the string.
1841 No argument string should generate such an error string:
1842 it means a bug in our code, not in the user's text.
1843
1844 You MUST have called vip_begin() once before using this function. */
1845
1846 static void
1847 vip (struct vit *vitP, /* We build an exploded instruction here. */
1848 char *instring) /* Text of a vax instruction: we modify. */
1849 {
1850 /* How to bit-encode this opcode. */
1851 struct vot_wot *vwP;
1852 /* 1/skip whitespace.2/scan vot_how */
1853 char *p;
1854 char *q;
1855 /* counts number of operands seen */
1856 unsigned char count;
1857 /* scan operands in struct vit */
1858 struct vop *operandp;
1859 /* error over all operands */
1860 const char *alloperr;
1861 /* Remember char, (we clobber it with '\0' temporarily). */
1862 char c;
1863 /* Op-code of this instruction. */
1864 vax_opcodeT oc;
1865
1866 if (*instring == ' ')
1867 ++instring;
1868
1869 /* MUST end in end-of-string or exactly 1 space. */
1870 for (p = instring; *p && *p != ' '; p++)
1871 ;
1872
1873 /* Scanned up to end of operation-code. */
1874 /* Operation-code is ended with whitespace. */
1875 if (p - instring == 0)
1876 {
1877 vitP->vit_error = _("No operator");
1878 count = 0;
1879 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1880 }
1881 else
1882 {
1883 c = *p;
1884 *p = '\0';
1885 /* Here with instring pointing to what better be an op-name, and p
1886 pointing to character just past that.
1887 We trust instring points to an op-name, with no whitespace. */
1888 vwP = (struct vot_wot *) hash_find (op_hash, instring);
1889 /* Restore char after op-code. */
1890 *p = c;
1891 if (vwP == 0)
1892 {
1893 vitP->vit_error = _("Unknown operator");
1894 count = 0;
1895 memset (vitP->vit_opcode, '\0', sizeof (vitP->vit_opcode));
1896 }
1897 else
1898 {
1899 /* We found a match! So let's pick up as many operands as the
1900 instruction wants, and even gripe if there are too many.
1901 We expect comma to separate each operand.
1902 We let instring track the text, while p tracks a part of the
1903 struct vot. */
1904 const char *howp;
1905 /* The lines below know about 2-byte opcodes starting FD,FE or FF.
1906 They also understand synthetic opcodes. Note:
1907 we return 32 bits of opcode, including bucky bits, BUT
1908 an opcode length is either 8 or 16 bits for vit_opcode_nbytes. */
1909 oc = vwP->vot_code; /* The op-code. */
1910 vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
1911 md_number_to_chars (vitP->vit_opcode, oc, 4);
1912 count = 0; /* No operands seen yet. */
1913 instring = p; /* Point just past operation code. */
1914 alloperr = "";
1915 for (howp = vwP->vot_how, operandp = vitP->vit_operand;
1916 !(alloperr && *alloperr) && *howp;
1917 operandp++, howp += 2)
1918 {
1919 /* Here to parse one operand. Leave instring pointing just
1920 past any one ',' that marks the end of this operand. */
1921 if (!howp[1])
1922 as_fatal (_("odd number of bytes in operand description"));
1923 else if (*instring)
1924 {
1925 for (q = instring; (c = *q) && c != ','; q++)
1926 ;
1927 /* Q points to ',' or '\0' that ends argument. C is that
1928 character. */
1929 *q = 0;
1930 operandp->vop_width = howp[1];
1931 operandp->vop_nbytes = vax_operand_width_size[(unsigned) howp[1]];
1932 operandp->vop_access = howp[0];
1933 vip_op (instring, operandp);
1934 *q = c; /* Restore input text. */
1935 if (operandp->vop_error)
1936 alloperr = _("Bad operand");
1937 instring = q + (c ? 1 : 0); /* Next operand (if any). */
1938 count++; /* Won another argument, may have an operr. */
1939 }
1940 else
1941 alloperr = _("Not enough operands");
1942 }
1943 if (!*alloperr)
1944 {
1945 if (*instring == ' ')
1946 instring++;
1947 if (*instring)
1948 alloperr = _("Too many operands");
1949 }
1950 vitP->vit_error = alloperr;
1951 }
1952 }
1953 vitP->vit_operands = count;
1954 }
1955 \f
1956 #ifdef test
1957
1958 /* Test program for above. */
1959
1960 struct vit myvit; /* Build an exploded vax instruction here. */
1961 char answer[100]; /* Human types a line of vax assembler here. */
1962 char *mybug; /* "" or an internal logic diagnostic. */
1963 int mycount; /* Number of operands. */
1964 struct vop *myvop; /* Scan operands from myvit. */
1965 int mysynth; /* 1 means want synthetic opcodes. */
1966 char my_immediate[200];
1967 char my_indirect[200];
1968 char my_displen[200];
1969
1970 int
1971 main (void)
1972 {
1973 char *p;
1974
1975 printf ("0 means no synthetic instructions. ");
1976 printf ("Value for vip_begin? ");
1977 gets (answer);
1978 sscanf (answer, "%d", &mysynth);
1979 printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
1980 printf ("enter immediate symbols eg enter # ");
1981 gets (my_immediate);
1982 printf ("enter indirect symbols eg enter @ ");
1983 gets (my_indirect);
1984 printf ("enter displen symbols eg enter ^ ");
1985 gets (my_displen);
1986
1987 if (p = vip_begin (mysynth, my_immediate, my_indirect, my_displen))
1988 error ("vip_begin=%s", p);
1989
1990 printf ("An empty input line will quit you from the vax instruction parser\n");
1991 for (;;)
1992 {
1993 printf ("vax instruction: ");
1994 fflush (stdout);
1995 gets (answer);
1996 if (!*answer)
1997 break; /* Out of for each input text loop. */
1998
1999 vip (& myvit, answer);
2000 if (*myvit.vit_error)
2001 printf ("ERR:\"%s\"\n", myvit.vit_error);
2002
2003 printf ("opcode=");
2004 for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
2005 mycount;
2006 mycount--, p++)
2007 printf ("%02x ", *p & 0xFF);
2008
2009 printf (" operand count=%d.\n", mycount = myvit.vit_operands);
2010 for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
2011 {
2012 printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
2013 myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
2014 myvop->vop_short, myvop->vop_access, myvop->vop_width,
2015 myvop->vop_nbytes);
2016 for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
2017 putchar (*p);
2018
2019 printf ("\"\n");
2020 if (myvop->vop_error)
2021 printf (" err:\"%s\"\n", myvop->vop_error);
2022
2023 if (myvop->vop_warn)
2024 printf (" wrn:\"%s\"\n", myvop->vop_warn);
2025 }
2026 }
2027 vip_end ();
2028 exit (EXIT_SUCCESS);
2029 }
2030
2031 #endif
2032 \f
2033 #ifdef TEST /* #Define to use this testbed. */
2034
2035 /* Follows a test program for this function.
