x86: Don't disable SSE4a when disabling SSE4
[deliverable/binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset BPF
44 @set BPF
45 @end ifset
46 @ifset H8/300
47 @set H8
48 @end ifset
49 @ifset SH
50 @set H8
51 @end ifset
52 @ifset HPPA
53 @set abnormal-separator
54 @end ifset
55 @c ------------
56 @ifset GENERIC
57 @settitle Using @value{AS}
58 @end ifset
59 @ifclear GENERIC
60 @settitle Using @value{AS} (@value{TARGET})
61 @end ifclear
62 @setchapternewpage odd
63 @c %**end of header
64
65 @c @smallbook
66 @c @set SMALL
67 @c WARE! Some of the machine-dependent sections contain tables of machine
68 @c instructions. Except in multi-column format, these tables look silly.
69 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
70 @c the multi-col format is faked within @example sections.
71 @c
72 @c Again unfortunately, the natural size that fits on a page, for these tables,
73 @c is different depending on whether or not smallbook is turned on.
74 @c This matters, because of order: text flow switches columns at each page
75 @c break.
76 @c
77 @c The format faked in this source works reasonably well for smallbook,
78 @c not well for the default large-page format. This manual expects that if you
79 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
80 @c tables in question. You can turn on one without the other at your
81 @c discretion, of course.
82 @ifinfo
83 @set SMALL
84 @c the insn tables look just as silly in info files regardless of smallbook,
85 @c might as well show 'em anyways.
86 @end ifinfo
87
88 @ifnottex
89 @dircategory Software development
90 @direntry
91 * As: (as). The GNU assembler.
92 * Gas: (as). The GNU assembler.
93 @end direntry
94 @end ifnottex
95
96 @finalout
97 @syncodeindex ky cp
98
99 @copying
100 This file documents the GNU Assembler "@value{AS}".
101
102 @c man begin COPYRIGHT
103 Copyright @copyright{} 1991-2020 Free Software Foundation, Inc.
104
105 Permission is granted to copy, distribute and/or modify this document
106 under the terms of the GNU Free Documentation License, Version 1.3
107 or any later version published by the Free Software Foundation;
108 with no Invariant Sections, with no Front-Cover Texts, and with no
109 Back-Cover Texts. A copy of the license is included in the
110 section entitled ``GNU Free Documentation License''.
111
112 @c man end
113 @end copying
114
115 @titlepage
116 @title Using @value{AS}
117 @subtitle The @sc{gnu} Assembler
118 @ifclear GENERIC
119 @subtitle for the @value{TARGET} family
120 @end ifclear
121 @ifset VERSION_PACKAGE
122 @sp 1
123 @subtitle @value{VERSION_PACKAGE}
124 @end ifset
125 @sp 1
126 @subtitle Version @value{VERSION}
127 @sp 1
128 @sp 13
129 The Free Software Foundation Inc.@: thanks The Nice Computer
130 Company of Australia for loaning Dean Elsner to write the
131 first (Vax) version of @command{as} for Project @sc{gnu}.
132 The proprietors, management and staff of TNCCA thank FSF for
133 distracting the boss while they got some work
134 done.
135 @sp 3
136 @author Dean Elsner, Jay Fenlason & friends
137 @page
138 @tex
139 {\parskip=0pt
140 \hfill {\it Using {\tt @value{AS}}}\par
141 \hfill Edited by Cygnus Support\par
142 }
143 %"boxit" macro for figures:
144 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
145 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
146 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
147 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
148 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
149 @end tex
150
151 @vskip 0pt plus 1filll
152 Copyright @copyright{} 1991-2020 Free Software Foundation, Inc.
153
154 Permission is granted to copy, distribute and/or modify this document
155 under the terms of the GNU Free Documentation License, Version 1.3
156 or any later version published by the Free Software Foundation;
157 with no Invariant Sections, with no Front-Cover Texts, and with no
158 Back-Cover Texts. A copy of the license is included in the
159 section entitled ``GNU Free Documentation License''.
160
161 @end titlepage
162 @contents
163
164 @ifnottex
165 @node Top
166 @top Using @value{AS}
167
168 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
169 @ifset VERSION_PACKAGE
170 @value{VERSION_PACKAGE}
171 @end ifset
172 version @value{VERSION}.
173 @ifclear GENERIC
174 This version of the file describes @command{@value{AS}} configured to generate
175 code for @value{TARGET} architectures.
176 @end ifclear
177
178 This document is distributed under the terms of the GNU Free
179 Documentation License. A copy of the license is included in the
180 section entitled ``GNU Free Documentation License''.
181
182 @menu
183 * Overview:: Overview
184 * Invoking:: Command-Line Options
185 * Syntax:: Syntax
186 * Sections:: Sections and Relocation
187 * Symbols:: Symbols
188 * Expressions:: Expressions
189 * Pseudo Ops:: Assembler Directives
190 @ifset ELF
191 * Object Attributes:: Object Attributes
192 @end ifset
193 * Machine Dependencies:: Machine Dependent Features
194 * Reporting Bugs:: Reporting Bugs
195 * Acknowledgements:: Who Did What
196 * GNU Free Documentation License:: GNU Free Documentation License
197 * AS Index:: AS Index
198 @end menu
199 @end ifnottex
200
201 @node Overview
202 @chapter Overview
203 @iftex
204 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
205 @ifclear GENERIC
206 This version of the manual describes @command{@value{AS}} configured to generate
207 code for @value{TARGET} architectures.
208 @end ifclear
209 @end iftex
210
211 @cindex invocation summary
212 @cindex option summary
213 @cindex summary of options
214 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
215 see @ref{Invoking,,Command-Line Options}.
216
217 @c man title AS the portable GNU assembler.
218
219 @ignore
220 @c man begin SEEALSO
221 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
222 @c man end
223 @end ignore
224
225 @c We don't use deffn and friends for the following because they seem
226 @c to be limited to one line for the header.
227 @smallexample
228 @c man begin SYNOPSIS
229 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
230 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
231 [@b{--debug-prefix-map} @var{old}=@var{new}]
232 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
233 [@b{--gstabs+}] [@b{--gdwarf-2}] [@b{--gdwarf-sections}]
234 [@b{--gdwarf-cie-version}=@var{VERSION}]
235 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
236 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
237 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
238 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
239 [@b{--no-pad-sections}]
240 [@b{-o} @var{objfile}] [@b{-R}]
241 [@b{--hash-size}=@var{NUM}] [@b{--reduce-memory-overheads}]
242 [@b{--statistics}]
243 [@b{-v}] [@b{-version}] [@b{--version}]
244 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
245 [@b{-Z}] [@b{@@@var{FILE}}]
246 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
247 [@b{--elf-stt-common=[no|yes]}]
248 [@b{--generate-missing-build-notes=[no|yes]}]
249 [@b{--target-help}] [@var{target-options}]
250 [@b{--}|@var{files} @dots{}]
251 @c
252 @c man end
253 @c Target dependent options are listed below. Keep the list sorted.
254 @c Add an empty line for separation.
255 @c man begin TARGET
256 @ifset AARCH64
257
258 @emph{Target AArch64 options:}
259 [@b{-EB}|@b{-EL}]
260 [@b{-mabi}=@var{ABI}]
261 @end ifset
262 @ifset ALPHA
263
264 @emph{Target Alpha options:}
265 [@b{-m@var{cpu}}]
266 [@b{-mdebug} | @b{-no-mdebug}]
267 [@b{-replace} | @b{-noreplace}]
268 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
269 [@b{-F}] [@b{-32addr}]
270 @end ifset
271 @ifset ARC
272
273 @emph{Target ARC options:}
274 [@b{-mcpu=@var{cpu}}]
275 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
276 [@b{-mcode-density}]
277 [@b{-mrelax}]
278 [@b{-EB}|@b{-EL}]
279 @end ifset
280 @ifset ARM
281
282 @emph{Target ARM options:}
283 @c Don't document the deprecated options
284 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
285 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
286 [@b{-mfpu}=@var{floating-point-format}]
287 [@b{-mfloat-abi}=@var{abi}]
288 [@b{-meabi}=@var{ver}]
289 [@b{-mthumb}]
290 [@b{-EB}|@b{-EL}]
291 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
292 @b{-mapcs-reentrant}]
293 [@b{-mthumb-interwork}] [@b{-k}]
294 @end ifset
295 @ifset Blackfin
296
297 @emph{Target Blackfin options:}
298 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
299 [@b{-mfdpic}]
300 [@b{-mno-fdpic}]
301 [@b{-mnopic}]
302 @end ifset
303 @ifset BPF
304
305 @emph{Target BPF options:}
306 [@b{-EL}] [@b{-EB}]
307 @end ifset
308 @ifset CRIS
309
310 @emph{Target CRIS options:}
311 [@b{--underscore} | @b{--no-underscore}]
312 [@b{--pic}] [@b{-N}]
313 [@b{--emulation=criself} | @b{--emulation=crisaout}]
314 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
315 @c Deprecated -- deliberately not documented.
316 @c [@b{-h}] [@b{-H}]
317 @end ifset
318 @ifset CSKY
319
320 @emph{Target C-SKY options:}
321 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
322 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
323 [@b{-fpic}] [@b{-pic}]
324 [@b{-mljump}] [@b{-mno-ljump}]
325 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
326 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
327 [@b{-mnolrw }] [@b{-mno-lrw}]
328 [@b{-melrw}] [@b{-mno-elrw}]
329 [@b{-mlaf }] [@b{-mliterals-after-func}]
330 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
331 [@b{-mlabr}] [@b{-mliterals-after-br}]
332 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
333 [@b{-mistack}] [@b{-mno-istack}]
334 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
335 [@b{-msecurity}] [@b{-mtrust}]
336 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
337 @end ifset
338 @ifset D10V
339
340 @emph{Target D10V options:}
341 [@b{-O}]
342 @end ifset
343 @ifset D30V
344
345 @emph{Target D30V options:}
346 [@b{-O}|@b{-n}|@b{-N}]
347 @end ifset
348 @ifset EPIPHANY
349
350 @emph{Target EPIPHANY options:}
351 [@b{-mepiphany}|@b{-mepiphany16}]
352 @end ifset
353 @ifset H8
354
355 @emph{Target H8/300 options:}
356 [-h-tick-hex]
357 @end ifset
358 @ifset HPPA
359 @c HPPA has no machine-dependent assembler options (yet).
360 @end ifset
361 @ifset I80386
362
363 @emph{Target i386 options:}
364 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
365 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
366 @end ifset
367 @ifset IA64
368
369 @emph{Target IA-64 options:}
370 [@b{-mconstant-gp}|@b{-mauto-pic}]
371 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
372 [@b{-mle}|@b{mbe}]
373 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
374 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
375 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
376 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
377 @end ifset
378 @ifset IP2K
379
380 @emph{Target IP2K options:}
381 [@b{-mip2022}|@b{-mip2022ext}]
382 @end ifset
383 @ifset M32C
384
385 @emph{Target M32C options:}
386 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
387 @end ifset
388 @ifset M32R
389
390 @emph{Target M32R options:}
391 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
392 @b{--W[n]p}]
393 @end ifset
394 @ifset M680X0
395
396 @emph{Target M680X0 options:}
397 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
398 @end ifset
399 @ifset M68HC11
400
401 @emph{Target M68HC11 options:}
402 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
403 [@b{-mshort}|@b{-mlong}]
404 [@b{-mshort-double}|@b{-mlong-double}]
405 [@b{--force-long-branches}] [@b{--short-branches}]
406 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
407 [@b{--print-opcodes}] [@b{--generate-example}]
408 @end ifset
409 @ifset MCORE
410
411 @emph{Target MCORE options:}
412 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
413 [@b{-mcpu=[210|340]}]
414 @end ifset
415 @ifset METAG
416
417 @emph{Target Meta options:}
418 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
419 @end ifset
420 @ifset MICROBLAZE
421 @emph{Target MICROBLAZE options:}
422 @c MicroBlaze has no machine-dependent assembler options.
423 @end ifset
424 @ifset MIPS
425
426 @emph{Target MIPS options:}
427 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
428 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
429 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
430 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
431 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
432 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
433 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
434 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
435 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
436 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
437 [@b{-construct-floats}] [@b{-no-construct-floats}]
438 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
439 [@b{-mnan=@var{encoding}}]
440 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
441 [@b{-mips16}] [@b{-no-mips16}]
442 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
443 [@b{-mmicromips}] [@b{-mno-micromips}]
444 [@b{-msmartmips}] [@b{-mno-smartmips}]
445 [@b{-mips3d}] [@b{-no-mips3d}]
446 [@b{-mdmx}] [@b{-no-mdmx}]
447 [@b{-mdsp}] [@b{-mno-dsp}]
448 [@b{-mdspr2}] [@b{-mno-dspr2}]
449 [@b{-mdspr3}] [@b{-mno-dspr3}]
450 [@b{-mmsa}] [@b{-mno-msa}]
451 [@b{-mxpa}] [@b{-mno-xpa}]
452 [@b{-mmt}] [@b{-mno-mt}]
453 [@b{-mmcu}] [@b{-mno-mcu}]
454 [@b{-mcrc}] [@b{-mno-crc}]
455 [@b{-mginv}] [@b{-mno-ginv}]
456 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
457 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
458 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
459 [@b{-mloongson-ext2}] [@b{-mno-loongson-ext2}]
460 [@b{-minsn32}] [@b{-mno-insn32}]
461 [@b{-mfix7000}] [@b{-mno-fix7000}]
462 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
463 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
464 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
465 [@b{-mfix-r5900}] [@b{-mno-fix-r5900}]
466 [@b{-mdebug}] [@b{-no-mdebug}]
467 [@b{-mpdr}] [@b{-mno-pdr}]
468 @end ifset
469 @ifset MMIX
470
471 @emph{Target MMIX options:}
472 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
473 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
474 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
475 [@b{--linker-allocated-gregs}]
476 @end ifset
477 @ifset NIOSII
478
479 @emph{Target Nios II options:}
480 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
481 [@b{-EB}] [@b{-EL}]
482 @end ifset
483 @ifset NDS32
484
485 @emph{Target NDS32 options:}
486 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
487 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
488 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
489 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
490 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
491 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
492 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
493 [@b{-mb2bb}]
494 @end ifset
495 @ifset OPENRISC
496 @c OpenRISC has no machine-dependent assembler options.
497 @end ifset
498 @ifset PDP11
499
500 @emph{Target PDP11 options:}
501 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
502 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
503 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
504 @end ifset
505 @ifset PJ
506
507 @emph{Target picoJava options:}
508 [@b{-mb}|@b{-me}]
509 @end ifset
510 @ifset PPC
511
512 @emph{Target PowerPC options:}
513 [@b{-a32}|@b{-a64}]
514 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
515 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
516 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
517 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
518 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
519 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
520 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
521 [@b{-mregnames}|@b{-mno-regnames}]
522 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
523 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
524 [@b{-msolaris}|@b{-mno-solaris}]
525 [@b{-nops=@var{count}}]
526 @end ifset
527 @ifset PRU
528
529 @emph{Target PRU options:}
530 [@b{-link-relax}]
531 [@b{-mnolink-relax}]
532 [@b{-mno-warn-regname-label}]
533 @end ifset
534 @ifset RISCV
535
536 @emph{Target RISC-V options:}
537 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
538 [@b{-march}=@var{ISA}]
539 [@b{-mabi}=@var{ABI}]
540 @end ifset
541 @ifset RL78
542
543 @emph{Target RL78 options:}
544 [@b{-mg10}]
545 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
546 @end ifset
547 @ifset RX
548
549 @emph{Target RX options:}
550 [@b{-mlittle-endian}|@b{-mbig-endian}]
551 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
552 [@b{-muse-conventional-section-names}]
553 [@b{-msmall-data-limit}]
554 [@b{-mpid}]
555 [@b{-mrelax}]
556 [@b{-mint-register=@var{number}}]
557 [@b{-mgcc-abi}|@b{-mrx-abi}]
558 @end ifset
559 @ifset S390
560
561 @emph{Target s390 options:}
562 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
563 [@b{-mregnames}|@b{-mno-regnames}]
564 [@b{-mwarn-areg-zero}]
565 @end ifset
566 @ifset SCORE
567
568 @emph{Target SCORE options:}
569 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
570 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
571 [@b{-march=score7}][@b{-march=score3}]
572 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
573 @end ifset
574 @ifset SPARC
575
576 @emph{Target SPARC options:}
577 @c The order here is important. See c-sparc.texi.
578 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
579 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
580 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
581 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
582 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
583 @b{-Asparcvisr}|@b{-Asparc5}]
584 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
585 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
586 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
587 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
588 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
589 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
590 @b{-bump}]
591 [@b{-32}|@b{-64}]
592 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
593 @end ifset
594 @ifset TIC54X
595
596 @emph{Target TIC54X options:}
597 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
598 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
599 @end ifset
600 @ifset TIC6X
601
602 @emph{Target TIC6X options:}
603 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
604 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
605 [@b{-mpic}|@b{-mno-pic}]
606 @end ifset
607 @ifset TILEGX
608
609 @emph{Target TILE-Gx options:}
610 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
611 @end ifset
612 @ifset TILEPRO
613 @c TILEPro has no machine-dependent assembler options
614 @end ifset
615 @ifset VISIUM
616
617 @emph{Target Visium options:}
618 [@b{-mtune=@var{arch}}]
619 @end ifset
620 @ifset XTENSA
621
622 @emph{Target Xtensa options:}
623 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
624 [@b{--[no-]absolute-literals}]
625 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
626 [@b{--[no-]transform}]
627 [@b{--rename-section} @var{oldname}=@var{newname}]
628 [@b{--[no-]trampolines}]
629 @end ifset
630 @ifset Z80
631
632 @emph{Target Z80 options:}
633 [@b{-z80}]|[@b{-z180}]|[@b{-r800}]|[@b{-ez80}]|[@b{-ez80-adl}]
634 [@b{-local-prefix=}@var{PREFIX}]
635 [@b{-colonless}]
636 [@b{-sdcc}]
637 [@b{-fp-s=}@var{FORMAT}]
638 [@b{-fp-d=}@var{FORMAT}]
639 [@b{-strict}]|[@b{-full}]
640 [@b{-with-inst=@var{INST}[,...]}] [@b{-Wnins @var{INST}[,...]}]
641 [@b{-without-inst=@var{INST}[,...]}] [@b{-Fins @var{INST}[,...]}]
642 [@b{ -ignore-undocumented-instructions}] [@b{-Wnud}]
643 [@b{ -ignore-unportable-instructions}] [@b{-Wnup}]
644 [@b{ -warn-undocumented-instructions}] [@b{-Wud}]
645 [@b{ -warn-unportable-instructions}] [@b{-Wup}]
646 [@b{ -forbid-undocumented-instructions}] [@b{-Fud}]
647 [@b{ -forbid-unportable-instructions}] [@b{-Fup}]
648 @end ifset
649 @ifset Z8000
650
651 @c Z8000 has no machine-dependent assembler options
652 @end ifset
653
654 @c man end
655 @end smallexample
656
657 @c man begin OPTIONS
658
659 @table @gcctabopt
660 @include at-file.texi
661
662 @item -a[cdghlmns]
663 Turn on listings, in any of a variety of ways:
664
665 @table @gcctabopt
666 @item -ac
667 omit false conditionals
668
669 @item -ad
670 omit debugging directives
671
672 @item -ag
673 include general information, like @value{AS} version and options passed
674
675 @item -ah
676 include high-level source
677
678 @item -al
679 include assembly
680
681 @item -am
682 include macro expansions
683
684 @item -an
685 omit forms processing
686
687 @item -as
688 include symbols
689
690 @item =file
691 set the name of the listing file
692 @end table
693
694 You may combine these options; for example, use @samp{-aln} for assembly
695 listing without forms processing. The @samp{=file} option, if used, must be
696 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
697
698 @item --alternate
699 Begin in alternate macro mode.
700 @ifclear man
701 @xref{Altmacro,,@code{.altmacro}}.
702 @end ifclear
703
704 @item --compress-debug-sections
705 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
706 ELF ABI. The resulting object file may not be compatible with older
707 linkers and object file utilities. Note if compression would make a
708 given section @emph{larger} then it is not compressed.
709
710 @ifset ELF
711 @cindex @samp{--compress-debug-sections=} option
712 @item --compress-debug-sections=none
713 @itemx --compress-debug-sections=zlib
714 @itemx --compress-debug-sections=zlib-gnu
715 @itemx --compress-debug-sections=zlib-gabi
716 These options control how DWARF debug sections are compressed.
717 @option{--compress-debug-sections=none} is equivalent to
718 @option{--nocompress-debug-sections}.
719 @option{--compress-debug-sections=zlib} and
720 @option{--compress-debug-sections=zlib-gabi} are equivalent to
721 @option{--compress-debug-sections}.
722 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
723 sections using zlib. The debug sections are renamed to begin with
724 @samp{.zdebug}. Note if compression would make a given section
725 @emph{larger} then it is not compressed nor renamed.
726
727 @end ifset
728
729 @item --nocompress-debug-sections
730 Do not compress DWARF debug sections. This is usually the default for all
731 targets except the x86/x86_64, but a configure time option can be used to
732 override this.
733
734 @item -D
735 Ignored. This option is accepted for script compatibility with calls to
736 other assemblers.
737
738 @item --debug-prefix-map @var{old}=@var{new}
739 When assembling files in directory @file{@var{old}}, record debugging
740 information describing them as in @file{@var{new}} instead.
741
742 @item --defsym @var{sym}=@var{value}
743 Define the symbol @var{sym} to be @var{value} before assembling the input file.
744 @var{value} must be an integer constant. As in C, a leading @samp{0x}
745 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
746 value. The value of the symbol can be overridden inside a source file via the
747 use of a @code{.set} pseudo-op.
748
749 @item -f
750 ``fast''---skip whitespace and comment preprocessing (assume source is
751 compiler output).
752
753 @item -g
754 @itemx --gen-debug
755 Generate debugging information for each assembler source line using whichever
756 debug format is preferred by the target. This currently means either STABS,
757 ECOFF or DWARF2.
758
759 @item --gstabs
760 Generate stabs debugging information for each assembler line. This
761 may help debugging assembler code, if the debugger can handle it.
762
763 @item --gstabs+
764 Generate stabs debugging information for each assembler line, with GNU
765 extensions that probably only gdb can handle, and that could make other
766 debuggers crash or refuse to read your program. This
767 may help debugging assembler code. Currently the only GNU extension is
768 the location of the current working directory at assembling time.
769
770 @item --gdwarf-2
771 Generate DWARF2 debugging information for each assembler line. This
772 may help debugging assembler code, if the debugger can handle it. Note---this
773 option is only supported by some targets, not all of them.
774
775 @item --gdwarf-sections
776 Instead of creating a .debug_line section, create a series of
777 .debug_line.@var{foo} sections where @var{foo} is the name of the
778 corresponding code section. For example a code section called @var{.text.func}
779 will have its dwarf line number information placed into a section called
780 @var{.debug_line.text.func}. If the code section is just called @var{.text}
781 then debug line section will still be called just @var{.debug_line} without any
782 suffix.
