2008-08-20 Bob Wilson <bob.wilson@acm.org>
[deliverable/binutils-gdb.git] / gas / config / xtensa-relax.c
1 /* Table of relaxations for Xtensa assembly.
2 Copyright 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 /* This file contains the code for generating runtime data structures
22 for relaxation pattern matching from statically specified strings.
23 Each action contains an instruction pattern to match and
24 preconditions for the match as well as an expansion if the pattern
25 matches. The preconditions can specify that two operands are the
26 same or an operand is a specific constant or register. The expansion
27 uses the bound variables from the pattern to specify that specific
28 operands from the pattern should be used in the result.
29
30 The code determines whether the condition applies to a constant or
31 a register depending on the type of the operand. You may get
32 unexpected results if you don't match the rule against the operand
33 type correctly.
34
35 The patterns match a language like:
36
37 INSN_PATTERN ::= INSN_TEMPL ( '|' PRECOND )* ( '?' OPTIONPRED )*
38 INSN_TEMPL ::= OPCODE ' ' [ OPERAND (',' OPERAND)* ]
39 OPCODE ::= id
40 OPERAND ::= CONSTANT | VARIABLE | SPECIALFN '(' VARIABLE ')'
41 SPECIALFN ::= 'HI24S' | 'F32MINUS' | 'LOW8'
42 | 'HI16' | 'LOW16'
43 VARIABLE ::= '%' id
44 PRECOND ::= OPERAND CMPOP OPERAND
45 CMPOP ::= '==' | '!='
46 OPTIONPRED ::= OPTIONNAME ('+' OPTIONNAME)
47 OPTIONNAME ::= '"' id '"'
48
49 The replacement language
50 INSN_REPL ::= INSN_LABEL_LIT ( ';' INSN_LABEL_LIT )*
51 INSN_LABEL_LIT ::= INSN_TEMPL
52 | 'LABEL'
53 | 'LITERAL' VARIABLE
54
55 The operands in a PRECOND must be constants or variables bound by
56 the INSN_PATTERN.
57
58 The configuration options define a predicate on the availability of
59 options which must be TRUE for this rule to be valid. Examples are
60 requiring "density" for replacements with density instructions,
61 requiring "const16" for replacements that require const16
62 instructions, etc. The names are interpreted by the assembler to a
63 truth value for a particular frag.
64
65 The operands in the INSN_REPL must be constants, variables bound in
66 the associated INSN_PATTERN, special variables that are bound in
67 the INSN_REPL by LABEL or LITERAL definitions, or special value
68 manipulation functions.
69
70 A simple example of a replacement pattern:
71 {"movi.n %as,%imm", "movi %as,%imm"} would convert the narrow
72 movi.n instruction to the wide movi instruction.
73
74 A more complex example of a branch around:
75 {"beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"}
76 would convert a branch to a negated branch to the following instruction
77 with a jump to the original label.
78
79 An Xtensa-specific example that generates a literal:
80 {"movi %at,%imm", "LITERAL %imm; l32r %at,%LITERAL"}
81 will convert a movi instruction to an l32r of a literal
82 literal defined in the literal pool.
83
84 Even more complex is a conversion of a load with immediate offset
85 to a load of a freshly generated literal, an explicit add and
86 a load with 0 offset. This transformation is only valid, though
87 when the first and second operands are not the same as specified
88 by the "| %at!=%as" precondition clause.
89 {"l32i %at,%as,%imm | %at!=%as",
90 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l32i %at,%at,0"}
91
92 There is special case for loop instructions here, but because we do
93 not currently have the ability to represent the difference of two
94 symbols, the conversion requires special code in the assembler to
95 write the operands of the addi/addmi pair representing the
96 difference of the old and new loop end label. */
97
98 #include "as.h"
99 #include "xtensa-isa.h"
100 #include "xtensa-relax.h"
101 #include <stddef.h>
102 #include "xtensa-config.h"
103
104 #ifndef XCHAL_HAVE_WIDE_BRANCHES
105 #define XCHAL_HAVE_WIDE_BRANCHES 0
106 #endif
107
108 /* Imported from bfd. */
109 extern xtensa_isa xtensa_default_isa;
110
111 /* The opname_list is a small list of names that we use for opcode and
112 operand variable names to simplify ownership of these commonly used
113 strings. Strings entered in the table can be compared by pointer
114 equality. */
115
116 typedef struct opname_list_struct opname_list;
117 typedef opname_list opname_e;
118
119 struct opname_list_struct
120 {
121 char *opname;
122 opname_list *next;
123 };
124
125 static opname_list *local_opnames = NULL;
126
127
128 /* The "opname_map" and its element structure "opname_map_e" are used
129 for binding an operand number to a name or a constant. */
130
131 typedef struct opname_map_e_struct opname_map_e;
132 typedef struct opname_map_struct opname_map;
133
134 struct opname_map_e_struct
135 {
136 const char *operand_name; /* If null, then use constant_value. */
137 int operand_num;
138 unsigned constant_value;
139 opname_map_e *next;
140 };
141
142 struct opname_map_struct
143 {
144 opname_map_e *head;
145 opname_map_e **tail;
146 };
147
148 /* The "precond_list" and its element structure "precond_e" represents
149 explicit preconditions comparing operand variables and constants.
150 In the "precond_e" structure, a variable is identified by the name
151 in the "opname" field. If that field is NULL, then the operand
152 is the constant in field "opval". */
153
154 typedef struct precond_e_struct precond_e;
155 typedef struct precond_list_struct precond_list;
156
157 struct precond_e_struct
158 {
159 const char *opname1;
160 unsigned opval1;
161 CmpOp cmpop;
162 const char *opname2;
163 unsigned opval2;
164 precond_e *next;
165 };
166
167 struct precond_list_struct
168 {
169 precond_e *head;
170 precond_e **tail;
171 };
172
173
174 /* The insn_templ represents the INSN_TEMPL instruction template. It
175 is an opcode name with a list of operands. These are used for
176 instruction patterns and replacement patterns. */
177
178 typedef struct insn_templ_struct insn_templ;
179 struct insn_templ_struct
180 {
181 const char *opcode_name;
182 opname_map operand_map;
183 };
184
185
186 /* The insn_pattern represents an INSN_PATTERN instruction pattern.
187 It is an instruction template with preconditions that specify when
188 it actually matches a given instruction. */
189
190 typedef struct insn_pattern_struct insn_pattern;
191 struct insn_pattern_struct
192 {
193 insn_templ t;
194 precond_list preconds;
195 ReqOptionList *options;
196 };
197
198
199 /* The "insn_repl" and associated element structure "insn_repl_e"
200 instruction replacement list is a list of
201 instructions/LITERALS/LABELS with constant operands or operands
202 with names bound to the operand names in the associated pattern. */
203
204 typedef struct insn_repl_e_struct insn_repl_e;
205 struct insn_repl_e_struct
206 {
207 insn_templ t;
208 insn_repl_e *next;
209 };
210
211 typedef struct insn_repl_struct insn_repl;
212 struct insn_repl_struct
213 {
214 insn_repl_e *head;
215 insn_repl_e **tail;
216 };
217
218
219 /* The split_rec is a vector of allocated char * pointers. */
220
221 typedef struct split_rec_struct split_rec;
222 struct split_rec_struct
223 {
224 char **vec;
225 int count;
226 };
227
228 /* The "string_pattern_pair" is a set of pairs containing instruction
229 patterns and replacement strings. */
230
231 typedef struct string_pattern_pair_struct string_pattern_pair;
232 struct string_pattern_pair_struct
233 {
234 const char *pattern;
235 const char *replacement;
236 };
237
238 \f
239 /* The widen_spec_list is a list of valid substitutions that generate
240 wider representations. These are generally used to specify
241 replacements for instructions whose immediates do not fit their
242 encodings. A valid transition may require multiple steps of
243 one-to-one instruction replacements with a final multiple
244 instruction replacement. As an example, here are the transitions
245 required to replace an 'addi.n' with an 'addi', 'addmi'.
246
247 addi.n a4, 0x1010
248 => addi a4, 0x1010
249 => addmi a4, 0x1010
250 => addmi a4, 0x1000, addi a4, 0x10.