2036 We declare arrays non-local in case some of our tiny-minded machines
2037 default to small stacks. Also, helps with some debuggers. */
2038
2039 char answer[100]; /* Human types into here. */
2040 char *p; /* */
2041 char *myerr;
2042 char *mywrn;
2043 char *mybug;
2044 char myaccess;
2045 char mywidth;
2046 char mymode;
2047 char myreg;
2048 char mylen;
2049 char *myleft;
2050 char *myright;
2051 char myndx;
2052 int my_operand_length;
2053 char my_immediate[200];
2054 char my_indirect[200];
2055 char my_displen[200];
2056
2057 int
2058 main (void)
2059 {
2060 printf ("enter immediate symbols eg enter # ");
2061 gets (my_immediate);
2062 printf ("enter indirect symbols eg enter @ ");
2063 gets (my_indirect);
2064 printf ("enter displen symbols eg enter ^ ");
2065 gets (my_displen);
2066 vip_op_defaults (my_immediate, my_indirect, my_displen);
2067
2068 for (;;)
2069 {
2070 printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
2071 fflush (stdout);
2072 gets (answer);
2073 if (!answer[0])
2074 exit (EXIT_SUCCESS);
2075 myaccess = answer[0];
2076 mywidth = answer[1];
2077 switch (mywidth)
2078 {
2079 case 'b':
2080 my_operand_length = 1;
2081 break;
2082 case 'd':
2083 my_operand_length = 8;
2084 break;
2085 case 'f':
2086 my_operand_length = 4;
2087 break;
2088 case 'g':
2089 my_operand_length = 16;
2090 break;
2091 case 'h':
2092 my_operand_length = 32;
2093 break;
2094 case 'l':
2095 my_operand_length = 4;
2096 break;
2097 case 'o':
2098 my_operand_length = 16;
2099 break;
2100 case 'q':
2101 my_operand_length = 8;
2102 break;
2103 case 'w':
2104 my_operand_length = 2;
2105 break;
2106 case '!':
2107 case '?':
2108 case '-':
2109 my_operand_length = 0;
2110 break;
2111
2112 default:
2113 my_operand_length = 2;
2114 printf ("I dn't understand access width %c\n", mywidth);
2115 break;
2116 }
2117 printf ("VAX assembler instruction operand: ");
2118 fflush (stdout);
2119 gets (answer);
2120 mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
2121 &mymode, &myreg, &mylen, &myleft, &myright, &myndx,
2122 &myerr, &mywrn);
2123 if (*myerr)
2124 {
2125 printf ("error: \"%s\"\n", myerr);
2126 if (*mybug)
2127 printf (" bug: \"%s\"\n", mybug);
2128 }
2129 else
2130 {
2131 if (*mywrn)
2132 printf ("warning: \"%s\"\n", mywrn);
2133 mumble ("mode", mymode);
2134 mumble ("register", myreg);
2135 mumble ("index", myndx);
2136 printf ("width:'%c' ", mylen);
2137 printf ("expression: \"");
2138 while (myleft <= myright)
2139 putchar (*myleft++);
2140 printf ("\"\n");
2141 }
2142 }
2143 }
2144
2145 void
2146 mumble (char *text, int value)
2147 {
2148 printf ("%s:", text);
2149 if (value >= 0)
2150 printf ("%xx", value);
2151 else
2152 printf ("ABSENT");
2153 printf (" ");
2154 }
2155
2156 #endif
2157
2158 int md_short_jump_size = 3;
2159 int md_long_jump_size = 6;
2160
2161 void
2162 md_create_short_jump (char *ptr,
2163 addressT from_addr,
2164 addressT to_addr ATTRIBUTE_UNUSED,
2165 fragS *frag ATTRIBUTE_UNUSED,
2166 symbolS *to_symbol ATTRIBUTE_UNUSED)
2167 {
2168 valueT offset;
2169
2170 /* This former calculation was off by two:
2171 offset = to_addr - (from_addr + 1);
2172 We need to account for the one byte instruction and also its
2173 two byte operand. */
2174 offset = to_addr - (from_addr + 1 + 2);
2175 *ptr++ = VAX_BRW; /* Branch with word (16 bit) offset. */
2176 md_number_to_chars (ptr, offset, 2);
2177 }
2178
2179 void
2180 md_create_long_jump (char *ptr,
2181 addressT from_addr ATTRIBUTE_UNUSED,
2182 addressT to_addr,
2183 fragS *frag,
2184 symbolS *to_symbol)
2185 {
2186 valueT offset;
2187
2188 offset = to_addr - S_GET_VALUE (to_symbol);
2189 *ptr++ = VAX_JMP; /* Arbitrary jump. */
2190 *ptr++ = VAX_ABSOLUTE_MODE;
2191 md_number_to_chars (ptr, offset, 4);
2192 fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (long) 0, 0, NO_RELOC);
2193 }
2194 \f
2195 #ifdef OBJ_VMS
2196 const char *md_shortopts = "d:STt:V+1h:Hv::";
2197 #elif defined(OBJ_ELF)
2198 const char *md_shortopts = "d:STt:VkKQ:";
2199 #else
2200 const char *md_shortopts = "d:STt:V";
2201 #endif
2202 struct option md_longopts[] =
2203 {
2204 #ifdef OBJ_ELF
2205 #define OPTION_PIC (OPTION_MD_BASE)
2206 { "pic", no_argument, NULL, OPTION_PIC },
2207 #endif
2208 { NULL, no_argument, NULL, 0 }
2209 };
2210 size_t md_longopts_size = sizeof (md_longopts);
2211
2212 int
2213 md_parse_option (int c, char *arg)
2214 {
2215 switch (c)
2216 {
2217 case 'S':
2218 as_warn (_("SYMBOL TABLE not implemented"));
2219 break;
2220
2221 case 'T':
2222 as_warn (_("TOKEN TRACE not implemented"));
2223 break;
2224
2225 case 'd':
2226 as_warn (_("Displacement length %s ignored!"), arg);
2227 break;
2228
2229 case 't':
2230 as_warn (_("I don't need or use temp. file \"%s\"."), arg);
2231 break;
2232
2233 case 'V':
2234 as_warn (_("I don't use an interpass file! -V ignored"));
2235 break;
2236
2237 #ifdef OBJ_VMS
2238 case '+': /* For g++. Hash any name > 31 chars long. */
2239 flag_hash_long_names = 1;
2240 break;
2241
2242 case '1': /* For backward compatibility. */
2243 flag_one = 1;
2244 break;
2245
2246 case 'H': /* Show new symbol after hash truncation. */
2247 flag_show_after_trunc = 1;
2248 break;
2249
2250 case 'h': /* No hashing of mixed-case names. */
2251 {
2252 extern char vms_name_mapping;
2253 vms_name_mapping = atoi (arg);
2254 flag_no_hash_mixed_case = 1;
2255 }
2256 break;
2257
2258 case 'v':
2259 {
2260 extern char *compiler_version_string;
2261
2262 if (!arg || !*arg || access (arg, 0) == 0)
