71481a9938e274a9d30615f55d758c64acd84209
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.h
1 /* tc-xtensa.h -- Header file for tc-xtensa.c.
2 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #ifndef TC_XTENSA
22 #define TC_XTENSA 1
23
24 struct fix;
25
26 #ifndef OBJ_ELF
27 #error Xtensa support requires ELF object format
28 #endif
29
30 #include "xtensa-isa.h"
31 #include "xtensa-config.h"
32
33 #define TARGET_BYTES_BIG_ENDIAN XCHAL_HAVE_BE
34
35
36 /* Maximum number of opcode slots in a VLIW instruction. */
37 #define MAX_SLOTS 15
38
39
40 /* For all xtensa relax states except RELAX_DESIRE_ALIGN and
41 RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
42 in the fr_var field. For the two exceptions, fr_var is a float value
43 that records the frequency with which the following instruction is
44 executed as a branch target. The aligner uses this information to
45 tell which targets are most important to be aligned. */
46
47 enum xtensa_relax_statesE
48 {
49 RELAX_ALIGN_NEXT_OPCODE,
50 /* Use the first opcode of the next fragment to determine the
51 alignment requirements. This is ONLY used for LOOPs currently. */
52
53 RELAX_CHECK_ALIGN_NEXT_OPCODE,
54 /* The next non-empty frag contains a loop instruction. Check to see
55 if it is correctly aligned, but do not align it. */
56
57 RELAX_DESIRE_ALIGN_IF_TARGET,
58 /* These are placed in front of labels and converted to either
59 RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
60 relaxation begins. */
61
62 RELAX_ADD_NOP_IF_A0_B_RETW,
63 /* These are placed in front of conditional branches. Before
64 relaxation begins, they are turned into either NOPs for branches
65 immediately followed by RETW or RETW.N or rs_fills of 0. This is
66 used to avoid a hardware bug in some early versions of the
67 processor. */
68
69 RELAX_ADD_NOP_IF_PRE_LOOP_END,
70 /* These are placed after JX instructions. Before relaxation begins,
71 they are turned into either NOPs, if the JX is one instruction
72 before a loop end label, or rs_fills of 0. This is used to avoid a
73 hardware interlock issue prior to Xtensa version T1040. */
74
75 RELAX_ADD_NOP_IF_SHORT_LOOP,
76 /* These are placed after LOOP instructions and turned into NOPs when:
77 (1) there are less than 3 instructions in the loop; we place 2 of
78 these in a row to add up to 2 NOPS in short loops; or (2) the
79 instructions in the loop do not include a branch or jump.
80 Otherwise they are turned into rs_fills of 0 before relaxation
81 begins. This is used to avoid hardware bug PR3830. */
82
83 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
84 /* These are placed after LOOP instructions and turned into NOPs if
85 there are less than 12 bytes to the end of some other loop's end.
86 Otherwise they are turned into rs_fills of 0 before relaxation
87 begins. This is used to avoid hardware bug PR3830. */
88
89 RELAX_DESIRE_ALIGN,
90 /* The next fragment would like its first instruction to NOT cross an
91 instruction fetch boundary. */
92
93 RELAX_MAYBE_DESIRE_ALIGN,
94 /* The next fragment might like its first instruction to NOT cross an
95 instruction fetch boundary. These are placed after a branch that
96 might be relaxed. If the branch is relaxed, then this frag will be
97 a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
98 frag. */
99
100 RELAX_LOOP_END,
101 /* This will be turned into a NOP or NOP.N if the previous instruction
102 is expanded to negate a loop. */
103
104 RELAX_LOOP_END_ADD_NOP,
105 /* When the code density option is available, this will generate a
106 NOP.N marked RELAX_NARROW. Otherwise, it will create an rs_fill
107 fragment with a NOP in it. */
108
109 RELAX_LITERAL,
110 /* Another fragment could generate an expansion here but has not yet. */
111
112 RELAX_LITERAL_NR,
113 /* Expansion has been generated by an instruction that generates a
114 literal. However, the stretch has NOT been reported yet in this
115 fragment. */
116
117 RELAX_LITERAL_FINAL,
118 /* Expansion has been generated by an instruction that generates a
119 literal. */
120
121 RELAX_LITERAL_POOL_BEGIN,
122 RELAX_LITERAL_POOL_END,
123 /* Technically these are not relaxations at all but mark a location