251
252 See the comments in xg_assembly_relax for some important details
253 regarding how these chains must be built. */
254
255 static string_pattern_pair widen_spec_list[] =
256 {
257 {"add.n %ar,%as,%at ? IsaUseDensityInstruction", "add %ar,%as,%at"},
258 {"addi.n %ar,%as,%imm ? IsaUseDensityInstruction", "addi %ar,%as,%imm"},
259 {"beqz.n %as,%label ? IsaUseDensityInstruction", "beqz %as,%label"},
260 {"bnez.n %as,%label ? IsaUseDensityInstruction", "bnez %as,%label"},
261 {"l32i.n %at,%as,%imm ? IsaUseDensityInstruction", "l32i %at,%as,%imm"},
262 {"mov.n %at,%as ? IsaUseDensityInstruction", "or %at,%as,%as"},
263 {"movi.n %as,%imm ? IsaUseDensityInstruction", "movi %as,%imm"},
264 {"nop.n ? IsaUseDensityInstruction ? realnop", "nop"},
265 {"nop.n ? IsaUseDensityInstruction ? no-realnop", "or 1,1,1"},
266 {"ret.n %as ? IsaUseDensityInstruction", "ret %as"},
267 {"retw.n %as ? IsaUseDensityInstruction", "retw %as"},
268 {"s32i.n %at,%as,%imm ? IsaUseDensityInstruction", "s32i %at,%as,%imm"},
269 {"srli %at,%as,%imm", "extui %at,%as,%imm,F32MINUS(%imm)"},
270 {"slli %ar,%as,0", "or %ar,%as,%as"},
271
272 /* Widening with literals or const16. */
273 {"movi %at,%imm ? IsaUseL32R ",
274 "LITERAL %imm; l32r %at,%LITERAL"},
275 {"movi %at,%imm ? IsaUseConst16",
276 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm)"},
277
278 {"addi %ar,%as,%imm", "addmi %ar,%as,%imm"},
279 /* LOW8 is the low 8 bits of the Immed
280 MID8S is the middle 8 bits of the Immed */
281 {"addmi %ar,%as,%imm", "addmi %ar,%as,HI24S(%imm); addi %ar,%ar,LOW8(%imm)"},
282
283 /* In the end convert to either an l32r or const16. */
284 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseL32R",
285 "LITERAL %imm; l32r %ar,%LITERAL; add %ar,%as,%ar"},
286 {"addmi %ar,%as,%imm | %ar!=%as ? IsaUseConst16",
287 "const16 %ar,HI16U(%imm); const16 %ar,LOW16U(%imm); add %ar,%as,%ar"},
288
289 /* Widening the load instructions with too-large immediates */
290 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
291 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l8ui %at,%at,0"},
292 {"l16si %at,%as,%imm | %at!=%as ? IsaUseL32R",
293 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l16si %at,%at,0"},
294 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseL32R",
295 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l16ui %at,%at,0"},
296 {"l32i %at,%as,%imm | %at!=%as ? IsaUseL32R",
297 "LITERAL %imm; l32r %at,%LITERAL; add %at,%at,%as; l32i %at,%at,0"},
298
299 /* Widening load instructions with const16s. */
300 {"l8ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
301 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l8ui %at,%at,0"},
302 {"l16si %at,%as,%imm | %at!=%as ? IsaUseConst16",
303 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16si %at,%at,0"},
304 {"l16ui %at,%as,%imm | %at!=%as ? IsaUseConst16",
305 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l16ui %at,%at,0"},
306 {"l32i %at,%as,%imm | %at!=%as ? IsaUseConst16",
307 "const16 %at,HI16U(%imm); const16 %at,LOW16U(%imm); add %at,%at,%as; l32i %at,%at,0"},
308
309 /* This is only PART of the loop instruction. In addition,
310 hardcoded into its use is a modification of the final operand in
311 the instruction in bytes 9 and 12. */
312 {"loop %as,%label | %as!=1 ? IsaUseLoops",
313 "loop %as,%LABEL;"
314 "rsr.lend %as;" /* LEND */
315 "wsr.lbeg %as;" /* LBEG */
316 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
317 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
318 "wsr.lend %as;"
319 "isync;"
320 "rsr.lcount %as;" /* LCOUNT */
321 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
322 "LABEL"},
323 {"loopgtz %as,%label | %as!=1 ? IsaUseLoops",
324 "beqz %as,%label;"
325 "bltz %as,%label;"
326 "loopgtz %as,%LABEL;"
327 "rsr.lend %as;" /* LEND */
328 "wsr.lbeg %as;" /* LBEG */
329 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
330 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
331 "wsr.lend %as;"
332 "isync;"
333 "rsr.lcount %as;" /* LCOUNT */
334 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
335 "LABEL"},
336 {"loopnez %as,%label | %as!=1 ? IsaUseLoops",
337 "beqz %as,%label;"
338 "loopnez %as,%LABEL;"
339 "rsr.lend %as;" /* LEND */
340 "wsr.lbeg %as;" /* LBEG */
341 "addi %as, %as, 0;" /* lo8(%label-%LABEL1) */
342 "addmi %as, %as, 0;" /* mid8(%label-%LABEL1) */
343 "wsr.lend %as;"
344 "isync;"
345 "rsr.lcount %as;" /* LCOUNT */
346 "addi %as, %as, 1;" /* density -> addi.n %as, %as, 1 */
347 "LABEL"},
348
349 /* Relaxing to wide branches. Order is important here. With wide
350 branches, there is more than one correct relaxation for an
351 out-of-range branch. Put the wide branch relaxations first in the
352 table since they are more efficient than the branch-around
353 relaxations. */
354
355 {"beqz %as,%label ? IsaUseWideBranches", "WIDE.beqz %as,%label"},
356 {"bnez %as,%label ? IsaUseWideBranches", "WIDE.bnez %as,%label"},
357 {"bgez %as,%label ? IsaUseWideBranches", "WIDE.bgez %as,%label"},
358 {"bltz %as,%label ? IsaUseWideBranches", "WIDE.bltz %as,%label"},
359 {"beqi %as,%imm,%label ? IsaUseWideBranches", "WIDE.beqi %as,%imm,%label"},
360 {"bnei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bnei %as,%imm,%label"},
361 {"bgei %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgei %as,%imm,%label"},
362 {"blti %as,%imm,%label ? IsaUseWideBranches", "WIDE.blti %as,%imm,%label"},
363 {"bgeui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bgeui %as,%imm,%label"},
364 {"bltui %as,%imm,%label ? IsaUseWideBranches", "WIDE.bltui %as,%imm,%label"},
365 {"bbci %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbci %as,%imm,%label"},
366 {"bbsi %as,%imm,%label ? IsaUseWideBranches", "WIDE.bbsi %as,%imm,%label"},
367 {"beq %as,%at,%label ? IsaUseWideBranches", "WIDE.beq %as,%at,%label"},
368 {"bne %as,%at,%label ? IsaUseWideBranches", "WIDE.bne %as,%at,%label"},
369 {"bge %as,%at,%label ? IsaUseWideBranches", "WIDE.bge %as,%at,%label"},
370 {"blt %as,%at,%label ? IsaUseWideBranches", "WIDE.blt %as,%at,%label"},
371 {"bgeu %as,%at,%label ? IsaUseWideBranches", "WIDE.bgeu %as,%at,%label"},
372 {"bltu %as,%at,%label ? IsaUseWideBranches", "WIDE.bltu %as,%at,%label"},
373 {"bany %as,%at,%label ? IsaUseWideBranches", "WIDE.bany %as,%at,%label"},
374 {"bnone %as,%at,%label ? IsaUseWideBranches", "WIDE.bnone %as,%at,%label"},
375 {"ball %as,%at,%label ? IsaUseWideBranches", "WIDE.ball %as,%at,%label"},
376 {"bnall %as,%at,%label ? IsaUseWideBranches", "WIDE.bnall %as,%at,%label"},
377 {"bbc %as,%at,%label ? IsaUseWideBranches", "WIDE.bbc %as,%at,%label"},
378 {"bbs %as,%at,%label ? IsaUseWideBranches", "WIDE.bbs %as,%at,%label"},
379
380 /* Widening branch comparisons eq/ne to zero. Prefer relaxing to narrow
381 branches if the density option is available. */
382 {"beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL;j %label;LABEL"},
383 {"bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL;j %label;LABEL"},
384 {"beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"},
385 {"bnez %as,%label", "beqz %as,%LABEL;j %label;LABEL"},
