fd727122241b709258c017edb18ccda09afc71e6
[deliverable/binutils-gdb.git] / gas / config / tc-xtensa.h
1 /* tc-xtensa.h -- Header file for tc-xtensa.c.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #ifndef TC_XTENSA
22 #define TC_XTENSA 1
23
24 struct fix;
25
26 #ifndef BFD_ASSEMBLER
27 #error Xtensa support requires BFD_ASSEMBLER
28 #endif
29
30 #ifndef OBJ_ELF
31 #error Xtensa support requires ELF object format
32 #endif
33
34 #include "xtensa-isa.h"
35 #include "xtensa-config.h"
36
37 #define TARGET_BYTES_BIG_ENDIAN XCHAL_HAVE_BE
38
39
40 /* Maximum number of opcode slots in a VLIW instruction. */
41 #define MAX_SLOTS 15
42
43
44 /* For all xtensa relax states except RELAX_DESIRE_ALIGN and
45 RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
46 in the fr_var field. For the two exceptions, fr_var is a float value
47 that records the frequency with which the following instruction is
48 executed as a branch target. The aligner uses this information to
49 tell which targets are most important to be aligned. */
50
51 enum xtensa_relax_statesE
52 {
53 RELAX_ALIGN_NEXT_OPCODE,
54 /* Use the first opcode of the next fragment to determine the
55 alignment requirements. This is ONLY used for LOOPs currently. */
56
57 RELAX_CHECK_ALIGN_NEXT_OPCODE,
58 /* The next non-empty frag contains a loop instruction. Check to see
59 if it is correctly aligned, but do not align it. */
60
61 RELAX_DESIRE_ALIGN_IF_TARGET,
62 /* These are placed in front of labels and converted to either
63 RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
64 relaxation begins. */
65
66 RELAX_ADD_NOP_IF_A0_B_RETW,
67 /* These are placed in front of conditional branches. Before
68 relaxation begins, they are turned into either NOPs for branches
69 immediately followed by RETW or RETW.N or rs_fills of 0. This is
70 used to avoid a hardware bug in some early versions of the
71 processor. */
72
73 RELAX_ADD_NOP_IF_PRE_LOOP_END,
74 /* These are placed after JX instructions. Before relaxation begins,
75 they are turned into either NOPs, if the JX is one instruction
76 before a loop end label, or rs_fills of 0. This is used to avoid a
77 hardware interlock issue prior to Xtensa version T1040. */
78
79 RELAX_ADD_NOP_IF_SHORT_LOOP,
80 /* These are placed after LOOP instructions and turned into NOPs when:
81 (1) there are less than 3 instructions in the loop; we place 2 of
82 these in a row to add up to 2 NOPS in short loops; or (2) the
83 instructions in the loop do not include a branch or jump.
84 Otherwise they are turned into rs_fills of 0 before relaxation
85 begins. This is used to avoid hardware bug PR3830. */
86
87 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
88 /* These are placed after LOOP instructions and turned into NOPs if
89 there are less than 12 bytes to the end of some other loop's end.