783
784 @item --gdwarf-cie-version=@var{version}
785 Control which version of DWARF Common Information Entries (CIEs) are produced.
786 When this flag is not specificed the default is version 1, though some targets
787 can modify this default. Other possible values for @var{version} are 3 or 4.
788
789 @ifset ELF
790 @item --size-check=error
791 @itemx --size-check=warning
792 Issue an error or warning for invalid ELF .size directive.
793
794 @item --elf-stt-common=no
795 @itemx --elf-stt-common=yes
796 These options control whether the ELF assembler should generate common
797 symbols with the @code{STT_COMMON} type. The default can be controlled
798 by a configure option @option{--enable-elf-stt-common}.
799
800 @item --generate-missing-build-notes=yes
801 @itemx --generate-missing-build-notes=no
802 These options control whether the ELF assembler should generate GNU Build
803 attribute notes if none are present in the input sources.
804 The default can be controlled by the @option{--enable-generate-build-notes}
805 configure option.
806
807 @end ifset
808
809 @item --help
810 Print a summary of the command-line options and exit.
811
812 @item --target-help
813 Print a summary of all target specific options and exit.
814
815 @item -I @var{dir}
816 Add directory @var{dir} to the search list for @code{.include} directives.
817
818 @item -J
819 Don't warn about signed overflow.
820
821 @item -K
822 @ifclear DIFF-TBL-KLUGE
823 This option is accepted but has no effect on the @value{TARGET} family.
824 @end ifclear
825 @ifset DIFF-TBL-KLUGE
826 Issue warnings when difference tables altered for long displacements.
827 @end ifset
828
829 @item -L
830 @itemx --keep-locals
831 Keep (in the symbol table) local symbols. These symbols start with
832 system-specific local label prefixes, typically @samp{.L} for ELF systems
833 or @samp{L} for traditional a.out systems.
834 @ifclear man
835 @xref{Symbol Names}.
836 @end ifclear
837
838 @item --listing-lhs-width=@var{number}
839 Set the maximum width, in words, of the output data column for an assembler
840 listing to @var{number}.
841
842 @item --listing-lhs-width2=@var{number}
843 Set the maximum width, in words, of the output data column for continuation
844 lines in an assembler listing to @var{number}.
845
846 @item --listing-rhs-width=@var{number}
847 Set the maximum width of an input source line, as displayed in a listing, to
848 @var{number} bytes.
849
850 @item --listing-cont-lines=@var{number}
851 Set the maximum number of lines printed in a listing for a single line of input
852 to @var{number} + 1.
853
854 @item --no-pad-sections
855 Stop the assembler for padding the ends of output sections to the alignment
856 of that section. The default is to pad the sections, but this can waste space
857 which might be needed on targets which have tight memory constraints.
858
859 @item -o @var{objfile}
860 Name the object-file output from @command{@value{AS}} @var{objfile}.
861
862 @item -R
863 Fold the data section into the text section.
864
865 @item --hash-size=@var{number}
866 Set the default size of GAS's hash tables to a prime number close to
867 @var{number}. Increasing this value can reduce the length of time it takes the
868 assembler to perform its tasks, at the expense of increasing the assembler's
869 memory requirements. Similarly reducing this value can reduce the memory
870 requirements at the expense of speed.
871
872 @item --reduce-memory-overheads
873 This option reduces GAS's memory requirements, at the expense of making the
874 assembly processes slower. Currently this switch is a synonym for
875 @samp{--hash-size=4051}, but in the future it may have other effects as well.
876
877 @ifset ELF
878 @item --sectname-subst
879 Honor substitution sequences in section names.
880 @ifclear man
881 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
882 @end ifclear
883 @end ifset
884
885 @item --statistics
886 Print the maximum space (in bytes) and total time (in seconds) used by
887 assembly.
888
889 @item --strip-local-absolute
890 Remove local absolute symbols from the outgoing symbol table.
891
892 @item -v
893 @itemx -version
894 Print the @command{as} version.
895
896 @item --version
897 Print the @command{as} version and exit.
898
899 @item -W
900 @itemx --no-warn
901 Suppress warning messages.
902
903 @item --fatal-warnings
904 Treat warnings as errors.
905
906 @item --warn
907 Don't suppress warning messages or treat them as errors.
908
909 @item -w
910 Ignored.
911
912 @item -x
913 Ignored.
914
915 @item -Z
916 Generate an object file even after errors.
917
918 @item -- | @var{files} @dots{}
919 Standard input, or source files to assemble.
920
921 @end table
922 @c man end
923
924 @ifset AARCH64
925
926 @ifclear man
927 @xref{AArch64 Options}, for the options available when @value{AS} is configured
928 for the 64-bit mode of the ARM Architecture (AArch64).
929 @end ifclear
930
931 @ifset man
932 @c man begin OPTIONS
933 The following options are available when @value{AS} is configured for the
934 64-bit mode of the ARM Architecture (AArch64).
935 @c man end
936 @c man begin INCLUDE
937 @include c-aarch64.texi
938 @c ended inside the included file
939 @end ifset
940
941 @end ifset
942
943 @ifset ALPHA
944
945 @ifclear man
946 @xref{Alpha Options}, for the options available when @value{AS} is configured
947 for an Alpha processor.
948 @end ifclear
949
950 @ifset man
951 @c man begin OPTIONS
952 The following options are available when @value{AS} is configured for an Alpha
953 processor.
954 @c man end
955 @c man begin INCLUDE
956 @include c-alpha.texi
957 @c ended inside the included file
958 @end ifset
959
960 @end ifset
961
962 @c man begin OPTIONS
963 @ifset ARC
964 The following options are available when @value{AS} is configured for an ARC
965 processor.
966
967 @table @gcctabopt
968 @item -mcpu=@var{cpu}
969 This option selects the core processor variant.
970 @item -EB | -EL
971 Select either big-endian (-EB) or little-endian (-EL) output.
972 @item -mcode-density
973 Enable Code Density extenssion instructions.
974 @end table
975 @end ifset
976
977 @ifset ARM
978 The following options are available when @value{AS} is configured for the ARM
979 processor family.
980
981 @table @gcctabopt
982 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
983 Specify which ARM processor variant is the target.
984 @item -march=@var{architecture}[+@var{extension}@dots{}]
985 Specify which ARM architecture variant is used by the target.
986 @item -mfpu=@var{floating-point-format}
987 Select which Floating Point architecture is the target.
988 @item -mfloat-abi=@var{abi}
989 Select which floating point ABI is in use.
990 @item -mthumb
991 Enable Thumb only instruction decoding.
992 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
993 Select which procedure calling convention is in use.
994 @item -EB | -EL
995 Select either big-endian (-EB) or little-endian (-EL) output.
996 @item -mthumb-interwork
997 Specify that the code has been generated with interworking between Thumb and
998 ARM code in mind.
999 @item -mccs
1000 Turns on CodeComposer Studio assembly syntax compatibility mode.
1001 @item -k
1002 Specify that PIC code has been generated.
1003 @end table
1004 @end ifset
1005 @c man end
1006
1007 @ifset Blackfin
1008
1009 @ifclear man
1010 @xref{Blackfin Options}, for the options available when @value{AS} is
1011 configured for the Blackfin processor family.
1012 @end ifclear
1013
1014 @ifset man
1015 @c man begin OPTIONS
1016 The following options are available when @value{AS} is configured for
1017 the Blackfin processor family.
1018 @c man end
1019 @c man begin INCLUDE
1020 @include c-bfin.texi
1021 @c ended inside the included file
1022 @end ifset
1023
1024 @end ifset
1025
1026 @ifset BPF
1027
1028 @ifclear man
1029 @xref{BPF Options}, for the options available when @value{AS} is
1030 configured for the Linux kernel BPF processor family.
1031 @end ifclear
1032
1033 @ifset man
1034 @c man begin OPTIONS
1035 The following options are available when @value{AS} is configured for
1036 the Linux kernel BPF processor family.
1037 @c man end
1038 @c man begin INCLUDE
1039 @include c-bpf.texi
1040 @c ended inside the included file
1041 @end ifset
1042
1043 @end ifset
1044
1045 @c man begin OPTIONS
1046 @ifset CRIS
1047 See the info pages for documentation of the CRIS-specific options.
1048 @end ifset
1049
1050 @ifset CSKY
1051
1052 @ifclear man
1053 @xref{C-SKY Options}, for the options available when @value{AS} is
1054 configured for the C-SKY processor family.
1055 @end ifclear
1056
1057 @ifset man
1058 @c man begin OPTIONS
1059 The following options are available when @value{AS} is configured for
1060 the C-SKY processor family.
1061 @c man end
1062 @c man begin INCLUDE
1063 @include c-csky.texi
1064 @c ended inside the included file
1065 @end ifset
1066
1067 @end ifset
1068
1069 @ifset D10V
1070 The following options are available when @value{AS} is configured for
1071 a D10V processor.
1072 @table @gcctabopt
1073 @cindex D10V optimization
1074 @cindex optimization, D10V
1075 @item -O
1076 Optimize output by parallelizing instructions.
1077 @end table
1078 @end ifset
1079
1080 @ifset D30V
1081 The following options are available when @value{AS} is configured for a D30V
1082 processor.
1083 @table @gcctabopt
1084 @cindex D30V optimization
1085 @cindex optimization, D30V
1086 @item -O
1087 Optimize output by parallelizing instructions.
1088
1089 @cindex D30V nops
1090 @item -n
1091 Warn when nops are generated.
1092
1093 @cindex D30V nops after 32-bit multiply
1094 @item -N
1095 Warn when a nop after a 32-bit multiply instruction is generated.
1096 @end table
1097 @end ifset
1098 @c man end
1099
1100 @ifset EPIPHANY
1101 The following options are available when @value{AS} is configured for the
1102 Adapteva EPIPHANY series.
1103
1104 @ifclear man
1105 @xref{Epiphany Options}, for the options available when @value{AS} is
1106 configured for an Epiphany processor.
1107 @end ifclear
1108
1109 @ifset man
1110 @c man begin OPTIONS
1111 The following options are available when @value{AS} is configured for
1112 an Epiphany processor.
1113 @c man end
1114 @c man begin INCLUDE
1115 @include c-epiphany.texi
1116 @c ended inside the included file
1117 @end ifset
1118
1119 @end ifset
1120
1121 @ifset H8300
1122
1123 @ifclear man
1124 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1125 for an H8/300 processor.
1126 @end ifclear
1127
1128 @ifset man
1129 @c man begin OPTIONS
1130 The following options are available when @value{AS} is configured for an H8/300
1131 processor.
1132 @c man end
1133 @c man begin INCLUDE
1134 @include c-h8300.texi
1135 @c ended inside the included file
1136 @end ifset
1137
1138 @end ifset
1139
1140 @ifset I80386
1141
1142 @ifclear man
1143 @xref{i386-Options}, for the options available when @value{AS} is
1144 configured for an i386 processor.
1145 @end ifclear
1146
1147 @ifset man
1148 @c man begin OPTIONS
1149 The following options are available when @value{AS} is configured for
1150 an i386 processor.
1151 @c man end
1152 @c man begin INCLUDE
1153 @include c-i386.texi
1154 @c ended inside the included file
1155 @end ifset
1156
1157 @end ifset
1158
1159 @c man begin OPTIONS
1160 @ifset IP2K
1161 The following options are available when @value{AS} is configured for the
1162 Ubicom IP2K series.
1163
1164 @table @gcctabopt
1165
1166 @item -mip2022ext
1167 Specifies that the extended IP2022 instructions are allowed.
1168
1169 @item -mip2022
1170 Restores the default behaviour, which restricts the permitted instructions to
1171 just the basic IP2022 ones.
1172
1173 @end table
1174 @end ifset
1175
1176 @ifset M32C
1177 The following options are available when @value{AS} is configured for the
1178 Renesas M32C and M16C processors.
1179
1180 @table @gcctabopt
1181
1182 @item -m32c
1183 Assemble M32C instructions.
1184
1185 @item -m16c
1186 Assemble M16C instructions (the default).
1187
1188 @item -relax
1189 Enable support for link-time relaxations.
1190
1191 @item -h-tick-hex
1192 Support H'00 style hex constants in addition to 0x00 style.
1193
1194 @end table
1195 @end ifset
1196
1197 @ifset M32R
1198 The following options are available when @value{AS} is configured for the
1199 Renesas M32R (formerly Mitsubishi M32R) series.
1200
1201 @table @gcctabopt
1202
1203 @item --m32rx
1204 Specify which processor in the M32R family is the target. The default
1205 is normally the M32R, but this option changes it to the M32RX.
1206
1207 @item --warn-explicit-parallel-conflicts or --Wp
1208 Produce warning messages when questionable parallel constructs are
1209 encountered.
1210
1211 @item --no-warn-explicit-parallel-conflicts or --Wnp
1212 Do not produce warning messages when questionable parallel constructs are
1213 encountered.
1214
1215 @end table
1216 @end ifset
1217
1218 @ifset M680X0
1219 The following options are available when @value{AS} is configured for the
1220 Motorola 68000 series.
1221
1222 @table @gcctabopt
1223
1224 @item -l
1225 Shorten references to undefined symbols, to one word instead of two.
1226
1227 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1228 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1229 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1230 Specify what processor in the 68000 family is the target. The default
1231 is normally the 68020, but this can be changed at configuration time.
1232
1233 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1234 The target machine does (or does not) have a floating-point coprocessor.
1235 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1236 the basic 68000 is not compatible with the 68881, a combination of the
1237 two can be specified, since it's possible to do emulation of the
1238 coprocessor instructions with the main processor.
1239
1240 @item -m68851 | -mno-68851
1241 The target machine does (or does not) have a memory-management
1242 unit coprocessor. The default is to assume an MMU for 68020 and up.
1243
1244 @end table
1245 @end ifset
1246
1247 @ifset NIOSII
1248
1249 @ifclear man
1250 @xref{Nios II Options}, for the options available when @value{AS} is configured
1251 for an Altera Nios II processor.
1252 @end ifclear
1253
1254 @ifset man
1255 @c man begin OPTIONS
1256 The following options are available when @value{AS} is configured for an
1257 Altera Nios II processor.
1258 @c man end
1259 @c man begin INCLUDE
1260 @include c-nios2.texi
1261 @c ended inside the included file
1262 @end ifset
1263 @end ifset
1264
1265 @ifset PDP11
1266
1267 For details about the PDP-11 machine dependent features options,
1268 see @ref{PDP-11-Options}.
1269
1270 @table @gcctabopt
1271 @item -mpic | -mno-pic
1272 Generate position-independent (or position-dependent) code. The
1273 default is @option{-mpic}.
1274
1275 @item -mall
1276 @itemx -mall-extensions
1277 Enable all instruction set extensions. This is the default.
1278
1279 @item -mno-extensions
1280 Disable all instruction set extensions.
1281
1282 @item -m@var{extension} | -mno-@var{extension}
1283 Enable (or disable) a particular instruction set extension.
1284
1285 @item -m@var{cpu}
1286 Enable the instruction set extensions supported by a particular CPU, and
1287 disable all other extensions.
1288
1289 @item -m@var{machine}
1290 Enable the instruction set extensions supported by a particular machine
1291 model, and disable all other extensions.
1292 @end table
1293
1294 @end ifset
1295
1296 @ifset PJ
1297 The following options are available when @value{AS} is configured for
1298 a picoJava processor.
1299
1300 @table @gcctabopt
1301
1302 @cindex PJ endianness
1303 @cindex endianness, PJ
1304 @cindex big endian output, PJ
1305 @item -mb
1306 Generate ``big endian'' format output.
1307
1308 @cindex little endian output, PJ
1309 @item -ml
1310 Generate ``little endian'' format output.
1311
1312 @end table
1313 @end ifset
1314
1315 @ifset PRU
1316
1317 @ifclear man
1318 @xref{PRU Options}, for the options available when @value{AS} is configured
1319 for a PRU processor.
1320 @end ifclear
1321
1322 @ifset man
1323 @c man begin OPTIONS
1324 The following options are available when @value{AS} is configured for a
1325 PRU processor.
1326 @c man end
1327 @c man begin INCLUDE
1328 @include c-pru.texi
1329 @c ended inside the included file
1330 @end ifset
1331 @end ifset
1332
1333 @ifset M68HC11
1334 The following options are available when @value{AS} is configured for the
1335 Motorola 68HC11 or 68HC12 series.
1336
1337 @table @gcctabopt
1338
1339 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1340 Specify what processor is the target. The default is
1341 defined by the configuration option when building the assembler.
1342
1343 @item --xgate-ramoffset
1344 Instruct the linker to offset RAM addresses from S12X address space into
1345 XGATE address space.
1346
1347 @item -mshort
1348 Specify to use the 16-bit integer ABI.
1349
1350 @item -mlong
1351 Specify to use the 32-bit integer ABI.
1352
1353 @item -mshort-double
1354 Specify to use the 32-bit double ABI.
1355
1356 @item -mlong-double
1357 Specify to use the 64-bit double ABI.
1358
1359 @item --force-long-branches
1360 Relative branches are turned into absolute ones. This concerns
1361 conditional branches, unconditional branches and branches to a
1362 sub routine.
1363
1364 @item -S | --short-branches
1365 Do not turn relative branches into absolute ones
1366 when the offset is out of range.
1367
1368 @item --strict-direct-mode
1369 Do not turn the direct addressing mode into extended addressing mode
1370 when the instruction does not support direct addressing mode.
1371
1372 @item --print-insn-syntax
1373 Print the syntax of instruction in case of error.
1374
1375 @item --print-opcodes
1376 Print the list of instructions with syntax and then exit.
1377
1378 @item --generate-example
1379 Print an example of instruction for each possible instruction and then exit.
1380 This option is only useful for testing @command{@value{AS}}.
1381
1382 @end table
1383 @end ifset
1384
1385 @ifset SPARC
1386 The following options are available when @command{@value{AS}} is configured
1387 for the SPARC architecture:
1388
1389 @table @gcctabopt
1390 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1391 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1392 Explicitly select a variant of the SPARC architecture.
1393
1394 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1395 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1396
1397 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1398 UltraSPARC extensions.
1399
1400 @item -xarch=v8plus | -xarch=v8plusa
1401 For compatibility with the Solaris v9 assembler. These options are
1402 equivalent to -Av8plus and -Av8plusa, respectively.
1403
1404 @item -bump
1405 Warn when the assembler switches to another architecture.
1406 @end table
1407 @end ifset
1408
1409 @ifset TIC54X
1410 The following options are available when @value{AS} is configured for the 'c54x
1411 architecture.
1412
1413 @table @gcctabopt
1414 @item -mfar-mode
1415 Enable extended addressing mode. All addresses and relocations will assume
1416 extended addressing (usually 23 bits).
1417 @item -mcpu=@var{CPU_VERSION}
1418 Sets the CPU version being compiled for.
1419 @item -merrors-to-file @var{FILENAME}
1420 Redirect error output to a file, for broken systems which don't support such
1421 behaviour in the shell.
1422 @end table
1423 @end ifset
1424
1425 @ifset MIPS
1426 @c man begin OPTIONS
1427 The following options are available when @value{AS} is configured for
1428 a MIPS processor.
1429
1430 @table @gcctabopt
1431 @item -G @var{num}
1432 This option sets the largest size of an object that can be referenced
1433 implicitly with the @code{gp} register. It is only accepted for targets that
1434 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1435
1436 @cindex MIPS endianness
1437 @cindex endianness, MIPS
1438 @cindex big endian output, MIPS
1439 @item -EB
1440 Generate ``big endian'' format output.
1441
1442 @cindex little endian output, MIPS
1443 @item -EL
1444 Generate ``little endian'' format output.
1445
1446 @cindex MIPS ISA
1447 @item -mips1
1448 @itemx -mips2
1449 @itemx -mips3
1450 @itemx -mips4
1451 @itemx -mips5
1452 @itemx -mips32
1453 @itemx -mips32r2
1454 @itemx -mips32r3
1455 @itemx -mips32r5
1456 @itemx -mips32r6
1457 @itemx -mips64
1458 @itemx -mips64r2
1459 @itemx -mips64r3
1460 @itemx -mips64r5
1461 @itemx -mips64r6
1462 Generate code for a particular MIPS Instruction Set Architecture level.
1463 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1464 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1465 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1466 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1467 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1468 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1469 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1470 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1471 MIPS64 Release 6 ISA processors, respectively.
1472
1473 @item -march=@var{cpu}
1474 Generate code for a particular MIPS CPU.
1475
1476 @item -mtune=@var{cpu}
1477 Schedule and tune for a particular MIPS CPU.
1478
1479 @item -mfix7000
1480 @itemx -mno-fix7000
1481 Cause nops to be inserted if the read of the destination register
1482 of an mfhi or mflo instruction occurs in the following two instructions.
1483
1484 @item -mfix-rm7000
1485 @itemx -mno-fix-rm7000
1486 Cause nops to be inserted if a dmult or dmultu instruction is
1487 followed by a load instruction.
1488
1489 @item -mfix-r5900
1490 @itemx -mno-fix-r5900
1491 Do not attempt to schedule the preceding instruction into the delay slot
1492 of a branch instruction placed at the end of a short loop of six
1493 instructions or fewer and always schedule a @code{nop} instruction there
1494 instead. The short loop bug under certain conditions causes loops to
1495 execute only once or twice, due to a hardware bug in the R5900 chip.
1496
1497 @item -mdebug
1498 @itemx -no-mdebug
1499 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1500 section instead of the standard ELF .stabs sections.
1501
1502 @item -mpdr
1503 @itemx -mno-pdr
1504 Control generation of @code{.pdr} sections.
1505
1506 @item -mgp32
1507 @itemx -mfp32
1508 The register sizes are normally inferred from the ISA and ABI, but these
1509 flags force a certain group of registers to be treated as 32 bits wide at
1510 all times. @samp{-mgp32} controls the size of general-purpose registers
1511 and @samp{-mfp32} controls the size of floating-point registers.
1512
1513 @item -mgp64
1514 @itemx -mfp64
1515 The register sizes are normally inferred from the ISA and ABI, but these
1516 flags force a certain group of registers to be treated as 64 bits wide at
1517 all times. @samp{-mgp64} controls the size of general-purpose registers
1518 and @samp{-mfp64} controls the size of floating-point registers.
1519
1520 @item -mfpxx
1521 The register sizes are normally inferred from the ISA and ABI, but using
1522 this flag in combination with @samp{-mabi=32} enables an ABI variant
1523 which will operate correctly with floating-point registers which are
1524 32 or 64 bits wide.
1525
1526 @item -modd-spreg
1527 @itemx -mno-odd-spreg
1528 Enable use of floating-point operations on odd-numbered single-precision
1529 registers when supported by the ISA. @samp{-mfpxx} implies
1530 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1531
1532 @item -mips16
1533 @itemx -no-mips16
1534 Generate code for the MIPS 16 processor. This is equivalent to putting
1535 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1536 turns off this option.