2263 return 0; /* Have caller show the assembler version. */
2264 compiler_version_string = arg;
2265 }
2266 break;
2267 #endif
2268
2269 #ifdef OBJ_ELF
2270 case OPTION_PIC:
2271 case 'k':
2272 flag_want_pic = 1;
2273 break; /* -pic, Position Independent Code. */
2274
2275 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment
2276 section should be emitted or not. FIXME: Not implemented. */
2277 case 'Q':
2278 break;
2279 #endif
2280
2281 default:
2282 return 0;
2283 }
2284
2285 return 1;
2286 }
2287
2288 void
2289 md_show_usage (FILE *stream)
2290 {
2291 fprintf (stream, _("\
2292 VAX options:\n\
2293 -d LENGTH ignored\n\
2294 -J ignored\n\
2295 -S ignored\n\
2296 -t FILE ignored\n\
2297 -T ignored\n\
2298 -V ignored\n"));
2299 #ifdef OBJ_VMS
2300 fprintf (stream, _("\
2301 VMS options:\n\
2302 -+ hash encode names longer than 31 characters\n\
2303 -1 `const' handling compatible with gcc 1.x\n\
2304 -H show new symbol after hash truncation\n\
2305 -h NUM don't hash mixed-case names, and adjust case:\n\
2306 0 = upper, 2 = lower, 3 = preserve case\n\
2307 -v\"VERSION\" code being assembled was produced by compiler \"VERSION\"\n"));
2308 #endif
2309 }
2310 \f
2311 /* We have no need to default values of symbols. */
2312
2313 symbolS *
2314 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
2315 {
2316 return NULL;
2317 }
2318
2319 /* Round up a section size to the appropriate boundary. */
2320 valueT
2321 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
2322 {
2323 /* Byte alignment is fine */
2324 return size;
2325 }
2326
2327 /* Exactly what point is a PC-relative offset relative TO?
2328 On the vax, they're relative to the address of the offset, plus
2329 its size. */
2330 long
2331 md_pcrel_from (fixS *fixP)
2332 {
2333 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
2334 }
2335
2336 arelent *
2337 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
2338 {
2339 arelent *reloc;
2340 bfd_reloc_code_real_type code;
2341
2342 if (fixp->fx_tcbit)
2343 abort ();
2344
2345 if (fixp->fx_r_type != NO_RELOC)
2346 {
2347 code = fixp->fx_r_type;
2348
2349 if (fixp->fx_pcrel)
2350 {
2351 switch (code)
2352 {
2353 case BFD_RELOC_8_PCREL:
2354 case BFD_RELOC_16_PCREL:
2355 case BFD_RELOC_32_PCREL:
2356 #ifdef OBJ_ELF
2357 case BFD_RELOC_8_GOT_PCREL:
2358 case BFD_RELOC_16_GOT_PCREL:
2359 case BFD_RELOC_32_GOT_PCREL:
2360 case BFD_RELOC_8_PLT_PCREL:
2361 case BFD_RELOC_16_PLT_PCREL:
2362 case BFD_RELOC_32_PLT_PCREL:
2363 #endif
2364 break;
2365 default:
2366 as_bad_where (fixp->fx_file, fixp->fx_line,
2367 _("Cannot make %s relocation PC relative"),
2368 bfd_get_reloc_code_name (code));
2369 }
2370 }
2371 }
2372 else
2373 {
2374 #define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
2375 switch (F (fixp->fx_size, fixp->fx_pcrel))
2376 {
2377 #define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break
2378 MAP (1, 0, BFD_RELOC_8);
2379 MAP (2, 0, BFD_RELOC_16);
2380 MAP (4, 0, BFD_RELOC_32);
2381 MAP (1, 1, BFD_RELOC_8_PCREL);
2382 MAP (2, 1, BFD_RELOC_16_PCREL);
2383 MAP (4, 1, BFD_RELOC_32_PCREL);
2384 default:
2385 abort ();
2386 }
2387 }
2388 #undef F
2389 #undef MAP
2390
2391 reloc = xmalloc (sizeof (arelent));
2392 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
2393 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
2394 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
2395 #ifndef OBJ_ELF
2396 if (fixp->fx_pcrel)
2397 reloc->addend = fixp->fx_addnumber;
2398 else
2399 reloc->addend = 0;
2400 #else
2401 reloc->addend = fixp->fx_offset;
2402 #endif
2403
2404 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
2405 gas_assert (reloc->howto != 0);
2406
2407 return reloc;
2408 }
2409
2410 /* vax:md_assemble() emit frags for 1 instruction given in textual form. */
2411 void
2412 md_assemble (char *instruction_string)
2413 {
2414 /* Non-zero if operand expression's segment is not known yet. */
2415 int is_undefined;
2416 /* Non-zero if operand expression's segment is absolute. */
2417 int is_absolute;
2418 int length_code;
2419 char *p;
2420 /* An operand. Scans all operands. */
2421 struct vop *operandP;
2422 char *save_input_line_pointer;
2423 /* What used to live after an expression. */
2424 char c_save;
2425 /* 1: instruction_string bad for all passes. */
2426 int goofed;
2427 /* Points to slot just after last operand. */
2428 struct vop *end_operandP;
2429 /* Points to expression values for this operand. */
2430 expressionS *expP;
2431 segT *segP;
2432
2433 /* These refer to an instruction operand expression. */
2434 /* Target segment of the address. */
2435 segT to_seg;
2436 valueT this_add_number;
2437 /* Positive (minuend) symbol. */
2438 symbolS *this_add_symbol;
2439 /* As a number. */
2440 long opcode_as_number;
2441 /* Least significant byte 1st. */
2442 char *opcode_as_chars;
2443 /* As an array of characters. */
2444 /* Least significant byte 1st */
2445 char *opcode_low_byteP;
2446 /* length (bytes) meant by vop_short. */
2447 int length;
2448 /* 0, or 1 if '@' is in addressing mode. */
2449 int at;
2450 /* From vop_nbytes: vax_operand_width (in bytes) */
2451 int nbytes;
2452 FLONUM_TYPE *floatP;
2453 LITTLENUM_TYPE literal_float[8];
2454 /* Big enough for any floating point literal. */
2455
2456 vip (&v, instruction_string);
2457
2458 /* Now we try to find as many as_warn()s as we can. If we do any as_warn()s
2459 then goofed=1. Notice that we don't make any frags yet.