386 {"WIDE.beqz %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%LABEL;j %label;LABEL"},
387 {"WIDE.bnez %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%LABEL;j %label;LABEL"},
388 {"WIDE.beqz %as,%label", "bnez %as,%LABEL;j %label;LABEL"},
389 {"WIDE.bnez %as,%label", "beqz %as,%LABEL;j %label;LABEL"},
390
391 /* Widening expect-taken branches. */
392 {"beqzt %as,%label ? IsaUsePredictedBranches", "bnez %as,%LABEL;j %label;LABEL"},
393 {"bnezt %as,%label ? IsaUsePredictedBranches", "beqz %as,%LABEL;j %label;LABEL"},
394 {"beqt %as,%at,%label ? IsaUsePredictedBranches", "bne %as,%at,%LABEL;j %label;LABEL"},
395 {"bnet %as,%at,%label ? IsaUsePredictedBranches", "beq %as,%at,%LABEL;j %label;LABEL"},
396
397 /* Widening branches from the Xtensa boolean option. */
398 {"bt %bs,%label ? IsaUseBooleans", "bf %bs,%LABEL;j %label;LABEL"},
399 {"bf %bs,%label ? IsaUseBooleans", "bt %bs,%LABEL;j %label;LABEL"},
400
401 /* Other branch-around-jump widenings. */
402 {"bgez %as,%label", "bltz %as,%LABEL;j %label;LABEL"},
403 {"bltz %as,%label", "bgez %as,%LABEL;j %label;LABEL"},
404 {"beqi %as,%imm,%label", "bnei %as,%imm,%LABEL;j %label;LABEL"},
405 {"bnei %as,%imm,%label", "beqi %as,%imm,%LABEL;j %label;LABEL"},
406 {"bgei %as,%imm,%label", "blti %as,%imm,%LABEL;j %label;LABEL"},
407 {"blti %as,%imm,%label", "bgei %as,%imm,%LABEL;j %label;LABEL"},
408 {"bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL;j %label;LABEL"},
409 {"bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL;j %label;LABEL"},
410 {"bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL;j %label;LABEL"},
411 {"bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL;j %label;LABEL"},
412 {"beq %as,%at,%label", "bne %as,%at,%LABEL;j %label;LABEL"},
413 {"bne %as,%at,%label", "beq %as,%at,%LABEL;j %label;LABEL"},
414 {"bge %as,%at,%label", "blt %as,%at,%LABEL;j %label;LABEL"},
415 {"blt %as,%at,%label", "bge %as,%at,%LABEL;j %label;LABEL"},
416 {"bgeu %as,%at,%label", "bltu %as,%at,%LABEL;j %label;LABEL"},
417 {"bltu %as,%at,%label", "bgeu %as,%at,%LABEL;j %label;LABEL"},
418 {"bany %as,%at,%label", "bnone %as,%at,%LABEL;j %label;LABEL"},
419 {"bnone %as,%at,%label", "bany %as,%at,%LABEL;j %label;LABEL"},
420 {"ball %as,%at,%label", "bnall %as,%at,%LABEL;j %label;LABEL"},
421 {"bnall %as,%at,%label", "ball %as,%at,%LABEL;j %label;LABEL"},
422 {"bbc %as,%at,%label", "bbs %as,%at,%LABEL;j %label;LABEL"},
423 {"bbs %as,%at,%label", "bbc %as,%at,%LABEL;j %label;LABEL"},
424
425 {"WIDE.bgez %as,%label", "bltz %as,%LABEL;j %label;LABEL"},
426 {"WIDE.bltz %as,%label", "bgez %as,%LABEL;j %label;LABEL"},
427 {"WIDE.beqi %as,%imm,%label", "bnei %as,%imm,%LABEL;j %label;LABEL"},
428 {"WIDE.bnei %as,%imm,%label", "beqi %as,%imm,%LABEL;j %label;LABEL"},
429 {"WIDE.bgei %as,%imm,%label", "blti %as,%imm,%LABEL;j %label;LABEL"},
430 {"WIDE.blti %as,%imm,%label", "bgei %as,%imm,%LABEL;j %label;LABEL"},
431 {"WIDE.bgeui %as,%imm,%label", "bltui %as,%imm,%LABEL;j %label;LABEL"},
432 {"WIDE.bltui %as,%imm,%label", "bgeui %as,%imm,%LABEL;j %label;LABEL"},
433 {"WIDE.bbci %as,%imm,%label", "bbsi %as,%imm,%LABEL;j %label;LABEL"},
434 {"WIDE.bbsi %as,%imm,%label", "bbci %as,%imm,%LABEL;j %label;LABEL"},
435 {"WIDE.beq %as,%at,%label", "bne %as,%at,%LABEL;j %label;LABEL"},
436 {"WIDE.bne %as,%at,%label", "beq %as,%at,%LABEL;j %label;LABEL"},
437 {"WIDE.bge %as,%at,%label", "blt %as,%at,%LABEL;j %label;LABEL"},
438 {"WIDE.blt %as,%at,%label", "bge %as,%at,%LABEL;j %label;LABEL"},
439 {"WIDE.bgeu %as,%at,%label", "bltu %as,%at,%LABEL;j %label;LABEL"},
440 {"WIDE.bltu %as,%at,%label", "bgeu %as,%at,%LABEL;j %label;LABEL"},
441 {"WIDE.bany %as,%at,%label", "bnone %as,%at,%LABEL;j %label;LABEL"},
442 {"WIDE.bnone %as,%at,%label", "bany %as,%at,%LABEL;j %label;LABEL"},
443 {"WIDE.ball %as,%at,%label", "bnall %as,%at,%LABEL;j %label;LABEL"},
444 {"WIDE.bnall %as,%at,%label", "ball %as,%at,%LABEL;j %label;LABEL"},
445 {"WIDE.bbc %as,%at,%label", "bbs %as,%at,%LABEL;j %label;LABEL"},
446 {"WIDE.bbs %as,%at,%label", "bbc %as,%at,%LABEL;j %label;LABEL"},
447
448 /* Expanding calls with literals. */
449 {"call0 %label,%ar0 ? IsaUseL32R",
450 "LITERAL %label; l32r a0,%LITERAL; callx0 a0,%ar0"},
451 {"call4 %label,%ar4 ? IsaUseL32R",
452 "LITERAL %label; l32r a4,%LITERAL; callx4 a4,%ar4"},
453 {"call8 %label,%ar8 ? IsaUseL32R",
454 "LITERAL %label; l32r a8,%LITERAL; callx8 a8,%ar8"},
455 {"call12 %label,%ar12 ? IsaUseL32R",
456 "LITERAL %label; l32r a12,%LITERAL; callx12 a12,%ar12"},
457
458 /* Expanding calls with const16. */
459 {"call0 %label,%ar0 ? IsaUseConst16",
460 "const16 a0,HI16U(%label); const16 a0,LOW16U(%label); callx0 a0,%ar0"},
461 {"call4 %label,%ar4 ? IsaUseConst16",
462 "const16 a4,HI16U(%label); const16 a4,LOW16U(%label); callx4 a4,%ar4"},
463 {"call8 %label,%ar8 ? IsaUseConst16",
464 "const16 a8,HI16U(%label); const16 a8,LOW16U(%label); callx8 a8,%ar8"},
465 {"call12 %label,%ar12 ? IsaUseConst16",
466 "const16 a12,HI16U(%label); const16 a12,LOW16U(%label); callx12 a12,%ar12"}
467 };
468
469 #define WIDEN_COUNT (sizeof (widen_spec_list) / sizeof (string_pattern_pair))
470
471
472 /* The simplify_spec_list specifies simplifying transformations that
473 will reduce the instruction width or otherwise simplify an
474 instruction. These are usually applied before relaxation in the
475 assembler. It is always legal to simplify. Even for "addi as, 0",
476 the "addi.n as, 0" will eventually be widened back to an "addi 0"
477 after the widening table is applied. Note: The usage of this table
478 has changed somewhat so that it is entirely specific to "narrowing"
479 instructions to use the density option. This table is not used at
480 all when the density option is not available. */
481
482 string_pattern_pair simplify_spec_list[] =
483 {
484 {"add %ar,%as,%at ? IsaUseDensityInstruction", "add.n %ar,%as,%at"},
485 {"addi.n %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
486 {"addi %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"},
487 {"addi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
488 {"addmi %ar,%as,%imm ? IsaUseDensityInstruction", "addi.n %ar,%as,%imm"},
489 {"beqz %as,%label ? IsaUseDensityInstruction", "beqz.n %as,%label"},
490 {"bnez %as,%label ? IsaUseDensityInstruction", "bnez.n %as,%label"},
491 {"l32i %at,%as,%imm ? IsaUseDensityInstruction", "l32i.n %at,%as,%imm"},
492 {"movi %as,%imm ? IsaUseDensityInstruction", "movi.n %as,%imm"},
493 {"nop ? realnop ? IsaUseDensityInstruction", "nop.n"},
494 {"or %ar,%as,%at | %ar==%as | %as==%at ? IsaUseDensityInstruction", "nop.n"},
495 {"or %ar,%as,%at | %ar!=%as | %as==%at ? IsaUseDensityInstruction", "mov.n %ar,%as"},
496 {"ret %as ? IsaUseDensityInstruction", "ret.n %as"},
497 {"retw %as ? IsaUseDensityInstruction", "retw.n %as"},
498 {"s32i %at,%as,%imm ? IsaUseDensityInstruction", "s32i.n %at,%as,%imm"},
499 {"slli %ar,%as,0 ? IsaUseDensityInstruction", "mov.n %ar,%as"}
500 };
501
502 #define SIMPLIFY_COUNT \
503 (sizeof (simplify_spec_list) / sizeof (string_pattern_pair))
504
505 \f