1537
1538 @item -mmips16e2
1539 @itemx -mno-mips16e2
1540 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1541 to putting @code{.module mips16e2} at the start of the assembly file.
1542 @samp{-mno-mips16e2} turns off this option.
1543
1544 @item -mmicromips
1545 @itemx -mno-micromips
1546 Generate code for the microMIPS processor. This is equivalent to putting
1547 @code{.module micromips} at the start of the assembly file.
1548 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1549 @code{.module nomicromips} at the start of the assembly file.
1550
1551 @item -msmartmips
1552 @itemx -mno-smartmips
1553 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1554 equivalent to putting @code{.module smartmips} at the start of the assembly
1555 file. @samp{-mno-smartmips} turns off this option.
1556
1557 @item -mips3d
1558 @itemx -no-mips3d
1559 Generate code for the MIPS-3D Application Specific Extension.
1560 This tells the assembler to accept MIPS-3D instructions.
1561 @samp{-no-mips3d} turns off this option.
1562
1563 @item -mdmx
1564 @itemx -no-mdmx
1565 Generate code for the MDMX Application Specific Extension.
1566 This tells the assembler to accept MDMX instructions.
1567 @samp{-no-mdmx} turns off this option.
1568
1569 @item -mdsp
1570 @itemx -mno-dsp
1571 Generate code for the DSP Release 1 Application Specific Extension.
1572 This tells the assembler to accept DSP Release 1 instructions.
1573 @samp{-mno-dsp} turns off this option.
1574
1575 @item -mdspr2
1576 @itemx -mno-dspr2
1577 Generate code for the DSP Release 2 Application Specific Extension.
1578 This option implies @samp{-mdsp}.
1579 This tells the assembler to accept DSP Release 2 instructions.
1580 @samp{-mno-dspr2} turns off this option.
1581
1582 @item -mdspr3
1583 @itemx -mno-dspr3
1584 Generate code for the DSP Release 3 Application Specific Extension.
1585 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1586 This tells the assembler to accept DSP Release 3 instructions.
1587 @samp{-mno-dspr3} turns off this option.
1588
1589 @item -mmsa
1590 @itemx -mno-msa
1591 Generate code for the MIPS SIMD Architecture Extension.
1592 This tells the assembler to accept MSA instructions.
1593 @samp{-mno-msa} turns off this option.
1594
1595 @item -mxpa
1596 @itemx -mno-xpa
1597 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1598 This tells the assembler to accept XPA instructions.
1599 @samp{-mno-xpa} turns off this option.
1600
1601 @item -mmt
1602 @itemx -mno-mt
1603 Generate code for the MT Application Specific Extension.
1604 This tells the assembler to accept MT instructions.
1605 @samp{-mno-mt} turns off this option.
1606
1607 @item -mmcu
1608 @itemx -mno-mcu
1609 Generate code for the MCU Application Specific Extension.
1610 This tells the assembler to accept MCU instructions.
1611 @samp{-mno-mcu} turns off this option.
1612
1613 @item -mcrc
1614 @itemx -mno-crc
1615 Generate code for the MIPS cyclic redundancy check (CRC) Application
1616 Specific Extension. This tells the assembler to accept CRC instructions.
1617 @samp{-mno-crc} turns off this option.
1618
1619 @item -mginv
1620 @itemx -mno-ginv
1621 Generate code for the Global INValidate (GINV) Application Specific
1622 Extension. This tells the assembler to accept GINV instructions.
1623 @samp{-mno-ginv} turns off this option.
1624
1625 @item -mloongson-mmi
1626 @itemx -mno-loongson-mmi
1627 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1628 Application Specific Extension. This tells the assembler to accept MMI
1629 instructions.
1630 @samp{-mno-loongson-mmi} turns off this option.
1631
1632 @item -mloongson-cam
1633 @itemx -mno-loongson-cam
1634 Generate code for the Loongson Content Address Memory (CAM) instructions.
1635 This tells the assembler to accept Loongson CAM instructions.
1636 @samp{-mno-loongson-cam} turns off this option.
1637
1638 @item -mloongson-ext
1639 @itemx -mno-loongson-ext
1640 Generate code for the Loongson EXTensions (EXT) instructions.
1641 This tells the assembler to accept Loongson EXT instructions.
1642 @samp{-mno-loongson-ext} turns off this option.
1643
1644 @item -mloongson-ext2
1645 @itemx -mno-loongson-ext2
1646 Generate code for the Loongson EXTensions R2 (EXT2) instructions.
1647 This option implies @samp{-mloongson-ext}.
1648 This tells the assembler to accept Loongson EXT2 instructions.
1649 @samp{-mno-loongson-ext2} turns off this option.
1650
1651 @item -minsn32
1652 @itemx -mno-insn32
1653 Only use 32-bit instruction encodings when generating code for the
1654 microMIPS processor. This option inhibits the use of any 16-bit
1655 instructions. This is equivalent to putting @code{.set insn32} at
1656 the start of the assembly file. @samp{-mno-insn32} turns off this
1657 option. This is equivalent to putting @code{.set noinsn32} at the
1658 start of the assembly file. By default @samp{-mno-insn32} is
1659 selected, allowing all instructions to be used.
1660
1661 @item --construct-floats
1662 @itemx --no-construct-floats
1663 The @samp{--no-construct-floats} option disables the construction of
1664 double width floating point constants by loading the two halves of the
1665 value into the two single width floating point registers that make up
1666 the double width register. By default @samp{--construct-floats} is
1667 selected, allowing construction of these floating point constants.
1668
1669 @item --relax-branch
1670 @itemx --no-relax-branch
1671 The @samp{--relax-branch} option enables the relaxation of out-of-range
1672 branches. By default @samp{--no-relax-branch} is selected, causing any
1673 out-of-range branches to produce an error.
1674
1675 @item -mignore-branch-isa
1676 @itemx -mno-ignore-branch-isa
1677 Ignore branch checks for invalid transitions between ISA modes. The
1678 semantics of branches does not provide for an ISA mode switch, so in
1679 most cases the ISA mode a branch has been encoded for has to be the
1680 same as the ISA mode of the branch's target label. Therefore GAS has
1681 checks implemented that verify in branch assembly that the two ISA
1682 modes match. @samp{-mignore-branch-isa} disables these checks. By
1683 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1684 branch requiring a transition between ISA modes to produce an error.
1685
1686 @item -mnan=@var{encoding}
1687 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1688 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1689
1690 @cindex emulation
1691 @item --emulation=@var{name}
1692 This option was formerly used to switch between ELF and ECOFF output
1693 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1694 removed in GAS 2.24, so the option now serves little purpose.
1695 It is retained for backwards compatibility.
1696
1697 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1698 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1699 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1700 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1701 preferred options instead.
1702
1703 @item -nocpp
1704 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1705 the native tools.
1706
1707 @item --trap
1708 @itemx --no-trap
1709 @itemx --break
1710 @itemx --no-break
1711 Control how to deal with multiplication overflow and division by zero.
1712 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1713 (and only work for Instruction Set Architecture level 2 and higher);
1714 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1715 break exception.
1716
1717 @item -n
1718 When this option is used, @command{@value{AS}} will issue a warning every
1719 time it generates a nop instruction from a macro.
1720 @end table
1721 @c man end
1722 @end ifset
1723
1724 @ifset MCORE
1725 The following options are available when @value{AS} is configured for
1726 an MCore processor.
1727
1728 @table @gcctabopt
1729 @item -jsri2bsr
1730 @itemx -nojsri2bsr
1731 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1732 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1733
1734 @item -sifilter
1735 @itemx -nosifilter
1736 Enable or disable the silicon filter behaviour. By default this is disabled.
1737 The default can be overridden by the @samp{-sifilter} command-line option.
1738
1739 @item -relax
1740 Alter jump instructions for long displacements.
1741
1742 @item -mcpu=[210|340]
1743 Select the cpu type on the target hardware. This controls which instructions
1744 can be assembled.
1745
1746 @item -EB
1747 Assemble for a big endian target.
1748
1749 @item -EL
1750 Assemble for a little endian target.
1751
1752 @end table
1753 @end ifset
1754 @c man end
1755
1756 @ifset METAG
1757
1758 @ifclear man
1759 @xref{Meta Options}, for the options available when @value{AS} is configured
1760 for a Meta processor.
1761 @end ifclear
1762
1763 @ifset man
1764 @c man begin OPTIONS
1765 The following options are available when @value{AS} is configured for a
1766 Meta processor.
1767 @c man end
1768 @c man begin INCLUDE
1769 @include c-metag.texi
1770 @c ended inside the included file
1771 @end ifset
1772
1773 @end ifset
1774
1775 @c man begin OPTIONS
1776 @ifset MMIX
1777 See the info pages for documentation of the MMIX-specific options.
1778 @end ifset
1779
1780 @ifset NDS32
1781
1782 @ifclear man
1783 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1784 for a NDS32 processor.
1785 @end ifclear
1786 @c ended inside the included file
1787 @end ifset
1788
1789 @ifset man
1790 @c man begin OPTIONS
1791 The following options are available when @value{AS} is configured for a
1792 NDS32 processor.
1793 @c man end
1794 @c man begin INCLUDE
1795 @include c-nds32.texi
1796 @c ended inside the included file
1797 @end ifset
1798
1799 @c man end
1800 @ifset PPC
1801
1802 @ifclear man
1803 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1804 for a PowerPC processor.
1805 @end ifclear
1806
1807 @ifset man
1808 @c man begin OPTIONS
1809 The following options are available when @value{AS} is configured for a
1810 PowerPC processor.
1811 @c man end
1812 @c man begin INCLUDE
1813 @include c-ppc.texi
1814 @c ended inside the included file
1815 @end ifset
1816
1817 @end ifset
1818
1819 @ifset RISCV
1820
1821 @ifclear man
1822 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1823 for a RISC-V processor.
1824 @end ifclear
1825
1826 @ifset man
1827 @c man begin OPTIONS
1828 The following options are available when @value{AS} is configured for a
1829 RISC-V processor.
1830 @c man end
1831 @c man begin INCLUDE
1832 @include c-riscv.texi
1833 @c ended inside the included file
1834 @end ifset
1835
1836 @end ifset
1837
1838 @c man begin OPTIONS
1839 @ifset RX
1840 See the info pages for documentation of the RX-specific options.
1841 @end ifset
1842
1843 @ifset S390
1844 The following options are available when @value{AS} is configured for the s390
1845 processor family.
1846
1847 @table @gcctabopt
1848 @item -m31
1849 @itemx -m64
1850 Select the word size, either 31/32 bits or 64 bits.
1851 @item -mesa
1852 @item -mzarch
1853 Select the architecture mode, either the Enterprise System
1854 Architecture (esa) or the z/Architecture mode (zarch).
1855 @item -march=@var{processor}
1856 Specify which s390 processor variant is the target, @samp{g5} (or
1857 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1858 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1859 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1860 @samp{z13} (or @samp{arch11}), @samp{z14} (or @samp{arch12}), or @samp{z15}
1861 (or @samp{arch13}).
1862 @item -mregnames
1863 @itemx -mno-regnames
1864 Allow or disallow symbolic names for registers.
1865 @item -mwarn-areg-zero
1866 Warn whenever the operand for a base or index register has been specified
1867 but evaluates to zero.
1868 @end table
1869 @end ifset
1870 @c man end
1871
1872 @ifset TIC6X
1873
1874 @ifclear man
1875 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1876 for a TMS320C6000 processor.
1877 @end ifclear
1878
1879 @ifset man
1880 @c man begin OPTIONS
1881 The following options are available when @value{AS} is configured for a
1882 TMS320C6000 processor.
1883 @c man end
1884 @c man begin INCLUDE
1885 @include c-tic6x.texi
1886 @c ended inside the included file
1887 @end ifset
1888
1889 @end ifset
1890
1891 @ifset TILEGX
1892
1893 @ifclear man
1894 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1895 for a TILE-Gx processor.
1896 @end ifclear
1897
1898 @ifset man
1899 @c man begin OPTIONS
1900 The following options are available when @value{AS} is configured for a TILE-Gx
1901 processor.
1902 @c man end
1903 @c man begin INCLUDE
1904 @include c-tilegx.texi
1905 @c ended inside the included file
1906 @end ifset
1907
1908 @end ifset
1909
1910 @ifset VISIUM
1911
1912 @ifclear man
1913 @xref{Visium Options}, for the options available when @value{AS} is configured
1914 for a Visium processor.
1915 @end ifclear
1916
1917 @ifset man
1918 @c man begin OPTIONS
1919 The following option is available when @value{AS} is configured for a Visium
1920 processor.
1921 @c man end
1922 @c man begin INCLUDE
1923 @include c-visium.texi
1924 @c ended inside the included file
1925 @end ifset
1926
1927 @end ifset
1928
1929 @ifset XTENSA
1930
1931 @ifclear man
1932 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1933 for an Xtensa processor.
1934 @end ifclear
1935
1936 @ifset man
1937 @c man begin OPTIONS
1938 The following options are available when @value{AS} is configured for an
1939 Xtensa processor.
1940 @c man end
1941 @c man begin INCLUDE
1942 @include c-xtensa.texi
1943 @c ended inside the included file
1944 @end ifset
1945
1946 @end ifset
1947
1948 @ifset Z80
1949
1950 @ifclear man
1951 @xref{Z80 Options}, for the options available when @value{AS} is configured
1952 for an Z80 processor.
1953 @end ifclear
1954
1955 @ifset man
1956 @c man begin OPTIONS
1957 The following options are available when @value{AS} is configured for an
1958 Z80 processor.
1959 @c man end
1960 @c man begin INCLUDE
1961 @include c-z80.texi
1962 @c ended inside the included file
1963 @end ifset
1964
1965 @end ifset
1966
1967 @menu
1968 * Manual:: Structure of this Manual
1969 * GNU Assembler:: The GNU Assembler
1970 * Object Formats:: Object File Formats
1971 * Command Line:: Command Line
1972 * Input Files:: Input Files
1973 * Object:: Output (Object) File
1974 * Errors:: Error and Warning Messages
1975 @end menu
1976
1977 @node Manual
1978 @section Structure of this Manual
1979
1980 @cindex manual, structure and purpose
1981 This manual is intended to describe what you need to know to use
1982 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
1983 notation for symbols, constants, and expressions; the directives that
1984 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
1985
1986 @ifclear GENERIC
1987 We also cover special features in the @value{TARGET}
1988 configuration of @command{@value{AS}}, including assembler directives.
1989 @end ifclear
1990 @ifset GENERIC
1991 This manual also describes some of the machine-dependent features of
1992 various flavors of the assembler.
1993 @end ifset
1994
1995 @cindex machine instructions (not covered)
1996 On the other hand, this manual is @emph{not} intended as an introduction
1997 to programming in assembly language---let alone programming in general!
1998 In a similar vein, we make no attempt to introduce the machine
1999 architecture; we do @emph{not} describe the instruction set, standard
2000 mnemonics, registers or addressing modes that are standard to a
2001 particular architecture.
2002 @ifset GENERIC
2003 You may want to consult the manufacturer's
2004 machine architecture manual for this information.
2005 @end ifset
2006 @ifclear GENERIC
2007 @ifset H8/300
2008 For information on the H8/300 machine instruction set, see @cite{H8/300
2009 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
2010 Programming Manual} (Renesas).
2011 @end ifset
2012 @ifset SH
2013 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
2014 see @cite{SH-Microcomputer User's Manual} (Renesas) or
2015 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
2016 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
2017 @end ifset
2018 @ifset Z8000
2019 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
2020 @end ifset
2021 @end ifclear
2022
2023 @c I think this is premature---doc@cygnus.com, 17jan1991
2024 @ignore
2025 Throughout this manual, we assume that you are running @dfn{GNU},
2026 the portable operating system from the @dfn{Free Software
2027 Foundation, Inc.}. This restricts our attention to certain kinds of
2028 computer (in particular, the kinds of computers that @sc{gnu} can run on);
2029 once this assumption is granted examples and definitions need less
2030 qualification.
2031
2032 @command{@value{AS}} is part of a team of programs that turn a high-level
2033 human-readable series of instructions into a low-level
2034 computer-readable series of instructions. Different versions of
2035 @command{@value{AS}} are used for different kinds of computer.
2036 @end ignore
2037
2038 @c There used to be a section "Terminology" here, which defined
2039 @c "contents", "byte", "word", and "long". Defining "word" to any
2040 @c particular size is confusing when the .word directive may generate 16
2041 @c bits on one machine and 32 bits on another; in general, for the user
2042 @c version of this manual, none of these terms seem essential to define.
2043 @c They were used very little even in the former draft of the manual;
2044 @c this draft makes an effort to avoid them (except in names of
2045 @c directives).
2046
2047 @node GNU Assembler
2048 @section The GNU Assembler
2049
2050 @c man begin DESCRIPTION
2051
2052 @sc{gnu} @command{as} is really a family of assemblers.
2053 @ifclear GENERIC
2054 This manual describes @command{@value{AS}}, a member of that family which is
2055 configured for the @value{TARGET} architectures.
2056 @end ifclear
2057 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2058 should find a fairly similar environment when you use it on another
2059 architecture. Each version has much in common with the others,
2060 including object file formats, most assembler directives (often called
2061 @dfn{pseudo-ops}) and assembler syntax.@refill
2062
2063 @cindex purpose of @sc{gnu} assembler
2064 @command{@value{AS}} is primarily intended to assemble the output of the
2065 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2066 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2067 assemble correctly everything that other assemblers for the same
2068 machine would assemble.
2069 @ifset VAX
2070 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2071 @end ifset
2072 @ifset M680X0
2073 @c This remark should appear in generic version of manual; assumption
2074 @c here is that generic version sets M680x0.
2075 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2076 assembler for the same architecture; for example, we know of several
2077 incompatible versions of 680x0 assembly language syntax.
2078 @end ifset
2079
2080 @c man end
2081
2082 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2083 program in one pass of the source file. This has a subtle impact on the
2084 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2085
2086 @node Object Formats
2087 @section Object File Formats
2088
2089 @cindex object file format
2090 The @sc{gnu} assembler can be configured to produce several alternative
2091 object file formats. For the most part, this does not affect how you
2092 write assembly language programs; but directives for debugging symbols
2093 are typically different in different file formats. @xref{Symbol
2094 Attributes,,Symbol Attributes}.
2095 @ifclear GENERIC
2096 @ifclear MULTI-OBJ
2097 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2098 @value{OBJ-NAME} format object files.
2099 @end ifclear
2100 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2101 @ifset HPPA
2102 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2103 SOM or ELF format object files.
2104 @end ifset
2105 @end ifclear
2106
2107 @node Command Line
2108 @section Command Line
2109
2110 @cindex command line conventions
2111
2112 After the program name @command{@value{AS}}, the command line may contain
2113 options and file names. Options may appear in any order, and may be
2114 before, after, or between file names. The order of file names is
2115 significant.
2116
2117 @cindex standard input, as input file
2118 @kindex --
2119 @file{--} (two hyphens) by itself names the standard input file
2120 explicitly, as one of the files for @command{@value{AS}} to assemble.
2121
2122 @cindex options, command line
2123 Except for @samp{--} any command-line argument that begins with a
2124 hyphen (@samp{-}) is an option. Each option changes the behavior of
2125 @command{@value{AS}}. No option changes the way another option works. An
2126 option is a @samp{-} followed by one or more letters; the case of
2127 the letter is important. All options are optional.
2128
2129 Some options expect exactly one file name to follow them. The file
2130 name may either immediately follow the option's letter (compatible
2131 with older assemblers) or it may be the next command argument (@sc{gnu}
2132 standard). These two command lines are equivalent:
2133
2134 @smallexample
2135 @value{AS} -o my-object-file.o mumble.s
2136 @value{AS} -omy-object-file.o mumble.s
2137 @end smallexample
2138
2139 @node Input Files
2140 @section Input Files
2141
2142 @cindex input
2143 @cindex source program
2144 @cindex files, input
2145 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2146 describe the program input to one run of @command{@value{AS}}. The program may
2147 be in one or more files; how the source is partitioned into files
2148 doesn't change the meaning of the source.
2149
2150 @c I added "con" prefix to "catenation" just to prove I can overcome my
2151 @c APL training... doc@cygnus.com
2152 The source program is a concatenation of the text in all the files, in the
2153 order specified.
2154
2155 @c man begin DESCRIPTION
2156 Each time you run @command{@value{AS}} it assembles exactly one source
2157 program. The source program is made up of one or more files.
2158 (The standard input is also a file.)
2159
2160 You give @command{@value{AS}} a command line that has zero or more input file
2161 names. The input files are read (from left file name to right). A
2162 command-line argument (in any position) that has no special meaning
2163 is taken to be an input file name.
2164
2165 If you give @command{@value{AS}} no file names it attempts to read one input file
2166 from the @command{@value{AS}} standard input, which is normally your terminal. You
2167 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2168 to assemble.
2169
2170 Use @samp{--} if you need to explicitly name the standard input file
2171 in your command line.
2172
2173 If the source is empty, @command{@value{AS}} produces a small, empty object
2174 file.
2175
2176 @c man end
2177
2178 @subheading Filenames and Line-numbers
2179
2180 @cindex input file linenumbers
2181 @cindex line numbers, in input files
2182 There are two ways of locating a line in the input file (or files) and
2183 either may be used in reporting error messages. One way refers to a line
2184 number in a physical file; the other refers to a line number in a
2185 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2186
2187 @dfn{Physical files} are those files named in the command line given
2188 to @command{@value{AS}}.
2189
2190 @dfn{Logical files} are simply names declared explicitly by assembler
2191 directives; they bear no relation to physical files. Logical file names help
2192 error messages reflect the original source file, when @command{@value{AS}} source
2193 is itself synthesized from other files. @command{@value{AS}} understands the
2194 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2195 @ref{File,,@code{.file}}.
2196
2197 @node Object
2198 @section Output (Object) File
2199
2200 @cindex object file
2201 @cindex output file
2202 @kindex a.out
2203 @kindex .o
2204 Every time you run @command{@value{AS}} it produces an output file, which is
2205 your assembly language program translated into numbers. This file
2206 is the object file. Its default name is @code{a.out}.
2207 You can give it another name by using the @option{-o} option. Conventionally,
2208 object file names end with @file{.o}. The default name is used for historical
2209 reasons: older assemblers were capable of assembling self-contained programs
2210 directly into a runnable program. (For some formats, this isn't currently
2211 possible, but it can be done for the @code{a.out} format.)
2212
2213 @cindex linker
2214 @kindex ld
2215 The object file is meant for input to the linker @code{@value{LD}}. It contains
2216 assembled program code, information to help @code{@value{LD}} integrate
2217 the assembled program into a runnable file, and (optionally) symbolic
2218 information for the debugger.
