d99513141b209b5063d4fd67fe2039dd31d1b571
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "as.h"
22 #include <limits.h>
23 #include "sb.h"
24 #include "safe-ctype.h"
25 #include "tc-xtensa.h"
26 #include "subsegs.h"
27 #include "xtensa-relax.h"
28 #include "dwarf2dbg.h"
29 #include "xtensa-istack.h"
30 #include "struc-symbol.h"
31 #include "xtensa-config.h"
32
33 /* Provide default values for new configuration settings. */
34 #ifndef XSHAL_ABI
35 #define XSHAL_ABI 0
36 #endif
37
38 #ifndef uint32
39 #define uint32 unsigned int
40 #endif
41 #ifndef int32
42 #define int32 signed int
43 #endif
44
45 /* Notes:
46
47 Naming conventions (used somewhat inconsistently):
48 The xtensa_ functions are exported
49 The xg_ functions are internal
50
51 We also have a couple of different extensibility mechanisms.
52 1) The idiom replacement:
53 This is used when a line is first parsed to
54 replace an instruction pattern with another instruction
55 It is currently limited to replacements of instructions
56 with constant operands.
57 2) The xtensa-relax.c mechanism that has stronger instruction
58 replacement patterns. When an instruction's immediate field
59 does not fit the next instruction sequence is attempted.
60 In addition, "narrow" opcodes are supported this way. */
61
62
63 /* Define characters with special meanings to GAS. */
64 const char comment_chars[] = "#";
65 const char line_comment_chars[] = "#";
66 const char line_separator_chars[] = ";";
67 const char EXP_CHARS[] = "eE";
68 const char FLT_CHARS[] = "rRsSfFdDxXpP";
69
70
71 /* Flags to indicate whether the hardware supports the density and
72 absolute literals options. */
73
74 bfd_boolean density_supported = XCHAL_HAVE_DENSITY;
75 bfd_boolean absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
76
77 static vliw_insn cur_vinsn;
78
79 unsigned xtensa_num_pipe_stages;
80 unsigned xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
81
82 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
83
84 /* Some functions are only valid in the front end. This variable
85 allows us to assert that we haven't crossed over into the
86 back end. */
87 static bfd_boolean past_xtensa_end = FALSE;
88
89 /* Flags for properties of the last instruction in a segment. */
90 #define FLAG_IS_A0_WRITER 0x1
91 #define FLAG_IS_BAD_LOOPEND 0x2
92
93
94 /* We define a special segment names ".literal" to place literals
95 into. The .fini and .init sections are special because they
96 contain code that is moved together by the linker. We give them
97 their own special .fini.literal and .init.literal sections. */
98
99 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
100 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
101 #define INIT_SECTION_NAME xtensa_section_rename (".init")
102 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
103
104
105 /* This type is used for the directive_stack to keep track of the
106 state of the literal collection pools. If lit_prefix is set, it is
107 used to determine the literal section names; otherwise, the literal
108 sections are determined based on the current text section. The
109 lit_seg and lit4_seg fields cache these literal sections, with the
110 current_text_seg field used a tag to indicate whether the cached
111 values are valid. */
112
113 typedef struct lit_state_struct
114 {
115 char *lit_prefix;
116 segT current_text_seg;
117 segT lit_seg;
118 segT lit4_seg;
119 } lit_state;
120
121 static lit_state default_lit_sections;
122
123
124 /* We keep a list of literal segments. The seg_list type is the node
125 for this list. The literal_head pointer is the head of the list,
126 with the literal_head_h dummy node at the start. */
127
128 typedef struct seg_list_struct
129 {
130 struct seg_list_struct *next;
131 segT seg;
132 } seg_list;
133
134 static seg_list literal_head_h;
135 static seg_list *literal_head = &literal_head_h;
136
137
138 /* Lists of symbols. We keep a list of symbols that label the current
139 instruction, so that we can adjust the symbols when inserting alignment
140 for various instructions. We also keep a list of all the symbols on
141 literals, so that we can fix up those symbols when the literals are
142 later moved into the text sections. */
143
144 typedef struct sym_list_struct
145 {
146 struct sym_list_struct *next;
147 symbolS *sym;
148 } sym_list;
149
150 static sym_list *insn_labels = NULL;
151 static sym_list *free_insn_labels = NULL;
152 static sym_list *saved_insn_labels = NULL;
153
154 static sym_list *literal_syms;
155
156
157 /* Flags to determine whether to prefer const16 or l32r
158 if both options are available. */
159 int prefer_const16 = 0;
160 int prefer_l32r = 0;
161
162 /* Global flag to indicate when we are emitting literals. */
163 int generating_literals = 0;
164
165 /* The following PROPERTY table definitions are copied from
166 <elf/xtensa.h> and must be kept in sync with the code there. */
167
168 /* Flags in the property tables to specify whether blocks of memory
169 are literals, instructions, data, or unreachable. For
170 instructions, blocks that begin loop targets and branch targets are
171 designated. Blocks that do not allow density, instruction
172 reordering or transformation are also specified. Finally, for
173 branch targets, branch target alignment priority is included.
174 Alignment of the next block is specified in the current block
175 and the size of the current block does not include any fill required
176 to align to the next block. */
177
178 #define XTENSA_PROP_LITERAL 0x00000001
179 #define XTENSA_PROP_INSN 0x00000002
180 #define XTENSA_PROP_DATA 0x00000004
181 #define XTENSA_PROP_UNREACHABLE 0x00000008
182 /* Instruction only properties at beginning of code. */
183 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
184 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
185 /* Instruction only properties about code. */
186 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
187 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
188 /* Historically, NO_TRANSFORM was a property of instructions,
189 but it should apply to literals under certain circumstances. */
190 #define XTENSA_PROP_NO_TRANSFORM 0x00000100
191
192 /* Branch target alignment information. This transmits information
193 to the linker optimization about the priority of aligning a
194 particular block for branch target alignment: None, low priority,
195 high priority, or required. These only need to be checked in
196 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
197 Common usage is
198
199 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
200 case XTENSA_PROP_BT_ALIGN_NONE:
201 case XTENSA_PROP_BT_ALIGN_LOW:
202 case XTENSA_PROP_BT_ALIGN_HIGH:
203 case XTENSA_PROP_BT_ALIGN_REQUIRE:
204 */
205 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
206
207 /* No branch target alignment. */
208 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
209 /* Low priority branch target alignment. */
210 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
211 /* High priority branch target alignment. */
212 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
213 /* Required branch target alignment. */
214 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
215
216 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
217 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
218 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
219 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
220 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
221
222
223 /* Alignment is specified in the block BEFORE the one that needs
224 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
225 get the required alignment specified as a power of 2. Use
226 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
227 alignment. Be careful of side effects since the SET will evaluate
228 flags twice. Also, note that the SIZE of a block in the property
229 table does not include the alignment size, so the alignment fill
230 must be calculated to determine if two blocks are contiguous.
231 TEXT_ALIGN is not currently implemented but is a placeholder for a
232 possible future implementation. */
233
234 #define XTENSA_PROP_ALIGN 0x00000800
235
236 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
237
238 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
239 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
240 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
241 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
242 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
243
244 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
245
246
247 /* Structure for saving instruction and alignment per-fragment data
248 that will be written to the object file. This structure is
249 equivalent to the actual data that will be written out to the file
250 but is easier to use. We provide a conversion to file flags
251 in frag_flags_to_number. */
252
253 typedef struct frag_flags_struct frag_flags;
254
255 struct frag_flags_struct
256 {
257 /* is_literal should only be used after xtensa_move_literals.
258 If you need to check if you are generating a literal fragment,
259 then use the generating_literals global. */
260
261 unsigned is_literal : 1;
262 unsigned is_insn : 1;
263 unsigned is_data : 1;
264 unsigned is_unreachable : 1;
265
266 /* is_specific_opcode implies no_transform. */
267 unsigned is_no_transform : 1;
268
269 struct
270 {
271 unsigned is_loop_target : 1;
272 unsigned is_branch_target : 1; /* Branch targets have a priority. */
273 unsigned bt_align_priority : 2;
274
275 unsigned is_no_density : 1;
276 /* no_longcalls flag does not need to be placed in the object file. */
277
278 unsigned is_no_reorder : 1;
279
280 /* Uses absolute literal addressing for l32r. */
281 unsigned is_abslit : 1;
282 } insn;
283 unsigned is_align : 1;
284 unsigned alignment : 5;
285 };
286
287
288 /* Structure for saving information about a block of property data
289 for frags that have the same flags. */
290 struct xtensa_block_info_struct
291 {
292 segT sec;
293 bfd_vma offset;
294 size_t size;
295 frag_flags flags;
296 struct xtensa_block_info_struct *next;
297 };
298
299
300 /* Structure for saving the current state before emitting literals. */
301 typedef struct emit_state_struct
302 {
303 const char *name;
304 segT now_seg;
305 subsegT now_subseg;
306 int generating_literals;
307 } emit_state;
308
309
310 /* Opcode placement information */
311
312 typedef unsigned long long bitfield;
313 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
314 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
315 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
316
317 #define MAX_FORMATS 32
318
319 typedef struct op_placement_info_struct
320 {
321 int num_formats;
322 /* A number describing how restrictive the issue is for this
323 opcode. For example, an opcode that fits lots of different
324 formats has a high freedom, as does an opcode that fits
325 only one format but many slots in that format. The most
326 restrictive is the opcode that fits only one slot in one
327 format. */
328 int issuef;
329 xtensa_format narrowest;
330 char narrowest_size;
331 char narrowest_slot;
332
333 /* formats is a bitfield with the Nth bit set
334 if the opcode fits in the Nth xtensa_format. */
335 bitfield formats;
336
337 /* slots[N]'s Mth bit is set if the op fits in the
338 Mth slot of the Nth xtensa_format. */
339 bitfield slots[MAX_FORMATS];
340
341 /* A count of the number of slots in a given format
342 an op can fit (i.e., the bitcount of the slot field above). */
343 char slots_in_format[MAX_FORMATS];
344
345 } op_placement_info, *op_placement_info_table;
346
347 op_placement_info_table op_placement_table;
348
349
350 /* Extra expression types. */
351
352 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
353 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
354 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
355 #define O_pcrel O_md4 /* value is a PC-relative offset */
356 #define O_tlsfunc O_md5 /* TLS_FUNC/TLSDESC_FN relocation */
357 #define O_tlsarg O_md6 /* TLS_ARG/TLSDESC_ARG relocation */
358 #define O_tlscall O_md7 /* TLS_CALL relocation */
359 #define O_tpoff O_md8 /* TPOFF relocation */
360 #define O_dtpoff O_md9 /* DTPOFF relocation */
361
362 struct suffix_reloc_map
363 {
364 char *suffix;
365 int length;
366 bfd_reloc_code_real_type reloc;
367 unsigned char operator;
368 };
369
370 #define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op }
371
372 static struct suffix_reloc_map suffix_relocs[] =
373 {
374 SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16),
375 SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16),
376 SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel),
377 SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel),
378 SUFFIX_MAP ("tlsfunc", BFD_RELOC_XTENSA_TLS_FUNC, O_tlsfunc),
379 SUFFIX_MAP ("tlsarg", BFD_RELOC_XTENSA_TLS_ARG, O_tlsarg),
380 SUFFIX_MAP ("tlscall", BFD_RELOC_XTENSA_TLS_CALL, O_tlscall),
381 SUFFIX_MAP ("tpoff", BFD_RELOC_XTENSA_TLS_TPOFF, O_tpoff),
382 SUFFIX_MAP ("dtpoff", BFD_RELOC_XTENSA_TLS_DTPOFF, O_dtpoff),
383 { (char *) 0, 0, BFD_RELOC_UNUSED, 0 }
384 };
385
386
387 /* Directives. */
388
389 typedef enum
390 {
391 directive_none = 0,
392 directive_literal,
393 directive_density,
394 directive_transform,
395 directive_freeregs,
396 directive_longcalls,
397 directive_literal_prefix,
398 directive_schedule,
399 directive_absolute_literals,
400 directive_last_directive
401 } directiveE;
402
403 typedef struct
404 {
405 const char *name;
406 bfd_boolean can_be_negated;
407 } directive_infoS;
408
409 const directive_infoS directive_info[] =
410 {
411 { "none", FALSE },
412 { "literal", FALSE },
413 { "density", TRUE },
414 { "transform", TRUE },
415 { "freeregs", FALSE },
416 { "longcalls", TRUE },
417 { "literal_prefix", FALSE },
418 { "schedule", TRUE },
419 { "absolute-literals", TRUE }
420 };
421
422 bfd_boolean directive_state[] =
423 {
424 FALSE, /* none */
425 FALSE, /* literal */
426 #if !XCHAL_HAVE_DENSITY
427 FALSE, /* density */
428 #else
429 TRUE, /* density */
430 #endif
431 TRUE, /* transform */
432 FALSE, /* freeregs */
433 FALSE, /* longcalls */
434 FALSE, /* literal_prefix */
435 FALSE, /* schedule */
436 #if XSHAL_USE_ABSOLUTE_LITERALS
437 TRUE /* absolute_literals */
438 #else
439 FALSE /* absolute_literals */
440 #endif
441 };
442
443 /* A circular list of all potential and actual literal pool locations
444 in a segment. */
445 struct litpool_frag
446 {
447 struct litpool_frag *next;
448 struct litpool_frag *prev;
449 fragS *fragP;
450 addressT addr;
451 short priority; /* 1, 2, or 3 -- 1 is highest */
452 short original_priority;
453 };
454
455 /* Map a segment to its litpool_frag list. */
456 struct litpool_seg
457 {
458 struct litpool_seg *next;
459 asection *seg;
460 struct litpool_frag frag_list;
461 int frag_count; /* since last litpool location */
462 };
463
464 static struct litpool_seg litpool_seg_list;
465
466
467 /* Directive functions. */
468
469 static void xtensa_begin_directive (int);
470 static void xtensa_end_directive (int);
471 static void xtensa_literal_prefix (void);
472 static void xtensa_literal_position (int);
473 static void xtensa_literal_pseudo (int);
474 static void xtensa_frequency_pseudo (int);
475 static void xtensa_elf_cons (int);
476 static void xtensa_leb128 (int);
477
478 /* Parsing and Idiom Translation. */
479
480 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
481
482 /* Various Other Internal Functions. */
483
484 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
485 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
486 static void xtensa_mark_literal_pool_location (void);
487 static addressT get_expanded_loop_offset (xtensa_opcode);
488 static fragS *get_literal_pool_location (segT);
489 static void set_literal_pool_location (segT, fragS *);
490 static void xtensa_set_frag_assembly_state (fragS *);
491 static void finish_vinsn (vliw_insn *);
492 static bfd_boolean emit_single_op (TInsn *);
493 static int total_frag_text_expansion (fragS *);
494 static bfd_boolean use_trampolines = TRUE;
495 static void xtensa_check_frag_count (void);
496 static void xtensa_create_trampoline_frag (bfd_boolean);
497 static void xtensa_maybe_create_trampoline_frag (void);
498 struct trampoline_frag;
499 static int init_trampoline_frag (struct trampoline_frag *);
500 static void xtensa_maybe_create_literal_pool_frag (bfd_boolean, bfd_boolean);
501 static bfd_boolean auto_litpools = FALSE;
502 static int auto_litpool_limit = 10000;
503
504 /* Alignment Functions. */
505
506 static int get_text_align_power (unsigned);
507 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
508 static int branch_align_power (segT);
509
510 /* Helpers for xtensa_relax_frag(). */
511
512 static long relax_frag_add_nop (fragS *);
513
514 /* Accessors for additional per-subsegment information. */
515
516 static unsigned get_last_insn_flags (segT, subsegT);
517 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
518 static float get_subseg_total_freq (segT, subsegT);
519 static float get_subseg_target_freq (segT, subsegT);
520 static void set_subseg_freq (segT, subsegT, float, float);
521
522 /* Segment list functions. */
523
524 static void xtensa_move_literals (void);
525 static void xtensa_reorder_segments (void);
526 static void xtensa_switch_to_literal_fragment (emit_state *);
527 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
528 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
529 static void xtensa_restore_emit_state (emit_state *);
530 static segT cache_literal_section (bfd_boolean);
531
532 /* Import from elf32-xtensa.c in BFD library. */
533
534 extern asection *xtensa_make_property_section (asection *, const char *);
535
536 /* op_placement_info functions. */
537
538 static void init_op_placement_info_table (void);
539 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
540 static int xg_get_single_size (xtensa_opcode);
541 static xtensa_format xg_get_single_format (xtensa_opcode);
542 static int xg_get_single_slot (xtensa_opcode);
543
544 /* TInsn and IStack functions. */
545
546 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
547 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
548 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
549 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
550 static bfd_boolean tinsn_check_arguments (const TInsn *);
551 static void tinsn_from_chars (TInsn *, char *, int);
552 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
553 static int get_num_stack_text_bytes (IStack *);
554 static int get_num_stack_literal_bytes (IStack *);
555 static bfd_boolean tinsn_to_slotbuf (xtensa_format, int, TInsn *, xtensa_insnbuf);
556
557 /* vliw_insn functions. */
558
559 static void xg_init_vinsn (vliw_insn *);
560 static void xg_copy_vinsn (vliw_insn *, vliw_insn *);
561 static void xg_clear_vinsn (vliw_insn *);
562 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
563 static void xg_free_vinsn (vliw_insn *);
564 static bfd_boolean vinsn_to_insnbuf
565 (vliw_insn *, char *, fragS *, bfd_boolean);
566 static void vinsn_from_chars (vliw_insn *, char *);
567
568 /* Expression Utilities. */
569
570 bfd_boolean expr_is_const (const expressionS *);
571 offsetT get_expr_const (const expressionS *);
572 void set_expr_const (expressionS *, offsetT);
573 bfd_boolean expr_is_register (const expressionS *);
574 offsetT get_expr_register (const expressionS *);
575 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
576 bfd_boolean expr_is_equal (expressionS *, expressionS *);
577 static void copy_expr (expressionS *, const expressionS *);
578
579 /* Section renaming. */
580
581 static void build_section_rename (const char *);
582
583
584 /* ISA imported from bfd. */
585 extern xtensa_isa xtensa_default_isa;
586
587 extern int target_big_endian;
588
589 static xtensa_opcode xtensa_addi_opcode;
590 static xtensa_opcode xtensa_addmi_opcode;
591 static xtensa_opcode xtensa_call0_opcode;
592 static xtensa_opcode xtensa_call4_opcode;
593 static xtensa_opcode xtensa_call8_opcode;
594 static xtensa_opcode xtensa_call12_opcode;
595 static xtensa_opcode xtensa_callx0_opcode;
596 static xtensa_opcode xtensa_callx4_opcode;
597 static xtensa_opcode xtensa_callx8_opcode;
598 static xtensa_opcode xtensa_callx12_opcode;
599 static xtensa_opcode xtensa_const16_opcode;
600 static xtensa_opcode xtensa_entry_opcode;
601 static xtensa_opcode xtensa_extui_opcode;
602 static xtensa_opcode xtensa_movi_opcode;
603 static xtensa_opcode xtensa_movi_n_opcode;
604 static xtensa_opcode xtensa_isync_opcode;
605 static xtensa_opcode xtensa_j_opcode;
606 static xtensa_opcode xtensa_jx_opcode;
607 static xtensa_opcode xtensa_l32r_opcode;
608 static xtensa_opcode xtensa_loop_opcode;
609 static xtensa_opcode xtensa_loopnez_opcode;
610 static xtensa_opcode xtensa_loopgtz_opcode;
611 static xtensa_opcode xtensa_nop_opcode;
612 static xtensa_opcode xtensa_nop_n_opcode;
613 static xtensa_opcode xtensa_or_opcode;
614 static xtensa_opcode xtensa_ret_opcode;
615 static xtensa_opcode xtensa_ret_n_opcode;
616 static xtensa_opcode xtensa_retw_opcode;
617 static xtensa_opcode xtensa_retw_n_opcode;
618 static xtensa_opcode xtensa_rsr_lcount_opcode;
619 static xtensa_opcode xtensa_waiti_opcode;
620 static int config_max_slots = 0;
621
622 \f
623 /* Command-line Options. */
624
625 bfd_boolean use_literal_section = TRUE;
626 enum flix_level produce_flix = FLIX_ALL;
627 static bfd_boolean align_targets = TRUE;
628 static bfd_boolean warn_unaligned_branch_targets = FALSE;
629 static bfd_boolean has_a0_b_retw = FALSE;
630 static bfd_boolean workaround_a0_b_retw = FALSE;
631 static bfd_boolean workaround_b_j_loop_end = FALSE;
632 static bfd_boolean workaround_short_loop = FALSE;
633 static bfd_boolean maybe_has_short_loop = FALSE;
634 static bfd_boolean workaround_close_loop_end = FALSE;
635 static bfd_boolean maybe_has_close_loop_end = FALSE;
636 static bfd_boolean enforce_three_byte_loop_align = FALSE;
637
638 /* When workaround_short_loops is TRUE, all loops with early exits must
639 have at least 3 instructions. workaround_all_short_loops is a modifier
640 to the workaround_short_loop flag. In addition to the
641 workaround_short_loop actions, all straightline loopgtz and loopnez
642 must have at least 3 instructions. */
643
644 static bfd_boolean workaround_all_short_loops = FALSE;
645
646
647 static void
648 xtensa_setup_hw_workarounds (int earliest, int latest)
649 {
650 if (earliest > latest)
651 as_fatal (_("illegal range of target hardware versions"));
652
653 /* Enable all workarounds for pre-T1050.0 hardware. */
654 if (earliest < 105000 || latest < 105000)
655 {
656 workaround_a0_b_retw |= TRUE;
657 workaround_b_j_loop_end |= TRUE;
658 workaround_short_loop |= TRUE;
659 workaround_close_loop_end |= TRUE;
660 workaround_all_short_loops |= TRUE;
661 enforce_three_byte_loop_align = TRUE;
662 }
663 }
664
665
666 enum
667 {
668 option_density = OPTION_MD_BASE,
669 option_no_density,
670
671 option_flix,
672 option_no_generate_flix,
673 option_no_flix,
674
675 option_relax,
676 option_no_relax,
677
678 option_link_relax,
679 option_no_link_relax,
680
681 option_generics,
682 option_no_generics,
683
684 option_transform,
685 option_no_transform,
686
687 option_text_section_literals,
688 option_no_text_section_literals,
689
690 option_absolute_literals,
691 option_no_absolute_literals,
692
693 option_align_targets,
694 option_no_align_targets,
695
696 option_warn_unaligned_targets,
697
698 option_longcalls,
699 option_no_longcalls,
700
701 option_workaround_a0_b_retw,
702 option_no_workaround_a0_b_retw,
703
704 option_workaround_b_j_loop_end,
705 option_no_workaround_b_j_loop_end,
706
707 option_workaround_short_loop,
708 option_no_workaround_short_loop,
709
710 option_workaround_all_short_loops,
711 option_no_workaround_all_short_loops,
712
713 option_workaround_close_loop_end,
714 option_no_workaround_close_loop_end,
715
716 option_no_workarounds,
717
718 option_rename_section_name,
719
720 option_prefer_l32r,
721 option_prefer_const16,
722
723 option_target_hardware,
724
725 option_trampolines,
726 option_no_trampolines,
727
728 option_auto_litpools,
729 option_no_auto_litpools,
730 option_auto_litpool_limit,
731 };
732
733 const char *md_shortopts = "";
734
735 struct option md_longopts[] =
736 {
737 { "density", no_argument, NULL, option_density },
738 { "no-density", no_argument, NULL, option_no_density },
739
740 { "flix", no_argument, NULL, option_flix },
741 { "no-generate-flix", no_argument, NULL, option_no_generate_flix },
742 { "no-allow-flix", no_argument, NULL, option_no_flix },
743
744 /* Both "relax" and "generics" are deprecated and treated as equivalent
745 to the "transform" option. */
746 { "relax", no_argument, NULL, option_relax },
747 { "no-relax", no_argument, NULL, option_no_relax },
748 { "generics", no_argument, NULL, option_generics },
749 { "no-generics", no_argument, NULL, option_no_generics },
750
751 { "transform", no_argument, NULL, option_transform },
752 { "no-transform", no_argument, NULL, option_no_transform },
753 { "text-section-literals", no_argument, NULL, option_text_section_literals },
754 { "no-text-section-literals", no_argument, NULL,
755 option_no_text_section_literals },
756 { "absolute-literals", no_argument, NULL, option_absolute_literals },
757 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
758 /* This option was changed from -align-target to -target-align
759 because it conflicted with the "-al" option. */
760 { "target-align", no_argument, NULL, option_align_targets },
761 { "no-target-align", no_argument, NULL, option_no_align_targets },
762 { "warn-unaligned-targets", no_argument, NULL,
763 option_warn_unaligned_targets },
764 { "longcalls", no_argument, NULL, option_longcalls },
765 { "no-longcalls", no_argument, NULL, option_no_longcalls },
766
767 { "no-workaround-a0-b-retw", no_argument, NULL,
768 option_no_workaround_a0_b_retw },
769 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
770
771 { "no-workaround-b-j-loop-end", no_argument, NULL,
772 option_no_workaround_b_j_loop_end },
773 { "workaround-b-j-loop-end", no_argument, NULL,
774 option_workaround_b_j_loop_end },
775
776 { "no-workaround-short-loops", no_argument, NULL,
777 option_no_workaround_short_loop },
778 { "workaround-short-loops", no_argument, NULL,
779 option_workaround_short_loop },
780
781 { "no-workaround-all-short-loops", no_argument, NULL,
782 option_no_workaround_all_short_loops },
783 { "workaround-all-short-loop", no_argument, NULL,
784 option_workaround_all_short_loops },
785
786 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
787 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
788
789 { "no-workarounds", no_argument, NULL, option_no_workarounds },
790
791 { "no-workaround-close-loop-end", no_argument, NULL,
792 option_no_workaround_close_loop_end },
793 { "workaround-close-loop-end", no_argument, NULL,
794 option_workaround_close_loop_end },
795
796 { "rename-section", required_argument, NULL, option_rename_section_name },
797
798 { "link-relax", no_argument, NULL, option_link_relax },
799 { "no-link-relax", no_argument, NULL, option_no_link_relax },
800
801 { "target-hardware", required_argument, NULL, option_target_hardware },
802
803 { "trampolines", no_argument, NULL, option_trampolines },
804 { "no-trampolines", no_argument, NULL, option_no_trampolines },
805
806 { "auto-litpools", no_argument, NULL, option_auto_litpools },
807 { "no-auto-litpools", no_argument, NULL, option_no_auto_litpools },
808 { "auto-litpool-limit", required_argument, NULL, option_auto_litpool_limit },
809
810 { NULL, no_argument, NULL, 0 }
811 };
812
813 size_t md_longopts_size = sizeof md_longopts;
814
815
816 int
817 md_parse_option (int c, char *arg)
818 {
819 switch (c)
820 {
821 case option_density:
822 as_warn (_("--density option is ignored"));
823 return 1;
824 case option_no_density:
825 as_warn (_("--no-density option is ignored"));
826 return 1;
827 case option_link_relax:
828 linkrelax = 1;
829 return 1;
830 case option_no_link_relax:
831 linkrelax = 0;
832 return 1;
833 case option_flix:
834 produce_flix = FLIX_ALL;
835 return 1;
836 case option_no_generate_flix:
837 produce_flix = FLIX_NO_GENERATE;
838 return 1;
839 case option_no_flix:
840 produce_flix = FLIX_NONE;
841 return 1;
842 case option_generics:
843 as_warn (_("--generics is deprecated; use --transform instead"));
844 return md_parse_option (option_transform, arg);
845 case option_no_generics:
846 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
847 return md_parse_option (option_no_transform, arg);
848 case option_relax:
849 as_warn (_("--relax is deprecated; use --transform instead"));
850 return md_parse_option (option_transform, arg);
851 case option_no_relax:
852 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
853 return md_parse_option (option_no_transform, arg);
854 case option_longcalls:
855 directive_state[directive_longcalls] = TRUE;
856 return 1;
857 case option_no_longcalls:
858 directive_state[directive_longcalls] = FALSE;
859 return 1;
860 case option_text_section_literals:
861 use_literal_section = FALSE;
862 return 1;
863 case option_no_text_section_literals:
864 use_literal_section = TRUE;
865 return 1;
866 case option_absolute_literals:
867 if (!absolute_literals_supported)
868 {
869 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
870 return 0;
871 }
872 directive_state[directive_absolute_literals] = TRUE;
873 return 1;
874 case option_no_absolute_literals:
875 directive_state[directive_absolute_literals] = FALSE;
876 return 1;
877
878 case option_workaround_a0_b_retw:
879 workaround_a0_b_retw = TRUE;
880 return 1;
881 case option_no_workaround_a0_b_retw:
882 workaround_a0_b_retw = FALSE;
883 return 1;
884 case option_workaround_b_j_loop_end:
885 workaround_b_j_loop_end = TRUE;
886 return 1;
887 case option_no_workaround_b_j_loop_end:
888 workaround_b_j_loop_end = FALSE;
889 return 1;
890
891 case option_workaround_short_loop:
892 workaround_short_loop = TRUE;
893 return 1;
894 case option_no_workaround_short_loop:
895 workaround_short_loop = FALSE;
896 return 1;
897
898 case option_workaround_all_short_loops:
899 workaround_all_short_loops = TRUE;
900 return 1;
901 case option_no_workaround_all_short_loops:
902 workaround_all_short_loops = FALSE;
903 return 1;
904
905 case option_workaround_close_loop_end:
906 workaround_close_loop_end = TRUE;
907 return 1;
908 case option_no_workaround_close_loop_end:
909 workaround_close_loop_end = FALSE;
910 return 1;
911
912 case option_no_workarounds:
913 workaround_a0_b_retw = FALSE;
914 workaround_b_j_loop_end = FALSE;
915 workaround_short_loop = FALSE;
916 workaround_all_short_loops = FALSE;
917 workaround_close_loop_end = FALSE;
918 return 1;
919
920 case option_align_targets:
921 align_targets = TRUE;
922 return 1;
923 case option_no_align_targets:
924 align_targets = FALSE;
925 return 1;
926
927 case option_warn_unaligned_targets:
928 warn_unaligned_branch_targets = TRUE;
929 return 1;
930
931 case option_rename_section_name:
932 build_section_rename (arg);
933 return 1;
934
935 case 'Q':
936 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
937 should be emitted or not. FIXME: Not implemented. */
938 return 1;
939
940 case option_prefer_l32r:
941 if (prefer_const16)
942 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
943 prefer_l32r = 1;
944 return 1;
945
946 case option_prefer_const16:
947 if (prefer_l32r)
948 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
949 prefer_const16 = 1;
950 return 1;
951
952 case option_target_hardware:
953 {
954 int earliest, latest = 0;
955 if (*arg == 0 || *arg == '-')
956 as_fatal (_("invalid target hardware version"));
957
958 earliest = strtol (arg, &arg, 0);
959
960 if (*arg == 0)
961 latest = earliest;
962 else if (*arg == '-')
963 {
964 if (*++arg == 0)
965 as_fatal (_("invalid target hardware version"));
966 latest = strtol (arg, &arg, 0);
967 }
968 if (*arg != 0)
969 as_fatal (_("invalid target hardware version"));
970
971 xtensa_setup_hw_workarounds (earliest, latest);
972 return 1;
973 }
974
975 case option_transform:
976 /* This option has no affect other than to use the defaults,
977 which are already set. */
978 return 1;
979
980 case option_no_transform:
981 /* This option turns off all transformations of any kind.
982 However, because we want to preserve the state of other
983 directives, we only change its own field. Thus, before
984 you perform any transformation, always check if transform
985 is available. If you use the functions we provide for this
986 purpose, you will be ok. */
987 directive_state[directive_transform] = FALSE;
988 return 1;
989
990 case option_trampolines:
991 use_trampolines = TRUE;
992 return 1;
993
994 case option_no_trampolines:
995 use_trampolines = FALSE;
996 return 1;
997
998 case option_auto_litpools:
999 auto_litpools = TRUE;
1000 use_literal_section = FALSE;
1001 return 1;
1002
1003 case option_no_auto_litpools:
1004 auto_litpools = FALSE;
1005 auto_litpool_limit = -1;
1006 return 1;
1007
1008 case option_auto_litpool_limit:
1009 {
1010 int value = 0;
1011 if (auto_litpool_limit < 0)
1012 as_fatal (_("no-auto-litpools is incompatible with auto-litpool-limit"));
1013 if (*arg == 0 || *arg == '-')
1014 as_fatal (_("invalid auto-litpool-limit argument"));
1015 value = strtol (arg, &arg, 10);
1016 if (*arg != 0)
1017 as_fatal (_("invalid auto-litpool-limit argument"));
1018 if (value < 100 || value > 10000)
1019 as_fatal (_("invalid auto-litpool-limit argument (range is 100-10000)"));
1020 auto_litpool_limit = value;
1021 auto_litpools = TRUE;
1022 use_literal_section = FALSE;
1023 return 1;
1024 }
1025
1026 default:
1027 return 0;
1028 }
1029 }
1030
1031
1032 void
1033 md_show_usage (FILE *stream)
1034 {
1035 fputs ("\n\
1036 Xtensa options:\n\
1037 --[no-]text-section-literals\n\
1038 [Do not] put literals in the text section\n\
1039 --[no-]absolute-literals\n\
1040 [Do not] default to use non-PC-relative literals\n\
1041 --[no-]target-align [Do not] try to align branch targets\n\
1042 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
1043 --[no-]transform [Do not] transform instructions\n\
1044 --flix both allow hand-written and generate flix bundles\n\
1045 --no-generate-flix allow hand-written but do not generate\n\
1046 flix bundles\n\
1047 --no-allow-flix neither allow hand-written nor generate\n\
1048 flix bundles\n\
1049 --rename-section old=new Rename section 'old' to 'new'\n\
1050 --[no-]trampolines [Do not] generate trampolines (jumps to jumps)\n\
1051 when jumps do not reach their targets\n\
1052 --[no-]auto-litpools [Do not] automatically create literal pools\n\
1053 --auto-litpool-limit=<value>\n\
1054 (range 100-10000) Maximum number of blocks of\n\
1055 instructions to emit between literal pool\n\
1056 locations; implies --auto-litpools flag\n", stream);
1057 }
1058
1059 \f
1060 /* Functions related to the list of current label symbols. */
1061
1062 static void
1063 xtensa_add_insn_label (symbolS *sym)
1064 {
1065 sym_list *l;
1066
1067 if (!free_insn_labels)
1068 l = (sym_list *) xmalloc (sizeof (sym_list));
1069 else
1070 {
1071 l = free_insn_labels;
1072 free_insn_labels = l->next;
1073 }
1074
1075 l->sym = sym;
1076 l->next = insn_labels;
1077 insn_labels = l;
1078 }
1079
1080
1081 static void
1082 xtensa_clear_insn_labels (void)
1083 {
1084 sym_list **pl;
1085
1086 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1087 ;
1088 *pl = insn_labels;
1089 insn_labels = NULL;
1090 }
1091
1092
1093 static void
1094 xtensa_move_labels (fragS *new_frag, valueT new_offset)
1095 {
1096 sym_list *lit;
1097
1098 for (lit = insn_labels; lit; lit = lit->next)
1099 {
1100 symbolS *lit_sym = lit->sym;
1101 S_SET_VALUE (lit_sym, new_offset);
1102 symbol_set_frag (lit_sym, new_frag);
1103 }
1104 }
1105
1106 \f
1107 /* Directive data and functions. */
1108
1109 typedef struct state_stackS_struct
1110 {
1111 directiveE directive;
1112 bfd_boolean negated;
1113 bfd_boolean old_state;
1114 const char *file;
1115 unsigned int line;
1116 const void *datum;
1117 struct state_stackS_struct *prev;
1118 } state_stackS;
1119
1120 state_stackS *directive_state_stack;
1121
1122 const pseudo_typeS md_pseudo_table[] =
1123 {
1124 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1125 { "literal_position", xtensa_literal_position, 0 },
1126 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1127 { "long", xtensa_elf_cons, 4 },
1128 { "word", xtensa_elf_cons, 4 },
1129 { "4byte", xtensa_elf_cons, 4 },
1130 { "short", xtensa_elf_cons, 2 },
1131 { "2byte", xtensa_elf_cons, 2 },
1132 { "sleb128", xtensa_leb128, 1},
1133 { "uleb128", xtensa_leb128, 0},
1134 { "begin", xtensa_begin_directive, 0 },
1135 { "end", xtensa_end_directive, 0 },
1136 { "literal", xtensa_literal_pseudo, 0 },
1137 { "frequency", xtensa_frequency_pseudo, 0 },
1138 { NULL, 0, 0 },
1139 };
1140
1141
1142 static bfd_boolean
1143 use_transform (void)
1144 {
1145 /* After md_end, you should be checking frag by frag, rather
1146 than state directives. */
1147 gas_assert (!past_xtensa_end);
1148 return directive_state[directive_transform];
1149 }
1150
1151
1152 static bfd_boolean
1153 do_align_targets (void)
1154 {
1155 /* Do not use this function after md_end; just look at align_targets
1156 instead. There is no target-align directive, so alignment is either
1157 enabled for all frags or not done at all. */
1158 gas_assert (!past_xtensa_end);
1159 return align_targets && use_transform ();
1160 }
1161
1162
1163 static void
1164 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1165 {
1166 const char *file;
1167 unsigned int line;
1168 state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS));
1169
1170 file = as_where (&line);
1171
1172 stack->directive = directive;
1173 stack->negated = negated;
1174 stack->old_state = directive_state[directive];
1175 stack->file = file;
1176 stack->line = line;
1177 stack->datum = datum;
1178 stack->prev = directive_state_stack;
1179 directive_state_stack = stack;
1180
1181 directive_state[directive] = !negated;
1182 }
1183
1184
1185 static void
1186 directive_pop (directiveE *directive,
1187 bfd_boolean *negated,
1188 const char **file,
1189 unsigned int *line,
1190 const void **datum)
1191 {
1192 state_stackS *top = directive_state_stack;
1193
1194 if (!directive_state_stack)
1195 {
1196 as_bad (_("unmatched end directive"));
1197 *directive = directive_none;
1198 return;
1199 }
1200
1201 directive_state[directive_state_stack->directive] = top->old_state;
1202 *directive = top->directive;
1203 *negated = top->negated;
1204 *file = top->file;
1205 *line = top->line;
1206 *datum = top->datum;
1207 directive_state_stack = top->prev;
1208 free (top);
1209 }
1210
1211
1212 static void
1213 directive_balance (void)
1214 {
1215 while (directive_state_stack)
1216 {
1217 directiveE directive;
1218 bfd_boolean negated;
1219 const char *file;
1220 unsigned int line;
1221 const void *datum;
1222
1223 directive_pop (&directive, &negated, &file, &line, &datum);
1224 as_warn_where ((char *) file, line,
1225 _(".begin directive with no matching .end directive"));
1226 }
1227 }
1228
1229
1230 static bfd_boolean
1231 inside_directive (directiveE dir)
1232 {
1233 state_stackS *top = directive_state_stack;
1234
1235 while (top && top->directive != dir)
1236 top = top->prev;
1237
1238 return (top != NULL);
1239 }
1240
1241
1242 static void
1243 get_directive (directiveE *directive, bfd_boolean *negated)
1244 {
1245 int len;
1246 unsigned i;
1247 char *directive_string;
1248
1249 if (strncmp (input_line_pointer, "no-", 3) != 0)
1250 *negated = FALSE;
1251 else
1252 {
1253 *negated = TRUE;
1254 input_line_pointer += 3;
1255 }
1256
1257 len = strspn (input_line_pointer,
1258 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1259
1260 /* This code is a hack to make .begin [no-][generics|relax] exactly
1261 equivalent to .begin [no-]transform. We should remove it when
1262 we stop accepting those options. */
1263
1264 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1265 {
1266 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1267 directive_string = "transform";
1268 }
1269 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1270 {
1271 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1272 directive_string = "transform";
1273 }
1274 else
1275 directive_string = input_line_pointer;
1276
1277 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1278 {
1279 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1280 {
1281 input_line_pointer += len;
1282 *directive = (directiveE) i;
1283 if (*negated && !directive_info[i].can_be_negated)
1284 as_bad (_("directive %s cannot be negated"),
1285 directive_info[i].name);
1286 return;
1287 }
1288 }
1289
1290 as_bad (_("unknown directive"));
1291 *directive = (directiveE) XTENSA_UNDEFINED;
1292 }
1293
1294
1295 static void
1296 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1297 {
1298 directiveE directive;
1299 bfd_boolean negated;
1300 emit_state *state;
1301 lit_state *ls;
1302
1303 get_directive (&directive, &negated);
1304 if (directive == (directiveE) XTENSA_UNDEFINED)
1305 {
1306 discard_rest_of_line ();
1307 return;
1308 }
1309
1310 if (cur_vinsn.inside_bundle)
1311 as_bad (_("directives are not valid inside bundles"));
1312
1313 switch (directive)
1314 {
1315 case directive_literal:
1316 if (!inside_directive (directive_literal))
1317 {
1318 /* Previous labels go with whatever follows this directive, not with
1319 the literal, so save them now. */
1320 saved_insn_labels = insn_labels;
1321 insn_labels = NULL;
1322 }
1323 as_warn (_(".begin literal is deprecated; use .literal instead"));
1324 state = (emit_state *) xmalloc (sizeof (emit_state));
1325 xtensa_switch_to_literal_fragment (state);
1326 directive_push (directive_literal, negated, state);
1327 break;
1328
1329 case directive_literal_prefix:
1330 /* Have to flush pending output because a movi relaxed to an l32r
1331 might produce a literal. */
1332 md_flush_pending_output ();
1333 /* Check to see if the current fragment is a literal
1334 fragment. If it is, then this operation is not allowed. */
1335 if (generating_literals)
1336 {
1337 as_bad (_("cannot set literal_prefix inside literal fragment"));
1338 return;
1339 }
1340
1341 /* Allocate the literal state for this section and push
1342 onto the directive stack. */
1343 ls = xmalloc (sizeof (lit_state));
1344 gas_assert (ls);
1345
1346 *ls = default_lit_sections;
1347 directive_push (directive_literal_prefix, negated, ls);
1348
1349 /* Process the new prefix. */
1350 xtensa_literal_prefix ();
1351 break;
1352
1353 case directive_freeregs:
1354 /* This information is currently unused, but we'll accept the statement
1355 and just discard the rest of the line. This won't check the syntax,
1356 but it will accept every correct freeregs directive. */
1357 input_line_pointer += strcspn (input_line_pointer, "\n");
1358 directive_push (directive_freeregs, negated, 0);
1359 break;
1360
1361 case directive_schedule:
1362 md_flush_pending_output ();
1363 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1364 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1365 directive_push (directive_schedule, negated, 0);
1366 xtensa_set_frag_assembly_state (frag_now);
1367 break;
1368
1369 case directive_density:
1370 as_warn (_(".begin [no-]density is ignored"));
1371 break;
1372
1373 case directive_absolute_literals:
1374 md_flush_pending_output ();
1375 if (!absolute_literals_supported && !negated)
1376 {
1377 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1378 break;
1379 }
1380 xtensa_set_frag_assembly_state (frag_now);
1381 directive_push (directive, negated, 0);
1382 break;
1383
1384 default:
1385 md_flush_pending_output ();
1386 xtensa_set_frag_assembly_state (frag_now);
1387 directive_push (directive, negated, 0);
1388 break;
1389 }
1390
1391 demand_empty_rest_of_line ();
1392 }
1393
1394
1395 static void
1396 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1397 {
1398 directiveE begin_directive, end_directive;
1399 bfd_boolean begin_negated, end_negated;
1400 const char *file;
1401 unsigned int line;
1402 emit_state *state;
1403 emit_state **state_ptr;
1404 lit_state *s;
1405
1406 if (cur_vinsn.inside_bundle)
1407 as_bad (_("directives are not valid inside bundles"));
1408
1409 get_directive (&end_directive, &end_negated);
1410
1411 md_flush_pending_output ();
1412
1413 switch ((int) end_directive)
1414 {
1415 case XTENSA_UNDEFINED:
1416 discard_rest_of_line ();
1417 return;
1418
1419 case (int) directive_density:
1420 as_warn (_(".end [no-]density is ignored"));
1421 demand_empty_rest_of_line ();
1422 break;
1423
1424 case (int) directive_absolute_literals:
1425 if (!absolute_literals_supported && !end_negated)
1426 {
1427 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1428 demand_empty_rest_of_line ();
1429 return;
1430 }
1431 break;
1432
1433 default:
1434 break;
1435 }
1436
1437 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1438 directive_pop (&begin_directive, &begin_negated, &file, &line,
1439 (const void **) state_ptr);
1440
1441 if (begin_directive != directive_none)
1442 {
1443 if (begin_directive != end_directive || begin_negated != end_negated)
1444 {
1445 as_bad (_("does not match begin %s%s at %s:%d"),
1446 begin_negated ? "no-" : "",
1447 directive_info[begin_directive].name, file, line);
1448 }
1449 else
1450 {
1451 switch (end_directive)
1452 {
1453 case directive_literal:
1454 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1455 xtensa_restore_emit_state (state);
1456 xtensa_set_frag_assembly_state (frag_now);
1457 free (state);
1458 if (!inside_directive (directive_literal))
1459 {
1460 /* Restore the list of current labels. */
1461 xtensa_clear_insn_labels ();
1462 insn_labels = saved_insn_labels;
1463 }
1464 break;
1465
1466 case directive_literal_prefix:
1467 /* Restore the default collection sections from saved state. */
1468 s = (lit_state *) state;
1469 gas_assert (s);
1470 default_lit_sections = *s;
1471
1472 /* Free the state storage. */
1473 free (s->lit_prefix);
1474 free (s);
1475 break;
1476
1477 case directive_schedule:
1478 case directive_freeregs:
1479 break;
1480
1481 default:
1482 xtensa_set_frag_assembly_state (frag_now);
1483 break;
1484 }
1485 }
1486 }
1487
1488 demand_empty_rest_of_line ();
1489 }
1490
1491
1492 /* Place an aligned literal fragment at the current location. */
1493
1494 static void
1495 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1496 {
1497 md_flush_pending_output ();
1498
1499 if (inside_directive (directive_literal))
1500 as_warn (_(".literal_position inside literal directive; ignoring"));
1501 xtensa_mark_literal_pool_location ();
1502
1503 demand_empty_rest_of_line ();
1504 xtensa_clear_insn_labels ();
1505 }
1506
1507
1508 /* Support .literal label, expr, ... */
1509
1510 static void
1511 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1512 {
1513 emit_state state;
1514 char *p, *base_name;
1515 char c;
1516 segT dest_seg;
1517
1518 if (inside_directive (directive_literal))
1519 {
1520 as_bad (_(".literal not allowed inside .begin literal region"));
1521 ignore_rest_of_line ();
1522 return;
1523 }
1524
1525 md_flush_pending_output ();
1526
1527 /* Previous labels go with whatever follows this directive, not with
1528 the literal, so save them now. */
1529 saved_insn_labels = insn_labels;
1530 insn_labels = NULL;
1531
1532 /* If we are using text-section literals, then this is the right value... */
1533 dest_seg = now_seg;
1534
1535 base_name = input_line_pointer;
1536
1537 xtensa_switch_to_literal_fragment (&state);
1538
1539 /* ...but if we aren't using text-section-literals, then we
1540 need to put them in the section we just switched to. */
1541 if (use_literal_section || directive_state[directive_absolute_literals])
1542 dest_seg = now_seg;
1543
1544 /* FIXME, despite the previous comments, dest_seg is unused... */
1545 (void) dest_seg;
1546
1547 /* All literals are aligned to four-byte boundaries. */
1548 frag_align (2, 0, 0);
1549 record_alignment (now_seg, 2);
1550
1551 c = get_symbol_name (&base_name);
1552 /* Just after name is now '\0'. */
1553 p = input_line_pointer;
1554 *p = c;
1555 SKIP_WHITESPACE_AFTER_NAME ();
1556
1557 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1558 {
1559 as_bad (_("expected comma or colon after symbol name; "
1560 "rest of line ignored"));
1561 ignore_rest_of_line ();
1562 xtensa_restore_emit_state (&state);
1563 return;
1564 }
1565
1566 *p = 0;
1567 colon (base_name);
1568 *p = c;
1569
1570 input_line_pointer++; /* skip ',' or ':' */
1571
1572 xtensa_elf_cons (4);
1573
1574 xtensa_restore_emit_state (&state);
1575
1576 /* Restore the list of current labels. */
1577 xtensa_clear_insn_labels ();
1578 insn_labels = saved_insn_labels;
1579 }
1580
1581
1582 static void
1583 xtensa_literal_prefix (void)
1584 {
1585 char *name;
1586 int len;
1587
1588 /* Parse the new prefix from the input_line_pointer. */
1589 SKIP_WHITESPACE ();
1590 len = strspn (input_line_pointer,
1591 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1592 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1593
1594 /* Get a null-terminated copy of the name. */
1595 name = xmalloc (len + 1);
1596 gas_assert (name);
1597 strncpy (name, input_line_pointer, len);
1598 name[len] = 0;
1599
1600 /* Skip the name in the input line. */
1601 input_line_pointer += len;
1602
1603 default_lit_sections.lit_prefix = name;
1604
1605 /* Clear cached literal sections, since the prefix has changed. */
1606 default_lit_sections.lit_seg = NULL;
1607 default_lit_sections.lit4_seg = NULL;
1608 }
1609
1610
1611 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1612
1613 static void
1614 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1615 {
1616 float fall_through_f, target_f;
1617
1618 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1619 if (fall_through_f < 0)
1620 {
1621 as_bad (_("fall through frequency must be greater than 0"));
1622 ignore_rest_of_line ();
1623 return;
1624 }
1625
1626 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1627 if (target_f < 0)
1628 {
1629 as_bad (_("branch target frequency must be greater than 0"));
1630 ignore_rest_of_line ();
1631 return;
1632 }
1633
1634 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1635
1636 demand_empty_rest_of_line ();
1637 }
1638
1639
1640 /* Like normal .long/.short/.word, except support @plt, etc.