506 /* Externally visible functions. */
507
508 extern bfd_boolean xg_has_userdef_op_fn (OpType);
509 extern long xg_apply_userdef_op_fn (OpType, long);
510
511
512 static void
513 append_transition (TransitionTable *tt,
514 xtensa_opcode opcode,
515 TransitionRule *t,
516 transition_cmp_fn cmp)
517 {
518 TransitionList *tl = (TransitionList *) xmalloc (sizeof (TransitionList));
519 TransitionList *prev;
520 TransitionList **t_p;
521 assert (tt != NULL);
522 assert (opcode < tt->num_opcodes);
523
524 prev = tt->table[opcode];
525 tl->rule = t;
526 tl->next = NULL;
527 if (prev == NULL)
528 {
529 tt->table[opcode] = tl;
530 return;
531 }
532
533 for (t_p = &tt->table[opcode]; (*t_p) != NULL; t_p = &(*t_p)->next)
534 {
535 if (cmp && cmp (t, (*t_p)->rule) < 0)
536 {
537 /* Insert it here. */
538 tl->next = *t_p;
539 *t_p = tl;
540 return;
541 }
542 }
543 (*t_p) = tl;
544 }
545
546
547 static void
548 append_condition (TransitionRule *tr, Precondition *cond)
549 {
550 PreconditionList *pl =
551 (PreconditionList *) xmalloc (sizeof (PreconditionList));
552 PreconditionList *prev = tr->conditions;
553 PreconditionList *nxt;
554
555 pl->precond = cond;
556 pl->next = NULL;
557 if (prev == NULL)
558 {
559 tr->conditions = pl;
560 return;
561 }
562 nxt = prev->next;
563 while (nxt != NULL)
564 {
565 prev = nxt;
566 nxt = nxt->next;
567 }
568 prev->next = pl;
569 }
570
571
572 static void
573 append_value_condition (TransitionRule *tr,
574 CmpOp cmp,
575 unsigned op1,
576 unsigned op2)
577 {
578 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
579
580 cond->cmp = cmp;
581 cond->op_num = op1;
582 cond->typ = OP_OPERAND;
583 cond->op_data = op2;
584 append_condition (tr, cond);
585 }
586
587
588 static void
589 append_constant_value_condition (TransitionRule *tr,
590 CmpOp cmp,
591 unsigned op1,
592 unsigned cnst)
593 {
594 Precondition *cond = (Precondition *) xmalloc (sizeof (Precondition));
595
596 cond->cmp = cmp;
597 cond->op_num = op1;
598 cond->typ = OP_CONSTANT;
599 cond->op_data = cnst;
600 append_condition (tr, cond);
601 }
602
603
604 static void
605 append_build_insn (TransitionRule *tr, BuildInstr *bi)
606 {
607 BuildInstr *prev = tr->to_instr;
608 BuildInstr *nxt;
609
610 bi->next = NULL;
611 if (prev == NULL)
612 {
613 tr->to_instr = bi;
614 return;
615 }
616 nxt = prev->next;
617 while (nxt != 0)
618 {
619 prev = nxt;
620 nxt = prev->next;
621 }
622 prev->next = bi;
623 }
624
625
626 static void
627 append_op (BuildInstr *bi, BuildOp *b_op)
628 {
629 BuildOp *prev = bi->ops;
630 BuildOp *nxt;
631
632 if (prev == NULL)
633 {
634 bi->ops = b_op;
635 return;
636 }
637 nxt = prev->next;
638 while (nxt != NULL)
639 {
640 prev = nxt;
641 nxt = nxt->next;
642 }
643 prev->next = b_op;
644 }
645
646
647 static void
648 append_literal_op (BuildInstr *bi, unsigned op1, unsigned src_op)
649 {
650 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
651
652 b_op->op_num = op1;
653 b_op->typ = OP_LITERAL;
654 b_op->op_data = src_op;
655 b_op->next = NULL;
656 append_op (bi, b_op);
657 }
658
659
660 static void
661 append_label_op (BuildInstr *bi, unsigned op1)
662 {
663 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
664
665 b_op->op_num = op1;
666 b_op->typ = OP_LABEL;
667 b_op->op_data = 0;
668 b_op->next = NULL;
669 append_op (bi, b_op);
670 }
671
672
673 static void
674 append_constant_op (BuildInstr *bi, unsigned op1, unsigned cnst)
675 {
676 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
677
678 b_op->op_num = op1;
679 b_op->typ = OP_CONSTANT;
680 b_op->op_data = cnst;
681 b_op->next = NULL;
682 append_op (bi, b_op);
683 }
684
685
686 static void
687 append_field_op (BuildInstr *bi, unsigned op1, unsigned src_op)
688 {
689 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
690
691 b_op->op_num = op1;
692 b_op->typ = OP_OPERAND;
693 b_op->op_data = src_op;
694 b_op->next = NULL;
695 append_op (bi, b_op);
696 }
697
698
699 /* These could be generated but are not currently. */
700
701 static void
702 append_user_fn_field_op (BuildInstr *bi,
703 unsigned op1,
704 OpType typ,
705 unsigned src_op)
706 {
707 BuildOp *b_op = (BuildOp *) xmalloc (sizeof (BuildOp));
708
709 b_op->op_num = op1;
710 b_op->typ = typ;
711 b_op->op_data = src_op;
712 b_op->next = NULL;
713 append_op (bi, b_op);
714 }
715
716
717 /* These operand functions are the semantics of user-defined
718 operand functions. */
719
720 static long
721 operand_function_HI24S (long a)
722 {
723 if (a & 0x80)
724 return (a & (~0xff)) + 0x100;
725 else
726 return (a & (~0xff));
727 }
728
729
730 static long
731 operand_function_F32MINUS (long a)
732 {
733 return (32 - a);
734 }
735
736
737 static long
738 operand_function_LOW8 (long a)
739 {
740 if (a & 0x80)
741 return (a & 0xff) | ~0xff;
742 else
743 return (a & 0xff);
744 }
745
746
747 static long
748 operand_function_LOW16U (long a)
749 {
750 return (a & 0xffff);
751 }
752
753
754 static long
755 operand_function_HI16U (long a)
756 {
757 unsigned long b = a & 0xffff0000;
758 return (long) (b >> 16);
759 }
760
761
762 bfd_boolean
763 xg_has_userdef_op_fn (OpType op)
764 {
765 switch (op)
766 {
767 case OP_OPERAND_F32MINUS:
768 case OP_OPERAND_LOW8:
769 case OP_OPERAND_HI24S:
770 case OP_OPERAND_LOW16U:
771 case OP_OPERAND_HI16U:
772 return TRUE;
773 default:
774 break;
775 }
776 return FALSE;
777 }
778
779
780 long
781 xg_apply_userdef_op_fn (OpType op, long a)
782 {
783 switch (op)
784 {
785 case OP_OPERAND_F32MINUS:
786 return operand_function_F32MINUS (a);
787 case OP_OPERAND_LOW8:
788 return operand_function_LOW8 (a);
789 case OP_OPERAND_HI24S:
790 return operand_function_HI24S (a);
791 case OP_OPERAND_LOW16U:
792 return operand_function_LOW16U (a);
793 case OP_OPERAND_HI16U:
794 return operand_function_HI16U (a);
795 default:
796 break;
797 }
798 return FALSE;
799 }
800
801
802 /* Generate a transition table. */
803
804 static const char *
805 enter_opname_n (const char *name, int len)
806 {
807 opname_e *op;
808
809 for (op = local_opnames; op != NULL; op = op->next)
810 {
811 if (strlen (op->opname) == (unsigned) len
812 && strncmp (op->opname, name, len) == 0)
813 return op->opname;
814 }
815 op = (opname_e *) xmalloc (sizeof (opname_e));
816 op->opname = (char *) xmalloc (len + 1);
817 strncpy (op->opname, name, len);
818 op->opname[len] = '\0';
819 return op->opname;
820 }
821
822
823 static const char *
824 enter_opname (const char *name)
825 {
826 opname_e *op;
827
828 for (op = local_opnames; op != NULL; op = op->next)
829 {
830 if (strcmp (op->opname, name) == 0)
831 return op->opname;
832 }
833 op = (opname_e *) xmalloc (sizeof (opname_e));
834 op->opname = xstrdup (name);
835 return op->opname;
836 }
837
838
839 static void
840 init_opname_map (opname_map *m)
841 {
842 m->head = NULL;
843 m->tail = &m->head;
844 }
845
846
847 static void
848 clear_opname_map (opname_map *m)
849 {
850 opname_map_e *e;
851
852 while (m->head != NULL)
853 {
854 e = m->head;
855 m->head = e->next;
856 free (e);
857 }
858 m->tail = &m->head;
859 }
860
861
862 static bfd_boolean
863 same_operand_name (const opname_map_e *m1, const opname_map_e *m2)