2219
2220 @c link above to some info file(s) like the description of a.out.
2221 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2222
2223 @node Errors
2224 @section Error and Warning Messages
2225
2226 @c man begin DESCRIPTION
2227
2228 @cindex error messages
2229 @cindex warning messages
2230 @cindex messages from assembler
2231 @command{@value{AS}} may write warnings and error messages to the standard error
2232 file (usually your terminal). This should not happen when a compiler
2233 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2234 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2235 grave problem that stops the assembly.
2236
2237 @c man end
2238
2239 @cindex format of warning messages
2240 Warning messages have the format
2241
2242 @smallexample
2243 file_name:@b{NNN}:Warning Message Text
2244 @end smallexample
2245
2246 @noindent
2247 @cindex file names and line numbers, in warnings/errors
2248 (where @b{NNN} is a line number). If both a logical file name
2249 (@pxref{File,,@code{.file}}) and a logical line number
2250 @ifset GENERIC
2251 (@pxref{Line,,@code{.line}})
2252 @end ifset
2253 have been given then they will be used, otherwise the file name and line number
2254 in the current assembler source file will be used. The message text is
2255 intended to be self explanatory (in the grand Unix tradition).
2256
2257 Note the file name must be set via the logical version of the @code{.file}
2258 directive, not the DWARF2 version of the @code{.file} directive. For example:
2259
2260 @smallexample
2261 .file 2 "bar.c"
2262 error_assembler_source
2263 .file "foo.c"
2264 .line 30
2265 error_c_source
2266 @end smallexample
2267
2268 produces this output:
2269
2270 @smallexample
2271 Assembler messages:
2272 asm.s:2: Error: no such instruction: `error_assembler_source'
2273 foo.c:31: Error: no such instruction: `error_c_source'
2274 @end smallexample
2275
2276 @cindex format of error messages
2277 Error messages have the format
2278
2279 @smallexample
2280 file_name:@b{NNN}:FATAL:Error Message Text
2281 @end smallexample
2282
2283 The file name and line number are derived as for warning
2284 messages. The actual message text may be rather less explanatory
2285 because many of them aren't supposed to happen.
2286
2287 @node Invoking
2288 @chapter Command-Line Options
2289
2290 @cindex options, all versions of assembler
2291 This chapter describes command-line options available in @emph{all}
2292 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2293 for options specific
2294 @ifclear GENERIC
2295 to the @value{TARGET} target.
2296 @end ifclear
2297 @ifset GENERIC
2298 to particular machine architectures.
2299 @end ifset
2300
2301 @c man begin DESCRIPTION
2302
2303 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2304 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2305 The assembler arguments must be separated from each other (and the @samp{-Wa})
2306 by commas. For example:
2307
2308 @smallexample
2309 gcc -c -g -O -Wa,-alh,-L file.c
2310 @end smallexample
2311
2312 @noindent
2313 This passes two options to the assembler: @samp{-alh} (emit a listing to
2314 standard output with high-level and assembly source) and @samp{-L} (retain
2315 local symbols in the symbol table).
2316
2317 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2318 command-line options are automatically passed to the assembler by the compiler.
2319 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2320 precisely what options it passes to each compilation pass, including the
2321 assembler.)
2322
2323 @c man end
2324
2325 @menu
2326 * a:: -a[cdghlns] enable listings
2327 * alternate:: --alternate enable alternate macro syntax
2328 * D:: -D for compatibility
2329 * f:: -f to work faster
2330 * I:: -I for .include search path
2331 @ifclear DIFF-TBL-KLUGE
2332 * K:: -K for compatibility
2333 @end ifclear
2334 @ifset DIFF-TBL-KLUGE
2335 * K:: -K for difference tables
2336 @end ifset
2337
2338 * L:: -L to retain local symbols
2339 * listing:: --listing-XXX to configure listing output
2340 * M:: -M or --mri to assemble in MRI compatibility mode
2341 * MD:: --MD for dependency tracking
2342 * no-pad-sections:: --no-pad-sections to stop section padding
2343 * o:: -o to name the object file
2344 * R:: -R to join data and text sections
2345 * statistics:: --statistics to see statistics about assembly
2346 * traditional-format:: --traditional-format for compatible output
2347 * v:: -v to announce version
2348 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2349 * Z:: -Z to make object file even after errors
2350 @end menu
2351
2352 @node a
2353 @section Enable Listings: @option{-a[cdghlns]}
2354
2355 @kindex -a
2356 @kindex -ac
2357 @kindex -ad
2358 @kindex -ag
2359 @kindex -ah
2360 @kindex -al
2361 @kindex -an
2362 @kindex -as
2363 @cindex listings, enabling
2364 @cindex assembly listings, enabling
2365
2366 These options enable listing output from the assembler. By itself,
2367 @samp{-a} requests high-level, assembly, and symbols listing.
2368 You can use other letters to select specific options for the list:
2369 @samp{-ah} requests a high-level language listing,
2370 @samp{-al} requests an output-program assembly listing, and
2371 @samp{-as} requests a symbol table listing.
2372 High-level listings require that a compiler debugging option like
2373 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2374 also.
2375
2376 Use the @samp{-ag} option to print a first section with general assembly
2377 information, like @value{AS} version, switches passed, or time stamp.
2378
2379 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2380 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2381 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2382 omitted from the listing.
2383
2384 Use the @samp{-ad} option to omit debugging directives from the
2385 listing.
2386
2387 Once you have specified one of these options, you can further control
2388 listing output and its appearance using the directives @code{.list},
2389 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2390 @code{.sbttl}.
2391 The @samp{-an} option turns off all forms processing.
2392 If you do not request listing output with one of the @samp{-a} options, the
2393 listing-control directives have no effect.
2394
2395 The letters after @samp{-a} may be combined into one option,
2396 @emph{e.g.}, @samp{-aln}.
2397
2398 Note if the assembler source is coming from the standard input (e.g.,
2399 because it
2400 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2401 is being used) then the listing will not contain any comments or preprocessor
2402 directives. This is because the listing code buffers input source lines from
2403 stdin only after they have been preprocessed by the assembler. This reduces
2404 memory usage and makes the code more efficient.
2405
2406 @node alternate
2407 @section @option{--alternate}
2408
2409 @kindex --alternate
2410 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2411
2412 @node D
2413 @section @option{-D}
2414
2415 @kindex -D
2416 This option has no effect whatsoever, but it is accepted to make it more
2417 likely that scripts written for other assemblers also work with
2418 @command{@value{AS}}.
2419
2420 @node f
2421 @section Work Faster: @option{-f}
2422
2423 @kindex -f
2424 @cindex trusted compiler
2425 @cindex faster processing (@option{-f})
2426 @samp{-f} should only be used when assembling programs written by a
2427 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2428 and comment preprocessing on
2429 the input file(s) before assembling them. @xref{Preprocessing,
2430 ,Preprocessing}.
2431
2432 @quotation
2433 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2434 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2435 not work correctly.
2436 @end quotation
2437
2438 @node I
2439 @section @code{.include} Search Path: @option{-I} @var{path}
2440
2441 @kindex -I @var{path}
2442 @cindex paths for @code{.include}
2443 @cindex search path for @code{.include}
2444 @cindex @code{include} directive search path
2445 Use this option to add a @var{path} to the list of directories
2446 @command{@value{AS}} searches for files specified in @code{.include}
2447 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2448 many times as necessary to include a variety of paths. The current
2449 working directory is always searched first; after that, @command{@value{AS}}
2450 searches any @samp{-I} directories in the same order as they were
2451 specified (left to right) on the command line.
2452
2453 @node K
2454 @section Difference Tables: @option{-K}
2455
2456 @kindex -K
2457 @ifclear DIFF-TBL-KLUGE
2458 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2459 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2460 where it can be used to warn when the assembler alters the machine code
2461 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2462 family does not have the addressing limitations that sometimes lead to this
2463 alteration on other platforms.
2464 @end ifclear
2465
2466 @ifset DIFF-TBL-KLUGE
2467 @cindex difference tables, warning
2468 @cindex warning for altered difference tables
2469 @command{@value{AS}} sometimes alters the code emitted for directives of the
2470 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2471 You can use the @samp{-K} option if you want a warning issued when this
2472 is done.
2473 @end ifset
2474
2475 @node L
2476 @section Include Local Symbols: @option{-L}
2477
2478 @kindex -L
2479 @cindex local symbols, retaining in output
2480 Symbols beginning with system-specific local label prefixes, typically
2481 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2482 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2483 such symbols when debugging, because they are intended for the use of
2484 programs (like compilers) that compose assembler programs, not for your
2485 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2486 such symbols, so you do not normally debug with them.
2487
2488 This option tells @command{@value{AS}} to retain those local symbols
2489 in the object file. Usually if you do this you also tell the linker
2490 @code{@value{LD}} to preserve those symbols.
2491
2492 @node listing
2493 @section Configuring listing output: @option{--listing}
2494
2495 The listing feature of the assembler can be enabled via the command-line switch
2496 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2497 hex dump of the corresponding locations in the output object file, and displays
2498 them as a listing file. The format of this listing can be controlled by
2499 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2500 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2501 @code{.psize} (@pxref{Psize}), and
2502 @code{.eject} (@pxref{Eject}) and also by the following switches:
2503
2504 @table @gcctabopt
2505 @item --listing-lhs-width=@samp{number}
2506 @kindex --listing-lhs-width
2507 @cindex Width of first line disassembly output
2508 Sets the maximum width, in words, of the first line of the hex byte dump. This
2509 dump appears on the left hand side of the listing output.
2510
2511 @item --listing-lhs-width2=@samp{number}
2512 @kindex --listing-lhs-width2
2513 @cindex Width of continuation lines of disassembly output
2514 Sets the maximum width, in words, of any further lines of the hex byte dump for
2515 a given input source line. If this value is not specified, it defaults to being
2516 the same as the value specified for @samp{--listing-lhs-width}. If neither
2517 switch is used the default is to one.
2518
2519 @item --listing-rhs-width=@samp{number}
2520 @kindex --listing-rhs-width
2521 @cindex Width of source line output
2522 Sets the maximum width, in characters, of the source line that is displayed
2523 alongside the hex dump. The default value for this parameter is 100. The
2524 source line is displayed on the right hand side of the listing output.
2525
2526 @item --listing-cont-lines=@samp{number}
2527 @kindex --listing-cont-lines
2528 @cindex Maximum number of continuation lines
2529 Sets the maximum number of continuation lines of hex dump that will be
2530 displayed for a given single line of source input. The default value is 4.
2531 @end table
2532
2533 @node M
2534 @section Assemble in MRI Compatibility Mode: @option{-M}
2535
2536 @kindex -M
2537 @cindex MRI compatibility mode
2538 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2539 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2540 compatible with the @code{ASM68K} assembler from Microtec Research.
2541 The exact nature of the
2542 MRI syntax will not be documented here; see the MRI manuals for more
2543 information. Note in particular that the handling of macros and macro
2544 arguments is somewhat different. The purpose of this option is to permit
2545 assembling existing MRI assembler code using @command{@value{AS}}.
2546
2547 The MRI compatibility is not complete. Certain operations of the MRI assembler
2548 depend upon its object file format, and can not be supported using other object
2549 file formats. Supporting these would require enhancing each object file format
2550 individually. These are:
2551
2552 @itemize @bullet
2553 @item global symbols in common section
2554
2555 The m68k MRI assembler supports common sections which are merged by the linker.
2556 Other object file formats do not support this. @command{@value{AS}} handles
2557 common sections by treating them as a single common symbol. It permits local
2558 symbols to be defined within a common section, but it can not support global
2559 symbols, since it has no way to describe them.
2560
2561 @item complex relocations
2562
2563 The MRI assemblers support relocations against a negated section address, and
2564 relocations which combine the start addresses of two or more sections. These
2565 are not support by other object file formats.
2566
2567 @item @code{END} pseudo-op specifying start address
2568
2569 The MRI @code{END} pseudo-op permits the specification of a start address.
2570 This is not supported by other object file formats. The start address may
2571 instead be specified using the @option{-e} option to the linker, or in a linker
2572 script.
2573
2574 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2575
2576 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2577 name to the output file. This is not supported by other object file formats.
2578
2579 @item @code{ORG} pseudo-op
2580
2581 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2582 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2583 which changes the location within the current section. Absolute sections are
2584 not supported by other object file formats. The address of a section may be
2585 assigned within a linker script.
2586 @end itemize
2587
2588 There are some other features of the MRI assembler which are not supported by
2589 @command{@value{AS}}, typically either because they are difficult or because they
2590 seem of little consequence. Some of these may be supported in future releases.
2591
2592 @itemize @bullet
2593
2594 @item EBCDIC strings
2595
2596 EBCDIC strings are not supported.
2597
2598 @item packed binary coded decimal
2599
2600 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2601 and @code{DCB.P} pseudo-ops are not supported.
2602
2603 @item @code{FEQU} pseudo-op
2604
2605 The m68k @code{FEQU} pseudo-op is not supported.
2606
2607 @item @code{NOOBJ} pseudo-op
2608
2609 The m68k @code{NOOBJ} pseudo-op is not supported.
2610
2611 @item @code{OPT} branch control options
2612
2613 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2614 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2615 relaxes all branches, whether forward or backward, to an appropriate size, so
2616 these options serve no purpose.
2617
2618 @item @code{OPT} list control options
2619
2620 The following m68k @code{OPT} list control options are ignored: @code{C},
2621 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2622 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2623
2624 @item other @code{OPT} options
2625
2626 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2627 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2628
2629 @item @code{OPT} @code{D} option is default
2630
2631 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2632 @code{OPT NOD} may be used to turn it off.
2633
2634 @item @code{XREF} pseudo-op.
2635
2636 The m68k @code{XREF} pseudo-op is ignored.
2637
2638 @end itemize
2639
2640 @node MD
2641 @section Dependency Tracking: @option{--MD}
2642
2643 @kindex --MD
2644 @cindex dependency tracking
2645 @cindex make rules
2646
2647 @command{@value{AS}} can generate a dependency file for the file it creates. This
2648 file consists of a single rule suitable for @code{make} describing the
2649 dependencies of the main source file.
2650
2651 The rule is written to the file named in its argument.
2652
2653 This feature is used in the automatic updating of makefiles.
2654
2655 @node no-pad-sections
2656 @section Output Section Padding
2657 @kindex --no-pad-sections
2658 @cindex output section padding
2659 Normally the assembler will pad the end of each output section up to its
2660 alignment boundary. But this can waste space, which can be significant on
2661 memory constrained targets. So the @option{--no-pad-sections} option will
2662 disable this behaviour.
2663
2664 @node o
2665 @section Name the Object File: @option{-o}
2666
2667 @kindex -o
2668 @cindex naming object file
2669 @cindex object file name
2670 There is always one object file output when you run @command{@value{AS}}. By
2671 default it has the name @file{a.out}.
2672 You use this option (which takes exactly one filename) to give the
2673 object file a different name.
2674
2675 Whatever the object file is called, @command{@value{AS}} overwrites any
2676 existing file of the same name.
2677
2678 @node R
2679 @section Join Data and Text Sections: @option{-R}
2680
2681 @kindex -R
2682 @cindex data and text sections, joining
2683 @cindex text and data sections, joining
2684 @cindex joining text and data sections
2685 @cindex merging text and data sections
2686 @option{-R} tells @command{@value{AS}} to write the object file as if all
2687 data-section data lives in the text section. This is only done at
2688 the very last moment: your binary data are the same, but data
2689 section parts are relocated differently. The data section part of
2690 your object file is zero bytes long because all its bytes are
2691 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2692
2693 When you specify @option{-R} it would be possible to generate shorter
2694 address displacements (because we do not have to cross between text and
2695 data section). We refrain from doing this simply for compatibility with
2696 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2697
2698 @ifset COFF-ELF
2699 When @command{@value{AS}} is configured for COFF or ELF output,
2700 this option is only useful if you use sections named @samp{.text} and
2701 @samp{.data}.
2702 @end ifset
2703
2704 @ifset HPPA
2705 @option{-R} is not supported for any of the HPPA targets. Using
2706 @option{-R} generates a warning from @command{@value{AS}}.
2707 @end ifset
2708
2709 @node statistics
2710 @section Display Assembly Statistics: @option{--statistics}
2711
2712 @kindex --statistics
2713 @cindex statistics, about assembly
2714 @cindex time, total for assembly
2715 @cindex space used, maximum for assembly
2716 Use @samp{--statistics} to display two statistics about the resources used by
2717 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2718 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2719 seconds).
2720
2721 @node traditional-format
2722 @section Compatible Output: @option{--traditional-format}
2723
2724 @kindex --traditional-format
2725 For some targets, the output of @command{@value{AS}} is different in some ways
2726 from the output of some existing assembler. This switch requests
2727 @command{@value{AS}} to use the traditional format instead.
2728
2729 For example, it disables the exception frame optimizations which
2730 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2731
2732 @node v
2733 @section Announce Version: @option{-v}
2734
2735 @kindex -v
2736 @kindex -version
2737 @cindex assembler version
2738 @cindex version of assembler
2739 You can find out what version of as is running by including the
2740 option @samp{-v} (which you can also spell as @samp{-version}) on the
2741 command line.
2742
2743 @node W
2744 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2745
2746 @command{@value{AS}} should never give a warning or error message when
2747 assembling compiler output. But programs written by people often
2748 cause @command{@value{AS}} to give a warning that a particular assumption was
2749 made. All such warnings are directed to the standard error file.
2750
2751 @kindex -W
2752 @kindex --no-warn
2753 @cindex suppressing warnings
2754 @cindex warnings, suppressing
2755 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2756 This only affects the warning messages: it does not change any particular of
2757 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2758 are still reported.
2759
2760 @kindex --fatal-warnings
2761 @cindex errors, caused by warnings
2762 @cindex warnings, causing error
2763 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2764 files that generate warnings to be in error.
2765
2766 @kindex --warn
2767 @cindex warnings, switching on
2768 You can switch these options off again by specifying @option{--warn}, which
2769 causes warnings to be output as usual.
2770
2771 @node Z
2772 @section Generate Object File in Spite of Errors: @option{-Z}
2773 @cindex object file, after errors
2774 @cindex errors, continuing after
2775 After an error message, @command{@value{AS}} normally produces no output. If for
2776 some reason you are interested in object file output even after
2777 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2778 option. If there are any errors, @command{@value{AS}} continues anyways, and
2779 writes an object file after a final warning message of the form @samp{@var{n}
2780 errors, @var{m} warnings, generating bad object file.}
2781
2782 @node Syntax
2783 @chapter Syntax
2784
2785 @cindex machine-independent syntax
2786 @cindex syntax, machine-independent
2787 This chapter describes the machine-independent syntax allowed in a
2788 source file. @command{@value{AS}} syntax is similar to what many other
2789 assemblers use; it is inspired by the BSD 4.2
2790 @ifclear VAX
2791 assembler.
2792 @end ifclear
2793 @ifset VAX
2794 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2795 @end ifset
2796
2797 @menu
2798 * Preprocessing:: Preprocessing
2799 * Whitespace:: Whitespace
2800 * Comments:: Comments
2801 * Symbol Intro:: Symbols
2802 * Statements:: Statements
2803 * Constants:: Constants
2804 @end menu
2805
2806 @node Preprocessing
2807 @section Preprocessing
2808
2809 @cindex preprocessing
2810 The @command{@value{AS}} internal preprocessor:
2811 @itemize @bullet
2812 @cindex whitespace, removed by preprocessor
2813 @item
2814 adjusts and removes extra whitespace. It leaves one space or tab before
2815 the keywords on a line, and turns any other whitespace on the line into
2816 a single space.
2817
2818 @cindex comments, removed by preprocessor
2819 @item
2820 removes all comments, replacing them with a single space, or an
2821 appropriate number of newlines.
2822
2823 @cindex constants, converted by preprocessor
2824 @item
2825 converts character constants into the appropriate numeric values.
2826 @end itemize
2827
2828 It does not do macro processing, include file handling, or
2829 anything else you may get from your C compiler's preprocessor. You can
2830 do include file processing with the @code{.include} directive
2831 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2832 to get other ``CPP'' style preprocessing by giving the input file a
2833 @samp{.S} suffix. @xref{Overall Options, ,Options Controlling the Kind of
2834 Output, gcc info, Using GNU CC}.
2835
2836 Excess whitespace, comments, and character constants
2837 cannot be used in the portions of the input text that are not
2838 preprocessed.
2839
2840 @cindex turning preprocessing on and off
2841 @cindex preprocessing, turning on and off
2842 @kindex #NO_APP
2843 @kindex #APP
2844 If the first line of an input file is @code{#NO_APP} or if you use the
2845 @samp{-f} option, whitespace and comments are not removed from the input file.
2846 Within an input file, you can ask for whitespace and comment removal in
2847 specific portions of the by putting a line that says @code{#APP} before the
2848 text that may contain whitespace or comments, and putting a line that says
2849 @code{#NO_APP} after this text. This feature is mainly intend to support
2850 @code{asm} statements in compilers whose output is otherwise free of comments
2851 and whitespace.
2852
2853 @node Whitespace
2854 @section Whitespace
2855
2856 @cindex whitespace
2857 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2858 Whitespace is used to separate symbols, and to make programs neater for
2859 people to read. Unless within character constants
2860 (@pxref{Characters,,Character Constants}), any whitespace means the same
2861 as exactly one space.
2862
2863 @node Comments
2864 @section Comments
2865
2866 @cindex comments
2867 There are two ways of rendering comments to @command{@value{AS}}. In both
2868 cases the comment is equivalent to one space.
2869
2870 Anything from @samp{/*} through the next @samp{*/} is a comment.
2871 This means you may not nest these comments.
2872
2873 @smallexample
2874 /*
2875 The only way to include a newline ('\n') in a comment
2876 is to use this sort of comment.
2877 */
2878
2879 /* This sort of comment does not nest. */
2880 @end smallexample
2881
2882 @cindex line comment character
2883 Anything from a @dfn{line comment} character up to the next newline is
2884 considered a comment and is ignored. The line comment character is target
2885 specific, and some targets multiple comment characters. Some targets also have
2886 line comment characters that only work if they are the first character on a
2887 line. Some targets use a sequence of two characters to introduce a line
2888 comment. Some targets can also change their line comment characters depending
2889 upon command-line options that have been used. For more details see the
2890 @emph{Syntax} section in the documentation for individual targets.
2891
2892 If the line comment character is the hash sign (@samp{#}) then it still has the
2893 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2894 to specify logical line numbers:
2895
2896 @kindex #
2897 @cindex lines starting with @code{#}
2898 @cindex logical line numbers
2899 To be compatible with past assemblers, lines that begin with @samp{#} have a
2900 special interpretation. Following the @samp{#} should be an absolute
2901 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2902 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2903 new logical file name. The rest of the line, if any, should be whitespace.
2904
2905 If the first non-whitespace characters on the line are not numeric,
2906 the line is ignored. (Just like a comment.)