1641 Clobbers input_line_pointer, checks end-of-line. */
1642
1643 static void
1644 xtensa_elf_cons (int nbytes)
1645 {
1646 expressionS exp;
1647 bfd_reloc_code_real_type reloc;
1648
1649 md_flush_pending_output ();
1650
1651 if (cur_vinsn.inside_bundle)
1652 as_bad (_("directives are not valid inside bundles"));
1653
1654 if (is_it_end_of_statement ())
1655 {
1656 demand_empty_rest_of_line ();
1657 return;
1658 }
1659
1660 do
1661 {
1662 expression (&exp);
1663 if (exp.X_op == O_symbol
1664 && *input_line_pointer == '@'
1665 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1666 != BFD_RELOC_NONE))
1667 {
1668 reloc_howto_type *reloc_howto =
1669 bfd_reloc_type_lookup (stdoutput, reloc);
1670
1671 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1672 as_bad (_("unsupported relocation"));
1673 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1674 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1675 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1676 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1677 as_bad (_("opcode-specific %s relocation used outside "
1678 "an instruction"), reloc_howto->name);
1679 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1680 as_bad (_("%s relocations do not fit in %d bytes"),
1681 reloc_howto->name, nbytes);
1682 else if (reloc == BFD_RELOC_XTENSA_TLS_FUNC
1683 || reloc == BFD_RELOC_XTENSA_TLS_ARG
1684 || reloc == BFD_RELOC_XTENSA_TLS_CALL)
1685 as_bad (_("invalid use of %s relocation"), reloc_howto->name);
1686 else
1687 {
1688 char *p = frag_more ((int) nbytes);
1689 xtensa_set_frag_assembly_state (frag_now);
1690 fix_new_exp (frag_now, p - frag_now->fr_literal,
1691 nbytes, &exp, reloc_howto->pc_relative, reloc);
1692 }
1693 }
1694 else
1695 {
1696 xtensa_set_frag_assembly_state (frag_now);
1697 emit_expr (&exp, (unsigned int) nbytes);
1698 }
1699 }
1700 while (*input_line_pointer++ == ',');
1701
1702 input_line_pointer--; /* Put terminator back into stream. */
1703 demand_empty_rest_of_line ();
1704 }
1705
1706 static bfd_boolean is_leb128_expr;
1707
1708 static void
1709 xtensa_leb128 (int sign)
1710 {
1711 is_leb128_expr = TRUE;
1712 s_leb128 (sign);
1713 is_leb128_expr = FALSE;
1714 }
1715
1716 \f
1717 /* Parsing and Idiom Translation. */
1718
1719 /* Parse @plt, etc. and return the desired relocation. */
1720 static bfd_reloc_code_real_type
1721 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1722 {
1723 char ident[20];
1724 char *str = *str_p;
1725 char *str2;
1726 int ch;
1727 int len;
1728 struct suffix_reloc_map *ptr;
1729
1730 if (*str++ != '@')
1731 return BFD_RELOC_NONE;
1732
1733 for (ch = *str, str2 = ident;
1734 (str2 < ident + sizeof (ident) - 1
1735 && (ISALNUM (ch) || ch == '@'));
1736 ch = *++str)
1737 {
1738 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1739 }
1740
1741 *str2 = '\0';
1742 len = str2 - ident;
1743
1744 ch = ident[0];
1745 for (ptr = &suffix_relocs[0]; ptr->length > 0; ptr++)
1746 if (ch == ptr->suffix[0]
1747 && len == ptr->length
1748 && memcmp (ident, ptr->suffix, ptr->length) == 0)
1749 {
1750 /* Now check for "identifier@suffix+constant". */
1751 if (*str == '-' || *str == '+')
1752 {
1753 char *orig_line = input_line_pointer;
1754 expressionS new_exp;
1755
1756 input_line_pointer = str;
1757 expression (&new_exp);
1758 if (new_exp.X_op == O_constant)
1759 {
1760 exp_p->X_add_number += new_exp.X_add_number;
1761 str = input_line_pointer;
1762 }
1763
1764 if (&input_line_pointer != str_p)
1765 input_line_pointer = orig_line;
1766 }
1767
1768 *str_p = str;
1769 return ptr->reloc;
1770 }
1771
1772 return BFD_RELOC_UNUSED;
1773 }
1774
1775
1776 /* Find the matching operator type. */
1777 static unsigned char
1778 map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc)
1779 {
1780 struct suffix_reloc_map *sfx;
1781 unsigned char operator = (unsigned char) -1;
1782
1783 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1784 {
1785 if (sfx->reloc == reloc)
1786 {
1787 operator = sfx->operator;
1788 break;
1789 }
1790 }
1791 gas_assert (operator != (unsigned char) -1);
1792 return operator;
1793 }
1794
1795
1796 /* Find the matching reloc type. */
1797 static bfd_reloc_code_real_type
1798 map_operator_to_reloc (unsigned char operator, bfd_boolean is_literal)
1799 {
1800 struct suffix_reloc_map *sfx;
1801 bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
1802
1803 for (sfx = &suffix_relocs[0]; sfx->suffix; sfx++)
1804 {
1805 if (sfx->operator == operator)
1806 {
1807 reloc = sfx->reloc;
1808 break;
1809 }
1810 }
1811
1812 if (is_literal)
1813 {
1814 if (reloc == BFD_RELOC_XTENSA_TLS_FUNC)
1815 return BFD_RELOC_XTENSA_TLSDESC_FN;
1816 else if (reloc == BFD_RELOC_XTENSA_TLS_ARG)
1817 return BFD_RELOC_XTENSA_TLSDESC_ARG;
1818 }
1819
1820 if (reloc == BFD_RELOC_UNUSED)
1821 return BFD_RELOC_32;
1822
1823 return reloc;
1824 }
1825
1826
1827 static const char *
1828 expression_end (const char *name)
1829 {
1830 while (1)
1831 {
1832 switch (*name)
1833 {
1834 case '}':
1835 case ';':
1836 case '\0':
1837 case ',':
1838 case ':':
1839 return name;
1840 case ' ':
1841 case '\t':
1842 ++name;
1843 continue;
1844 default:
1845 return 0;
1846 }
1847 }
1848 }
1849
1850
1851 #define ERROR_REG_NUM ((unsigned) -1)
1852
1853 static unsigned
1854 tc_get_register (const char *prefix)
1855 {
1856 unsigned reg;
1857 const char *next_expr;
1858 const char *old_line_pointer;
1859
1860 SKIP_WHITESPACE ();
1861 old_line_pointer = input_line_pointer;
1862
1863 if (*input_line_pointer == '$')
1864 ++input_line_pointer;
1865
1866 /* Accept "sp" as a synonym for "a1". */
1867 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1868 && expression_end (input_line_pointer + 2))
1869 {
1870 input_line_pointer += 2;
1871 return 1; /* AR[1] */
1872 }
1873
1874 while (*input_line_pointer++ == *prefix++)
1875 ;
1876 --input_line_pointer;
1877 --prefix;
1878
1879 if (*prefix)
1880 {
1881 as_bad (_("bad register name: %s"), old_line_pointer);
1882 return ERROR_REG_NUM;
1883 }
1884
1885 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1886 {
1887 as_bad (_("bad register number: %s"), input_line_pointer);
1888 return ERROR_REG_NUM;
1889 }
1890
1891 reg = 0;
1892
1893 while (ISDIGIT ((int) *input_line_pointer))
1894 reg = reg * 10 + *input_line_pointer++ - '0';
1895
1896 if (!(next_expr = expression_end (input_line_pointer)))
1897 {
1898 as_bad (_("bad register name: %s"), old_line_pointer);
1899 return ERROR_REG_NUM;
1900 }
1901
1902 input_line_pointer = (char *) next_expr;
1903
1904 return reg;
1905 }
1906
1907
1908 static void
1909 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1910 {
1911 xtensa_isa isa = xtensa_default_isa;
1912
1913 /* Check if this is an immediate operand. */
1914 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1915 {
1916 bfd_reloc_code_real_type reloc;
1917 segT t = expression (tok);
1918
1919 if (t == absolute_section
1920 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1921 {
1922 gas_assert (tok->X_op == O_constant);
1923 tok->X_op = O_symbol;
1924 tok->X_add_symbol = &abs_symbol;
1925 }
1926
1927 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1928 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1929 != BFD_RELOC_NONE))
1930 {
1931 switch (reloc)
1932 {
1933 case BFD_RELOC_LO16:
1934 if (tok->X_op == O_constant)
1935 {
1936 tok->X_add_number &= 0xffff;
1937 return;
1938 }
1939 break;
1940 case BFD_RELOC_HI16:
1941 if (tok->X_op == O_constant)
1942 {
1943 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1944 return;
1945 }
1946 break;
1947 case BFD_RELOC_UNUSED:
1948 as_bad (_("unsupported relocation"));
1949 return;
1950 case BFD_RELOC_32_PCREL:
1951 as_bad (_("pcrel relocation not allowed in an instruction"));
1952 return;
1953 default:
1954 break;
1955 }
1956 tok->X_op = map_suffix_reloc_to_operator (reloc);
1957 }
1958 }
1959 else
1960 {
1961 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1962 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1963
1964 if (reg != ERROR_REG_NUM) /* Already errored */
1965 {
1966 uint32 buf = reg;
1967 if (xtensa_operand_encode (isa, opc, opnd, &buf))
1968 as_bad (_("register number out of range"));
1969 }
1970
1971 tok->X_op = O_register;
1972 tok->X_add_symbol = 0;
1973 tok->X_add_number = reg;
1974 }
1975 }
1976
1977
1978 /* Split up the arguments for an opcode or pseudo-op. */
1979
1980 static int
1981 tokenize_arguments (char **args, char *str)
1982 {
1983 char *old_input_line_pointer;
1984 bfd_boolean saw_comma = FALSE;
1985 bfd_boolean saw_arg = FALSE;
1986 bfd_boolean saw_colon = FALSE;
1987 int num_args = 0;
1988 char *arg_end, *arg;
1989 int arg_len;
1990
1991 /* Save and restore input_line_pointer around this function. */
1992 old_input_line_pointer = input_line_pointer;
1993 input_line_pointer = str;
1994
1995 while (*input_line_pointer)
1996 {
1997 SKIP_WHITESPACE ();
1998 switch (*input_line_pointer)
1999 {
2000 case '\0':
2001 case '}':
2002 goto fini;
2003
2004 case ':':
2005 input_line_pointer++;
2006 if (saw_comma || saw_colon || !saw_arg)
2007 goto err;
2008 saw_colon = TRUE;
2009 break;
2010
2011 case ',':
2012 input_line_pointer++;
2013 if (saw_comma || saw_colon || !saw_arg)
2014 goto err;
2015 saw_comma = TRUE;
2016 break;
2017
2018 default:
2019 if (!saw_comma && !saw_colon && saw_arg)
2020 goto err;
2021
2022 arg_end = input_line_pointer + 1;
2023 while (!expression_end (arg_end))
2024 arg_end += 1;
2025
2026 arg_len = arg_end - input_line_pointer;
2027 arg = (char *) xmalloc ((saw_colon ? 1 : 0) + arg_len + 1);
2028 args[num_args] = arg;
2029
2030 if (saw_colon)
2031 *arg++ = ':';
2032 strncpy (arg, input_line_pointer, arg_len);
2033 arg[arg_len] = '\0';
2034
2035 input_line_pointer = arg_end;
2036 num_args += 1;
2037 saw_comma = FALSE;
2038 saw_colon = FALSE;
2039 saw_arg = TRUE;
2040 break;
2041 }
2042 }
2043
2044 fini:
2045 if (saw_comma || saw_colon)
2046 goto err;
2047 input_line_pointer = old_input_line_pointer;
2048 return num_args;
2049
2050 err:
2051 if (saw_comma)
2052 as_bad (_("extra comma"));
2053 else if (saw_colon)
2054 as_bad (_("extra colon"));
2055 else if (!saw_arg)
2056 as_bad (_("missing argument"));
2057 else
2058 as_bad (_("missing comma or colon"));
2059 input_line_pointer = old_input_line_pointer;
2060 return -1;
2061 }
2062
2063
2064 /* Parse the arguments to an opcode. Return TRUE on error. */
2065
2066 static bfd_boolean
2067 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
2068 {
2069 expressionS *tok, *last_tok;
2070 xtensa_opcode opcode = insn->opcode;
2071 bfd_boolean had_error = TRUE;
2072 xtensa_isa isa = xtensa_default_isa;
2073 int n, num_regs = 0;
2074 int opcode_operand_count;
2075 int opnd_cnt, last_opnd_cnt;
2076 unsigned int next_reg = 0;
2077 char *old_input_line_pointer;
2078
2079 if (insn->insn_type == ITYPE_LITERAL)
2080 opcode_operand_count = 1;
2081 else
2082 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
2083
2084 tok = insn->tok;
2085 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
2086
2087 /* Save and restore input_line_pointer around this function. */
2088 old_input_line_pointer = input_line_pointer;
2089
2090 last_tok = 0;
2091 last_opnd_cnt = -1;
2092 opnd_cnt = 0;
2093
2094 /* Skip invisible operands. */
2095 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
2096 {
2097 opnd_cnt += 1;
2098 tok++;
2099 }
2100
2101 for (n = 0; n < num_args; n++)
2102 {
2103 input_line_pointer = arg_strings[n];
2104 if (*input_line_pointer == ':')
2105 {
2106 xtensa_regfile opnd_rf;
2107 input_line_pointer++;
2108 if (num_regs == 0)
2109 goto err;
2110 gas_assert (opnd_cnt > 0);
2111 num_regs--;
2112 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2113 if (next_reg
2114 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2115 as_warn (_("incorrect register number, ignoring"));
2116 next_reg++;
2117 }
2118 else
2119 {
2120 if (opnd_cnt >= opcode_operand_count)
2121 {
2122 as_warn (_("too many arguments"));
2123 goto err;
2124 }
2125 gas_assert (opnd_cnt < MAX_INSN_ARGS);
2126
2127 expression_maybe_register (opcode, opnd_cnt, tok);
2128 next_reg = tok->X_add_number + 1;
2129
2130 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2131 goto err;
2132 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2133 {
2134 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2135 /* minus 1 because we are seeing one right now */
2136 }
2137 else
2138 num_regs = 0;
2139
2140 last_tok = tok;
2141 last_opnd_cnt = opnd_cnt;
2142 demand_empty_rest_of_line ();
2143
2144 do
2145 {
2146 opnd_cnt += 1;
2147 tok++;
2148 }
2149 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2150 }
2151 }
2152
2153 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2154 goto err;
2155
2156 insn->ntok = tok - insn->tok;
2157 had_error = FALSE;
2158
2159 err:
2160 input_line_pointer = old_input_line_pointer;
2161 return had_error;
2162 }
2163
2164
2165 static int
2166 get_invisible_operands (TInsn *insn)
2167 {
2168 xtensa_isa isa = xtensa_default_isa;
2169 static xtensa_insnbuf slotbuf = NULL;
2170 xtensa_format fmt;
2171 xtensa_opcode opc = insn->opcode;
2172 int slot, opnd, fmt_found;
2173 unsigned val;
2174
2175 if (!slotbuf)
2176 slotbuf = xtensa_insnbuf_alloc (isa);
2177
2178 /* Find format/slot where this can be encoded. */
2179 fmt_found = 0;
2180 slot = 0;
2181 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2182 {
2183 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2184 {
2185 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2186 {
2187 fmt_found = 1;
2188 break;
2189 }
2190 }
2191 if (fmt_found) break;
2192 }
2193
2194 if (!fmt_found)
2195 {
2196 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2197 return -1;
2198 }
2199
2200 /* First encode all the visible operands
2201 (to deal with shared field operands). */
2202 for (opnd = 0; opnd < insn->ntok; opnd++)
2203 {
2204 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2205 && (insn->tok[opnd].X_op == O_register
2206 || insn->tok[opnd].X_op == O_constant))
2207 {
2208 val = insn->tok[opnd].X_add_number;
2209 xtensa_operand_encode (isa, opc, opnd, &val);
2210 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2211 }
2212 }
2213
2214 /* Then pull out the values for the invisible ones. */
2215 for (opnd = 0; opnd < insn->ntok; opnd++)
2216 {
2217 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2218 {
2219 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2220 xtensa_operand_decode (isa, opc, opnd, &val);
2221 insn->tok[opnd].X_add_number = val;
2222 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2223 insn->tok[opnd].X_op = O_register;
2224 else
2225 insn->tok[opnd].X_op = O_constant;
2226 }
2227 }
2228
2229 return 0;
2230 }
2231
2232
2233 static void
2234 xg_reverse_shift_count (char **cnt_argp)
2235 {
2236 char *cnt_arg, *new_arg;
2237 cnt_arg = *cnt_argp;
2238
2239 /* replace the argument with "31-(argument)" */
2240 new_arg = (char *) xmalloc (strlen (cnt_arg) + 6);
2241 sprintf (new_arg, "31-(%s)", cnt_arg);
2242
2243 free (cnt_arg);
2244 *cnt_argp = new_arg;
2245 }
2246
2247
2248 /* If "arg" is a constant expression, return non-zero with the value
2249 in *valp. */
2250
2251 static int
2252 xg_arg_is_constant (char *arg, offsetT *valp)
2253 {
2254 expressionS exp;
2255 char *save_ptr = input_line_pointer;
2256
2257 input_line_pointer = arg;
2258 expression (&exp);
2259 input_line_pointer = save_ptr;
2260
2261 if (exp.X_op == O_constant)
2262 {
2263 *valp = exp.X_add_number;
2264 return 1;
2265 }
2266
2267 return 0;
2268 }
2269
2270
2271 static void
2272 xg_replace_opname (char **popname, char *newop)
2273 {
2274 free (*popname);
2275 *popname = (char *) xmalloc (strlen (newop) + 1);
2276 strcpy (*popname, newop);
2277 }
2278
2279
2280 static int
2281 xg_check_num_args (int *pnum_args,
2282 int expected_num,
2283 char *opname,
2284 char **arg_strings)
2285 {
2286 int num_args = *pnum_args;
2287
2288 if (num_args < expected_num)
2289 {
2290 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2291 num_args, opname, expected_num);
2292 return -1;
2293 }
2294
2295 if (num_args > expected_num)
2296 {
2297 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2298 num_args, opname, expected_num);
2299 while (num_args-- > expected_num)
2300 {
2301 free (arg_strings[num_args]);
2302 arg_strings[num_args] = 0;
2303 }
2304 *pnum_args = expected_num;
2305 return -1;
2306 }
2307
2308 return 0;
2309 }
2310
2311
2312 /* If the register is not specified as part of the opcode,
2313 then get it from the operand and move it to the opcode. */
2314
2315 static int
2316 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2317 {
2318 xtensa_isa isa = xtensa_default_isa;
2319 xtensa_sysreg sr;
2320 char *opname, *new_opname;
2321 const char *sr_name;
2322 int is_user, is_write;
2323
2324 opname = *popname;
2325 if (*opname == '_')
2326 opname += 1;
2327 is_user = (opname[1] == 'u');
2328 is_write = (opname[0] == 'w');
2329
2330 /* Opname == [rw]ur or [rwx]sr... */
2331
2332 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2333 return -1;
2334
2335 /* Check if the argument is a symbolic register name. */
2336 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2337 /* Handle WSR to "INTSET" as a special case. */
2338 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2339 && !strcasecmp (arg_strings[1], "intset"))
2340 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2341 if (sr == XTENSA_UNDEFINED
2342 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2343 {
2344 /* Maybe it's a register number.... */
2345 offsetT val;
2346 if (!xg_arg_is_constant (arg_strings[1], &val))
2347 {
2348 as_bad (_("invalid register '%s' for '%s' instruction"),
2349 arg_strings[1], opname);
2350 return -1;
2351 }
2352 sr = xtensa_sysreg_lookup (isa, val, is_user);
2353 if (sr == XTENSA_UNDEFINED)
2354 {
2355 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2356 (long) val, opname);
2357 return -1;
2358 }
2359 }
2360
2361 /* Remove the last argument, which is now part of the opcode. */
2362 free (arg_strings[1]);
2363 arg_strings[1] = 0;
2364 *pnum_args = 1;
2365
2366 /* Translate the opcode. */
2367 sr_name = xtensa_sysreg_name (isa, sr);
2368 /* Another special case for "WSR.INTSET".... */
2369 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2370 sr_name = "intset";
2371 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2372 sprintf (new_opname, "%s.%s", *popname, sr_name);
2373 free (*popname);
2374 *popname = new_opname;
2375
2376 return 0;
2377 }
2378
2379
2380 static int
2381 xtensa_translate_old_userreg_ops (char **popname)
2382 {
2383 xtensa_isa isa = xtensa_default_isa;
2384 xtensa_sysreg sr;
2385 char *opname, *new_opname;
2386 const char *sr_name;
2387 bfd_boolean has_underbar = FALSE;
2388
2389 opname = *popname;
2390 if (opname[0] == '_')
2391 {
2392 has_underbar = TRUE;
2393 opname += 1;
2394 }
2395
2396 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2397 if (sr != XTENSA_UNDEFINED)
2398 {
2399 /* The new default name ("nnn") is different from the old default
2400 name ("URnnn"). The old default is handled below, and we don't
2401 want to recognize [RW]nnn, so do nothing if the name is the (new)
2402 default. */
2403 static char namebuf[10];
2404 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2405 if (strcmp (namebuf, opname + 1) == 0)
2406 return 0;
2407 }
2408 else
2409 {
2410 offsetT val;
2411 char *end;
2412
2413 /* Only continue if the reg name is "URnnn". */
2414 if (opname[1] != 'u' || opname[2] != 'r')
2415 return 0;
2416 val = strtoul (opname + 3, &end, 10);
2417 if (*end != '\0')
2418 return 0;
2419
2420 sr = xtensa_sysreg_lookup (isa, val, 1);
2421 if (sr == XTENSA_UNDEFINED)
2422 {
2423 as_bad (_("invalid register number (%ld) for '%s'"),
2424 (long) val, opname);
2425 return -1;
2426 }
2427 }
2428
2429 /* Translate the opcode. */
2430 sr_name = xtensa_sysreg_name (isa, sr);
2431 new_opname = (char *) xmalloc (strlen (sr_name) + 6);
2432 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2433 opname[0], sr_name);
2434 free (*popname);
2435 *popname = new_opname;
2436
2437 return 0;
2438 }
2439
2440
2441 static int
2442 xtensa_translate_zero_immed (char *old_op,
2443 char *new_op,
2444 char **popname,
2445 int *pnum_args,
2446 char **arg_strings)
2447 {
2448 char *opname;
2449 offsetT val;
2450
2451 opname = *popname;
2452 gas_assert (opname[0] != '_');
2453
2454 if (strcmp (opname, old_op) != 0)
2455 return 0;
2456
2457 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2458 return -1;
2459 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2460 {
2461 xg_replace_opname (popname, new_op);
2462 free (arg_strings[1]);
2463 arg_strings[1] = arg_strings[2];
2464 arg_strings[2] = 0;
2465 *pnum_args = 2;
2466 }
2467
2468 return 0;
2469 }
2470
2471
2472 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2473 Returns non-zero if an error was found. */
2474
2475 static int
2476 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2477 {
2478 char *opname = *popname;
2479 bfd_boolean has_underbar = FALSE;
2480
2481 if (*opname == '_')
2482 {
2483 has_underbar = TRUE;
2484 opname += 1;
2485 }
2486
2487 if (strcmp (opname, "mov") == 0)
2488 {
2489 if (use_transform () && !has_underbar && density_supported)
2490 xg_replace_opname (popname, "mov.n");
2491 else
2492 {
2493 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2494 return -1;
2495 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2496 arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1);
2497 strcpy (arg_strings[2], arg_strings[1]);
2498 *pnum_args = 3;
2499 }
2500 return 0;
2501 }
2502
2503 if (strcmp (opname, "bbsi.l") == 0)
2504 {
2505 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2506 return -1;
2507 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2508 if (target_big_endian)
2509 xg_reverse_shift_count (&arg_strings[1]);
2510 return 0;
2511 }
2512
2513 if (strcmp (opname, "bbci.l") == 0)
2514 {
2515 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2516 return -1;
2517 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2518 if (target_big_endian)
2519 xg_reverse_shift_count (&arg_strings[1]);
2520 return 0;
2521 }
2522
2523 /* Don't do anything special with NOPs inside FLIX instructions. They
2524 are handled elsewhere. Real NOP instructions are always available
2525 in configurations with FLIX, so this should never be an issue but
2526 check for it anyway. */
2527 if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED
2528 && strcmp (opname, "nop") == 0)
2529 {
2530 if (use_transform () && !has_underbar && density_supported)
2531 xg_replace_opname (popname, "nop.n");
2532 else
2533 {
2534 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2535 return -1;
2536 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2537 arg_strings[0] = (char *) xmalloc (3);
2538 arg_strings[1] = (char *) xmalloc (3);
2539 arg_strings[2] = (char *) xmalloc (3);
2540 strcpy (arg_strings[0], "a1");
2541 strcpy (arg_strings[1], "a1");
2542 strcpy (arg_strings[2], "a1");
2543 *pnum_args = 3;
2544 }
2545 return 0;
2546 }
2547
2548 /* Recognize [RW]UR and [RWX]SR. */
2549 if ((((opname[0] == 'r' || opname[0] == 'w')
2550 && (opname[1] == 'u' || opname[1] == 's'))
2551 || (opname[0] == 'x' && opname[1] == 's'))
2552 && opname[2] == 'r'
2553 && opname[3] == '\0')
2554 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2555
2556 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2557 [RW]<name> if <name> is the non-default name of a user register. */
2558 if ((opname[0] == 'r' || opname[0] == 'w')
2559 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2560 return xtensa_translate_old_userreg_ops (popname);
2561
2562 /* Relax branches that don't allow comparisons against an immediate value
2563 of zero to the corresponding branches with implicit zero immediates. */
2564 if (!has_underbar && use_transform ())
2565 {
2566 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2567 pnum_args, arg_strings))
2568 return -1;
2569
2570 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2571 pnum_args, arg_strings))
2572 return -1;
2573
2574 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2575 pnum_args, arg_strings))
2576 return -1;
2577
2578 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2579 pnum_args, arg_strings))
2580 return -1;
2581 }
2582
2583 return 0;
2584 }
2585
2586 \f
2587 /* Functions for dealing with the Xtensa ISA. */
2588
2589 /* Currently the assembler only allows us to use a single target per
2590 fragment. Because of this, only one operand for a given
2591 instruction may be symbolic. If there is a PC-relative operand,
2592 the last one is chosen. Otherwise, the result is the number of the
2593 last immediate operand, and if there are none of those, we fail and
2594 return -1. */
2595
2596 static int
2597 get_relaxable_immed (xtensa_opcode opcode)
2598 {
2599 int last_immed = -1;
2600 int noperands, opi;
2601
2602 if (opcode == XTENSA_UNDEFINED)
2603 return -1;
2604
2605 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2606 for (opi = noperands - 1; opi >= 0; opi--)
2607 {
2608 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2609 continue;
2610 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2611 return opi;
2612 if (last_immed == -1
2613 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2614 last_immed = opi;
2615 }
2616 return last_immed;
2617 }
2618
2619
2620 static xtensa_opcode
2621 get_opcode_from_buf (const char *buf, int slot)
2622 {
2623 static xtensa_insnbuf insnbuf = NULL;
2624 static xtensa_insnbuf slotbuf = NULL;
2625 xtensa_isa isa = xtensa_default_isa;
2626 xtensa_format fmt;
2627
2628 if (!insnbuf)
2629 {
2630 insnbuf = xtensa_insnbuf_alloc (isa);
2631 slotbuf = xtensa_insnbuf_alloc (isa);
2632 }
2633
2634 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2635 fmt = xtensa_format_decode (isa, insnbuf);
2636 if (fmt == XTENSA_UNDEFINED)
2637 return XTENSA_UNDEFINED;
2638
2639 if (slot >= xtensa_format_num_slots (isa, fmt))
2640 return XTENSA_UNDEFINED;
2641
2642 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2643 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2644 }
2645
2646
2647 #ifdef TENSILICA_DEBUG
2648
2649 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2650
2651 static void
2652 xtensa_print_insn_table (void)
2653 {
2654 int num_opcodes, num_operands;
2655 xtensa_opcode opcode;
2656 xtensa_isa isa = xtensa_default_isa;
2657
2658 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2659 for (opcode = 0; opcode < num_opcodes; opcode++)
2660 {
2661 int opn;
2662 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2663 num_operands = xtensa_opcode_num_operands (isa, opcode);
2664 for (opn = 0; opn < num_operands; opn++)
2665 {
2666 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2667 continue;
2668 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2669 {
2670 xtensa_regfile opnd_rf =
2671 xtensa_operand_regfile (isa, opcode, opn);
2672 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2673 }
2674 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2675 fputs ("[lLr] ", stderr);
2676 else
2677 fputs ("i ", stderr);
2678 }
2679 fprintf (stderr, "\n");
2680 }
2681 }
2682
2683
2684 static void
2685 print_vliw_insn (xtensa_insnbuf vbuf)
2686 {
2687 xtensa_isa isa = xtensa_default_isa;
2688 xtensa_format f = xtensa_format_decode (isa, vbuf);
2689 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2690 int op;
2691
2692 fprintf (stderr, "format = %d\n", f);
2693
2694 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2695 {
2696 xtensa_opcode opcode;
2697 const char *opname;
2698 int operands;
2699
2700 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2701 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2702 opname = xtensa_opcode_name (isa, opcode);
2703
2704 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2705 fprintf (stderr, " operands = ");
2706 for (operands = 0;
2707 operands < xtensa_opcode_num_operands (isa, opcode);
2708 operands++)
2709 {
2710 unsigned int val;
2711 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2712 continue;
2713 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2714 xtensa_operand_decode (isa, opcode, operands, &val);
2715 fprintf (stderr, "%d ", val);
2716 }
2717 fprintf (stderr, "\n");
2718 }
2719 xtensa_insnbuf_free (isa, sbuf);
2720 }
2721
2722 #endif /* TENSILICA_DEBUG */
2723
2724
2725 static bfd_boolean
2726 is_direct_call_opcode (xtensa_opcode opcode)
2727 {
2728 xtensa_isa isa = xtensa_default_isa;
2729 int n, num_operands;
2730
2731 if (xtensa_opcode_is_call (isa, opcode) != 1)
2732 return FALSE;
2733
2734 num_operands = xtensa_opcode_num_operands (isa, opcode);
2735 for (n = 0; n < num_operands; n++)
2736 {
2737 if (xtensa_operand_is_register (isa, opcode, n) == 0
2738 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2739 return TRUE;
2740 }
2741 return FALSE;
2742 }
2743
2744
2745 /* Convert from BFD relocation type code to slot and operand number.
2746 Returns non-zero on failure. */
2747
2748 static int
2749 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2750 {
2751 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2752 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2753 {
2754 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2755 *is_alt = FALSE;
2756 }
2757 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2758 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2759 {
2760 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2761 *is_alt = TRUE;
2762 }
2763 else
2764 return -1;
2765
2766 return 0;
2767 }
2768
2769
2770 /* Convert from slot number to BFD relocation type code for the
2771 standard PC-relative relocations. Return BFD_RELOC_NONE on
2772 failure. */
2773
2774 static bfd_reloc_code_real_type
2775 encode_reloc (int slot)
2776 {
2777 if (slot < 0 || slot > 14)
2778 return BFD_RELOC_NONE;
2779
2780 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2781 }
2782
2783
2784 /* Convert from slot numbers to BFD relocation type code for the
2785 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2786
2787 static bfd_reloc_code_real_type
2788 encode_alt_reloc (int slot)
2789 {
2790 if (slot < 0 || slot > 14)
2791 return BFD_RELOC_NONE;
2792
2793 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2794 }
2795
2796
2797 static void
2798 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2799 xtensa_format fmt,
2800 int slot,
2801 xtensa_opcode opcode,
2802 int operand,
2803 uint32 value,
2804 const char *file,
2805 unsigned int line)
2806 {
2807 uint32 valbuf = value;
2808
2809 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2810 {
2811 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2812 == 1)
2813 as_bad_where ((char *) file, line,
2814 _("operand %d of '%s' has out of range value '%u'"),
2815 operand + 1,
2816 xtensa_opcode_name (xtensa_default_isa, opcode),
2817 value);
2818 else
2819 as_bad_where ((char *) file, line,
2820 _("operand %d of '%s' has invalid value '%u'"),
2821 operand + 1,
2822 xtensa_opcode_name (xtensa_default_isa, opcode),
2823 value);
2824 return;
2825 }
2826
2827 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2828 slotbuf, valbuf);
2829 }
2830
2831
2832 static uint32
2833 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2834 xtensa_format fmt,
2835 int slot,
2836 xtensa_opcode opcode,
2837 int opnum)
2838 {
2839 uint32 val = 0;
2840 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2841 fmt, slot, slotbuf, &val);
2842 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2843 return val;
2844 }
2845
2846 \f
2847 /* Checks for rules from xtensa-relax tables. */
2848
2849 /* The routine xg_instruction_matches_option_term must return TRUE
2850 when a given option term is true. The meaning of all of the option
2851 terms is given interpretation by this function. */
2852
2853 static bfd_boolean
2854 xg_instruction_matches_option_term (TInsn *insn, const ReqOrOption *option)
2855 {
2856 if (strcmp (option->option_name, "realnop") == 0
2857 || strncmp (option->option_name, "IsaUse", 6) == 0)
2858 {
2859 /* These conditions were evaluated statically when building the
2860 relaxation table. There's no need to reevaluate them now. */
2861 return TRUE;
2862 }
2863 else if (strcmp (option->option_name, "FREEREG") == 0)
2864 return insn->extra_arg.X_op == O_register;
2865 else
2866 {
2867 as_fatal (_("internal error: unknown option name '%s'"),
2868 option->option_name);
2869 }
2870 }
2871
2872
2873 static bfd_boolean
2874 xg_instruction_matches_or_options (TInsn *insn,
2875 const ReqOrOptionList *or_option)
2876 {
2877 const ReqOrOption *option;
2878 /* Must match each of the AND terms. */
2879 for (option = or_option; option != NULL; option = option->next)
2880 {
2881 if (xg_instruction_matches_option_term (insn, option))
2882 return TRUE;
2883 }
2884 return FALSE;
2885 }
2886
2887
2888 static bfd_boolean
2889 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2890 {
2891 const ReqOption *req_options;
2892 /* Must match each of the AND terms. */
2893 for (req_options = options;
2894 req_options != NULL;
2895 req_options = req_options->next)
2896 {
2897 /* Must match one of the OR clauses. */
2898 if (!xg_instruction_matches_or_options (insn,
2899 req_options->or_option_terms))
2900 return FALSE;
2901 }
2902 return TRUE;
2903 }
2904
2905
2906 /* Return the transition rule that matches or NULL if none matches. */
2907
2908 static bfd_boolean
2909 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2910 {
2911 PreconditionList *condition_l;
2912
2913 if (rule->opcode != insn->opcode)
2914 return FALSE;
2915
2916 for (condition_l = rule->conditions;
2917 condition_l != NULL;
2918 condition_l = condition_l->next)
2919 {
2920 expressionS *exp1;
2921 expressionS *exp2;
2922 Precondition *cond = condition_l->precond;
2923
2924 switch (cond->typ)
2925 {
2926 case OP_CONSTANT:
2927 /* The expression must be the constant. */
2928 gas_assert (cond->op_num < insn->ntok);
2929 exp1 = &insn->tok[cond->op_num];
2930 if (expr_is_const (exp1))
2931 {
2932 switch (cond->cmp)
2933 {
2934 case OP_EQUAL:
2935 if (get_expr_const (exp1) != cond->op_data)
2936 return FALSE;
2937 break;
2938 case OP_NOTEQUAL:
2939 if (get_expr_const (exp1) == cond->op_data)
2940 return FALSE;
2941 break;
2942 default:
2943 return FALSE;
2944 }
2945 }
2946 else if (expr_is_register (exp1))
2947 {
2948 switch (cond->cmp)
2949 {
2950 case OP_EQUAL:
2951 if (get_expr_register (exp1) != cond->op_data)
2952 return FALSE;
2953 break;
2954 case OP_NOTEQUAL:
2955 if (get_expr_register (exp1) == cond->op_data)
2956 return FALSE;
2957 break;
2958 default:
2959 return FALSE;
2960 }
2961 }
2962 else
2963 return FALSE;
2964 break;
2965
2966 case OP_OPERAND:
2967 gas_assert (cond->op_num < insn->ntok);
2968 gas_assert (cond->op_data < insn->ntok);
2969 exp1 = &insn->tok[cond->op_num];
2970 exp2 = &insn->tok[cond->op_data];
2971
2972 switch (cond->cmp)
2973 {
2974 case OP_EQUAL:
2975 if (!expr_is_equal (exp1, exp2))
2976 return FALSE;
2977 break;
2978 case OP_NOTEQUAL:
2979 if (expr_is_equal (exp1, exp2))
2980 return FALSE;
2981 break;
2982 }
2983 break;
2984
2985 case OP_LITERAL:
2986 case OP_LABEL:
2987 default:
2988 return FALSE;
2989 }
2990 }
2991 if (!xg_instruction_matches_options (insn, rule->options))
2992 return FALSE;
2993
2994 return TRUE;
2995 }
2996
2997
2998 static int
2999 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
3000 {
3001 bfd_boolean a_greater = FALSE;
3002 bfd_boolean b_greater = FALSE;
3003
3004 ReqOptionList *l_a = a->options;
3005 ReqOptionList *l_b = b->options;
3006
3007 /* We only care if they both are the same except for
3008 a const16 vs. an l32r. */
3009
3010 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
3011 {
3012 ReqOrOptionList *l_or_a = l_a->or_option_terms;
3013 ReqOrOptionList *l_or_b = l_b->or_option_terms;
3014 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
3015 {
3016 if (l_or_a->is_true != l_or_b->is_true)
3017 return 0;
3018 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
3019 {
3020 /* This is the case we care about. */
3021 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
3022 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
3023 {
3024 if (prefer_const16)
3025 a_greater = TRUE;
3026 else
3027 b_greater = TRUE;
3028 }
3029 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
3030 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
3031 {
3032 if (prefer_const16)
3033 b_greater = TRUE;
3034 else
3035 a_greater = TRUE;
3036 }
3037 else
3038 return 0;
3039 }
3040 l_or_a = l_or_a->next;
3041 l_or_b = l_or_b->next;
3042 }
3043 if (l_or_a || l_or_b)
3044 return 0;
3045
3046 l_a = l_a->next;
3047 l_b = l_b->next;
3048 }
3049 if (l_a || l_b)
3050 return 0;
3051
3052 /* Incomparable if the substitution was used differently in two cases. */
3053 if (a_greater && b_greater)
3054 return 0;
3055
3056 if (b_greater)
3057 return 1;
3058 if (a_greater)
3059 return -1;
3060
3061 return 0;
3062 }
3063
3064
3065 static TransitionRule *
3066 xg_instruction_match (TInsn *insn)
3067 {
3068 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
3069 TransitionList *l;
3070 gas_assert (insn->opcode < table->num_opcodes);
3071
3072 /* Walk through all of the possible transitions. */
3073 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3074 {
3075 TransitionRule *rule = l->rule;
3076 if (xg_instruction_matches_rule (insn, rule))
3077 return rule;
3078 }
3079 return NULL;
3080 }
3081
3082 \f
3083 /* Various Other Internal Functions. */
3084
3085 static bfd_boolean
3086 is_unique_insn_expansion (TransitionRule *r)
3087 {
3088 if (!r->to_instr || r->to_instr->next != NULL)
3089 return FALSE;
3090 if (r->to_instr->typ != INSTR_INSTR)
3091 return FALSE;
3092 return TRUE;
3093 }
3094
3095
3096 /* Check if there is exactly one relaxation for INSN that converts it to
3097 another instruction of equal or larger size. If so, and if TARG is
3098 non-null, go ahead and generate the relaxed instruction into TARG. If
3099 NARROW_ONLY is true, then only consider relaxations that widen a narrow
3100 instruction, i.e., ignore relaxations that convert to an instruction of
3101 equal size. In some contexts where this function is used, only
3102 a single widening is allowed and the NARROW_ONLY argument is used to
3103 exclude cases like ADDI being "widened" to an ADDMI, which may
3104 later be relaxed to an ADDMI/ADDI pair. */
3105
3106 bfd_boolean
3107 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
3108 {
3109 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3110 TransitionList *l;
3111 TransitionRule *match = 0;
3112
3113 gas_assert (insn->insn_type == ITYPE_INSN);
3114 gas_assert (insn->opcode < table->num_opcodes);
3115
3116 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3117 {
3118 TransitionRule *rule = l->rule;
3119
3120 if (xg_instruction_matches_rule (insn, rule)
3121 && is_unique_insn_expansion (rule)
3122 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3123 <= xg_get_single_size (rule->to_instr->opcode)))
3124 {
3125 if (match)
3126 return FALSE;
3127 match = rule;
3128 }
3129 }
3130 if (!match)
3131 return FALSE;
3132
3133 if (targ)
3134 xg_build_to_insn (targ, insn, match->to_instr);
3135 return TRUE;
3136 }
3137
3138
3139 /* Return the maximum number of bytes this opcode can expand to. */
3140
3141 static int
3142 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3143 {
3144 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3145 TransitionList *l;
3146 int max_size = xg_get_single_size (opcode);
3147
3148 gas_assert (opcode < table->num_opcodes);
3149
3150 for (l = table->table[opcode]; l != NULL; l = l->next)
3151 {
3152 TransitionRule *rule = l->rule;
3153 BuildInstr *build_list;
3154 int this_size = 0;
3155
3156 if (!rule)
3157 continue;
3158 build_list = rule->to_instr;
3159 if (is_unique_insn_expansion (rule))
3160 {
3161 gas_assert (build_list->typ == INSTR_INSTR);
3162 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3163 }
3164 else
3165 for (; build_list != NULL; build_list = build_list->next)
3166 {
3167 switch (build_list->typ)
3168 {
3169 case INSTR_INSTR:
3170 this_size += xg_get_single_size (build_list->opcode);
3171 break;
3172 case INSTR_LITERAL_DEF:
3173 case INSTR_LABEL_DEF:
3174 default:
3175 break;
3176 }
3177 }
3178 if (this_size > max_size)
3179 max_size = this_size;
3180 }
3181 return max_size;
3182 }
3183
3184
3185 /* Return the maximum number of literal bytes this opcode can generate. */
3186
3187 static int
3188 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3189 {
3190 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3191 TransitionList *l;
3192 int max_size = 0;
3193
3194 gas_assert (opcode < table->num_opcodes);
3195
3196 for (l = table->table[opcode]; l != NULL; l = l->next)
3197 {
3198 TransitionRule *rule = l->rule;
3199 BuildInstr *build_list;
3200 int this_size = 0;
3201
3202 if (!rule)
3203 continue;
3204 build_list = rule->to_instr;
3205 if (is_unique_insn_expansion (rule))
3206 {
3207 gas_assert (build_list->typ == INSTR_INSTR);
3208 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3209 }
3210 else
3211 for (; build_list != NULL; build_list = build_list->next)
3212 {
3213 switch (build_list->typ)
3214 {
3215 case INSTR_LITERAL_DEF:
3216 /* Hard-coded 4-byte literal. */
3217 this_size += 4;
3218 break;
3219 case INSTR_INSTR:
3220 case INSTR_LABEL_DEF:
3221 default:
3222 break;
3223 }
3224 }
3225 if (this_size > max_size)
3226 max_size = this_size;
3227 }
3228 return max_size;
3229 }
3230
3231
3232 static bfd_boolean
3233 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3234 {
3235 int steps_taken = 0;
3236 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3237 TransitionList *l;
3238
3239 gas_assert (insn->insn_type == ITYPE_INSN);
3240 gas_assert (insn->opcode < table->num_opcodes);
3241
3242 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3243 {
3244 TransitionRule *rule = l->rule;
3245
3246 if (xg_instruction_matches_rule (insn, rule))
3247 {
3248 if (steps_taken == lateral_steps)
3249 return TRUE;
3250 steps_taken++;
3251 }
3252 }
3253 return FALSE;
3254 }
3255
3256
3257 static symbolS *
3258 get_special_literal_symbol (void)
3259 {
3260 static symbolS *sym = NULL;
3261
3262 if (sym == NULL)
3263 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3264 return sym;
3265 }
3266
3267
3268 static symbolS *
3269 get_special_label_symbol (void)
3270 {
3271 static symbolS *sym = NULL;
3272
3273 if (sym == NULL)
3274 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3275 return sym;
3276 }
3277
3278
3279 static bfd_boolean
3280 xg_valid_literal_expression (const expressionS *exp)
3281 {
3282 switch (exp->X_op)
3283 {
3284 case O_constant:
3285 case O_symbol:
3286 case O_big:
3287 case O_uminus:
3288 case O_subtract:
3289 case O_pltrel:
3290 case O_pcrel:
3291 case O_tlsfunc:
3292 case O_tlsarg:
3293 case O_tpoff:
3294 case O_dtpoff:
3295 return TRUE;
3296 default:
3297 return FALSE;
3298 }
3299 }
3300
3301
3302 /* This will check to see if the value can be converted into the
3303 operand type. It will return TRUE if it does not fit. */
3304
3305 static bfd_boolean
3306 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3307 {
3308 uint32 valbuf = value;
3309 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3310 return TRUE;
3311 return FALSE;
3312 }
3313
3314
3315 /* Assumes: All immeds are constants. Check that all constants fit
3316 into their immeds; return FALSE if not. */
3317
3318 static bfd_boolean
3319 xg_immeds_fit (const TInsn *insn)
3320 {
3321 xtensa_isa isa = xtensa_default_isa;
3322 int i;
3323
3324 int n = insn->ntok;
3325 gas_assert (insn->insn_type == ITYPE_INSN);
3326 for (i = 0; i < n; ++i)
3327 {
3328 const expressionS *exp = &insn->tok[i];
3329
3330 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3331 continue;
3332
3333 switch (exp->X_op)
3334 {
3335 case O_register:
3336 case O_constant:
3337 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
3338 return FALSE;
3339 break;
3340
3341 default:
3342 /* The symbol should have a fixup associated with it. */
3343 gas_assert (FALSE);
3344 break;
3345 }
3346 }
3347 return TRUE;
3348 }
3349
3350
3351 /* This should only be called after we have an initial
3352 estimate of the addresses. */
3353
3354 static bfd_boolean
3355 xg_symbolic_immeds_fit (const TInsn *insn,
3356 segT pc_seg,
3357 fragS *pc_frag,
3358 offsetT pc_offset,
3359 long stretch)
3360 {
3361 xtensa_isa isa = xtensa_default_isa;
3362 symbolS *symbolP;
3363 fragS *sym_frag;
3364 offsetT target, pc;
3365 uint32 new_offset;
3366 int i;
3367 int n = insn->ntok;
3368
3369 gas_assert (insn->insn_type == ITYPE_INSN);
3370
3371 for (i = 0; i < n; ++i)
3372 {
3373 const expressionS *exp = &insn->tok[i];
3374
3375 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3376 continue;
3377
3378 switch (exp->X_op)
3379 {
3380 case O_register:
3381 case O_constant:
3382 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
3383 return FALSE;
3384 break;
3385
3386 case O_lo16:
3387 case O_hi16:
3388 /* Check for the worst case. */
3389 if (xg_check_operand (0xffff, insn->opcode, i))
3390 return FALSE;
3391 break;
3392
3393 case O_symbol:
3394 /* We only allow symbols for PC-relative references.
3395 If pc_frag == 0, then we don't have frag locations yet. */
3396 if (pc_frag == 0
3397 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3398 return FALSE;
3399
3400 /* If it is a weak symbol or a symbol in a different section,
3401 it cannot be known to fit at assembly time. */
3402 if (S_IS_WEAK (exp->X_add_symbol)
3403 || S_GET_SEGMENT (exp->X_add_symbol) != pc_seg)
3404 {
3405 /* For a direct call with --no-longcalls, be optimistic and
3406 assume it will be in range. If the symbol is weak and
3407 undefined, it may remain undefined at link-time, in which
3408 case it will have a zero value and almost certainly be out
3409 of range for a direct call; thus, relax for undefined weak
3410 symbols even if longcalls is not enabled. */
3411 if (is_direct_call_opcode (insn->opcode)
3412 && ! pc_frag->tc_frag_data.use_longcalls
3413 && (! S_IS_WEAK (exp->X_add_symbol)
3414 || S_IS_DEFINED (exp->X_add_symbol)))
3415 return TRUE;
3416
3417 return FALSE;
3418 }
3419
3420 symbolP = exp->X_add_symbol;
3421 sym_frag = symbol_get_frag (symbolP);
3422 target = S_GET_VALUE (symbolP) + exp->X_add_number;
3423 pc = pc_frag->fr_address + pc_offset;
3424
3425 /* If frag has yet to be reached on this pass, assume it
3426 will move by STRETCH just as we did. If this is not so,
3427 it will be because some frag between grows, and that will
3428 force another pass. Beware zero-length frags. There
3429 should be a faster way to do this. */
3430
3431 if (stretch != 0
3432 && sym_frag->relax_marker != pc_frag->relax_marker
3433 && S_GET_SEGMENT (symbolP) == pc_seg)
3434 {
3435 target += stretch;
3436 }
3437
3438 new_offset = target;
3439 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3440 if (xg_check_operand (new_offset, insn->opcode, i))
3441 return FALSE;
3442 break;
3443
3444 default:
3445 /* The symbol should have a fixup associated with it. */
3446 return FALSE;
3447 }
3448 }
3449
3450 return TRUE;
3451 }
3452
3453
3454 /* Return TRUE on success. */
3455
3456 static bfd_boolean
3457 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3458 {
3459 BuildOp *op;
3460 symbolS *sym;
3461
3462 tinsn_init (targ);
3463 targ->debug_line = insn->debug_line;
3464 targ->loc_directive_seen = insn->loc_directive_seen;
3465 switch (bi->typ)
3466 {
3467 case INSTR_INSTR:
3468 op = bi->ops;
3469 targ->opcode = bi->opcode;
3470 targ->insn_type = ITYPE_INSN;
3471 targ->is_specific_opcode = FALSE;
3472
3473 for (; op != NULL; op = op->next)
3474 {
3475 int op_num = op->op_num;
3476 int op_data = op->op_data;
3477
3478 gas_assert (op->op_num < MAX_INSN_ARGS);
3479
3480 if (targ->ntok <= op_num)
3481 targ->ntok = op_num + 1;
3482
3483 switch (op->typ)
3484 {
3485 case OP_CONSTANT:
3486 set_expr_const (&targ->tok[op_num], op_data);
3487 break;
3488 case OP_OPERAND:
3489 gas_assert (op_data < insn->ntok);
3490 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3491 break;
3492 case OP_FREEREG:
3493 if (insn->extra_arg.X_op != O_register)
3494 return FALSE;
3495 copy_expr (&targ->tok[op_num], &insn->extra_arg);
3496 break;
3497 case OP_LITERAL:
3498 sym = get_special_literal_symbol ();
3499 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3500 if (insn->tok[op_data].X_op == O_tlsfunc
3501 || insn->tok[op_data].X_op == O_tlsarg)
3502 copy_expr (&targ->extra_arg, &insn->tok[op_data]);
3503 break;
3504 case OP_LABEL:
3505 sym = get_special_label_symbol ();
3506 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3507 break;
3508 case OP_OPERAND_HI16U:
3509 case OP_OPERAND_LOW16U:
3510 gas_assert (op_data < insn->ntok);
3511 if (expr_is_const (&insn->tok[op_data]))
3512 {
3513 long val;
3514 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3515 val = xg_apply_userdef_op_fn (op->typ,
3516 targ->tok[op_num].