864 {
865 if (m1->operand_name == NULL || m1->operand_name == NULL)
866 return FALSE;
867 return (m1->operand_name == m2->operand_name);
868 }
869
870
871 static opname_map_e *
872 get_opmatch (opname_map *map, const char *operand_name)
873 {
874 opname_map_e *m;
875
876 for (m = map->head; m != NULL; m = m->next)
877 {
878 if (strcmp (m->operand_name, operand_name) == 0)
879 return m;
880 }
881 return NULL;
882 }
883
884
885 static bfd_boolean
886 op_is_constant (const opname_map_e *m1)
887 {
888 return (m1->operand_name == NULL);
889 }
890
891
892 static unsigned
893 op_get_constant (const opname_map_e *m1)
894 {
895 assert (m1->operand_name == NULL);
896 return m1->constant_value;
897 }
898
899
900 static void
901 init_precond_list (precond_list *l)
902 {
903 l->head = NULL;
904 l->tail = &l->head;
905 }
906
907
908 static void
909 clear_precond_list (precond_list *l)
910 {
911 precond_e *e;
912
913 while (l->head != NULL)
914 {
915 e = l->head;
916 l->head = e->next;
917 free (e);
918 }
919 l->tail = &l->head;
920 }
921
922
923 static void
924 init_insn_templ (insn_templ *t)
925 {
926 t->opcode_name = NULL;
927 init_opname_map (&t->operand_map);
928 }
929
930
931 static void
932 clear_insn_templ (insn_templ *t)
933 {
934 clear_opname_map (&t->operand_map);
935 }
936
937
938 static void
939 init_insn_pattern (insn_pattern *p)
940 {
941 init_insn_templ (&p->t);
942 init_precond_list (&p->preconds);
943 p->options = NULL;
944 }
945
946
947 static void
948 clear_insn_pattern (insn_pattern *p)
949 {
950 clear_insn_templ (&p->t);
951 clear_precond_list (&p->preconds);
952 }
953
954
955 static void
956 init_insn_repl (insn_repl *r)
957 {
958 r->head = NULL;
959 r->tail = &r->head;
960 }
961
962
963 static void
964 clear_insn_repl (insn_repl *r)
965 {
966 insn_repl_e *e;
967
968 while (r->head != NULL)
969 {
970 e = r->head;
971 r->head = e->next;
972 clear_insn_templ (&e->t);
973 }
974 r->tail = &r->head;
975 }
976
977
978 static int
979 insn_templ_operand_count (const insn_templ *t)
980 {
981 int i = 0;
982 const opname_map_e *op;
983
984 for (op = t->operand_map.head; op != NULL; op = op->next, i++)
985 ;
986 return i;
987 }
988
989
990 /* Convert a string to a number. E.G.: parse_constant("10", &num) */
991
992 static bfd_boolean
993 parse_constant (const char *in, unsigned *val_p)
994 {
995 unsigned val = 0;
996 const char *p;
997
998 if (in == NULL)
999 return FALSE;
1000 p = in;
1001
1002 while (*p != '\0')
1003 {
1004 if (*p >= '0' && *p <= '9')
1005 val = val * 10 + (*p - '0');
1006 else
1007 return FALSE;
1008 ++p;
1009 }
1010 *val_p = val;
1011 return TRUE;
1012 }
1013
1014
1015 static bfd_boolean
1016 parse_special_fn (const char *name,
1017 const char **fn_name_p,
1018 const char **arg_name_p)
1019 {
1020 char *p_start;
1021 const char *p_end;
1022
1023 p_start = strchr (name, '(');
1024 if (p_start == NULL)
1025 return FALSE;
1026
1027 p_end = strchr (p_start, ')');
1028
1029 if (p_end == NULL)
1030 return FALSE;
1031
1032 if (p_end[1] != '\0')
1033 return FALSE;
1034
1035 *fn_name_p = enter_opname_n (name, p_start - name);
1036 *arg_name_p = enter_opname_n (p_start + 1, p_end - p_start - 1);
1037 return TRUE;
1038 }
1039
1040
1041 static const char *
1042 skip_white (const char *p)
1043 {
1044 if (p == NULL)
1045 return p;
1046 while (*p == ' ')
1047 ++p;
1048 return p;
1049 }
1050
1051
1052 static void
1053 trim_whitespace (char *in)
1054 {
1055 char *last_white = NULL;
1056 char *p = in;
1057
1058 while (p && *p != '\0')
1059 {
1060 while (*p == ' ')
1061 {
1062 if (last_white == NULL)
1063 last_white = p;
1064 p++;
1065 }
1066 if (*p != '\0')
1067 {
1068 last_white = NULL;
1069 p++;
1070 }
1071 }
1072 if (last_white)
1073 *last_white = '\0';
1074 }
1075
1076
1077 /* Split a string into component strings where "c" is the
1078 delimiter. Place the result in the split_rec. */
1079
1080 static void
1081 split_string (split_rec *rec,
1082 const char *in,
1083 char c,
1084 bfd_boolean elide_whitespace)
1085 {
1086 int cnt = 0;
1087 int i;
1088 const char *p = in;
1089
1090 while (p != NULL && *p != '\0')
1091 {
1092 cnt++;
1093 p = strchr (p, c);
1094 if (p)
1095 p++;
1096 }
1097 rec->count = cnt;
1098 rec->vec = NULL;
1099
1100 if (rec->count == 0)
1101 return;
1102
1103 rec->vec = (char **) xmalloc (sizeof (char *) * cnt);
1104 for (i = 0; i < cnt; i++)
1105 rec->vec[i] = 0;
1106
1107 p = in;
1108 for (i = 0; i < cnt; i++)
1109 {
1110 const char *q;
1111 int len;
1112
1113 q = p;
1114 if (elide_whitespace)
1115 q = skip_white (q);
1116
1117 p = strchr (q, c);
1118 if (p == NULL)
1119 rec->vec[i] = xstrdup (q);
1120 else
1121 {
1122 len = p - q;
1123 rec->vec[i] = (char *) xmalloc (sizeof (char) * (len + 1));
1124 strncpy (rec->vec[i], q, len);
1125 rec->vec[i][len] = '\0';
1126 p++;
1127 }
1128
1129 if (elide_whitespace)
1130 trim_whitespace (rec->vec[i]);
1131 }
1132 }
1133
1134
1135 static void
1136 clear_split_rec (split_rec *rec)
1137 {
1138 int i;
1139
1140 for (i = 0; i < rec->count; i++)
1141 free (rec->vec[i]);
1142
1143 if (rec->count > 0)
1144 free (rec->vec);
1145 }
1146
1147
1148 /* Initialize a split record. The split record must be initialized
1149 before split_string is called. */
1150
1151 static void
1152 init_split_rec (split_rec *rec)
1153 {
1154 rec->vec = NULL;
1155 rec->count = 0;
1156 }
1157
1158
1159 /* Parse an instruction template like "insn op1, op2, op3". */
1160
1161 static bfd_boolean
1162 parse_insn_templ (const char *s, insn_templ *t)
1163 {
1164 const char *p = s;
1165 int insn_name_len;
1166 split_rec oprec;
1167 int i;
1168
1169 /* First find the first whitespace. */
1170
1171 init_split_rec (&oprec);
1172
1173 p = skip_white (p);
1174 insn_name_len = strcspn (s, " ");
1175 if (insn_name_len == 0)
1176 return FALSE;
1177
1178 init_insn_templ (t);
1179 t->opcode_name = enter_opname_n (p, insn_name_len);
1180
1181 p = p + insn_name_len;
1182
1183 /* Split by ',' and skip beginning and trailing whitespace. */
1184 split_string (&oprec, p, ',', TRUE);
1185
1186 for (i = 0; i < oprec.count; i++)
1187 {
1188 const char *opname = oprec.vec[i];
1189 opname_map_e *e = (opname_map_e *) xmalloc (sizeof (opname_map_e));
1190 e->next = NULL;
1191 e->operand_name = NULL;
1192 e->constant_value = 0;
1193 e->operand_num = i;
1194
1195 /* If it begins with a number, assume that it is a number. */
1196 if (opname && opname[0] >= '0' && opname[0] <= '9')
1197 {
1198 unsigned val;
1199
1200 if (parse_constant (opname, &val))
1201 e->constant_value = val;
1202 else
1203 {
1204 free (e);
1205 clear_split_rec (&oprec);
1206 clear_insn_templ (t);
1207 return FALSE;
1208 }
1209 }
1210 else
1211 e->operand_name = enter_opname (oprec.vec[i]);
1212
1213 *t->operand_map.tail = e;
1214 t->operand_map.tail = &e->next;
1215 }
1216 clear_split_rec (&oprec);
1217 return TRUE;
1218 }
1219
1220
1221 static bfd_boolean
1222 parse_precond (const char *s, precond_e *precond)
1223 {
1224 /* All preconditions are currently of the form:
1225 a == b or a != b or a == k (where k is a constant).