2907
2908 @smallexample
2909 # This is an ordinary comment.
2910 # 42-6 "new_file_name" # New logical file name
2911 # This is logical line # 36.
2912 @end smallexample
2913 This feature is deprecated, and may disappear from future versions
2914 of @command{@value{AS}}.
2915
2916 @node Symbol Intro
2917 @section Symbols
2918
2919 @cindex characters used in symbols
2920 @ifclear SPECIAL-SYMS
2921 A @dfn{symbol} is one or more characters chosen from the set of all
2922 letters (both upper and lower case), digits and the three characters
2923 @samp{_.$}.
2924 @end ifclear
2925 @ifset SPECIAL-SYMS
2926 @ifclear GENERIC
2927 @ifset H8
2928 A @dfn{symbol} is one or more characters chosen from the set of all
2929 letters (both upper and lower case), digits and the three characters
2930 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2931 symbol names.)
2932 @end ifset
2933 @end ifclear
2934 @end ifset
2935 @ifset GENERIC
2936 On most machines, you can also use @code{$} in symbol names; exceptions
2937 are noted in @ref{Machine Dependencies}.
2938 @end ifset
2939 No symbol may begin with a digit. Case is significant.
2940 There is no length limit; all characters are significant. Multibyte characters
2941 are supported. Symbols are delimited by characters not in that set, or by the
2942 beginning of a file (since the source program must end with a newline, the end
2943 of a file is not a possible symbol delimiter). @xref{Symbols}.
2944
2945 Symbol names may also be enclosed in double quote @code{"} characters. In such
2946 cases any characters are allowed, except for the NUL character. If a double
2947 quote character is to be included in the symbol name it must be preceeded by a
2948 backslash @code{\} character.
2949 @cindex length of symbols
2950
2951 @node Statements
2952 @section Statements
2953
2954 @cindex statements, structure of
2955 @cindex line separator character
2956 @cindex statement separator character
2957
2958 A @dfn{statement} ends at a newline character (@samp{\n}) or a
2959 @dfn{line separator character}. The line separator character is target
2960 specific and described in the @emph{Syntax} section of each
2961 target's documentation. Not all targets support a line separator character.
2962 The newline or line separator character is considered to be part of the
2963 preceding statement. Newlines and separators within character constants are an
2964 exception: they do not end statements.
2965
2966 @cindex newline, required at file end
2967 @cindex EOF, newline must precede
2968 It is an error to end any statement with end-of-file: the last
2969 character of any input file should be a newline.@refill
2970
2971 An empty statement is allowed, and may include whitespace. It is ignored.
2972
2973 @cindex instructions and directives
2974 @cindex directives and instructions
2975 @c "key symbol" is not used elsewhere in the document; seems pedantic to
2976 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
2977 @c 13feb91.
2978 A statement begins with zero or more labels, optionally followed by a
2979 key symbol which determines what kind of statement it is. The key
2980 symbol determines the syntax of the rest of the statement. If the
2981 symbol begins with a dot @samp{.} then the statement is an assembler
2982 directive: typically valid for any computer. If the symbol begins with
2983 a letter the statement is an assembly language @dfn{instruction}: it
2984 assembles into a machine language instruction.
2985 @ifset GENERIC
2986 Different versions of @command{@value{AS}} for different computers
2987 recognize different instructions. In fact, the same symbol may
2988 represent a different instruction in a different computer's assembly
2989 language.@refill
2990 @end ifset
2991
2992 @cindex @code{:} (label)
2993 @cindex label (@code{:})
2994 A label is a symbol immediately followed by a colon (@code{:}).
2995 Whitespace before a label or after a colon is permitted, but you may not
2996 have whitespace between a label's symbol and its colon. @xref{Labels}.
2997
2998 @ifset HPPA
2999 For HPPA targets, labels need not be immediately followed by a colon, but
3000 the definition of a label must begin in column zero. This also implies that
3001 only one label may be defined on each line.
3002 @end ifset
3003
3004 @smallexample
3005 label: .directive followed by something
3006 another_label: # This is an empty statement.
3007 instruction operand_1, operand_2, @dots{}
3008 @end smallexample
3009
3010 @node Constants
3011 @section Constants
3012
3013 @cindex constants
3014 A constant is a number, written so that its value is known by
3015 inspection, without knowing any context. Like this:
3016 @smallexample
3017 @group
3018 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
3019 .ascii "Ring the bell\7" # A string constant.
3020 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
3021 .float 0f-314159265358979323846264338327\
3022 95028841971.693993751E-40 # - pi, a flonum.
3023 @end group
3024 @end smallexample
3025
3026 @menu
3027 * Characters:: Character Constants
3028 * Numbers:: Number Constants
3029 @end menu
3030
3031 @node Characters
3032 @subsection Character Constants
3033
3034 @cindex character constants
3035 @cindex constants, character
3036 There are two kinds of character constants. A @dfn{character} stands
3037 for one character in one byte and its value may be used in
3038 numeric expressions. String constants (properly called string
3039 @emph{literals}) are potentially many bytes and their values may not be
3040 used in arithmetic expressions.
3041
3042 @menu
3043 * Strings:: Strings
3044 * Chars:: Characters
3045 @end menu
3046
3047 @node Strings
3048 @subsubsection Strings
3049
3050 @cindex string constants
3051 @cindex constants, string
3052 A @dfn{string} is written between double-quotes. It may contain
3053 double-quotes or null characters. The way to get special characters
3054 into a string is to @dfn{escape} these characters: precede them with
3055 a backslash @samp{\} character. For example @samp{\\} represents
3056 one backslash: the first @code{\} is an escape which tells
3057 @command{@value{AS}} to interpret the second character literally as a backslash
3058 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3059 escape character). The complete list of escapes follows.
3060
3061 @cindex escape codes, character
3062 @cindex character escape codes
3063 @c NOTE: Cindex entries must not start with a backlash character.
3064 @c NOTE: This confuses the pdf2texi script when it is creating the
3065 @c NOTE: index based upon the first character and so it generates:
3066 @c NOTE: \initial {\\}
3067 @c NOTE: which then results in the error message:
3068 @c NOTE: Argument of \\ has an extra }.
3069 @c NOTE: So in the index entries below a space character has been
3070 @c NOTE: prepended to avoid this problem.
3071 @table @kbd
3072 @c @item \a
3073 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3074 @c
3075 @cindex @code{ \b} (backspace character)
3076 @cindex backspace (@code{\b})
3077 @item \b
3078 Mnemonic for backspace; for ASCII this is octal code 010.
3079
3080 @c @item \e
3081 @c Mnemonic for EOText; for ASCII this is octal code 004.
3082 @c
3083 @cindex @code{ \f} (formfeed character)
3084 @cindex formfeed (@code{\f})
3085 @item backslash-f
3086 Mnemonic for FormFeed; for ASCII this is octal code 014.
3087
3088 @cindex @code{ \n} (newline character)
3089 @cindex newline (@code{\n})
3090 @item \n
3091 Mnemonic for newline; for ASCII this is octal code 012.
3092
3093 @c @item \p
3094 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3095 @c
3096 @cindex @code{ \r} (carriage return character)
3097 @cindex carriage return (@code{backslash-r})
3098 @item \r
3099 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3100
3101 @c @item \s
3102 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3103 @c other assemblers.
3104 @c
3105 @cindex @code{ \t} (tab)
3106 @cindex tab (@code{\t})
3107 @item \t
3108 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3109
3110 @c @item \v
3111 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3112 @c @item \x @var{digit} @var{digit} @var{digit}
3113 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3114 @c
3115 @cindex @code{ \@var{ddd}} (octal character code)
3116 @cindex octal character code (@code{\@var{ddd}})
3117 @item \ @var{digit} @var{digit} @var{digit}
3118 An octal character code. The numeric code is 3 octal digits.
3119 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3120 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3121
3122 @cindex @code{ \@var{xd...}} (hex character code)
3123 @cindex hex character code (@code{\@var{xd...}})
3124 @item \@code{x} @var{hex-digits...}
3125 A hex character code. All trailing hex digits are combined. Either upper or
3126 lower case @code{x} works.
3127
3128 @cindex @code{ \\} (@samp{\} character)
3129 @cindex backslash (@code{\\})
3130 @item \\
3131 Represents one @samp{\} character.
3132
3133 @c @item \'
3134 @c Represents one @samp{'} (accent acute) character.
3135 @c This is needed in single character literals
3136 @c (@xref{Characters,,Character Constants}.) to represent
3137 @c a @samp{'}.
3138 @c
3139 @cindex @code{ \"} (doublequote character)
3140 @cindex doublequote (@code{\"})
3141 @item \"
3142 Represents one @samp{"} character. Needed in strings to represent
3143 this character, because an unescaped @samp{"} would end the string.
3144
3145 @item \ @var{anything-else}
3146 Any other character when escaped by @kbd{\} gives a warning, but
3147 assembles as if the @samp{\} was not present. The idea is that if
3148 you used an escape sequence you clearly didn't want the literal
3149 interpretation of the following character. However @command{@value{AS}} has no
3150 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3151 code and warns you of the fact.
3152 @end table
3153
3154 Which characters are escapable, and what those escapes represent,
3155 varies widely among assemblers. The current set is what we think
3156 the BSD 4.2 assembler recognizes, and is a subset of what most C
3157 compilers recognize. If you are in doubt, do not use an escape
3158 sequence.
3159
3160 @node Chars
3161 @subsubsection Characters
3162
3163 @cindex single character constant
3164 @cindex character, single
3165 @cindex constant, single character
3166 A single character may be written as a single quote immediately followed by
3167 that character. Some backslash escapes apply to characters, @code{\b},
3168 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3169 as for strings, plus @code{\'} for a single quote. So if you want to write the
3170 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3171 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3172 accent. A newline
3173 @ifclear GENERIC
3174 @ifclear abnormal-separator
3175 (or semicolon @samp{;})
3176 @end ifclear
3177 @ifset abnormal-separator
3178 @ifset H8
3179 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3180 Renesas SH)
3181 @end ifset
3182 @end ifset
3183 @end ifclear
3184 immediately following an acute accent is taken as a literal character
3185 and does not count as the end of a statement. The value of a character
3186 constant in a numeric expression is the machine's byte-wide code for
3187 that character. @command{@value{AS}} assumes your character code is ASCII:
3188 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3189
3190 @node Numbers
3191 @subsection Number Constants
3192
3193 @cindex constants, number
3194 @cindex number constants
3195 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3196 are stored in the target machine. @emph{Integers} are numbers that
3197 would fit into an @code{int} in the C language. @emph{Bignums} are
3198 integers, but they are stored in more than 32 bits. @emph{Flonums}
3199 are floating point numbers, described below.
3200
3201 @menu
3202 * Integers:: Integers
3203 * Bignums:: Bignums
3204 * Flonums:: Flonums
3205 @ifclear GENERIC
3206 @end ifclear
3207 @end menu
3208
3209 @node Integers
3210 @subsubsection Integers
3211 @cindex integers
3212 @cindex constants, integer
3213
3214 @cindex binary integers
3215 @cindex integers, binary
3216 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3217 the binary digits @samp{01}.
3218
3219 @cindex octal integers
3220 @cindex integers, octal
3221 An octal integer is @samp{0} followed by zero or more of the octal
3222 digits (@samp{01234567}).
3223
3224 @cindex decimal integers
3225 @cindex integers, decimal
3226 A decimal integer starts with a non-zero digit followed by zero or
3227 more digits (@samp{0123456789}).
3228
3229 @cindex hexadecimal integers
3230 @cindex integers, hexadecimal
3231 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3232 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3233
3234 Integers have the usual values. To denote a negative integer, use
3235 the prefix operator @samp{-} discussed under expressions
3236 (@pxref{Prefix Ops,,Prefix Operators}).
3237
3238 @node Bignums
3239 @subsubsection Bignums
3240
3241 @cindex bignums
3242 @cindex constants, bignum
3243 A @dfn{bignum} has the same syntax and semantics as an integer
3244 except that the number (or its negative) takes more than 32 bits to
3245 represent in binary. The distinction is made because in some places
3246 integers are permitted while bignums are not.
3247
3248 @node Flonums
3249 @subsubsection Flonums
3250 @cindex flonums
3251 @cindex floating point numbers
3252 @cindex constants, floating point
3253
3254 @cindex precision, floating point
3255 A @dfn{flonum} represents a floating point number. The translation is
3256 indirect: a decimal floating point number from the text is converted by
3257 @command{@value{AS}} to a generic binary floating point number of more than
3258 sufficient precision. This generic floating point number is converted
3259 to a particular computer's floating point format (or formats) by a
3260 portion of @command{@value{AS}} specialized to that computer.
3261
3262 A flonum is written by writing (in order)
3263 @itemize @bullet
3264 @item
3265 The digit @samp{0}.
3266 @ifset HPPA
3267 (@samp{0} is optional on the HPPA.)
3268 @end ifset
3269
3270 @item
3271 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3272 @ifset GENERIC
3273 @kbd{e} is recommended. Case is not important.
3274 @ignore
3275 @c FIXME: verify if flonum syntax really this vague for most cases
3276 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3277 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3278 @end ignore
3279
3280 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3281 one of the letters @samp{DFPRSX} (in upper or lower case).
3282
3283 On the ARC, the letter must be one of the letters @samp{DFRS}
3284 (in upper or lower case).
3285
3286 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3287 @end ifset
3288 @ifclear GENERIC
3289 @ifset ARC
3290 One of the letters @samp{DFRS} (in upper or lower case).
3291 @end ifset
3292 @ifset H8
3293 One of the letters @samp{DFPRSX} (in upper or lower case).
3294 @end ifset
3295 @ifset HPPA
3296 The letter @samp{E} (upper case only).
3297 @end ifset
3298 @end ifclear
3299
3300 @item
3301 An optional sign: either @samp{+} or @samp{-}.
3302
3303 @item
3304 An optional @dfn{integer part}: zero or more decimal digits.
3305
3306 @item
3307 An optional @dfn{fractional part}: @samp{.} followed by zero
3308 or more decimal digits.
3309
3310 @item
3311 An optional exponent, consisting of:
3312
3313 @itemize @bullet
3314 @item
3315 An @samp{E} or @samp{e}.
3316 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3317 @c principle this can perfectly well be different on different targets.
3318 @item
3319 Optional sign: either @samp{+} or @samp{-}.
3320 @item
3321 One or more decimal digits.
3322 @end itemize
3323
3324 @end itemize
3325
3326 At least one of the integer part or the fractional part must be
3327 present. The floating point number has the usual base-10 value.
3328
3329 @command{@value{AS}} does all processing using integers. Flonums are computed
3330 independently of any floating point hardware in the computer running
3331 @command{@value{AS}}.
3332
3333 @node Sections
3334 @chapter Sections and Relocation
3335 @cindex sections
3336 @cindex relocation
3337
3338 @menu
3339 * Secs Background:: Background
3340 * Ld Sections:: Linker Sections
3341 * As Sections:: Assembler Internal Sections
3342 * Sub-Sections:: Sub-Sections
3343 * bss:: bss Section
3344 @end menu
3345
3346 @node Secs Background
3347 @section Background
3348
3349 Roughly, a section is a range of addresses, with no gaps; all data
3350 ``in'' those addresses is treated the same for some particular purpose.
3351 For example there may be a ``read only'' section.
3352
3353 @cindex linker, and assembler
3354 @cindex assembler, and linker
3355 The linker @code{@value{LD}} reads many object files (partial programs) and
3356 combines their contents to form a runnable program. When @command{@value{AS}}
3357 emits an object file, the partial program is assumed to start at address 0.
3358 @code{@value{LD}} assigns the final addresses for the partial program, so that
3359 different partial programs do not overlap. This is actually an
3360 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3361 sections.
3362
3363 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3364 addresses. These blocks slide to their run-time addresses as rigid
3365 units; their length does not change and neither does the order of bytes
3366 within them. Such a rigid unit is called a @emph{section}. Assigning
3367 run-time addresses to sections is called @dfn{relocation}. It includes
3368 the task of adjusting mentions of object-file addresses so they refer to
3369 the proper run-time addresses.
3370 @ifset H8
3371 For the H8/300, and for the Renesas / SuperH SH,
3372 @command{@value{AS}} pads sections if needed to
3373 ensure they end on a word (sixteen bit) boundary.
3374 @end ifset
3375
3376 @cindex standard assembler sections
3377 An object file written by @command{@value{AS}} has at least three sections, any
3378 of which may be empty. These are named @dfn{text}, @dfn{data} and
3379 @dfn{bss} sections.
3380
3381 @ifset COFF-ELF
3382 @ifset GENERIC
3383 When it generates COFF or ELF output,
3384 @end ifset
3385 @command{@value{AS}} can also generate whatever other named sections you specify
3386 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3387 If you do not use any directives that place output in the @samp{.text}
3388 or @samp{.data} sections, these sections still exist, but are empty.
3389 @end ifset
3390
3391 @ifset HPPA
3392 @ifset GENERIC
3393 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3394 @end ifset
3395 @command{@value{AS}} can also generate whatever other named sections you
3396 specify using the @samp{.space} and @samp{.subspace} directives. See
3397 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3398 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3399 assembler directives.
3400
3401 @ifset SOM
3402 Additionally, @command{@value{AS}} uses different names for the standard
3403 text, data, and bss sections when generating SOM output. Program text
3404 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3405 BSS into @samp{$BSS$}.
3406 @end ifset
3407 @end ifset
3408
3409 Within the object file, the text section starts at address @code{0}, the
3410 data section follows, and the bss section follows the data section.
3411
3412 @ifset HPPA
3413 When generating either SOM or ELF output files on the HPPA, the text
3414 section starts at address @code{0}, the data section at address
3415 @code{0x4000000}, and the bss section follows the data section.
3416 @end ifset
3417
3418 To let @code{@value{LD}} know which data changes when the sections are
3419 relocated, and how to change that data, @command{@value{AS}} also writes to the
3420 object file details of the relocation needed. To perform relocation
3421 @code{@value{LD}} must know, each time an address in the object
3422 file is mentioned:
3423 @itemize @bullet
3424 @item
3425 Where in the object file is the beginning of this reference to
3426 an address?
3427 @item
3428 How long (in bytes) is this reference?
3429 @item
3430 Which section does the address refer to? What is the numeric value of
3431 @display
3432 (@var{address}) @minus{} (@var{start-address of section})?
3433 @end display
3434 @item
3435 Is the reference to an address ``Program-Counter relative''?
3436 @end itemize
3437
3438 @cindex addresses, format of
3439 @cindex section-relative addressing
3440 In fact, every address @command{@value{AS}} ever uses is expressed as
3441 @display
3442 (@var{section}) + (@var{offset into section})
3443 @end display
3444 @noindent
3445 Further, most expressions @command{@value{AS}} computes have this section-relative
3446 nature.
3447 @ifset SOM
3448 (For some object formats, such as SOM for the HPPA, some expressions are
3449 symbol-relative instead.)
3450 @end ifset
3451
3452 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3453 @var{N} into section @var{secname}.''
3454
3455 Apart from text, data and bss sections you need to know about the
3456 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3457 addresses in the absolute section remain unchanged. For example, address
3458 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3459 @code{@value{LD}}. Although the linker never arranges two partial programs'
3460 data sections with overlapping addresses after linking, @emph{by definition}
3461 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3462 part of a program is always the same address when the program is running as
3463 address @code{@{absolute@ 239@}} in any other part of the program.
3464
3465 The idea of sections is extended to the @dfn{undefined} section. Any
3466 address whose section is unknown at assembly time is by definition
3467 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3468 Since numbers are always defined, the only way to generate an undefined
3469 address is to mention an undefined symbol. A reference to a named
3470 common block would be such a symbol: its value is unknown at assembly
3471 time so it has section @emph{undefined}.
3472
3473 By analogy the word @emph{section} is used to describe groups of sections in
3474 the linked program. @code{@value{LD}} puts all partial programs' text
3475 sections in contiguous addresses in the linked program. It is
3476 customary to refer to the @emph{text section} of a program, meaning all
3477 the addresses of all partial programs' text sections. Likewise for
3478 data and bss sections.
3479
3480 Some sections are manipulated by @code{@value{LD}}; others are invented for
3481 use of @command{@value{AS}} and have no meaning except during assembly.
3482
3483 @node Ld Sections
3484 @section Linker Sections
3485 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3486
3487 @table @strong
3488
3489 @ifset COFF-ELF
3490 @cindex named sections
3491 @cindex sections, named
3492 @item named sections
3493 @end ifset
3494 @ifset aout
3495 @cindex text section
3496 @cindex data section
3497 @itemx text section
3498 @itemx data section
3499 @end ifset
3500 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3501 separate but equal sections. Anything you can say of one section is
3502 true of another.
3503 @c @ifset aout
3504 When the program is running, however, it is
3505 customary for the text section to be unalterable. The
3506 text section is often shared among processes: it contains
3507 instructions, constants and the like. The data section of a running
3508 program is usually alterable: for example, C variables would be stored
3509 in the data section.
3510 @c @end ifset
3511
3512 @cindex bss section
3513 @item bss section
3514 This section contains zeroed bytes when your program begins running. It
3515 is used to hold uninitialized variables or common storage. The length of
3516 each partial program's bss section is important, but because it starts
3517 out containing zeroed bytes there is no need to store explicit zero
3518 bytes in the object file. The bss section was invented to eliminate
3519 those explicit zeros from object files.
3520
3521 @cindex absolute section
3522 @item absolute section
3523 Address 0 of this section is always ``relocated'' to runtime address 0.
3524 This is useful if you want to refer to an address that @code{@value{LD}} must
3525 not change when relocating. In this sense we speak of absolute
3526 addresses being ``unrelocatable'': they do not change during relocation.
3527
3528 @cindex undefined section
3529 @item undefined section
3530 This ``section'' is a catch-all for address references to objects not in
3531 the preceding sections.
3532 @c FIXME: ref to some other doc on obj-file formats could go here.
3533 @end table
3534
3535 @cindex relocation example
3536 An idealized example of three relocatable sections follows.
3537 @ifset COFF-ELF
3538 The example uses the traditional section names @samp{.text} and @samp{.data}.
3539 @end ifset
3540 Memory addresses are on the horizontal axis.
3541
3542 @c TEXI2ROFF-KILL
3543 @ifnottex
3544 @c END TEXI2ROFF-KILL
3545 @smallexample
3546 +-----+----+--+
3547 partial program # 1: |ttttt|dddd|00|
3548 +-----+----+--+
3549
3550 text data bss
3551 seg. seg. seg.