3517 X_add_number);
3518 targ->tok[op_num].X_add_number = val;
3519 }
3520 else
3521 {
3522 /* For const16 we can create relocations for these. */
3523 if (targ->opcode == XTENSA_UNDEFINED
3524 || (targ->opcode != xtensa_const16_opcode))
3525 return FALSE;
3526 gas_assert (op_data < insn->ntok);
3527 /* Need to build a O_lo16 or O_hi16. */
3528 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3529 if (targ->tok[op_num].X_op == O_symbol)
3530 {
3531 if (op->typ == OP_OPERAND_HI16U)
3532 targ->tok[op_num].X_op = O_hi16;
3533 else if (op->typ == OP_OPERAND_LOW16U)
3534 targ->tok[op_num].X_op = O_lo16;
3535 else
3536 return FALSE;
3537 }
3538 }
3539 break;
3540 default:
3541 /* currently handles:
3542 OP_OPERAND_LOW8
3543 OP_OPERAND_HI24S
3544 OP_OPERAND_F32MINUS */
3545 if (xg_has_userdef_op_fn (op->typ))
3546 {
3547 gas_assert (op_data < insn->ntok);
3548 if (expr_is_const (&insn->tok[op_data]))
3549 {
3550 long val;
3551 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3552 val = xg_apply_userdef_op_fn (op->typ,
3553 targ->tok[op_num].
3554 X_add_number);
3555 targ->tok[op_num].X_add_number = val;
3556 }
3557 else
3558 return FALSE; /* We cannot use a relocation for this. */
3559 break;
3560 }
3561 gas_assert (0);
3562 break;
3563 }
3564 }
3565 break;
3566
3567 case INSTR_LITERAL_DEF:
3568 op = bi->ops;
3569 targ->opcode = XTENSA_UNDEFINED;
3570 targ->insn_type = ITYPE_LITERAL;
3571 targ->is_specific_opcode = FALSE;
3572 for (; op != NULL; op = op->next)
3573 {
3574 int op_num = op->op_num;
3575 int op_data = op->op_data;
3576 gas_assert (op->op_num < MAX_INSN_ARGS);
3577
3578 if (targ->ntok <= op_num)
3579 targ->ntok = op_num + 1;
3580
3581 switch (op->typ)
3582 {
3583 case OP_OPERAND:
3584 gas_assert (op_data < insn->ntok);
3585 /* We can only pass resolvable literals through. */
3586 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3587 return FALSE;
3588 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3589 break;
3590 case OP_LITERAL:
3591 case OP_CONSTANT:
3592 case OP_LABEL:
3593 default:
3594 gas_assert (0);
3595 break;
3596 }
3597 }
3598 break;
3599
3600 case INSTR_LABEL_DEF:
3601 op = bi->ops;
3602 targ->opcode = XTENSA_UNDEFINED;
3603 targ->insn_type = ITYPE_LABEL;
3604 targ->is_specific_opcode = FALSE;
3605 /* Literal with no ops is a label? */
3606 gas_assert (op == NULL);
3607 break;
3608
3609 default:
3610 gas_assert (0);
3611 }
3612
3613 return TRUE;
3614 }
3615
3616
3617 /* Return TRUE on success. */
3618
3619 static bfd_boolean
3620 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3621 {
3622 for (; bi != NULL; bi = bi->next)
3623 {
3624 TInsn *next_insn = istack_push_space (istack);
3625
3626 if (!xg_build_to_insn (next_insn, insn, bi))
3627 return FALSE;
3628 }
3629 return TRUE;
3630 }
3631
3632
3633 /* Return TRUE on valid expansion. */
3634
3635 static bfd_boolean
3636 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3637 {
3638 int stack_size = istack->ninsn;
3639 int steps_taken = 0;
3640 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3641 TransitionList *l;
3642
3643 gas_assert (insn->insn_type == ITYPE_INSN);
3644 gas_assert (insn->opcode < table->num_opcodes);
3645
3646 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3647 {
3648 TransitionRule *rule = l->rule;
3649
3650 if (xg_instruction_matches_rule (insn, rule))
3651 {
3652 if (lateral_steps == steps_taken)
3653 {
3654 int i;
3655
3656 /* This is it. Expand the rule to the stack. */
3657 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3658 return FALSE;
3659
3660 /* Check to see if it fits. */
3661 for (i = stack_size; i < istack->ninsn; i++)
3662 {
3663 TInsn *tinsn = &istack->insn[i];
3664
3665 if (tinsn->insn_type == ITYPE_INSN
3666 && !tinsn_has_symbolic_operands (tinsn)
3667 && !xg_immeds_fit (tinsn))
3668 {
3669 istack->ninsn = stack_size;
3670 return FALSE;
3671 }
3672 }
3673 return TRUE;
3674 }
3675 steps_taken++;
3676 }
3677 }
3678 return FALSE;
3679 }
3680
3681 \f
3682 /* Relax the assembly instruction at least "min_steps".
3683 Return the number of steps taken.
3684
3685 For relaxation to correctly terminate, every relaxation chain must
3686 terminate in one of two ways:
3687
3688 1. If the chain from one instruction to the next consists entirely of
3689 single instructions, then the chain *must* handle all possible
3690 immediates without failing. It must not ever fail because an
3691 immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation
3692 chain is one example. L32R loads 32 bits, and there cannot be an
3693 immediate larger than 32 bits, so it satisfies this condition.
3694 Single instruction relaxation chains are as defined by
3695 xg_is_single_relaxable_instruction.
3696
3697 2. Otherwise, the chain must end in a multi-instruction expansion: e.g.,
3698 BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J
3699
3700 Strictly speaking, in most cases you can violate condition 1 and be OK
3701 -- in particular when the last two instructions have the same single
3702 size. But nevertheless, you should guarantee the above two conditions.
3703
3704 We could fix this so that single-instruction expansions correctly
3705 terminate when they can't handle the range, but the error messages are
3706 worse, and it actually turns out that in every case but one (18-bit wide
3707 branches), you need a multi-instruction expansion to get the full range
3708 anyway. And because 18-bit branches are handled identically to 15-bit
3709 branches, there isn't any point in changing it. */
3710
3711 static int
3712 xg_assembly_relax (IStack *istack,
3713 TInsn *insn,
3714 segT pc_seg,
3715 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3716 offsetT pc_offset, /* offset in fragment */
3717 int min_steps, /* minimum conversion steps */
3718 long stretch) /* number of bytes stretched so far */
3719 {
3720 int steps_taken = 0;
3721
3722 /* Some of its immeds don't fit. Try to build a relaxed version.
3723 This may go through a couple of stages of single instruction
3724 transformations before we get there. */
3725
3726 TInsn single_target;
3727 TInsn current_insn;
3728 int lateral_steps = 0;
3729 int istack_size = istack->ninsn;
3730
3731 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3732 && steps_taken >= min_steps)
3733 {
3734 istack_push (istack, insn);
3735 return steps_taken;
3736 }
3737 current_insn = *insn;
3738
3739 /* Walk through all of the single instruction expansions. */
3740 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3741 {
3742 steps_taken++;
3743 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3744 stretch))
3745 {
3746 if (steps_taken >= min_steps)
3747 {
3748 istack_push (istack, &single_target);
3749 return steps_taken;
3750 }
3751 }
3752 current_insn = single_target;
3753 }
3754
3755 /* Now check for a multi-instruction expansion. */
3756 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3757 {
3758 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3759 stretch))
3760 {
3761 if (steps_taken >= min_steps)
3762 {
3763 istack_push (istack, &current_insn);
3764 return steps_taken;
3765 }
3766 }
3767 steps_taken++;
3768 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3769 {
3770 if (steps_taken >= min_steps)
3771 return steps_taken;
3772 }
3773 lateral_steps++;
3774 istack->ninsn = istack_size;
3775 }
3776
3777 /* It's not going to work -- use the original. */
3778 istack_push (istack, insn);
3779 return steps_taken;
3780 }
3781
3782
3783 static void
3784 xg_finish_frag (char *last_insn,
3785 enum xtensa_relax_statesE frag_state,
3786 enum xtensa_relax_statesE slot0_state,
3787 int max_growth,
3788 bfd_boolean is_insn)
3789 {
3790 /* Finish off this fragment so that it has at LEAST the desired
3791 max_growth. If it doesn't fit in this fragment, close this one
3792 and start a new one. In either case, return a pointer to the
3793 beginning of the growth area. */
3794
3795 fragS *old_frag;
3796
3797 frag_grow (max_growth);
3798 old_frag = frag_now;
3799
3800 frag_now->fr_opcode = last_insn;
3801 if (is_insn)
3802 frag_now->tc_frag_data.is_insn = TRUE;
3803
3804 frag_var (rs_machine_dependent, max_growth, max_growth,
3805 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3806
3807 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3808 xtensa_set_frag_assembly_state (frag_now);
3809
3810 /* Just to make sure that we did not split it up. */
3811 gas_assert (old_frag->fr_next == frag_now);
3812 }
3813
3814
3815 /* Return TRUE if the target frag is one of the next non-empty frags. */
3816
3817 static bfd_boolean
3818 is_next_frag_target (const fragS *fragP, const fragS *target)
3819 {
3820 if (fragP == NULL)
3821 return FALSE;
3822
3823 for (; fragP; fragP = fragP->fr_next)
3824 {
3825 if (fragP == target)
3826 return TRUE;
3827 if (fragP->fr_fix != 0)
3828 return FALSE;
3829 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3830 return FALSE;
3831 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3832 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3833 return FALSE;
3834 if (fragP->fr_type == rs_space)
3835 return FALSE;
3836 }
3837 return FALSE;
3838 }
3839
3840
3841 static bfd_boolean
3842 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3843 {
3844 xtensa_isa isa = xtensa_default_isa;
3845 int i;
3846 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3847 int target_op = -1;
3848 symbolS *sym;
3849 fragS *target_frag;
3850
3851 if (xtensa_opcode_is_branch (isa, insn->opcode) != 1
3852 && xtensa_opcode_is_jump (isa, insn->opcode) != 1)
3853 return FALSE;
3854
3855 for (i = 0; i < num_ops; i++)
3856 {
3857 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3858 {
3859 target_op = i;
3860 break;
3861 }
3862 }
3863 if (target_op == -1)
3864 return FALSE;
3865
3866 if (insn->ntok <= target_op)
3867 return FALSE;
3868
3869 if (insn->tok[target_op].X_op != O_symbol)
3870 return FALSE;
3871
3872 sym = insn->tok[target_op].X_add_symbol;
3873 if (sym == NULL)
3874 return FALSE;
3875
3876 if (insn->tok[target_op].X_add_number != 0)
3877 return FALSE;
3878
3879 target_frag = symbol_get_frag (sym);
3880 if (target_frag == NULL)
3881 return FALSE;
3882
3883 if (is_next_frag_target (fragP->fr_next, target_frag)
3884 && S_GET_VALUE (sym) == target_frag->fr_address)
3885 return TRUE;
3886
3887 return FALSE;
3888 }
3889
3890
3891 static void
3892 xg_add_branch_and_loop_targets (TInsn *insn)
3893 {
3894 xtensa_isa isa = xtensa_default_isa;
3895 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3896
3897 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3898 {
3899 int i = 1;
3900 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3901 && insn->tok[i].X_op == O_symbol)
3902 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3903 return;
3904 }
3905
3906 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3907 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3908 {
3909 int i;
3910
3911 for (i = 0; i < insn->ntok && i < num_ops; i++)
3912 {
3913 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3914 && insn->tok[i].X_op == O_symbol)
3915 {
3916 symbolS *sym = insn->tok[i].X_add_symbol;
3917 symbol_get_tc (sym)->is_branch_target = TRUE;
3918 if (S_IS_DEFINED (sym))
3919 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3920 }
3921 }
3922 }
3923 }
3924
3925
3926 /* Return FALSE if no error. */
3927
3928 static bfd_boolean
3929 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3930 {
3931 int num_ops = 0;
3932 BuildOp *b_op;
3933
3934 switch (instr_spec->typ)
3935 {
3936 case INSTR_INSTR:
3937 new_insn->insn_type = ITYPE_INSN;
3938 new_insn->opcode = instr_spec->opcode;
3939 break;
3940 case INSTR_LITERAL_DEF:
3941 new_insn->insn_type = ITYPE_LITERAL;
3942 new_insn->opcode = XTENSA_UNDEFINED;
3943 break;
3944 case INSTR_LABEL_DEF:
3945 abort ();
3946 }
3947 new_insn->is_specific_opcode = FALSE;
3948 new_insn->debug_line = old_insn->debug_line;
3949 new_insn->loc_directive_seen = old_insn->loc_directive_seen;
3950
3951 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3952 {
3953 expressionS *exp;
3954 const expressionS *src_exp;
3955
3956 num_ops++;
3957 switch (b_op->typ)
3958 {
3959 case OP_CONSTANT:
3960 /* The expression must be the constant. */
3961 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3962 exp = &new_insn->tok[b_op->op_num];
3963 set_expr_const (exp, b_op->op_data);
3964 break;
3965
3966 case OP_OPERAND:
3967 gas_assert (b_op->op_num < MAX_INSN_ARGS);
3968 gas_assert (b_op->op_data < (unsigned) old_insn->ntok);
3969 src_exp = &old_insn->tok[b_op->op_data];
3970 exp = &new_insn->tok[b_op->op_num];
3971 copy_expr (exp, src_exp);
3972 break;
3973
3974 case OP_LITERAL:
3975 case OP_LABEL:
3976 as_bad (_("can't handle generation of literal/labels yet"));
3977 gas_assert (0);
3978
3979 default:
3980 as_bad (_("can't handle undefined OP TYPE"));
3981 gas_assert (0);
3982 }
3983 }
3984
3985 new_insn->ntok = num_ops;
3986 return FALSE;
3987 }
3988
3989
3990 /* Return TRUE if it was simplified. */
3991
3992 static bfd_boolean
3993 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
3994 {
3995 TransitionRule *rule;
3996 BuildInstr *insn_spec;
3997
3998 if (old_insn->is_specific_opcode || !density_supported)
3999 return FALSE;
4000
4001 rule = xg_instruction_match (old_insn);
4002 if (rule == NULL)
4003 return FALSE;
4004
4005 insn_spec = rule->to_instr;
4006 /* There should only be one. */
4007 gas_assert (insn_spec != NULL);
4008 gas_assert (insn_spec->next == NULL);
4009 if (insn_spec->next != NULL)
4010 return FALSE;
4011
4012 xg_build_token_insn (insn_spec, old_insn, new_insn);
4013
4014 return TRUE;
4015 }
4016
4017
4018 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
4019 l32i.n. (2) Check the number of operands. (3) Place the instruction
4020 tokens into the stack or relax it and place multiple
4021 instructions/literals onto the stack. Return FALSE if no error. */
4022
4023 static bfd_boolean
4024 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
4025 {
4026 int noperands;
4027 TInsn new_insn;
4028 bfd_boolean do_expand;
4029
4030 tinsn_init (&new_insn);
4031
4032 /* Narrow it if we can. xg_simplify_insn now does all the
4033 appropriate checking (e.g., for the density option). */
4034 if (xg_simplify_insn (orig_insn, &new_insn))
4035 orig_insn = &new_insn;
4036
4037 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
4038 orig_insn->opcode);
4039 if (orig_insn->ntok < noperands)
4040 {
4041 as_bad (_("found %d operands for '%s': Expected %d"),
4042 orig_insn->ntok,
4043 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
4044 noperands);
4045 return TRUE;
4046 }
4047 if (orig_insn->ntok > noperands)
4048 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
4049 orig_insn->ntok,
4050 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
4051 noperands);
4052
4053 /* If there are not enough operands, we will assert above. If there
4054 are too many, just cut out the extras here. */
4055 orig_insn->ntok = noperands;
4056
4057 if (tinsn_has_invalid_symbolic_operands (orig_insn))
4058 return TRUE;
4059
4060 /* Special case for extui opcode which has constraints not handled
4061 by the ordinary operand encoding checks. The number of operands
4062 and related syntax issues have already been checked. */
4063 if (orig_insn->opcode == xtensa_extui_opcode)
4064 {
4065 int shiftimm = orig_insn->tok[2].X_add_number;
4066 int maskimm = orig_insn->tok[3].X_add_number;
4067 if (shiftimm + maskimm > 32)
4068 {
4069 as_bad (_("immediate operands sum to greater than 32"));
4070 return TRUE;
4071 }
4072 }
4073
4074 /* If the instruction will definitely need to be relaxed, it is better
4075 to expand it now for better scheduling. Decide whether to expand
4076 now.... */
4077 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
4078
4079 /* Calls should be expanded to longcalls only in the backend relaxation
4080 so that the assembly scheduler will keep the L32R/CALLX instructions
4081 adjacent. */
4082 if (is_direct_call_opcode (orig_insn->opcode))
4083 do_expand = FALSE;
4084
4085 if (tinsn_has_symbolic_operands (orig_insn))
4086 {
4087 /* The values of symbolic operands are not known yet, so only expand
4088 now if an operand is "complex" (e.g., difference of symbols) and
4089 will have to be stored as a literal regardless of the value. */
4090 if (!tinsn_has_complex_operands (orig_insn))
4091 do_expand = FALSE;
4092 }
4093 else if (xg_immeds_fit (orig_insn))
4094 do_expand = FALSE;
4095
4096 if (do_expand)
4097 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
4098 else
4099 istack_push (istack, orig_insn);
4100
4101 return FALSE;
4102 }
4103
4104
4105 /* Return TRUE if the section flags are marked linkonce
4106 or the name is .gnu.linkonce.*. */
4107
4108 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
4109
4110 static bfd_boolean
4111 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
4112 {
4113 flagword flags, link_once_flags;
4114
4115 flags = bfd_get_section_flags (abfd, sec);
4116 link_once_flags = (flags & SEC_LINK_ONCE);
4117
4118 /* Flags might not be set yet. */
4119 if (!link_once_flags
4120 && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0)
4121 link_once_flags = SEC_LINK_ONCE;
4122
4123 return (link_once_flags != 0);
4124 }
4125
4126
4127 static void
4128 xtensa_add_literal_sym (symbolS *sym)
4129 {
4130 sym_list *l;
4131
4132 l = (sym_list *) xmalloc (sizeof (sym_list));
4133 l->sym = sym;
4134 l->next = literal_syms;
4135 literal_syms = l;
4136 }
4137
4138
4139 static symbolS *
4140 xtensa_create_literal_symbol (segT sec, fragS *frag)
4141 {
4142 static int lit_num = 0;
4143 static char name[256];
4144 symbolS *symbolP;
4145
4146 sprintf (name, ".L_lit_sym%d", lit_num);
4147
4148 /* Create a local symbol. If it is in a linkonce section, we have to
4149 be careful to make sure that if it is used in a relocation that the
4150 symbol will be in the output file. */
4151 if (get_is_linkonce_section (stdoutput, sec))
4152 {
4153 symbolP = symbol_new (name, sec, 0, frag);
4154 S_CLEAR_EXTERNAL (symbolP);
4155 /* symbolP->local = 1; */
4156 }
4157 else
4158 symbolP = symbol_new (name, sec, 0, frag);
4159
4160 xtensa_add_literal_sym (symbolP);
4161
4162 lit_num++;
4163 return symbolP;
4164 }
4165
4166
4167 /* Currently all literals that are generated here are 32-bit L32R targets. */
4168
4169 static symbolS *
4170 xg_assemble_literal (/* const */ TInsn *insn)
4171 {
4172 emit_state state;
4173 symbolS *lit_sym = NULL;
4174 bfd_reloc_code_real_type reloc;
4175 bfd_boolean pcrel = FALSE;
4176 char *p;
4177
4178 /* size = 4 for L32R. It could easily be larger when we move to
4179 larger constants. Add a parameter later. */
4180 offsetT litsize = 4;
4181 offsetT litalign = 2; /* 2^2 = 4 */
4182 expressionS saved_loc;
4183 expressionS * emit_val;
4184
4185 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4186
4187 gas_assert (insn->insn_type == ITYPE_LITERAL);
4188 gas_assert (insn->ntok == 1); /* must be only one token here */
4189
4190 xtensa_switch_to_literal_fragment (&state);
4191
4192 emit_val = &insn->tok[0];
4193 if (emit_val->X_op == O_big)
4194 {
4195 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4196 if (size > litsize)
4197 {
4198 /* This happens when someone writes a "movi a2, big_number". */
4199 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4200 _("invalid immediate"));
4201 xtensa_restore_emit_state (&state);
4202 return NULL;
4203 }
4204 }
4205
4206 /* Force a 4-byte align here. Note that this opens a new frag, so all
4207 literals done with this function have a frag to themselves. That's
4208 important for the way text section literals work. */
4209 frag_align (litalign, 0, 0);
4210 record_alignment (now_seg, litalign);
4211
4212 switch (emit_val->X_op)
4213 {
4214 case O_pcrel:
4215 pcrel = TRUE;
4216 /* fall through */
4217 case O_pltrel:
4218 case O_tlsfunc:
4219 case O_tlsarg:
4220 case O_tpoff:
4221 case O_dtpoff:
4222 p = frag_more (litsize);
4223 xtensa_set_frag_assembly_state (frag_now);
4224 reloc = map_operator_to_reloc (emit_val->X_op, TRUE);
4225 if (emit_val->X_add_symbol)
4226 emit_val->X_op = O_symbol;
4227 else
4228 emit_val->X_op = O_constant;
4229 fix_new_exp (frag_now, p - frag_now->fr_literal,
4230 litsize, emit_val, pcrel, reloc);
4231 break;
4232
4233 default:
4234 emit_expr (emit_val, litsize);
4235 break;
4236 }
4237
4238 gas_assert (frag_now->tc_frag_data.literal_frag == NULL);
4239 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4240 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4241 lit_sym = frag_now->fr_symbol;
4242
4243 /* Go back. */
4244 xtensa_restore_emit_state (&state);
4245 return lit_sym;
4246 }
4247
4248
4249 static void
4250 xg_assemble_literal_space (/* const */ int size, int slot)
4251 {
4252 emit_state state;
4253 /* We might have to do something about this alignment. It only
4254 takes effect if something is placed here. */
4255 offsetT litalign = 2; /* 2^2 = 4 */
4256 fragS *lit_saved_frag;
4257
4258 gas_assert (size % 4 == 0);
4259
4260 xtensa_switch_to_literal_fragment (&state);
4261
4262 /* Force a 4-byte align here. */
4263 frag_align (litalign, 0, 0);
4264 record_alignment (now_seg, litalign);
4265
4266 frag_grow (size);
4267
4268 lit_saved_frag = frag_now;
4269 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4270 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4271 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4272
4273 /* Go back. */
4274 xtensa_restore_emit_state (&state);
4275 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4276 }
4277
4278
4279 /* Put in a fixup record based on the opcode.
4280 Return TRUE on success. */
4281
4282 static bfd_boolean
4283 xg_add_opcode_fix (TInsn *tinsn,
4284 int opnum,
4285 xtensa_format fmt,
4286 int slot,
4287 expressionS *exp,
4288 fragS *fragP,
4289 offsetT offset)
4290 {
4291 xtensa_opcode opcode = tinsn->opcode;
4292 bfd_reloc_code_real_type reloc;
4293 reloc_howto_type *howto;
4294 int fmt_length;
4295 fixS *the_fix;
4296
4297 reloc = BFD_RELOC_NONE;
4298
4299 /* First try the special cases for "alternate" relocs. */
4300 if (opcode == xtensa_l32r_opcode)
4301 {
4302 if (fragP->tc_frag_data.use_absolute_literals)
4303 reloc = encode_alt_reloc (slot);
4304 }
4305 else if (opcode == xtensa_const16_opcode)
4306 {
4307 if (exp->X_op == O_lo16)
4308 {
4309 reloc = encode_reloc (slot);
4310 exp->X_op = O_symbol;
4311 }
4312 else if (exp->X_op == O_hi16)
4313 {
4314 reloc = encode_alt_reloc (slot);
4315 exp->X_op = O_symbol;
4316 }
4317 }
4318
4319 if (opnum != get_relaxable_immed (opcode))
4320 {
4321 as_bad (_("invalid relocation for operand %i of '%s'"),
4322 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4323 return FALSE;
4324 }
4325
4326 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4327 into the symbol table where the generic portions of the assembler
4328 won't know what to do with them. */
4329 if (exp->X_op == O_lo16 || exp->X_op == O_hi16)
4330 {
4331 as_bad (_("invalid expression for operand %i of '%s'"),
4332 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4333 return FALSE;
4334 }
4335
4336 /* Next try the generic relocs. */
4337 if (reloc == BFD_RELOC_NONE)
4338 reloc = encode_reloc (slot);
4339 if (reloc == BFD_RELOC_NONE)
4340 {
4341 as_bad (_("invalid relocation in instruction slot %i"), slot);
4342 return FALSE;
4343 }
4344
4345 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4346 if (!howto)
4347 {
4348 as_bad (_("undefined symbol for opcode \"%s\""),
4349 xtensa_opcode_name (xtensa_default_isa, opcode));
4350 return FALSE;
4351 }
4352
4353 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4354 the_fix = fix_new_exp (fragP, offset, fmt_length, exp,
4355 howto->pc_relative, reloc);
4356 the_fix->fx_no_overflow = 1;
4357 the_fix->tc_fix_data.X_add_symbol = exp->X_add_symbol;
4358 the_fix->tc_fix_data.X_add_number = exp->X_add_number;
4359 the_fix->tc_fix_data.slot = slot;
4360
4361 return TRUE;
4362 }
4363
4364
4365 static bfd_boolean
4366 xg_emit_insn_to_buf (TInsn *tinsn,
4367 char *buf,
4368 fragS *fragP,
4369 offsetT offset,
4370 bfd_boolean build_fix)
4371 {
4372 static xtensa_insnbuf insnbuf = NULL;
4373 bfd_boolean has_symbolic_immed = FALSE;
4374 bfd_boolean ok = TRUE;
4375
4376 if (!insnbuf)
4377 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4378
4379 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4380 if (has_symbolic_immed && build_fix)
4381 {
4382 /* Add a fixup. */
4383 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4384 int slot = xg_get_single_slot (tinsn->opcode);
4385 int opnum = get_relaxable_immed (tinsn->opcode);
4386 expressionS *exp = &tinsn->tok[opnum];
4387
4388 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4389 ok = FALSE;
4390 }
4391 fragP->tc_frag_data.is_insn = TRUE;
4392 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4393 (unsigned char *) buf, 0);
4394 return ok;
4395 }
4396
4397
4398 static void
4399 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4400 {
4401 symbolS *sym = get_special_literal_symbol ();
4402 int i;
4403 if (lit_sym == 0)
4404 return;
4405 gas_assert (insn->insn_type == ITYPE_INSN);
4406 for (i = 0; i < insn->ntok; i++)
4407 if (insn->tok[i].X_add_symbol == sym)
4408 insn->tok[i].X_add_symbol = lit_sym;
4409
4410 }
4411
4412
4413 static void
4414 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4415 {
4416 symbolS *sym = get_special_label_symbol ();
4417 int i;
4418 for (i = 0; i < insn->ntok; i++)
4419 if (insn->tok[i].X_add_symbol == sym)
4420 insn->tok[i].X_add_symbol = label_sym;
4421
4422 }
4423
4424
4425 /* Return TRUE if the instruction can write to the specified
4426 integer register. */
4427
4428 static bfd_boolean
4429 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4430 {
4431 int i;
4432 int num_ops;
4433 xtensa_isa isa = xtensa_default_isa;
4434
4435 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4436
4437 for (i = 0; i < num_ops; i++)
4438 {
4439 char inout;
4440 inout = xtensa_operand_inout (isa, insn->opcode, i);
4441 if ((inout == 'o' || inout == 'm')
4442 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4443 {
4444 xtensa_regfile opnd_rf =
4445 xtensa_operand_regfile (isa, insn->opcode, i);
4446 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4447 {
4448 if ((insn->tok[i].X_op == O_register)
4449 && (insn->tok[i].X_add_number == regnum))
4450 return TRUE;
4451 }
4452 }
4453 }
4454 return FALSE;
4455 }
4456
4457
4458 static bfd_boolean
4459 is_bad_loopend_opcode (const TInsn *tinsn)
4460 {
4461 xtensa_opcode opcode = tinsn->opcode;
4462
4463 if (opcode == XTENSA_UNDEFINED)
4464 return FALSE;
4465
4466 if (opcode == xtensa_call0_opcode
4467 || opcode == xtensa_callx0_opcode
4468 || opcode == xtensa_call4_opcode
4469 || opcode == xtensa_callx4_opcode
4470 || opcode == xtensa_call8_opcode
4471 || opcode == xtensa_callx8_opcode
4472 || opcode == xtensa_call12_opcode
4473 || opcode == xtensa_callx12_opcode
4474 || opcode == xtensa_isync_opcode
4475 || opcode == xtensa_ret_opcode
4476 || opcode == xtensa_ret_n_opcode
4477 || opcode == xtensa_retw_opcode
4478 || opcode == xtensa_retw_n_opcode
4479 || opcode == xtensa_waiti_opcode
4480 || opcode == xtensa_rsr_lcount_opcode)
4481 return TRUE;
4482
4483 return FALSE;
4484 }
4485
4486
4487 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4488 This allows the debugger to add unaligned labels.
4489 Also, the assembler generates stabs labels that need
4490 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4491
4492 static bfd_boolean
4493 is_unaligned_label (symbolS *sym)
4494 {
4495 const char *name = S_GET_NAME (sym);
4496 static size_t fake_size = 0;
4497
4498 if (name
4499 && name[0] == '.'
4500 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4501 return TRUE;
4502
4503 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4504 if (fake_size == 0)
4505 fake_size = strlen (FAKE_LABEL_NAME);
4506
4507 if (name
4508 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4509 && (name[fake_size] == 'F'
4510 || name[fake_size] == 'L'
4511 || (name[fake_size] == 'e'
4512 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4513 return TRUE;
4514
4515 return FALSE;
4516 }
4517
4518
4519 static fragS *
4520 next_non_empty_frag (const fragS *fragP)
4521 {
4522 fragS *next_fragP = fragP->fr_next;
4523
4524 /* Sometimes an empty will end up here due storage allocation issues.
4525 So we have to skip until we find something legit. */
4526 while (next_fragP && next_fragP->fr_fix == 0)
4527 next_fragP = next_fragP->fr_next;
4528
4529 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4530 return NULL;
4531
4532 return next_fragP;
4533 }
4534
4535
4536 static bfd_boolean
4537 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4538 {
4539 xtensa_opcode out_opcode;
4540 const fragS *next_fragP = next_non_empty_frag (fragP);
4541
4542 if (next_fragP == NULL)
4543 return FALSE;
4544
4545 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4546 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4547 {
4548 *opcode = out_opcode;
4549 return TRUE;
4550 }
4551 return FALSE;
4552 }
4553
4554
4555 static int
4556 frag_format_size (const fragS *fragP)
4557 {
4558 static xtensa_insnbuf insnbuf = NULL;
4559 xtensa_isa isa = xtensa_default_isa;
4560 xtensa_format fmt;
4561 int fmt_size;
4562
4563 if (!insnbuf)
4564 insnbuf = xtensa_insnbuf_alloc (isa);
4565
4566 if (fragP == NULL)
4567 return XTENSA_UNDEFINED;
4568
4569 xtensa_insnbuf_from_chars (isa, insnbuf,
4570 (unsigned char *) fragP->fr_literal, 0);
4571
4572 fmt = xtensa_format_decode (isa, insnbuf);
4573 if (fmt == XTENSA_UNDEFINED)
4574 return XTENSA_UNDEFINED;
4575 fmt_size = xtensa_format_length (isa, fmt);
4576
4577 /* If the next format won't be changing due to relaxation, just
4578 return the length of the first format. */
4579 if (fragP->fr_opcode != fragP->fr_literal)
4580 return fmt_size;
4581
4582 /* If during relaxation we have to pull an instruction out of a
4583 multi-slot instruction, we will return the more conservative
4584 number. This works because alignment on bigger instructions
4585 is more restrictive than alignment on smaller instructions.
4586 This is more conservative than we would like, but it happens
4587 infrequently. */
4588
4589 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4590 return fmt_size;
4591
4592 /* If we aren't doing one of our own relaxations or it isn't
4593 slot-based, then the insn size won't change. */
4594 if (fragP->fr_type != rs_machine_dependent)
4595 return fmt_size;
4596 if (fragP->fr_subtype != RELAX_SLOTS)
4597 return fmt_size;
4598
4599 /* If an instruction is about to grow, return the longer size. */
4600 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4601 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2
4602 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3)
4603 {
4604 /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first
4605 instruction in the relaxed version is of length 3. (The case
4606 where we have to pull the instruction out of a FLIX bundle
4607 is handled conservatively above.) However, frags with opcodes
4608 that are expanding to wide branches end up having formats that
4609 are not determinable by the RELAX_IMMED_STEPX enumeration, and
4610 we can't tell directly what format the relaxer picked. This
4611 is a wart in the design of the relaxer that should someday be
4612 fixed, but would require major changes, or at least should
4613 be accompanied by major changes to make use of that data.
4614
4615 In any event, we can tell that we are expanding from a single-slot
4616 format to a wider one with the logic below. */
4617
4618 int i;
4619 int relaxed_size = fmt_size + fragP->tc_frag_data.text_expansion[0];
4620
4621 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
4622 {
4623 if (relaxed_size == xtensa_format_length (isa, i))
4624 return relaxed_size;
4625 }
4626
4627 return 3;
4628 }
4629
4630 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4631 return 2 + fragP->tc_frag_data.text_expansion[0];
4632
4633 return fmt_size;
4634 }
4635
4636
4637 static int
4638 next_frag_format_size (const fragS *fragP)
4639 {
4640 const fragS *next_fragP = next_non_empty_frag (fragP);
4641 return frag_format_size (next_fragP);
4642 }
4643
4644
4645 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4646 required two-byte instructions to be treated as three-byte instructions
4647 for loop instruction alignment. This restriction was removed beginning
4648 with Xtensa LX. Now the only requirement on loop instruction alignment
4649 is that the first instruction of the loop must appear at an address that
4650 does not cross a fetch boundary. */
4651
4652 static int
4653 get_loop_align_size (int insn_size)
4654 {
4655 if (insn_size == XTENSA_UNDEFINED)
4656 return xtensa_fetch_width;
4657
4658 if (enforce_three_byte_loop_align && insn_size == 2)
4659 return 3;
4660
4661 return insn_size;
4662 }
4663
4664
4665 /* If the next legit fragment is an end-of-loop marker,
4666 switch its state so it will instantiate a NOP. */
4667
4668 static void
4669 update_next_frag_state (fragS *fragP)
4670 {
4671 fragS *next_fragP = fragP->fr_next;
4672 fragS *new_target = NULL;
4673
4674 if (align_targets)
4675 {
4676 /* We are guaranteed there will be one of these... */
4677 while (!(next_fragP->fr_type == rs_machine_dependent
4678 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4679 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4680 next_fragP = next_fragP->fr_next;
4681
4682 gas_assert (next_fragP->fr_type == rs_machine_dependent
4683 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4684 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4685
4686 /* ...and one of these. */
4687 new_target = next_fragP->fr_next;
4688 while (!(new_target->fr_type == rs_machine_dependent
4689 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4690 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4691 new_target = new_target->fr_next;
4692
4693 gas_assert (new_target->fr_type == rs_machine_dependent
4694 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4695 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4696 }
4697
4698 while (next_fragP && next_fragP->fr_fix == 0)
4699 {
4700 if (next_fragP->fr_type == rs_machine_dependent
4701 && next_fragP->fr_subtype == RELAX_LOOP_END)
4702 {
4703 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4704 return;
4705 }
4706
4707 next_fragP = next_fragP->fr_next;
4708 }
4709 }
4710
4711
4712 static bfd_boolean
4713 next_frag_is_branch_target (const fragS *fragP)
4714 {
4715 /* Sometimes an empty will end up here due to storage allocation issues,
4716 so we have to skip until we find something legit. */
4717 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4718 {
4719 if (fragP->tc_frag_data.is_branch_target)
4720 return TRUE;
4721 if (fragP->fr_fix != 0)
4722 break;
4723 }
4724 return FALSE;
4725 }
4726
4727
4728 static bfd_boolean
4729 next_frag_is_loop_target (const fragS *fragP)
4730 {
4731 /* Sometimes an empty will end up here due storage allocation issues.
4732 So we have to skip until we find something legit. */
4733 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4734 {
4735 if (fragP->tc_frag_data.is_loop_target)
4736 return TRUE;
4737 if (fragP->fr_fix != 0)
4738 break;
4739 }
4740 return FALSE;
4741 }
4742
4743
4744 /* As specified in the relaxation table, when a loop instruction is
4745 relaxed, there are 24 bytes between the loop instruction itself and
4746 the first instruction in the loop. */
4747
4748 #define RELAXED_LOOP_INSN_BYTES 24
4749
4750 static addressT
4751 next_frag_pre_opcode_bytes (const fragS *fragp)
4752 {
4753 const fragS *next_fragp = fragp->fr_next;
4754 xtensa_opcode next_opcode;
4755
4756 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4757 return 0;
4758
4759 /* Sometimes an empty will end up here due to storage allocation issues,
4760 so we have to skip until we find something legit. */
4761 while (next_fragp->fr_fix == 0)
4762 next_fragp = next_fragp->fr_next;
4763
4764 if (next_fragp->fr_type != rs_machine_dependent)
4765 return 0;
4766
4767 /* There is some implicit knowledge encoded in here.
4768 The LOOP instructions that are NOT RELAX_IMMED have
4769 been relaxed. Note that we can assume that the LOOP
4770 instruction is in slot 0 because loops aren't bundleable. */
4771 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4772 return get_expanded_loop_offset (next_opcode) + RELAXED_LOOP_INSN_BYTES;
4773
4774 return 0;
4775 }
4776
4777
4778 /* Mark a location where we can later insert literal frags. Update
4779 the section's literal_pool_loc, so subsequent literals can be
4780 placed nearest to their use. */
4781
4782 static void
4783 xtensa_mark_literal_pool_location (void)
4784 {
4785 /* Any labels pointing to the current location need
4786 to be adjusted to after the literal pool. */
4787 emit_state s;
4788 fragS *pool_location;
4789
4790 if (use_literal_section)
4791 return;
4792
4793 /* We stash info in these frags so we can later move the literal's
4794 fixes into this frchain's fix list. */
4795 pool_location = frag_now;
4796 frag_now->tc_frag_data.lit_frchain = frchain_now;
4797 frag_now->tc_frag_data.literal_frag = frag_now;
4798 /* Just record this frag. */
4799 xtensa_maybe_create_literal_pool_frag (FALSE, FALSE);
4800 frag_variant (rs_machine_dependent, 0, 0,
4801 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4802 xtensa_set_frag_assembly_state (frag_now);
4803 frag_now->tc_frag_data.lit_seg = now_seg;
4804 frag_variant (rs_machine_dependent, 0, 0,
4805 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4806 xtensa_set_frag_assembly_state (frag_now);
4807
4808 /* Now put a frag into the literal pool that points to this location. */
4809 set_literal_pool_location (now_seg, pool_location);
4810 xtensa_switch_to_non_abs_literal_fragment (&s);
4811 frag_align (2, 0, 0);
4812 record_alignment (now_seg, 2);
4813
4814 /* Close whatever frag is there. */
4815 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4816 xtensa_set_frag_assembly_state (frag_now);
4817 frag_now->tc_frag_data.literal_frag = pool_location;
4818 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
4819 xtensa_restore_emit_state (&s);
4820 xtensa_set_frag_assembly_state (frag_now);
4821 }
4822
4823
4824 /* Build a nop of the correct size into tinsn. */
4825
4826 static void
4827 build_nop (TInsn *tinsn, int size)
4828 {
4829 tinsn_init (tinsn);
4830 switch (size)
4831 {
4832 case 2:
4833 tinsn->opcode = xtensa_nop_n_opcode;
4834 tinsn->ntok = 0;
4835 if (tinsn->opcode == XTENSA_UNDEFINED)
4836 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4837 break;
4838
4839 case 3:
4840 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4841 {
4842 tinsn->opcode = xtensa_or_opcode;
4843 set_expr_const (&tinsn->tok[0], 1);
4844 set_expr_const (&tinsn->tok[1], 1);
4845 set_expr_const (&tinsn->tok[2], 1);
4846 tinsn->ntok = 3;
4847 }
4848 else
4849 tinsn->opcode = xtensa_nop_opcode;
4850
4851 gas_assert (tinsn->opcode != XTENSA_UNDEFINED);
4852 }
4853 }
4854
4855
4856 /* Assemble a NOP of the requested size in the buffer. User must have
4857 allocated "buf" with at least "size" bytes. */
4858
4859 static void
4860 assemble_nop (int size, char *buf)
4861 {
4862 static xtensa_insnbuf insnbuf = NULL;
4863 TInsn tinsn;
4864
4865 build_nop (&tinsn, size);
4866
4867 if (!insnbuf)
4868 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4869
4870 tinsn_to_insnbuf (&tinsn, insnbuf);
4871 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4872 (unsigned char *) buf, 0);
4873 }
4874
4875
4876 /* Return the number of bytes for the offset of the expanded loop
4877 instruction. This should be incorporated into the relaxation
4878 specification but is hard-coded here. This is used to auto-align
4879 the loop instruction. It is invalid to call this function if the
4880 configuration does not have loops or if the opcode is not a loop
4881 opcode. */
4882
4883 static addressT
4884 get_expanded_loop_offset (xtensa_opcode opcode)
4885 {
4886 /* This is the OFFSET of the loop instruction in the expanded loop.