1226 Later we may use some special functions like DENSITY == 1
1227 to identify when density is available. */
1228
1229 const char *p = s;
1230 int len;
1231 precond->opname1 = NULL;
1232 precond->opval1 = 0;
1233 precond->cmpop = OP_EQUAL;
1234 precond->opname2 = NULL;
1235 precond->opval2 = 0;
1236 precond->next = NULL;
1237
1238 p = skip_white (p);
1239
1240 len = strcspn (p, " !=");
1241
1242 if (len == 0)
1243 return FALSE;
1244
1245 precond->opname1 = enter_opname_n (p, len);
1246 p = p + len;
1247 p = skip_white (p);
1248
1249 /* Check for "==" and "!=". */
1250 if (strncmp (p, "==", 2) == 0)
1251 precond->cmpop = OP_EQUAL;
1252 else if (strncmp (p, "!=", 2) == 0)
1253 precond->cmpop = OP_NOTEQUAL;
1254 else
1255 return FALSE;
1256
1257 p = p + 2;
1258 p = skip_white (p);
1259
1260 /* No trailing whitespace from earlier parsing. */
1261 if (p[0] >= '0' && p[0] <= '9')
1262 {
1263 unsigned val;
1264 if (parse_constant (p, &val))
1265 precond->opval2 = val;
1266 else
1267 return FALSE;
1268 }
1269 else
1270 precond->opname2 = enter_opname (p);
1271 return TRUE;
1272 }
1273
1274
1275 static void
1276 clear_req_or_option_list (ReqOrOption **r_p)
1277 {
1278 if (*r_p == NULL)
1279 return;
1280
1281 free ((*r_p)->option_name);
1282 clear_req_or_option_list (&(*r_p)->next);
1283 *r_p = NULL;
1284 }
1285
1286
1287 static void
1288 clear_req_option_list (ReqOption **r_p)
1289 {
1290 if (*r_p == NULL)
1291 return;
1292
1293 clear_req_or_option_list (&(*r_p)->or_option_terms);
1294 clear_req_option_list (&(*r_p)->next);
1295 *r_p = NULL;
1296 }
1297
1298
1299 static ReqOrOption *
1300 clone_req_or_option_list (ReqOrOption *req_or_option)
1301 {
1302 ReqOrOption *new_req_or_option;
1303
1304 if (req_or_option == NULL)
1305 return NULL;
1306
1307 new_req_or_option = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1308 new_req_or_option->option_name = xstrdup (req_or_option->option_name);
1309 new_req_or_option->is_true = req_or_option->is_true;
1310 new_req_or_option->next = NULL;
1311 new_req_or_option->next = clone_req_or_option_list (req_or_option->next);
1312 return new_req_or_option;
1313 }
1314
1315
1316 static ReqOption *
1317 clone_req_option_list (ReqOption *req_option)
1318 {
1319 ReqOption *new_req_option;
1320
1321 if (req_option == NULL)
1322 return NULL;
1323
1324 new_req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1325 new_req_option->or_option_terms = NULL;
1326 new_req_option->next = NULL;
1327 new_req_option->or_option_terms =
1328 clone_req_or_option_list (req_option->or_option_terms);
1329 new_req_option->next = clone_req_option_list (req_option->next);
1330 return new_req_option;
1331 }
1332
1333
1334 static bfd_boolean
1335 parse_option_cond (const char *s, ReqOption *option)
1336 {
1337 int i;
1338 split_rec option_term_rec;
1339
1340 /* All option or conditions are of the form:
1341 optionA + no-optionB + ...
1342 "Ands" are divided by "?". */
1343
1344 init_split_rec (&option_term_rec);
1345 split_string (&option_term_rec, s, '+', TRUE);
1346
1347 if (option_term_rec.count == 0)
1348 {
1349 clear_split_rec (&option_term_rec);
1350 return FALSE;
1351 }
1352
1353 for (i = 0; i < option_term_rec.count; i++)
1354 {
1355 char *option_name = option_term_rec.vec[i];
1356 bfd_boolean is_true = TRUE;
1357 ReqOrOption *req;
1358 ReqOrOption **r_p;
1359
1360 if (strncmp (option_name, "no-", 3) == 0)
1361 {
1362 option_name = xstrdup (&option_name[3]);
1363 is_true = FALSE;
1364 }
1365 else
1366 option_name = xstrdup (option_name);
1367
1368 req = (ReqOrOption *) xmalloc (sizeof (ReqOrOption));
1369 req->option_name = option_name;
1370 req->is_true = is_true;
1371 req->next = NULL;
1372
1373 /* Append to list. */
1374 for (r_p = &option->or_option_terms; (*r_p) != NULL;
1375 r_p = &(*r_p)->next)
1376 ;
1377 (*r_p) = req;
1378 }
1379 return TRUE;
1380 }
1381
1382
1383 /* Parse a string like:
1384 "insn op1, op2, op3, op4 | op1 != op2 | op2 == op3 | op4 == 1".
1385 I.E., instruction "insn" with 4 operands where operand 1 and 2 are not
1386 the same and operand 2 and 3 are the same and operand 4 is 1.
1387
1388 or:
1389
1390 "insn op1 | op1 == 1 / density + boolean / no-useroption".
1391 i.e. instruction "insn" with 1 operands where operand 1 is 1
1392 when "density" or "boolean" options are available and
1393 "useroption" is not available.