3552
3553 +---+---+---+
3554 partial program # 2: |TTT|DDD|000|
3555 +---+---+---+
3556
3557 +--+---+-----+--+----+---+-----+~~
3558 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3559 +--+---+-----+--+----+---+-----+~~
3560
3561 addresses: 0 @dots{}
3562 @end smallexample
3563 @c TEXI2ROFF-KILL
3564 @end ifnottex
3565 @need 5000
3566 @tex
3567 \bigskip
3568 \line{\it Partial program \#1: \hfil}
3569 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3570 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3571
3572 \line{\it Partial program \#2: \hfil}
3573 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3574 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3575
3576 \line{\it linked program: \hfil}
3577 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3578 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3579 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3580 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3581
3582 \line{\it addresses: \hfil}
3583 \line{0\dots\hfil}
3584
3585 @end tex
3586 @c END TEXI2ROFF-KILL
3587
3588 @node As Sections
3589 @section Assembler Internal Sections
3590
3591 @cindex internal assembler sections
3592 @cindex sections in messages, internal
3593 These sections are meant only for the internal use of @command{@value{AS}}. They
3594 have no meaning at run-time. You do not really need to know about these
3595 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3596 warning messages, so it might be helpful to have an idea of their
3597 meanings to @command{@value{AS}}. These sections are used to permit the
3598 value of every expression in your assembly language program to be a
3599 section-relative address.
3600
3601 @table @b
3602 @cindex assembler internal logic error
3603 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3604 An internal assembler logic error has been found. This means there is a
3605 bug in the assembler.
3606
3607 @cindex expr (internal section)
3608 @item expr section
3609 The assembler stores complex expression internally as combinations of
3610 symbols. When it needs to represent an expression as a symbol, it puts
3611 it in the expr section.
3612 @c FIXME item debug
3613 @c FIXME item transfer[t] vector preload
3614 @c FIXME item transfer[t] vector postload
3615 @c FIXME item register
3616 @end table
3617
3618 @node Sub-Sections
3619 @section Sub-Sections
3620
3621 @cindex numbered subsections
3622 @cindex grouping data
3623 @ifset aout
3624 Assembled bytes
3625 @ifset COFF-ELF
3626 conventionally
3627 @end ifset
3628 fall into two sections: text and data.
3629 @end ifset
3630 You may have separate groups of
3631 @ifset GENERIC
3632 data in named sections
3633 @end ifset
3634 @ifclear GENERIC
3635 @ifclear aout
3636 data in named sections
3637 @end ifclear
3638 @ifset aout
3639 text or data
3640 @end ifset
3641 @end ifclear
3642 that you want to end up near to each other in the object file, even though they
3643 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3644 use @dfn{subsections} for this purpose. Within each section, there can be
3645 numbered subsections with values from 0 to 8192. Objects assembled into the
3646 same subsection go into the object file together with other objects in the same
3647 subsection. For example, a compiler might want to store constants in the text
3648 section, but might not want to have them interspersed with the program being
3649 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3650 section of code being output, and a @samp{.text 1} before each group of
3651 constants being output.
3652
3653 Subsections are optional. If you do not use subsections, everything
3654 goes in subsection number zero.
3655
3656 @ifset GENERIC
3657 Each subsection is zero-padded up to a multiple of four bytes.
3658 (Subsections may be padded a different amount on different flavors
3659 of @command{@value{AS}}.)
3660 @end ifset
3661 @ifclear GENERIC
3662 @ifset H8
3663 On the H8/300 platform, each subsection is zero-padded to a word
3664 boundary (two bytes).
3665 The same is true on the Renesas SH.
3666 @end ifset
3667 @end ifclear
3668
3669 Subsections appear in your object file in numeric order, lowest numbered
3670 to highest. (All this to be compatible with other people's assemblers.)
3671 The object file contains no representation of subsections; @code{@value{LD}} and
3672 other programs that manipulate object files see no trace of them.
3673 They just see all your text subsections as a text section, and all your
3674 data subsections as a data section.
3675
3676 To specify which subsection you want subsequent statements assembled
3677 into, use a numeric argument to specify it, in a @samp{.text
3678 @var{expression}} or a @samp{.data @var{expression}} statement.
3679 @ifset COFF
3680 @ifset GENERIC
3681 When generating COFF output, you
3682 @end ifset
3683 @ifclear GENERIC
3684 You
3685 @end ifclear
3686 can also use an extra subsection
3687 argument with arbitrary named sections: @samp{.section @var{name},
3688 @var{expression}}.
3689 @end ifset
3690 @ifset ELF
3691 @ifset GENERIC
3692 When generating ELF output, you
3693 @end ifset
3694 @ifclear GENERIC
3695 You
3696 @end ifclear
3697 can also use the @code{.subsection} directive (@pxref{SubSection})
3698 to specify a subsection: @samp{.subsection @var{expression}}.
3699 @end ifset
3700 @var{Expression} should be an absolute expression
3701 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3702 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3703 begins in @code{text 0}. For instance:
3704 @smallexample
3705 .text 0 # The default subsection is text 0 anyway.
3706 .ascii "This lives in the first text subsection. *"
3707 .text 1
3708 .ascii "But this lives in the second text subsection."
3709 .data 0
3710 .ascii "This lives in the data section,"
3711 .ascii "in the first data subsection."
3712 .text 0
3713 .ascii "This lives in the first text section,"
3714 .ascii "immediately following the asterisk (*)."
3715 @end smallexample
3716
3717 Each section has a @dfn{location counter} incremented by one for every byte
3718 assembled into that section. Because subsections are merely a convenience
3719 restricted to @command{@value{AS}} there is no concept of a subsection location
3720 counter. There is no way to directly manipulate a location counter---but the
3721 @code{.align} directive changes it, and any label definition captures its
3722 current value. The location counter of the section where statements are being
3723 assembled is said to be the @dfn{active} location counter.
3724
3725 @node bss
3726 @section bss Section
3727
3728 @cindex bss section
3729 @cindex common variable storage
3730 The bss section is used for local common variable storage.
3731 You may allocate address space in the bss section, but you may
3732 not dictate data to load into it before your program executes. When
3733 your program starts running, all the contents of the bss
3734 section are zeroed bytes.
3735
3736 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3737 @ref{Lcomm,,@code{.lcomm}}.
3738
3739 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3740 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3741
3742 @ifset GENERIC
3743 When assembling for a target which supports multiple sections, such as ELF or
3744 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3745 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3746 section. Typically the section will only contain symbol definitions and
3747 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3748 @end ifset
3749
3750 @node Symbols
3751 @chapter Symbols
3752
3753 @cindex symbols
3754 Symbols are a central concept: the programmer uses symbols to name
3755 things, the linker uses symbols to link, and the debugger uses symbols
3756 to debug.
3757
3758 @quotation
3759 @cindex debuggers, and symbol order
3760 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3761 the same order they were declared. This may break some debuggers.
3762 @end quotation
3763
3764 @menu
3765 * Labels:: Labels
3766 * Setting Symbols:: Giving Symbols Other Values
3767 * Symbol Names:: Symbol Names
3768 * Dot:: The Special Dot Symbol
3769 * Symbol Attributes:: Symbol Attributes
3770 @end menu
3771
3772 @node Labels
3773 @section Labels
3774
3775 @cindex labels
3776 A @dfn{label} is written as a symbol immediately followed by a colon
3777 @samp{:}. The symbol then represents the current value of the
3778 active location counter, and is, for example, a suitable instruction
3779 operand. You are warned if you use the same symbol to represent two
3780 different locations: the first definition overrides any other
3781 definitions.
3782
3783 @ifset HPPA
3784 On the HPPA, the usual form for a label need not be immediately followed by a
3785 colon, but instead must start in column zero. Only one label may be defined on
3786 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3787 provides a special directive @code{.label} for defining labels more flexibly.
3788 @end ifset
3789
3790 @node Setting Symbols
3791 @section Giving Symbols Other Values
3792
3793 @cindex assigning values to symbols
3794 @cindex symbol values, assigning
3795 A symbol can be given an arbitrary value by writing a symbol, followed
3796 by an equals sign @samp{=}, followed by an expression
3797 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3798 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3799 equals sign @samp{=}@samp{=} here represents an equivalent of the
3800 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3801
3802 @ifset Blackfin
3803 Blackfin does not support symbol assignment with @samp{=}.
3804 @end ifset
3805
3806 @node Symbol Names
3807 @section Symbol Names
3808
3809 @cindex symbol names
3810 @cindex names, symbol
3811 @ifclear SPECIAL-SYMS
3812 Symbol names begin with a letter or with one of @samp{._}. On most
3813 machines, you can also use @code{$} in symbol names; exceptions are
3814 noted in @ref{Machine Dependencies}. That character may be followed by any
3815 string of digits, letters, dollar signs (unless otherwise noted for a
3816 particular target machine), and underscores.
3817 @end ifclear
3818 @ifset SPECIAL-SYMS
3819 @ifset H8
3820 Symbol names begin with a letter or with one of @samp{._}. On the
3821 Renesas SH you can also use @code{$} in symbol names. That
3822 character may be followed by any string of digits, letters, dollar signs (save
3823 on the H8/300), and underscores.
3824 @end ifset
3825 @end ifset
3826
3827 Case of letters is significant: @code{foo} is a different symbol name
3828 than @code{Foo}.
3829
3830 Symbol names do not start with a digit. An exception to this rule is made for
3831 Local Labels. See below.
3832
3833 Multibyte characters are supported. To generate a symbol name containing
3834 multibyte characters enclose it within double quotes and use escape codes. cf
3835 @xref{Strings}. Generating a multibyte symbol name from a label is not
3836 currently supported.
3837
3838 Each symbol has exactly one name. Each name in an assembly language program
3839 refers to exactly one symbol. You may use that symbol name any number of times
3840 in a program.
3841
3842 @subheading Local Symbol Names
3843
3844 @cindex local symbol names
3845 @cindex symbol names, local
3846 A local symbol is any symbol beginning with certain local label prefixes.
3847 By default, the local label prefix is @samp{.L} for ELF systems or
3848 @samp{L} for traditional a.out systems, but each target may have its own
3849 set of local label prefixes.
3850 @ifset HPPA
3851 On the HPPA local symbols begin with @samp{L$}.
3852 @end ifset
3853
3854 Local symbols are defined and used within the assembler, but they are
3855 normally not saved in object files. Thus, they are not visible when debugging.
3856 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3857 to retain the local symbols in the object files.
3858
3859 @subheading Local Labels
3860
3861 @cindex local labels
3862 @cindex temporary symbol names
3863 @cindex symbol names, temporary
3864 Local labels are different from local symbols. Local labels help compilers and
3865 programmers use names temporarily. They create symbols which are guaranteed to
3866 be unique over the entire scope of the input source code and which can be
3867 referred to by a simple notation. To define a local label, write a label of
3868 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3869 To refer to the most recent previous definition of that label write
3870 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3871 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3872 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3873
3874 There is no restriction on how you can use these labels, and you can reuse them
3875 too. So that it is possible to repeatedly define the same local label (using
3876 the same number @samp{@b{N}}), although you can only refer to the most recently
3877 defined local label of that number (for a backwards reference) or the next
3878 definition of a specific local label for a forward reference. It is also worth
3879 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3880 implemented in a slightly more efficient manner than the others.
3881
3882 Here is an example:
3883
3884 @smallexample
3885 1: branch 1f
3886 2: branch 1b
3887 1: branch 2f
3888 2: branch 1b
3889 @end smallexample
3890
3891 Which is the equivalent of:
3892
3893 @smallexample
3894 label_1: branch label_3
3895 label_2: branch label_1
3896 label_3: branch label_4
3897 label_4: branch label_3
3898 @end smallexample
3899
3900 Local label names are only a notational device. They are immediately
3901 transformed into more conventional symbol names before the assembler uses them.
3902 The symbol names are stored in the symbol table, appear in error messages, and
3903 are optionally emitted to the object file. The names are constructed using
3904 these parts:
3905
3906 @table @code
3907 @item @emph{local label prefix}
3908 All local symbols begin with the system-specific local label prefix.
3909 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3910 that start with the local label prefix. These labels are
3911 used for symbols you are never intended to see. If you use the
3912 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3913 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3914 you may use them in debugging.
3915
3916 @item @var{number}
3917 This is the number that was used in the local label definition. So if the
3918 label is written @samp{55:} then the number is @samp{55}.
3919
3920 @item @kbd{C-B}
3921 This unusual character is included so you do not accidentally invent a symbol
3922 of the same name. The character has ASCII value of @samp{\002} (control-B).
3923
3924 @item @emph{ordinal number}
3925 This is a serial number to keep the labels distinct. The first definition of
3926 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3927 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3928 the number @samp{1} and its 15th definition gets @samp{15} as well.
3929 @end table
3930
3931 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3932 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3933
3934 @subheading Dollar Local Labels
3935 @cindex dollar local symbols
3936
3937 On some targets @code{@value{AS}} also supports an even more local form of
3938 local labels called dollar labels. These labels go out of scope (i.e., they
3939 become undefined) as soon as a non-local label is defined. Thus they remain
3940 valid for only a small region of the input source code. Normal local labels,
3941 by contrast, remain in scope for the entire file, or until they are redefined
3942 by another occurrence of the same local label.
3943
3944 Dollar labels are defined in exactly the same way as ordinary local labels,
3945 except that they have a dollar sign suffix to their numeric value, e.g.,
3946 @samp{@b{55$:}}.
3947
3948 They can also be distinguished from ordinary local labels by their transformed
3949 names which use ASCII character @samp{\001} (control-A) as the magic character
3950 to distinguish them from ordinary labels. For example, the fifth definition of
3951 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
3952
3953 @node Dot
3954 @section The Special Dot Symbol
3955
3956 @cindex dot (symbol)
3957 @cindex @code{.} (symbol)
3958 @cindex current address
3959 @cindex location counter
3960 The special symbol @samp{.} refers to the current address that
3961 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
3962 .long .} defines @code{melvin} to contain its own address.
3963 Assigning a value to @code{.} is treated the same as a @code{.org}
3964 directive.
3965 @ifclear no-space-dir
3966 Thus, the expression @samp{.=.+4} is the same as saying
3967 @samp{.space 4}.
3968 @end ifclear
3969
3970 @node Symbol Attributes
3971 @section Symbol Attributes
3972
3973 @cindex symbol attributes
3974 @cindex attributes, symbol
3975 Every symbol has, as well as its name, the attributes ``Value'' and
3976 ``Type''. Depending on output format, symbols can also have auxiliary
3977 attributes.
3978 @ifset INTERNALS
3979 The detailed definitions are in @file{a.out.h}.
3980 @end ifset
3981
3982 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
3983 all these attributes, and probably won't warn you. This makes the
3984 symbol an externally defined symbol, which is generally what you
3985 would want.
3986
3987 @menu
3988 * Symbol Value:: Value
3989 * Symbol Type:: Type
3990 @ifset aout
3991 * a.out Symbols:: Symbol Attributes: @code{a.out}
3992 @end ifset
3993 @ifset COFF
3994 * COFF Symbols:: Symbol Attributes for COFF
3995 @end ifset
3996 @ifset SOM
3997 * SOM Symbols:: Symbol Attributes for SOM
3998 @end ifset
3999 @end menu
4000
4001 @node Symbol Value
4002 @subsection Value
4003
4004 @cindex value of a symbol
4005 @cindex symbol value
4006 The value of a symbol is (usually) 32 bits. For a symbol which labels a
4007 location in the text, data, bss or absolute sections the value is the
4008 number of addresses from the start of that section to the label.
4009 Naturally for text, data and bss sections the value of a symbol changes
4010 as @code{@value{LD}} changes section base addresses during linking. Absolute
4011 symbols' values do not change during linking: that is why they are
4012 called absolute.
4013
4014 The value of an undefined symbol is treated in a special way. If it is
4015 0 then the symbol is not defined in this assembler source file, and
4016 @code{@value{LD}} tries to determine its value from other files linked into the
4017 same program. You make this kind of symbol simply by mentioning a symbol
4018 name without defining it. A non-zero value represents a @code{.comm}
4019 common declaration. The value is how much common storage to reserve, in
4020 bytes (addresses). The symbol refers to the first address of the
4021 allocated storage.
4022
4023 @node Symbol Type
4024 @subsection Type
4025
4026 @cindex type of a symbol
4027 @cindex symbol type
4028 The type attribute of a symbol contains relocation (section)
4029 information, any flag settings indicating that a symbol is external, and
4030 (optionally), other information for linkers and debuggers. The exact
4031 format depends on the object-code output format in use.
4032
4033 @ifset aout
4034 @node a.out Symbols
4035 @subsection Symbol Attributes: @code{a.out}
4036
4037 @cindex @code{a.out} symbol attributes
4038 @cindex symbol attributes, @code{a.out}
4039
4040 @menu
4041 * Symbol Desc:: Descriptor
4042 * Symbol Other:: Other
4043 @end menu
4044
4045 @node Symbol Desc
4046 @subsubsection Descriptor
4047
4048 @cindex descriptor, of @code{a.out} symbol
4049 This is an arbitrary 16-bit value. You may establish a symbol's
4050 descriptor value by using a @code{.desc} statement
4051 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4052 @command{@value{AS}}.
4053
4054 @node Symbol Other
4055 @subsubsection Other
4056
4057 @cindex other attribute, of @code{a.out} symbol
4058 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4059 @end ifset
4060
4061 @ifset COFF
4062 @node COFF Symbols
4063 @subsection Symbol Attributes for COFF
4064
4065 @cindex COFF symbol attributes
4066 @cindex symbol attributes, COFF
4067
4068 The COFF format supports a multitude of auxiliary symbol attributes;
4069 like the primary symbol attributes, they are set between @code{.def} and
4070 @code{.endef} directives.
4071
4072 @subsubsection Primary Attributes
4073
4074 @cindex primary attributes, COFF symbols
4075 The symbol name is set with @code{.def}; the value and type,
4076 respectively, with @code{.val} and @code{.type}.
4077
4078 @subsubsection Auxiliary Attributes
4079
4080 @cindex auxiliary attributes, COFF symbols
4081 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4082 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4083 table information for COFF.
4084 @end ifset
4085
4086 @ifset SOM
4087 @node SOM Symbols
4088 @subsection Symbol Attributes for SOM
4089
4090 @cindex SOM symbol attributes
4091 @cindex symbol attributes, SOM
4092
4093 The SOM format for the HPPA supports a multitude of symbol attributes set with
4094 the @code{.EXPORT} and @code{.IMPORT} directives.
4095
4096 The attributes are described in @cite{HP9000 Series 800 Assembly
4097 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4098 @code{EXPORT} assembler directive documentation.
4099 @end ifset
4100
4101 @node Expressions
4102 @chapter Expressions
4103
4104 @cindex expressions
4105 @cindex addresses
4106 @cindex numeric values
4107 An @dfn{expression} specifies an address or numeric value.
4108 Whitespace may precede and/or follow an expression.
4109
4110 The result of an expression must be an absolute number, or else an offset into
4111 a particular section. If an expression is not absolute, and there is not
4112 enough information when @command{@value{AS}} sees the expression to know its
4113 section, a second pass over the source program might be necessary to interpret
4114 the expression---but the second pass is currently not implemented.
4115 @command{@value{AS}} aborts with an error message in this situation.
4116
4117 @menu
4118 * Empty Exprs:: Empty Expressions
4119 * Integer Exprs:: Integer Expressions
4120 @end menu
4121
4122 @node Empty Exprs
4123 @section Empty Expressions
4124
4125 @cindex empty expressions
4126 @cindex expressions, empty
4127 An empty expression has no value: it is just whitespace or null.
4128 Wherever an absolute expression is required, you may omit the
4129 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4130 is compatible with other assemblers.
4131
4132 @node Integer Exprs
4133 @section Integer Expressions
4134
4135 @cindex integer expressions
4136 @cindex expressions, integer
4137 An @dfn{integer expression} is one or more @emph{arguments} delimited
4138 by @emph{operators}.
4139
4140 @menu
4141 * Arguments:: Arguments
4142 * Operators:: Operators
4143 * Prefix Ops:: Prefix Operators
4144 * Infix Ops:: Infix Operators
4145 @end menu
4146
4147 @node Arguments
4148 @subsection Arguments
4149
4150 @cindex expression arguments
4151 @cindex arguments in expressions
4152 @cindex operands in expressions
4153 @cindex arithmetic operands
4154 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4155 contexts arguments are sometimes called ``arithmetic operands''. In
4156 this manual, to avoid confusing them with the ``instruction operands'' of
4157 the machine language, we use the term ``argument'' to refer to parts of
4158 expressions only, reserving the word ``operand'' to refer only to machine
4159 instruction operands.
4160
4161 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4162 @var{section} is one of text, data, bss, absolute,
4163 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4164 integer.
4165
4166 Numbers are usually integers.
4167
4168 A number can be a flonum or bignum. In this case, you are warned
4169 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4170 these 32 bits are an integer. You may write integer-manipulating
4171 instructions that act on exotic constants, compatible with other
4172 assemblers.
4173
4174 @cindex subexpressions
4175 Subexpressions are a left parenthesis @samp{(} followed by an integer
4176 expression, followed by a right parenthesis @samp{)}; or a prefix
4177 operator followed by an argument.
4178
4179 @node Operators
4180 @subsection Operators
4181
4182 @cindex operators, in expressions
4183 @cindex arithmetic functions
4184 @cindex functions, in expressions
4185 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4186 operators are followed by an argument. Infix operators appear
4187 between their arguments. Operators may be preceded and/or followed by
4188 whitespace.
4189
4190 @node Prefix Ops
4191 @subsection Prefix Operator
4192
4193 @cindex prefix operators
4194 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4195 one argument, which must be absolute.
4196
4197 @c the tex/end tex stuff surrounding this small table is meant to make
4198 @c it align, on the printed page, with the similar table in the next
4199 @c section (which is inside an enumerate).
4200 @tex
4201 \global\advance\leftskip by \itemindent
4202 @end tex
4203
4204 @table @code
4205 @item -
4206 @dfn{Negation}. Two's complement negation.
4207 @item ~
4208 @dfn{Complementation}. Bitwise not.
4209 @end table
4210
4211 @tex
4212 \global\advance\leftskip by -\itemindent
4213 @end tex
4214
4215 @node Infix Ops
4216 @subsection Infix Operators
4217
4218 @cindex infix operators
4219 @cindex operators, permitted arguments
4220 @dfn{Infix operators} take two arguments, one on either side. Operators
4221 have precedence, but operations with equal precedence are performed left
4222 to right. Apart from @code{+} or @option{-}, both arguments must be
4223 absolute, and the result is absolute.
4224
4225 @enumerate
4226 @cindex operator precedence
4227 @cindex precedence of operators
4228
4229 @item
4230 Highest Precedence
4231
4232 @table @code
4233 @item *
4234 @dfn{Multiplication}.
4235
4236 @item /
4237 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4238
4239 @item %
4240 @dfn{Remainder}.
4241
4242 @item <<
4243 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4244
4245 @item >>
4246 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4247 @end table
4248
4249 @item
4250 Intermediate precedence
4251
4252 @table @code
4253 @item |
4254
4255 @dfn{Bitwise Inclusive Or}.
4256
4257 @item &
4258 @dfn{Bitwise And}.