2460 Should goofed be 1, then this instruction will wedge in any pass,
2461 and we can safely flush it, without causing interpass symbol phase
2462 errors. That is, without changing label values in different passes. */
2463 if ((goofed = (*v.vit_error)) != 0)
2464 {
2465 as_fatal (_("Ignoring statement due to \"%s\""), v.vit_error);
2466 }
2467 /* We need to use expression() and friends, which require us to diddle
2468 input_line_pointer. So we save it and restore it later. */
2469 save_input_line_pointer = input_line_pointer;
2470 for (operandP = v.vit_operand,
2471 expP = exp_of_operand,
2472 segP = seg_of_operand,
2473 floatP = float_operand,
2474 end_operandP = v.vit_operand + v.vit_operands;
2475
2476 operandP < end_operandP;
2477
2478 operandP++, expP++, segP++, floatP++)
2479 {
2480 if (operandP->vop_error)
2481 {
2482 as_fatal (_("Aborting because statement has \"%s\""), operandP->vop_error);
2483 goofed = 1;
2484 }
2485 else
2486 {
2487 /* Statement has no syntax goofs: let's sniff the expression. */
2488 int can_be_short = 0; /* 1 if a bignum can be reduced to a short literal. */
2489
2490 input_line_pointer = operandP->vop_expr_begin;
2491 c_save = operandP->vop_expr_end[1];
2492 operandP->vop_expr_end[1] = '\0';
2493 /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = 1. */
2494 *segP = expression (expP);
2495 switch (expP->X_op)
2496 {
2497 case O_absent:
2498 /* for BSD4.2 compatibility, missing expression is absolute 0 */
2499 expP->X_op = O_constant;
2500 expP->X_add_number = 0;
2501 /* For SEG_ABSOLUTE, we shouldn't need to set X_op_symbol,
2502 X_add_symbol to any particular value. But, we will program
2503 defensively. Since this situation occurs rarely so it costs
2504 us little to do, and stops Dean worrying about the origin of
2505 random bits in expressionS's. */
2506 expP->X_add_symbol = NULL;
2507 expP->X_op_symbol = NULL;
2508 break;
2509
2510 case O_symbol:
2511 case O_constant:
2512 break;
2513
2514 default:
2515 /* Major bug. We can't handle the case of a
2516 SEG_OP expression in a VIT_OPCODE_SYNTHETIC
2517 variable-length instruction.
2518 We don't have a frag type that is smart enough to
2519 relax a SEG_OP, and so we just force all
2520 SEG_OPs to behave like SEG_PASS1s.
2521 Clearly, if there is a demand we can invent a new or
2522 modified frag type and then coding up a frag for this
2523 case will be easy. SEG_OP was invented for the
2524 .words after a CASE opcode, and was never intended for
2525 instruction operands. */
2526 need_pass_2 = 1;
2527 as_fatal (_("Can't relocate expression"));
2528 break;
2529
2530 case O_big:
2531 /* Preserve the bits. */
2532 if (expP->X_add_number > 0)
2533 {
2534 bignum_copy (generic_bignum, expP->X_add_number,
2535 floatP->low, SIZE_OF_LARGE_NUMBER);
2536 }
2537 else
2538 {
2539 know (expP->X_add_number < 0);
2540 flonum_copy (&generic_floating_point_number,
2541 floatP);
2542 if (strchr ("s i", operandP->vop_short))
2543 {
2544 /* Could possibly become S^# */
2545 flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
2546 switch (-expP->X_add_number)
2547 {
2548 case 'f':
2549 can_be_short =
2550 (literal_float[0] & 0xFC0F) == 0x4000
2551 && literal_float[1] == 0;
2552 break;
2553
2554 case 'd':
2555 can_be_short =
2556 (literal_float[0] & 0xFC0F) == 0x4000
2557 && literal_float[1] == 0
2558 && literal_float[2] == 0
2559 && literal_float[3] == 0;
2560 break;
2561
2562 case 'g':
2563 can_be_short =
2564 (literal_float[0] & 0xFF81) == 0x4000
2565 && literal_float[1] == 0
2566 && literal_float[2] == 0
2567 && literal_float[3] == 0;
2568 break;
2569
2570 case 'h':
2571 can_be_short = ((literal_float[0] & 0xFFF8) == 0x4000
2572 && (literal_float[1] & 0xE000) == 0
2573 && literal_float[2] == 0
2574 && literal_float[3] == 0
2575 && literal_float[4] == 0
2576 && literal_float[5] == 0
2577 && literal_float[6] == 0
2578 && literal_float[7] == 0);
2579 break;
2580
2581 default:
2582 BAD_CASE (-expP->X_add_number);
2583 break;
2584 }
2585 }
2586 }
2587
2588 if (operandP->vop_short == 's'
2589 || operandP->vop_short == 'i'
2590 || (operandP->vop_short == ' '
2591 && operandP->vop_reg == 0xF
2592 && (operandP->vop_mode & 0xE) == 0x8))
2593 {
2594 /* Saw a '#'. */
2595 if (operandP->vop_short == ' ')
2596 {
2597 /* We must chose S^ or I^. */
2598 if (expP->X_add_number > 0)
2599 {
2600 /* Bignum: Short literal impossible. */
2601 operandP->vop_short = 'i';
2602 operandP->vop_mode = 8;
2603 operandP->vop_reg = 0xF; /* VAX PC. */
2604 }
2605 else
2606 {
2607 /* Flonum: Try to do it. */
2608 if (can_be_short)
2609 {
2610 operandP->vop_short = 's';
2611 operandP->vop_mode = 0;
2612 operandP->vop_ndx = -1;
2613 operandP->vop_reg = -1;
2614 expP->X_op = O_constant;
2615 }
2616 else
2617 {
2618 operandP->vop_short = 'i';
2619 operandP->vop_mode = 8;
2620 operandP->vop_reg = 0xF; /* VAX PC */
2621 }
2622 } /* bignum or flonum ? */
2623 } /* if #, but no S^ or I^ seen. */
2624 /* No more ' ' case: either 's' or 'i'. */
2625 if (operandP->vop_short == 's')
2626 {
2627 /* Wants to be a short literal. */
2628 if (expP->X_add_number > 0)