4887 This MUST correspond directly to the specification of the loop
4888 expansion. It will be validated on fragment conversion. */
4889 gas_assert (opcode != XTENSA_UNDEFINED);
4890 if (opcode == xtensa_loop_opcode)
4891 return 0;
4892 if (opcode == xtensa_loopnez_opcode)
4893 return 3;
4894 if (opcode == xtensa_loopgtz_opcode)
4895 return 6;
4896 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4897 return 0;
4898 }
4899
4900
4901 static fragS *
4902 get_literal_pool_location (segT seg)
4903 {
4904 struct litpool_seg *lps = litpool_seg_list.next;
4905 struct litpool_frag *lpf;
4906 for ( ; lps && lps->seg->id != seg->id; lps = lps->next)
4907 ;
4908 if (lps)
4909 {
4910 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4911 { /* Skip "candidates" for now. */
4912 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN &&
4913 lpf->priority == 1)
4914 return lpf->fragP;
4915 }
4916 /* Must convert a lower-priority pool. */
4917 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4918 {
4919 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN)
4920 return lpf->fragP;
4921 }
4922 /* Still no match -- try for a low priority pool. */
4923 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4924 {
4925 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_CANDIDATE_BEGIN)
4926 return lpf->fragP;
4927 }
4928 }
4929 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4930 }
4931
4932
4933 static void
4934 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4935 {
4936 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4937 }
4938
4939
4940 /* Set frag assembly state should be called when a new frag is
4941 opened and after a frag has been closed. */
4942
4943 static void
4944 xtensa_set_frag_assembly_state (fragS *fragP)
4945 {
4946 if (!density_supported)
4947 fragP->tc_frag_data.is_no_density = TRUE;
4948
4949 /* This function is called from subsegs_finish, which is called
4950 after xtensa_end, so we can't use "use_transform" or
4951 "use_schedule" here. */
4952 if (!directive_state[directive_transform])
4953 fragP->tc_frag_data.is_no_transform = TRUE;
4954 if (directive_state[directive_longcalls])
4955 fragP->tc_frag_data.use_longcalls = TRUE;
4956 fragP->tc_frag_data.use_absolute_literals =
4957 directive_state[directive_absolute_literals];
4958 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4959 }
4960
4961
4962 static bfd_boolean
4963 relaxable_section (asection *sec)
4964 {
4965 return ((sec->flags & SEC_DEBUGGING) == 0
4966 && strcmp (sec->name, ".eh_frame") != 0);
4967 }
4968
4969
4970 static void
4971 xtensa_mark_frags_for_org (void)
4972 {
4973 segT *seclist;
4974
4975 /* Walk over each fragment of all of the current segments. If we find
4976 a .org frag in any of the segments, mark all frags prior to it as
4977 "no transform", which will prevent linker optimizations from messing
4978 up the .org distance. This should be done after
4979 xtensa_find_unmarked_state_frags, because we don't want to worry here
4980 about that function trashing the data we save here. */
4981
4982 for (seclist = &stdoutput->sections;
4983 seclist && *seclist;
4984 seclist = &(*seclist)->next)
4985 {
4986 segT sec = *seclist;
4987 segment_info_type *seginfo;
4988 fragS *fragP;
4989 flagword flags;
4990 flags = bfd_get_section_flags (stdoutput, sec);
4991 if (flags & SEC_DEBUGGING)
4992 continue;
4993 if (!(flags & SEC_ALLOC))
4994 continue;
4995
4996 seginfo = seg_info (sec);
4997 if (seginfo && seginfo->frchainP)
4998 {
4999 fragS *last_fragP = seginfo->frchainP->frch_root;
5000 for (fragP = seginfo->frchainP->frch_root; fragP;
5001 fragP = fragP->fr_next)
5002 {
5003 /* cvt_frag_to_fill has changed the fr_type of org frags to
5004 rs_fill, so use the value as cached in rs_subtype here. */
5005 if (fragP->fr_subtype == RELAX_ORG)
5006 {
5007 while (last_fragP != fragP->fr_next)
5008 {
5009 last_fragP->tc_frag_data.is_no_transform = TRUE;
5010 last_fragP = last_fragP->fr_next;
5011 }
5012 }
5013 }
5014 }
5015 }
5016 }
5017
5018
5019 static void
5020 xtensa_find_unmarked_state_frags (void)
5021 {
5022 segT *seclist;
5023
5024 /* Walk over each fragment of all of the current segments. For each
5025 unmarked fragment, mark it with the same info as the previous
5026 fragment. */
5027 for (seclist = &stdoutput->sections;
5028 seclist && *seclist;
5029 seclist = &(*seclist)->next)
5030 {
5031 segT sec = *seclist;
5032 segment_info_type *seginfo;
5033 fragS *fragP;
5034 flagword flags;
5035 flags = bfd_get_section_flags (stdoutput, sec);
5036 if (flags & SEC_DEBUGGING)
5037 continue;
5038 if (!(flags & SEC_ALLOC))
5039 continue;
5040
5041 seginfo = seg_info (sec);
5042 if (seginfo && seginfo->frchainP)
5043 {
5044 fragS *last_fragP = 0;
5045 for (fragP = seginfo->frchainP->frch_root; fragP;
5046 fragP = fragP->fr_next)
5047 {
5048 if (fragP->fr_fix != 0
5049 && !fragP->tc_frag_data.is_assembly_state_set)
5050 {
5051 if (last_fragP == 0)
5052 {
5053 as_warn_where (fragP->fr_file, fragP->fr_line,
5054 _("assembly state not set for first frag in section %s"),
5055 sec->name);
5056 }
5057 else
5058 {
5059 fragP->tc_frag_data.is_assembly_state_set = TRUE;
5060 fragP->tc_frag_data.is_no_density =
5061 last_fragP->tc_frag_data.is_no_density;
5062 fragP->tc_frag_data.is_no_transform =
5063 last_fragP->tc_frag_data.is_no_transform;
5064 fragP->tc_frag_data.use_longcalls =
5065 last_fragP->tc_frag_data.use_longcalls;
5066 fragP->tc_frag_data.use_absolute_literals =
5067 last_fragP->tc_frag_data.use_absolute_literals;
5068 }
5069 }
5070 if (fragP->tc_frag_data.is_assembly_state_set)
5071 last_fragP = fragP;
5072 }
5073 }
5074 }
5075 }
5076
5077
5078 static void
5079 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
5080 asection *sec,
5081 void *unused ATTRIBUTE_UNUSED)
5082 {
5083 flagword flags = bfd_get_section_flags (abfd, sec);
5084 segment_info_type *seginfo = seg_info (sec);
5085 fragS *frag = seginfo->frchainP->frch_root;
5086
5087 if (flags & SEC_CODE)
5088 {
5089 xtensa_isa isa = xtensa_default_isa;
5090 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
5091 while (frag != NULL)
5092 {
5093 if (frag->tc_frag_data.is_branch_target)
5094 {
5095 int op_size;
5096 addressT branch_align, frag_addr;
5097 xtensa_format fmt;
5098
5099 xtensa_insnbuf_from_chars
5100 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5101 fmt = xtensa_format_decode (isa, insnbuf);
5102 op_size = xtensa_format_length (isa, fmt);
5103 branch_align = 1 << branch_align_power (sec);
5104 frag_addr = frag->fr_address % branch_align;
5105 if (frag_addr + op_size > branch_align)
5106 as_warn_where (frag->fr_file, frag->fr_line,
5107 _("unaligned branch target: %d bytes at 0x%lx"),
5108 op_size, (long) frag->fr_address);
5109 }
5110 frag = frag->fr_next;
5111 }
5112 xtensa_insnbuf_free (isa, insnbuf);
5113 }
5114 }
5115
5116
5117 static void
5118 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
5119 asection *sec,
5120 void *unused ATTRIBUTE_UNUSED)
5121 {
5122 flagword flags = bfd_get_section_flags (abfd, sec);
5123 segment_info_type *seginfo = seg_info (sec);
5124 fragS *frag = seginfo->frchainP->frch_root;
5125 xtensa_isa isa = xtensa_default_isa;
5126
5127 if (flags & SEC_CODE)
5128 {
5129 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
5130 while (frag != NULL)
5131 {
5132 if (frag->tc_frag_data.is_first_loop_insn)
5133 {
5134 int op_size;
5135 addressT frag_addr;
5136 xtensa_format fmt;
5137
5138 if (frag->fr_fix == 0)
5139 frag = next_non_empty_frag (frag);
5140
5141 if (frag)
5142 {
5143 xtensa_insnbuf_from_chars
5144 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5145 fmt = xtensa_format_decode (isa, insnbuf);
5146 op_size = xtensa_format_length (isa, fmt);
5147 frag_addr = frag->fr_address % xtensa_fetch_width;
5148
5149 if (frag_addr + op_size > xtensa_fetch_width)
5150 as_warn_where (frag->fr_file, frag->fr_line,
5151 _("unaligned loop: %d bytes at 0x%lx"),
5152 op_size, (long) frag->fr_address);
5153 }
5154 }
5155 frag = frag->fr_next;
5156 }
5157 xtensa_insnbuf_free (isa, insnbuf);
5158 }
5159 }
5160
5161
5162 static int
5163 xg_apply_fix_value (fixS *fixP, valueT val)
5164 {
5165 xtensa_isa isa = xtensa_default_isa;
5166 static xtensa_insnbuf insnbuf = NULL;
5167 static xtensa_insnbuf slotbuf = NULL;
5168 xtensa_format fmt;
5169 int slot;
5170 bfd_boolean alt_reloc;
5171 xtensa_opcode opcode;
5172 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5173
5174 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc)
5175 || alt_reloc)
5176 as_fatal (_("unexpected fix"));
5177
5178 if (!insnbuf)
5179 {
5180 insnbuf = xtensa_insnbuf_alloc (isa);
5181 slotbuf = xtensa_insnbuf_alloc (isa);
5182 }
5183
5184 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5185 fmt = xtensa_format_decode (isa, insnbuf);
5186 if (fmt == XTENSA_UNDEFINED)
5187 as_fatal (_("undecodable fix"));
5188 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5189 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5190 if (opcode == XTENSA_UNDEFINED)
5191 as_fatal (_("undecodable fix"));
5192
5193 /* CONST16 immediates are not PC-relative, despite the fact that we
5194 reuse the normal PC-relative operand relocations for the low part
5195 of a CONST16 operand. */
5196 if (opcode == xtensa_const16_opcode)
5197 return 0;
5198
5199 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
5200 get_relaxable_immed (opcode), val,
5201 fixP->fx_file, fixP->fx_line);
5202
5203 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
5204 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5205
5206 return 1;
5207 }
5208
5209 \f
5210 /* External Functions and Other GAS Hooks. */
5211
5212 const char *
5213 xtensa_target_format (void)
5214 {
5215 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
5216 }
5217
5218
5219 void
5220 xtensa_file_arch_init (bfd *abfd)
5221 {
5222 bfd_set_private_flags (abfd, 0x100 | 0x200);
5223 }
5224
5225
5226 void
5227 md_number_to_chars (char *buf, valueT val, int n)
5228 {
5229 if (target_big_endian)
5230 number_to_chars_bigendian (buf, val, n);
5231 else
5232 number_to_chars_littleendian (buf, val, n);
5233 }
5234
5235
5236 /* This function is called once, at assembler startup time. It should
5237 set up all the tables, etc. that the MD part of the assembler will
5238 need. */
5239
5240 void
5241 md_begin (void)
5242 {
5243 segT current_section = now_seg;
5244 int current_subsec = now_subseg;
5245 xtensa_isa isa;
5246 int i;
5247
5248 xtensa_default_isa = xtensa_isa_init (0, 0);
5249 isa = xtensa_default_isa;
5250
5251 linkrelax = 1;
5252
5253 /* Set up the literal sections. */
5254 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
5255
5256 subseg_set (current_section, current_subsec);
5257
5258 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
5259 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
5260 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
5261 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
5262 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
5263 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
5264 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
5265 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
5266 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
5267 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
5268 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
5269 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
5270 xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui");
5271 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
5272 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
5273 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
5274 xtensa_j_opcode = xtensa_opcode_lookup (isa, "j");
5275 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
5276 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
5277 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
5278 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
5279 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
5280 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
5281 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5282 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5283 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5284 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5285 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5286 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
5287 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
5288 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
5289
5290 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
5291 {
5292 int format_slots = xtensa_format_num_slots (isa, i);
5293 if (format_slots > config_max_slots)
5294 config_max_slots = format_slots;
5295 }
5296
5297 xg_init_vinsn (&cur_vinsn);
5298
5299 xtensa_num_pipe_stages = xtensa_isa_num_pipe_stages (isa);
5300
5301 init_op_placement_info_table ();
5302
5303 /* Set up the assembly state. */
5304 if (!frag_now->tc_frag_data.is_assembly_state_set)
5305 xtensa_set_frag_assembly_state (frag_now);
5306 }
5307
5308
5309 /* TC_INIT_FIX_DATA hook */
5310
5311 void
5312 xtensa_init_fix_data (fixS *x)
5313 {
5314 x->tc_fix_data.slot = 0;
5315 x->tc_fix_data.X_add_symbol = NULL;
5316 x->tc_fix_data.X_add_number = 0;
5317 }
5318
5319
5320 /* tc_frob_label hook */
5321
5322 void
5323 xtensa_frob_label (symbolS *sym)
5324 {
5325 float freq;
5326
5327 if (cur_vinsn.inside_bundle)
5328 {
5329 as_bad (_("labels are not valid inside bundles"));
5330 return;
5331 }
5332
5333 freq = get_subseg_target_freq (now_seg, now_subseg);
5334
5335 /* Since the label was already attached to a frag associated with the
5336 previous basic block, it now needs to be reset to the current frag. */
5337 symbol_set_frag (sym, frag_now);
5338 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5339
5340 if (generating_literals)
5341 xtensa_add_literal_sym (sym);
5342 else
5343 xtensa_add_insn_label (sym);
5344
5345 if (symbol_get_tc (sym)->is_loop_target)
5346 {
5347 if ((get_last_insn_flags (now_seg, now_subseg)
5348 & FLAG_IS_BAD_LOOPEND) != 0)
5349 as_bad (_("invalid last instruction for a zero-overhead loop"));
5350
5351 xtensa_set_frag_assembly_state (frag_now);
5352 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5353 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5354
5355 xtensa_set_frag_assembly_state (frag_now);
5356 xtensa_move_labels (frag_now, 0);
5357 }
5358
5359 /* No target aligning in the absolute section. */
5360 if (now_seg != absolute_section
5361 && !is_unaligned_label (sym)
5362 && !generating_literals)
5363 {
5364 xtensa_set_frag_assembly_state (frag_now);
5365
5366 if (do_align_targets ())
5367 frag_var (rs_machine_dependent, 0, (int) freq,
5368 RELAX_DESIRE_ALIGN_IF_TARGET, frag_now->fr_symbol,
5369 frag_now->fr_offset, NULL);
5370 else
5371 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
5372 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5373 xtensa_set_frag_assembly_state (frag_now);
5374 xtensa_move_labels (frag_now, 0);
5375 }
5376
5377 /* We need to mark the following properties even if we aren't aligning. */
5378
5379 /* If the label is already known to be a branch target, i.e., a
5380 forward branch, mark the frag accordingly. Backward branches
5381 are handled by xg_add_branch_and_loop_targets. */
5382 if (symbol_get_tc (sym)->is_branch_target)
5383 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5384
5385 /* Loops only go forward, so they can be identified here. */
5386 if (symbol_get_tc (sym)->is_loop_target)
5387 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5388
5389 dwarf2_emit_label (sym);
5390 }
5391
5392
5393 /* tc_unrecognized_line hook */
5394
5395 int
5396 xtensa_unrecognized_line (int ch)
5397 {
5398 switch (ch)
5399 {
5400 case '{' :
5401 if (cur_vinsn.inside_bundle == 0)
5402 {
5403 /* PR8110: Cannot emit line number info inside a FLIX bundle
5404 when using --gstabs. Temporarily disable debug info. */
5405 generate_lineno_debug ();
5406 if (debug_type == DEBUG_STABS)
5407 {
5408 xt_saved_debug_type = debug_type;
5409 debug_type = DEBUG_NONE;
5410 }
5411
5412 cur_vinsn.inside_bundle = 1;
5413 }
5414 else
5415 {
5416 as_bad (_("extra opening brace"));
5417 return 0;
5418 }
5419 break;
5420
5421 case '}' :
5422 if (cur_vinsn.inside_bundle)
5423 finish_vinsn (&cur_vinsn);
5424 else
5425 {
5426 as_bad (_("extra closing brace"));
5427 return 0;
5428 }
5429 break;
5430 default:
5431 as_bad (_("syntax error"));
5432 return 0;
5433 }
5434 return 1;
5435 }
5436
5437
5438 /* md_flush_pending_output hook */
5439
5440 void
5441 xtensa_flush_pending_output (void)
5442 {
5443 /* This line fixes a bug where automatically generated gstabs info
5444 separates a function label from its entry instruction, ending up
5445 with the literal position between the function label and the entry
5446 instruction and crashing code. It only happens with --gstabs and
5447 --text-section-literals, and when several other obscure relaxation
5448 conditions are met. */
5449 if (outputting_stabs_line_debug)
5450 return;
5451
5452 if (cur_vinsn.inside_bundle)
5453 as_bad (_("missing closing brace"));
5454
5455 /* If there is a non-zero instruction fragment, close it. */
5456 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5457 {
5458 frag_wane (frag_now);
5459 frag_new (0);
5460 xtensa_set_frag_assembly_state (frag_now);
5461 }
5462 frag_now->tc_frag_data.is_insn = FALSE;
5463
5464 xtensa_clear_insn_labels ();
5465 }
5466
5467
5468 /* We had an error while parsing an instruction. The string might look
5469 like this: "insn arg1, arg2 }". If so, we need to see the closing
5470 brace and reset some fields. Otherwise, the vinsn never gets closed
5471 and the num_slots field will grow past the end of the array of slots,
5472 and bad things happen. */
5473
5474 static void
5475 error_reset_cur_vinsn (void)
5476 {
5477 if (cur_vinsn.inside_bundle)
5478 {
5479 if (*input_line_pointer == '}'
5480 || *(input_line_pointer - 1) == '}'
5481 || *(input_line_pointer - 2) == '}')
5482 xg_clear_vinsn (&cur_vinsn);
5483 }
5484 }
5485
5486
5487 void
5488 md_assemble (char *str)
5489 {
5490 xtensa_isa isa = xtensa_default_isa;
5491 char *opname;
5492 unsigned opnamelen;
5493 bfd_boolean has_underbar = FALSE;
5494 char *arg_strings[MAX_INSN_ARGS];
5495 int num_args;
5496 TInsn orig_insn; /* Original instruction from the input. */
5497
5498 tinsn_init (&orig_insn);
5499
5500 /* Split off the opcode. */
5501 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5502 opname = xmalloc (opnamelen + 1);
5503 memcpy (opname, str, opnamelen);
5504 opname[opnamelen] = '\0';
5505
5506 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5507 if (num_args == -1)
5508 {
5509 as_bad (_("syntax error"));
5510 return;
5511 }
5512
5513 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5514 return;
5515
5516 /* Check for an underbar prefix. */
5517 if (*opname == '_')
5518 {
5519 has_underbar = TRUE;
5520 opname += 1;
5521 }
5522
5523 orig_insn.insn_type = ITYPE_INSN;
5524 orig_insn.ntok = 0;
5525 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5526 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5527
5528 /* Special case: Check for "CALLXn.TLS" psuedo op. If found, grab its
5529 extra argument and set the opcode to "CALLXn". */
5530 if (orig_insn.opcode == XTENSA_UNDEFINED
5531 && strncasecmp (opname, "callx", 5) == 0)
5532 {
5533 unsigned long window_size;
5534 char *suffix;
5535
5536 window_size = strtoul (opname + 5, &suffix, 10);
5537 if (suffix != opname + 5
5538 && (window_size == 0
5539 || window_size == 4
5540 || window_size == 8
5541 || window_size == 12)
5542 && strcasecmp (suffix, ".tls") == 0)
5543 {
5544 switch (window_size)
5545 {
5546 case 0: orig_insn.opcode = xtensa_callx0_opcode; break;
5547 case 4: orig_insn.opcode = xtensa_callx4_opcode; break;
5548 case 8: orig_insn.opcode = xtensa_callx8_opcode; break;
5549 case 12: orig_insn.opcode = xtensa_callx12_opcode; break;
5550 }
5551
5552 if (num_args != 2)
5553 as_bad (_("wrong number of operands for '%s'"), opname);
5554 else
5555 {
5556 bfd_reloc_code_real_type reloc;
5557 char *old_input_line_pointer;
5558 expressionS *tok = &orig_insn.extra_arg;
5559
5560 old_input_line_pointer = input_line_pointer;
5561 input_line_pointer = arg_strings[num_args - 1];
5562
5563 expression (tok);
5564 if (tok->X_op == O_symbol
5565 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
5566 == BFD_RELOC_XTENSA_TLS_CALL))
5567 tok->X_op = map_suffix_reloc_to_operator (reloc);
5568 else
5569 as_bad (_("bad relocation expression for '%s'"), opname);
5570
5571 input_line_pointer = old_input_line_pointer;
5572 num_args -= 1;
5573 }
5574 }
5575 }
5576
5577 /* Special case: Check for "j.l" psuedo op. */
5578 if (orig_insn.opcode == XTENSA_UNDEFINED
5579 && strncasecmp (opname, "j.l", 3) == 0)
5580 {
5581 if (num_args != 2)
5582 as_bad (_("wrong number of operands for '%s'"), opname);
5583 else
5584 {
5585 char *old_input_line_pointer;
5586 expressionS *tok = &orig_insn.extra_arg;
5587
5588 old_input_line_pointer = input_line_pointer;
5589 input_line_pointer = arg_strings[num_args - 1];
5590
5591 expression_maybe_register (xtensa_jx_opcode, 0, tok);
5592 input_line_pointer = old_input_line_pointer;
5593
5594 num_args -= 1;
5595 orig_insn.opcode = xtensa_j_opcode;
5596 }
5597 }
5598
5599 if (orig_insn.opcode == XTENSA_UNDEFINED)
5600 {
5601 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5602 if (fmt == XTENSA_UNDEFINED)
5603 {
5604 as_bad (_("unknown opcode or format name '%s'"), opname);
5605 error_reset_cur_vinsn ();
5606 return;
5607 }
5608 if (!cur_vinsn.inside_bundle)
5609 {
5610 as_bad (_("format names only valid inside bundles"));
5611 error_reset_cur_vinsn ();
5612 return;
5613 }
5614 if (cur_vinsn.format != XTENSA_UNDEFINED)
5615 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5616 opname);
5617 cur_vinsn.format = fmt;
5618 free (has_underbar ? opname - 1 : opname);
5619 error_reset_cur_vinsn ();
5620 return;
5621 }
5622
5623 /* Parse the arguments. */
5624 if (parse_arguments (&orig_insn, num_args, arg_strings))
5625 {
5626 as_bad (_("syntax error"));
5627 error_reset_cur_vinsn ();
5628 return;
5629 }
5630
5631 /* Free the opcode and argument strings, now that they've been parsed. */
5632 free (has_underbar ? opname - 1 : opname);
5633 opname = 0;
5634 while (num_args-- > 0)
5635 free (arg_strings[num_args]);
5636
5637 /* Get expressions for invisible operands. */
5638 if (get_invisible_operands (&orig_insn))
5639 {
5640 error_reset_cur_vinsn ();
5641 return;
5642 }
5643
5644 /* Check for the right number and type of arguments. */
5645 if (tinsn_check_arguments (&orig_insn))
5646 {
5647 error_reset_cur_vinsn ();
5648 return;
5649 }
5650
5651 /* Record the line number for each TInsn, because a FLIX bundle may be
5652 spread across multiple input lines and individual instructions may be
5653 moved around in some cases. */
5654 orig_insn.loc_directive_seen = dwarf2_loc_directive_seen;
5655 dwarf2_where (&orig_insn.debug_line);
5656 dwarf2_consume_line_info ();
5657
5658 xg_add_branch_and_loop_targets (&orig_insn);
5659
5660 /* Check that immediate value for ENTRY is >= 16. */
5661 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5662 {
5663 expressionS *exp = &orig_insn.tok[2];
5664 if (exp->X_op == O_constant && exp->X_add_number < 16)
5665 as_warn (_("entry instruction with stack decrement < 16"));
5666 }
5667
5668 /* Finish it off:
5669 assemble_tokens (opcode, tok, ntok);
5670 expand the tokens from the orig_insn into the
5671 stack of instructions that will not expand
5672 unless required at relaxation time. */
5673
5674 if (!cur_vinsn.inside_bundle)
5675 emit_single_op (&orig_insn);
5676 else /* We are inside a bundle. */
5677 {
5678 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5679 cur_vinsn.num_slots++;
5680 if (*input_line_pointer == '}'
5681 || *(input_line_pointer - 1) == '}'
5682 || *(input_line_pointer - 2) == '}')
5683 finish_vinsn (&cur_vinsn);
5684 }
5685
5686 /* We've just emitted a new instruction so clear the list of labels. */
5687 xtensa_clear_insn_labels ();
5688
5689 xtensa_check_frag_count ();
5690 }
5691
5692
5693 /* HANDLE_ALIGN hook */
5694
5695 /* For a .align directive, we mark the previous block with the alignment
5696 information. This will be placed in the object file in the
5697 property section corresponding to this section. */
5698
5699 void
5700 xtensa_handle_align (fragS *fragP)
5701 {
5702 if (linkrelax
5703 && ! fragP->tc_frag_data.is_literal
5704 && (fragP->fr_type == rs_align
5705 || fragP->fr_type == rs_align_code)
5706 && fragP->fr_offset > 0
5707 && now_seg != bss_section)
5708 {
5709 fragP->tc_frag_data.is_align = TRUE;
5710 fragP->tc_frag_data.alignment = fragP->fr_offset;
5711 }
5712
5713 if (fragP->fr_type == rs_align_test)
5714 {
5715 int count;
5716 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5717 if (count != 0)
5718 as_bad_where (fragP->fr_file, fragP->fr_line,
5719 _("unaligned entry instruction"));
5720 }
5721
5722 if (linkrelax && fragP->fr_type == rs_org)
5723 fragP->fr_subtype = RELAX_ORG;
5724 }
5725
5726
5727 /* TC_FRAG_INIT hook */
5728
5729 void
5730 xtensa_frag_init (fragS *frag)
5731 {
5732 xtensa_set_frag_assembly_state (frag);
5733 }
5734
5735
5736 symbolS *
5737 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5738 {
5739 return NULL;
5740 }
5741
5742
5743 /* Round up a section size to the appropriate boundary. */
5744
5745 valueT
5746 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5747 {
5748 return size; /* Byte alignment is fine. */
5749 }
5750
5751
5752 long
5753 md_pcrel_from (fixS *fixP)
5754 {
5755 char *insn_p;
5756 static xtensa_insnbuf insnbuf = NULL;
5757 static xtensa_insnbuf slotbuf = NULL;
5758 int opnum;
5759 uint32 opnd_value;
5760 xtensa_opcode opcode;
5761 xtensa_format fmt;
5762 int slot;
5763 xtensa_isa isa = xtensa_default_isa;
5764 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5765 bfd_boolean alt_reloc;
5766
5767 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5768 return 0;
5769
5770 if (fixP->fx_r_type == BFD_RELOC_32_PCREL)
5771 return addr;
5772
5773 if (!insnbuf)
5774 {
5775 insnbuf = xtensa_insnbuf_alloc (isa);
5776 slotbuf = xtensa_insnbuf_alloc (isa);
5777 }
5778
5779 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5780 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5781 fmt = xtensa_format_decode (isa, insnbuf);
5782
5783 if (fmt == XTENSA_UNDEFINED)
5784 as_fatal (_("bad instruction format"));
5785
5786 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5787 as_fatal (_("invalid relocation"));
5788
5789 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5790 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5791
5792 /* Check for "alternate" relocations (operand not specified). None
5793 of the current uses for these are really PC-relative. */
5794 if (alt_reloc || opcode == xtensa_const16_opcode)
5795 {
5796 if (opcode != xtensa_l32r_opcode
5797 && opcode != xtensa_const16_opcode)
5798 as_fatal (_("invalid relocation for '%s' instruction"),
5799 xtensa_opcode_name (isa, opcode));
5800 return 0;
5801 }
5802
5803 opnum = get_relaxable_immed (opcode);
5804 opnd_value = 0;
5805 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5806 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5807 {
5808 as_bad_where (fixP->fx_file,
5809 fixP->fx_line,
5810 _("invalid relocation for operand %d of '%s'"),
5811 opnum, xtensa_opcode_name (isa, opcode));
5812 return 0;
5813 }
5814 return 0 - opnd_value;
5815 }
5816
5817
5818 /* TC_FORCE_RELOCATION hook */
5819
5820 int
5821 xtensa_force_relocation (fixS *fix)
5822 {
5823 switch (fix->fx_r_type)
5824 {
5825 case BFD_RELOC_XTENSA_ASM_EXPAND:
5826 case BFD_RELOC_XTENSA_SLOT0_ALT:
5827 case BFD_RELOC_XTENSA_SLOT1_ALT:
5828 case BFD_RELOC_XTENSA_SLOT2_ALT:
5829 case BFD_RELOC_XTENSA_SLOT3_ALT:
5830 case BFD_RELOC_XTENSA_SLOT4_ALT:
5831 case BFD_RELOC_XTENSA_SLOT5_ALT:
5832 case BFD_RELOC_XTENSA_SLOT6_ALT:
5833 case BFD_RELOC_XTENSA_SLOT7_ALT:
5834 case BFD_RELOC_XTENSA_SLOT8_ALT:
5835 case BFD_RELOC_XTENSA_SLOT9_ALT:
5836 case BFD_RELOC_XTENSA_SLOT10_ALT:
5837 case BFD_RELOC_XTENSA_SLOT11_ALT:
5838 case BFD_RELOC_XTENSA_SLOT12_ALT:
5839 case BFD_RELOC_XTENSA_SLOT13_ALT:
5840 case BFD_RELOC_XTENSA_SLOT14_ALT:
5841 return 1;
5842 default:
5843 break;
5844 }
5845
5846 if (linkrelax && fix->fx_addsy
5847 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5848 return 1;
5849
5850 return generic_force_reloc (fix);
5851 }
5852
5853
5854 /* TC_VALIDATE_FIX_SUB hook */
5855
5856 int
5857 xtensa_validate_fix_sub (fixS *fix)
5858 {
5859 segT add_symbol_segment, sub_symbol_segment;
5860
5861 /* The difference of two symbols should be resolved by the assembler when
5862 linkrelax is not set. If the linker may relax the section containing
5863 the symbols, then an Xtensa DIFF relocation must be generated so that
5864 the linker knows to adjust the difference value. */
5865 if (!linkrelax || fix->fx_addsy == NULL)
5866 return 0;
5867
5868 /* Make sure both symbols are in the same segment, and that segment is
5869 "normal" and relaxable. If the segment is not "normal", then the
5870 fix is not valid. If the segment is not "relaxable", then the fix
5871 should have been handled earlier. */
5872 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5873 if (! SEG_NORMAL (add_symbol_segment) ||
5874 ! relaxable_section (add_symbol_segment))
5875 return 0;
5876 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5877 return (sub_symbol_segment == add_symbol_segment);
5878 }
5879
5880
5881 /* NO_PSEUDO_DOT hook */
5882
5883 /* This function has nothing to do with pseudo dots, but this is the
5884 nearest macro to where the check needs to take place. FIXME: This
5885 seems wrong. */
5886
5887 bfd_boolean
5888 xtensa_check_inside_bundle (void)
5889 {
5890 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5891 as_bad (_("directives are not valid inside bundles"));
5892
5893 /* This function must always return FALSE because it is called via a
5894 macro that has nothing to do with bundling. */
5895 return FALSE;
5896 }
5897
5898
5899 /* md_elf_section_change_hook */
5900
5901 void
5902 xtensa_elf_section_change_hook (void)
5903 {
5904 /* Set up the assembly state. */
5905 if (!frag_now->tc_frag_data.is_assembly_state_set)
5906 xtensa_set_frag_assembly_state (frag_now);
5907 }
5908
5909
5910 /* tc_fix_adjustable hook */
5911
5912 bfd_boolean
5913 xtensa_fix_adjustable (fixS *fixP)
5914 {
5915 /* We need the symbol name for the VTABLE entries. */
5916 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5917 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5918 return 0;
5919
5920 return 1;
5921 }
5922
5923
5924 /* tc_symbol_new_hook */
5925
5926 symbolS *expr_symbols = NULL;
5927
5928 void
5929 xtensa_symbol_new_hook (symbolS *sym)
5930 {
5931 if (is_leb128_expr && S_GET_SEGMENT (sym) == expr_section)
5932 {
5933 symbol_get_tc (sym)->next_expr_symbol = expr_symbols;
5934 expr_symbols = sym;
5935 }
5936 }
5937
5938
5939 void
5940 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
5941 {
5942 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5943 valueT val = 0;
5944
5945 /* Subtracted symbols are only allowed for a few relocation types, and
5946 unless linkrelax is enabled, they should not make it to this point. */
5947 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
5948 || fixP->fx_r_type == BFD_RELOC_16
5949 || fixP->fx_r_type == BFD_RELOC_8)))
5950 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
5951
5952 switch (fixP->fx_r_type)
5953 {
5954 case BFD_RELOC_32_PCREL:
5955 case BFD_RELOC_32:
5956 case BFD_RELOC_16:
5957 case BFD_RELOC_8:
5958 if (fixP->fx_subsy)
5959 {
5960 switch (fixP->fx_r_type)
5961 {
5962 case BFD_RELOC_8:
5963 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF8;
5964 fixP->fx_signed = 0;
5965 break;
5966 case BFD_RELOC_16:
5967 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF16;
5968 fixP->fx_signed = 0;
5969 break;
5970 case BFD_RELOC_32:
5971 fixP->fx_r_type = BFD_RELOC_XTENSA_DIFF32;
5972 fixP->fx_signed = 0;
5973 break;
5974 default:
5975 break;
5976 }
5977
5978 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
5979 - S_GET_VALUE (fixP->fx_subsy));
5980
5981 /* The difference value gets written out, and the DIFF reloc
5982 identifies the address of the subtracted symbol (i.e., the one
5983 with the lowest address). */
5984 *valP = val;
5985 fixP->fx_offset -= val;
5986 fixP->fx_subsy = NULL;
5987 }
5988 else if (! fixP->fx_addsy)
5989 {
5990 val = *valP;
5991 fixP->fx_done = 1;
5992 }
5993 /* fall through */
5994
5995 case BFD_RELOC_XTENSA_PLT:
5996 md_number_to_chars (fixpos, val, fixP->fx_size);
5997 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
5998 break;
5999
6000 case BFD_RELOC_XTENSA_TLSDESC_FN:
6001 case BFD_RELOC_XTENSA_TLSDESC_ARG:
6002 case BFD_RELOC_XTENSA_TLS_TPOFF:
6003 case BFD_RELOC_XTENSA_TLS_DTPOFF:
6004 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6005 md_number_to_chars (fixpos, 0, fixP->fx_size);
6006 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
6007 break;
6008
6009 case BFD_RELOC_XTENSA_SLOT0_OP:
6010 case BFD_RELOC_XTENSA_SLOT1_OP:
6011 case BFD_RELOC_XTENSA_SLOT2_OP:
6012 case BFD_RELOC_XTENSA_SLOT3_OP:
6013 case BFD_RELOC_XTENSA_SLOT4_OP:
6014 case BFD_RELOC_XTENSA_SLOT5_OP:
6015 case BFD_RELOC_XTENSA_SLOT6_OP:
6016 case BFD_RELOC_XTENSA_SLOT7_OP:
6017 case BFD_RELOC_XTENSA_SLOT8_OP:
6018 case BFD_RELOC_XTENSA_SLOT9_OP:
6019 case BFD_RELOC_XTENSA_SLOT10_OP:
6020 case BFD_RELOC_XTENSA_SLOT11_OP:
6021 case BFD_RELOC_XTENSA_SLOT12_OP:
6022 case BFD_RELOC_XTENSA_SLOT13_OP:
6023 case BFD_RELOC_XTENSA_SLOT14_OP:
6024 if (linkrelax)
6025 {
6026 /* Write the tentative value of a PC-relative relocation to a
6027 local symbol into the instruction. The value will be ignored
6028 by the linker, and it makes the object file disassembly
6029 readable when all branch targets are encoded in relocations. */
6030
6031 gas_assert (fixP->fx_addsy);
6032 if (S_GET_SEGMENT (fixP->fx_addsy) == seg
6033 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
6034 {
6035 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
6036 - md_pcrel_from (fixP));
6037 (void) xg_apply_fix_value (fixP, val);
6038 }
6039 }
6040 else if (! fixP->fx_addsy)
6041 {
6042 val = *valP;
6043 if (xg_apply_fix_value (fixP, val))
6044 fixP->fx_done = 1;
6045 }
6046 break;
6047
6048 case BFD_RELOC_XTENSA_ASM_EXPAND:
6049 case BFD_RELOC_XTENSA_TLS_FUNC:
6050 case BFD_RELOC_XTENSA_TLS_ARG:
6051 case BFD_RELOC_XTENSA_TLS_CALL:
6052 case BFD_RELOC_XTENSA_SLOT0_ALT:
6053 case BFD_RELOC_XTENSA_SLOT1_ALT:
6054 case BFD_RELOC_XTENSA_SLOT2_ALT:
6055 case BFD_RELOC_XTENSA_SLOT3_ALT:
6056 case BFD_RELOC_XTENSA_SLOT4_ALT:
6057 case BFD_RELOC_XTENSA_SLOT5_ALT:
6058 case BFD_RELOC_XTENSA_SLOT6_ALT:
6059 case BFD_RELOC_XTENSA_SLOT7_ALT:
6060 case BFD_RELOC_XTENSA_SLOT8_ALT:
6061 case BFD_RELOC_XTENSA_SLOT9_ALT:
6062 case BFD_RELOC_XTENSA_SLOT10_ALT:
6063 case BFD_RELOC_XTENSA_SLOT11_ALT:
6064 case BFD_RELOC_XTENSA_SLOT12_ALT:
6065 case BFD_RELOC_XTENSA_SLOT13_ALT:
6066 case BFD_RELOC_XTENSA_SLOT14_ALT:
6067 /* These all need to be resolved at link-time. Do nothing now. */
6068 break;
6069
6070 case BFD_RELOC_VTABLE_INHERIT:
6071 case BFD_RELOC_VTABLE_ENTRY:
6072 fixP->fx_done = 0;
6073 break;
6074
6075 default:
6076 as_bad (_("unhandled local relocation fix %s"),
6077 bfd_get_reloc_code_name (fixP->fx_r_type));
6078 }
6079 }
6080
6081
6082 char *
6083 md_atof (int type, char *litP, int *sizeP)
6084 {
6085 return ieee_md_atof (type, litP, sizeP, target_big_endian);
6086 }
6087
6088
6089 int
6090 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
6091 {
6092 return total_frag_text_expansion (fragP);
6093 }
6094
6095
6096 /* Translate internal representation of relocation info to BFD target
6097 format. */
6098
6099 arelent *
6100 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
6101 {
6102 arelent *reloc;
6103
6104 reloc = (arelent *) xmalloc (sizeof (arelent));
6105 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6106 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6107 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6108
6109 /* Make sure none of our internal relocations make it this far.
6110 They'd better have been fully resolved by this point. */
6111 gas_assert ((int) fixp->fx_r_type > 0);
6112
6113 reloc->addend = fixp->fx_offset;
6114
6115 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
6116 if (reloc->howto == NULL)
6117 {
6118 as_bad_where (fixp->fx_file, fixp->fx_line,
6119 _("cannot represent `%s' relocation in object file"),
6120 bfd_get_reloc_code_name (fixp->fx_r_type));
6121 free (reloc->sym_ptr_ptr);
6122 free (reloc);
6123 return NULL;
6124 }
6125
6126 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
6127 as_fatal (_("internal error; cannot generate `%s' relocation"),
6128 bfd_get_reloc_code_name (fixp->fx_r_type));
6129
6130 return reloc;
6131 }
6132
6133 \f
6134 /* Checks for resource conflicts between instructions. */
6135
6136 /* The func unit stuff could be implemented as bit-vectors rather
6137 than the iterative approach here. If it ends up being too
6138 slow, we will switch it. */
6139
6140 resource_table *
6141 new_resource_table (void *data,
6142 int cycles,
6143 int nu,
6144 unit_num_copies_func uncf,
6145 opcode_num_units_func onuf,
6146 opcode_funcUnit_use_unit_func ouuf,
6147 opcode_funcUnit_use_stage_func ousf)
6148 {
6149 int i;
6150 resource_table *rt = (resource_table *) xmalloc (sizeof (resource_table));
6151 rt->data = data;
6152 rt->cycles = cycles;
6153 rt->allocated_cycles = cycles;
6154 rt->num_units = nu;
6155 rt->unit_num_copies = uncf;
6156 rt->opcode_num_units = onuf;
6157 rt->opcode_unit_use = ouuf;
6158 rt->opcode_unit_stage = ousf;
6159
6160 rt->units = (unsigned char **) xcalloc (cycles, sizeof (unsigned char *));
6161 for (i = 0; i < cycles; i++)
6162 rt->units[i] = (unsigned char *) xcalloc (nu, sizeof (unsigned char));
6163
6164 return rt;
6165 }
6166
6167
6168 void
6169 clear_resource_table (resource_table *rt)
6170 {
6171 int i, j;
6172 for (i = 0; i < rt->allocated_cycles; i++)
6173 for (j = 0; j < rt->num_units; j++)
6174 rt->units[i][j] = 0;
6175 }
6176
6177
6178 /* We never shrink it, just fake it into thinking so. */
6179
6180 void
6181 resize_resource_table (resource_table *rt, int cycles)
6182 {
6183 int i, old_cycles;
6184
6185 rt->cycles = cycles;
6186 if (cycles <= rt->allocated_cycles)
6187 return;
6188
6189 old_cycles = rt->allocated_cycles;
6190 rt->allocated_cycles = cycles;
6191
6192 rt->units = xrealloc (rt->units,
6193 rt->allocated_cycles * sizeof (unsigned char *));
6194 for (i = 0; i < old_cycles; i++)
6195 rt->units[i] = xrealloc (rt->units[i],
6196 rt->num_units * sizeof (unsigned char));
6197 for (i = old_cycles; i < cycles; i++)
6198 rt->units[i] = xcalloc (rt->num_units, sizeof (unsigned char));
6199 }
6200
6201
6202 bfd_boolean
6203 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
6204 {
6205 int i;
6206 int uses = (rt->opcode_num_units) (rt->data, opcode);
6207
6208 for (i = 0; i < uses; i++)
6209 {
6210 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6211 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6212 int copies_in_use = rt->units[stage + cycle][unit];
6213 int copies = (rt->unit_num_copies) (rt->data, unit);
6214 if (copies_in_use >= copies)
6215 return FALSE;
6216 }
6217 return TRUE;
6218 }
6219
6220
6221 void
6222 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6223 {
6224 int i;
6225 int uses = (rt->opcode_num_units) (rt->data, opcode);
6226
6227 for (i = 0; i < uses; i++)
6228 {
6229 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6230 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6231 /* Note that this allows resources to be oversubscribed. That's
6232 essential to the way the optional scheduler works.
6233 resources_available reports when a resource is over-subscribed,
6234 so it's easy to tell. */
6235 rt->units[stage + cycle][unit]++;
6236 }
6237 }
6238
6239
6240 void
6241 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6242 {
6243 int i;
6244 int uses = (rt->opcode_num_units) (rt->data, opcode);
6245
6246 for (i = 0; i < uses; i++)
6247 {
6248 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6249 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6250 gas_assert (rt->units[stage + cycle][unit] > 0);
6251 rt->units[stage + cycle][unit]--;
6252 }
6253 }
6254
6255
6256 /* Wrapper functions make parameterized resource reservation
6257 more convenient. */
6258
6259 int
6260 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
6261 {
6262 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6263 return use->unit;
6264 }
6265
6266
6267 int
6268 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
6269 {
6270 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6271 return use->stage;
6272 }
6273
6274
6275 /* Note that this function does not check issue constraints, but
6276 solely whether the hardware is available to execute the given
6277 instructions together. It also doesn't check if the tinsns
6278 write the same state, or access the same tieports. That is
6279 checked by check_t1_t2_reads_and_writes. */
6280
6281 static bfd_boolean
6282 resources_conflict (vliw_insn *vinsn)
6283 {
6284 int i;
6285 static resource_table *rt = NULL;
6286
6287 /* This is the most common case by far. Optimize it. */
6288 if (vinsn->num_slots == 1)
6289 return FALSE;
6290
6291 if (rt == NULL)
6292 {
6293 xtensa_isa isa = xtensa_default_isa;
6294 rt = new_resource_table
6295 (isa, xtensa_num_pipe_stages,
6296 xtensa_isa_num_funcUnits (isa),
6297 (unit_num_copies_func) xtensa_funcUnit_num_copies,
6298 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
6299 opcode_funcUnit_use_unit,
6300 opcode_funcUnit_use_stage);
6301 }
6302
6303 clear_resource_table (rt);
6304
6305 for (i = 0; i < vinsn->num_slots; i++)
6306 {
6307 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
6308 return TRUE;
6309 reserve_resources (rt, vinsn->slots[i].opcode, 0);
6310 }
6311
6312 return FALSE;
6313 }
6314
6315 \f
6316 /* finish_vinsn, emit_single_op and helper functions. */
6317
6318 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
6319 static xtensa_format xg_find_narrowest_format (vliw_insn *);
6320 static void xg_assemble_vliw_tokens (vliw_insn *);
6321
6322
6323 /* We have reached the end of a bundle; emit into the frag. */
6324
6325 static void
6326 finish_vinsn (vliw_insn *vinsn)
6327 {
6328 IStack slotstack;
6329 int i;
6330
6331 if (find_vinsn_conflicts (vinsn))
6332 {
6333 xg_clear_vinsn (vinsn);
6334 return;
6335 }
6336
6337 /* First, find a format that works. */
6338 if (vinsn->format == XTENSA_UNDEFINED)
6339 vinsn->format = xg_find_narrowest_format (vinsn);
6340
6341 if (xtensa_format_num_slots (xtensa_default_isa, vinsn->format) > 1
6342 && produce_flix == FLIX_NONE)
6343 {
6344 as_bad (_("The option \"--no-allow-flix\" prohibits multi-slot flix."));
6345 xg_clear_vinsn (vinsn);
6346 return;
6347 }
6348
6349 if (vinsn->format == XTENSA_UNDEFINED)
6350 {
6351 as_bad (_("couldn't find a valid instruction format"));
6352 fprintf (stderr, _(" ops were: "));
6353 for (i = 0; i < vinsn->num_slots; i++)
6354 fprintf (stderr, _(" %s;"),
6355 xtensa_opcode_name (xtensa_default_isa,
6356 vinsn->slots[i].opcode));
6357 fprintf (stderr, _("\n"));
6358 xg_clear_vinsn (vinsn);
6359 return;
6360 }
6361
6362 if (vinsn->num_slots
6363 != xtensa_format_num_slots (xtensa_default_isa, vinsn->format))
6364 {
6365 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
6366 xtensa_format_name (xtensa_default_isa, vinsn->format),
6367 xtensa_format_num_slots (xtensa_default_isa, vinsn->format),
6368 vinsn->num_slots);
6369 xg_clear_vinsn (vinsn);
6370 return;
6371 }
6372
6373 if (resources_conflict (vinsn))
6374 {
6375 as_bad (_("illegal resource usage in bundle"));
6376 fprintf (stderr, " ops were: ");
6377 for (i = 0; i < vinsn->num_slots; i++)
6378 fprintf (stderr, " %s;",
6379 xtensa_opcode_name (xtensa_default_isa,
6380 vinsn->slots[i].opcode));
6381 fprintf (stderr, "\n");
6382 xg_clear_vinsn (vinsn);
6383 return;
6384 }
6385
6386 for (i = 0; i < vinsn->num_slots; i++)
6387 {
6388 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6389 {
6390 symbolS *lit_sym = NULL;
6391 int j;
6392 bfd_boolean e = FALSE;
6393 bfd_boolean saved_density = density_supported;
6394
6395 /* We don't want to narrow ops inside multi-slot bundles. */
6396 if (vinsn->num_slots > 1)
6397 density_supported = FALSE;
6398
6399 istack_init (&slotstack);
6400 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6401 {
6402 vinsn->slots[i].opcode =
6403 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6404 vinsn->format, i);
6405 vinsn->slots[i].ntok = 0;
6406 }
6407
6408 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6409 {
6410 e = TRUE;
6411 continue;
6412 }
6413
6414 density_supported = saved_density;
6415
6416 if (e)
6417 {
6418 xg_clear_vinsn (vinsn);
6419 return;
6420 }
6421
6422 for (j = 0; j < slotstack.ninsn; j++)
6423 {
6424 TInsn *insn = &slotstack.insn[j];
6425 if (insn->insn_type == ITYPE_LITERAL)
6426 {
6427 gas_assert (lit_sym == NULL);
6428 lit_sym = xg_assemble_literal (insn);
6429 }
6430 else
6431 {
6432 gas_assert (insn->insn_type == ITYPE_INSN);
6433 if (lit_sym)
6434 xg_resolve_literals (insn, lit_sym);
6435 if (j != slotstack.ninsn - 1)
6436 emit_single_op (insn);
6437 }
6438 }
6439
6440 if (vinsn->num_slots > 1)
6441 {
6442 if (opcode_fits_format_slot
6443 (slotstack.insn[slotstack.ninsn - 1].opcode,
6444 vinsn->format, i))
6445 {
6446 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6447 }
6448 else
6449 {
6450 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6451 if (vinsn->format == XTENSA_UNDEFINED)
6452 vinsn->slots[i].opcode = xtensa_nop_opcode;
6453 else
6454 vinsn->slots[i].opcode
6455 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6456 vinsn->format, i);
6457
6458 vinsn->slots[i].ntok = 0;
6459 }
6460 }
6461 else
6462 {
6463 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6464 vinsn->format = XTENSA_UNDEFINED;
6465 }
6466 }
6467 }
6468
6469 /* Now check resource conflicts on the modified bundle. */
6470 if (resources_conflict (vinsn))
6471 {
6472 as_bad (_("illegal resource usage in bundle"));
6473 fprintf (stderr, " ops were: ");
6474 for (i = 0; i < vinsn->num_slots; i++)
6475 fprintf (stderr, " %s;",
6476 xtensa_opcode_name (xtensa_default_isa,
6477 vinsn->slots[i].opcode));
6478 fprintf (stderr, "\n");
6479 xg_clear_vinsn (vinsn);
6480 return;
6481 }
6482
6483 /* First, find a format that works. */
6484 if (vinsn->format == XTENSA_UNDEFINED)
6485 vinsn->format = xg_find_narrowest_format (vinsn);
6486
6487 xg_assemble_vliw_tokens (vinsn);
6488
6489 xg_clear_vinsn (vinsn);
6490
6491 xtensa_check_frag_count ();
6492 }
6493
6494
6495 /* Given an vliw instruction, what conflicts are there in register
6496 usage and in writes to states and queues?
6497
6498 This function does two things:
6499 1. Reports an error when a vinsn contains illegal combinations
6500 of writes to registers states or queues.
6501 2. Marks individual tinsns as not relaxable if the combination
6502 contains antidependencies.
6503
6504 Job 2 handles things like swap semantics in instructions that need
6505 to be relaxed. For example,
6506
6507 addi a0, a1, 100000
6508
6509 normally would be relaxed to
6510
6511 l32r a0, some_label
6512 add a0, a1, a0
6513
6514 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6515
6516 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6517
6518 then we can't relax it into
6519
6520 l32r a0, some_label
6521 { add a0, a1, a0 ; add a2, a0, a4 ; }
6522
6523 because the value of a0 is trashed before the second add can read it. */
6524
6525 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6526
6527 static bfd_boolean
6528 find_vinsn_conflicts (vliw_insn *vinsn)
6529 {
6530 int i, j;
6531 int branches = 0;
6532 xtensa_isa isa = xtensa_default_isa;
6533
6534 gas_assert (!past_xtensa_end);
6535
6536 for (i = 0 ; i < vinsn->num_slots; i++)
6537 {
6538 TInsn *op1 = &vinsn->slots[i];
6539 if (op1->is_specific_opcode)
6540 op1->keep_wide = TRUE;
6541 else
6542 op1->keep_wide = FALSE;
6543 }
6544
6545 for (i = 0 ; i < vinsn->num_slots; i++)
6546 {
6547 TInsn *op1 = &vinsn->slots[i];
6548
6549 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6550 branches++;
6551
6552 for (j = 0; j < vinsn->num_slots; j++)
6553 {
6554 if (i != j)
6555 {
6556 TInsn *op2 = &vinsn->slots[j];
6557 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6558 switch (conflict_type)
6559 {
6560 case 'c':
6561 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6562 xtensa_opcode_name (isa, op1->opcode), i,
6563 xtensa_opcode_name (isa, op2->opcode), j);
6564 return TRUE;
6565 case 'd':
6566 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6567 xtensa_opcode_name (isa, op1->opcode), i,
6568 xtensa_opcode_name (isa, op2->opcode), j);
6569 return TRUE;
6570 case 'e':
6571 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6572 xtensa_opcode_name (isa, op1->opcode), i,
6573 xtensa_opcode_name (isa, op2->opcode), j);
6574 return TRUE;
6575 case 'f':
6576 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6577 xtensa_opcode_name (isa, op1->opcode), i,
6578 xtensa_opcode_name (isa, op2->opcode), j);
6579 return TRUE;
6580 default:
6581 /* Everything is OK. */
6582 break;
6583 }
6584 op2->is_specific_opcode = (op2->is_specific_opcode
6585 || conflict_type == 'a');
6586 }
6587 }
6588 }
6589
6590 if (branches > 1)
6591 {
6592 as_bad (_("multiple branches or jumps in the same bundle"));
6593 return TRUE;
6594 }
6595
6596 return FALSE;
6597 }
6598
6599
6600 /* Check how the state used by t1 and t2 relate.
6601 Cases found are:
6602
6603 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6604 case B: no relationship between what is read and written (both could
6605 read the same reg though)
6606 case C: t1 writes a register t2 writes (a register conflict within a
6607 bundle)
6608 case D: t1 writes a state that t2 also writes
6609 case E: t1 writes a tie queue that t2 also writes
6610 case F: two volatile queue accesses
6611 */
6612
6613 static char
6614 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6615 {
6616 xtensa_isa isa = xtensa_default_isa;
6617 xtensa_regfile t1_regfile, t2_regfile;
6618 int t1_reg, t2_reg;
6619 int t1_base_reg, t1_last_reg;
6620 int t2_base_reg, t2_last_reg;
6621 char t1_inout, t2_inout;
6622 int i, j;
6623 char conflict = 'b';
6624 int t1_states;
6625 int t2_states;
6626 int t1_interfaces;
6627 int t2_interfaces;
6628 bfd_boolean t1_volatile = FALSE;
6629 bfd_boolean t2_volatile = FALSE;
6630
6631 /* Check registers. */
6632 for (j = 0; j < t2->ntok; j++)
6633 {
6634 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6635 continue;
6636
6637 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6638 t2_base_reg = t2->tok[j].X_add_number;
6639 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6640
6641 for (i = 0; i < t1->ntok; i++)
6642 {
6643 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6644 continue;
6645
6646 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6647
6648 if (t1_regfile != t2_regfile)
6649 continue;
6650
6651 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6652 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6653
6654 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6655 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6656 {
6657 if (t1_inout == 'm' || t1_inout == 'o'
6658 || t2_inout == 'm' || t2_inout == 'o')
6659 {
6660 conflict = 'a';
6661 continue;
6662 }
6663 }
6664
6665 t1_base_reg = t1->tok[i].X_add_number;
6666 t1_last_reg = (t1_base_reg
6667 + xtensa_operand_num_regs (isa, t1->opcode, i));
6668
6669 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6670 {
6671 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6672 {
6673 if (t1_reg != t2_reg)
6674 continue;
6675
6676 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6677 {
6678 conflict = 'a';
6679 continue;
6680 }
6681
6682 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6683 {
6684 conflict = 'a';
6685 continue;
6686 }
6687
6688 if (t1_inout != 'i' && t2_inout != 'i')
6689 return 'c';
6690 }
6691 }
6692 }
6693 }
6694
6695 /* Check states. */
6696 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6697 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6698 for (j = 0; j < t2_states; j++)
6699 {
6700 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6701 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6702 for (i = 0; i < t1_states; i++)
6703 {
6704 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6705 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6706 if (t1_so != t2_so || xtensa_state_is_shared_or (isa, t1_so) == 1)
6707 continue;
6708
6709 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6710 {
6711 conflict = 'a';
6712 continue;
6713 }
6714
6715 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6716 {
6717 conflict = 'a';
6718 continue;
6719 }
6720
6721 if (t1_inout != 'i' && t2_inout != 'i')
6722 return 'd';
6723 }
6724 }
6725
6726 /* Check tieports. */
6727 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6728 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6729 for (j = 0; j < t2_interfaces; j++)
6730 {
6731 xtensa_interface t2_int
6732 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6733 int t2_class = xtensa_interface_class_id (isa, t2_int);
6734
6735 t2_inout = xtensa_interface_inout (isa, t2_int);
6736 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6737 t2_volatile = TRUE;
6738
6739 for (i = 0; i < t1_interfaces; i++)
6740 {
6741 xtensa_interface t1_int
6742 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6743 int t1_class = xtensa_interface_class_id (isa, t1_int);
6744
6745 t1_inout = xtensa_interface_inout (isa, t1_int);
6746 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6747 t1_volatile = TRUE;
6748
6749 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6750 return 'f';
6751
6752 if (t1_int != t2_int)
6753 continue;
6754
6755 if (t2_inout == 'i' && t1_inout == 'o')
6756 {
6757 conflict = 'a';
6758 continue;
6759 }
6760
6761 if (t1_inout == 'i' && t2_inout == 'o')
6762 {
6763 conflict = 'a';
6764 continue;
6765 }
6766
6767 if (t1_inout != 'i' && t2_inout != 'i')
6768 return 'e';
6769 }
6770 }
6771
6772 return conflict;
6773 }
6774
6775
6776 static xtensa_format
6777 xg_find_narrowest_format (vliw_insn *vinsn)
6778 {
6779 /* Right now we assume that the ops within the vinsn are properly
6780 ordered for the slots that the programmer wanted them in. In
6781 other words, we don't rearrange the ops in hopes of finding a
6782 better format. The scheduler handles that. */
6783
6784 xtensa_isa isa = xtensa_default_isa;
6785 xtensa_format format;
6786 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6787
6788 if (vinsn->num_slots == 1)
6789 return xg_get_single_format (vinsn->slots[0].opcode);
6790
6791 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6792 {
6793 vliw_insn v_copy;
6794 xg_copy_vinsn (&v_copy, vinsn);
6795 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6796 {
6797 int slot;
6798 int fit = 0;
6799 for (slot = 0; slot < v_copy.num_slots; slot++)
6800 {
6801 if (v_copy.slots[slot].opcode == nop_opcode)
6802 {
6803 v_copy.slots[slot].opcode =
6804 xtensa_format_slot_nop_opcode (isa, format, slot);
6805 v_copy.slots[slot].ntok = 0;
6806 }
6807
6808 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6809 format, slot))
6810 fit++;
6811 else if (v_copy.num_slots > 1)
6812 {
6813 TInsn widened;
6814 /* Try the widened version. */
6815 if (!v_copy.slots[slot].keep_wide
6816 && !v_copy.slots[slot].is_specific_opcode
6817 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6818 &widened, TRUE)
6819 && opcode_fits_format_slot (widened.opcode,
6820 format, slot))
6821 {
6822 v_copy.slots[slot] = widened;
6823 fit++;
6824 }
6825 }
6826 }
6827 if (fit == v_copy.num_slots)
6828 {
6829 xg_copy_vinsn (vinsn, &v_copy);
6830 xtensa_format_encode (isa, format, vinsn->insnbuf);
6831 vinsn->format = format;
6832 break;
6833 }
6834 }
6835 }
6836
6837 if (format == xtensa_isa_num_formats (isa))
6838 return XTENSA_UNDEFINED;
6839
6840 return format;
6841 }
6842
6843
6844 /* Return the additional space needed in a frag
6845 for possible relaxations of any ops in a VLIW insn.