4259
4260 @item ^
4261 @dfn{Bitwise Exclusive Or}.
4262
4263 @item !
4264 @dfn{Bitwise Or Not}.
4265 @end table
4266
4267 @item
4268 Low Precedence
4269
4270 @table @code
4271 @cindex addition, permitted arguments
4272 @cindex plus, permitted arguments
4273 @cindex arguments for addition
4274 @item +
4275 @dfn{Addition}. If either argument is absolute, the result has the section of
4276 the other argument. You may not add together arguments from different
4277 sections.
4278
4279 @cindex subtraction, permitted arguments
4280 @cindex minus, permitted arguments
4281 @cindex arguments for subtraction
4282 @item -
4283 @dfn{Subtraction}. If the right argument is absolute, the
4284 result has the section of the left argument.
4285 If both arguments are in the same section, the result is absolute.
4286 You may not subtract arguments from different sections.
4287 @c FIXME is there still something useful to say about undefined - undefined ?
4288
4289 @cindex comparison expressions
4290 @cindex expressions, comparison
4291 @item ==
4292 @dfn{Is Equal To}
4293 @item <>
4294 @itemx !=
4295 @dfn{Is Not Equal To}
4296 @item <
4297 @dfn{Is Less Than}
4298 @item >
4299 @dfn{Is Greater Than}
4300 @item >=
4301 @dfn{Is Greater Than Or Equal To}
4302 @item <=
4303 @dfn{Is Less Than Or Equal To}
4304
4305 The comparison operators can be used as infix operators. A true results has a
4306 value of -1 whereas a false result has a value of 0. Note, these operators
4307 perform signed comparisons.
4308 @end table
4309
4310 @item Lowest Precedence
4311
4312 @table @code
4313 @item &&
4314 @dfn{Logical And}.
4315
4316 @item ||
4317 @dfn{Logical Or}.
4318
4319 These two logical operations can be used to combine the results of sub
4320 expressions. Note, unlike the comparison operators a true result returns a
4321 value of 1 but a false results does still return 0. Also note that the logical
4322 or operator has a slightly lower precedence than logical and.
4323
4324 @end table
4325 @end enumerate
4326
4327 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4328 address; you can only have a defined section in one of the two arguments.
4329
4330 @node Pseudo Ops
4331 @chapter Assembler Directives
4332
4333 @cindex directives, machine independent
4334 @cindex pseudo-ops, machine independent
4335 @cindex machine independent directives
4336 All assembler directives have names that begin with a period (@samp{.}).
4337 The names are case insensitive for most targets, and usually written
4338 in lower case.
4339
4340 This chapter discusses directives that are available regardless of the
4341 target machine configuration for the @sc{gnu} assembler.
4342 @ifset GENERIC
4343 Some machine configurations provide additional directives.
4344 @xref{Machine Dependencies}.
4345 @end ifset
4346 @ifclear GENERIC
4347 @ifset machine-directives
4348 @xref{Machine Dependencies}, for additional directives.
4349 @end ifset
4350 @end ifclear
4351
4352 @menu
4353 * Abort:: @code{.abort}
4354 @ifset COFF
4355 * ABORT (COFF):: @code{.ABORT}
4356 @end ifset
4357
4358 * Align:: @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4359 * Altmacro:: @code{.altmacro}
4360 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4361 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4362 * Balign:: @code{.balign [@var{abs-expr}[, @var{abs-expr}]]}
4363 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4364 * Byte:: @code{.byte @var{expressions}}
4365 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4366 * Comm:: @code{.comm @var{symbol} , @var{length} }
4367 * Data:: @code{.data @var{subsection}}
4368 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4369 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4370 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4371 @ifset COFF
4372 * Def:: @code{.def @var{name}}
4373 @end ifset
4374 @ifset aout
4375 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4376 @end ifset
4377 @ifset COFF
4378 * Dim:: @code{.dim}
4379 @end ifset
4380
4381 * Double:: @code{.double @var{flonums}}
4382 * Eject:: @code{.eject}
4383 * Else:: @code{.else}
4384 * Elseif:: @code{.elseif}
4385 * End:: @code{.end}
4386 @ifset COFF
4387 * Endef:: @code{.endef}
4388 @end ifset
4389
4390 * Endfunc:: @code{.endfunc}
4391 * Endif:: @code{.endif}
4392 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4393 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4394 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4395 * Err:: @code{.err}
4396 * Error:: @code{.error @var{string}}
4397 * Exitm:: @code{.exitm}
4398 * Extern:: @code{.extern}
4399 * Fail:: @code{.fail}
4400 * File:: @code{.file}
4401 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4402 * Float:: @code{.float @var{flonums}}
4403 * Func:: @code{.func}
4404 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4405 @ifset ELF
4406 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4407 * Hidden:: @code{.hidden @var{names}}
4408 @end ifset
4409
4410 * hword:: @code{.hword @var{expressions}}
4411 * Ident:: @code{.ident}
4412 * If:: @code{.if @var{absolute expression}}
4413 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4414 * Include:: @code{.include "@var{file}"}
4415 * Int:: @code{.int @var{expressions}}
4416 @ifset ELF
4417 * Internal:: @code{.internal @var{names}}
4418 @end ifset
4419
4420 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4421 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4422 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4423 * Lflags:: @code{.lflags}
4424 @ifclear no-line-dir
4425 * Line:: @code{.line @var{line-number}}
4426 @end ifclear
4427
4428 * Linkonce:: @code{.linkonce [@var{type}]}
4429 * List:: @code{.list}
4430 * Ln:: @code{.ln @var{line-number}}
4431 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4432 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4433 @ifset ELF
4434 * Local:: @code{.local @var{names}}
4435 @end ifset
4436
4437 * Long:: @code{.long @var{expressions}}
4438 @ignore
4439 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4440 @end ignore
4441
4442 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4443 * MRI:: @code{.mri @var{val}}
4444 * Noaltmacro:: @code{.noaltmacro}
4445 * Nolist:: @code{.nolist}
4446 * Nops:: @code{.nops @var{size}[, @var{control}]}
4447 * Octa:: @code{.octa @var{bignums}}
4448 * Offset:: @code{.offset @var{loc}}
4449 * Org:: @code{.org @var{new-lc}, @var{fill}}
4450 * P2align:: @code{.p2align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4451 @ifset ELF
4452 * PopSection:: @code{.popsection}
4453 * Previous:: @code{.previous}
4454 @end ifset
4455
4456 * Print:: @code{.print @var{string}}
4457 @ifset ELF
4458 * Protected:: @code{.protected @var{names}}
4459 @end ifset
4460
4461 * Psize:: @code{.psize @var{lines}, @var{columns}}
4462 * Purgem:: @code{.purgem @var{name}}
4463 @ifset ELF
4464 * PushSection:: @code{.pushsection @var{name}}
4465 @end ifset
4466
4467 * Quad:: @code{.quad @var{bignums}}
4468 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4469 * Rept:: @code{.rept @var{count}}
4470 * Sbttl:: @code{.sbttl "@var{subheading}"}
4471 @ifset COFF
4472 * Scl:: @code{.scl @var{class}}
4473 @end ifset
4474 @ifset COFF-ELF
4475 * Section:: @code{.section @var{name}[, @var{flags}]}
4476 @end ifset
4477
4478 * Set:: @code{.set @var{symbol}, @var{expression}}
4479 * Short:: @code{.short @var{expressions}}
4480 * Single:: @code{.single @var{flonums}}
4481 @ifset COFF-ELF
4482 * Size:: @code{.size [@var{name} , @var{expression}]}
4483 @end ifset
4484 @ifclear no-space-dir
4485 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4486 @end ifclear
4487
4488 * Sleb128:: @code{.sleb128 @var{expressions}}
4489 @ifclear no-space-dir
4490 * Space:: @code{.space @var{size} [,@var{fill}]}
4491 @end ifclear
4492 @ifset have-stabs
4493 * Stab:: @code{.stabd, .stabn, .stabs}
4494 @end ifset
4495
4496 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4497 * Struct:: @code{.struct @var{expression}}
4498 @ifset ELF
4499 * SubSection:: @code{.subsection}
4500 * Symver:: @code{.symver @var{name},@var{name2@@nodename}}
4501 @end ifset
4502
4503 @ifset COFF
4504 * Tag:: @code{.tag @var{structname}}
4505 @end ifset
4506
4507 * Text:: @code{.text @var{subsection}}
4508 * Title:: @code{.title "@var{heading}"}
4509 @ifset COFF-ELF
4510 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4511 @end ifset
4512
4513 * Uleb128:: @code{.uleb128 @var{expressions}}
4514 @ifset COFF
4515 * Val:: @code{.val @var{addr}}
4516 @end ifset
4517
4518 @ifset ELF
4519 * Version:: @code{.version "@var{string}"}
4520 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4521 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4522 @end ifset
4523
4524 * Warning:: @code{.warning @var{string}}
4525 * Weak:: @code{.weak @var{names}}
4526 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4527 * Word:: @code{.word @var{expressions}}
4528 @ifclear no-space-dir
4529 * Zero:: @code{.zero @var{size}}
4530 @end ifclear
4531 @ifset ELF
4532 * 2byte:: @code{.2byte @var{expressions}}
4533 * 4byte:: @code{.4byte @var{expressions}}
4534 * 8byte:: @code{.8byte @var{bignums}}
4535 @end ifset
4536 * Deprecated:: Deprecated Directives
4537 @end menu
4538
4539 @node Abort
4540 @section @code{.abort}
4541
4542 @cindex @code{abort} directive
4543 @cindex stopping the assembly
4544 This directive stops the assembly immediately. It is for
4545 compatibility with other assemblers. The original idea was that the
4546 assembly language source would be piped into the assembler. If the sender
4547 of the source quit, it could use this directive tells @command{@value{AS}} to
4548 quit also. One day @code{.abort} will not be supported.
4549
4550 @ifset COFF
4551 @node ABORT (COFF)
4552 @section @code{.ABORT} (COFF)
4553
4554 @cindex @code{ABORT} directive
4555 When producing COFF output, @command{@value{AS}} accepts this directive as a
4556 synonym for @samp{.abort}.
4557
4558 @end ifset
4559
4560 @node Align
4561 @section @code{.align [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4562
4563 @cindex padding the location counter
4564 @cindex @code{align} directive
4565 Pad the location counter (in the current subsection) to a particular storage
4566 boundary. The first expression (which must be absolute) is the alignment
4567 required, as described below. If this expression is omitted then a default
4568 value of 0 is used, effectively disabling alignment requirements.
4569
4570 The second expression (also absolute) gives the fill value to be stored in the
4571 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4572 padding bytes are normally zero. However, on most systems, if the section is
4573 marked as containing code and the fill value is omitted, the space is filled
4574 with no-op instructions.
4575
4576 The third expression is also absolute, and is also optional. If it is present,
4577 it is the maximum number of bytes that should be skipped by this alignment
4578 directive. If doing the alignment would require skipping more bytes than the
4579 specified maximum, then the alignment is not done at all. You can omit the
4580 fill value (the second argument) entirely by simply using two commas after the
4581 required alignment; this can be useful if you want the alignment to be filled
4582 with no-op instructions when appropriate.
4583
4584 The way the required alignment is specified varies from system to system.
4585 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4586 s390, sparc, tic4x and xtensa, the first expression is the
4587 alignment request in bytes. For example @samp{.align 8} advances
4588 the location counter until it is a multiple of 8. If the location counter
4589 is already a multiple of 8, no change is needed. For the tic54x, the
4590 first expression is the alignment request in words.
4591
4592 For other systems, including ppc, i386 using a.out format, arm and
4593 strongarm, it is the
4594 number of low-order zero bits the location counter must have after
4595 advancement. For example @samp{.align 3} advances the location
4596 counter until it is a multiple of 8. If the location counter is already a
4597 multiple of 8, no change is needed.
4598
4599 This inconsistency is due to the different behaviors of the various
4600 native assemblers for these systems which GAS must emulate.
4601 GAS also provides @code{.balign} and @code{.p2align} directives,
4602 described later, which have a consistent behavior across all
4603 architectures (but are specific to GAS).
4604
4605 @node Altmacro
4606 @section @code{.altmacro}
4607 Enable alternate macro mode, enabling:
4608
4609 @ftable @code
4610 @item LOCAL @var{name} [ , @dots{} ]
4611 One additional directive, @code{LOCAL}, is available. It is used to
4612 generate a string replacement for each of the @var{name} arguments, and
4613 replace any instances of @var{name} in each macro expansion. The
4614 replacement string is unique in the assembly, and different for each
4615 separate macro expansion. @code{LOCAL} allows you to write macros that
4616 define symbols, without fear of conflict between separate macro expansions.
4617
4618 @item String delimiters
4619 You can write strings delimited in these other ways besides
4620 @code{"@var{string}"}:
4621
4622 @table @code
4623 @item '@var{string}'
4624 You can delimit strings with single-quote characters.
4625
4626 @item <@var{string}>
4627 You can delimit strings with matching angle brackets.
4628 @end table
4629
4630 @item single-character string escape
4631 To include any single character literally in a string (even if the
4632 character would otherwise have some special meaning), you can prefix the
4633 character with @samp{!} (an exclamation mark). For example, you can
4634 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4635
4636 @item Expression results as strings
4637 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4638 and use the result as a string.
4639 @end ftable
4640
4641 @node Ascii
4642 @section @code{.ascii "@var{string}"}@dots{}
4643
4644 @cindex @code{ascii} directive
4645 @cindex string literals
4646 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4647 separated by commas. It assembles each string (with no automatic
4648 trailing zero byte) into consecutive addresses.
4649
4650 @node Asciz
4651 @section @code{.asciz "@var{string}"}@dots{}
4652
4653 @cindex @code{asciz} directive
4654 @cindex zero-terminated strings
4655 @cindex null-terminated strings
4656 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4657 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''.
4658
4659 @node Balign
4660 @section @code{.balign[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
4661
4662 @cindex padding the location counter given number of bytes
4663 @cindex @code{balign} directive
4664 Pad the location counter (in the current subsection) to a particular
4665 storage boundary. The first expression (which must be absolute) is the
4666 alignment request in bytes. For example @samp{.balign 8} advances
4667 the location counter until it is a multiple of 8. If the location counter
4668 is already a multiple of 8, no change is needed. If the expression is omitted
4669 then a default value of 0 is used, effectively disabling alignment requirements.
4670
4671 The second expression (also absolute) gives the fill value to be stored in the
4672 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4673 padding bytes are normally zero. However, on most systems, if the section is
4674 marked as containing code and the fill value is omitted, the space is filled
4675 with no-op instructions.
4676
4677 The third expression is also absolute, and is also optional. If it is present,
4678 it is the maximum number of bytes that should be skipped by this alignment
4679 directive. If doing the alignment would require skipping more bytes than the
4680 specified maximum, then the alignment is not done at all. You can omit the
4681 fill value (the second argument) entirely by simply using two commas after the
4682 required alignment; this can be useful if you want the alignment to be filled
4683 with no-op instructions when appropriate.
4684
4685 @cindex @code{balignw} directive
4686 @cindex @code{balignl} directive
4687 The @code{.balignw} and @code{.balignl} directives are variants of the
4688 @code{.balign} directive. The @code{.balignw} directive treats the fill
4689 pattern as a two byte word value. The @code{.balignl} directives treats the
4690 fill pattern as a four byte longword value. For example, @code{.balignw
4691 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4692 filled in with the value 0x368d (the exact placement of the bytes depends upon
4693 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4694 undefined.
4695
4696 @node Bundle directives
4697 @section Bundle directives
4698 @subsection @code{.bundle_align_mode @var{abs-expr}}
4699 @cindex @code{bundle_align_mode} directive
4700 @cindex bundle
4701 @cindex instruction bundle
4702 @cindex aligned instruction bundle
4703 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4704 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4705 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4706 disabled (which is the default state). If the argument it not zero, it
4707 gives the size of an instruction bundle as a power of two (as for the
4708 @code{.p2align} directive, @pxref{P2align}).
4709
4710 For some targets, it's an ABI requirement that no instruction may span a
4711 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4712 instructions that starts on an aligned boundary. For example, if
4713 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4714 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4715 effect, no single instruction may span a boundary between bundles. If an
4716 instruction would start too close to the end of a bundle for the length of
4717 that particular instruction to fit within the bundle, then the space at the
4718 end of that bundle is filled with no-op instructions so the instruction
4719 starts in the next bundle. As a corollary, it's an error if any single
4720 instruction's encoding is longer than the bundle size.
4721
4722 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4723 @cindex @code{bundle_lock} directive
4724 @cindex @code{bundle_unlock} directive
4725 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4726 allow explicit control over instruction bundle padding. These directives
4727 are only valid when @code{.bundle_align_mode} has been used to enable
4728 aligned instruction bundle mode. It's an error if they appear when
4729 @code{.bundle_align_mode} has not been used at all, or when the last
4730 directive was @w{@code{.bundle_align_mode 0}}.
4731
4732 @cindex bundle-locked
4733 For some targets, it's an ABI requirement that certain instructions may
4734 appear only as part of specified permissible sequences of multiple
4735 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4736 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4737 instruction sequence. For purposes of aligned instruction bundle mode, a
4738 sequence starting with @code{.bundle_lock} and ending with
4739 @code{.bundle_unlock} is treated as a single instruction. That is, the
4740 entire sequence must fit into a single bundle and may not span a bundle
4741 boundary. If necessary, no-op instructions will be inserted before the
4742 first instruction of the sequence so that the whole sequence starts on an
4743 aligned bundle boundary. It's an error if the sequence is longer than the
4744 bundle size.
4745
4746 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4747 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4748 nested. That is, a second @code{.bundle_lock} directive before the next
4749 @code{.bundle_unlock} directive has no effect except that it must be
4750 matched by another closing @code{.bundle_unlock} so that there is the
4751 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4752
4753 @node Byte
4754 @section @code{.byte @var{expressions}}
4755
4756 @cindex @code{byte} directive
4757 @cindex integers, one byte
4758 @code{.byte} expects zero or more expressions, separated by commas.
4759 Each expression is assembled into the next byte.
4760
4761 @node CFI directives
4762 @section CFI directives
4763 @subsection @code{.cfi_sections @var{section_list}}
4764 @cindex @code{cfi_sections} directive
4765 @code{.cfi_sections} may be used to specify whether CFI directives
4766 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4767 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4768 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4769 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4770 directive is not used is @code{.cfi_sections .eh_frame}.
4771
4772 On targets that support compact unwinding tables these can be generated
4773 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4774
4775 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4776 which is used by the @value{TIC6X} target.
4777
4778 The @code{.cfi_sections} directive can be repeated, with the same or different
4779 arguments, provided that CFI generation has not yet started. Once CFI
4780 generation has started however the section list is fixed and any attempts to
4781 redefine it will result in an error.
4782
4783 @subsection @code{.cfi_startproc [simple]}
4784 @cindex @code{cfi_startproc} directive
4785 @code{.cfi_startproc} is used at the beginning of each function that
4786 should have an entry in @code{.eh_frame}. It initializes some internal
4787 data structures. Don't forget to close the function by
4788 @code{.cfi_endproc}.
4789
4790 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4791 it also emits some architecture dependent initial CFI instructions.
4792
4793 @subsection @code{.cfi_endproc}
4794 @cindex @code{cfi_endproc} directive
4795 @code{.cfi_endproc} is used at the end of a function where it closes its
4796 unwind entry previously opened by
4797 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4798
4799 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4800 @cindex @code{cfi_personality} directive
4801 @code{.cfi_personality} defines personality routine and its encoding.
4802 @var{encoding} must be a constant determining how the personality
4803 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4804 argument is not present, otherwise second argument should be
4805 a constant or a symbol name. When using indirect encodings,
4806 the symbol provided should be the location where personality
4807 can be loaded from, not the personality routine itself.
4808 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4809 no personality routine.
4810
4811 @subsection @code{.cfi_personality_id @var{id}}
4812 @cindex @code{cfi_personality_id} directive
4813 @code{cfi_personality_id} defines a personality routine by its index as
4814 defined in a compact unwinding format.
4815 Only valid when generating compact EH frames (i.e.
4816 with @code{.cfi_sections eh_frame_entry}.
4817
4818 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4819 @cindex @code{cfi_fde_data} directive
4820 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4821 used for the current function. These are emitted inline in the
4822 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4823 in the @code{.gnu.extab} section otherwise.
4824 Only valid when generating compact EH frames (i.e.
4825 with @code{.cfi_sections eh_frame_entry}.
4826
4827 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4828 @code{.cfi_lsda} defines LSDA and its encoding.
4829 @var{encoding} must be a constant determining how the LSDA
4830 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4831 argument is not present, otherwise the second argument should be a constant
4832 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4833 meaning that no LSDA is present.
4834
4835 @subsection @code{.cfi_inline_lsda} [@var{align}]
4836 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4837 switches to the corresponding @code{.gnu.extab} section.
4838 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4839 Only valid when generating compact EH frames (i.e.
4840 with @code{.cfi_sections eh_frame_entry}.
4841
4842 The table header and unwinding opcodes will be generated at this point,
4843 so that they are immediately followed by the LSDA data. The symbol
4844 referenced by the @code{.cfi_lsda} directive should still be defined
4845 in case a fallback FDE based encoding is used. The LSDA data is terminated
4846 by a section directive.
4847
4848 The optional @var{align} argument specifies the alignment required.
4849 The alignment is specified as a power of two, as with the
4850 @code{.p2align} directive.
4851
4852 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4853 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4854 address from @var{register} and add @var{offset} to it}.
4855
4856 @subsection @code{.cfi_def_cfa_register @var{register}}
4857 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4858 now on @var{register} will be used instead of the old one. Offset
4859 remains the same.
4860
4861 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4862 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4863 remains the same, but @var{offset} is new. Note that it is the
4864 absolute offset that will be added to a defined register to compute
4865 CFA address.
4866
4867 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4868 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4869 value that is added/subtracted from the previous offset.
4870
4871 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4872 Previous value of @var{register} is saved at offset @var{offset} from
4873 CFA.
4874
4875 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4876 Previous value of @var{register} is CFA + @var{offset}.
4877
4878 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4879 Previous value of @var{register} is saved at offset @var{offset} from
4880 the current CFA register. This is transformed to @code{.cfi_offset}
4881 using the known displacement of the CFA register from the CFA.
4882 This is often easier to use, because the number will match the
4883 code it's annotating.
4884
4885 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4886 Previous value of @var{register1} is saved in register @var{register2}.
4887
4888 @subsection @code{.cfi_restore @var{register}}
4889 @code{.cfi_restore} says that the rule for @var{register} is now the
4890 same as it was at the beginning of the function, after all initial
4891 instruction added by @code{.cfi_startproc} were executed.
4892
4893 @subsection @code{.cfi_undefined @var{register}}
4894 From now on the previous value of @var{register} can't be restored anymore.
4895
4896 @subsection @code{.cfi_same_value @var{register}}
4897 Current value of @var{register} is the same like in the previous frame,
4898 i.e. no restoration needed.