2629 {
2630 as_warn (_("Bignum not permitted in short literal. Immediate mode assumed."));
2631 operandP->vop_short = 'i';
2632 operandP->vop_mode = 8;
2633 operandP->vop_reg = 0xF; /* VAX PC. */
2634 }
2635 else
2636 {
2637 if (!can_be_short)
2638 {
2639 as_warn (_("Can't do flonum short literal: immediate mode used."));
2640 operandP->vop_short = 'i';
2641 operandP->vop_mode = 8;
2642 operandP->vop_reg = 0xF; /* VAX PC. */
2643 }
2644 else
2645 {
2646 /* Encode short literal now. */
2647 int temp = 0;
2648
2649 switch (-expP->X_add_number)
2650 {
2651 case 'f':
2652 case 'd':
2653 temp = literal_float[0] >> 4;
2654 break;
2655
2656 case 'g':
2657 temp = literal_float[0] >> 1;
2658 break;
2659
2660 case 'h':
2661 temp = ((literal_float[0] << 3) & 070)
2662 | ((literal_float[1] >> 13) & 07);
2663 break;
2664
2665 default:
2666 BAD_CASE (-expP->X_add_number);
2667 break;
2668 }
2669
2670 floatP->low[0] = temp & 077;
2671 floatP->low[1] = 0;
2672 }
2673 }
2674 }
2675 else
2676 {
2677 /* I^# seen: set it up if float. */
2678 if (expP->X_add_number < 0)
2679 {
2680 memcpy (floatP->low, literal_float, sizeof (literal_float));
2681 }
2682 } /* if S^# seen. */
2683 }
2684 else
2685 {
2686 as_warn (_("A bignum/flonum may not be a displacement: 0x%lx used"),
2687 (expP->X_add_number = 0x80000000L));
2688 /* Chosen so luser gets the most offset bits to patch later. */
2689 }
2690 expP->X_add_number = floatP->low[0]
2691 | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
2692
2693 /* For the O_big case we have:
2694 If vop_short == 's' then a short floating literal is in the
2695 lowest 6 bits of floatP -> low [0], which is
2696 big_operand_bits [---] [0].
2697 If vop_short == 'i' then the appropriate number of elements
2698 of big_operand_bits [---] [...] are set up with the correct
2699 bits.
2700 Also, just in case width is byte word or long, we copy the lowest
2701 32 bits of the number to X_add_number. */
2702 break;
2703 }
2704 if (input_line_pointer != operandP->vop_expr_end + 1)
2705 {
2706 as_fatal ("Junk at end of expression \"%s\"", input_line_pointer);
2707 goofed = 1;
2708 }
2709 operandP->vop_expr_end[1] = c_save;
2710 }
2711 }
2712
2713 input_line_pointer = save_input_line_pointer;
2714
2715 if (need_pass_2 || goofed)
2716 return;
2717
2718 dwarf2_emit_insn (0);
2719 /* Emit op-code. */
2720 /* Remember where it is, in case we want to modify the op-code later. */
2721 opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
2722 memcpy (opcode_low_byteP, v.vit_opcode, v.vit_opcode_nbytes);
2723 opcode_as_chars = v.vit_opcode;
2724 opcode_as_number = md_chars_to_number ((unsigned char *) opcode_as_chars, 4);
2725 for (operandP = v.vit_operand,
2726 expP = exp_of_operand,
2727 segP = seg_of_operand,
2728 floatP = float_operand,
2729 end_operandP = v.vit_operand + v.vit_operands;
2730
2731 operandP < end_operandP;
2732
2733 operandP++,
2734 floatP++,
2735 segP++,
2736 expP++)
2737 {
2738 if (operandP->vop_ndx >= 0)
2739 {
2740 /* Indexed addressing byte. */
2741 /* Legality of indexed mode already checked: it is OK. */
2742 FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
2743 } /* if(vop_ndx>=0) */
2744
2745 /* Here to make main operand frag(s). */
2746 this_add_number = expP->X_add_number;
2747 this_add_symbol = expP->X_add_symbol;
2748 to_seg = *segP;
2749 is_undefined = (to_seg == undefined_section);
2750 is_absolute = (to_seg == absolute_section);
2751 at = operandP->vop_mode & 1;
2752 length = (operandP->vop_short == 'b'
2753 ? 1 : (operandP->vop_short == 'w'
2754 ? 2 : (operandP->vop_short == 'l'
2755 ? 4 : 0)));
2756 nbytes = operandP->vop_nbytes;
2757 if (operandP->vop_access == 'b')
2758 {
2759 if (to_seg == now_seg || is_undefined)
2760 {
2761 /* If is_undefined, then it might BECOME now_seg. */
2762 if (nbytes)
2763 {
2764 p = frag_more (nbytes);
2765 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
2766 this_add_symbol, this_add_number, 1, NO_RELOC);
2767 }
2768 else
2769 {
2770 /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
2771 /* nbytes==0 */
2772 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
2773 if (opcode_as_number & VIT_OPCODE_SPECIAL)
2774 {
2775 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
2776 {
2777 /* br or jsb */
2778 frag_var (rs_machine_dependent, 5, 1,
2779 ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
2780 this_add_symbol, this_add_number,
2781 opcode_low_byteP);
2782 }
2783 else
2784 {
2785 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
2786 {
2787 length_code = STATE_WORD;
2788 /* JF: There is no state_byte for this one! */
2789 frag_var (rs_machine_dependent, 10, 2,
2790 ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
2791 this_add_symbol, this_add_number,
2792 opcode_low_byteP);
2793 }
2794 else
2795 {
2796 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
2797 frag_var (rs_machine_dependent, 9, 1,
2798 ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
2799 this_add_symbol, this_add_number,
2800 opcode_low_byteP);
2801 }
2802 }
2803 }
2804 else
2805 {