124 to store literals later. Note that fr_var stores the frchain for
125 BEGIN frags and fr_var stores now_seg for END frags. */
126
127 RELAX_NARROW,
128 /* The last instruction in this fragment (at->fr_opcode) can be
129 freely replaced with a single wider instruction if a future
130 alignment desires or needs it. */
131
132 RELAX_IMMED,
133 /* The last instruction in this fragment (at->fr_opcode) contains
134 the value defined by fr_symbol (fr_offset = 0). If the value
135 does not fit, use the specified expansion. This is similar to
136 "NARROW", except that these may not be expanded in order to align
137 code. */
138
139 RELAX_IMMED_STEP1,
140 /* The last instruction in this fragment (at->fr_opcode) contains a
141 literal. It has already been expanded at least 1 step. */
142
143 RELAX_IMMED_STEP2,
144 /* The last instruction in this fragment (at->fr_opcode) contains a
145 literal. It has already been expanded at least 2 steps. */
146
147 RELAX_SLOTS,
148 /* There are instructions within the last VLIW instruction that need
149 relaxation. Find the relaxation based on the slot info in
150 xtensa_frag_type. Relaxations that deal with particular opcodes
151 are slot-based (e.g., converting a MOVI to an L32R). Relaxations
152 that deal with entire instructions, such as alignment, are not
153 slot-based. */
154
155 RELAX_FILL_NOP,
156 /* This marks the location of a pipeline stall. We can fill these guys
157 in for alignment of any size. */
158
159 RELAX_UNREACHABLE,
160 /* This marks the location as unreachable. The assembler may widen or
161 narrow this area to meet alignment requirements of nearby
162 instructions. */
163
164 RELAX_MAYBE_UNREACHABLE,
165 /* This marks the location as possibly unreachable. These are placed
166 after a branch that may be relaxed into a branch and jump. If the
167 branch is relaxed, then this frag will be converted to a
168 RELAX_UNREACHABLE frag. */
169
170 RELAX_ORG,
171 /* This marks the location as having previously been an rs_org frag.
172 rs_org frags are converted to fill-zero frags immediately after
173 relaxation. However, we need to remember where they were so we can
174 prevent the linker from changing the size of any frag between the
175 section start and the org frag. */
176
177 RELAX_NONE
178 };
179
180 /* This is used as a stopper to bound the number of steps that
181 can be taken. */
182 #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP2 - RELAX_IMMED)
183
184 struct xtensa_frag_type
185 {
186 /* Info about the current state of assembly, e.g., transform,
187 absolute_literals, etc. These need to be passed to the backend and
188 then to the object file.
189
190 When is_assembly_state_set is false, the frag inherits some of the
191 state settings from the previous frag in this segment. Because it
192 is not possible to intercept all fragment closures (frag_more and
193 frag_append_1_char can close a frag), we use a pass after initial
194 assembly to fill in the assembly states. */
195
196 unsigned int is_assembly_state_set : 1;
197 unsigned int is_no_density : 1;
198 unsigned int is_no_transform : 1;
199 unsigned int use_longcalls : 1;
200 unsigned int use_absolute_literals : 1;
201
202 /* Inhibits relaxation of machine-dependent alignment frags the
203 first time through a relaxation.... */
204 unsigned int relax_seen : 1;
205
206 /* Information that is needed in the object file and set when known. */
207 unsigned int is_literal : 1;
208 unsigned int is_loop_target : 1;
209 unsigned int is_branch_target : 1;
210 unsigned int is_insn : 1;
211 unsigned int is_unreachable : 1;
212
213 unsigned int is_specific_opcode : 1; /* also implies no_transform */
214
215 unsigned int is_align : 1;
216 unsigned int is_text_align : 1;
217 unsigned int alignment : 5;
218
219 /* A frag with this bit set is the first in a loop that actually
220 contains an instruction. */
221 unsigned int is_first_loop_insn : 1;
222
223 /* A frag with this bit set is a branch that we are using to
224 align branch targets as if it were a normal narrow instruction. */
225 unsigned int is_aligning_branch : 1;
226
227 /* For text fragments that can generate literals at relax time, this
228 variable points to the frag where the literal will be stored. For