1394
1395 Because the current implementation of this parsing scheme uses
1396 split_string, it requires that '|' and '?' are only used as
1397 delimiters for predicates and required options. */
1398
1399 static bfd_boolean
1400 parse_insn_pattern (const char *in, insn_pattern *insn)
1401 {
1402 split_rec rec;
1403 split_rec optionrec;
1404 int i;
1405
1406 init_insn_pattern (insn);
1407
1408 init_split_rec (&optionrec);
1409 split_string (&optionrec, in, '?', TRUE);
1410 if (optionrec.count == 0)
1411 {
1412 clear_split_rec (&optionrec);
1413 return FALSE;
1414 }
1415
1416 init_split_rec (&rec);
1417
1418 split_string (&rec, optionrec.vec[0], '|', TRUE);
1419
1420 if (rec.count == 0)
1421 {
1422 clear_split_rec (&rec);
1423 clear_split_rec (&optionrec);
1424 return FALSE;
1425 }
1426
1427 if (!parse_insn_templ (rec.vec[0], &insn->t))
1428 {
1429 clear_split_rec (&rec);
1430 clear_split_rec (&optionrec);
1431 return FALSE;
1432 }
1433
1434 for (i = 1; i < rec.count; i++)
1435 {
1436 precond_e *cond = (precond_e *) xmalloc (sizeof (precond_e));
1437
1438 if (!parse_precond (rec.vec[i], cond))
1439 {
1440 clear_split_rec (&rec);
1441 clear_split_rec (&optionrec);
1442 clear_insn_pattern (insn);
1443 return FALSE;
1444 }
1445
1446 /* Append the condition. */
1447 *insn->preconds.tail = cond;
1448 insn->preconds.tail = &cond->next;
1449 }
1450
1451 for (i = 1; i < optionrec.count; i++)
1452 {
1453 /* Handle the option conditions. */
1454 ReqOption **r_p;
1455 ReqOption *req_option = (ReqOption *) xmalloc (sizeof (ReqOption));
1456 req_option->or_option_terms = NULL;
1457 req_option->next = NULL;
1458
1459 if (!parse_option_cond (optionrec.vec[i], req_option))
1460 {
1461 clear_split_rec (&rec);
1462 clear_split_rec (&optionrec);
1463 clear_insn_pattern (insn);
1464 clear_req_option_list (&req_option);
1465 return FALSE;
1466 }
1467
1468 /* Append the condition. */
1469 for (r_p = &insn->options; (*r_p) != NULL; r_p = &(*r_p)->next)
1470 ;
1471
1472 (*r_p) = req_option;
1473 }
1474
1475 clear_split_rec (&rec);
1476 clear_split_rec (&optionrec);
1477 return TRUE;
1478 }
1479
1480
1481 static bfd_boolean
1482 parse_insn_repl (const char *in, insn_repl *r_p)
1483 {
1484 /* This is a list of instruction templates separated by ';'. */
1485 split_rec rec;
1486 int i;
1487
1488 split_string (&rec, in, ';', TRUE);
1489
1490 for (i = 0; i < rec.count; i++)
1491 {
1492 insn_repl_e *e = (insn_repl_e *) xmalloc (sizeof (insn_repl_e));
1493
1494 e->next = NULL;
1495
1496 if (!parse_insn_templ (rec.vec[i], &e->t))
1497 {
1498 free (e);
1499 clear_insn_repl (r_p);
1500 return FALSE;
1501 }
1502 *r_p->tail = e;
1503 r_p->tail = &e->next;
1504 }
1505 return TRUE;
1506 }
1507
1508
1509 static bfd_boolean
1510 transition_applies (insn_pattern *initial_insn,
1511 const char *from_string ATTRIBUTE_UNUSED,
1512 const char *to_string ATTRIBUTE_UNUSED)
1513 {
1514 ReqOption *req_option;
1515
1516 for (req_option = initial_insn->options;
1517 req_option != NULL;
1518 req_option = req_option->next)
1519 {
1520 ReqOrOption *req_or_option = req_option->or_option_terms;
1521
1522 if (req_or_option == NULL
1523 || req_or_option->next != NULL)
1524 continue;
1525
1526 if (strncmp (req_or_option->option_name, "IsaUse", 6) == 0)
1527 {
1528 bfd_boolean option_available = FALSE;
1529 char *option_name = req_or_option->option_name + 6;
1530 if (!strcmp (option_name, "DensityInstruction"))
1531 option_available = (XCHAL_HAVE_DENSITY == 1);
1532 else if (!strcmp (option_name, "L32R"))
1533 option_available = (XCHAL_HAVE_L32R == 1);
1534 else if (!strcmp (option_name, "Const16"))
1535 option_available = (XCHAL_HAVE_CONST16 == 1);
1536 else if (!strcmp (option_name, "Loops"))
1537 option_available = (XCHAL_HAVE_LOOPS == 1);
1538 else if (!strcmp (option_name, "WideBranches"))
1539 option_available = (XCHAL_HAVE_WIDE_BRANCHES == 1);
1540 else if (!strcmp (option_name, "PredictedBranches"))
1541 option_available = (XCHAL_HAVE_PREDICTED_BRANCHES == 1);
1542 else if (!strcmp (option_name, "Booleans"))
1543 option_available = (XCHAL_HAVE_BOOLEANS == 1);
1544 else
1545 as_warn (_("invalid configuration option '%s' in transition rule '%s'"),
1546 req_or_option->option_name, from_string);
1547 if ((option_available ^ req_or_option->is_true) != 0)
1548 return FALSE;
1549 }
1550 else if (strcmp (req_or_option->option_name, "realnop") == 0)
1551 {
1552 bfd_boolean nop_available =
1553 (xtensa_opcode_lookup (xtensa_default_isa, "nop")
1554 != XTENSA_UNDEFINED);
1555 if ((nop_available ^ req_or_option->is_true) != 0)
1556 return FALSE;
1557 }
1558 }
1559 return TRUE;
1560 }
1561
1562
1563 static bfd_boolean
1564 wide_branch_opcode (const char *opcode_name,
1565 char *suffix,
1566 xtensa_opcode *popcode)
1567 {
1568 xtensa_isa isa = xtensa_default_isa;
1569 xtensa_opcode opcode;
1570 static char wbr_name_buf[20];
1571
1572 if (strncmp (opcode_name, "WIDE.", 5) != 0)
1573 return FALSE;
1574
1575 strcpy (wbr_name_buf, opcode_name + 5);
1576 strcat (wbr_name_buf, suffix);
1577 opcode = xtensa_opcode_lookup (isa, wbr_name_buf);
1578 if (opcode != XTENSA_UNDEFINED)
1579 {
1580 *popcode = opcode;
1581 return TRUE;
1582 }
1583
1584 return FALSE;
1585 }
1586
1587
1588 static TransitionRule *
1589 build_transition (insn_pattern *initial_insn,
1590 insn_repl *replace_insns,
1591 const char *from_string,
1592 const char *to_string)
1593 {
1594 TransitionRule *tr = NULL;
1595 xtensa_opcode opcode;
1596 xtensa_isa isa = xtensa_default_isa;
1597 BuildInstr *literal_bi;
1598
1599 opname_map_e *op1;
1600 opname_map_e *op2;
1601
1602 precond_e *precond;
1603 insn_repl_e *r;
1604
1605 if (!wide_branch_opcode (initial_insn->t.opcode_name, ".w18", &opcode)
1606 && !wide_branch_opcode (initial_insn->t.opcode_name, ".w15", &opcode))
1607 opcode = xtensa_opcode_lookup (isa, initial_insn->t.opcode_name);
1608
1609 if (opcode == XTENSA_UNDEFINED)
1610 {
1611 /* It is OK to not be able to translate some of these opcodes. */
1612 return NULL;
1613 }
1614
1615
1616 if (xtensa_opcode_num_operands (isa, opcode)
1617 != insn_templ_operand_count (&initial_insn->t))
1618 {
1619 /* This is also OK because there are opcodes that
1620 have different numbers of operands on different
1621 architecture variations. */
1622 return NULL;
1623 }
1624
1625 tr = (TransitionRule *) xmalloc (sizeof (TransitionRule));
1626 tr->opcode = opcode;
1627 tr->conditions = NULL;
1628 tr->to_instr = NULL;
1629
1630 /* Build the conditions. First, equivalent operand condition.... */
1631 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1632 {
1633 for (op2 = op1->next; op2 != NULL; op2 = op2->next)
1634 {
1635 if (same_operand_name (op1, op2))
1636 {
1637 append_value_condition (tr, OP_EQUAL,
1638 op1->operand_num, op2->operand_num);
1639 }
1640 }
1641 }
1642
1643 /* Now the condition that an operand value must be a constant.... */
1644 for (op1 = initial_insn->t.operand_map.head; op1 != NULL; op1 = op1->next)
1645 {
1646 if (op_is_constant (op1))
1647 {
1648 append_constant_value_condition (tr,
1649 OP_EQUAL,
1650 op1->operand_num,
1651 op_get_constant (op1));
1652 }
1653 }
1654
1655
1656 /* Now add the explicit preconditions listed after the "|" in the spec.