2806 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
2807 frag_var (rs_machine_dependent, 7, 1,
2808 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
2809 this_add_symbol, this_add_number,
2810 opcode_low_byteP);
2811 }
2812 }
2813 }
2814 else
2815 {
2816 /* to_seg != now_seg && to_seg != SEG_UNKNOWN */
2817 /* --- SEG FLOAT MAY APPEAR HERE --- */
2818 if (is_absolute)
2819 {
2820 if (nbytes)
2821 {
2822 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
2823 p = frag_more (nbytes);
2824 /* Conventional relocation. */
2825 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
2826 section_symbol (absolute_section),
2827 this_add_number, 1, NO_RELOC);
2828 }
2829 else
2830 {
2831 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
2832 if (opcode_as_number & VIT_OPCODE_SPECIAL)
2833 {
2834 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
2835 {
2836 /* br or jsb */
2837 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
2838 know (opcode_as_chars[1] == 0);
2839 p = frag_more (5);
2840 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
2841 md_number_to_chars (p + 1, this_add_number, 4);
2842 /* Now (eg) JMP @#foo or JSB @#foo. */
2843 }
2844 else
2845 {
2846 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
2847 {
2848 p = frag_more (10);
2849 p[0] = 2;
2850 p[1] = 0;
2851 p[2] = VAX_BRB;
2852 p[3] = 6;
2853 p[4] = VAX_JMP;
2854 p[5] = VAX_ABSOLUTE_MODE; /* @#... */
2855 md_number_to_chars (p + 6, this_add_number, 4);
2856 /* Now (eg) ACBx 1f
2857 BRB 2f
2858 1: JMP @#foo
2859 2: */
2860 }
2861 else
2862 {
2863 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
2864 p = frag_more (9);
2865 p[0] = 2;
2866 p[1] = VAX_BRB;
2867 p[2] = 6;
2868 p[3] = VAX_JMP;
2869 p[4] = VAX_ABSOLUTE_MODE; /* @#... */
2870 md_number_to_chars (p + 5, this_add_number, 4);
2871 /* Now (eg) xOBxxx 1f
2872 BRB 2f
2873 1: JMP @#foo
2874 2: */
2875 }
2876 }
2877 }
2878 else
2879 {
2880 /* b<cond> */
2881 *opcode_low_byteP ^= 1;
2882 /* To reverse the condition in a VAX branch,
2883 complement the lowest order bit. */
2884 p = frag_more (7);
2885 p[0] = 6;
2886 p[1] = VAX_JMP;
2887 p[2] = VAX_ABSOLUTE_MODE; /* @#... */
2888 md_number_to_chars (p + 3, this_add_number, 4);
2889 /* Now (eg) BLEQ 1f
2890 JMP @#foo
2891 1: */
2892 }
2893 }
2894 }
2895 else
2896 {
2897 /* to_seg != now_seg && !is_undefinfed && !is_absolute */
2898 if (nbytes > 0)
2899 {
2900 /* Pc-relative. Conventional relocation. */
2901 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
2902 p = frag_more (nbytes);
2903 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
2904 section_symbol (absolute_section),
2905 this_add_number, 1, NO_RELOC);
2906 }
2907 else
2908 {
2909 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
2910 if (opcode_as_number & VIT_OPCODE_SPECIAL)
2911 {
2912 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
2913 {
2914 /* br or jsb */
2915 know (opcode_as_chars[1] == 0);
2916 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
2917 p = frag_more (5);
2918 p[0] = VAX_PC_RELATIVE_MODE;
2919 fix_new (frag_now,
2920 p + 1 - frag_now->fr_literal, 4,
2921 this_add_symbol,
2922 this_add_number, 1, NO_RELOC);
2923 /* Now eg JMP foo or JSB foo. */
2924 }
2925 else
2926 {
2927 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
2928 {
2929 p = frag_more (10);
2930 p[0] = 0;
2931 p[1] = 2;
2932 p[2] = VAX_BRB;
2933 p[3] = 6;
2934 p[4] = VAX_JMP;
2935 p[5] = VAX_PC_RELATIVE_MODE;
2936 fix_new (frag_now,
2937 p + 6 - frag_now->fr_literal, 4,
2938 this_add_symbol,
2939 this_add_number, 1, NO_RELOC);
2940 /* Now (eg) ACBx 1f
2941 BRB 2f
2942 1: JMP foo
2943 2: */
2944 }
2945 else
2946 {
2947 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
2948 p = frag_more (10);
2949 p[0] = 2;
2950 p[1] = VAX_BRB;
2951 p[2] = 6;
2952 p[3] = VAX_JMP;
2953 p[4] = VAX_PC_RELATIVE_MODE;
2954 fix_new (frag_now,
2955 p + 5 - frag_now->fr_literal,
2956 4, this_add_symbol,
2957 this_add_number, 1, NO_RELOC);
2958 /* Now (eg) xOBxxx 1f
2959 BRB 2f
2960 1: JMP foo
2961 2: */
2962 }
2963 }
2964 }
2965 else
2966 {
2967 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
2968 *opcode_low_byteP ^= 1; /* Reverse branch condition. */
2969 p = frag_more (7);
2970 p[0] = 6;
2971 p[1] = VAX_JMP;
2972 p[2] = VAX_PC_RELATIVE_MODE;
2973 fix_new (frag_now, p + 3 - frag_now->fr_literal,
2974 4, this_add_symbol,
2975 this_add_number, 1, NO_RELOC);
2976 }
2977 }
2978 }
2979 }
2980 }
2981 else
2982 {
2983 /* So it is ordinary operand. */
2984 know (operandP->vop_access != 'b');
2985 /* ' ' target-independent: elsewhere. */
2986 know (operandP->vop_access != ' ');
2987 know (operandP->vop_access == 'a'
2988 || operandP->vop_access == 'm'
2989 || operandP->vop_access == 'r'
2990 || operandP->vop_access == 'v'
2991 || operandP->vop_access == 'w');
2992 if (operandP->vop_short == 's')
2993 {
2994 if (is_absolute)
2995 {
2996 if (this_add_number >= 64)
2997 {
2998 as_warn (_("Short literal overflow(%ld.), immediate mode assumed."),
2999 (long) this_add_number);
3000 operandP->vop_short = 'i';
3001 operandP->vop_mode = 8;
3002 operandP->vop_reg = 0xF;