229 literal frags, this variable points to the nearest literal pool
230 location frag. This literal frag will be moved to after this
231 location. */
232 fragS *literal_frag;
233
234 /* The destination segment for literal frags. (Note that this is only
235 valid after xtensa_move_literals.) This field is also used for
236 LITERAL_POOL_END frags. */
237 segT lit_seg;
238
239 /* Frag chain for LITERAL_POOL_BEGIN frags. */
240 struct frchain *lit_frchain;
241
242 /* For the relaxation scheme, some literal fragments can have their
243 expansions modified by an instruction that relaxes. */
244 int text_expansion[MAX_SLOTS];
245 int literal_expansion[MAX_SLOTS];
246 int unreported_expansion;
247
248 /* For text fragments that can generate literals at relax time: */
249 fragS *literal_frags[MAX_SLOTS];
250 enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
251 symbolS *slot_symbols[MAX_SLOTS];
252 offsetT slot_offsets[MAX_SLOTS];
253
254 /* The global aligner needs to walk backward through the list of
255 frags. This field is only valid after xtensa_end. */
256 fragS *fr_prev;
257 };
258
259
260 /* For VLIW support, we need to know what slot a fixup applies to. */
261 typedef struct xtensa_fix_data_struct
262 {
263 int slot;
264 symbolS *X_add_symbol;
265 offsetT X_add_number;
266 } xtensa_fix_data;
267
268
269 /* Structure to record xtensa-specific symbol information. */
270 typedef struct xtensa_symfield_type
271 {
272 unsigned int is_loop_target : 1;
273 unsigned int is_branch_target : 1;
274 } xtensa_symfield_type;
275
276
277 /* Structure for saving information about a block of property data
278 for frags that have the same flags. The forward reference is
279 in this header file. The actual definition is in tc-xtensa.c. */
280 struct xtensa_block_info_struct;
281 typedef struct xtensa_block_info_struct xtensa_block_info;
282
283
284 /* Property section types. */
285 typedef enum
286 {
287 xt_literal_sec,
288 xt_prop_sec,
289 max_xt_sec
290 } xt_section_type;
291
292 typedef struct xtensa_segment_info_struct
293 {
294 fragS *literal_pool_loc;
295 xtensa_block_info *blocks[max_xt_sec];
296 } xtensa_segment_info;
297
298
299 extern const char *xtensa_target_format (void);
300 extern void xtensa_init_fix_data (struct fix *);
301 extern void xtensa_frag_init (fragS *);
302 extern int xtensa_force_relocation (struct fix *);
303 extern int xtensa_validate_fix_sub (struct fix *);
304 extern void xtensa_frob_label (struct symbol *);
305 extern void xtensa_end (void);
306 extern void xtensa_post_relax_hook (void);
307 extern void xtensa_file_arch_init (bfd *);
308 extern void xtensa_flush_pending_output (void);
309 extern bfd_boolean xtensa_fix_adjustable (struct fix *);
310 extern void xtensa_symbol_new_hook (symbolS *);
311 extern long xtensa_relax_frag (fragS *, long, int *);
312 extern void xtensa_elf_section_change_hook (void);
313 extern int xtensa_unrecognized_line (int);
314 extern bfd_boolean xtensa_check_inside_bundle (void);
315 extern void xtensa_handle_align (fragS *);
316 extern char *xtensa_section_rename (char *);
317
318 #define TARGET_FORMAT xtensa_target_format ()
319 #define TARGET_ARCH bfd_arch_xtensa
320 #define TC_SEGMENT_INFO_TYPE xtensa_segment_info
321 #define TC_SYMFIELD_TYPE struct xtensa_symfield_type
322 #define TC_FIX_TYPE xtensa_fix_data
323 #define TC_INIT_FIX_DATA(x) xtensa_init_fix_data (x)
324 #define TC_FRAG_TYPE struct xtensa_frag_type
325 #define TC_FRAG_INIT(frag) xtensa_frag_init (frag)
326 #define TC_FORCE_RELOCATION(fix) xtensa_force_relocation (fix)
327 #define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
328 (! SEG_NORMAL (seg) || xtensa_force_relocation (fix))
329 #define TC_VALIDATE_FIX_SUB(fix) xtensa_validate_fix_sub (fix)
330 #define NO_PSEUDO_DOT xtensa_check_inside_bundle ()
331 #define tc_canonicalize_symbol_name(s) xtensa_section_rename (s)
332 #define tc_canonicalize_section_name(s) xtensa_section_rename (s)
333 #define tc_init_after_args() xtensa_file_arch_init (stdoutput)
334 #define tc_fix_adjustable(fix) xtensa_fix_adjustable (fix)
335 #define tc_frob_label(sym) xtensa_frob_label (sym)
336 #define tc_unrecognized_line(ch) xtensa_unrecognized_line (ch)