90 Otherwise they are turned into rs_fills of 0 before relaxation
91 begins. This is used to avoid hardware bug PR3830. */
92
93 RELAX_DESIRE_ALIGN,
94 /* The next fragment would like its first instruction to NOT cross an
95 instruction fetch boundary. */
96
97 RELAX_MAYBE_DESIRE_ALIGN,
98 /* The next fragment might like its first instruction to NOT cross an
99 instruction fetch boundary. These are placed after a branch that
100 might be relaxed. If the branch is relaxed, then this frag will be
101 a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
102 frag. */
103
104 RELAX_LOOP_END,
105 /* This will be turned into a NOP or NOP.N if the previous instruction
106 is expanded to negate a loop. */
107
108 RELAX_LOOP_END_ADD_NOP,
109 /* When the code density option is available, this will generate a
110 NOP.N marked RELAX_NARROW. Otherwise, it will create an rs_fill
111 fragment with a NOP in it. */
112
113 RELAX_LITERAL,
114 /* Another fragment could generate an expansion here but has not yet. */
115
116 RELAX_LITERAL_NR,
117 /* Expansion has been generated by an instruction that generates a
118 literal. However, the stretch has NOT been reported yet in this
119 fragment. */
120
121 RELAX_LITERAL_FINAL,
122 /* Expansion has been generated by an instruction that generates a
123 literal. */
124
125 RELAX_LITERAL_POOL_BEGIN,
126 RELAX_LITERAL_POOL_END,
127 /* Technically these are not relaxations at all but mark a location
128 to store literals later. Note that fr_var stores the frchain for
129 BEGIN frags and fr_var stores now_seg for END frags. */
130
131 RELAX_NARROW,
132 /* The last instruction in this fragment (at->fr_opcode) can be
133 freely replaced with a single wider instruction if a future
134 alignment desires or needs it. */
135
136 RELAX_IMMED,
137 /* The last instruction in this fragment (at->fr_opcode) contains
138 the value defined by fr_symbol (fr_offset = 0). If the value
139 does not fit, use the specified expansion. This is similar to
140 "NARROW", except that these may not be expanded in order to align
141 code. */
142
143 RELAX_IMMED_STEP1,
144 /* The last instruction in this fragment (at->fr_opcode) contains a
145 literal. It has already been expanded at least 1 step. */
146
147 RELAX_IMMED_STEP2,
148 /* The last instruction in this fragment (at->fr_opcode) contains a
149 literal. It has already been expanded at least 2 steps. */
150
151 RELAX_SLOTS,
152 /* There are instructions within the last VLIW instruction that need
153 relaxation. Find the relaxation based on the slot info in
154 xtensa_frag_type. Relaxations that deal with particular opcodes
155 are slot-based (e.g., converting a MOVI to an L32R). Relaxations
156 that deal with entire instructions, such as alignment, are not
157 slot-based. */
158
159 RELAX_FILL_NOP,
160 /* This marks the location of a pipeline stall. We can fill these guys
161 in for alignment of any size. */
162
163 RELAX_UNREACHABLE,
164 /* This marks the location as unreachable. The assembler may widen or
165 narrow this area to meet alignment requirements of nearby
166 instructions. */
167
168 RELAX_MAYBE_UNREACHABLE,
169 /* This marks the location as possibly unreachable. These are placed
170 after a branch that may be relaxed into a branch and jump. If the
171 branch is relaxed, then this frag will be converted to a
172 RELAX_UNREACHABLE frag. */
173
174 RELAX_NONE
175 };
176
177 /* This is used as a stopper to bound the number of steps that
178 can be taken. */
179 #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP2 - RELAX_IMMED)
180
181 struct xtensa_frag_type
182 {
183 /* Info about the current state of assembly, e.g., transform,
184 absolute_literals, etc. These need to be passed to the backend and
185 then to the object file.
186
187 When is_assembly_state_set is false, the frag inherits some of the
188 state settings from the previous frag in this segment. Because it
189 is not possible to intercept all fragment closures (frag_more and
190 frag_append_1_char can close a frag), we use a pass after initial
191 assembly to fill in the assembly states. */
192
193 unsigned int is_assembly_state_set : 1;
194 unsigned int is_no_density : 1;
195 unsigned int is_no_transform : 1;
196 unsigned int use_longcalls : 1;
197 unsigned int use_absolute_literals : 1;
198
199 /* Inhibits relaxation of machine-dependent alignment frags the
200 first time through a relaxation.... */
201 unsigned int relax_seen : 1;
202