3003 }
3004 }
3005 else
3006 {
3007 as_warn (_("Forced short literal to immediate mode. now_seg=%s to_seg=%s"),
3008 segment_name (now_seg), segment_name (to_seg));
3009 operandP->vop_short = 'i';
3010 operandP->vop_mode = 8;
3011 operandP->vop_reg = 0xF;
3012 }
3013 }
3014 if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8
3015 || (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
3016 {
3017 /* One byte operand. */
3018 know (operandP->vop_mode > 3);
3019 FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
3020 /* All 1-bytes except S^# happen here. */
3021 }
3022 else
3023 {
3024 /* {@}{q^}foo{(Rn)} or S^#foo */
3025 if (operandP->vop_reg == -1 && operandP->vop_short != 's')
3026 {
3027 /* "{@}{q^}foo" */
3028 if (to_seg == now_seg)
3029 {
3030 if (length == 0)
3031 {
3032 know (operandP->vop_short == ' ');
3033 length_code = STATE_BYTE;
3034 #ifdef OBJ_ELF
3035 if (S_IS_EXTERNAL (this_add_symbol)
3036 || S_IS_WEAK (this_add_symbol))
3037 length_code = STATE_UNDF;
3038 #endif
3039 p = frag_var (rs_machine_dependent, 10, 2,
3040 ENCODE_RELAX (STATE_PC_RELATIVE, length_code),
3041 this_add_symbol, this_add_number,
3042 opcode_low_byteP);
3043 know (operandP->vop_mode == 10 + at);
3044 *p = at << 4;
3045 /* At is the only context we need to carry
3046 to other side of relax() process. Must
3047 be in the correct bit position of VAX
3048 operand spec. byte. */
3049 }
3050 else
3051 {
3052 know (length);
3053 know (operandP->vop_short != ' ');
3054 p = frag_more (length + 1);
3055 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
3056 fix_new (frag_now, p + 1 - frag_now->fr_literal,
3057 length, this_add_symbol,
3058 this_add_number, 1, NO_RELOC);
3059 }
3060 }
3061 else
3062 {
3063 /* to_seg != now_seg */
3064 if (this_add_symbol == NULL)
3065 {
3066 know (is_absolute);
3067 /* Do @#foo: simpler relocation than foo-.(pc) anyway. */
3068 p = frag_more (5);
3069 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
3070 md_number_to_chars (p + 1, this_add_number, 4);
3071 if (length && length != 4)
3072 as_warn (_("Length specification ignored. Address mode 9F used"));
3073 }
3074 else
3075 {
3076 /* {@}{q^}other_seg */
3077 know ((length == 0 && operandP->vop_short == ' ')
3078 || (length > 0 && operandP->vop_short != ' '));
3079 if (is_undefined
3080 #ifdef OBJ_ELF
3081 || S_IS_WEAK(this_add_symbol)
3082 || S_IS_EXTERNAL(this_add_symbol)
3083 #endif
3084 )
3085 {
3086 switch (length)
3087 {
3088 default: length_code = STATE_UNDF; break;
3089 case 1: length_code = STATE_BYTE; break;
3090 case 2: length_code = STATE_WORD; break;
3091 case 4: length_code = STATE_LONG; break;
3092 }
3093 /* We have a SEG_UNKNOWN symbol. It might
3094 turn out to be in the same segment as
3095 the instruction, permitting relaxation. */
3096 p = frag_var (rs_machine_dependent, 5, 2,
3097 ENCODE_RELAX (STATE_PC_RELATIVE, length_code),
3098 this_add_symbol, this_add_number,
3099 opcode_low_byteP);
3100 p[0] = at << 4;
3101 }
3102 else
3103 {
3104 if (length == 0)
3105 {
3106 know (operandP->vop_short == ' ');
3107 length = 4; /* Longest possible. */
3108 }
3109 p = frag_more (length + 1);
3110 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
3111 md_number_to_chars (p + 1, this_add_number, length);
3112 fix_new (frag_now,
3113 p + 1 - frag_now->fr_literal,
3114 length, this_add_symbol,
3115 this_add_number, 1, NO_RELOC);
3116 }
3117 }
3118 }
3119 }
3120 else
3121 {
3122 /* {@}{q^}foo(Rn) or S^# or I^# or # */
3123 if (operandP->vop_mode < 0xA)
3124 {
3125 /* # or S^# or I^# */
3126 if (operandP->vop_access == 'v'
3127 || operandP->vop_access == 'a')
3128 {
3129 if (operandP->vop_access == 'v')
3130 as_warn (_("Invalid operand: immediate value used as base address."));
3131 else
3132 as_warn (_("Invalid operand: immediate value used as address."));
3133 /* gcc 2.6.3 is known to generate these in at least
3134 one case. */
3135 }
3136 if (length == 0
3137 && is_absolute && (expP->X_op != O_big)
3138 && operandP->vop_mode == 8 /* No '@'. */
3139 && this_add_number < 64)
3140 {
3141 operandP->vop_short = 's';
3142 }
3143 if (operandP->vop_short == 's')
3144 {
3145 FRAG_APPEND_1_CHAR (this_add_number);
3146 }
3147 else
3148 {
3149 /* I^#... */
3150 know (nbytes);
3151 p = frag_more (nbytes + 1);
3152 know (operandP->vop_reg == 0xF);
3153 #ifdef OBJ_ELF
3154 if (flag_want_pic && operandP->vop_mode == 8
3155 && this_add_symbol != NULL)
3156 {
3157 as_warn (_("Symbol %s used as immediate operand in PIC mode."),
3158 S_GET_NAME (this_add_symbol));
3159 }
3160 #endif
3161 p[0] = (operandP->vop_mode << 4) | 0xF;
3162 if ((is_absolute) && (expP->X_op != O_big))
3163 {
3164 /* If nbytes > 4, then we are scrod. We
3165 don't know if the high order bytes
3166 are to be 0xFF or 0x00. BSD4.2 & RMS
3167 say use 0x00. OK --- but this
3168 assembler needs ANOTHER rewrite to
3169 cope properly with this bug. */
3170 md_number_to_chars (p + 1, this_add_number,
3171 min (sizeof (valueT),
3172 (size_t) nbytes));
3173 if ((size_t) nbytes > sizeof (valueT))
3174 memset (p + 1 + sizeof (valueT),