337 #define md_do_align(a,b,c,d,e) xtensa_flush_pending_output ()
338 #define md_elf_section_change_hook xtensa_elf_section_change_hook
339 #define md_end xtensa_end
340 #define md_flush_pending_output() xtensa_flush_pending_output ()
341 #define md_operand(x)
342 #define TEXT_SECTION_NAME xtensa_section_rename (".text")
343 #define DATA_SECTION_NAME xtensa_section_rename (".data")
344 #define BSS_SECTION_NAME xtensa_section_rename (".bss")
345 #define HANDLE_ALIGN(fragP) xtensa_handle_align (fragP)
346 #define MAX_MEM_FOR_RS_ALIGN_CODE 1
347
348
349 /* The renumber_section function must be mapped over all the sections
350 after calling xtensa_post_relax_hook. That function is static in
351 write.c so it cannot be called from xtensa_post_relax_hook itself. */
352
353 #define md_post_relax_hook \
354 do \
355 { \
356 int i = 0; \
357 xtensa_post_relax_hook (); \
358 bfd_map_over_sections (stdoutput, renumber_sections, &i); \
359 } \
360 while (0)
361
362
363 /* Because xtensa relaxation can insert a new literal into the middle of
364 fragment and thus require re-running the relaxation pass on the
365 section, we need an explicit flag here. We explicitly use the name
366 "stretched" here to avoid changing the source code in write.c. */
367
368 #define md_relax_frag(segment, fragP, stretch) \
369 xtensa_relax_frag (fragP, stretch, &stretched)
370
371
372 #define LOCAL_LABELS_FB 1
373 #define WORKING_DOT_WORD 1
374 #define DOUBLESLASH_LINE_COMMENTS
375 #define TC_HANDLES_FX_DONE
376 #define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
377 #define TC_LINKRELAX_FIXUP(SEG) 0
378 #define MD_APPLY_SYM_VALUE(FIX) 0
379 #define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
380
381 /* Use line number format that is amenable to linker relaxation. */
382 #define DWARF2_USE_FIXED_ADVANCE_PC (linkrelax != 0)
383
384
385 /* Resource reservation info functions. */
386
387 /* Returns the number of copies of a particular unit. */
388 typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
389
390 /* Returns the number of units the opcode uses. */
391 typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
392
393 /* Given an opcode and an index into the opcode's funcUnit list,
394 returns the unit used for the index. */
395 typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
396
397 /* Given an opcode and an index into the opcode's funcUnit list,
398 returns the cycle during which the unit is used. */
399 typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
400
401 /* The above typedefs parameterize the resource_table so that the
402 optional scheduler doesn't need its own resource reservation system.
403
404 For simple resource checking, which is all that happens normally,
405 the functions will be as follows (with some wrapping to make the
406 interface more convenient):
407
408 unit_num_copies_func = xtensa_funcUnit_num_copies
409 opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
410 opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
411 opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
412
413 Of course the optional scheduler has its own reservation table
414 and functions. */
415
416 int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
417 int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
418
419 typedef struct
420 {
421 void *data;
422 int cycles;
423 int allocated_cycles;
424 int num_units;
425 unit_num_copies_func unit_num_copies;
426 opcode_num_units_func opcode_num_units;
427 opcode_funcUnit_use_unit_func opcode_unit_use;
428 opcode_funcUnit_use_stage_func opcode_unit_stage;
429 unsigned char **units;
430 } resource_table;
431
432 resource_table *new_resource_table
433 (void *, int, int, unit_num_copies_func, opcode_num_units_func,
434 opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
435 void resize_resource_table (resource_table *, int);
436 void clear_resource_table (resource_table *);
437 bfd_boolean resources_available (resource_table *, xtensa_opcode, int);
438 void reserve_resources (resource_table *, xtensa_opcode, int);
439 void release_resources (resource_table *, xtensa_opcode, int);
440
441 #endif /* TC_XTENSA */
This page took 0.0378309999999999 seconds and 3 git commands to generate.