6846 Also fill out the relaxations that might be required of
6847 each tinsn in the vinsn. */
6848
6849 static int
6850 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6851 {
6852 bfd_boolean finish_frag = FALSE;
6853 int extra_space = 0;
6854 int slot;
6855
6856 for (slot = 0; slot < vinsn->num_slots; slot++)
6857 {
6858 TInsn *tinsn = &vinsn->slots[slot];
6859 if (!tinsn_has_symbolic_operands (tinsn))
6860 {
6861 /* A narrow instruction could be widened later to help
6862 alignment issues. */
6863 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6864 && !tinsn->is_specific_opcode
6865 && vinsn->num_slots == 1)
6866 {
6867 /* Difference in bytes between narrow and wide insns... */
6868 extra_space += 1;
6869 tinsn->subtype = RELAX_NARROW;
6870 }
6871 }
6872 else
6873 {
6874 if (workaround_b_j_loop_end
6875 && tinsn->opcode == xtensa_jx_opcode
6876 && use_transform ())
6877 {
6878 /* Add 2 of these. */
6879 extra_space += 3; /* for the nop size */
6880 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6881 }
6882
6883 /* Need to assemble it with space for the relocation. */
6884 if (xg_is_relaxable_insn (tinsn, 0)
6885 && !tinsn->is_specific_opcode)
6886 {
6887 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6888 int max_literal_size =
6889 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6890
6891 tinsn->literal_space = max_literal_size;
6892
6893 tinsn->subtype = RELAX_IMMED;
6894 extra_space += max_size;
6895 }
6896 else
6897 {
6898 /* A fix record will be added for this instruction prior
6899 to relaxation, so make it end the frag. */
6900 finish_frag = TRUE;
6901 }
6902 }
6903 }
6904 *pfinish_frag = finish_frag;
6905 return extra_space;
6906 }
6907
6908
6909 static void
6910 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6911 {
6912 xtensa_isa isa = xtensa_default_isa;
6913 int slot, chosen_slot;
6914
6915 vinsn->format = xg_get_single_format (tinsn->opcode);
6916 gas_assert (vinsn->format != XTENSA_UNDEFINED);
6917 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6918
6919 chosen_slot = xg_get_single_slot (tinsn->opcode);
6920 for (slot = 0; slot < vinsn->num_slots; slot++)
6921 {
6922 if (slot == chosen_slot)
6923 vinsn->slots[slot] = *tinsn;
6924 else
6925 {
6926 vinsn->slots[slot].opcode =
6927 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6928 vinsn->slots[slot].ntok = 0;
6929 vinsn->slots[slot].insn_type = ITYPE_INSN;
6930 }
6931 }
6932 }
6933
6934
6935 static bfd_boolean
6936 emit_single_op (TInsn *orig_insn)
6937 {
6938 int i;
6939 IStack istack; /* put instructions into here */
6940 symbolS *lit_sym = NULL;
6941 symbolS *label_sym = NULL;
6942
6943 istack_init (&istack);
6944
6945 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6946 Because the scheduling and bundling characteristics of movi and
6947 l32r or const16 are so different, we can do much better if we relax
6948 it prior to scheduling and bundling, rather than after. */
6949 if ((orig_insn->opcode == xtensa_movi_opcode
6950 || orig_insn->opcode == xtensa_movi_n_opcode)
6951 && !cur_vinsn.inside_bundle
6952 && (orig_insn->tok[1].X_op == O_symbol
6953 || orig_insn->tok[1].X_op == O_pltrel
6954 || orig_insn->tok[1].X_op == O_tlsfunc
6955 || orig_insn->tok[1].X_op == O_tlsarg
6956 || orig_insn->tok[1].X_op == O_tpoff
6957 || orig_insn->tok[1].X_op == O_dtpoff)
6958 && !orig_insn->is_specific_opcode && use_transform ())
6959 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
6960 else
6961 if (xg_expand_assembly_insn (&istack, orig_insn))
6962 return TRUE;
6963
6964 for (i = 0; i < istack.ninsn; i++)
6965 {
6966 TInsn *insn = &istack.insn[i];
6967 switch (insn->insn_type)
6968 {
6969 case ITYPE_LITERAL:
6970 gas_assert (lit_sym == NULL);
6971 lit_sym = xg_assemble_literal (insn);
6972 break;
6973 case ITYPE_LABEL:
6974 {
6975 static int relaxed_sym_idx = 0;
6976 char *label = xmalloc (strlen (FAKE_LABEL_NAME) + 12);
6977 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
6978 colon (label);
6979 gas_assert (label_sym == NULL);
6980 label_sym = symbol_find_or_make (label);
6981 gas_assert (label_sym);
6982 free (label);
6983 }
6984 break;
6985 case ITYPE_INSN:
6986 {
6987 vliw_insn v;
6988 if (lit_sym)
6989 xg_resolve_literals (insn, lit_sym);
6990 if (label_sym)
6991 xg_resolve_labels (insn, label_sym);
6992 xg_init_vinsn (&v);
6993 bundle_tinsn (insn, &v);
6994 finish_vinsn (&v);
6995 xg_free_vinsn (&v);
6996 }
6997 break;
6998 default:
6999 gas_assert (0);
7000 break;
7001 }
7002 }
7003 return FALSE;
7004 }
7005
7006
7007 static int
7008 total_frag_text_expansion (fragS *fragP)
7009 {
7010 int slot;
7011 int total_expansion = 0;
7012
7013 for (slot = 0; slot < config_max_slots; slot++)
7014 total_expansion += fragP->tc_frag_data.text_expansion[slot];
7015
7016 return total_expansion;
7017 }
7018
7019
7020 /* Emit a vliw instruction to the current fragment. */
7021
7022 static void
7023 xg_assemble_vliw_tokens (vliw_insn *vinsn)
7024 {
7025 bfd_boolean finish_frag;
7026 bfd_boolean is_jump = FALSE;
7027 bfd_boolean is_branch = FALSE;
7028 xtensa_isa isa = xtensa_default_isa;
7029 int insn_size;
7030 int extra_space;
7031 char *f = NULL;
7032 int slot;
7033 struct dwarf2_line_info debug_line;
7034 bfd_boolean loc_directive_seen = FALSE;
7035 TInsn *tinsn;
7036
7037 memset (&debug_line, 0, sizeof (struct dwarf2_line_info));
7038
7039 if (generating_literals)
7040 {
7041 static int reported = 0;
7042 if (reported < 4)
7043 as_bad_where (frag_now->fr_file, frag_now->fr_line,
7044 _("cannot assemble into a literal fragment"));
7045 if (reported == 3)
7046 as_bad (_("..."));
7047 reported++;
7048 return;
7049 }
7050
7051 if (frag_now_fix () != 0
7052 && (! frag_now->tc_frag_data.is_insn
7053 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7054 || (!use_transform ()) != frag_now->tc_frag_data.is_no_transform
7055 || (directive_state[directive_longcalls]
7056 != frag_now->tc_frag_data.use_longcalls)
7057 || (directive_state[directive_absolute_literals]
7058 != frag_now->tc_frag_data.use_absolute_literals)))
7059 {
7060 frag_wane (frag_now);
7061 frag_new (0);
7062 xtensa_set_frag_assembly_state (frag_now);
7063 }
7064
7065 if (workaround_a0_b_retw
7066 && vinsn->num_slots == 1
7067 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
7068 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
7069 && use_transform ())
7070 {
7071 has_a0_b_retw = TRUE;
7072
7073 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
7074 After the first assembly pass we will check all of them and
7075 add a nop if needed. */
7076 frag_now->tc_frag_data.is_insn = TRUE;
7077 frag_var (rs_machine_dependent, 4, 4,
7078 RELAX_ADD_NOP_IF_A0_B_RETW,
7079 frag_now->fr_symbol,
7080 frag_now->fr_offset,
7081 NULL);
7082 xtensa_set_frag_assembly_state (frag_now);
7083 frag_now->tc_frag_data.is_insn = TRUE;
7084 frag_var (rs_machine_dependent, 4, 4,
7085 RELAX_ADD_NOP_IF_A0_B_RETW,
7086 frag_now->fr_symbol,
7087 frag_now->fr_offset,
7088 NULL);
7089 xtensa_set_frag_assembly_state (frag_now);
7090 }
7091
7092 for (slot = 0; slot < vinsn->num_slots; slot++)
7093 {
7094 tinsn = &vinsn->slots[slot];
7095
7096 /* See if the instruction implies an aligned section. */
7097 if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1)
7098 record_alignment (now_seg, 2);
7099
7100 /* Determine the best line number for debug info. */
7101 if ((tinsn->loc_directive_seen || !loc_directive_seen)
7102 && (tinsn->debug_line.filenum != debug_line.filenum
7103 || tinsn->debug_line.line < debug_line.line
7104 || tinsn->debug_line.column < debug_line.column))
7105 debug_line = tinsn->debug_line;
7106 if (tinsn->loc_directive_seen)
7107 loc_directive_seen = TRUE;
7108 }
7109
7110 /* Special cases for instructions that force an alignment... */
7111 /* None of these opcodes are bundle-able. */
7112 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
7113 {
7114 int max_fill;
7115
7116 /* Remember the symbol that marks the end of the loop in the frag
7117 that marks the start of the loop. This way we can easily find
7118 the end of the loop at the beginning, without adding special code
7119 to mark the loop instructions themselves. */
7120 symbolS *target_sym = NULL;
7121 if (vinsn->slots[0].tok[1].X_op == O_symbol)
7122 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
7123
7124 xtensa_set_frag_assembly_state (frag_now);
7125 frag_now->tc_frag_data.is_insn = TRUE;
7126
7127 max_fill = get_text_align_max_fill_size
7128 (get_text_align_power (xtensa_fetch_width),
7129 TRUE, frag_now->tc_frag_data.is_no_density);
7130
7131 if (use_transform ())
7132 frag_var (rs_machine_dependent, max_fill, max_fill,
7133 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7134 else
7135 frag_var (rs_machine_dependent, 0, 0,
7136 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7137 xtensa_set_frag_assembly_state (frag_now);
7138 }
7139
7140 if (vinsn->slots[0].opcode == xtensa_entry_opcode
7141 && !vinsn->slots[0].is_specific_opcode)
7142 {
7143 xtensa_mark_literal_pool_location ();
7144 xtensa_move_labels (frag_now, 0);
7145 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
7146 }
7147
7148 if (vinsn->num_slots == 1)
7149 {
7150 if (workaround_a0_b_retw && use_transform ())
7151 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
7152 is_register_writer (&vinsn->slots[0], "a", 0));
7153
7154 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
7155 is_bad_loopend_opcode (&vinsn->slots[0]));
7156 }
7157 else
7158 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
7159
7160 insn_size = xtensa_format_length (isa, vinsn->format);
7161
7162 extra_space = relaxation_requirements (vinsn, &finish_frag);
7163
7164 /* vinsn_to_insnbuf will produce the error. */
7165 if (vinsn->format != XTENSA_UNDEFINED)
7166 {
7167 f = frag_more (insn_size + extra_space);
7168 xtensa_set_frag_assembly_state (frag_now);
7169 frag_now->tc_frag_data.is_insn = TRUE;
7170 }
7171
7172 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
7173 if (vinsn->format == XTENSA_UNDEFINED)
7174 return;
7175
7176 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
7177
7178 if (debug_type == DEBUG_DWARF2 || loc_directive_seen)
7179 dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space),
7180 &debug_line);
7181
7182 for (slot = 0; slot < vinsn->num_slots; slot++)
7183 {
7184 tinsn = &vinsn->slots[slot];
7185 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7186 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7187 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
7188 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
7189 if (tinsn->opcode == xtensa_l32r_opcode)
7190 {
7191 frag_now->tc_frag_data.literal_frags[slot] =
7192 tinsn->tok[1].X_add_symbol->sy_frag;
7193 }
7194 if (tinsn->literal_space != 0)
7195 xg_assemble_literal_space (tinsn->literal_space, slot);
7196 frag_now->tc_frag_data.free_reg[slot] = tinsn->extra_arg;
7197
7198 if (tinsn->subtype == RELAX_NARROW)
7199 gas_assert (vinsn->num_slots == 1);
7200 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
7201 is_jump = TRUE;
7202 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
7203 is_branch = TRUE;
7204
7205 if (tinsn->subtype || tinsn->symbol || tinsn->offset
7206 || tinsn->literal_frag || is_jump || is_branch)
7207 finish_frag = TRUE;
7208 }
7209
7210 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7211 frag_now->tc_frag_data.is_specific_opcode = TRUE;
7212
7213 if (finish_frag)
7214 {
7215 frag_variant (rs_machine_dependent,
7216 extra_space, extra_space, RELAX_SLOTS,
7217 frag_now->fr_symbol, frag_now->fr_offset, f);
7218 xtensa_set_frag_assembly_state (frag_now);
7219 }
7220
7221 /* Special cases for loops:
7222 close_loop_end should be inserted AFTER short_loop.
7223 Make sure that CLOSE loops are processed BEFORE short_loops
7224 when converting them. */
7225
7226 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
7227 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1
7228 && !vinsn->slots[0].is_specific_opcode)
7229 {
7230 if (workaround_short_loop && use_transform ())
7231 {
7232 maybe_has_short_loop = TRUE;
7233 frag_now->tc_frag_data.is_insn = TRUE;
7234 frag_var (rs_machine_dependent, 4, 4,
7235 RELAX_ADD_NOP_IF_SHORT_LOOP,
7236 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7237 frag_now->tc_frag_data.is_insn = TRUE;
7238 frag_var (rs_machine_dependent, 4, 4,
7239 RELAX_ADD_NOP_IF_SHORT_LOOP,
7240 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7241 }
7242
7243 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
7244 loop at least 12 bytes away from another loop's end. */
7245 if (workaround_close_loop_end && use_transform ())
7246 {
7247 maybe_has_close_loop_end = TRUE;
7248 frag_now->tc_frag_data.is_insn = TRUE;
7249 frag_var (rs_machine_dependent, 12, 12,
7250 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
7251 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7252 }
7253 }
7254
7255 if (use_transform ())
7256 {
7257 if (is_jump)
7258 {
7259 gas_assert (finish_frag);
7260 frag_var (rs_machine_dependent,
7261 xtensa_fetch_width, xtensa_fetch_width,
7262 RELAX_UNREACHABLE,
7263 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7264 xtensa_set_frag_assembly_state (frag_now);
7265 xtensa_maybe_create_trampoline_frag ();
7266 /* Always create one here. */
7267 xtensa_maybe_create_literal_pool_frag (TRUE, FALSE);
7268 }
7269 else if (is_branch && do_align_targets ())
7270 {
7271 gas_assert (finish_frag);
7272 frag_var (rs_machine_dependent,
7273 xtensa_fetch_width, xtensa_fetch_width,
7274 RELAX_MAYBE_UNREACHABLE,
7275 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7276 xtensa_set_frag_assembly_state (frag_now);
7277 frag_var (rs_machine_dependent,
7278 0, 0,
7279 RELAX_MAYBE_DESIRE_ALIGN,
7280 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7281 xtensa_set_frag_assembly_state (frag_now);
7282 }
7283 }
7284
7285 /* Now, if the original opcode was a call... */
7286 if (do_align_targets ()
7287 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
7288 {
7289 float freq = get_subseg_total_freq (now_seg, now_subseg);
7290 frag_now->tc_frag_data.is_insn = TRUE;
7291 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
7292 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7293 xtensa_set_frag_assembly_state (frag_now);
7294 }
7295
7296 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7297 {
7298 frag_wane (frag_now);
7299 frag_new (0);
7300 xtensa_set_frag_assembly_state (frag_now);
7301 }
7302 }
7303
7304 \f
7305 /* xtensa_end and helper functions. */
7306
7307 static void xtensa_cleanup_align_frags (void);
7308 static void xtensa_fix_target_frags (void);
7309 static void xtensa_mark_narrow_branches (void);
7310 static void xtensa_mark_zcl_first_insns (void);
7311 static void xtensa_mark_difference_of_two_symbols (void);
7312 static void xtensa_fix_a0_b_retw_frags (void);
7313 static void xtensa_fix_b_j_loop_end_frags (void);
7314 static void xtensa_fix_close_loop_end_frags (void);
7315 static void xtensa_fix_short_loop_frags (void);
7316 static void xtensa_sanity_check (void);
7317 static void xtensa_add_config_info (void);
7318
7319 void
7320 xtensa_end (void)
7321 {
7322 directive_balance ();
7323 xtensa_flush_pending_output ();
7324
7325 past_xtensa_end = TRUE;
7326
7327 xtensa_move_literals ();
7328
7329 xtensa_reorder_segments ();
7330 xtensa_cleanup_align_frags ();
7331 xtensa_fix_target_frags ();
7332 if (workaround_a0_b_retw && has_a0_b_retw)
7333 xtensa_fix_a0_b_retw_frags ();
7334 if (workaround_b_j_loop_end)
7335 xtensa_fix_b_j_loop_end_frags ();
7336
7337 /* "close_loop_end" should be processed BEFORE "short_loop". */
7338 if (workaround_close_loop_end && maybe_has_close_loop_end)
7339 xtensa_fix_close_loop_end_frags ();
7340
7341 if (workaround_short_loop && maybe_has_short_loop)
7342 xtensa_fix_short_loop_frags ();
7343 if (align_targets)
7344 xtensa_mark_narrow_branches ();
7345 xtensa_mark_zcl_first_insns ();
7346
7347 xtensa_sanity_check ();
7348
7349 xtensa_add_config_info ();
7350
7351 xtensa_check_frag_count ();
7352 }
7353
7354
7355 struct trampoline_frag
7356 {
7357 struct trampoline_frag *next;
7358 bfd_boolean needs_jump_around;
7359 fragS *fragP;
7360 fixS *fixP;
7361 };
7362
7363 struct trampoline_seg
7364 {
7365 struct trampoline_seg *next;
7366 asection *seg;
7367 struct trampoline_frag trampoline_list;
7368 };
7369
7370 static struct trampoline_seg trampoline_seg_list;
7371 #define J_RANGE (128 * 1024)
7372
7373 static int unreachable_count = 0;
7374
7375
7376 static void
7377 xtensa_maybe_create_trampoline_frag (void)
7378 {
7379 if (!use_trampolines)
7380 return;
7381
7382 /* We create an area for possible trampolines every 10 unreachable frags.
7383 These are preferred over the ones not preceded by an unreachable frag,
7384 because we don't have to jump around them. This function is called after
7385 each RELAX_UNREACHABLE frag is created. */
7386
7387 if (++unreachable_count > 10)
7388 {
7389 xtensa_create_trampoline_frag (FALSE);
7390 clear_frag_count ();
7391 unreachable_count = 0;
7392 }
7393 }
7394
7395 static void
7396 xtensa_check_frag_count (void)
7397 {
7398 if (!use_trampolines || frag_now->tc_frag_data.is_no_transform)
7399 return;
7400
7401 /* We create an area for possible trampolines every 8000 frags or so. This
7402 is an estimate based on the max range of a "j" insn (+/-128K) divided
7403 by a typical frag byte count (16), minus a few for safety. This function
7404 is called after each source line is processed. */
7405
7406 if (get_frag_count () > 8000)
7407 {
7408 xtensa_create_trampoline_frag (TRUE);
7409 clear_frag_count ();
7410 unreachable_count = 0;
7411 }
7412
7413 /* We create an area for a possible literal pool every N (default 5000)
7414 frags or so. */
7415 xtensa_maybe_create_literal_pool_frag (TRUE, TRUE);
7416 }
7417
7418 static xtensa_insnbuf trampoline_buf = NULL;
7419 static xtensa_insnbuf trampoline_slotbuf = NULL;
7420
7421 static xtensa_insnbuf litpool_buf = NULL;
7422 static xtensa_insnbuf litpool_slotbuf = NULL;
7423
7424 #define TRAMPOLINE_FRAG_SIZE 3000
7425
7426 static void
7427 xtensa_create_trampoline_frag (bfd_boolean needs_jump_around)
7428 {
7429 /* Emit a frag where we can place intermediate jump instructions,
7430 in case we need to jump farther than 128K bytes.
7431 Each jump instruction takes three bytes.
7432 We allocate enough for 1000 trampolines in each frag.
7433 If that's not enough, oh well. */
7434
7435 struct trampoline_seg *ts = trampoline_seg_list.next;
7436 struct trampoline_frag *tf;
7437 char *varP;
7438 fragS *fragP;
7439 int size = TRAMPOLINE_FRAG_SIZE;
7440
7441 for ( ; ts; ts = ts->next)
7442 {
7443 if (ts->seg == now_seg)
7444 break;
7445 }
7446
7447 if (ts == NULL)
7448 {
7449 ts = (struct trampoline_seg *)xcalloc(sizeof (struct trampoline_seg), 1);
7450 ts->next = trampoline_seg_list.next;
7451 trampoline_seg_list.next = ts;
7452 ts->seg = now_seg;
7453 }
7454
7455 frag_wane (frag_now);
7456 frag_new (0);
7457 xtensa_set_frag_assembly_state (frag_now);
7458 varP = frag_var (rs_machine_dependent, size, size, RELAX_TRAMPOLINE, NULL, 0, NULL);
7459 fragP = (fragS *)(varP - SIZEOF_STRUCT_FRAG);
7460 if (trampoline_buf == NULL)
7461 {
7462 trampoline_buf = xtensa_insnbuf_alloc (xtensa_default_isa);
7463 trampoline_slotbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7464 }
7465 tf = (struct trampoline_frag *)xmalloc(sizeof (struct trampoline_frag));
7466 tf->next = ts->trampoline_list.next;
7467 ts->trampoline_list.next = tf;
7468 tf->needs_jump_around = needs_jump_around;
7469 tf->fragP = fragP;
7470 tf->fixP = NULL;
7471 }
7472
7473
7474 static struct trampoline_seg *
7475 find_trampoline_seg (asection *seg)
7476 {
7477 struct trampoline_seg *ts = trampoline_seg_list.next;
7478
7479 for ( ; ts; ts = ts->next)
7480 {
7481 if (ts->seg == seg)
7482 return ts;
7483 }
7484
7485 return NULL;
7486 }
7487
7488
7489 void dump_trampolines (void);
7490
7491 void
7492 dump_trampolines (void)
7493 {
7494 struct trampoline_seg *ts = trampoline_seg_list.next;
7495
7496 for ( ; ts; ts = ts->next)
7497 {
7498 asection *seg = ts->seg;
7499
7500 if (seg == NULL)
7501 continue;
7502 fprintf(stderr, "SECTION %s\n", seg->name);
7503 struct trampoline_frag *tf = ts->trampoline_list.next;
7504 for ( ; tf; tf = tf->next)
7505 {
7506 if (tf->fragP == NULL)
7507 continue;
7508 fprintf(stderr, " 0x%08x: fix=%d, jump_around=%s\n",
7509 (int)tf->fragP->fr_address, (int)tf->fragP->fr_fix,
7510 tf->needs_jump_around ? "T" : "F");
7511 }
7512 }
7513 }
7514
7515 static void dump_litpools (void) __attribute__ ((unused));
7516
7517 static void
7518 dump_litpools (void)
7519 {
7520 struct litpool_seg *lps = litpool_seg_list.next;
7521 struct litpool_frag *lpf;
7522
7523 for ( ; lps ; lps = lps->next )
7524 {
7525 printf("litpool seg %s\n", lps->seg->name);
7526 for ( lpf = lps->frag_list.next; lpf->fragP; lpf = lpf->next )
7527 {
7528 fragS *litfrag = lpf->fragP->fr_next;
7529 int count = 0;
7530 while (litfrag && litfrag->fr_subtype != RELAX_LITERAL_POOL_END)
7531 {
7532 if (litfrag->fr_fix == 4)
7533 count++;
7534 litfrag = litfrag->fr_next;
7535 }
7536 printf(" %ld <%d:%d> (%d) [%d]: ",
7537 lpf->addr, lpf->priority, lpf->original_priority,
7538 lpf->fragP->fr_line, count);
7539 //dump_frag(lpf->fragP);
7540 }
7541 }
7542 }
7543
7544 static void
7545 xtensa_maybe_create_literal_pool_frag (bfd_boolean create,
7546 bfd_boolean only_if_needed)
7547 {
7548 struct litpool_seg *lps = litpool_seg_list.next;
7549 fragS *fragP;
7550 struct litpool_frag *lpf;
7551 bfd_boolean needed = FALSE;
7552
7553 if (use_literal_section || !auto_litpools)
7554 return;
7555
7556 for ( ; lps ; lps = lps->next )
7557 {
7558 if (lps->seg == now_seg)
7559 break;
7560 }
7561
7562 if (lps == NULL)
7563 {
7564 lps = (struct litpool_seg *)xcalloc (sizeof (struct litpool_seg), 1);
7565 lps->next = litpool_seg_list.next;
7566 litpool_seg_list.next = lps;
7567 lps->seg = now_seg;
7568 lps->frag_list.next = &lps->frag_list;
7569 lps->frag_list.prev = &lps->frag_list;
7570 }
7571
7572 lps->frag_count++;
7573
7574 if (create)
7575 {
7576 if (only_if_needed)
7577 {
7578 if (past_xtensa_end || !use_transform() ||
7579 frag_now->tc_frag_data.is_no_transform)
7580 {
7581 return;
7582 }
7583 if (auto_litpool_limit <= 0)
7584 {
7585 /* Don't create a litpool based only on frag count. */
7586 return;
7587 }
7588 else if (lps->frag_count > auto_litpool_limit)
7589 {
7590 needed = TRUE;
7591 }
7592 else
7593 {
7594 return;
7595 }
7596 }
7597 else
7598 {
7599 needed = TRUE;
7600 }
7601 }
7602
7603 if (needed)
7604 {
7605 int size = (only_if_needed) ? 3 : 0; /* Space for a "j" insn. */
7606 /* Create a potential site for a literal pool. */
7607 frag_wane (frag_now);
7608 frag_new (0);
7609 xtensa_set_frag_assembly_state (frag_now);
7610 fragP = frag_now;
7611 fragP->tc_frag_data.lit_frchain = frchain_now;
7612 fragP->tc_frag_data.literal_frag = fragP;
7613 frag_var (rs_machine_dependent, size, size,
7614 (only_if_needed) ?
7615 RELAX_LITERAL_POOL_CANDIDATE_BEGIN :
7616 RELAX_LITERAL_POOL_BEGIN,
7617 NULL, 0, NULL);
7618 frag_now->tc_frag_data.lit_seg = now_seg;
7619 frag_variant (rs_machine_dependent, 0, 0,
7620 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
7621 xtensa_set_frag_assembly_state (frag_now);
7622 }
7623 else
7624 {
7625 /* RELAX_LITERAL_POOL_BEGIN frag is being created;
7626 just record it here. */
7627 fragP = frag_now;
7628 }
7629
7630 lpf = (struct litpool_frag *)xmalloc(sizeof (struct litpool_frag));
7631 /* Insert at tail of circular list. */
7632 lpf->addr = 0;
7633 lps->frag_list.prev->next = lpf;
7634 lpf->next = &lps->frag_list;
7635 lpf->prev = lps->frag_list.prev;
7636 lps->frag_list.prev = lpf;
7637 lpf->fragP = fragP;
7638 lpf->priority = (needed) ? (only_if_needed) ? 3 : 2 : 1;
7639 lpf->original_priority = lpf->priority;
7640
7641 lps->frag_count = 0;
7642 }
7643
7644 static void
7645 xtensa_cleanup_align_frags (void)
7646 {
7647 frchainS *frchP;
7648 asection *s;
7649
7650 for (s = stdoutput->sections; s; s = s->next)
7651 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7652 {
7653 fragS *fragP;
7654 /* Walk over all of the fragments in a subsection. */
7655 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7656 {
7657 if ((fragP->fr_type == rs_align
7658 || fragP->fr_type == rs_align_code
7659 || (fragP->fr_type == rs_machine_dependent
7660 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
7661 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
7662 && fragP->fr_fix == 0)
7663 {
7664 fragS *next = fragP->fr_next;
7665
7666 while (next
7667 && next->fr_fix == 0
7668 && next->fr_type == rs_machine_dependent
7669 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7670 {
7671 frag_wane (next);
7672 next = next->fr_next;
7673 }
7674 }
7675 /* If we don't widen branch targets, then they
7676 will be easier to align. */
7677 if (fragP->tc_frag_data.is_branch_target
7678 && fragP->fr_opcode == fragP->fr_literal
7679 && fragP->fr_type == rs_machine_dependent
7680 && fragP->fr_subtype == RELAX_SLOTS
7681 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
7682 frag_wane (fragP);
7683 if (fragP->fr_type == rs_machine_dependent
7684 && fragP->fr_subtype == RELAX_UNREACHABLE)
7685 fragP->tc_frag_data.is_unreachable = TRUE;
7686 }
7687 }
7688 }
7689
7690
7691 /* Re-process all of the fragments looking to convert all of the
7692 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7693 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7694 Otherwise, convert to a .fill 0. */
7695
7696 static void
7697 xtensa_fix_target_frags (void)
7698 {
7699 frchainS *frchP;
7700 asection *s;
7701
7702 /* When this routine is called, all of the subsections are still intact
7703 so we walk over subsections instead of sections. */
7704 for (s = stdoutput->sections; s; s = s->next)
7705 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7706 {
7707 fragS *fragP;
7708
7709 /* Walk over all of the fragments in a subsection. */
7710 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7711 {
7712 if (fragP->fr_type == rs_machine_dependent
7713 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
7714 {
7715 if (next_frag_is_branch_target (fragP))
7716 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
7717 else
7718 frag_wane (fragP);
7719 }
7720 }
7721 }
7722 }
7723
7724
7725 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
7726
7727 static void
7728 xtensa_mark_narrow_branches (void)
7729 {
7730 frchainS *frchP;
7731 asection *s;
7732
7733 for (s = stdoutput->sections; s; s = s->next)
7734 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7735 {
7736 fragS *fragP;
7737 /* Walk over all of the fragments in a subsection. */
7738 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7739 {
7740 if (fragP->fr_type == rs_machine_dependent
7741 && fragP->fr_subtype == RELAX_SLOTS
7742 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
7743 {
7744 vliw_insn vinsn;
7745
7746 vinsn_from_chars (&vinsn, fragP->fr_opcode);
7747 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
7748
7749 if (vinsn.num_slots == 1
7750 && xtensa_opcode_is_branch (xtensa_default_isa,
7751 vinsn.slots[0].opcode) == 1
7752 && xg_get_single_size (vinsn.slots[0].opcode) == 2
7753 && is_narrow_branch_guaranteed_in_range (fragP,
7754 &vinsn.slots[0]))
7755 {
7756 fragP->fr_subtype = RELAX_SLOTS;
7757 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
7758 fragP->tc_frag_data.is_aligning_branch = 1;
7759 }
7760 }
7761 }
7762 }
7763 }
7764
7765
7766 /* A branch is typically widened only when its target is out of
7767 range. However, we would like to widen them to align a subsequent
7768 branch target when possible.
7769
7770 Because the branch relaxation code is so convoluted, the optimal solution
7771 (combining the two cases) is difficult to get right in all circumstances.
7772 We therefore go with an "almost as good" solution, where we only
7773 use for alignment narrow branches that definitely will not expand to a
7774 jump and a branch. These functions find and mark these cases. */
7775
7776 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7777 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7778 We start counting beginning with the frag after the 2-byte branch, so the
7779 maximum offset is (4 - 2) + 63 = 65. */
7780 #define MAX_IMMED6 65
7781
7782 static offsetT unrelaxed_frag_max_size (fragS *);
7783
7784 static bfd_boolean
7785 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
7786 {
7787 const expressionS *exp = &tinsn->tok[1];
7788 symbolS *symbolP = exp->X_add_symbol;
7789 offsetT max_distance = exp->X_add_number;
7790 fragS *target_frag;
7791
7792 if (exp->X_op != O_symbol)
7793 return FALSE;
7794
7795 target_frag = symbol_get_frag (symbolP);
7796
7797 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
7798 if (is_branch_jmp_to_next (tinsn, fragP))
7799 return FALSE;
7800
7801 /* The branch doesn't branch over it's own frag,
7802 but over the subsequent ones. */
7803 fragP = fragP->fr_next;
7804 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
7805 {
7806 max_distance += unrelaxed_frag_max_size (fragP);
7807 fragP = fragP->fr_next;
7808 }
7809 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
7810 return TRUE;
7811 return FALSE;
7812 }
7813
7814
7815 static void
7816 xtensa_mark_zcl_first_insns (void)
7817 {
7818 frchainS *frchP;
7819 asection *s;
7820
7821 for (s = stdoutput->sections; s; s = s->next)
7822 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7823 {
7824 fragS *fragP;
7825 /* Walk over all of the fragments in a subsection. */
7826 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7827 {
7828 if (fragP->fr_type == rs_machine_dependent
7829 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7830 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7831 {
7832 /* Find the loop frag. */
7833 fragS *loop_frag = next_non_empty_frag (fragP);
7834 /* Find the first insn frag. */
7835 fragS *targ_frag = next_non_empty_frag (loop_frag);
7836
7837 /* Handle a corner case that comes up in hardware
7838 diagnostics. The original assembly looks like this:
7839
7840 loop aX, LabelA
7841 <empty_frag>--not found by next_non_empty_frag
7842 loop aY, LabelB
7843
7844 Depending on the start address, the assembler may or
7845 may not change it to look something like this:
7846
7847 loop aX, LabelA
7848 nop--frag isn't empty anymore
7849 loop aY, LabelB
7850
7851 So set up to check the alignment of the nop if it
7852 exists */
7853 while (loop_frag != targ_frag)
7854 {
7855 if (loop_frag->fr_type == rs_machine_dependent
7856 && (loop_frag->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
7857 || loop_frag->fr_subtype
7858 == RELAX_CHECK_ALIGN_NEXT_OPCODE))
7859 targ_frag = loop_frag;
7860 else
7861 loop_frag = loop_frag->fr_next;
7862 }
7863
7864 /* Of course, sometimes (mostly for toy test cases) a
7865 zero-cost loop instruction is the last in a section. */
7866 if (targ_frag)
7867 {
7868 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
7869 /* Do not widen a frag that is the first instruction of a
7870 zero-cost loop. It makes that loop harder to align. */
7871 if (targ_frag->fr_type == rs_machine_dependent
7872 && targ_frag->fr_subtype == RELAX_SLOTS
7873 && (targ_frag->tc_frag_data.slot_subtypes[0]
7874 == RELAX_NARROW))
7875 {
7876 if (targ_frag->tc_frag_data.is_aligning_branch)
7877 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
7878 else
7879 {
7880 frag_wane (targ_frag);
7881 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
7882 }
7883 }
7884 }
7885 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
7886 frag_wane (fragP);
7887 }
7888 }
7889 }
7890 }
7891
7892
7893 /* When a difference-of-symbols expression is encoded as a uleb128 or
7894 sleb128 value, the linker is unable to adjust that value to account for
7895 link-time relaxation. Mark all the code between such symbols so that
7896 its size cannot be changed by linker relaxation. */
7897
7898 static void
7899 xtensa_mark_difference_of_two_symbols (void)
7900 {
7901 symbolS *expr_sym;
7902
7903 for (expr_sym = expr_symbols; expr_sym;
7904 expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol)
7905 {
7906 expressionS *exp = symbol_get_value_expression (expr_sym);
7907
7908 if (exp->X_op == O_subtract)
7909 {
7910 symbolS *left = exp->X_add_symbol;
7911 symbolS *right = exp->X_op_symbol;
7912
7913 /* Difference of two symbols not in the same section
7914 are handled with relocations in the linker. */
7915 if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right))
7916 {
7917 fragS *start;
7918 fragS *end;
7919 fragS *walk;
7920
7921 if (symbol_get_frag (left)->fr_address
7922 <= symbol_get_frag (right)->fr_address)
7923 {
7924 start = symbol_get_frag (left);
7925 end = symbol_get_frag (right);
7926 }
7927 else
7928 {
7929 start = symbol_get_frag (right);
7930 end = symbol_get_frag (left);
7931 }
7932
7933 if (start->tc_frag_data.no_transform_end != NULL)
7934 walk = start->tc_frag_data.no_transform_end;
7935 else
7936 walk = start;
7937 do
7938 {
7939 walk->tc_frag_data.is_no_transform = 1;
7940 walk = walk->fr_next;
7941 }
7942 while (walk && walk->fr_address < end->fr_address);
7943
7944 start->tc_frag_data.no_transform_end = walk;
7945 }
7946 }
7947 }
7948 }
7949
7950
7951 /* Re-process all of the fragments looking to convert all of the
7952 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7953 conditional branch or a retw/retw.n, convert this frag to one that
7954 will generate a NOP. In any case close it off with a .fill 0. */
7955
7956 static bfd_boolean next_instrs_are_b_retw (fragS *);
7957
7958 static void
7959 xtensa_fix_a0_b_retw_frags (void)
7960 {
7961 frchainS *frchP;
7962 asection *s;
7963
7964 /* When this routine is called, all of the subsections are still intact
7965 so we walk over subsections instead of sections. */
7966 for (s = stdoutput->sections; s; s = s->next)
7967 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
7968 {
7969 fragS *fragP;
7970
7971 /* Walk over all of the fragments in a subsection. */
7972 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
7973 {
7974 if (fragP->fr_type == rs_machine_dependent
7975 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
7976 {
7977 if (next_instrs_are_b_retw (fragP))
7978 {
7979 if (fragP->tc_frag_data.is_no_transform)
7980 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7981 else
7982 relax_frag_add_nop (fragP);
7983 }
7984 frag_wane (fragP);
7985 }
7986 }
7987 }
7988 }
7989
7990
7991 static bfd_boolean
7992 next_instrs_are_b_retw (fragS *fragP)
7993 {
7994 xtensa_opcode opcode;
7995 xtensa_format fmt;
7996 const fragS *next_fragP = next_non_empty_frag (fragP);
7997 static xtensa_insnbuf insnbuf = NULL;
7998 static xtensa_insnbuf slotbuf = NULL;
7999 xtensa_isa isa = xtensa_default_isa;
8000 int offset = 0;
8001 int slot;
8002 bfd_boolean branch_seen = FALSE;
8003
8004 if (!insnbuf)
8005 {
8006 insnbuf = xtensa_insnbuf_alloc (isa);
8007 slotbuf = xtensa_insnbuf_alloc (isa);
8008 }
8009
8010 if (next_fragP == NULL)
8011 return FALSE;
8012
8013 /* Check for the conditional branch. */
8014 xtensa_insnbuf_from_chars
8015 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
8016 fmt = xtensa_format_decode (isa, insnbuf);
8017 if (fmt == XTENSA_UNDEFINED)
8018 return FALSE;
8019
8020 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8021 {
8022 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
8023 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
8024
8025 branch_seen = (branch_seen
8026 || xtensa_opcode_is_branch (isa, opcode) == 1);
8027 }
8028
8029 if (!branch_seen)
8030 return FALSE;
8031
8032 offset += xtensa_format_length (isa, fmt);
8033 if (offset == next_fragP->fr_fix)
8034 {
8035 next_fragP = next_non_empty_frag (next_fragP);
8036 offset = 0;
8037 }
8038
8039 if (next_fragP == NULL)
8040 return FALSE;
8041
8042 /* Check for the retw/retw.n. */
8043 xtensa_insnbuf_from_chars
8044 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
8045 fmt = xtensa_format_decode (isa, insnbuf);
8046
8047 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
8048 have no problems. */
8049 if (fmt == XTENSA_UNDEFINED
8050 || xtensa_format_num_slots (isa, fmt) != 1)
8051 return FALSE;
8052
8053 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
8054 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
8055
8056 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
8057 return TRUE;
8058
8059 return FALSE;
8060 }
8061
8062
8063 /* Re-process all of the fragments looking to convert all of the
8064 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
8065 loop end label, convert this frag to one that will generate a NOP.
8066 In any case close it off with a .fill 0. */
8067
8068 static bfd_boolean next_instr_is_loop_end (fragS *);
8069
8070 static void
8071 xtensa_fix_b_j_loop_end_frags (void)
8072 {
8073 frchainS *frchP;
8074 asection *s;
8075
8076 /* When this routine is called, all of the subsections are still intact
8077 so we walk over subsections instead of sections. */
8078 for (s = stdoutput->sections; s; s = s->next)
8079 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8080 {
8081 fragS *fragP;
8082
8083 /* Walk over all of the fragments in a subsection. */
8084 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8085 {
8086 if (fragP->fr_type == rs_machine_dependent
8087 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
8088 {
8089 if (next_instr_is_loop_end (fragP))
8090 {
8091 if (fragP->tc_frag_data.is_no_transform)
8092 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
8093 else
8094 relax_frag_add_nop (fragP);
8095 }
8096 frag_wane (fragP);
8097 }
8098 }
8099 }
8100 }
8101
8102
8103 static bfd_boolean
8104 next_instr_is_loop_end (fragS *fragP)
8105 {
8106 const fragS *next_fragP;
8107
8108 if (next_frag_is_loop_target (fragP))
8109 return FALSE;
8110
8111 next_fragP = next_non_empty_frag (fragP);
8112 if (next_fragP == NULL)
8113 return FALSE;
8114
8115 if (!next_frag_is_loop_target (next_fragP))
8116 return FALSE;
8117
8118 /* If the size is >= 3 then there is more than one instruction here.
8119 The hardware bug will not fire. */
8120 if (next_fragP->fr_fix > 3)
8121 return FALSE;
8122
8123 return TRUE;
8124 }
8125
8126
8127 /* Re-process all of the fragments looking to convert all of the
8128 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
8129 not MY loop's loop end within 12 bytes, add enough nops here to
8130 make it at least 12 bytes away. In any case close it off with a
8131 .fill 0. */
8132
8133 static offsetT min_bytes_to_other_loop_end
8134 (fragS *, fragS *, offsetT);
8135
8136 static void
8137 xtensa_fix_close_loop_end_frags (void)
8138 {
8139 frchainS *frchP;
8140 asection *s;
8141
8142 /* When this routine is called, all of the subsections are still intact
8143 so we walk over subsections instead of sections. */
8144 for (s = stdoutput->sections; s; s = s->next)
8145 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8146 {
8147 fragS *fragP;
8148
8149 fragS *current_target = NULL;
8150
8151 /* Walk over all of the fragments in a subsection. */
8152 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8153 {
8154 if (fragP->fr_type == rs_machine_dependent
8155 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
8156 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
8157 current_target = symbol_get_frag (fragP->fr_symbol);
8158
8159 if (current_target
8160 && fragP->fr_type == rs_machine_dependent
8161 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
8162 {
8163 offsetT min_bytes;
8164 int bytes_added = 0;
8165
8166 #define REQUIRED_LOOP_DIVIDING_BYTES 12
8167 /* Max out at 12. */
8168 min_bytes = min_bytes_to_other_loop_end
8169 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
8170
8171 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
8172 {
8173 if (fragP->tc_frag_data.is_no_transform)
8174 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
8175 else
8176 {
8177 while (min_bytes + bytes_added
8178 < REQUIRED_LOOP_DIVIDING_BYTES)
8179 {
8180 int length = 3;
8181
8182 if (fragP->fr_var < length)
8183 as_fatal (_("fr_var %lu < length %d"),
8184 (long) fragP->fr_var, length);
8185 else
8186 {
8187 assemble_nop (length,
8188 fragP->fr_literal + fragP->fr_fix);
8189 fragP->fr_fix += length;
8190 fragP->fr_var -= length;
8191 }
8192 bytes_added += length;
8193 }
8194 }
8195 }
8196 frag_wane (fragP);
8197 }
8198 gas_assert (fragP->fr_type != rs_machine_dependent
8199 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
8200 }
8201 }
8202 }
8203
8204
8205 static offsetT unrelaxed_frag_min_size (fragS *);
8206
8207 static offsetT
8208 min_bytes_to_other_loop_end (fragS *fragP,
8209 fragS *current_target,
8210 offsetT max_size)
8211 {
8212 offsetT offset = 0;
8213 fragS *current_fragP;
8214
8215 for (current_fragP = fragP;
8216 current_fragP;
8217 current_fragP = current_fragP->fr_next)
8218 {
8219 if (current_fragP->tc_frag_data.is_loop_target
8220 && current_fragP != current_target)
8221 return offset;
8222
8223 offset += unrelaxed_frag_min_size (current_fragP);
8224
8225 if (offset >= max_size)
8226 return max_size;
8227 }
8228 return max_size;
8229 }
8230
8231
8232 static offsetT
8233 unrelaxed_frag_min_size (fragS *fragP)
8234 {
8235 offsetT size = fragP->fr_fix;
8236
8237 /* Add fill size. */
8238 if (fragP->fr_type == rs_fill)
8239 size += fragP->fr_offset;
8240
8241 return size;
8242 }
8243
8244
8245 static offsetT
8246 unrelaxed_frag_max_size (fragS *fragP)
8247 {
8248 offsetT size = fragP->fr_fix;
8249 switch (fragP->fr_type)
8250 {
8251 case 0:
8252 /* Empty frags created by the obstack allocation scheme
8253 end up with type 0. */
8254 break;
8255 case rs_fill:
8256 case rs_org:
8257 case rs_space:
8258 size += fragP->fr_offset;
8259 break;
8260 case rs_align:
8261 case rs_align_code:
8262 case rs_align_test:
8263 case rs_leb128:
8264 case rs_cfa:
8265 case rs_dwarf2dbg:
8266 /* No further adjustments needed. */
8267 break;
8268 case rs_machine_dependent:
8269 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
8270 size += fragP->fr_var;
8271 break;
8272 default:
8273 /* We had darn well better know how big it is. */
8274 gas_assert (0);
8275 break;
8276 }
8277
8278 return size;
8279 }
8280
8281
8282 /* Re-process all of the fragments looking to convert all
8283 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
8284
8285 A)
8286 1) the instruction size count to the loop end label
8287 is too short (<= 2 instructions),
8288 2) loop has a jump or branch in it
8289
8290 or B)
8291 1) workaround_all_short_loops is TRUE
8292 2) The generating loop was a 'loopgtz' or 'loopnez'
8293 3) the instruction size count to the loop end label is too short
8294 (<= 2 instructions)
8295 then convert this frag (and maybe the next one) to generate a NOP.