203 /* Information that is needed in the object file and set when known. */
204 unsigned int is_literal : 1;
205 unsigned int is_loop_target : 1;
206 unsigned int is_branch_target : 1;
207 unsigned int is_insn : 1;
208 unsigned int is_unreachable : 1;
209
210 unsigned int is_specific_opcode : 1; /* also implies no_transform */
211
212 unsigned int is_align : 1;
213 unsigned int is_text_align : 1;
214 unsigned int alignment : 5;
215
216 /* A frag with this bit set is the first in a loop that actually
217 contains an instruction. */
218 unsigned int is_first_loop_insn : 1;
219
220 /* For text fragments that can generate literals at relax time, this
221 variable points to the frag where the literal will be stored. For
222 literal frags, this variable points to the nearest literal pool
223 location frag. This literal frag will be moved to after this
224 location. */
225 fragS *literal_frag;
226
227 /* The destination segment for literal frags. (Note that this is only
228 valid after xtensa_move_literals.) This field is also used for
229 LITERAL_POOL_END frags. */
230 segT lit_seg;
231
232 /* Frag chain for LITERAL_POOL_BEGIN frags. */
233 struct frchain *lit_frchain;
234
235 /* For the relaxation scheme, some literal fragments can have their
236 expansions modified by an instruction that relaxes. */
237 int text_expansion[MAX_SLOTS];
238 int literal_expansion[MAX_SLOTS];
239 int unreported_expansion;
240
241 /* For text fragments that can generate literals at relax time: */
242 fragS *literal_frags[MAX_SLOTS];
243 enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
244 symbolS *slot_symbols[MAX_SLOTS];
245 symbolS *slot_sub_symbols[MAX_SLOTS];
246 offsetT slot_offsets[MAX_SLOTS];
247
248 /* The global aligner needs to walk backward through the list of
249 frags. This field is only valid after xtensa_end. */
250 fragS *fr_prev;
251 };
252
253
254 /* For VLIW support, we need to know what slot a fixup applies to. */
255 typedef struct xtensa_fix_data_struct
256 {
257 int slot;
258 symbolS *X_add_symbol;
259 offsetT X_add_number;
260 } xtensa_fix_data;
261
262
263 /* Structure to record xtensa-specific symbol information. */
264 typedef struct xtensa_symfield_type
265 {
266 unsigned int is_loop_target : 1;
267 unsigned int is_branch_target : 1;
268 } xtensa_symfield_type;
269
270
271 /* Structure for saving information about a block of property data
272 for frags that have the same flags. The forward reference is
273 in this header file. The actual definition is in tc-xtensa.c. */
274 struct xtensa_block_info_struct;
275 typedef struct xtensa_block_info_struct xtensa_block_info;
276
277
278 /* Property section types. */
279 typedef enum
280 {
281 xt_literal_sec,
282 xt_prop_sec,
283 max_xt_sec
284 } xt_section_type;
285
286 typedef struct xtensa_segment_info_struct
287 {
288 fragS *literal_pool_loc;
289 xtensa_block_info *blocks[max_xt_sec];
290 } xtensa_segment_info;
291
292
293 extern const char *xtensa_target_format (void);
294 extern void xtensa_init_fix_data (struct fix *);
295 extern void xtensa_frag_init (fragS *);
296 extern int xtensa_force_relocation (struct fix *);
297 extern int xtensa_validate_fix_sub (struct fix *);
298 extern void xtensa_frob_label (struct symbol *);
299 extern void xtensa_end (void);
300 extern void xtensa_post_relax_hook (void);
301 extern void xtensa_file_arch_init (bfd *);
302 extern void xtensa_flush_pending_output (void);
303 extern bfd_boolean xtensa_fix_adjustable (struct fix *);
304 extern void xtensa_symbol_new_hook (symbolS *);
305 extern long xtensa_relax_frag (fragS *, long, int *);
306 extern void xtensa_elf_section_change_hook (void);
307 extern int xtensa_unrecognized_line (int);
308 extern bfd_boolean xtensa_check_inside_bundle (void);
309 extern void xtensa_handle_align (fragS *);
310 extern char *xtensa_section_rename (char *);
311
312 #define TARGET_FORMAT xtensa_target_format ()
313 #define TARGET_ARCH bfd_arch_xtensa
314 #define TC_SEGMENT_INFO_TYPE xtensa_segment_info
315 #define TC_SYMFIELD_TYPE struct xtensa_symfield_type
316 #define TC_FIX_TYPE xtensa_fix_data
317 #define TC_INIT_FIX_DATA(x) xtensa_init_fix_data (x)
318 #define TC_FRAG_TYPE struct xtensa_frag_type
319 #define TC_FRAG_INIT(frag) xtensa_frag_init (frag)
320 #define TC_FORCE_RELOCATION(fix) xtensa_force_relocation (fix)
321 #define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
322 (! SEG_NORMAL (seg) || xtensa_force_relocation (fix))
323 #define TC_VALIDATE_FIX_SUB(fix) xtensa_validate_fix_sub (fix)