1657 These are currently very limited, so we do a special case
1658 parse for them. We expect spaces, opname != opname. */
1659 for (precond = initial_insn->preconds.head;
1660 precond != NULL;
1661 precond = precond->next)
1662 {
1663 op1 = NULL;
1664 op2 = NULL;
1665
1666 if (precond->opname1)
1667 {
1668 op1 = get_opmatch (&initial_insn->t.operand_map, precond->opname1);
1669 if (op1 == NULL)
1670 as_fatal (_("opcode '%s': no bound opname '%s' "
1671 "for precondition in '%s'"),
1672 xtensa_opcode_name (isa, opcode),
1673 precond->opname1, from_string);
1674 }
1675
1676 if (precond->opname2)
1677 {
1678 op2 = get_opmatch (&initial_insn->t.operand_map, precond->opname2);
1679 if (op2 == NULL)
1680 as_fatal (_("opcode '%s': no bound opname '%s' "
1681 "for precondition in %s"),
1682 xtensa_opcode_name (isa, opcode),
1683 precond->opname2, from_string);
1684 }
1685
1686 if (op1 == NULL && op2 == NULL)
1687 as_fatal (_("opcode '%s': precondition only contains "
1688 "constants in '%s'"),
1689 xtensa_opcode_name (isa, opcode), from_string);
1690 else if (op1 != NULL && op2 != NULL)
1691 append_value_condition (tr, precond->cmpop,
1692 op1->operand_num, op2->operand_num);
1693 else if (op2 == NULL)
1694 append_constant_value_condition (tr, precond->cmpop,
1695 op1->operand_num, precond->opval2);
1696 else
1697 append_constant_value_condition (tr, precond->cmpop,
1698 op2->operand_num, precond->opval1);
1699 }
1700
1701 tr->options = clone_req_option_list (initial_insn->options);
1702
1703 /* Generate the replacement instructions. Some of these
1704 "instructions" are actually labels and literals. There can be at
1705 most one literal and at most one label. A literal must be defined
1706 (e.g., "LITERAL %imm") before use (e.g., "%LITERAL"). The labels
1707 can be used before they are defined. Also there are a number of
1708 special operands (e.g., HI24S). */
1709
1710 literal_bi = NULL;
1711 for (r = replace_insns->head; r != NULL; r = r->next)
1712 {
1713 BuildInstr *bi;
1714 const char *opcode_name;
1715 int operand_count;
1716 opname_map_e *op;
1717 const char *fn_name;
1718 const char *operand_arg_name;
1719
1720 bi = (BuildInstr *) xmalloc (sizeof (BuildInstr));
1721 append_build_insn (tr, bi);
1722
1723 bi->opcode = XTENSA_UNDEFINED;
1724 bi->ops = NULL;
1725 bi->next = NULL;
1726
1727 opcode_name = r->t.opcode_name;
1728 operand_count = insn_templ_operand_count (&r->t);
1729
1730 if (strcmp (opcode_name, "LITERAL") == 0)
1731 {
1732 bi->typ = INSTR_LITERAL_DEF;
1733 if (operand_count != 1)
1734 as_fatal (_("expected one operand for generated literal"));
1735 literal_bi = bi;
1736 }
1737 else if (strcmp (opcode_name, "LABEL") == 0)
1738 {
1739 bi->typ = INSTR_LABEL_DEF;
1740 if (operand_count != 0)
1741 as_fatal (_("expected 0 operands for generated label"));
1742 }
1743 else
1744 {
1745 bi->typ = INSTR_INSTR;
1746 if (wide_branch_opcode (opcode_name, ".w18", &bi->opcode)
1747 || wide_branch_opcode (opcode_name, ".w15", &bi->opcode))
1748 opcode_name = xtensa_opcode_name (isa, bi->opcode);
1749 else
1750 bi->opcode = xtensa_opcode_lookup (isa, opcode_name);
1751
1752 if (bi->opcode == XTENSA_UNDEFINED)
1753 {
1754 as_warn (_("invalid opcode '%s' in transition rule '%s'"),
1755 opcode_name, to_string);
1756 return NULL;
1757 }
1758
1759 /* Check for the right number of ops. */
1760 if (xtensa_opcode_num_operands (isa, bi->opcode)
1761 != (int) operand_count)
1762 as_fatal (_("opcode '%s': replacement does not have %d ops"),
1763 opcode_name,
1764 xtensa_opcode_num_operands (isa, bi->opcode));
1765 }
1766
1767 for (op = r->t.operand_map.head; op != NULL; op = op->next)
1768 {
1769 unsigned idnum;
1770
1771 if (op_is_constant (op))
1772 append_constant_op (bi, op->operand_num, op_get_constant (op));
1773 else if (strcmp (op->operand_name, "%LITERAL") == 0)
1774 {
1775 if (! literal_bi || ! literal_bi->ops || literal_bi->ops->next)
1776 as_fatal (_("opcode '%s': cannot find literal definition"),
1777 opcode_name);
1778 append_literal_op (bi, op->operand_num,
1779 literal_bi->ops->op_data);
1780 }
1781 else if (strcmp (op->operand_name, "%LABEL") == 0)
1782 append_label_op (bi, op->operand_num);
1783 else if (op->operand_name[0] == 'a'
1784 && parse_constant (op->operand_name + 1, &idnum))
1785 append_constant_op (bi, op->operand_num, idnum);
1786 else if (op->operand_name[0] == '%')
1787 {
1788 opname_map_e *orig_op;
1789 orig_op = get_opmatch (&initial_insn->t.operand_map,
1790 op->operand_name);
1791 if (orig_op == NULL)
1792 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1793 opcode_name, op->operand_name, to_string);
1794 append_field_op (bi, op->operand_num, orig_op->operand_num);
1795 }
1796 else if (parse_special_fn (op->operand_name,
1797 &fn_name, &operand_arg_name))
1798 {
1799 opname_map_e *orig_op;
1800 OpType typ = OP_CONSTANT;
1801
1802 if (strcmp (fn_name, "LOW8") == 0)
1803 typ = OP_OPERAND_LOW8;
1804 else if (strcmp (fn_name, "HI24S") == 0)
1805 typ = OP_OPERAND_HI24S;
1806 else if (strcmp (fn_name, "F32MINUS") == 0)
1807 typ = OP_OPERAND_F32MINUS;
1808 else if (strcmp (fn_name, "LOW16U") == 0)
1809 typ = OP_OPERAND_LOW16U;
1810 else if (strcmp (fn_name, "HI16U") == 0)
1811 typ = OP_OPERAND_HI16U;
1812 else
1813 as_fatal (_("unknown user-defined function %s"), fn_name);
1814
1815 orig_op = get_opmatch (&initial_insn->t.operand_map,
1816 operand_arg_name);
1817 if (orig_op == NULL)
1818 as_fatal (_("opcode %s: unidentified operand '%s' in '%s'"),
1819 opcode_name, op->operand_name, to_string);
1820 append_user_fn_field_op (bi, op->operand_num,
1821 typ, orig_op->operand_num);
1822 }
1823 else
1824 as_fatal (_("opcode %s: could not parse operand '%s' in '%s'"),
1825 opcode_name, op->operand_name, to_string);
1826 }
1827 }
1828
1829 return tr;
1830 }
1831
1832
1833 static TransitionTable *
1834 build_transition_table (const string_pattern_pair *transitions,
1835 int transition_count,
1836 transition_cmp_fn cmp)
1837 {
1838 TransitionTable *table = NULL;
1839 int num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
1840 int i, tnum;
1841
1842 if (table != NULL)
1843 return table;
1844
1845 /* Otherwise, build it now. */
1846 table = (TransitionTable *) xmalloc (sizeof (TransitionTable));
1847 table->num_opcodes = num_opcodes;
1848 table->table =
1849 (TransitionList **) xmalloc (sizeof (TransitionTable *) * num_opcodes);
1850
1851 for (i = 0; i < num_opcodes; i++)
1852 table->table[i] = NULL;
1853
1854 for (tnum = 0; tnum < transition_count; tnum++)
1855 {
1856 const char *from_string = transitions[tnum].pattern;
1857 const char *to_string = transitions[tnum].replacement;
1858
1859 insn_pattern initial_insn;
1860 insn_repl replace_insns;
1861 TransitionRule *tr;
1862
1863 init_insn_pattern (&initial_insn);
1864 if (!parse_insn_pattern (from_string, &initial_insn))
1865 as_fatal (_("could not parse INSN_PATTERN '%s'"), from_string);
1866
1867 init_insn_repl (&replace_insns);
1868 if (!parse_insn_repl (to_string, &replace_insns))
1869 as_fatal (_("could not parse INSN_REPL '%s'"), to_string);
1870
1871 if (transition_applies (&initial_insn, from_string, to_string))
1872 {
1873 tr = build_transition (&initial_insn, &replace_insns,
1874 from_string, to_string);
1875 if (tr)
1876 append_transition (table, tr->opcode, tr, cmp);
1877 else
1878 {
1879 #if TENSILICA_DEBUG
1880 as_warn (_("could not build transition for %s => %s"),
1881 from_string, to_string);
1882 #endif
1883 }
1884 }
1885
1886 clear_insn_repl (&replace_insns);
1887 clear_insn_pattern (&initial_insn);
1888 }
1889 return table;
1890 }
1891
1892 \f
1893 extern TransitionTable *
1894 xg_build_widen_table (transition_cmp_fn cmp)
1895 {
1896 static TransitionTable *table = NULL;
1897 if (table == NULL)
1898 table = build_transition_table (widen_spec_list, WIDEN_COUNT, cmp);
1899 return table;
1900 }
1901
1902
1903 extern TransitionTable *
1904 xg_build_simplify_table (transition_cmp_fn cmp)
1905 {
1906 static TransitionTable *table = NULL;
1907 if (table == NULL)
1908 table = build_transition_table (simplify_spec_list, SIMPLIFY_COUNT, cmp);
1909 return table;
1910 }
This page took 0.072144 seconds and 5 git commands to generate.