8296 In any case close it off with a .fill 0. */
8297
8298 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
8299 static bfd_boolean branch_before_loop_end (fragS *);
8300
8301 static void
8302 xtensa_fix_short_loop_frags (void)
8303 {
8304 frchainS *frchP;
8305 asection *s;
8306
8307 /* When this routine is called, all of the subsections are still intact
8308 so we walk over subsections instead of sections. */
8309 for (s = stdoutput->sections; s; s = s->next)
8310 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8311 {
8312 fragS *fragP;
8313 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
8314
8315 /* Walk over all of the fragments in a subsection. */
8316 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8317 {
8318 if (fragP->fr_type == rs_machine_dependent
8319 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
8320 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
8321 {
8322 TInsn t_insn;
8323 fragS *loop_frag = next_non_empty_frag (fragP);
8324 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
8325 current_opcode = t_insn.opcode;
8326 gas_assert (xtensa_opcode_is_loop (xtensa_default_isa,
8327 current_opcode) == 1);
8328 }
8329
8330 if (fragP->fr_type == rs_machine_dependent
8331 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8332 {
8333 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
8334 && (branch_before_loop_end (fragP->fr_next)
8335 || (workaround_all_short_loops
8336 && current_opcode != XTENSA_UNDEFINED
8337 && current_opcode != xtensa_loop_opcode)))
8338 {
8339 if (fragP->tc_frag_data.is_no_transform)
8340 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
8341 else
8342 relax_frag_add_nop (fragP);
8343 }
8344 frag_wane (fragP);
8345 }
8346 }
8347 }
8348 }
8349
8350
8351 static int unrelaxed_frag_min_insn_count (fragS *);
8352
8353 static int
8354 count_insns_to_loop_end (fragS *base_fragP,
8355 bfd_boolean count_relax_add,
8356 int max_count)
8357 {
8358 fragS *fragP = NULL;
8359 int insn_count = 0;
8360
8361 fragP = base_fragP;
8362
8363 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
8364 {
8365 insn_count += unrelaxed_frag_min_insn_count (fragP);
8366 if (insn_count >= max_count)
8367 return max_count;
8368
8369 if (count_relax_add)
8370 {
8371 if (fragP->fr_type == rs_machine_dependent
8372 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8373 {
8374 /* In order to add the appropriate number of
8375 NOPs, we count an instruction for downstream
8376 occurrences. */
8377 insn_count++;
8378 if (insn_count >= max_count)
8379 return max_count;
8380 }
8381 }
8382 }
8383 return insn_count;
8384 }
8385
8386
8387 static int
8388 unrelaxed_frag_min_insn_count (fragS *fragP)
8389 {
8390 xtensa_isa isa = xtensa_default_isa;
8391 static xtensa_insnbuf insnbuf = NULL;
8392 int insn_count = 0;
8393 int offset = 0;
8394
8395 if (!fragP->tc_frag_data.is_insn)
8396 return insn_count;
8397
8398 if (!insnbuf)
8399 insnbuf = xtensa_insnbuf_alloc (isa);
8400
8401 /* Decode the fixed instructions. */
8402 while (offset < fragP->fr_fix)
8403 {
8404 xtensa_format fmt;
8405
8406 xtensa_insnbuf_from_chars
8407 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
8408 fmt = xtensa_format_decode (isa, insnbuf);
8409
8410 if (fmt == XTENSA_UNDEFINED)
8411 {
8412 as_fatal (_("undecodable instruction in instruction frag"));
8413 return insn_count;
8414 }
8415 offset += xtensa_format_length (isa, fmt);
8416 insn_count++;
8417 }
8418
8419 return insn_count;
8420 }
8421
8422
8423 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
8424
8425 static bfd_boolean
8426 branch_before_loop_end (fragS *base_fragP)
8427 {
8428 fragS *fragP;
8429
8430 for (fragP = base_fragP;
8431 fragP && !fragP->tc_frag_data.is_loop_target;
8432 fragP = fragP->fr_next)
8433 {
8434 if (unrelaxed_frag_has_b_j (fragP))
8435 return TRUE;
8436 }
8437 return FALSE;
8438 }
8439
8440
8441 static bfd_boolean
8442 unrelaxed_frag_has_b_j (fragS *fragP)
8443 {
8444 static xtensa_insnbuf insnbuf = NULL;
8445 xtensa_isa isa = xtensa_default_isa;
8446 int offset = 0;
8447
8448 if (!fragP->tc_frag_data.is_insn)
8449 return FALSE;
8450
8451 if (!insnbuf)
8452 insnbuf = xtensa_insnbuf_alloc (isa);
8453
8454 /* Decode the fixed instructions. */
8455 while (offset < fragP->fr_fix)
8456 {
8457 xtensa_format fmt;
8458 int slot;
8459
8460 xtensa_insnbuf_from_chars
8461 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
8462 fmt = xtensa_format_decode (isa, insnbuf);
8463 if (fmt == XTENSA_UNDEFINED)
8464 return FALSE;
8465
8466 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8467 {
8468 xtensa_opcode opcode =
8469 get_opcode_from_buf (fragP->fr_literal + offset, slot);
8470 if (xtensa_opcode_is_branch (isa, opcode) == 1
8471 || xtensa_opcode_is_jump (isa, opcode) == 1)
8472 return TRUE;
8473 }
8474 offset += xtensa_format_length (isa, fmt);
8475 }
8476 return FALSE;
8477 }
8478
8479
8480 /* Checks to be made after initial assembly but before relaxation. */
8481
8482 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
8483 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
8484
8485 static void
8486 xtensa_sanity_check (void)
8487 {
8488 const char *file_name;
8489 unsigned line;
8490 frchainS *frchP;
8491 asection *s;
8492
8493 file_name = as_where (&line);
8494 for (s = stdoutput->sections; s; s = s->next)
8495 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8496 {
8497 fragS *fragP;
8498
8499 /* Walk over all of the fragments in a subsection. */
8500 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8501 {
8502 if (fragP->fr_type == rs_machine_dependent
8503 && fragP->fr_subtype == RELAX_SLOTS
8504 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
8505 {
8506 static xtensa_insnbuf insnbuf = NULL;
8507 TInsn t_insn;
8508
8509 if (fragP->fr_opcode != NULL)
8510 {
8511 if (!insnbuf)
8512 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
8513 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
8514 tinsn_immed_from_frag (&t_insn, fragP, 0);
8515
8516 if (xtensa_opcode_is_loop (xtensa_default_isa,
8517 t_insn.opcode) == 1)
8518 {
8519 if (is_empty_loop (&t_insn, fragP))
8520 {
8521 new_logical_line (fragP->fr_file, fragP->fr_line);
8522 as_bad (_("invalid empty loop"));
8523 }
8524 if (!is_local_forward_loop (&t_insn, fragP))
8525 {
8526 new_logical_line (fragP->fr_file, fragP->fr_line);
8527 as_bad (_("loop target does not follow "
8528 "loop instruction in section"));
8529 }
8530 }
8531 }
8532 }
8533 }
8534 }
8535 new_logical_line (file_name, line);
8536 }
8537
8538
8539 #define LOOP_IMMED_OPN 1
8540
8541 /* Return TRUE if the loop target is the next non-zero fragment. */
8542
8543 static bfd_boolean
8544 is_empty_loop (const TInsn *insn, fragS *fragP)
8545 {
8546 const expressionS *exp;
8547 symbolS *symbolP;
8548 fragS *next_fragP;
8549
8550 if (insn->insn_type != ITYPE_INSN)
8551 return FALSE;
8552
8553 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8554 return FALSE;
8555
8556 if (insn->ntok <= LOOP_IMMED_OPN)
8557 return FALSE;
8558
8559 exp = &insn->tok[LOOP_IMMED_OPN];
8560
8561 if (exp->X_op != O_symbol)
8562 return FALSE;
8563
8564 symbolP = exp->X_add_symbol;
8565 if (!symbolP)
8566 return FALSE;
8567
8568 if (symbol_get_frag (symbolP) == NULL)
8569 return FALSE;
8570
8571 if (S_GET_VALUE (symbolP) != 0)
8572 return FALSE;
8573
8574 /* Walk through the zero-size fragments from this one. If we find
8575 the target fragment, then this is a zero-size loop. */
8576
8577 for (next_fragP = fragP->fr_next;
8578 next_fragP != NULL;
8579 next_fragP = next_fragP->fr_next)
8580 {
8581 if (next_fragP == symbol_get_frag (symbolP))
8582 return TRUE;
8583 if (next_fragP->fr_fix != 0)
8584 return FALSE;
8585 }
8586 return FALSE;
8587 }
8588
8589
8590 static bfd_boolean
8591 is_local_forward_loop (const TInsn *insn, fragS *fragP)
8592 {
8593 const expressionS *exp;
8594 symbolS *symbolP;
8595 fragS *next_fragP;
8596
8597 if (insn->insn_type != ITYPE_INSN)
8598 return FALSE;
8599
8600 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8601 return FALSE;
8602
8603 if (insn->ntok <= LOOP_IMMED_OPN)
8604 return FALSE;
8605
8606 exp = &insn->tok[LOOP_IMMED_OPN];
8607
8608 if (exp->X_op != O_symbol)
8609 return FALSE;
8610
8611 symbolP = exp->X_add_symbol;
8612 if (!symbolP)
8613 return FALSE;
8614
8615 if (symbol_get_frag (symbolP) == NULL)
8616 return FALSE;
8617
8618 /* Walk through fragments until we find the target.
8619 If we do not find the target, then this is an invalid loop. */
8620
8621 for (next_fragP = fragP->fr_next;
8622 next_fragP != NULL;
8623 next_fragP = next_fragP->fr_next)
8624 {
8625 if (next_fragP == symbol_get_frag (symbolP))
8626 return TRUE;
8627 }
8628
8629 return FALSE;
8630 }
8631
8632
8633 #define XTINFO_NAME "Xtensa_Info"
8634 #define XTINFO_NAMESZ 12
8635 #define XTINFO_TYPE 1
8636
8637 static void
8638 xtensa_add_config_info (void)
8639 {
8640 asection *info_sec;
8641 char *data, *p;
8642 int sz;
8643
8644 info_sec = subseg_new (".xtensa.info", 0);
8645 bfd_set_section_flags (stdoutput, info_sec, SEC_HAS_CONTENTS | SEC_READONLY);
8646
8647 data = xmalloc (100);
8648 sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n",
8649 XSHAL_USE_ABSOLUTE_LITERALS, XSHAL_ABI);
8650 sz = strlen (data) + 1;
8651
8652 /* Add enough null terminators to pad to a word boundary. */
8653 do
8654 data[sz++] = 0;
8655 while ((sz & 3) != 0);
8656
8657 /* Follow the standard note section layout:
8658 First write the length of the name string. */
8659 p = frag_more (4);
8660 md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4);
8661
8662 /* Next comes the length of the "descriptor", i.e., the actual data. */
8663 p = frag_more (4);
8664 md_number_to_chars (p, (valueT) sz, 4);
8665
8666 /* Write the note type. */
8667 p = frag_more (4);
8668 md_number_to_chars (p, (valueT) XTINFO_TYPE, 4);
8669
8670 /* Write the name field. */
8671 p = frag_more (XTINFO_NAMESZ);
8672 memcpy (p, XTINFO_NAME, XTINFO_NAMESZ);
8673
8674 /* Finally, write the descriptor. */
8675 p = frag_more (sz);
8676 memcpy (p, data, sz);
8677
8678 free (data);
8679 }
8680
8681 \f
8682 /* Alignment Functions. */
8683
8684 static int
8685 get_text_align_power (unsigned target_size)
8686 {
8687 if (target_size <= 4)
8688 return 2;
8689
8690 if (target_size <= 8)
8691 return 3;
8692
8693 if (target_size <= 16)
8694 return 4;
8695
8696 if (target_size <= 32)
8697 return 5;
8698
8699 if (target_size <= 64)
8700 return 6;
8701
8702 if (target_size <= 128)
8703 return 7;
8704
8705 if (target_size <= 256)
8706 return 8;
8707
8708 if (target_size <= 512)
8709 return 9;
8710
8711 if (target_size <= 1024)
8712 return 10;
8713
8714 gas_assert (0);
8715 return 0;
8716 }
8717
8718
8719 static int
8720 get_text_align_max_fill_size (int align_pow,
8721 bfd_boolean use_nops,
8722 bfd_boolean use_no_density)
8723 {
8724 if (!use_nops)
8725 return (1 << align_pow);
8726 if (use_no_density)
8727 return 3 * (1 << align_pow);
8728
8729 return 1 + (1 << align_pow);
8730 }
8731
8732
8733 /* Calculate the minimum bytes of fill needed at "address" to align a
8734 target instruction of size "target_size" so that it does not cross a
8735 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
8736 the fill can be an arbitrary number of bytes. Otherwise, the space must
8737 be filled by NOP instructions. */
8738
8739 static int
8740 get_text_align_fill_size (addressT address,
8741 int align_pow,
8742 int target_size,
8743 bfd_boolean use_nops,
8744 bfd_boolean use_no_density)
8745 {
8746 addressT alignment, fill, fill_limit, fill_step;
8747 bfd_boolean skip_one = FALSE;
8748
8749 alignment = (1 << align_pow);
8750 gas_assert (target_size > 0 && alignment >= (addressT) target_size);
8751
8752 if (!use_nops)
8753 {
8754 fill_limit = alignment;
8755 fill_step = 1;
8756 }
8757 else if (!use_no_density)
8758 {
8759 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
8760 fill_limit = alignment * 2;
8761 fill_step = 1;
8762 skip_one = TRUE;
8763 }
8764 else
8765 {
8766 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
8767 fill_limit = alignment * 3;
8768 fill_step = 3;
8769 }
8770
8771 /* Try all fill sizes until finding one that works. */
8772 for (fill = 0; fill < fill_limit; fill += fill_step)
8773 {
8774 if (skip_one && fill == 1)
8775 continue;
8776 if ((address + fill) >> align_pow
8777 == (address + fill + target_size - 1) >> align_pow)
8778 return fill;
8779 }
8780 gas_assert (0);
8781 return 0;
8782 }
8783
8784
8785 static int
8786 branch_align_power (segT sec)
8787 {
8788 /* If the Xtensa processor has a fetch width of X, and
8789 the section is aligned to at least that boundary, then a branch
8790 target need only fit within that aligned block of memory to avoid
8791 a stall. Otherwise, try to fit branch targets within 4-byte
8792 aligned blocks (which may be insufficient, e.g., if the section
8793 has no alignment, but it's good enough). */
8794 int fetch_align = get_text_align_power(xtensa_fetch_width);
8795 int sec_align = get_recorded_alignment (sec);
8796
8797 if (sec_align >= fetch_align)
8798 return fetch_align;
8799
8800 return 2;
8801 }
8802
8803
8804 /* This will assert if it is not possible. */
8805
8806 static int
8807 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
8808 {
8809 int count = 0;
8810
8811 if (use_no_density)
8812 {
8813 gas_assert (fill_size % 3 == 0);
8814 return (fill_size / 3);
8815 }
8816
8817 gas_assert (fill_size != 1); /* Bad argument. */
8818
8819 while (fill_size > 1)
8820 {
8821 int insn_size = 3;
8822 if (fill_size == 2 || fill_size == 4)
8823 insn_size = 2;
8824 fill_size -= insn_size;
8825 count++;
8826 }
8827 gas_assert (fill_size != 1); /* Bad algorithm. */
8828 return count;
8829 }
8830
8831
8832 static int
8833 get_text_align_nth_nop_size (offsetT fill_size,
8834 int n,
8835 bfd_boolean use_no_density)
8836 {
8837 int count = 0;
8838
8839 if (use_no_density)
8840 return 3;
8841
8842 gas_assert (fill_size != 1); /* Bad argument. */
8843
8844 while (fill_size > 1)
8845 {
8846 int insn_size = 3;
8847 if (fill_size == 2 || fill_size == 4)
8848 insn_size = 2;
8849 fill_size -= insn_size;
8850 count++;
8851 if (n + 1 == count)
8852 return insn_size;
8853 }
8854 gas_assert (0);
8855 return 0;
8856 }
8857
8858
8859 /* For the given fragment, find the appropriate address
8860 for it to begin at if we are using NOPs to align it. */
8861
8862 static addressT
8863 get_noop_aligned_address (fragS *fragP, addressT address)
8864 {
8865 /* The rule is: get next fragment's FIRST instruction. Find
8866 the smallest number of bytes that need to be added to
8867 ensure that the next fragment's FIRST instruction will fit
8868 in a single word.
8869
8870 E.G., 2 bytes : 0, 1, 2 mod 4
8871 3 bytes: 0, 1 mod 4
8872
8873 If the FIRST instruction MIGHT be relaxed,
8874 assume that it will become a 3-byte instruction.
8875
8876 Note again here that LOOP instructions are not bundleable,
8877 and this relaxation only applies to LOOP opcodes. */
8878
8879 int fill_size = 0;
8880 int first_insn_size;
8881 int loop_insn_size;
8882 addressT pre_opcode_bytes;
8883 int align_power;
8884 fragS *first_insn;
8885 xtensa_opcode opcode;
8886 bfd_boolean is_loop;
8887
8888 gas_assert (fragP->fr_type == rs_machine_dependent);
8889 gas_assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
8890
8891 /* Find the loop frag. */
8892 first_insn = next_non_empty_frag (fragP);
8893 /* Now find the first insn frag. */
8894 first_insn = next_non_empty_frag (first_insn);
8895
8896 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
8897 gas_assert (is_loop);
8898 loop_insn_size = xg_get_single_size (opcode);
8899
8900 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
8901 pre_opcode_bytes += loop_insn_size;
8902
8903 /* For loops, the alignment depends on the size of the
8904 instruction following the loop, not the LOOP instruction. */
8905
8906 if (first_insn == NULL)
8907 first_insn_size = xtensa_fetch_width;
8908 else
8909 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
8910
8911 /* If it was 8, then we'll need a larger alignment for the section. */
8912 align_power = get_text_align_power (first_insn_size);
8913 record_alignment (now_seg, align_power);
8914
8915 fill_size = get_text_align_fill_size
8916 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
8917 fragP->tc_frag_data.is_no_density);
8918
8919 return address + fill_size;
8920 }
8921
8922
8923 /* 3 mechanisms for relaxing an alignment:
8924
8925 Align to a power of 2.
8926 Align so the next fragment's instruction does not cross a word boundary.
8927 Align the current instruction so that if the next instruction
8928 were 3 bytes, it would not cross a word boundary.
8929
8930 We can align with:
8931
8932 zeros - This is easy; always insert zeros.
8933 nops - 3-byte and 2-byte instructions
8934 2 - 2-byte nop
8935 3 - 3-byte nop
8936 4 - 2 2-byte nops
8937 >=5 : 3-byte instruction + fn (n-3)
8938 widening - widen previous instructions. */
8939
8940 static offsetT
8941 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
8942 {
8943 addressT target_address, loop_insn_offset;
8944 int target_size;
8945 xtensa_opcode loop_opcode;
8946 bfd_boolean is_loop;
8947 int align_power;
8948 offsetT opt_diff;
8949 offsetT branch_align;
8950 fragS *loop_frag;
8951
8952 gas_assert (fragP->fr_type == rs_machine_dependent);
8953 switch (fragP->fr_subtype)
8954 {
8955 case RELAX_DESIRE_ALIGN:
8956 target_size = next_frag_format_size (fragP);
8957 if (target_size == XTENSA_UNDEFINED)
8958 target_size = 3;
8959 align_power = branch_align_power (now_seg);
8960 branch_align = 1 << align_power;
8961 /* Don't count on the section alignment being as large as the target. */
8962 if (target_size > branch_align)
8963 target_size = branch_align;
8964 opt_diff = get_text_align_fill_size (address, align_power,
8965 target_size, FALSE, FALSE);
8966
8967 *max_diff = (opt_diff + branch_align
8968 - (target_size + ((address + opt_diff) % branch_align)));
8969 gas_assert (*max_diff >= opt_diff);
8970 return opt_diff;
8971
8972 case RELAX_ALIGN_NEXT_OPCODE:
8973 /* The next non-empty frag after this one holds the LOOP instruction
8974 that needs to be aligned. The required alignment depends on the
8975 size of the next non-empty frag after the loop frag, i.e., the
8976 first instruction in the loop. */
8977 loop_frag = next_non_empty_frag (fragP);
8978 target_size = get_loop_align_size (next_frag_format_size (loop_frag));
8979 loop_insn_offset = 0;
8980 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
8981 gas_assert (is_loop);
8982
8983 /* If the loop has been expanded then the LOOP instruction
8984 could be at an offset from this fragment. */
8985 if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED)
8986 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
8987
8988 /* In an ideal world, which is what we are shooting for here,
8989 we wouldn't need to use any NOPs immediately prior to the
8990 LOOP instruction. If this approach fails, relax_frag_loop_align
8991 will call get_noop_aligned_address. */
8992 target_address =
8993 address + loop_insn_offset + xg_get_single_size (loop_opcode);
8994 align_power = get_text_align_power (target_size);
8995 opt_diff = get_text_align_fill_size (target_address, align_power,
8996 target_size, FALSE, FALSE);
8997
8998 *max_diff = xtensa_fetch_width
8999 - ((target_address + opt_diff) % xtensa_fetch_width)
9000 - target_size + opt_diff;
9001 gas_assert (*max_diff >= opt_diff);
9002 return opt_diff;
9003
9004 default:
9005 break;
9006 }
9007 gas_assert (0);
9008 return 0;
9009 }
9010
9011 \f
9012 /* md_relax_frag Hook and Helper Functions. */
9013
9014 static long relax_frag_loop_align (fragS *, long);
9015 static long relax_frag_for_align (fragS *, long);
9016 static long relax_frag_immed
9017 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
9018
9019 typedef struct cached_fixup cached_fixupS;
9020 struct cached_fixup
9021 {
9022 int addr;
9023 int target;
9024 int delta;
9025 fixS *fixP;
9026 };
9027
9028 typedef struct fixup_cache fixup_cacheS;
9029 struct fixup_cache
9030 {
9031 cached_fixupS *fixups;
9032 unsigned n_fixups;
9033 unsigned n_max;
9034
9035 segT seg;
9036 fragS *first_frag;
9037 };
9038
9039 static int fixup_order (const void *a, const void *b)
9040 {
9041 const cached_fixupS *pa = a;
9042 const cached_fixupS *pb = b;
9043
9044 if (pa->addr == pb->addr)
9045 {
9046 if (pa->target == pb->target)
9047 {
9048 if (pa->fixP->fx_r_type == pb->fixP->fx_r_type)
9049 return 0;
9050 return pa->fixP->fx_r_type < pb->fixP->fx_r_type ? -1 : 1;
9051 }
9052 return pa->target - pb->target;
9053 }
9054 return pa->addr - pb->addr;
9055 }
9056
9057 static bfd_boolean xtensa_make_cached_fixup (cached_fixupS *o, fixS *fixP)
9058 {
9059 xtensa_isa isa = xtensa_default_isa;
9060 int addr = fixP->fx_frag->fr_address;
9061 int target;
9062 int delta;
9063 symbolS *s = fixP->fx_addsy;
9064 int slot;
9065 xtensa_format fmt;
9066 xtensa_opcode opcode;
9067
9068 if (fixP->fx_r_type < BFD_RELOC_XTENSA_SLOT0_OP ||
9069 fixP->fx_r_type > BFD_RELOC_XTENSA_SLOT14_OP)
9070 return FALSE;
9071 target = S_GET_VALUE (s);
9072 delta = target - addr;
9073
9074 if (abs(delta) < J_RANGE / 2)
9075 return FALSE;
9076
9077 xtensa_insnbuf_from_chars (isa, trampoline_buf,
9078 (unsigned char *) fixP->fx_frag->fr_literal +
9079 fixP->fx_where, 0);
9080 fmt = xtensa_format_decode (isa, trampoline_buf);
9081 gas_assert (fmt != XTENSA_UNDEFINED);
9082 slot = fixP->tc_fix_data.slot;
9083 xtensa_format_get_slot (isa, fmt, slot, trampoline_buf, trampoline_slotbuf);
9084 opcode = xtensa_opcode_decode (isa, fmt, slot, trampoline_slotbuf);
9085 if (opcode != xtensa_j_opcode)
9086 return FALSE;
9087
9088 o->addr = addr;
9089 o->target = target;
9090 o->delta = delta;
9091 o->fixP = fixP;
9092
9093 return TRUE;
9094 }
9095
9096 static void xtensa_realloc_fixup_cache (fixup_cacheS *cache, unsigned add)
9097 {
9098 if (cache->n_fixups + add > cache->n_max)
9099 {
9100 cache->n_max = (cache->n_fixups + add) * 2;
9101 cache->fixups = xrealloc (cache->fixups,
9102 sizeof (*cache->fixups) * cache->n_max);
9103 }
9104 }
9105
9106 static void xtensa_cache_relaxable_fixups (fixup_cacheS *cache,
9107 segment_info_type *seginfo)
9108 {
9109 fixS *fixP;
9110
9111 cache->n_fixups = 0;
9112
9113 for (fixP = seginfo->fix_root; fixP ; fixP = fixP->fx_next)
9114 {
9115 xtensa_realloc_fixup_cache (cache, 1);
9116
9117 if (xtensa_make_cached_fixup (cache->fixups + cache->n_fixups, fixP))
9118 ++cache->n_fixups;
9119 }
9120 qsort (cache->fixups, cache->n_fixups, sizeof (*cache->fixups), fixup_order);
9121 }
9122
9123 static unsigned xtensa_find_first_cached_fixup (const fixup_cacheS *cache,
9124 int addr)
9125 {
9126 unsigned a = 0;
9127 unsigned b = cache->n_fixups;
9128
9129 while (b - a > 1)
9130 {
9131 unsigned c = (a + b) / 2;
9132
9133 if (cache->fixups[c].addr < addr)
9134 a = c;
9135 else
9136 b = c;
9137 }
9138 return a;
9139 }
9140
9141 static void xtensa_delete_cached_fixup (fixup_cacheS *cache, unsigned i)
9142 {
9143 memmove (cache->fixups + i, cache->fixups + i + 1,
9144 (cache->n_fixups - i - 1) * sizeof (*cache->fixups));
9145 --cache->n_fixups;
9146 }
9147
9148 static bfd_boolean xtensa_add_cached_fixup (fixup_cacheS *cache, fixS *fixP)
9149 {
9150 cached_fixupS o;
9151 unsigned i;
9152
9153 if (!xtensa_make_cached_fixup (&o, fixP))
9154 return FALSE;
9155 xtensa_realloc_fixup_cache (cache, 1);
9156 i = xtensa_find_first_cached_fixup (cache, o.addr);
9157 if (i < cache->n_fixups)
9158 {
9159 ++i;
9160 memmove (cache->fixups + i + 1, cache->fixups + i,
9161 (cache->n_fixups - i) * sizeof (*cache->fixups));
9162 }
9163 cache->fixups[i] = o;
9164 ++cache->n_fixups;
9165 return TRUE;
9166 }
9167
9168 /* Return the number of bytes added to this fragment, given that the
9169 input has been stretched already by "stretch". */
9170
9171 long
9172 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
9173 {
9174 xtensa_isa isa = xtensa_default_isa;
9175 int unreported = fragP->tc_frag_data.unreported_expansion;
9176 long new_stretch = 0;
9177 const char *file_name;
9178 unsigned line;
9179 int lit_size;
9180 static xtensa_insnbuf vbuf = NULL;
9181 int slot, num_slots;
9182 xtensa_format fmt;
9183
9184 file_name = as_where (&line);
9185 new_logical_line (fragP->fr_file, fragP->fr_line);
9186
9187 fragP->tc_frag_data.unreported_expansion = 0;
9188
9189 switch (fragP->fr_subtype)
9190 {
9191 case RELAX_ALIGN_NEXT_OPCODE:
9192 /* Always convert. */
9193 if (fragP->tc_frag_data.relax_seen)
9194 new_stretch = relax_frag_loop_align (fragP, stretch);
9195 break;
9196
9197 case RELAX_LOOP_END:
9198 /* Do nothing. */
9199 break;
9200
9201 case RELAX_LOOP_END_ADD_NOP:
9202 /* Add a NOP and switch to .fill 0. */
9203 new_stretch = relax_frag_add_nop (fragP);
9204 frag_wane (fragP);
9205 break;
9206
9207 case RELAX_DESIRE_ALIGN:
9208 /* Do nothing. The narrowing before this frag will either align
9209 it or not. */
9210 break;
9211
9212 case RELAX_LITERAL:
9213 case RELAX_LITERAL_FINAL:
9214 return 0;
9215
9216 case RELAX_LITERAL_NR:
9217 lit_size = 4;
9218 fragP->fr_subtype = RELAX_LITERAL_FINAL;
9219 gas_assert (unreported == lit_size);
9220 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
9221 fragP->fr_var -= lit_size;
9222 fragP->fr_fix += lit_size;
9223 new_stretch = 4;
9224 break;
9225
9226 case RELAX_SLOTS:
9227 if (vbuf == NULL)
9228 vbuf = xtensa_insnbuf_alloc (isa);
9229
9230 xtensa_insnbuf_from_chars
9231 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
9232 fmt = xtensa_format_decode (isa, vbuf);
9233 num_slots = xtensa_format_num_slots (isa, fmt);
9234
9235 for (slot = 0; slot < num_slots; slot++)
9236 {
9237 switch (fragP->tc_frag_data.slot_subtypes[slot])
9238 {
9239 case RELAX_NARROW:
9240 if (fragP->tc_frag_data.relax_seen)
9241 new_stretch += relax_frag_for_align (fragP, stretch);
9242 break;
9243
9244 case RELAX_IMMED:
9245 case RELAX_IMMED_STEP1:
9246 case RELAX_IMMED_STEP2:
9247 case RELAX_IMMED_STEP3:
9248 /* Place the immediate. */
9249 new_stretch += relax_frag_immed
9250 (now_seg, fragP, stretch,
9251 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
9252 fmt, slot, stretched_p, FALSE);
9253 break;
9254
9255 default:
9256 /* This is OK; see the note in xg_assemble_vliw_tokens. */
9257 break;
9258 }
9259 }
9260 break;
9261
9262 case RELAX_LITERAL_POOL_BEGIN:
9263 if (fragP->fr_var != 0)
9264 {
9265 /* We have a converted "candidate" literal pool;
9266 assemble a jump around it. */
9267 TInsn insn;
9268 if (!litpool_slotbuf)
9269 {
9270 litpool_buf = xtensa_insnbuf_alloc (isa);
9271 litpool_slotbuf = xtensa_insnbuf_alloc (isa);
9272 }
9273 new_stretch += 3;
9274 fragP->tc_frag_data.relax_seen = FALSE; /* Need another pass. */
9275 fragP->tc_frag_data.is_insn = TRUE;
9276 tinsn_init (&insn);
9277 insn.insn_type = ITYPE_INSN;
9278 insn.opcode = xtensa_j_opcode;
9279 insn.ntok = 1;
9280 set_expr_symbol_offset (&insn.tok[0], fragP->fr_symbol,
9281 fragP->fr_fix);
9282 fmt = xg_get_single_format (xtensa_j_opcode);
9283 tinsn_to_slotbuf (fmt, 0, &insn, litpool_slotbuf);
9284 xtensa_format_set_slot (isa, fmt, 0, litpool_buf, litpool_slotbuf);
9285 xtensa_insnbuf_to_chars (isa, litpool_buf,
9286 (unsigned char *)fragP->fr_literal +
9287 fragP->fr_fix, 3);
9288 fragP->fr_fix += 3;
9289 fragP->fr_var -= 3;
9290 /* Add a fix-up. */
9291 fix_new (fragP, 0, 3, fragP->fr_symbol, 0, TRUE,
9292 BFD_RELOC_XTENSA_SLOT0_OP);
9293 }
9294 break;
9295
9296 case RELAX_LITERAL_POOL_END:
9297 case RELAX_LITERAL_POOL_CANDIDATE_BEGIN:
9298 case RELAX_MAYBE_UNREACHABLE:
9299 case RELAX_MAYBE_DESIRE_ALIGN:
9300 /* No relaxation required. */
9301 break;
9302
9303 case RELAX_FILL_NOP:
9304 case RELAX_UNREACHABLE:
9305 if (fragP->tc_frag_data.relax_seen)
9306 new_stretch += relax_frag_for_align (fragP, stretch);
9307 break;
9308
9309 case RELAX_TRAMPOLINE:
9310 if (fragP->tc_frag_data.relax_seen)
9311 {
9312 static fixup_cacheS fixup_cache;
9313 segment_info_type *seginfo = seg_info (now_seg);
9314 int trampaddr = fragP->fr_address + fragP->fr_fix;
9315 int searchaddr = trampaddr < J_RANGE ? 0 : trampaddr - J_RANGE;
9316 unsigned i;
9317
9318 if (now_seg != fixup_cache.seg ||
9319 fragP == fixup_cache.first_frag ||
9320 fixup_cache.first_frag == NULL)
9321 {
9322 xtensa_cache_relaxable_fixups (&fixup_cache, seginfo);
9323 fixup_cache.seg = now_seg;
9324 fixup_cache.first_frag = fragP;
9325 }
9326
9327 /* Scan for jumps that will not reach. */
9328 for (i = xtensa_find_first_cached_fixup (&fixup_cache, searchaddr);
9329 i < fixup_cache.n_fixups; ++i)
9330
9331 {
9332 fixS *fixP = fixup_cache.fixups[i].fixP;
9333 int target = fixup_cache.fixups[i].target;
9334 int addr = fixup_cache.fixups[i].addr;
9335 int delta = fixup_cache.fixups[i].delta + stretch;
9336
9337 trampaddr = fragP->fr_address + fragP->fr_fix;
9338
9339 if (addr + J_RANGE < trampaddr)
9340 continue;
9341 if (addr > trampaddr + J_RANGE)
9342 break;
9343 if (abs (delta) < J_RANGE)
9344 continue;
9345
9346 slot = fixP->tc_fix_data.slot;
9347
9348 if (delta > J_RANGE || delta < -1 * J_RANGE)
9349 { /* Found an out-of-range jump; scan the list of trampolines for the best match. */
9350 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9351 struct trampoline_frag *tf = ts->trampoline_list.next;
9352 struct trampoline_frag *prev = &ts->trampoline_list;
9353 int lower = (target < addr) ? target : addr;
9354 int upper = (target > addr) ? target : addr;
9355 int midpoint = lower + (upper - lower) / 2;
9356
9357 if ((upper - lower) > 2 * J_RANGE)
9358 {
9359 /* One trampoline won't suffice; we need multiple jumps.
9360 Jump to the trampoline that's farthest, but still in
9361 range relative to the original "j" instruction. */
9362 for ( ; tf; prev = tf, tf = tf->next )
9363 {
9364 int this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9365 int next_addr = (tf->next) ? tf->next->fragP->fr_address + tf->next->fragP->fr_fix : 0 ;
9366
9367 if (addr == lower)
9368 {
9369 /* Forward jump. */
9370 if (this_addr - addr < J_RANGE)
9371 break;
9372 }
9373 else
9374 {
9375 /* Backward jump. */
9376 if (next_addr == 0 || addr - next_addr > J_RANGE)
9377 break;
9378 }
9379 }
9380 }
9381 else
9382 {
9383 struct trampoline_frag *best_tf = NULL;
9384 int best_delta = 0;
9385
9386 for ( ; tf; prev = tf, tf = tf->next )
9387 {
9388 int this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9389 int this_delta = abs (this_addr - midpoint);
9390
9391 if (!best_tf || this_delta < best_delta)
9392 {
9393 best_tf = tf;
9394 best_delta = this_delta;
9395 }
9396 }
9397 tf = best_tf;
9398 }
9399 if (tf->fragP == fragP)
9400 {
9401 if (abs (addr - trampaddr) < J_RANGE)
9402 { /* The trampoline is in range of original; fix it! */
9403 fixS *newfixP;
9404 int offset;
9405 TInsn insn;
9406 symbolS *lsym;
9407 fragS *fP; /* The out-of-range jump. */
9408
9409 new_stretch += init_trampoline_frag (tf);
9410 offset = fragP->fr_fix; /* Where to assemble the j insn. */
9411 lsym = fragP->fr_symbol;
9412 fP = fixP->fx_frag;
9413 /* Assemble a jump to the target label here. */
9414 tinsn_init (&insn);
9415 insn.insn_type = ITYPE_INSN;
9416 insn.opcode = xtensa_j_opcode;
9417 insn.ntok = 1;
9418 set_expr_symbol_offset (&insn.tok[0], lsym, offset);
9419 fmt = xg_get_single_format (xtensa_j_opcode);
9420 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
9421 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
9422 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)fragP->fr_literal + offset, 3);
9423 fragP->fr_fix += 3;
9424 fragP->fr_var -= 3;
9425 /* Add a fix-up for the original j insn. */
9426 newfixP = fix_new (fP, fixP->fx_where, fixP->fx_size, lsym, fragP->fr_fix - 3, TRUE, fixP->fx_r_type);
9427 newfixP->fx_no_overflow = 1;
9428 newfixP->tc_fix_data.X_add_symbol = lsym;
9429 newfixP->tc_fix_data.X_add_number = offset;
9430 newfixP->tc_fix_data.slot = slot;
9431
9432 xtensa_delete_cached_fixup (&fixup_cache, i);
9433 xtensa_add_cached_fixup (&fixup_cache, newfixP);
9434
9435 /* Move the fix-up from the original j insn to this one. */
9436 fixP->fx_frag = fragP;
9437 fixP->fx_where = fragP->fr_fix - 3;
9438 fixP->tc_fix_data.slot = 0;
9439
9440 xtensa_add_cached_fixup (&fixup_cache, fixP);
9441
9442 /* re-do current fixup */
9443 --i;
9444
9445 /* Adjust the jump around this trampoline (if present). */
9446 if (tf->fixP != NULL)
9447 {
9448 tf->fixP->fx_offset += 3;
9449 }
9450 new_stretch += 3;
9451 fragP->tc_frag_data.relax_seen = FALSE; /* Need another pass. */
9452 /* Do we have room for more? */
9453 if (fragP->fr_var < 3)
9454 { /* No, convert to fill. */
9455 frag_wane (fragP);
9456 fragP->fr_subtype = 0;
9457 /* Remove from the trampoline_list. */
9458 prev->next = tf->next;
9459 if (fragP == fixup_cache.first_frag)
9460 fixup_cache.first_frag = NULL;
9461 break;
9462 }
9463 }
9464 }
9465 }
9466 }
9467 }
9468 break;
9469
9470 default:
9471 as_bad (_("bad relaxation state"));
9472 }
9473
9474 /* Tell gas we need another relaxation pass. */
9475 if (! fragP->tc_frag_data.relax_seen)
9476 {
9477 fragP->tc_frag_data.relax_seen = TRUE;
9478 *stretched_p = 1;
9479 }
9480
9481 new_logical_line (file_name, line);
9482 return new_stretch;
9483 }
9484
9485
9486 static long
9487 relax_frag_loop_align (fragS *fragP, long stretch)
9488 {
9489 addressT old_address, old_next_address, old_size;
9490 addressT new_address, new_next_address, new_size;
9491 addressT growth;
9492
9493 /* All the frags with relax_frag_for_alignment prior to this one in the
9494 section have been done, hopefully eliminating the need for a NOP here.
9495 But, this will put it in if necessary. */
9496
9497 /* Calculate the old address of this fragment and the next fragment. */
9498 old_address = fragP->fr_address - stretch;
9499 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
9500 fragP->tc_frag_data.text_expansion[0]);
9501 old_size = old_next_address - old_address;
9502
9503 /* Calculate the new address of this fragment and the next fragment. */
9504 new_address = fragP->fr_address;
9505 new_next_address =
9506 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
9507 new_size = new_next_address - new_address;
9508
9509 growth = new_size - old_size;
9510
9511 /* Fix up the text_expansion field and return the new growth. */
9512 fragP->tc_frag_data.text_expansion[0] += growth;
9513 return growth;
9514 }
9515
9516
9517 /* Add a NOP instruction. */
9518
9519 static long
9520 relax_frag_add_nop (fragS *fragP)
9521 {
9522 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
9523 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
9524 assemble_nop (length, nop_buf);
9525 fragP->tc_frag_data.is_insn = TRUE;
9526
9527 if (fragP->fr_var < length)
9528 {
9529 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
9530 return 0;
9531 }
9532
9533 fragP->fr_fix += length;
9534 fragP->fr_var -= length;
9535 return length;
9536 }
9537
9538
9539 static long future_alignment_required (fragS *, long);
9540
9541 static long
9542 relax_frag_for_align (fragS *fragP, long stretch)
9543 {
9544 /* Overview of the relaxation procedure for alignment:
9545 We can widen with NOPs or by widening instructions or by filling
9546 bytes after jump instructions. Find the opportune places and widen
9547 them if necessary. */
9548
9549 long stretch_me;
9550 long diff;
9551
9552 gas_assert (fragP->fr_subtype == RELAX_FILL_NOP
9553 || fragP->fr_subtype == RELAX_UNREACHABLE
9554 || (fragP->fr_subtype == RELAX_SLOTS
9555 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
9556
9557 stretch_me = future_alignment_required (fragP, stretch);
9558 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
9559 if (diff == 0)
9560 return 0;
9561
9562 if (diff < 0)
9563 {
9564 /* We expanded on a previous pass. Can we shrink now? */
9565 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
9566 if (shrink <= stretch && stretch > 0)
9567 {
9568 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9569 return -shrink;
9570 }
9571 return 0;
9572 }
9573
9574 /* Below here, diff > 0. */
9575 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9576
9577 return diff;
9578 }
9579
9580
9581 /* Return the address of the next frag that should be aligned.
9582
9583 By "address" we mean the address it _would_ be at if there
9584 is no action taken to align it between here and the target frag.
9585 In other words, if no narrows and no fill nops are used between
9586 here and the frag to align, _even_if_ some of the frags we use
9587 to align targets have already expanded on a previous relaxation
9588 pass.
9589
9590 Also, count each frag that may be used to help align the target.
9591
9592 Return 0 if there are no frags left in the chain that need to be
9593 aligned. */
9594
9595 static addressT
9596 find_address_of_next_align_frag (fragS **fragPP,
9597 int *wide_nops,
9598 int *narrow_nops,
9599 int *widens,
9600 bfd_boolean *paddable)
9601 {
9602 fragS *fragP = *fragPP;
9603 addressT address = fragP->fr_address;
9604
9605 /* Do not reset the counts to 0. */
9606
9607 while (fragP)
9608 {
9609 /* Limit this to a small search. */
9610 if (*widens >= (int) xtensa_fetch_width)
9611 {
9612 *fragPP = fragP;
9613 return 0;
9614 }
9615 address += fragP->fr_fix;
9616
9617 if (fragP->fr_type == rs_fill)
9618 address += fragP->fr_offset * fragP->fr_var;
9619 else if (fragP->fr_type == rs_machine_dependent)
9620 {
9621 switch (fragP->fr_subtype)
9622 {
9623 case RELAX_UNREACHABLE:
9624 *paddable = TRUE;
9625 break;
9626
9627 case RELAX_FILL_NOP:
9628 (*wide_nops)++;
9629 if (!fragP->tc_frag_data.is_no_density)
9630 (*narrow_nops)++;
9631 break;
9632
9633 case RELAX_SLOTS:
9634 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9635 {
9636 (*widens)++;
9637 break;
9638 }
9639 address += total_frag_text_expansion (fragP);
9640 break;
9641
9642 case RELAX_IMMED:
9643 address += fragP->tc_frag_data.text_expansion[0];
9644 break;
9645
9646 case RELAX_ALIGN_NEXT_OPCODE:
9647 case RELAX_DESIRE_ALIGN:
9648 *fragPP = fragP;
9649 return address;
9650
9651 case RELAX_MAYBE_UNREACHABLE:
9652 case RELAX_MAYBE_DESIRE_ALIGN:
9653 /* Do nothing. */
9654 break;
9655
9656 default:
9657 /* Just punt if we don't know the type. */
9658 *fragPP = fragP;
9659 return 0;
9660 }
9661 }
9662 else
9663 {
9664 /* Just punt if we don't know the type. */
9665 *fragPP = fragP;
9666 return 0;
9667 }
9668 fragP = fragP->fr_next;
9669 }
9670
9671 *fragPP = fragP;
9672 return 0;
9673 }
9674
9675
9676 static long bytes_to_stretch (fragS *, int, int, int, int);
9677
9678 static long
9679 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
9680 {
9681 fragS *this_frag = fragP;
9682 long address;
9683 int num_widens = 0;
9684 int wide_nops = 0;
9685 int narrow_nops = 0;
9686 bfd_boolean paddable = FALSE;
9687 offsetT local_opt_diff;
9688 offsetT opt_diff;
9689 offsetT max_diff;
9690 int stretch_amount = 0;
9691 int local_stretch_amount;
9692 int global_stretch_amount;
9693
9694 address = find_address_of_next_align_frag
9695 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
9696
9697 if (!address)
9698 {
9699 if (this_frag->tc_frag_data.is_aligning_branch)
9700 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
9701 else
9702 frag_wane (this_frag);
9703 }
9704 else
9705 {
9706 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
9707 opt_diff = local_opt_diff;
9708 gas_assert (opt_diff >= 0);
9709 gas_assert (max_diff >= opt_diff);
9710 if (max_diff == 0)
9711 return 0;
9712
9713 if (fragP)
9714 fragP = fragP->fr_next;
9715
9716 while (fragP && opt_diff < max_diff && address)
9717 {
9718 /* We only use these to determine if we can exit early
9719 because there will be plenty of ways to align future
9720 align frags. */
9721 int glob_widens = 0;
9722 int dnn = 0;
9723 int dw = 0;
9724 bfd_boolean glob_pad = 0;
9725 address = find_address_of_next_align_frag
9726 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
9727 /* If there is a padable portion, then skip. */
9728 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
9729 address = 0;
9730
9731 if (address)
9732 {
9733 offsetT next_m_diff;
9734 offsetT next_o_diff;
9735
9736 /* Downrange frags haven't had stretch added to them yet. */
9737 address += stretch;
9738
9739 /* The address also includes any text expansion from this
9740 frag in a previous pass, but we don't want that. */
9741 address -= this_frag->tc_frag_data.text_expansion[0];
9742
9743 /* Assume we are going to move at least opt_diff. In
9744 reality, we might not be able to, but assuming that
9745 we will helps catch cases where moving opt_diff pushes
9746 the next target from aligned to unaligned. */
9747 address += opt_diff;
9748
9749 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
9750
9751 /* Now cleanup for the adjustments to address. */
9752 next_o_diff += opt_diff;
9753 next_m_diff += opt_diff;
9754 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
9755 opt_diff = next_o_diff;
9756 if (next_m_diff < max_diff)
9757 max_diff = next_m_diff;
9758 fragP = fragP->fr_next;
9759 }
9760 }
9761
9762 /* If there are enough wideners in between, do it. */
9763 if (paddable)
9764 {
9765 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
9766 {
9767 gas_assert (opt_diff <= (signed) xtensa_fetch_width);
9768 return opt_diff;
9769 }
9770 return 0;
9771 }
9772 local_stretch_amount
9773 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
9774 num_widens, local_opt_diff);
9775 global_stretch_amount
9776 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
9777 num_widens, opt_diff);
9778 /* If the condition below is true, then the frag couldn't
9779 stretch the correct amount for the global case, so we just
9780 optimize locally. We'll rely on the subsequent frags to get
9781 the correct alignment in the global case. */
9782 if (global_stretch_amount < local_stretch_amount)
9783 stretch_amount = local_stretch_amount;
9784 else
9785 stretch_amount = global_stretch_amount;
9786
9787 if (this_frag->fr_subtype == RELAX_SLOTS
9788 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9789 gas_assert (stretch_amount <= 1);
9790 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
9791 {
9792 if (this_frag->tc_frag_data.is_no_density)
9793 gas_assert (stretch_amount == 3 || stretch_amount == 0);
9794 else
9795 gas_assert (stretch_amount <= 3);
9796 }
9797 }
9798 return stretch_amount;
9799 }
9800
9801
9802 /* The idea: widen everything you can to get a target or loop aligned,
9803 then start using NOPs.
9804
9805 wide_nops = the number of wide NOPs available for aligning
9806 narrow_nops = the number of narrow NOPs available for aligning
9807 (a subset of wide_nops)
9808 widens = the number of narrow instructions that should be widened
9809
9810 */
9811
9812 static long
9813 bytes_to_stretch (fragS *this_frag,
9814 int wide_nops,
9815 int narrow_nops,
9816 int num_widens,
9817 int desired_diff)
9818 {
9819 int nops_needed;
9820 int nop_bytes;
9821 int extra_bytes;
9822 int bytes_short = desired_diff - num_widens;
9823
9824 gas_assert (desired_diff >= 0
9825 && desired_diff < (signed) xtensa_fetch_width);
9826 if (desired_diff == 0)
9827 return 0;
9828
9829 gas_assert (wide_nops > 0 || num_widens > 0);
9830
9831 /* Always prefer widening to NOP-filling. */
9832 if (bytes_short < 0)
9833 {
9834 /* There are enough RELAX_NARROW frags after this one
9835 to align the target without widening this frag in any way. */
9836 return 0;
9837 }
9838
9839 if (bytes_short == 0)
9840 {
9841 /* Widen every narrow between here and the align target
9842 and the align target will be properly aligned. */
9843 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9844 return 0;
9845 else
9846 return 1;
9847 }
9848
9849 /* From here we will need at least one NOP to get an alignment.
9850 However, we may not be able to align at all, in which case,
9851 don't widen. */
9852 nops_needed = desired_diff / 3;
9853
9854 /* If there aren't enough nops, don't widen. */
9855 if (nops_needed > wide_nops)
9856 return 0;
9857
9858 /* First try it with all wide nops. */
9859 nop_bytes = nops_needed * 3;
9860 extra_bytes = desired_diff - nop_bytes;
9861
9862 if (nop_bytes + num_widens >= desired_diff)
9863 {
9864 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9865 return 3;
9866 else if (num_widens == extra_bytes)
9867 return 1;
9868 return 0;
9869 }
9870
9871 /* Add a narrow nop. */
9872 nops_needed++;
9873 nop_bytes += 2;
9874 extra_bytes -= 2;
9875 if (narrow_nops == 0 || nops_needed > wide_nops)
9876 return 0;
9877
9878 if (nop_bytes + num_widens >= desired_diff && extra_bytes >= 0)
9879 {
9880 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9881 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
9882 else if (num_widens == extra_bytes)
9883 return 1;
9884 return 0;
9885 }
9886
9887 /* Replace a wide nop with a narrow nop--we can get here if
9888 extra_bytes was negative in the previous conditional. */
9889 if (narrow_nops == 1)
9890 return 0;
9891 nop_bytes--;
9892 extra_bytes++;
9893 if (nop_bytes + num_widens >= desired_diff)
9894 {
9895 if (this_frag->fr_subtype == RELAX_FILL_NOP)
9896 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
9897 else if (num_widens == extra_bytes)
9898 return 1;
9899 return 0;
9900 }
9901
9902 /* If we can't satisfy any of the above cases, then we can't align
9903 using padding or fill nops. */
9904 return 0;
9905 }
9906
9907
9908 static struct trampoline_frag *
9909 search_trampolines (TInsn *tinsn, fragS *fragP, bfd_boolean unreachable_only)
9910 {
9911 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9912 struct trampoline_frag *tf = (ts) ? ts->trampoline_list.next : NULL;
9913 struct trampoline_frag *best_tf = NULL;
9914 int best_delta = 0;
9915 int best_addr = 0;
9916 symbolS *sym = tinsn->tok[0].X_add_symbol;
9917 offsetT target = S_GET_VALUE (sym) + tinsn->tok[0].X_add_number;
9918 offsetT addr = fragP->fr_address;
9919 offsetT lower = (addr < target) ? addr : target;
9920 offsetT upper = (addr > target) ? addr : target;
9921 int delta = upper - lower;
9922 offsetT midpoint = lower + delta / 2;
9923 int this_delta = -1;
9924 int this_addr = -1;
9925
9926 if (delta > 2 * J_RANGE)
9927 {
9928 /* One trampoline won't do; we need multiple.