3175 '\0', nbytes - sizeof (valueT));
3176 }
3177 else
3178 {
3179 if (expP->X_op == O_big)
3180 {
3181 /* Problem here is to get the bytes
3182 in the right order. We stored
3183 our constant as LITTLENUMs, not
3184 bytes. */
3185 LITTLENUM_TYPE *lP;
3186
3187 lP = floatP->low;
3188 if (nbytes & 1)
3189 {
3190 know (nbytes == 1);
3191 p[1] = *lP;
3192 }
3193 else
3194 {
3195 for (p++; nbytes; nbytes -= 2, p += 2, lP++)
3196 md_number_to_chars (p, *lP, 2);
3197 }
3198 }
3199 else
3200 {
3201 fix_new (frag_now, p + 1 - frag_now->fr_literal,
3202 nbytes, this_add_symbol,
3203 this_add_number, 0, NO_RELOC);
3204 }
3205 }
3206 }
3207 }
3208 else
3209 {
3210 /* {@}{q^}foo(Rn) */
3211 know ((length == 0 && operandP->vop_short == ' ')
3212 || (length > 0 && operandP->vop_short != ' '));
3213 if (length == 0)
3214 {
3215 if (is_absolute)
3216 {
3217 long test;
3218
3219 test = this_add_number;
3220
3221 if (test < 0)
3222 test = ~test;
3223
3224 length = test & 0xffff8000 ? 4
3225 : test & 0xffffff80 ? 2
3226 : 1;
3227 }
3228 else
3229 {
3230 length = 4;
3231 }
3232 }
3233 p = frag_more (1 + length);
3234 know (operandP->vop_reg >= 0);
3235 p[0] = operandP->vop_reg
3236 | ((at | "?\12\14?\16"[length]) << 4);
3237 if (is_absolute)
3238 {
3239 md_number_to_chars (p + 1, this_add_number, length);
3240 }
3241 else
3242 {
3243 fix_new (frag_now, p + 1 - frag_now->fr_literal,
3244 length, this_add_symbol,
3245 this_add_number, 0, NO_RELOC);
3246 }
3247 }
3248 }
3249 }
3250 }
3251 }
3252 }
3253
3254 void
3255 md_begin (void)
3256 {
3257 const char *errtxt;
3258 FLONUM_TYPE *fP;
3259 int i;
3260
3261 if ((errtxt = vip_begin (1, "$", "*", "`")) != 0)
3262 as_fatal (_("VIP_BEGIN error:%s"), errtxt);
3263
3264 for (i = 0, fP = float_operand;
3265 fP < float_operand + VIT_MAX_OPERANDS;
3266 i++, fP++)
3267 {
3268 fP->low = &big_operand_bits[i][0];
3269 fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
3270 }
3271 }
3272
3273 bfd_reloc_code_real_type
3274 vax_cons (expressionS *exp, int size)
3275 {
3276 char *save;
3277 char *vax_cons_special_reloc;
3278
3279 SKIP_WHITESPACE ();
3280 vax_cons_special_reloc = NULL;
3281 save = input_line_pointer;
3282 if (input_line_pointer[0] == '%')
3283 {
3284 if (strncmp (input_line_pointer + 1, "pcrel", 5) == 0)
3285 {
3286 input_line_pointer += 6;
3287 vax_cons_special_reloc = "pcrel";
3288 }
3289 if (vax_cons_special_reloc)
3290 {
3291 int bad = 0;
3292
3293 switch (size)
3294 {
3295 case 1:
3296 if (*input_line_pointer != '8')
3297 bad = 1;
3298 input_line_pointer--;
3299 break;
3300 case 2:
3301 if (input_line_pointer[0] != '1' || input_line_pointer[1] != '6')
3302 bad = 1;
3303 break;
3304 case 4:
3305 if (input_line_pointer[0] != '3' || input_line_pointer[1] != '2')
3306 bad = 1;
3307 break;
3308 default:
3309 bad = 1;
3310 break;
3311 }
3312
3313 if (bad)
3314 {
3315 as_bad (_("Illegal operands: Only %%r_%s%d allowed in %d-byte data fields"),
3316 vax_cons_special_reloc, size * 8, size);
3317 }
3318 else
3319 {
3320 input_line_pointer += 2;
3321 if (*input_line_pointer != '(')
3322 {
3323 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
3324 vax_cons_special_reloc, size * 8);
3325 bad = 1;
3326 }
3327 }
3328
3329 if (bad)
3330 {
3331 input_line_pointer = save;
3332 vax_cons_special_reloc = NULL;
3333 }
3334 else
3335 {
3336 int c;
3337 char *end = ++input_line_pointer;
3338 int npar = 0;
3339
3340 while (! is_end_of_line[(c = *end)])
3341 {
3342 if (c == '(')
3343 npar++;
3344 else if (c == ')')
3345 {
3346 if (!npar)
3347 break;
3348 npar--;
3349 }
3350 end++;
3351 }
3352
3353 if (c != ')')
3354 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
3355 vax_cons_special_reloc, size * 8);
3356 else
3357 {
3358 *end = '\0';
3359 expression (exp);
3360 *end = c;
3361 if (input_line_pointer != end)
3362 {
3363 as_bad (_("Illegal operands: %%r_%s%d requires arguments in ()"),
3364 vax_cons_special_reloc, size * 8);
3365 }
3366 else
3367 {
3368 input_line_pointer++;
3369 SKIP_WHITESPACE ();
3370 c = *input_line_pointer;
3371 if (! is_end_of_line[c] && c != ',')
3372 as_bad (_("Illegal operands: garbage after %%r_%s%d()"),
3373 vax_cons_special_reloc, size * 8);
3374 }
3375 }
3376 }
3377 }
3378 }
3379 if (vax_cons_special_reloc == NULL)
3380 expression (exp);
3381 else
3382 switch (size)
3383 {
3384 case 1: return BFD_RELOC_8_PCREL;
3385 case 2: return BFD_RELOC_16_PCREL;
3386 case 4: return BFD_RELOC_32_PCREL;
3387 }
3388 return NO_RELOC;
3389 }
3390
3391 /* This is called by emit_expr via TC_CONS_FIX_NEW when creating a
3392 reloc for a cons. */
3393
3394 void
3395 vax_cons_fix_new (fragS *frag, int where, unsigned int nbytes, expressionS *exp,
3396 bfd_reloc_code_real_type r)
3397 {
3398 if (r == NO_RELOC)
3399 r = (nbytes == 1 ? BFD_RELOC_8
3400 : nbytes == 2 ? BFD_RELOC_16
3401 : BFD_RELOC_32);
3402
3403 fix_new_exp (frag, where, (int) nbytes, exp, 0, r);
3404 }
3405
3406 char *
3407 md_atof (int type, char * litP, int * sizeP)
3408 {
3409 return vax_md_atof (type, litP, sizeP);
3410 }
This page took 0.121431 seconds and 5 git commands to generate.