324 #define NO_PSEUDO_DOT xtensa_check_inside_bundle ()
325 #define tc_canonicalize_symbol_name(s) xtensa_section_rename (s)
326 #define tc_canonicalize_section_name(s) xtensa_section_rename (s)
327 #define tc_init_after_args() xtensa_file_arch_init (stdoutput)
328 #define tc_fix_adjustable(fix) xtensa_fix_adjustable (fix)
329 #define tc_frob_label(sym) xtensa_frob_label (sym)
330 #define tc_unrecognized_line(ch) xtensa_unrecognized_line (ch)
331 #define md_do_align(a,b,c,d,e) xtensa_flush_pending_output ()
332 #define md_elf_section_change_hook xtensa_elf_section_change_hook
333 #define md_end xtensa_end
334 #define md_flush_pending_output() xtensa_flush_pending_output ()
335 #define md_operand(x)
336 #define TEXT_SECTION_NAME xtensa_section_rename (".text")
337 #define DATA_SECTION_NAME xtensa_section_rename (".data")
338 #define BSS_SECTION_NAME xtensa_section_rename (".bss")
339 #define HANDLE_ALIGN(fragP) xtensa_handle_align (fragP)
340
341
342 /* The renumber_section function must be mapped over all the sections
343 after calling xtensa_post_relax_hook. That function is static in
344 write.c so it cannot be called from xtensa_post_relax_hook itself. */
345
346 #define md_post_relax_hook \
347 do \
348 { \
349 int i = 0; \
350 xtensa_post_relax_hook (); \
351 bfd_map_over_sections (stdoutput, renumber_sections, &i); \
352 } \
353 while (0)
354
355
356 /* Because xtensa relaxation can insert a new literal into the middle of
357 fragment and thus require re-running the relaxation pass on the
358 section, we need an explicit flag here. We explicitly use the name
359 "stretched" here to avoid changing the source code in write.c. */
360
361 #define md_relax_frag(segment, fragP, stretch) \
362 xtensa_relax_frag (fragP, stretch, &stretched)
363
364
365 #define LOCAL_LABELS_FB 1
366 #define WORKING_DOT_WORD 1
367 #define DOUBLESLASH_LINE_COMMENTS
368 #define TC_HANDLES_FX_DONE
369 #define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
370 #define TC_LINKRELAX_FIXUP(SEG) 0
371 #define MD_APPLY_SYM_VALUE(FIX) 0
372 #define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
373
374
375 /* Resource reservation info functions. */
376
377 /* Returns the number of copies of a particular unit. */
378 typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
379
380 /* Returns the number of units the opcode uses. */
381 typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
382
383 /* Given an opcode and an index into the opcode's funcUnit list,
384 returns the unit used for the index. */
385 typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
386
387 /* Given an opcode and an index into the opcode's funcUnit list,
388 returns the cycle during which the unit is used. */
389 typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
390
391 /* The above typedefs parameterize the resource_table so that the
392 optional scheduler doesn't need its own resource reservation system.
393
394 For simple resource checking, which is all that happens normally,
395 the functions will be as follows (with some wrapping to make the
396 interface more convenient):
397
398 unit_num_copies_func = xtensa_funcUnit_num_copies
399 opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
400 opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
401 opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
402
403 Of course the optional scheduler has its own reservation table
404 and functions. */
405
406 int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
407 int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
408
409 typedef struct
410 {
411 void *data;
412 int cycles;
413 int allocated_cycles;
414 int num_units;
415 unit_num_copies_func unit_num_copies;
416 opcode_num_units_func opcode_num_units;
417 opcode_funcUnit_use_unit_func opcode_unit_use;
418 opcode_funcUnit_use_stage_func opcode_unit_stage;
419 unsigned char **units;
420 } resource_table;
421
422 resource_table *new_resource_table
423 (void *, int, int, unit_num_copies_func, opcode_num_units_func,
424 opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
425 void resize_resource_table (resource_table *, int);
426 void clear_resource_table (resource_table *);
427 bfd_boolean resources_available (resource_table *, xtensa_opcode, int);
428 void reserve_resources (resource_table *, xtensa_opcode, int);
429 void release_resources (resource_table *, xtensa_opcode, int);
430
431 #endif /* TC_XTENSA */
This page took 0.042944 seconds and 3 git commands to generate.