9929 Choose the farthest trampoline that's still in range of the original
9930 and let a later pass finish the job. */
9931 for ( ; tf; tf = tf->next)
9932 {
9933 int next_addr = (tf->next) ? tf->next->fragP->fr_address + tf->next->fragP->fr_fix : 0;
9934
9935 this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9936 if (lower == addr)
9937 {
9938 /* Forward jump. */
9939 if (this_addr - addr < J_RANGE)
9940 break;
9941 }
9942 else
9943 {
9944 /* Backward jump. */
9945 if (next_addr == 0 || addr - next_addr > J_RANGE)
9946 break;
9947 }
9948 }
9949 if (abs (addr - this_addr) < J_RANGE)
9950 return tf;
9951
9952 return NULL;
9953 }
9954 for ( ; tf; tf = tf->next)
9955 {
9956 this_addr = tf->fragP->fr_address + tf->fragP->fr_fix;
9957 this_delta = abs (this_addr - midpoint);
9958 if (unreachable_only && tf->needs_jump_around)
9959 continue;
9960 if (!best_tf || this_delta < best_delta)
9961 {
9962 best_tf = tf;
9963 best_delta = this_delta;
9964 best_addr = this_addr;
9965 }
9966 }
9967
9968 if (best_tf &&
9969 best_delta < J_RANGE &&
9970 abs(best_addr - lower) < J_RANGE &&
9971 abs(best_addr - upper) < J_RANGE)
9972 return best_tf;
9973
9974 return NULL; /* No suitable trampoline found. */
9975 }
9976
9977
9978 static struct trampoline_frag *
9979 get_best_trampoline (TInsn *tinsn, fragS *fragP)
9980 {
9981 struct trampoline_frag *tf = NULL;
9982
9983 tf = search_trampolines (tinsn, fragP, TRUE); /* Try unreachable first. */
9984
9985 if (tf == NULL)
9986 tf = search_trampolines (tinsn, fragP, FALSE); /* Try ones needing a jump-around, too. */
9987
9988 return tf;
9989 }
9990
9991
9992 static void
9993 check_and_update_trampolines (void)
9994 {
9995 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9996 struct trampoline_frag *tf = ts->trampoline_list.next;
9997 struct trampoline_frag *prev = &ts->trampoline_list;
9998
9999 for ( ; tf; prev = tf, tf = tf->next)
10000 {
10001 if (tf->fragP->fr_var < 3)
10002 {
10003 frag_wane (tf->fragP);
10004 prev->next = tf->next;
10005 tf->fragP = NULL;
10006 }
10007 }
10008 }
10009
10010
10011 static int
10012 init_trampoline_frag (struct trampoline_frag *trampP)
10013 {
10014 fragS *fp = trampP->fragP;
10015 int growth = 0;
10016
10017 if (fp->fr_fix == 0)
10018 {
10019 symbolS *lsym;
10020 char label[10 + 2 * sizeof(fp)];
10021 sprintf (label, ".L0_TR_%p", fp);
10022
10023 lsym = (symbolS *)local_symbol_make (label, now_seg, 0, fp);
10024 fp->fr_symbol = lsym;
10025 if (trampP->needs_jump_around)
10026 {
10027 /* Add a jump around this block of jumps, in case
10028 control flows into this block. */
10029 fixS *fixP;
10030 TInsn insn;
10031 xtensa_format fmt;
10032 xtensa_isa isa = xtensa_default_isa;
10033
10034 fp->tc_frag_data.is_insn = 1;
10035 /* Assemble a jump insn. */
10036 tinsn_init (&insn);
10037 insn.insn_type = ITYPE_INSN;
10038 insn.opcode = xtensa_j_opcode;
10039 insn.ntok = 1;
10040 set_expr_symbol_offset (&insn.tok[0], lsym, 3);
10041 fmt = xg_get_single_format (xtensa_j_opcode);
10042 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
10043 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
10044 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)fp->fr_literal, 3);
10045 fp->fr_fix += 3;
10046 fp->fr_var -= 3;
10047 growth = 3;
10048 fixP = fix_new (fp, 0, 3, lsym, 3, TRUE, BFD_RELOC_XTENSA_SLOT0_OP);
10049 trampP->fixP = fixP;
10050 }
10051 }
10052 return growth;
10053 }
10054
10055
10056 static int
10057 add_jump_to_trampoline (struct trampoline_frag *trampP, fragS *origfrag)
10058 {
10059 fragS *tramp = trampP->fragP;
10060 fixS *fixP;
10061 int offset = tramp->fr_fix; /* Where to assemble the j insn. */
10062 TInsn insn;
10063 symbolS *lsym;
10064 symbolS *tsym;
10065 int toffset;
10066 xtensa_format fmt;
10067 xtensa_isa isa = xtensa_default_isa;
10068 int growth = 0;
10069
10070 lsym = tramp->fr_symbol;
10071 /* Assemble a jump to the target label in the trampoline frag. */
10072 tsym = origfrag->tc_frag_data.slot_symbols[0];
10073 toffset = origfrag-> tc_frag_data.slot_offsets[0];
10074 tinsn_init (&insn);
10075 insn.insn_type = ITYPE_INSN;
10076 insn.opcode = xtensa_j_opcode;
10077 insn.ntok = 1;
10078 set_expr_symbol_offset (&insn.tok[0], tsym, toffset);
10079 fmt = xg_get_single_format (xtensa_j_opcode);
10080 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
10081 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
10082 xtensa_insnbuf_to_chars (isa, trampoline_buf, (unsigned char *)tramp->fr_literal + offset, 3);
10083 tramp->fr_fix += 3;
10084 tramp->fr_var -= 3;
10085 growth = 3;
10086 /* add a fix-up for the trampoline jump. */
10087 fixP = fix_new (tramp, tramp->fr_fix - 3, 3, tsym, toffset, TRUE, BFD_RELOC_XTENSA_SLOT0_OP);
10088 /* Modify the jump at the start of this trampoline to point past the newly-added jump. */
10089 fixP = trampP->fixP;
10090 if (fixP)
10091 fixP->fx_offset += 3;
10092 /* Modify the original j to point here. */
10093 origfrag->tc_frag_data.slot_symbols[0] = lsym;
10094 origfrag->tc_frag_data.slot_offsets[0] = tramp->fr_fix - 3;
10095 /* If trampoline is full, remove it from the list. */
10096 check_and_update_trampolines ();
10097
10098 return growth;
10099 }
10100
10101
10102 static long
10103 relax_frag_immed (segT segP,
10104 fragS *fragP,
10105 long stretch,
10106 int min_steps,
10107 xtensa_format fmt,
10108 int slot,
10109 int *stretched_p,
10110 bfd_boolean estimate_only)
10111 {
10112 TInsn tinsn;
10113 int old_size;
10114 bfd_boolean negatable_branch = FALSE;
10115 bfd_boolean branch_jmp_to_next = FALSE;
10116 bfd_boolean from_wide_insn = FALSE;
10117 xtensa_isa isa = xtensa_default_isa;
10118 IStack istack;
10119 offsetT frag_offset;
10120 int num_steps;
10121 int num_text_bytes, num_literal_bytes;
10122 int literal_diff, total_text_diff, this_text_diff;
10123
10124 gas_assert (fragP->fr_opcode != NULL);
10125
10126 xg_clear_vinsn (&cur_vinsn);
10127 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
10128 if (cur_vinsn.num_slots > 1)
10129 from_wide_insn = TRUE;
10130
10131 tinsn = cur_vinsn.slots[slot];
10132 tinsn_immed_from_frag (&tinsn, fragP, slot);
10133
10134 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1)
10135 return 0;
10136
10137 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
10138 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
10139
10140 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
10141
10142 old_size = xtensa_format_length (isa, fmt);
10143
10144 /* Special case: replace a branch to the next instruction with a NOP.
10145 This is required to work around a hardware bug in T1040.0 and also
10146 serves as an optimization. */
10147
10148 if (branch_jmp_to_next
10149 && ((old_size == 2) || (old_size == 3))
10150 && !next_frag_is_loop_target (fragP))
10151 return 0;
10152
10153 /* Here is the fun stuff: Get the immediate field from this
10154 instruction. If it fits, we are done. If not, find the next
10155 instruction sequence that fits. */
10156
10157 frag_offset = fragP->fr_opcode - fragP->fr_literal;
10158 istack_init (&istack);
10159 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
10160 min_steps, stretch);
10161 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
10162
10163 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
10164
10165 /* Figure out the number of bytes needed. */
10166 num_literal_bytes = get_num_stack_literal_bytes (&istack);
10167 literal_diff
10168 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
10169 num_text_bytes = get_num_stack_text_bytes (&istack);
10170
10171 if (from_wide_insn)
10172 {
10173 int first = 0;
10174 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
10175 first++;
10176
10177 num_text_bytes += old_size;
10178 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
10179 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
10180 else
10181 {
10182 /* The first instruction in the relaxed sequence will go after
10183 the current wide instruction, and thus its symbolic immediates
10184 might not fit. */
10185
10186 istack_init (&istack);
10187 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP,
10188 frag_offset + old_size,
10189 min_steps, stretch + old_size);
10190 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
10191
10192 fragP->tc_frag_data.slot_subtypes[slot]
10193 = (int) RELAX_IMMED + num_steps;
10194
10195 num_literal_bytes = get_num_stack_literal_bytes (&istack);
10196 literal_diff
10197 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
10198
10199 num_text_bytes = get_num_stack_text_bytes (&istack) + old_size;
10200 }
10201 }
10202
10203 total_text_diff = num_text_bytes - old_size;
10204 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
10205
10206 /* It MUST get larger. If not, we could get an infinite loop. */
10207 gas_assert (num_text_bytes >= 0);
10208 gas_assert (literal_diff >= 0);
10209 gas_assert (total_text_diff >= 0);
10210
10211 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
10212 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
10213 gas_assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
10214 gas_assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
10215
10216 /* Find the associated expandable literal for this. */
10217 if (literal_diff != 0)
10218 {
10219 fragS *lit_fragP = fragP->tc_frag_data.literal_frags[slot];
10220 if (lit_fragP)
10221 {
10222 gas_assert (literal_diff == 4);
10223 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
10224
10225 /* We expect that the literal section state has NOT been
10226 modified yet. */
10227 gas_assert (lit_fragP->fr_type == rs_machine_dependent
10228 && lit_fragP->fr_subtype == RELAX_LITERAL);
10229 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
10230
10231 /* We need to mark this section for another iteration
10232 of relaxation. */
10233 (*stretched_p)++;
10234 }
10235 }
10236
10237 if (negatable_branch && istack.ninsn > 1)
10238 update_next_frag_state (fragP);
10239
10240 /* If last insn is a jump, and it cannot reach its target, try to find a trampoline. */
10241 if (istack.ninsn > 2 &&
10242 istack.insn[istack.ninsn - 1].insn_type == ITYPE_LABEL &&
10243 istack.insn[istack.ninsn - 2].insn_type == ITYPE_INSN &&
10244 istack.insn[istack.ninsn - 2].opcode == xtensa_j_opcode)
10245 {
10246 TInsn *jinsn = &istack.insn[istack.ninsn - 2];
10247
10248 if (!xg_symbolic_immeds_fit (jinsn, segP, fragP, fragP->fr_offset, total_text_diff))
10249 {
10250 struct trampoline_frag *tf = get_best_trampoline (jinsn, fragP);
10251
10252 if (tf)
10253 {
10254 this_text_diff += init_trampoline_frag (tf);
10255 this_text_diff += add_jump_to_trampoline (tf, fragP);
10256 }
10257 else
10258 {
10259 /* If target symbol is undefined, assume it will reach once linked. */
10260 expressionS *exp = &istack.insn[istack.ninsn - 2].tok[0];
10261
10262 if (exp->X_op == O_symbol && S_IS_DEFINED (exp->X_add_symbol))
10263 {
10264 as_bad_where (fragP->fr_file, fragP->fr_line,
10265 _("jump target out of range; no usable trampoline found"));
10266 }
10267 }
10268 }
10269 }
10270
10271 return this_text_diff;
10272 }
10273
10274 \f
10275 /* md_convert_frag Hook and Helper Functions. */
10276
10277 static void convert_frag_align_next_opcode (fragS *);
10278 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
10279 static void convert_frag_fill_nop (fragS *);
10280 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
10281
10282 void
10283 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
10284 {
10285 static xtensa_insnbuf vbuf = NULL;
10286 xtensa_isa isa = xtensa_default_isa;
10287 int slot;
10288 int num_slots;
10289 xtensa_format fmt;
10290 const char *file_name;
10291 unsigned line;
10292
10293 file_name = as_where (&line);
10294 new_logical_line (fragp->fr_file, fragp->fr_line);
10295
10296 switch (fragp->fr_subtype)
10297 {
10298 case RELAX_ALIGN_NEXT_OPCODE:
10299 /* Always convert. */
10300 convert_frag_align_next_opcode (fragp);
10301 break;
10302
10303 case RELAX_DESIRE_ALIGN:
10304 /* Do nothing. If not aligned already, too bad. */
10305 break;
10306
10307 case RELAX_LITERAL:
10308 case RELAX_LITERAL_FINAL:
10309 break;
10310
10311 case RELAX_SLOTS:
10312 if (vbuf == NULL)
10313 vbuf = xtensa_insnbuf_alloc (isa);
10314
10315 xtensa_insnbuf_from_chars
10316 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
10317 fmt = xtensa_format_decode (isa, vbuf);
10318 num_slots = xtensa_format_num_slots (isa, fmt);
10319
10320 for (slot = 0; slot < num_slots; slot++)
10321 {
10322 switch (fragp->tc_frag_data.slot_subtypes[slot])
10323 {
10324 case RELAX_NARROW:
10325 convert_frag_narrow (sec, fragp, fmt, slot);
10326 break;
10327
10328 case RELAX_IMMED:
10329 case RELAX_IMMED_STEP1:
10330 case RELAX_IMMED_STEP2:
10331 case RELAX_IMMED_STEP3:
10332 /* Place the immediate. */
10333 convert_frag_immed
10334 (sec, fragp,
10335 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
10336 fmt, slot);
10337 break;
10338
10339 default:
10340 /* This is OK because some slots could have
10341 relaxations and others have none. */
10342 break;
10343 }
10344 }
10345 break;
10346
10347 case RELAX_UNREACHABLE:
10348 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
10349 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
10350 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
10351 frag_wane (fragp);
10352 break;
10353
10354 case RELAX_MAYBE_UNREACHABLE:
10355 case RELAX_MAYBE_DESIRE_ALIGN:
10356 frag_wane (fragp);
10357 break;
10358
10359 case RELAX_FILL_NOP:
10360 convert_frag_fill_nop (fragp);
10361 break;
10362
10363 case RELAX_LITERAL_NR:
10364 if (use_literal_section)
10365 {
10366 /* This should have been handled during relaxation. When
10367 relaxing a code segment, literals sometimes need to be
10368 added to the corresponding literal segment. If that
10369 literal segment has already been relaxed, then we end up
10370 in this situation. Marking the literal segments as data
10371 would make this happen less often (since GAS always relaxes
10372 code before data), but we could still get into trouble if
10373 there are instructions in a segment that is not marked as
10374 containing code. Until we can implement a better solution,
10375 cheat and adjust the addresses of all the following frags.
10376 This could break subsequent alignments, but the linker's
10377 literal coalescing will do that anyway. */
10378
10379 fragS *f;
10380 fragp->fr_subtype = RELAX_LITERAL_FINAL;
10381 gas_assert (fragp->tc_frag_data.unreported_expansion == 4);
10382 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
10383 fragp->fr_var -= 4;
10384 fragp->fr_fix += 4;
10385 for (f = fragp->fr_next; f; f = f->fr_next)
10386 f->fr_address += 4;
10387 }
10388 else
10389 as_bad (_("invalid relaxation fragment result"));
10390 break;
10391
10392 case RELAX_TRAMPOLINE:
10393 break;
10394 }
10395
10396 fragp->fr_var = 0;
10397 new_logical_line (file_name, line);
10398 }
10399
10400
10401 static void
10402 convert_frag_align_next_opcode (fragS *fragp)
10403 {
10404 char *nop_buf; /* Location for Writing. */
10405 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
10406 addressT aligned_address;
10407 offsetT fill_size;
10408 int nop, nop_count;
10409
10410 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
10411 fragp->fr_fix);
10412 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
10413 nop_count = get_text_align_nop_count (fill_size, use_no_density);
10414 nop_buf = fragp->fr_literal + fragp->fr_fix;
10415
10416 for (nop = 0; nop < nop_count; nop++)
10417 {
10418 int nop_size;
10419 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
10420
10421 assemble_nop (nop_size, nop_buf);
10422 nop_buf += nop_size;
10423 }
10424
10425 fragp->fr_fix += fill_size;
10426 fragp->fr_var -= fill_size;
10427 }
10428
10429
10430 static void
10431 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
10432 {
10433 TInsn tinsn, single_target;
10434 int size, old_size, diff;
10435 offsetT frag_offset;
10436
10437 gas_assert (slot == 0);
10438 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
10439
10440 if (fragP->tc_frag_data.is_aligning_branch == 1)
10441 {
10442 gas_assert (fragP->tc_frag_data.text_expansion[0] == 1
10443 || fragP->tc_frag_data.text_expansion[0] == 0);
10444 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
10445 fmt, slot);
10446 return;
10447 }
10448
10449 if (fragP->tc_frag_data.text_expansion[0] == 0)
10450 {
10451 /* No conversion. */
10452 fragP->fr_var = 0;
10453 return;
10454 }
10455
10456 gas_assert (fragP->fr_opcode != NULL);
10457
10458 /* Frags in this relaxation state should only contain
10459 single instruction bundles. */
10460 tinsn_immed_from_frag (&tinsn, fragP, 0);
10461
10462 /* Just convert it to a wide form.... */
10463 size = 0;
10464 old_size = xg_get_single_size (tinsn.opcode);
10465
10466 tinsn_init (&single_target);
10467 frag_offset = fragP->fr_opcode - fragP->fr_literal;
10468
10469 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
10470 {
10471 as_bad (_("unable to widen instruction"));
10472 return;
10473 }
10474
10475 size = xg_get_single_size (single_target.opcode);
10476 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
10477 frag_offset, TRUE);
10478
10479 diff = size - old_size;
10480 gas_assert (diff >= 0);
10481 gas_assert (diff <= fragP->fr_var);
10482 fragP->fr_var -= diff;
10483 fragP->fr_fix += diff;
10484
10485 /* clean it up */
10486 fragP->fr_var = 0;
10487 }
10488
10489
10490 static void
10491 convert_frag_fill_nop (fragS *fragP)
10492 {
10493 char *loc = &fragP->fr_literal[fragP->fr_fix];
10494 int size = fragP->tc_frag_data.text_expansion[0];
10495 gas_assert ((unsigned) size == (fragP->fr_next->fr_address
10496 - fragP->fr_address - fragP->fr_fix));
10497 if (size == 0)
10498 {
10499 /* No conversion. */
10500 fragP->fr_var = 0;
10501 return;
10502 }
10503 assemble_nop (size, loc);
10504 fragP->tc_frag_data.is_insn = TRUE;
10505 fragP->fr_var -= size;
10506 fragP->fr_fix += size;
10507 frag_wane (fragP);
10508 }
10509
10510
10511 static fixS *fix_new_exp_in_seg
10512 (segT, subsegT, fragS *, int, int, expressionS *, int,
10513 bfd_reloc_code_real_type);
10514 static void convert_frag_immed_finish_loop (segT, fragS *, TInsn *);
10515
10516 static void
10517 convert_frag_immed (segT segP,
10518 fragS *fragP,
10519 int min_steps,
10520 xtensa_format fmt,
10521 int slot)
10522 {
10523 char *immed_instr = fragP->fr_opcode;
10524 TInsn orig_tinsn;
10525 bfd_boolean expanded = FALSE;
10526 bfd_boolean branch_jmp_to_next = FALSE;
10527 char *fr_opcode = fragP->fr_opcode;
10528 xtensa_isa isa = xtensa_default_isa;
10529 bfd_boolean from_wide_insn = FALSE;
10530 int bytes;
10531 bfd_boolean is_loop;
10532
10533 gas_assert (fr_opcode != NULL);
10534
10535 xg_clear_vinsn (&cur_vinsn);
10536
10537 vinsn_from_chars (&cur_vinsn, fr_opcode);
10538 if (cur_vinsn.num_slots > 1)
10539 from_wide_insn = TRUE;
10540
10541 orig_tinsn = cur_vinsn.slots[slot];
10542 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
10543
10544 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
10545
10546 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
10547 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
10548
10549 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
10550 {
10551 /* Conversion just inserts a NOP and marks the fix as completed. */
10552 bytes = xtensa_format_length (isa, fmt);
10553 if (bytes >= 4)
10554 {
10555 cur_vinsn.slots[slot].opcode =
10556 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
10557 cur_vinsn.slots[slot].ntok = 0;
10558 }
10559 else
10560 {
10561 bytes += fragP->tc_frag_data.text_expansion[0];
10562 gas_assert (bytes == 2 || bytes == 3);
10563 build_nop (&cur_vinsn.slots[0], bytes);
10564 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
10565 }
10566 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
10567 xtensa_insnbuf_to_chars
10568 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
10569 fragP->fr_var = 0;
10570 }
10571 else
10572 {
10573 /* Here is the fun stuff: Get the immediate field from this
10574 instruction. If it fits, we're done. If not, find the next
10575 instruction sequence that fits. */
10576
10577 IStack istack;
10578 int i;
10579 symbolS *lit_sym = NULL;
10580 int total_size = 0;
10581 int target_offset = 0;
10582 int old_size;
10583 int diff;
10584 symbolS *gen_label = NULL;
10585 offsetT frag_offset;
10586 bfd_boolean first = TRUE;
10587
10588 /* It does not fit. Find something that does and
10589 convert immediately. */
10590 frag_offset = fr_opcode - fragP->fr_literal;
10591 istack_init (&istack);
10592 xg_assembly_relax (&istack, &orig_tinsn,
10593 segP, fragP, frag_offset, min_steps, 0);
10594
10595 old_size = xtensa_format_length (isa, fmt);
10596
10597 /* Assemble this right inline. */
10598
10599 /* First, create the mapping from a label name to the REAL label. */
10600 target_offset = 0;
10601 for (i = 0; i < istack.ninsn; i++)
10602 {
10603 TInsn *tinsn = &istack.insn[i];
10604 fragS *lit_frag;
10605
10606 switch (tinsn->insn_type)
10607 {
10608 case ITYPE_LITERAL:
10609 if (lit_sym != NULL)
10610 as_bad (_("multiple literals in expansion"));
10611 /* First find the appropriate space in the literal pool. */
10612 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10613 if (lit_frag == NULL)
10614 as_bad (_("no registered fragment for literal"));
10615 if (tinsn->ntok != 1)
10616 as_bad (_("number of literal tokens != 1"));
10617
10618 /* Set the literal symbol and add a fixup. */
10619 lit_sym = lit_frag->fr_symbol;
10620 break;
10621
10622 case ITYPE_LABEL:
10623 if (align_targets && !is_loop)
10624 {
10625 fragS *unreach = fragP->fr_next;
10626 while (!(unreach->fr_type == rs_machine_dependent
10627 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10628 || unreach->fr_subtype == RELAX_UNREACHABLE)))
10629 {
10630 unreach = unreach->fr_next;
10631 }
10632
10633 gas_assert (unreach->fr_type == rs_machine_dependent
10634 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10635 || unreach->fr_subtype == RELAX_UNREACHABLE));
10636
10637 target_offset += unreach->tc_frag_data.text_expansion[0];
10638 }
10639 gas_assert (gen_label == NULL);
10640 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg,
10641 fr_opcode - fragP->fr_literal
10642 + target_offset, fragP);
10643 break;
10644
10645 case ITYPE_INSN:
10646 if (first && from_wide_insn)
10647 {
10648 target_offset += xtensa_format_length (isa, fmt);
10649 first = FALSE;
10650 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10651 target_offset += xg_get_single_size (tinsn->opcode);
10652 }
10653 else
10654 target_offset += xg_get_single_size (tinsn->opcode);
10655 break;
10656 }
10657 }
10658
10659 total_size = 0;
10660 first = TRUE;
10661 for (i = 0; i < istack.ninsn; i++)
10662 {
10663 TInsn *tinsn = &istack.insn[i];
10664 fragS *lit_frag;
10665 int size;
10666 segT target_seg;
10667 bfd_reloc_code_real_type reloc_type;
10668
10669 switch (tinsn->insn_type)
10670 {
10671 case ITYPE_LITERAL:
10672 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10673 /* Already checked. */
10674 gas_assert (lit_frag != NULL);
10675 gas_assert (lit_sym != NULL);
10676 gas_assert (tinsn->ntok == 1);
10677 /* Add a fixup. */
10678 target_seg = S_GET_SEGMENT (lit_sym);
10679 gas_assert (target_seg);
10680 reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op, TRUE);
10681 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
10682 &tinsn->tok[0], FALSE, reloc_type);
10683 break;
10684
10685 case ITYPE_LABEL:
10686 break;
10687
10688 case ITYPE_INSN:
10689 xg_resolve_labels (tinsn, gen_label);
10690 xg_resolve_literals (tinsn, lit_sym);
10691 if (from_wide_insn && first)
10692 {
10693 first = FALSE;
10694 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10695 {
10696 cur_vinsn.slots[slot] = *tinsn;
10697 }
10698 else
10699 {
10700 cur_vinsn.slots[slot].opcode =
10701 xtensa_format_slot_nop_opcode (isa, fmt, slot);
10702 cur_vinsn.slots[slot].ntok = 0;
10703 }
10704 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
10705 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
10706 (unsigned char *) immed_instr, 0);
10707 fragP->tc_frag_data.is_insn = TRUE;
10708 size = xtensa_format_length (isa, fmt);
10709 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10710 {
10711 xg_emit_insn_to_buf
10712 (tinsn, immed_instr + size, fragP,
10713 immed_instr - fragP->fr_literal + size, TRUE);
10714 size += xg_get_single_size (tinsn->opcode);
10715 }
10716 }
10717 else
10718 {
10719 size = xg_get_single_size (tinsn->opcode);
10720 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
10721 immed_instr - fragP->fr_literal, TRUE);
10722 }
10723 immed_instr += size;
10724 total_size += size;
10725 break;
10726 }
10727 }
10728
10729 diff = total_size - old_size;
10730 gas_assert (diff >= 0);
10731 if (diff != 0)
10732 expanded = TRUE;
10733 gas_assert (diff <= fragP->fr_var);
10734 fragP->fr_var -= diff;
10735 fragP->fr_fix += diff;
10736 }
10737
10738 /* Check for undefined immediates in LOOP instructions. */
10739 if (is_loop)
10740 {
10741 symbolS *sym;
10742 sym = orig_tinsn.tok[1].X_add_symbol;
10743 if (sym != NULL && !S_IS_DEFINED (sym))
10744 {
10745 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10746 return;
10747 }
10748 sym = orig_tinsn.tok[1].X_op_symbol;
10749 if (sym != NULL && !S_IS_DEFINED (sym))
10750 {
10751 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10752 return;
10753 }
10754 }
10755
10756 if (expanded && xtensa_opcode_is_loop (isa, orig_tinsn.opcode) == 1)
10757 convert_frag_immed_finish_loop (segP, fragP, &orig_tinsn);
10758
10759 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
10760 {
10761 /* Add an expansion note on the expanded instruction. */
10762 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
10763 &orig_tinsn.tok[0], TRUE,
10764 BFD_RELOC_XTENSA_ASM_EXPAND);
10765 }
10766 }
10767
10768
10769 /* Add a new fix expression into the desired segment. We have to
10770 switch to that segment to do this. */
10771
10772 static fixS *
10773 fix_new_exp_in_seg (segT new_seg,
10774 subsegT new_subseg,
10775 fragS *frag,
10776 int where,
10777 int size,
10778 expressionS *exp,
10779 int pcrel,
10780 bfd_reloc_code_real_type r_type)
10781 {
10782 fixS *new_fix;
10783 segT seg = now_seg;
10784 subsegT subseg = now_subseg;
10785
10786 gas_assert (new_seg != 0);
10787 subseg_set (new_seg, new_subseg);
10788
10789 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
10790 subseg_set (seg, subseg);
10791 return new_fix;
10792 }
10793
10794
10795 /* Relax a loop instruction so that it can span loop >256 bytes.
10796
10797 loop as, .L1
10798 .L0:
10799 rsr as, LEND
10800 wsr as, LBEG
10801 addi as, as, lo8 (label-.L1)
10802 addmi as, as, mid8 (label-.L1)
10803 wsr as, LEND
10804 isync
10805 rsr as, LCOUNT
10806 addi as, as, 1
10807 .L1:
10808 <<body>>
10809 label:
10810 */
10811
10812 static void
10813 convert_frag_immed_finish_loop (segT segP, fragS *fragP, TInsn *tinsn)
10814 {
10815 TInsn loop_insn;
10816 TInsn addi_insn;
10817 TInsn addmi_insn;
10818 unsigned long target;
10819 static xtensa_insnbuf insnbuf = NULL;
10820 unsigned int loop_length, loop_length_hi, loop_length_lo;
10821 xtensa_isa isa = xtensa_default_isa;
10822 addressT loop_offset;
10823 addressT addi_offset = 9;
10824 addressT addmi_offset = 12;
10825 fragS *next_fragP;
10826 int target_count;
10827
10828 if (!insnbuf)
10829 insnbuf = xtensa_insnbuf_alloc (isa);
10830
10831 /* Get the loop offset. */
10832 loop_offset = get_expanded_loop_offset (tinsn->opcode);
10833
10834 /* Validate that there really is a LOOP at the loop_offset. Because
10835 loops are not bundleable, we can assume that the instruction will be
10836 in slot 0. */
10837 tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset, 0);
10838 tinsn_immed_from_frag (&loop_insn, fragP, 0);
10839
10840 gas_assert (xtensa_opcode_is_loop (isa, loop_insn.opcode) == 1);
10841 addi_offset += loop_offset;
10842 addmi_offset += loop_offset;
10843
10844 gas_assert (tinsn->ntok == 2);
10845 if (tinsn->tok[1].X_op == O_constant)
10846 target = tinsn->tok[1].X_add_number;
10847 else if (tinsn->tok[1].X_op == O_symbol)
10848 {
10849 /* Find the fragment. */
10850 symbolS *sym = tinsn->tok[1].X_add_symbol;
10851 gas_assert (S_GET_SEGMENT (sym) == segP
10852 || S_GET_SEGMENT (sym) == absolute_section);
10853 target = (S_GET_VALUE (sym) + tinsn->tok[1].X_add_number);
10854 }
10855 else
10856 {
10857 as_bad (_("invalid expression evaluation type %d"), tinsn->tok[1].X_op);
10858 target = 0;
10859 }
10860
10861 loop_length = target - (fragP->fr_address + fragP->fr_fix);
10862 loop_length_hi = loop_length & ~0x0ff;
10863 loop_length_lo = loop_length & 0x0ff;
10864 if (loop_length_lo >= 128)
10865 {
10866 loop_length_lo -= 256;
10867 loop_length_hi += 256;
10868 }
10869
10870 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
10871 32512. If the loop is larger than that, then we just fail. */
10872 if (loop_length_hi > 32512)
10873 as_bad_where (fragP->fr_file, fragP->fr_line,
10874 _("loop too long for LOOP instruction"));
10875
10876 tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset, 0);
10877 gas_assert (addi_insn.opcode == xtensa_addi_opcode);
10878
10879 tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset, 0);
10880 gas_assert (addmi_insn.opcode == xtensa_addmi_opcode);
10881
10882 set_expr_const (&addi_insn.tok[2], loop_length_lo);
10883 tinsn_to_insnbuf (&addi_insn, insnbuf);
10884
10885 fragP->tc_frag_data.is_insn = TRUE;
10886 xtensa_insnbuf_to_chars
10887 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addi_offset, 0);
10888
10889 set_expr_const (&addmi_insn.tok[2], loop_length_hi);
10890 tinsn_to_insnbuf (&addmi_insn, insnbuf);
10891 xtensa_insnbuf_to_chars
10892 (isa, insnbuf, (unsigned char *) fragP->fr_opcode + addmi_offset, 0);
10893
10894 /* Walk through all of the frags from here to the loop end
10895 and mark them as no_transform to keep them from being modified
10896 by the linker. If we ever have a relocation for the
10897 addi/addmi of the difference of two symbols we can remove this. */
10898
10899 target_count = 0;
10900 for (next_fragP = fragP; next_fragP != NULL;
10901 next_fragP = next_fragP->fr_next)
10902 {
10903 next_fragP->tc_frag_data.is_no_transform = TRUE;
10904 if (next_fragP->tc_frag_data.is_loop_target)
10905 target_count++;
10906 if (target_count == 2)
10907 break;
10908 }
10909 }
10910
10911 \f
10912 /* A map that keeps information on a per-subsegment basis. This is
10913 maintained during initial assembly, but is invalid once the
10914 subsegments are smashed together. I.E., it cannot be used during
10915 the relaxation. */
10916
10917 typedef struct subseg_map_struct
10918 {
10919 /* the key */
10920 segT seg;
10921 subsegT subseg;
10922
10923 /* the data */
10924 unsigned flags;
10925 float total_freq; /* fall-through + branch target frequency */
10926 float target_freq; /* branch target frequency alone */
10927
10928 struct subseg_map_struct *next;
10929 } subseg_map;
10930
10931
10932 static subseg_map *sseg_map = NULL;
10933
10934 static subseg_map *
10935 get_subseg_info (segT seg, subsegT subseg)
10936 {
10937 subseg_map *subseg_e;
10938
10939 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
10940 {
10941 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
10942 break;
10943 }
10944 return subseg_e;
10945 }
10946
10947
10948 static subseg_map *
10949 add_subseg_info (segT seg, subsegT subseg)
10950 {
10951 subseg_map *subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map));
10952 memset (subseg_e, 0, sizeof (subseg_map));
10953 subseg_e->seg = seg;
10954 subseg_e->subseg = subseg;
10955 subseg_e->flags = 0;
10956 /* Start off considering every branch target very important. */
10957 subseg_e->target_freq = 1.0;
10958 subseg_e->total_freq = 1.0;
10959 subseg_e->next = sseg_map;
10960 sseg_map = subseg_e;
10961 return subseg_e;
10962 }
10963
10964
10965 static unsigned
10966 get_last_insn_flags (segT seg, subsegT subseg)
10967 {
10968 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10969 if (subseg_e)
10970 return subseg_e->flags;
10971 return 0;
10972 }
10973
10974
10975 static void
10976 set_last_insn_flags (segT seg,
10977 subsegT subseg,
10978 unsigned fl,
10979 bfd_boolean val)
10980 {
10981 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10982 if (! subseg_e)
10983 subseg_e = add_subseg_info (seg, subseg);
10984 if (val)
10985 subseg_e->flags |= fl;
10986 else
10987 subseg_e->flags &= ~fl;
10988 }
10989
10990
10991 static float
10992 get_subseg_total_freq (segT seg, subsegT subseg)
10993 {
10994 subseg_map *subseg_e = get_subseg_info (seg, subseg);
10995 if (subseg_e)
10996 return subseg_e->total_freq;
10997 return 1.0;
10998 }
10999
11000
11001 static float
11002 get_subseg_target_freq (segT seg, subsegT subseg)
11003 {
11004 subseg_map *subseg_e = get_subseg_info (seg, subseg);
11005 if (subseg_e)
11006 return subseg_e->target_freq;
11007 return 1.0;
11008 }
11009
11010
11011 static void
11012 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
11013 {
11014 subseg_map *subseg_e = get_subseg_info (seg, subseg);
11015 if (! subseg_e)
11016 subseg_e = add_subseg_info (seg, subseg);
11017 subseg_e->total_freq = total_f;
11018 subseg_e->target_freq = target_f;
11019 }
11020
11021 \f
11022 /* Segment Lists and emit_state Stuff. */
11023
11024 static void
11025 xtensa_move_seg_list_to_beginning (seg_list *head)
11026 {
11027 head = head->next;
11028 while (head)
11029 {
11030 segT literal_section = head->seg;
11031
11032 /* Move the literal section to the front of the section list. */
11033 gas_assert (literal_section);
11034 if (literal_section != stdoutput->sections)
11035 {
11036 bfd_section_list_remove (stdoutput, literal_section);
11037 bfd_section_list_prepend (stdoutput, literal_section);
11038 }
11039 head = head->next;
11040 }
11041 }
11042
11043
11044 static void mark_literal_frags (seg_list *);
11045
11046 static void
11047 xtensa_move_literals (void)
11048 {
11049 seg_list *segment;
11050 frchainS *frchain_from, *frchain_to;
11051 fragS *search_frag, *next_frag, *literal_pool, *insert_after;
11052 fragS **frag_splice;
11053 emit_state state;
11054 segT dest_seg;
11055 fixS *fix, *next_fix, **fix_splice;
11056 sym_list *lit;
11057 struct litpool_seg *lps;
11058 const char *init_name = INIT_SECTION_NAME;
11059 const char *fini_name = FINI_SECTION_NAME;
11060 int init_name_len = strlen(init_name);
11061 int fini_name_len = strlen(fini_name);
11062
11063 mark_literal_frags (literal_head->next);
11064
11065 if (use_literal_section)
11066 return;
11067
11068 /* Assign addresses (rough estimates) to the potential literal pool locations
11069 and create new ones if the gaps are too large. */
11070
11071 for (lps = litpool_seg_list.next; lps; lps = lps->next)
11072 {
11073 frchainS *frchP = seg_info (lps->seg)->frchainP;
11074 struct litpool_frag *lpf = lps->frag_list.next;
11075 addressT addr = 0;
11076
11077 for ( ; frchP; frchP = frchP->frch_next)
11078 {
11079 fragS *fragP;
11080 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
11081 {
11082 if (lpf && fragP == lpf->fragP)
11083 {
11084 gas_assert(fragP->fr_type == rs_machine_dependent &&
11085 (fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN ||
11086 fragP->fr_subtype == RELAX_LITERAL_POOL_CANDIDATE_BEGIN));
11087 /* Found a litpool location. */
11088 lpf->addr = addr;
11089 lpf = lpf->next;
11090 }
11091 if (fragP->fr_type == rs_machine_dependent &&
11092 fragP->fr_subtype == RELAX_SLOTS)
11093 {
11094 int slot;
11095 for (slot = 0; slot < MAX_SLOTS; slot++)
11096 {
11097 if (fragP->tc_frag_data.literal_frags[slot])
11098 {
11099 /* L32R; point its literal to the nearest litpool
11100 preferring non-"candidate" positions to avoid
11101 the jump-around. */
11102 fragS *litfrag = fragP->tc_frag_data.literal_frags[slot];
11103 struct litpool_frag *lp = lpf->prev;
11104 if (!lp->fragP)
11105 {
11106 break;
11107 }
11108 while (lp->fragP->fr_subtype ==
11109 RELAX_LITERAL_POOL_CANDIDATE_BEGIN)
11110 {
11111 lp = lp->prev;
11112 if (lp->fragP == NULL)
11113 {
11114 /* End of list; have to bite the bullet.
11115 Take the nearest. */
11116 lp = lpf->prev;
11117 break;
11118 }
11119 /* Does it (conservatively) reach? */
11120 if (addr - lp->addr <= 128 * 1024)
11121 {
11122 if (lp->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN)
11123 {
11124 /* Found a good one. */
11125 break;
11126 }
11127 else if (lp->prev->fragP &&
11128 addr - lp->prev->addr > 128 * 1024)
11129 {
11130 /* This is still a "candidate" but the next one
11131 will be too far away, so revert to the nearest
11132 one, convert it and add the jump around. */
11133 fragS *poolbeg;
11134 fragS *poolend;
11135 symbolS *lsym;
11136 char label[10 + 2 * sizeof (fragS *)];
11137 lp = lpf->prev;
11138 poolbeg = lp->fragP;
11139 lp->priority = 1;
11140 poolbeg->fr_subtype = RELAX_LITERAL_POOL_BEGIN;
11141 poolend = poolbeg->fr_next;
11142 gas_assert (poolend->fr_type == rs_machine_dependent &&
11143 poolend->fr_subtype == RELAX_LITERAL_POOL_END);
11144 /* Create a local symbol pointing to the
11145 end of the pool. */
11146 sprintf (label, ".L0_LT_%p", poolbeg);
11147 lsym = (symbolS *)local_symbol_make (label, lps->seg,
11148 0, poolend);
11149 poolbeg->fr_symbol = lsym;
11150 /* Rest is done in xtensa_relax_frag. */
11151 }
11152 }
11153 }
11154 if (! litfrag->tc_frag_data.literal_frag)
11155 {
11156 /* Take earliest use of this literal to avoid
11157 forward refs. */
11158 litfrag->tc_frag_data.literal_frag = lp->fragP;
11159 }
11160 }
11161 }
11162 }
11163 addr += fragP->fr_fix;
11164 if (fragP->fr_type == rs_fill)
11165 addr += fragP->fr_offset;
11166 }
11167 }
11168 }
11169
11170 for (segment = literal_head->next; segment; segment = segment->next)
11171 {
11172 const char *seg_name = segment_name (segment->seg);
11173
11174 /* Keep the literals for .init and .fini in separate sections. */
11175 if ((!memcmp (seg_name, init_name, init_name_len) &&
11176 !strcmp (seg_name + init_name_len, ".literal")) ||
11177 (!memcmp (seg_name, fini_name, fini_name_len) &&
11178 !strcmp (seg_name + fini_name_len, ".literal")))
11179 continue;
11180
11181 frchain_from = seg_info (segment->seg)->frchainP;
11182 search_frag = frchain_from->frch_root;
11183 literal_pool = NULL;
11184 frchain_to = NULL;
11185 frag_splice = &(frchain_from->frch_root);
11186
11187 while (search_frag && !search_frag->tc_frag_data.literal_frag)
11188 {
11189 gas_assert (search_frag->fr_fix == 0
11190 || search_frag->fr_type == rs_align);
11191 search_frag = search_frag->fr_next;
11192 }
11193
11194 if (!search_frag)
11195 {
11196 search_frag = frchain_from->frch_root;
11197 as_bad_where (search_frag->fr_file, search_frag->fr_line,
11198 _("literal pool location required for text-section-literals; specify with .literal_position"));
11199 continue;
11200 }
11201
11202 gas_assert (search_frag->tc_frag_data.literal_frag->fr_subtype
11203 == RELAX_LITERAL_POOL_BEGIN);
11204 xtensa_switch_section_emit_state (&state, segment->seg, 0);
11205
11206 /* Make sure that all the frags in this series are closed, and
11207 that there is at least one left over of zero-size. This
11208 prevents us from making a segment with an frchain without any
11209 frags in it. */
11210 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11211 xtensa_set_frag_assembly_state (frag_now);
11212 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11213 xtensa_set_frag_assembly_state (frag_now);
11214
11215 while (search_frag != frag_now)
11216 {
11217 next_frag = search_frag->fr_next;
11218 if (search_frag->tc_frag_data.literal_frag)
11219 {
11220 literal_pool = search_frag->tc_frag_data.literal_frag;
11221 gas_assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
11222 frchain_to = literal_pool->tc_frag_data.lit_frchain;
11223 gas_assert (frchain_to);
11224 }
11225
11226 if (search_frag->fr_type == rs_fill && search_frag->fr_fix == 0)
11227 {
11228 /* Skip empty fill frags. */
11229 *frag_splice = next_frag;
11230 search_frag = next_frag;
11231 continue;
11232 }
11233
11234 if (search_frag->fr_type == rs_align)
11235 {
11236 /* Skip alignment frags, because the pool as a whole will be
11237 aligned if used, and we don't want to force alignment if the
11238 pool is unused. */
11239 *frag_splice = next_frag;
11240 search_frag = next_frag;
11241 continue;
11242 }
11243
11244 /* First, move the frag out of the literal section and
11245 to the appropriate place. */
11246
11247 /* Insert an aligmnent frag at start of pool. */
11248 if (literal_pool->fr_next->fr_type == rs_machine_dependent &&
11249 literal_pool->fr_next->fr_subtype == RELAX_LITERAL_POOL_END)
11250 {
11251 segT pool_seg = literal_pool->fr_next->tc_frag_data.lit_seg;
11252 emit_state prev_state;
11253 fragS *prev_frag;
11254 fragS *align_frag;
11255 xtensa_switch_section_emit_state (&prev_state, pool_seg, 0);
11256 prev_frag = frag_now;
11257 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11258 align_frag = frag_now;
11259 frag_align (2, 0, 0);
11260 /* Splice it into the right place. */
11261 prev_frag->fr_next = align_frag->fr_next;
11262 align_frag->fr_next = literal_pool->fr_next;
11263 literal_pool->fr_next = align_frag;
11264 /* Insert after this one. */
11265 literal_pool->tc_frag_data.literal_frag = align_frag;
11266 xtensa_restore_emit_state (&prev_state);
11267 }
11268 insert_after = literal_pool->tc_frag_data.literal_frag;
11269 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
11270 /* Skip align frag. */
11271 if (insert_after->fr_next->fr_type == rs_align)
11272 {
11273 insert_after = insert_after->fr_next;
11274 }
11275
11276 *frag_splice = next_frag;
11277 search_frag->fr_next = insert_after->fr_next;
11278 insert_after->fr_next = search_frag;
11279 search_frag->tc_frag_data.lit_seg = dest_seg;
11280 literal_pool->tc_frag_data.literal_frag = search_frag;
11281
11282 /* Now move any fixups associated with this frag to the
11283 right section. */
11284 fix = frchain_from->fix_root;
11285 fix_splice = &(frchain_from->fix_root);
11286 while (fix)
11287 {
11288 next_fix = fix->fx_next;
11289 if (fix->fx_frag == search_frag)
11290 {
11291 *fix_splice = next_fix;
11292 fix->fx_next = frchain_to->fix_root;
11293 frchain_to->fix_root = fix;
11294 if (frchain_to->fix_tail == NULL)
11295 frchain_to->fix_tail = fix;
11296 }
11297 else
11298 fix_splice = &(fix->fx_next);
11299 fix = next_fix;
11300 }
11301 search_frag = next_frag;
11302 }
11303
11304 if (frchain_from->fix_root != NULL)
11305 {
11306 frchain_from = seg_info (segment->seg)->frchainP;
11307 as_warn (_("fixes not all moved from %s"), segment->seg->name);
11308
11309 gas_assert (frchain_from->fix_root == NULL);
11310 }
11311 frchain_from->fix_tail = NULL;
11312 xtensa_restore_emit_state (&state);
11313 }
11314
11315 /* Now fix up the SEGMENT value for all the literal symbols. */
11316 for (lit = literal_syms; lit; lit = lit->next)
11317 {
11318 symbolS *lit_sym = lit->sym;
11319 segT dseg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
11320 if (dseg)
11321 S_SET_SEGMENT (lit_sym, dseg);
11322 }
11323 }
11324
11325
11326 /* Walk over all the frags for segments in a list and mark them as
11327 containing literals. As clunky as this is, we can't rely on frag_var
11328 and frag_variant to get called in all situations. */
11329
11330 static void
11331 mark_literal_frags (seg_list *segment)
11332 {
11333 frchainS *frchain_from;
11334 fragS *search_frag;
11335
11336 while (segment)
11337 {
11338 frchain_from = seg_info (segment->seg)->frchainP;
11339 search_frag = frchain_from->frch_root;
11340 while (search_frag)
11341 {
11342 search_frag->tc_frag_data.is_literal = TRUE;
11343 search_frag = search_frag->fr_next;
11344 }
11345 segment = segment->next;
11346 }
11347 }
11348
11349
11350 static void
11351 xtensa_reorder_seg_list (seg_list *head, segT after)
11352 {
11353 /* Move all of the sections in the section list to come
11354 after "after" in the gnu segment list. */
11355
11356 head = head->next;
11357 while (head)
11358 {
11359 segT literal_section = head->seg;
11360
11361 /* Move the literal section after "after". */
11362 gas_assert (literal_section);
11363 if (literal_section != after)
11364 {
11365 bfd_section_list_remove (stdoutput, literal_section);
11366 bfd_section_list_insert_after (stdoutput, after, literal_section);
11367 }
11368
11369 head = head->next;
11370 }
11371 }
11372
11373
11374 /* Push all the literal segments to the end of the gnu list. */
11375
11376 static void
11377 xtensa_reorder_segments (void)
11378 {
11379 segT sec;
11380 segT last_sec = 0;
11381 int old_count = 0;
11382 int new_count = 0;
11383
11384 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
11385 {
11386 last_sec = sec;
11387 old_count++;
11388 }
11389
11390 /* Now that we have the last section, push all the literal
11391 sections to the end. */
11392 xtensa_reorder_seg_list (literal_head, last_sec);
11393
11394 /* Now perform the final error check. */
11395 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
11396 new_count++;
11397 gas_assert (new_count == old_count);
11398 }
11399
11400
11401 /* Change the emit state (seg, subseg, and frag related stuff) to the
11402 correct location. Return a emit_state which can be passed to
11403 xtensa_restore_emit_state to return to current fragment. */
11404
11405 static void
11406 xtensa_switch_to_literal_fragment (emit_state *result)
11407 {
11408 if (directive_state[directive_absolute_literals])
11409 {
11410 segT lit4_seg = cache_literal_section (TRUE);
11411 xtensa_switch_section_emit_state (result, lit4_seg, 0);
11412 }
11413 else
11414 xtensa_switch_to_non_abs_literal_fragment (result);
11415
11416 /* Do a 4-byte align here. */
11417 frag_align (2, 0, 0);
11418 record_alignment (now_seg, 2);
11419 }
11420
11421
11422 static void
11423 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
11424 {
11425 static bfd_boolean recursive = FALSE;
11426 fragS *pool_location = get_literal_pool_location (now_seg);
11427 segT lit_seg;
11428 bfd_boolean is_init =
11429 (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME));
11430 bfd_boolean is_fini =
11431 (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME));
11432
11433 if (pool_location == NULL
11434 && !use_literal_section
11435 && !recursive
11436 && !is_init && ! is_fini)
11437 {
11438 if (!auto_litpools)
11439 {
11440 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
11441 }
11442
11443 /* When we mark a literal pool location, we want to put a frag in
11444 the literal pool that points to it. But to do that, we want to
11445 switch_to_literal_fragment. But literal sections don't have
11446 literal pools, so their location is always null, so we would
11447 recurse forever. This is kind of hacky, but it works. */
11448
11449 recursive = TRUE;
11450 xtensa_mark_literal_pool_location ();
11451 recursive = FALSE;
11452 }
11453
11454 lit_seg = cache_literal_section (FALSE);
11455 xtensa_switch_section_emit_state (result, lit_seg, 0);
11456
11457 if (!use_literal_section
11458 && !is_init && !is_fini
11459 && get_literal_pool_location (now_seg) != pool_location)
11460 {
11461 /* Close whatever frag is there. */
11462 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11463 xtensa_set_frag_assembly_state (frag_now);
11464 frag_now->tc_frag_data.literal_frag = pool_location;
11465 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11466 xtensa_set_frag_assembly_state (frag_now);
11467 }
11468 }
11469
11470
11471 /* Call this function before emitting data into the literal section.
11472 This is a helper function for xtensa_switch_to_literal_fragment.
11473 This is similar to a .section new_now_seg subseg. */
11474
11475 static void
11476 xtensa_switch_section_emit_state (emit_state *state,
11477 segT new_now_seg,
11478 subsegT new_now_subseg)
11479 {
11480 state->name = now_seg->name;
11481 state->now_seg = now_seg;
11482 state->now_subseg = now_subseg;
11483 state->generating_literals = generating_literals;
11484 generating_literals++;
11485 subseg_set (new_now_seg, new_now_subseg);
11486 }
11487
11488
11489 /* Use to restore the emitting into the normal place. */
11490
11491 static void
11492 xtensa_restore_emit_state (emit_state *state)
11493 {
11494 generating_literals = state->generating_literals;
11495 subseg_set (state->now_seg, state->now_subseg);
11496 }
11497
11498
11499 /* Predicate function used to look up a section in a particular group. */
11500
11501 static bfd_boolean
11502 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11503 {
11504 const char *gname = inf;
11505 const char *group_name = elf_group_name (sec);
11506
11507 return (group_name == gname
11508 || (group_name != NULL
11509 && gname != NULL
11510 && strcmp (group_name, gname) == 0));
11511 }
11512
11513
11514 /* Get the literal section to be used for the current text section.
11515 The result may be cached in the default_lit_sections structure. */
11516
11517 static segT
11518 cache_literal_section (bfd_boolean use_abs_literals)
11519 {
11520 const char *text_name, *group_name = 0;
11521 char *base_name, *name, *suffix;
11522 segT *pcached;
11523 segT seg, current_section;
11524 int current_subsec;
11525 bfd_boolean linkonce = FALSE;
11526
11527 /* Save the current section/subsection. */
11528 current_section = now_seg;
11529 current_subsec = now_subseg;
11530
11531 /* Clear the cached values if they are no longer valid. */
11532 if (now_seg != default_lit_sections.current_text_seg)
11533 {
11534 default_lit_sections.current_text_seg = now_seg;
11535 default_lit_sections.lit_seg = NULL;
11536 default_lit_sections.lit4_seg = NULL;
11537 }
11538
11539 /* Check if the literal section is already cached. */
11540 if (use_abs_literals)
11541 pcached = &default_lit_sections.lit4_seg;
11542 else
11543 pcached = &default_lit_sections.lit_seg;
11544
11545 if (*pcached)
11546 return *pcached;
11547
11548 text_name = default_lit_sections.lit_prefix;
11549 if (! text_name || ! *text_name)
11550 {
11551 text_name = segment_name (current_section);
11552 group_name = elf_group_name (current_section);
11553 linkonce = (current_section->flags & SEC_LINK_ONCE) != 0;
11554 }
11555
11556 base_name = use_abs_literals ? ".lit4" : ".literal";
11557 if (group_name)
11558 {
11559 name = xmalloc (strlen (base_name) + strlen (group_name) + 2);
11560 sprintf (name, "%s.%s", base_name, group_name);
11561 }
11562 else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0)
11563 {
11564 suffix = strchr (text_name + linkonce_len, '.');
11565
11566 name = xmalloc (linkonce_len + strlen (base_name) + 1
11567 + (suffix ? strlen (suffix) : 0));
11568 strcpy (name, ".gnu.linkonce");
11569 strcat (name, base_name);
11570 if (suffix)
11571 strcat (name, suffix);
11572 linkonce = TRUE;
11573 }
11574 else
11575 {
11576 /* If the section name begins or ends with ".text", then replace
11577 that portion instead of appending an additional suffix. */
11578 size_t len = strlen (text_name);
11579 if (len >= 5
11580 && (strcmp (text_name + len - 5, ".text") == 0
11581 || strncmp (text_name, ".text", 5) == 0))
11582 len -= 5;
11583
11584 name = xmalloc (len + strlen (base_name) + 1);
11585 if (strncmp (text_name, ".text", 5) == 0)
11586 {
11587 strcpy (name, base_name);
11588 strcat (name, text_name + 5);
11589 }
11590 else
11591 {
11592 strcpy (name, text_name);
11593 strcpy (name + len, base_name);
11594 }
11595 }
11596
11597 /* Canonicalize section names to allow renaming literal sections.
11598 The group name, if any, came from the current text section and
11599 has already been canonicalized. */
11600 name = tc_canonicalize_symbol_name (name);
11601
11602 seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group,
11603 (void *) group_name);
11604 if (! seg)
11605 {
11606 flagword flags;
11607
11608 seg = subseg_force_new (name, 0);
11609
11610 if (! use_abs_literals)
11611 {
11612 /* Add the newly created literal segment to the list. */
11613 seg_list *n = (seg_list *) xmalloc (sizeof (seg_list));
11614 n->seg = seg;
11615 n->next = literal_head->next;
11616 literal_head->next = n;
11617 }
11618
11619 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD
11620 | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0)
11621 | (use_abs_literals ? SEC_DATA : SEC_CODE));
11622
11623 elf_group_name (seg) = group_name;
11624
11625 bfd_set_section_flags (stdoutput, seg, flags);
11626 bfd_set_section_alignment (stdoutput, seg, 2);
11627 }
11628
11629 *pcached = seg;
11630 subseg_set (current_section, current_subsec);
11631 return seg;
11632 }
11633
11634 \f
11635 /* Property Tables Stuff. */
11636
11637 #define XTENSA_INSN_SEC_NAME ".xt.insn"
11638 #define XTENSA_LIT_SEC_NAME ".xt.lit"
11639 #define XTENSA_PROP_SEC_NAME ".xt.prop"
11640
11641 typedef bfd_boolean (*frag_predicate) (const fragS *);
11642 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
11643
11644 static bfd_boolean get_frag_is_literal (const fragS *);
11645 static void xtensa_create_property_segments
11646 (frag_predicate, frag_predicate, const char *, xt_section_type);
11647 static void xtensa_create_xproperty_segments
11648 (frag_flags_fn, const char *, xt_section_type);
11649 static bfd_boolean exclude_section_from_property_tables (segT);
11650 static bfd_boolean section_has_property (segT, frag_predicate);
11651 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
11652 static void add_xt_block_frags
11653 (segT, xtensa_block_info **, frag_predicate, frag_predicate);
11654 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
11655 static void xtensa_frag_flags_init (frag_flags *);
11656 static void get_frag_property_flags (const fragS *, frag_flags *);
11657 static flagword frag_flags_to_number (const frag_flags *);
11658 static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn);
11659
11660 /* Set up property tables after relaxation. */
11661
11662 void
11663 xtensa_post_relax_hook (void)
11664 {
11665 xtensa_move_seg_list_to_beginning (literal_head);
11666
11667 xtensa_find_unmarked_state_frags ();
11668 xtensa_mark_frags_for_org ();
11669 xtensa_mark_difference_of_two_symbols ();
11670
11671 xtensa_create_property_segments (get_frag_is_literal,
11672 NULL,
11673 XTENSA_LIT_SEC_NAME,
11674 xt_literal_sec);
11675 xtensa_create_xproperty_segments (get_frag_property_flags,
11676 XTENSA_PROP_SEC_NAME,
11677 xt_prop_sec);
11678
11679 if (warn_unaligned_branch_targets)
11680 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
11681 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
11682 }
11683
11684
11685 /* This function is only meaningful after xtensa_move_literals. */
11686
11687 static bfd_boolean
11688 get_frag_is_literal (const fragS *fragP)
11689 {
11690 gas_assert (fragP != NULL);
11691 return fragP->tc_frag_data.is_literal;
11692 }
11693
11694
11695 static void
11696 xtensa_create_property_segments (frag_predicate property_function,
11697 frag_predicate end_property_function,
11698 const char *section_name_base,
11699 xt_section_type sec_type)
11700 {
11701 segT *seclist;
11702
11703 /* Walk over all of the current segments.
11704 Walk over each fragment
11705 For each non-empty fragment,
11706 Build a property record (append where possible). */
11707
11708 for (seclist = &stdoutput->sections;
11709 seclist && *seclist;
11710 seclist = &(*seclist)->next)
11711 {
11712 segT sec = *seclist;
11713
11714 if (exclude_section_from_property_tables (sec))
11715 continue;
11716
11717 if (section_has_property (sec, property_function))
11718 {
11719 segment_info_type *xt_seg_info;
11720 xtensa_block_info **xt_blocks;
11721 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
11722
11723 prop_sec->output_section = prop_sec;
11724 subseg_set (prop_sec, 0);
11725 xt_seg_info = seg_info (prop_sec);
11726 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11727
11728 /* Walk over all of the frchains here and add new sections. */
11729 add_xt_block_frags (sec, xt_blocks, property_function,
11730 end_property_function);
11731 }
11732 }
11733
11734 /* Now we fill them out.... */
11735
11736 for (seclist = &stdoutput->sections;
11737 seclist && *seclist;
11738 seclist = &(*seclist)->next)
11739 {
11740 segment_info_type *seginfo;
11741 xtensa_block_info *block;
11742 segT sec = *seclist;
11743
11744 seginfo = seg_info (sec);
11745 block = seginfo->tc_segment_info_data.blocks[sec_type];
11746
11747 if (block)
11748 {
11749 xtensa_block_info *cur_block;
11750 int num_recs = 0;
11751 bfd_size_type rec_size;
11752
11753 for (cur_block = block; cur_block; cur_block = cur_block->next)
11754 num_recs++;
11755
11756 rec_size = num_recs * 8;
11757 bfd_set_section_size (stdoutput, sec, rec_size);
11758
11759 if (num_recs)
11760 {
11761 char *frag_data;
11762 int i;
11763
11764 subseg_set (sec, 0);
11765 frag_data = frag_more (rec_size);
11766 cur_block = block;
11767 for (i = 0; i < num_recs; i++)
11768 {
11769 fixS *fix;
11770
11771 /* Write the fixup. */
11772 gas_assert (cur_block);
11773 fix = fix_new (frag_now, i * 8, 4,
11774 section_symbol (cur_block->sec),
11775 cur_block->offset,
11776 FALSE, BFD_RELOC_32);
11777 fix->fx_file = "<internal>";
11778 fix->fx_line = 0;
11779
11780 /* Write the length. */
11781 md_number_to_chars (&frag_data[4 + i * 8],
11782 cur_block->size, 4);
11783 cur_block = cur_block->next;
11784 }
11785 frag_wane (frag_now);
11786 frag_new (0);
11787 frag_wane (frag_now);
11788 }
11789 }
11790 }
11791 }
11792
11793
11794 static void
11795 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
11796 const char *section_name_base,
11797 xt_section_type sec_type)
11798 {
11799 segT *seclist;
11800
11801 /* Walk over all of the current segments.
11802 Walk over each fragment.
11803 For each fragment that has instructions,
11804 build an instruction record (append where possible). */
11805
11806 for (seclist = &stdoutput->sections;
11807 seclist && *seclist;
11808 seclist = &(*seclist)->next)
11809 {
11810 segT sec = *seclist;
11811
11812 if (exclude_section_from_property_tables (sec))
11813 continue;
11814
11815 if (section_has_xproperty (sec, flag_fn))
11816 {
11817 segment_info_type *xt_seg_info;
11818 xtensa_block_info **xt_blocks;
11819 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
11820
11821 prop_sec->output_section = prop_sec;
11822 subseg_set (prop_sec, 0);
11823 xt_seg_info = seg_info (prop_sec);
11824 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11825
11826 /* Walk over all of the frchains here and add new sections. */
11827 add_xt_prop_frags (sec, xt_blocks, flag_fn);
11828 }
11829 }
11830
11831 /* Now we fill them out.... */
11832
11833 for (seclist = &stdoutput->sections;
11834 seclist && *seclist;
11835 seclist = &(*seclist)->next)
11836 {
11837 segment_info_type *seginfo;
11838 xtensa_block_info *block;
11839 segT sec = *seclist;
11840
11841 seginfo = seg_info (sec);
11842 block = seginfo->tc_segment_info_data.blocks[sec_type];
11843
11844 if (block)
11845 {
11846 xtensa_block_info *cur_block;
11847 int num_recs = 0;
11848 bfd_size_type rec_size;
11849
11850 for (cur_block = block; cur_block; cur_block = cur_block->next)
11851 num_recs++;
11852
11853 rec_size = num_recs * (8 + 4);
11854 bfd_set_section_size (stdoutput, sec, rec_size);
11855 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
11856
11857 if (num_recs)
11858 {
11859 char *frag_data;
11860 int i;
11861
11862 subseg_set (sec, 0);
11863 frag_data = frag_more (rec_size);
11864 cur_block = block;
11865 for (i = 0; i < num_recs; i++)
11866 {
11867 fixS *fix;
11868
11869 /* Write the fixup. */
11870 gas_assert (cur_block);
11871 fix = fix_new (frag_now, i * 12, 4,
11872 section_symbol (cur_block->sec),
11873 cur_block->offset,
11874 FALSE, BFD_RELOC_32);
11875 fix->fx_file = "<internal>";
11876 fix->fx_line = 0;
11877
11878 /* Write the length. */
11879 md_number_to_chars (&frag_data[4 + i * 12],
11880 cur_block->size, 4);
11881 md_number_to_chars (&frag_data[8 + i * 12],
11882 frag_flags_to_number (&cur_block->flags),
11883 sizeof (flagword));
11884 cur_block = cur_block->next;
11885 }
11886 frag_wane (frag_now);
11887 frag_new (0);
11888 frag_wane (frag_now);
11889 }
11890 }
11891 }
11892 }
11893
11894
11895 static bfd_boolean
11896 exclude_section_from_property_tables (segT sec)
11897 {
11898 flagword flags = bfd_get_section_flags (stdoutput, sec);
11899
11900 /* Sections that don't contribute to the memory footprint are excluded. */
11901 if ((flags & SEC_DEBUGGING)
11902 || !(flags & SEC_ALLOC)
11903 || (flags & SEC_MERGE))
11904 return TRUE;
11905
11906 /* Linker cie and fde optimizations mess up property entries for
11907 eh_frame sections, but there is nothing inside them relevant to
11908 property tables anyway. */
11909 if (strcmp (sec->name, ".eh_frame") == 0)
11910 return TRUE;
11911
11912 return FALSE;
11913 }
11914
11915
11916 static bfd_boolean
11917 section_has_property (segT sec, frag_predicate property_function)
11918 {
11919 segment_info_type *seginfo = seg_info (sec);
11920 fragS *fragP;
11921
11922 if (seginfo && seginfo->frchainP)
11923 {
11924 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
11925 {
11926 if (property_function (fragP)
11927 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
11928 return TRUE;
11929 }
11930 }
11931 return FALSE;
11932 }
11933
11934
11935 static bfd_boolean
11936 section_has_xproperty (segT sec, frag_flags_fn property_function)
11937 {
11938 segment_info_type *seginfo = seg_info (sec);
11939 fragS *fragP;
11940
11941 if (seginfo && seginfo->frchainP)
11942 {
11943 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
11944 {
11945 frag_flags prop_flags;
11946 property_function (fragP, &prop_flags);
11947 if (!xtensa_frag_flags_is_empty (&prop_flags))
11948 return TRUE;
11949 }
11950 }
11951 return FALSE;
11952 }
11953
11954
11955 /* Two types of block sections exist right now: literal and insns. */
11956
11957 static void
11958 add_xt_block_frags (segT sec,
11959 xtensa_block_info **xt_block,
11960 frag_predicate property_function,
11961 frag_predicate end_property_function)
11962 {
11963 fragS *fragP;
11964
11965 /* Build it if needed. */
11966 while (*xt_block != NULL)
11967 xt_block = &(*xt_block)->next;
11968 /* We are either at NULL at the beginning or at the end. */
11969
11970 /* Walk through the frags. */
11971 if (seg_info (sec)->frchainP)
11972 {
11973 for (fragP = seg_info (sec)->frchainP->frch_root;
11974 fragP;
11975 fragP = fragP->fr_next)
11976 {
11977 if (property_function (fragP)
11978 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
11979 {
11980 if (*xt_block != NULL)
11981 {
11982 if ((*xt_block)->offset + (*xt_block)->size
11983 == fragP->fr_address)
11984 (*xt_block)->size += fragP->fr_fix;
11985 else
11986 xt_block = &((*xt_block)->next);
11987 }
11988 if (*xt_block == NULL)
11989 {
11990 xtensa_block_info *new_block = (xtensa_block_info *)
11991 xmalloc (sizeof (xtensa_block_info));
11992 new_block->sec = sec;
11993 new_block->offset = fragP->fr_address;
11994 new_block->size = fragP->fr_fix;
11995 new_block->next = NULL;
11996 xtensa_frag_flags_init (&new_block->flags);
11997 *xt_block = new_block;
11998 }
11999 if (end_property_function
12000 && end_property_function (fragP))
12001 {
12002 xt_block = &((*xt_block)->next);
12003 }
12004 }
12005 }
12006 }
12007 }
12008
12009
12010 /* Break the encapsulation of add_xt_prop_frags here. */
12011
12012 static bfd_boolean
12013 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
12014 {
12015 if (prop_flags->is_literal
12016 || prop_flags->is_insn
12017 || prop_flags->is_data
12018 || prop_flags->is_unreachable)
12019 return FALSE;
12020 return TRUE;
12021 }
12022
12023
12024 static void
12025 xtensa_frag_flags_init (frag_flags *prop_flags)
12026 {
12027 memset (prop_flags, 0, sizeof (frag_flags));
12028 }
12029
12030
12031 static void
12032 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
12033 {
12034 xtensa_frag_flags_init (prop_flags);
12035 if (fragP->tc_frag_data.is_literal)
12036 prop_flags->is_literal = TRUE;
12037 if (fragP->tc_frag_data.is_specific_opcode
12038 || fragP->tc_frag_data.is_no_transform)
12039 {
12040 prop_flags->is_no_transform = TRUE;
12041 if (xtensa_frag_flags_is_empty (prop_flags))
12042 prop_flags->is_data = TRUE;
12043 }
12044 if (fragP->tc_frag_data.is_unreachable)
12045 prop_flags->is_unreachable = TRUE;
12046 else if (fragP->tc_frag_data.is_insn)
12047 {
12048 prop_flags->is_insn = TRUE;
12049 if (fragP->tc_frag_data.is_loop_target)
12050 prop_flags->insn.is_loop_target = TRUE;
12051 if (fragP->tc_frag_data.is_branch_target)
12052 prop_flags->insn.is_branch_target = TRUE;
12053 if (fragP->tc_frag_data.is_no_density)
12054 prop_flags->insn.is_no_density = TRUE;
12055 if (fragP->tc_frag_data.use_absolute_literals)
12056 prop_flags->insn.is_abslit = TRUE;
12057 }
12058 if (fragP->tc_frag_data.is_align)
12059 {
12060 prop_flags->is_align = TRUE;
12061 prop_flags->alignment = fragP->tc_frag_data.alignment;
12062 if (xtensa_frag_flags_is_empty (prop_flags))
12063 prop_flags->is_data = TRUE;
12064 }
12065 }
12066
12067
12068 static flagword
12069 frag_flags_to_number (const frag_flags *prop_flags)
12070 {
12071 flagword num = 0;
12072 if (prop_flags->is_literal)
12073 num |= XTENSA_PROP_LITERAL;
12074 if (prop_flags->is_insn)
12075 num |= XTENSA_PROP_INSN;
12076 if (prop_flags->is_data)
12077 num |= XTENSA_PROP_DATA;
12078 if (prop_flags->is_unreachable)
12079 num |= XTENSA_PROP_UNREACHABLE;
12080 if (prop_flags->insn.is_loop_target)
12081 num |= XTENSA_PROP_INSN_LOOP_TARGET;
12082 if (prop_flags->insn.is_branch_target)
12083 {
12084 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
12085 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
12086 }
12087
12088 if (prop_flags->insn.is_no_density)
12089 num |= XTENSA_PROP_INSN_NO_DENSITY;
12090 if (prop_flags->is_no_transform)
12091 num |= XTENSA_PROP_NO_TRANSFORM;
12092 if (prop_flags->insn.is_no_reorder)
12093 num |= XTENSA_PROP_INSN_NO_REORDER;
12094 if (prop_flags->insn.is_abslit)
12095 num |= XTENSA_PROP_INSN_ABSLIT;
12096
12097 if (prop_flags->is_align)
12098 {
12099 num |= XTENSA_PROP_ALIGN;
12100 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
12101 }
12102
12103 return num;
12104 }
12105
12106
12107 static bfd_boolean
12108 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
12109 const frag_flags *prop_flags_2)
12110 {
12111 /* Cannot combine with an end marker. */
12112
12113 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
12114 return FALSE;
12115 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
12116 return FALSE;
12117 if (prop_flags_1->is_data != prop_flags_2->is_data)
12118 return FALSE;
12119
12120 if (prop_flags_1->is_insn)
12121 {
12122 /* Properties of the beginning of the frag. */
12123 if (prop_flags_2->insn.is_loop_target)
12124 return FALSE;
12125 if (prop_flags_2->insn.is_branch_target)
12126 return FALSE;
12127 if (prop_flags_1->insn.is_no_density !=
12128 prop_flags_2->insn.is_no_density)
12129 return FALSE;
12130 if (prop_flags_1->is_no_transform !=
12131 prop_flags_2->is_no_transform)
12132 return FALSE;
12133 if (prop_flags_1->insn.is_no_reorder !=
12134 prop_flags_2->insn.is_no_reorder)
12135 return FALSE;
12136 if (prop_flags_1->insn.is_abslit !=
12137 prop_flags_2->insn.is_abslit)
12138 return FALSE;
12139 }
12140
12141 if (prop_flags_1->is_align)
12142 return FALSE;
12143
12144 return TRUE;
12145 }
12146
12147
12148 static bfd_vma
12149 xt_block_aligned_size (const xtensa_block_info *xt_block)
12150 {
12151 bfd_vma end_addr;
12152 unsigned align_bits;
12153
12154 if (!xt_block->flags.is_align)
12155 return xt_block->size;
12156
12157 end_addr = xt_block->offset + xt_block->size;
12158 align_bits = xt_block->flags.alignment;
12159 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
12160 return end_addr - xt_block->offset;
12161 }
12162
12163
12164 static bfd_boolean
12165 xtensa_xt_block_combine (xtensa_block_info *xt_block,
12166 const xtensa_block_info *xt_block_2)
12167 {
12168 if (xt_block->sec != xt_block_2->sec)
12169 return FALSE;
12170 if (xt_block->offset + xt_block_aligned_size (xt_block)
12171 != xt_block_2->offset)
12172 return FALSE;
12173
12174 if (xt_block_2->size == 0
12175 && (!xt_block_2->flags.is_unreachable
12176 || xt_block->flags.is_unreachable))
12177 {
12178 if (xt_block_2->flags.is_align
12179 && xt_block->flags.is_align)
12180 {
12181 /* Nothing needed. */
12182 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
12183 return TRUE;
12184 }
12185 else
12186 {
12187 if (xt_block_2->flags.is_align)
12188 {
12189 /* Push alignment to previous entry. */
12190 xt_block->flags.is_align = xt_block_2->flags.is_align;
12191 xt_block->flags.alignment = xt_block_2->flags.alignment;
12192 }
12193 return TRUE;
12194 }
12195 }
12196 if (!xtensa_frag_flags_combinable (&xt_block->flags,
12197 &xt_block_2->flags))
12198 return FALSE;
12199
12200 xt_block->size += xt_block_2->size;
12201
12202 if (xt_block_2->flags.is_align)
12203 {
12204 xt_block->flags.is_align = TRUE;
12205 xt_block->flags.alignment = xt_block_2->flags.alignment;
12206 }
12207
12208 return TRUE;
12209 }
12210
12211
12212 static void
12213 add_xt_prop_frags (segT sec,
12214 xtensa_block_info **xt_block,
12215 frag_flags_fn property_function)
12216 {
12217 fragS *fragP;
12218
12219 /* Build it if needed. */
12220 while (*xt_block != NULL)
12221 {
12222 xt_block = &(*xt_block)->next;
12223 }
12224 /* We are either at NULL at the beginning or at the end. */
12225
12226 /* Walk through the frags. */
12227 if (seg_info (sec)->frchainP)
12228 {
12229 for (fragP = seg_info (sec)->frchainP->frch_root; fragP;
12230 fragP = fragP->fr_next)
12231 {
12232 xtensa_block_info tmp_block;
12233 tmp_block.sec = sec;
12234 tmp_block.offset = fragP->fr_address;
12235 tmp_block.size = fragP->fr_fix;
12236 tmp_block.next = NULL;
12237 property_function (fragP, &tmp_block.flags);
12238
12239 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
12240 /* && fragP->fr_fix != 0) */
12241 {
12242 if ((*xt_block) == NULL
12243 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
12244 {
12245 xtensa_block_info *new_block;
12246 if ((*xt_block) != NULL)
12247 xt_block = &(*xt_block)->next;
12248 new_block = (xtensa_block_info *)
12249 xmalloc (sizeof (xtensa_block_info));
12250 *new_block = tmp_block;
12251 *xt_block = new_block;
12252 }
12253 }
12254 }
12255 }
12256 }
12257
12258 \f
12259 /* op_placement_info_table */
12260
12261 /* op_placement_info makes it easier to determine which
12262 ops can go in which slots. */
12263
12264 static void
12265 init_op_placement_info_table (void)
12266 {
12267 xtensa_isa isa = xtensa_default_isa;
12268 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
12269 xtensa_opcode opcode;
12270 xtensa_format fmt;
12271 int slot;
12272 int num_opcodes = xtensa_isa_num_opcodes (isa);
12273
12274 op_placement_table = (op_placement_info_table)
12275 xmalloc (sizeof (op_placement_info) * num_opcodes);
12276 gas_assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
12277
12278 for (opcode = 0; opcode < num_opcodes; opcode++)
12279 {
12280 op_placement_info *opi = &op_placement_table[opcode];
12281 /* FIXME: Make tinsn allocation dynamic. */
12282 if (xtensa_opcode_num_operands (isa, opcode) > MAX_INSN_ARGS)
12283 as_fatal (_("too many operands in instruction"));
12284 opi->narrowest = XTENSA_UNDEFINED;
12285 opi->narrowest_size = 0x7F;
12286 opi->narrowest_slot = 0;
12287 opi->formats = 0;
12288 opi->num_formats = 0;
12289 opi->issuef = 0;
12290 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
12291 {
12292 opi->slots[fmt] = 0;
12293 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
12294 {
12295 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
12296 {
12297 int fmt_length = xtensa_format_length (isa, fmt);
12298 opi->issuef++;
12299 set_bit (fmt, opi->formats);
12300 set_bit (slot, opi->slots[fmt]);
12301 if (fmt_length < opi->narrowest_size
12302 || (fmt_length == opi->narrowest_size
12303 && (xtensa_format_num_slots (isa, fmt)
12304 < xtensa_format_num_slots (isa,
12305 opi->narrowest))))
12306 {
12307 opi->narrowest = fmt;
12308 opi->narrowest_size = fmt_length;
12309 opi->narrowest_slot = slot;
12310 }
12311 }
12312 }
12313 if (opi->formats)
12314 opi->num_formats++;
12315 }
12316 }
12317 xtensa_insnbuf_free (isa, ibuf);
12318 }
12319
12320
12321 bfd_boolean
12322 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
12323 {
12324 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
12325 }
12326
12327
12328 /* If the opcode is available in a single slot format, return its size. */
12329
12330 static int
12331 xg_get_single_size (xtensa_opcode opcode)
12332 {
12333 return op_placement_table[opcode].narrowest_size;
12334 }
12335
12336
12337 static xtensa_format
12338 xg_get_single_format (xtensa_opcode opcode)
12339 {
12340 return op_placement_table[opcode].narrowest;
12341 }
12342
12343
12344 static int
12345 xg_get_single_slot (xtensa_opcode opcode)
12346 {
12347 return op_placement_table[opcode].narrowest_slot;
12348 }
12349
12350 \f
12351 /* Instruction Stack Functions (from "xtensa-istack.h"). */
12352
12353 void
12354 istack_init (IStack *stack)
12355 {
12356 stack->ninsn = 0;
12357 }
12358
12359
12360 bfd_boolean
12361 istack_empty (IStack *stack)
12362 {
12363 return (stack->ninsn == 0);
12364 }
12365
12366
12367 bfd_boolean
12368 istack_full (IStack *stack)
12369 {
12370 return (stack->ninsn == MAX_ISTACK);
12371 }
12372
12373
12374 /* Return a pointer to the top IStack entry.
12375 It is an error to call this if istack_empty () is TRUE. */
12376
12377 TInsn *
12378 istack_top (IStack *stack)
12379 {
12380 int rec = stack->ninsn - 1;
12381 gas_assert (!istack_empty (stack));
12382 return &stack->insn[rec];
12383 }
12384
12385
12386 /* Add a new TInsn to an IStack.
12387 It is an error to call this if istack_full () is TRUE. */
12388
12389 void
12390 istack_push (IStack *stack, TInsn *insn)
12391 {
12392 int rec = stack->ninsn;
12393 gas_assert (!istack_full (stack));
12394 stack->insn[rec] = *insn;
12395 stack->ninsn++;
12396 }
12397
12398
12399 /* Clear space for the next TInsn on the IStack and return a pointer
12400 to it. It is an error to call this if istack_full () is TRUE. */
12401
12402 TInsn *
12403 istack_push_space (IStack *stack)
12404 {
12405 int rec = stack->ninsn;
12406 TInsn *insn;
12407 gas_assert (!istack_full (stack));
12408 insn = &stack->insn[rec];
12409 tinsn_init (insn);
12410 stack->ninsn++;
12411 return insn;
12412 }
12413
12414
12415 /* Remove the last pushed instruction. It is an error to call this if
12416 istack_empty () returns TRUE. */
12417
12418 void
12419 istack_pop (IStack *stack)
12420 {
12421 int rec = stack->ninsn - 1;
12422 gas_assert (!istack_empty (stack));
12423 stack->ninsn--;
12424 tinsn_init (&stack->insn[rec]);
12425 }
12426
12427 \f
12428 /* TInsn functions. */
12429
12430 void
12431 tinsn_init (TInsn *dst)
12432 {
12433 memset (dst, 0, sizeof (TInsn));
12434 }
12435
12436
12437 /* Return TRUE if ANY of the operands in the insn are symbolic. */
12438
12439 static bfd_boolean
12440 tinsn_has_symbolic_operands (const TInsn *insn)
12441 {
12442 int i;
12443 int n = insn->ntok;
12444
12445 gas_assert (insn->insn_type == ITYPE_INSN);
12446
12447 for (i = 0; i < n; ++i)
12448 {
12449 switch (insn->tok[i].X_op)
12450 {
12451 case O_register:
12452 case O_constant:
12453 break;
12454 default:
12455 return TRUE;
12456 }
12457 }
12458 return FALSE;
12459 }
12460
12461
12462 bfd_boolean
12463 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
12464 {
12465 xtensa_isa isa = xtensa_default_isa;
12466 int i;
12467 int n = insn->ntok;
12468
12469 gas_assert (insn->insn_type == ITYPE_INSN);
12470
12471 for (i = 0; i < n; ++i)
12472 {
12473 switch (insn->tok[i].X_op)
12474 {
12475 case O_register:
12476 case O_constant:
12477 break;
12478 case O_big:
12479 case O_illegal:
12480 case O_absent:
12481 /* Errors for these types are caught later. */
12482 break;
12483 case O_hi16:
12484 case O_lo16:
12485 default:
12486 /* Symbolic immediates are only allowed on the last immediate
12487 operand. At this time, CONST16 is the only opcode where we
12488 support non-PC-relative relocations. */
12489 if (i != get_relaxable_immed (insn->opcode)
12490 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
12491 && insn->opcode != xtensa_const16_opcode))
12492 {
12493 as_bad (_("invalid symbolic operand"));
12494 return TRUE;
12495 }
12496 }
12497 }
12498 return FALSE;
12499 }
12500
12501
12502 /* For assembly code with complex expressions (e.g. subtraction),
12503 we have to build them in the literal pool so that
12504 their results are calculated correctly after relaxation.
12505 The relaxation only handles expressions that
12506 boil down to SYMBOL + OFFSET. */
12507
12508 static bfd_boolean
12509 tinsn_has_complex_operands (const TInsn *insn)
12510 {
12511 int i;
12512 int n = insn->ntok;
12513 gas_assert (insn->insn_type == ITYPE_INSN);
12514 for (i = 0; i < n; ++i)
12515 {
12516 switch (insn->tok[i].X_op)
12517 {
12518 case O_register:
12519 case O_constant:
12520 case O_symbol:
12521 case O_lo16:
12522 case O_hi16:
12523 break;
12524 default:
12525 return TRUE;
12526 }
12527 }
12528 return FALSE;
12529 }
12530
12531
12532 /* Encode a TInsn opcode and its constant operands into slotbuf.
12533 Return TRUE if there is a symbol in the immediate field. This
12534 function assumes that:
12535 1) The number of operands are correct.
12536 2) The insn_type is ITYPE_INSN.
12537 3) The opcode can be encoded in the specified format and slot.
12538 4) Operands are either O_constant or O_symbol, and all constants fit. */
12539
12540 static bfd_boolean
12541 tinsn_to_slotbuf (xtensa_format fmt,
12542 int slot,
12543 TInsn *tinsn,
12544 xtensa_insnbuf slotbuf)
12545 {
12546 xtensa_isa isa = xtensa_default_isa;
12547 xtensa_opcode opcode = tinsn->opcode;
12548 bfd_boolean has_fixup = FALSE;
12549 int noperands = xtensa_opcode_num_operands (isa, opcode);
12550 int i;
12551
12552 gas_assert (tinsn->insn_type == ITYPE_INSN);
12553 if (noperands != tinsn->ntok)
12554 as_fatal (_("operand number mismatch"));
12555
12556 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
12557 {
12558 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
12559 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
12560 return FALSE;
12561 }
12562
12563 for (i = 0; i < noperands; i++)
12564 {
12565 expressionS *exp = &tinsn->tok[i];
12566 int rc;
12567 unsigned line;
12568 const char *file_name;
12569 uint32 opnd_value;
12570
12571 switch (exp->X_op)
12572 {
12573 case O_register:
12574 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
12575 break;
12576 /* The register number has already been checked in
12577 expression_maybe_register, so we don't need to check here. */
12578 opnd_value = exp->X_add_number;
12579 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
12580 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
12581 opnd_value);
12582 if (rc != 0)
12583 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
12584 break;
12585
12586 case O_constant:
12587 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
12588 break;
12589 file_name = as_where (&line);
12590 /* It is a constant and we called this function
12591 then we have to try to fit it. */
12592 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
12593 exp->X_add_number, file_name, line);
12594 break;
12595
12596 default:
12597 has_fixup = TRUE;
12598 break;
12599 }
12600 }
12601
12602 return has_fixup;
12603 }
12604
12605
12606 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
12607 into a multi-slot instruction, fill the other slots with NOPs.
12608 Return TRUE if there is a symbol in the immediate field. See also the
12609 assumptions listed for tinsn_to_slotbuf. */
12610
12611 static bfd_boolean
12612 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
12613 {
12614 static xtensa_insnbuf slotbuf = 0;
12615 static vliw_insn vinsn;
12616 xtensa_isa isa = xtensa_default_isa;
12617 bfd_boolean has_fixup = FALSE;
12618 int i;
12619
12620 if (!slotbuf)
12621 {
12622 slotbuf = xtensa_insnbuf_alloc (isa);
12623 xg_init_vinsn (&vinsn);
12624 }
12625
12626 xg_clear_vinsn (&vinsn);
12627
12628 bundle_tinsn (tinsn, &vinsn);
12629
12630 xtensa_format_encode (isa, vinsn.format, insnbuf);
12631
12632 for (i = 0; i < vinsn.num_slots; i++)
12633 {
12634 /* Only one slot may have a fix-up because the rest contains NOPs. */
12635 has_fixup |=
12636 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
12637 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
12638 }
12639
12640 return has_fixup;
12641 }
12642
12643
12644 /* Check the instruction arguments. Return TRUE on failure. */
12645
12646 static bfd_boolean
12647 tinsn_check_arguments (const TInsn *insn)
12648 {
12649 xtensa_isa isa = xtensa_default_isa;
12650 xtensa_opcode opcode = insn->opcode;
12651 xtensa_regfile t1_regfile, t2_regfile;
12652 int t1_reg, t2_reg;
12653 int t1_base_reg, t1_last_reg;
12654 int t2_base_reg, t2_last_reg;
12655 char t1_inout, t2_inout;
12656 int i, j;
12657
12658 if (opcode == XTENSA_UNDEFINED)
12659 {
12660 as_bad (_("invalid opcode"));
12661 return TRUE;
12662 }
12663
12664 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
12665 {
12666 as_bad (_("too few operands"));
12667 return TRUE;
12668 }
12669
12670 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
12671 {
12672 as_bad (_("too many operands"));
12673 return TRUE;
12674 }
12675
12676 /* Check registers. */
12677 for (j = 0; j < insn->ntok; j++)
12678 {
12679 if (xtensa_operand_is_register (isa, insn->opcode, j) != 1)
12680 continue;
12681
12682 t2_regfile = xtensa_operand_regfile (isa, insn->opcode, j);
12683 t2_base_reg = insn->tok[j].X_add_number;
12684 t2_last_reg
12685 = t2_base_reg + xtensa_operand_num_regs (isa, insn->opcode, j);
12686
12687 for (i = 0; i < insn->ntok; i++)
12688 {
12689 if (i == j)
12690 continue;
12691
12692 if (xtensa_operand_is_register (isa, insn->opcode, i) != 1)
12693 continue;
12694
12695 t1_regfile = xtensa_operand_regfile (isa, insn->opcode, i);
12696
12697 if (t1_regfile != t2_regfile)
12698 continue;
12699
12700 t1_inout = xtensa_operand_inout (isa, insn->opcode, i);
12701 t2_inout = xtensa_operand_inout (isa, insn->opcode, j);
12702
12703 t1_base_reg = insn->tok[i].X_add_number;
12704 t1_last_reg = (t1_base_reg
12705 + xtensa_operand_num_regs (isa, insn->opcode, i));
12706
12707 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
12708 {
12709 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
12710 {
12711 if (t1_reg != t2_reg)
12712 continue;
12713
12714 if (t1_inout != 'i' && t2_inout != 'i')
12715 {
12716 as_bad (_("multiple writes to the same register"));
12717 return TRUE;
12718 }
12719 }
12720 }
12721 }
12722 }
12723 return FALSE;
12724 }
12725
12726
12727 /* Load an instruction from its encoded form. */
12728
12729 static void
12730 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
12731 {
12732 vliw_insn vinsn;
12733
12734 xg_init_vinsn (&vinsn);
12735 vinsn_from_chars (&vinsn, f);
12736
12737 *tinsn = vinsn.slots[slot];
12738 xg_free_vinsn (&vinsn);
12739 }
12740
12741
12742 static void
12743 tinsn_from_insnbuf (TInsn *tinsn,
12744 xtensa_insnbuf slotbuf,
12745 xtensa_format fmt,
12746 int slot)
12747 {
12748 int i;
12749 xtensa_isa isa = xtensa_default_isa;
12750
12751 /* Find the immed. */
12752 tinsn_init (tinsn);
12753 tinsn->insn_type = ITYPE_INSN;
12754 tinsn->is_specific_opcode = FALSE; /* must not be specific */
12755 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
12756 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
12757 for (i = 0; i < tinsn->ntok; i++)
12758 {
12759 set_expr_const (&tinsn->tok[i],
12760 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
12761 tinsn->opcode, i));
12762 }
12763 }
12764
12765
12766 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
12767
12768 static void
12769 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
12770 {
12771 xtensa_opcode opcode = tinsn->opcode;
12772 int opnum;
12773
12774 if (fragP->tc_frag_data.slot_symbols[slot])
12775 {
12776 opnum = get_relaxable_immed (opcode);
12777 gas_assert (opnum >= 0);
12778 set_expr_symbol_offset (&tinsn->tok[opnum],
12779 fragP->tc_frag_data.slot_symbols[slot],
12780 fragP->tc_frag_data.slot_offsets[slot]);
12781 }
12782 tinsn->extra_arg = fragP->tc_frag_data.free_reg[slot];
12783 }
12784
12785
12786 static int
12787 get_num_stack_text_bytes (IStack *istack)
12788 {
12789 int i;
12790 int text_bytes = 0;
12791
12792 for (i = 0; i < istack->ninsn; i++)
12793 {
12794 TInsn *tinsn = &istack->insn[i];
12795 if (tinsn->insn_type == ITYPE_INSN)
12796 text_bytes += xg_get_single_size (tinsn->opcode);
12797 }
12798 return text_bytes;
12799 }
12800
12801
12802 static int
12803 get_num_stack_literal_bytes (IStack *istack)
12804 {
12805 int i;
12806 int lit_bytes = 0;
12807
12808 for (i = 0; i < istack->ninsn; i++)
12809 {
12810 TInsn *tinsn = &istack->insn[i];
12811 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
12812 lit_bytes += 4;
12813 }
12814 return lit_bytes;
12815 }
12816
12817 \f
12818 /* vliw_insn functions. */
12819
12820 static void
12821 xg_init_vinsn (vliw_insn *v)
12822 {
12823 int i;
12824 xtensa_isa isa = xtensa_default_isa;
12825
12826 xg_clear_vinsn (v);
12827
12828 v->insnbuf = xtensa_insnbuf_alloc (isa);
12829 if (v->insnbuf == NULL)
12830 as_fatal (_("out of memory"));
12831
12832 for (i = 0; i < config_max_slots; i++)
12833 {
12834 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
12835 if (v->slotbuf[i] == NULL)
12836 as_fatal (_("out of memory"));
12837 }
12838 }
12839
12840
12841 static void
12842 xg_clear_vinsn (vliw_insn *v)
12843 {
12844 int i;
12845
12846 memset (v, 0, offsetof (vliw_insn, slots)
12847 + sizeof(TInsn) * config_max_slots);
12848
12849 v->format = XTENSA_UNDEFINED;
12850 v->num_slots = 0;
12851 v->inside_bundle = FALSE;
12852
12853 if (xt_saved_debug_type != DEBUG_NONE)
12854 debug_type = xt_saved_debug_type;
12855
12856 for (i = 0; i < config_max_slots; i++)
12857 v->slots[i].opcode = XTENSA_UNDEFINED;
12858 }
12859
12860
12861 static void
12862 xg_copy_vinsn (vliw_insn *dst, vliw_insn *src)
12863 {
12864 memcpy (dst, src,
12865 offsetof(vliw_insn, slots) + src->num_slots * sizeof(TInsn));
12866 dst->insnbuf = src->insnbuf;
12867 memcpy (dst->slotbuf, src->slotbuf, src->num_slots * sizeof(xtensa_insnbuf));
12868 }
12869
12870
12871 static bfd_boolean
12872 vinsn_has_specific_opcodes (vliw_insn *v)
12873 {
12874 int i;
12875
12876 for (i = 0; i < v->num_slots; i++)
12877 {
12878 if (v->slots[i].is_specific_opcode)
12879 return TRUE;
12880 }
12881 return FALSE;
12882 }
12883
12884
12885 static void
12886 xg_free_vinsn (vliw_insn *v)
12887 {
12888 int i;
12889 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
12890 for (i = 0; i < config_max_slots; i++)
12891 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
12892 }
12893
12894
12895 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
12896 operands. See also the assumptions listed for tinsn_to_slotbuf. */
12897
12898 static bfd_boolean
12899 vinsn_to_insnbuf (vliw_insn *vinsn,
12900 char *frag_offset,
12901 fragS *fragP,
12902 bfd_boolean record_fixup)
12903 {
12904 xtensa_isa isa = xtensa_default_isa;
12905 xtensa_format fmt = vinsn->format;
12906 xtensa_insnbuf insnbuf = vinsn->insnbuf;
12907 int slot;
12908 bfd_boolean has_fixup = FALSE;
12909
12910 xtensa_format_encode (isa, fmt, insnbuf);
12911
12912 for (slot = 0; slot < vinsn->num_slots; slot++)
12913 {
12914 TInsn *tinsn = &vinsn->slots[slot];
12915 expressionS *extra_arg = &tinsn->extra_arg;
12916 bfd_boolean tinsn_has_fixup =
12917 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
12918 vinsn->slotbuf[slot]);
12919
12920 xtensa_format_set_slot (isa, fmt, slot,
12921 insnbuf, vinsn->slotbuf[slot]);
12922 if (extra_arg->X_op != O_illegal && extra_arg->X_op != O_register)
12923 {
12924 if (vinsn->num_slots != 1)
12925 as_bad (_("TLS relocation not allowed in FLIX bundle"));
12926 else if (record_fixup)
12927 /* Instructions that generate TLS relocations should always be
12928 relaxed in the front-end. If "record_fixup" is set, then this
12929 function is being called during back-end relaxation, so flag
12930 the unexpected behavior as an error. */
12931 as_bad (_("unexpected TLS relocation"));
12932 else
12933 fix_new (fragP, frag_offset - fragP->fr_literal,
12934 xtensa_format_length (isa, fmt),
12935 extra_arg->X_add_symbol, extra_arg->X_add_number,
12936 FALSE, map_operator_to_reloc (extra_arg->X_op, FALSE));
12937 }
12938 if (tinsn_has_fixup)
12939 {
12940 int i;
12941 xtensa_opcode opcode = tinsn->opcode;
12942 int noperands = xtensa_opcode_num_operands (isa, opcode);
12943 has_fixup = TRUE;
12944
12945 for (i = 0; i < noperands; i++)
12946 {
12947 expressionS* exp = &tinsn->tok[i];
12948 switch (exp->X_op)
12949 {
12950 case O_symbol:
12951 case O_lo16:
12952 case O_hi16:
12953 if (get_relaxable_immed (opcode) == i)
12954 {
12955 /* Add a fix record for the instruction, except if this
12956 function is being called prior to relaxation, i.e.,
12957 if record_fixup is false, and the instruction might
12958 be relaxed later. */
12959 if (record_fixup
12960 || tinsn->is_specific_opcode
12961 || !xg_is_relaxable_insn (tinsn, 0))
12962 {
12963 xg_add_opcode_fix (tinsn, i, fmt, slot, exp, fragP,
12964 frag_offset - fragP->fr_literal);
12965 }
12966 else
12967 {
12968 if (exp->X_op != O_symbol)
12969 as_bad (_("invalid operand"));
12970 tinsn->symbol = exp->X_add_symbol;
12971 tinsn->offset = exp->X_add_number;
12972 }
12973 }
12974 else
12975 as_bad (_("symbolic operand not allowed"));
12976 break;
12977
12978 case O_constant:
12979 case O_register:
12980 break;
12981
12982 default:
12983 as_bad (_("expression too complex"));
12984 break;
12985 }
12986 }
12987 }
12988 }
12989
12990 return has_fixup;
12991 }
12992
12993
12994 static void
12995 vinsn_from_chars (vliw_insn *vinsn, char *f)
12996 {
12997 static xtensa_insnbuf insnbuf = NULL;
12998 static xtensa_insnbuf slotbuf = NULL;
12999 int i;
13000 xtensa_format fmt;
13001 xtensa_isa isa = xtensa_default_isa;
13002
13003 if (!insnbuf)
13004 {
13005 insnbuf = xtensa_insnbuf_alloc (isa);
13006 slotbuf = xtensa_insnbuf_alloc (isa);
13007 }
13008
13009 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
13010 fmt = xtensa_format_decode (isa, insnbuf);
13011 if (fmt == XTENSA_UNDEFINED)
13012 as_fatal (_("cannot decode instruction format"));
13013 vinsn->format = fmt;
13014 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
13015
13016 for (i = 0; i < vinsn->num_slots; i++)
13017 {
13018 TInsn *tinsn = &vinsn->slots[i];
13019 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
13020 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
13021 }
13022 }
13023
13024 \f
13025 /* Expression utilities. */
13026
13027 /* Return TRUE if the expression is an integer constant. */
13028
13029 bfd_boolean
13030 expr_is_const (const expressionS *s)
13031 {
13032 return (s->X_op == O_constant);
13033 }
13034
13035
13036 /* Get the expression constant.
13037 Calling this is illegal if expr_is_const () returns TRUE. */
13038
13039 offsetT
13040 get_expr_const (const expressionS *s)
13041 {
13042 gas_assert (expr_is_const (s));
13043 return s->X_add_number;
13044 }
13045
13046
13047 /* Set the expression to a constant value. */
13048
13049 void
13050 set_expr_const (expressionS *s, offsetT val)
13051 {
13052 s->X_op = O_constant;
13053 s->X_add_number = val;
13054 s->X_add_symbol = NULL;
13055 s->X_op_symbol = NULL;
13056 }
13057
13058
13059 bfd_boolean
13060 expr_is_register (const expressionS *s)
13061 {
13062 return (s->X_op == O_register);
13063 }
13064
13065
13066 /* Get the expression constant.
13067 Calling this is illegal if expr_is_const () returns TRUE. */
13068
13069 offsetT
13070 get_expr_register (const expressionS *s)
13071 {
13072 gas_assert (expr_is_register (s));
13073 return s->X_add_number;
13074 }
13075
13076
13077 /* Set the expression to a symbol + constant offset. */
13078
13079 void
13080 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
13081 {
13082 s->X_op = O_symbol;
13083 s->X_add_symbol = sym;
13084 s->X_op_symbol = NULL; /* unused */
13085 s->X_add_number = offset;
13086 }
13087
13088
13089 /* Return TRUE if the two expressions are equal. */
13090
13091 bfd_boolean
13092 expr_is_equal (expressionS *s1, expressionS *s2)
13093 {
13094 if (s1->X_op != s2->X_op)
13095 return FALSE;
13096 if (s1->X_add_symbol != s2->X_add_symbol)
13097 return FALSE;
13098 if (s1->X_op_symbol != s2->X_op_symbol)
13099 return FALSE;
13100 if (s1->X_add_number != s2->X_add_number)
13101 return FALSE;
13102 return TRUE;
13103 }
13104
13105
13106 static void
13107 copy_expr (expressionS *dst, const expressionS *src)
13108 {
13109 memcpy (dst, src, sizeof (expressionS));
13110 }
13111
13112 \f
13113 /* Support for the "--rename-section" option. */
13114
13115 struct rename_section_struct
13116 {
13117 char *old_name;
13118 char *new_name;
13119 struct rename_section_struct *next;
13120 };
13121
13122 static struct rename_section_struct *section_rename;
13123
13124
13125 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
13126 entries to the section_rename list. Note: Specifying multiple
13127 renamings separated by colons is not documented and is retained only
13128 for backward compatibility. */
13129
13130 static void
13131 build_section_rename (const char *arg)
13132 {
13133 struct rename_section_struct *r;
13134 char *this_arg = NULL;
13135 char *next_arg = NULL;
13136
13137 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
13138 {
13139 char *old_name, *new_name;
13140
13141 if (this_arg)
13142 {
13143 next_arg = strchr (this_arg, ':');
13144 if (next_arg)
13145 {
13146 *next_arg = '\0';
13147 next_arg++;
13148 }
13149 }
13150
13151 old_name = this_arg;
13152 new_name = strchr (this_arg, '=');
13153
13154 if (*old_name == '\0')
13155 {
13156 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
13157 continue;
13158 }
13159 if (!new_name || new_name[1] == '\0')
13160 {
13161 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
13162 old_name);
13163 continue;
13164 }
13165 *new_name = '\0';
13166 new_name++;
13167
13168 /* Check for invalid section renaming. */
13169 for (r = section_rename; r != NULL; r = r->next)
13170 {
13171 if (strcmp (r->old_name, old_name) == 0)
13172 as_bad (_("section %s renamed multiple times"), old_name);
13173 if (strcmp (r->new_name, new_name) == 0)
13174 as_bad (_("multiple sections remapped to output section %s"),
13175 new_name);
13176 }
13177
13178 /* Now add it. */
13179 r = (struct rename_section_struct *)
13180 xmalloc (sizeof (struct rename_section_struct));
13181 r->old_name = xstrdup (old_name);
13182 r->new_name = xstrdup (new_name);
13183 r->next = section_rename;
13184 section_rename = r;
13185 }
13186 }
13187
13188
13189 char *
13190 xtensa_section_rename (char *name)
13191 {
13192 struct rename_section_struct *r = section_rename;
13193
13194 for (r = section_rename; r != NULL; r = r->next)
13195 {
13196 if (strcmp (r->old_name, name) == 0)
13197 return r->new_name;
13198 }
13199
13200 return name;
13201 }
This page took 0.309162 seconds and 4 git commands to generate.