4899
4900 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4901 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4902 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4903 places them in the current row. This is useful for situations where you have
4904 multiple @code{.cfi_*} directives that need to be undone due to the control
4905 flow of the program. For example, we could have something like this (assuming
4906 the CFA is the value of @code{rbp}):
4907
4908 @smallexample
4909 je label
4910 popq %rbx
4911 .cfi_restore %rbx
4912 popq %r12
4913 .cfi_restore %r12
4914 popq %rbp
4915 .cfi_restore %rbp
4916 .cfi_def_cfa %rsp, 8
4917 ret
4918 label:
4919 /* Do something else */
4920 @end smallexample
4921
4922 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4923 to the instructions before @code{label}. This means we'd have to add multiple
4924 @code{.cfi} directives after @code{label} to recreate the original save
4925 locations of the registers, as well as setting the CFA back to the value of
4926 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
4927 we can write:
4928
4929 @smallexample
4930 je label
4931 popq %rbx
4932 .cfi_remember_state
4933 .cfi_restore %rbx
4934 popq %r12
4935 .cfi_restore %r12
4936 popq %rbp
4937 .cfi_restore %rbp
4938 .cfi_def_cfa %rsp, 8
4939 ret
4940 label:
4941 .cfi_restore_state
4942 /* Do something else */
4943 @end smallexample
4944
4945 That way, the rules for the instructions after @code{label} will be the same
4946 as before the first @code{.cfi_restore} without having to use multiple
4947 @code{.cfi} directives.
4948
4949 @subsection @code{.cfi_return_column @var{register}}
4950 Change return column @var{register}, i.e. the return address is either
4951 directly in @var{register} or can be accessed by rules for @var{register}.
4952
4953 @subsection @code{.cfi_signal_frame}
4954 Mark current function as signal trampoline.
4955
4956 @subsection @code{.cfi_window_save}
4957 SPARC register window has been saved.
4958
4959 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
4960 Allows the user to add arbitrary bytes to the unwind info. One
4961 might use this to add OS-specific CFI opcodes, or generic CFI
4962 opcodes that GAS does not yet support.
4963
4964 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
4965 The current value of @var{register} is @var{label}. The value of @var{label}
4966 will be encoded in the output file according to @var{encoding}; see the
4967 description of @code{.cfi_personality} for details on this encoding.
4968
4969 The usefulness of equating a register to a fixed label is probably
4970 limited to the return address register. Here, it can be useful to
4971 mark a code segment that has only one return address which is reached
4972 by a direct branch and no copy of the return address exists in memory
4973 or another register.
4974
4975 @node Comm
4976 @section @code{.comm @var{symbol} , @var{length} }
4977
4978 @cindex @code{comm} directive
4979 @cindex symbol, common
4980 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
4981 common symbol in one object file may be merged with a defined or common symbol
4982 of the same name in another object file. If @code{@value{LD}} does not see a
4983 definition for the symbol--just one or more common symbols--then it will
4984 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
4985 absolute expression. If @code{@value{LD}} sees multiple common symbols with
4986 the same name, and they do not all have the same size, it will allocate space
4987 using the largest size.
4988
4989 @ifset COFF-ELF
4990 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
4991 an optional third argument. This is the desired alignment of the symbol,
4992 specified for ELF as a byte boundary (for example, an alignment of 16 means
4993 that the least significant 4 bits of the address should be zero), and for PE
4994 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
4995 boundary). The alignment must be an absolute expression, and it must be a
4996 power of two. If @code{@value{LD}} allocates uninitialized memory for the
4997 common symbol, it will use the alignment when placing the symbol. If no
4998 alignment is specified, @command{@value{AS}} will set the alignment to the
4999 largest power of two less than or equal to the size of the symbol, up to a
5000 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
5001 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
5002 @samp{--section-alignment} option; image file sections in PE are aligned to
5003 multiples of 4096, which is far too large an alignment for ordinary variables.
5004 It is rather the default alignment for (non-debug) sections within object
5005 (@samp{*.o}) files, which are less strictly aligned.}.
5006 @end ifset
5007
5008 @ifset HPPA
5009 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
5010 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
5011 @end ifset
5012
5013 @node Data
5014 @section @code{.data @var{subsection}}
5015 @cindex @code{data} directive
5016
5017 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
5018 end of the data subsection numbered @var{subsection} (which is an
5019 absolute expression). If @var{subsection} is omitted, it defaults
5020 to zero.
5021
5022 @node Dc
5023 @section @code{.dc[@var{size}] @var{expressions}}
5024 @cindex @code{dc} directive
5025
5026 The @code{.dc} directive expects zero or more @var{expressions} separated by
5027 commas. These expressions are evaluated and their values inserted into the
5028 current section. The size of the emitted value depends upon the suffix to the
5029 @code{.dc} directive:
5030
5031 @table @code
5032 @item @samp{.a}
5033 Emits N-bit values, where N is the size of an address on the target system.
5034 @item @samp{.b}
5035 Emits 8-bit values.
5036 @item @samp{.d}
5037 Emits double precision floating-point values.
5038 @item @samp{.l}
5039 Emits 32-bit values.
5040 @item @samp{.s}
5041 Emits single precision floating-point values.
5042 @item @samp{.w}
5043 Emits 16-bit values.
5044 Note - this is true even on targets where the @code{.word} directive would emit
5045 32-bit values.
5046 @item @samp{.x}
5047 Emits long double precision floating-point values.
5048 @end table
5049
5050 If no suffix is used then @samp{.w} is assumed.
5051
5052 The byte ordering is target dependent, as is the size and format of floating
5053 point values.
5054
5055 @node Dcb
5056 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5057 @cindex @code{dcb} directive
5058 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5059 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5060 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5061 @var{size} suffix, if present, must be one of:
5062
5063 @table @code
5064 @item @samp{.b}
5065 Emits single byte values.
5066 @item @samp{.d}
5067 Emits double-precision floating point values.
5068 @item @samp{.l}
5069 Emits 4-byte values.
5070 @item @samp{.s}
5071 Emits single-precision floating point values.
5072 @item @samp{.w}
5073 Emits 2-byte values.
5074 @item @samp{.x}
5075 Emits long double-precision floating point values.
5076 @end table
5077
5078 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5079
5080 The byte ordering is target dependent, as is the size and format of floating
5081 point values.
5082
5083 @node Ds
5084 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5085 @cindex @code{ds} directive
5086 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5087 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5088 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5089 @var{size} suffix, if present, must be one of:
5090
5091 @table @code
5092 @item @samp{.b}
5093 Emits single byte values.
5094 @item @samp{.d}
5095 Emits 8-byte values.
5096 @item @samp{.l}
5097 Emits 4-byte values.
5098 @item @samp{.p}
5099 Emits 12-byte values.
5100 @item @samp{.s}
5101 Emits 4-byte values.
5102 @item @samp{.w}
5103 Emits 2-byte values.
5104 @item @samp{.x}
5105 Emits 12-byte values.
5106 @end table
5107
5108 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5109 suffixes do not indicate that floating-point values are to be inserted.
5110
5111 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5112
5113 The byte ordering is target dependent.
5114
5115
5116 @ifset COFF
5117 @node Def
5118 @section @code{.def @var{name}}
5119
5120 @cindex @code{def} directive
5121 @cindex COFF symbols, debugging
5122 @cindex debugging COFF symbols
5123 Begin defining debugging information for a symbol @var{name}; the
5124 definition extends until the @code{.endef} directive is encountered.
5125 @end ifset
5126
5127 @ifset aout
5128 @node Desc
5129 @section @code{.desc @var{symbol}, @var{abs-expression}}
5130
5131 @cindex @code{desc} directive
5132 @cindex COFF symbol descriptor
5133 @cindex symbol descriptor, COFF
5134 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5135 to the low 16 bits of an absolute expression.
5136
5137 @ifset COFF
5138 The @samp{.desc} directive is not available when @command{@value{AS}} is
5139 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5140 object format. For the sake of compatibility, @command{@value{AS}} accepts
5141 it, but produces no output, when configured for COFF.
5142 @end ifset
5143 @end ifset
5144
5145 @ifset COFF
5146 @node Dim
5147 @section @code{.dim}
5148
5149 @cindex @code{dim} directive
5150 @cindex COFF auxiliary symbol information
5151 @cindex auxiliary symbol information, COFF
5152 This directive is generated by compilers to include auxiliary debugging
5153 information in the symbol table. It is only permitted inside
5154 @code{.def}/@code{.endef} pairs.
5155 @end ifset
5156
5157 @node Double
5158 @section @code{.double @var{flonums}}
5159
5160 @cindex @code{double} directive
5161 @cindex floating point numbers (double)
5162 @code{.double} expects zero or more flonums, separated by commas. It
5163 assembles floating point numbers.
5164 @ifset GENERIC
5165 The exact kind of floating point numbers emitted depends on how
5166 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5167 @end ifset
5168 @ifclear GENERIC
5169 @ifset IEEEFLOAT
5170 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5171 in @sc{ieee} format.
5172 @end ifset
5173 @end ifclear
5174
5175 @node Eject
5176 @section @code{.eject}
5177
5178 @cindex @code{eject} directive
5179 @cindex new page, in listings
5180 @cindex page, in listings
5181 @cindex listing control: new page
5182 Force a page break at this point, when generating assembly listings.
5183
5184 @node Else
5185 @section @code{.else}
5186
5187 @cindex @code{else} directive
5188 @code{.else} is part of the @command{@value{AS}} support for conditional
5189 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5190 of code to be assembled if the condition for the preceding @code{.if}
5191 was false.
5192
5193 @node Elseif
5194 @section @code{.elseif}
5195
5196 @cindex @code{elseif} directive
5197 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5198 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5199 @code{.if} block that would otherwise fill the entire @code{.else} section.
5200
5201 @node End
5202 @section @code{.end}
5203
5204 @cindex @code{end} directive
5205 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5206 process anything in the file past the @code{.end} directive.
5207
5208 @ifset COFF
5209 @node Endef
5210 @section @code{.endef}
5211
5212 @cindex @code{endef} directive
5213 This directive flags the end of a symbol definition begun with
5214 @code{.def}.
5215 @end ifset
5216
5217 @node Endfunc
5218 @section @code{.endfunc}
5219 @cindex @code{endfunc} directive
5220 @code{.endfunc} marks the end of a function specified with @code{.func}.
5221
5222 @node Endif
5223 @section @code{.endif}
5224
5225 @cindex @code{endif} directive
5226 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5227 it marks the end of a block of code that is only assembled
5228 conditionally. @xref{If,,@code{.if}}.
5229
5230 @node Equ
5231 @section @code{.equ @var{symbol}, @var{expression}}
5232
5233 @cindex @code{equ} directive
5234 @cindex assigning values to symbols
5235 @cindex symbols, assigning values to
5236 This directive sets the value of @var{symbol} to @var{expression}.
5237 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5238
5239 @ifset HPPA
5240 The syntax for @code{equ} on the HPPA is
5241 @samp{@var{symbol} .equ @var{expression}}.
5242 @end ifset
5243
5244 @ifset Z80
5245 The syntax for @code{equ} on the Z80 is
5246 @samp{@var{symbol} equ @var{expression}}.
5247 On the Z80 it is an error if @var{symbol} is already defined,
5248 but the symbol is not protected from later redefinition.
5249 Compare @ref{Equiv}.
5250 @end ifset
5251
5252 @node Equiv
5253 @section @code{.equiv @var{symbol}, @var{expression}}
5254 @cindex @code{equiv} directive
5255 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5256 the assembler will signal an error if @var{symbol} is already defined. Note a
5257 symbol which has been referenced but not actually defined is considered to be
5258 undefined.
5259
5260 Except for the contents of the error message, this is roughly equivalent to
5261 @smallexample
5262 .ifdef SYM
5263 .err
5264 .endif
5265 .equ SYM,VAL
5266 @end smallexample
5267 plus it protects the symbol from later redefinition.
5268
5269 @node Eqv
5270 @section @code{.eqv @var{symbol}, @var{expression}}
5271 @cindex @code{eqv} directive
5272 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5273 evaluate the expression or any part of it immediately. Instead each time
5274 the resulting symbol is used in an expression, a snapshot of its current
5275 value is taken.
5276
5277 @node Err
5278 @section @code{.err}
5279 @cindex @code{err} directive
5280 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5281 message and, unless the @option{-Z} option was used, it will not generate an
5282 object file. This can be used to signal an error in conditionally compiled code.
5283
5284 @node Error
5285 @section @code{.error "@var{string}"}
5286 @cindex error directive
5287
5288 Similarly to @code{.err}, this directive emits an error, but you can specify a
5289 string that will be emitted as the error message. If you don't specify the
5290 message, it defaults to @code{".error directive invoked in source file"}.
5291 @xref{Errors, ,Error and Warning Messages}.
5292
5293 @smallexample
5294 .error "This code has not been assembled and tested."
5295 @end smallexample
5296
5297 @node Exitm
5298 @section @code{.exitm}
5299 Exit early from the current macro definition. @xref{Macro}.
5300
5301 @node Extern
5302 @section @code{.extern}
5303
5304 @cindex @code{extern} directive
5305 @code{.extern} is accepted in the source program---for compatibility
5306 with other assemblers---but it is ignored. @command{@value{AS}} treats
5307 all undefined symbols as external.
5308
5309 @node Fail
5310 @section @code{.fail @var{expression}}
5311
5312 @cindex @code{fail} directive
5313 Generates an error or a warning. If the value of the @var{expression} is 500
5314 or more, @command{@value{AS}} will print a warning message. If the value is less
5315 than 500, @command{@value{AS}} will print an error message. The message will
5316 include the value of @var{expression}. This can occasionally be useful inside
5317 complex nested macros or conditional assembly.
5318
5319 @node File
5320 @section @code{.file}
5321 @cindex @code{file} directive
5322
5323 @ifclear no-file-dir
5324 There are two different versions of the @code{.file} directive. Targets
5325 that support DWARF2 line number information use the DWARF2 version of
5326 @code{.file}. Other targets use the default version.
5327
5328 @subheading Default Version
5329
5330 @cindex logical file name
5331 @cindex file name, logical
5332 This version of the @code{.file} directive tells @command{@value{AS}} that we
5333 are about to start a new logical file. The syntax is:
5334
5335 @smallexample
5336 .file @var{string}
5337 @end smallexample
5338
5339 @var{string} is the new file name. In general, the filename is
5340 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5341 to specify an empty file name, you must give the quotes--@code{""}. This
5342 statement may go away in future: it is only recognized to be compatible with
5343 old @command{@value{AS}} programs.
5344
5345 @subheading DWARF2 Version
5346 @end ifclear
5347
5348 When emitting DWARF2 line number information, @code{.file} assigns filenames
5349 to the @code{.debug_line} file name table. The syntax is:
5350
5351 @smallexample
5352 .file @var{fileno} @var{filename}
5353 @end smallexample
5354
5355 The @var{fileno} operand should be a unique positive integer to use as the
5356 index of the entry in the table. The @var{filename} operand is a C string
5357 literal.
5358
5359 The detail of filename indices is exposed to the user because the filename
5360 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5361 information, and thus the user must know the exact indices that table
5362 entries will have.
5363
5364 @node Fill
5365 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5366
5367 @cindex @code{fill} directive
5368 @cindex writing patterns in memory
5369 @cindex patterns, writing in memory
5370 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5371 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5372 may be zero or more. @var{Size} may be zero or more, but if it is
5373 more than 8, then it is deemed to have the value 8, compatible with
5374 other people's assemblers. The contents of each @var{repeat} bytes
5375 is taken from an 8-byte number. The highest order 4 bytes are
5376 zero. The lowest order 4 bytes are @var{value} rendered in the
5377 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5378 Each @var{size} bytes in a repetition is taken from the lowest order
5379 @var{size} bytes of this number. Again, this bizarre behavior is
5380 compatible with other people's assemblers.
5381
5382 @var{size} and @var{value} are optional.
5383 If the second comma and @var{value} are absent, @var{value} is
5384 assumed zero. If the first comma and following tokens are absent,
5385 @var{size} is assumed to be 1.
5386
5387 @node Float
5388 @section @code{.float @var{flonums}}
5389
5390 @cindex floating point numbers (single)
5391 @cindex @code{float} directive
5392 This directive assembles zero or more flonums, separated by commas. It
5393 has the same effect as @code{.single}.
5394 @ifset GENERIC
5395 The exact kind of floating point numbers emitted depends on how
5396 @command{@value{AS}} is configured.
5397 @xref{Machine Dependencies}.
5398 @end ifset
5399 @ifclear GENERIC
5400 @ifset IEEEFLOAT
5401 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5402 in @sc{ieee} format.
5403 @end ifset
5404 @end ifclear
5405
5406 @node Func
5407 @section @code{.func @var{name}[,@var{label}]}
5408 @cindex @code{func} directive
5409 @code{.func} emits debugging information to denote function @var{name}, and
5410 is ignored unless the file is assembled with debugging enabled.
5411 Only @samp{--gstabs[+]} is currently supported.
5412 @var{label} is the entry point of the function and if omitted @var{name}
5413 prepended with the @samp{leading char} is used.
5414 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5415 All functions are currently defined to have @code{void} return type.
5416 The function must be terminated with @code{.endfunc}.
5417
5418 @node Global
5419 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5420
5421 @cindex @code{global} directive
5422 @cindex symbol, making visible to linker
5423 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5424 @var{symbol} in your partial program, its value is made available to
5425 other partial programs that are linked with it. Otherwise,
5426 @var{symbol} takes its attributes from a symbol of the same name
5427 from another file linked into the same program.
5428
5429 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5430 compatibility with other assemblers.
5431
5432 @ifset HPPA
5433 On the HPPA, @code{.global} is not always enough to make it accessible to other
5434 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5435 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5436 @end ifset
5437
5438 @ifset ELF
5439 @node Gnu_attribute
5440 @section @code{.gnu_attribute @var{tag},@var{value}}
5441 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5442
5443 @node Hidden
5444 @section @code{.hidden @var{names}}
5445
5446 @cindex @code{hidden} directive
5447 @cindex visibility
5448 This is one of the ELF visibility directives. The other two are
5449 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5450 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5451
5452 This directive overrides the named symbols default visibility (which is set by
5453 their binding: local, global or weak). The directive sets the visibility to
5454 @code{hidden} which means that the symbols are not visible to other components.
5455 Such symbols are always considered to be @code{protected} as well.
5456 @end ifset
5457
5458 @node hword
5459 @section @code{.hword @var{expressions}}
5460
5461 @cindex @code{hword} directive
5462 @cindex integers, 16-bit
5463 @cindex numbers, 16-bit
5464 @cindex sixteen bit integers
5465 This expects zero or more @var{expressions}, and emits
5466 a 16 bit number for each.
5467
5468 @ifset GENERIC
5469 This directive is a synonym for @samp{.short}; depending on the target
5470 architecture, it may also be a synonym for @samp{.word}.
5471 @end ifset
5472 @ifclear GENERIC
5473 @ifset W32
5474 This directive is a synonym for @samp{.short}.
5475 @end ifset
5476 @ifset W16
5477 This directive is a synonym for both @samp{.short} and @samp{.word}.
5478 @end ifset
5479 @end ifclear
5480
5481 @node Ident
5482 @section @code{.ident}
5483
5484 @cindex @code{ident} directive
5485
5486 This directive is used by some assemblers to place tags in object files. The
5487 behavior of this directive varies depending on the target. When using the
5488 a.out object file format, @command{@value{AS}} simply accepts the directive for
5489 source-file compatibility with existing assemblers, but does not emit anything
5490 for it. When using COFF, comments are emitted to the @code{.comment} or
5491 @code{.rdata} section, depending on the target. When using ELF, comments are
5492 emitted to the @code{.comment} section.
5493
5494 @node If
5495 @section @code{.if @var{absolute expression}}
5496
5497 @cindex conditional assembly
5498 @cindex @code{if} directive
5499 @code{.if} marks the beginning of a section of code which is only
5500 considered part of the source program being assembled if the argument
5501 (which must be an @var{absolute expression}) is non-zero. The end of
5502 the conditional section of code must be marked by @code{.endif}
5503 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5504 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5505 If you have several conditions to check, @code{.elseif} may be used to avoid
5506 nesting blocks if/else within each subsequent @code{.else} block.
5507
5508 The following variants of @code{.if} are also supported:
5509 @table @code
5510 @cindex @code{ifdef} directive
5511 @item .ifdef @var{symbol}
5512 Assembles the following section of code if the specified @var{symbol}
5513 has been defined. Note a symbol which has been referenced but not yet defined
5514 is considered to be undefined.
5515
5516 @cindex @code{ifb} directive
5517 @item .ifb @var{text}
5518 Assembles the following section of code if the operand is blank (empty).
5519
5520 @cindex @code{ifc} directive
5521 @item .ifc @var{string1},@var{string2}
5522 Assembles the following section of code if the two strings are the same. The
5523 strings may be optionally quoted with single quotes. If they are not quoted,
5524 the first string stops at the first comma, and the second string stops at the
5525 end of the line. Strings which contain whitespace should be quoted. The
5526 string comparison is case sensitive.
5527
5528 @cindex @code{ifeq} directive
5529 @item .ifeq @var{absolute expression}
5530 Assembles the following section of code if the argument is zero.
5531
5532 @cindex @code{ifeqs} directive
5533 @item .ifeqs @var{string1},@var{string2}
5534 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5535
5536 @cindex @code{ifge} directive
5537 @item .ifge @var{absolute expression}
5538 Assembles the following section of code if the argument is greater than or
5539 equal to zero.
5540
5541 @cindex @code{ifgt} directive
5542 @item .ifgt @var{absolute expression}
5543 Assembles the following section of code if the argument is greater than zero.
5544
5545 @cindex @code{ifle} directive
5546 @item .ifle @var{absolute expression}
5547 Assembles the following section of code if the argument is less than or equal
5548 to zero.
5549
5550 @cindex @code{iflt} directive
5551 @item .iflt @var{absolute expression}
5552 Assembles the following section of code if the argument is less than zero.
5553
5554 @cindex @code{ifnb} directive
5555 @item .ifnb @var{text}
5556 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5557 following section of code if the operand is non-blank (non-empty).
5558
5559 @cindex @code{ifnc} directive
5560 @item .ifnc @var{string1},@var{string2}.
5561 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5562 following section of code if the two strings are not the same.
5563
5564 @cindex @code{ifndef} directive
5565 @cindex @code{ifnotdef} directive
5566 @item .ifndef @var{symbol}
5567 @itemx .ifnotdef @var{symbol}
5568 Assembles the following section of code if the specified @var{symbol}
5569 has not been defined. Both spelling variants are equivalent. Note a symbol
5570 which has been referenced but not yet defined is considered to be undefined.
5571
5572 @cindex @code{ifne} directive
5573 @item .ifne @var{absolute expression}
5574 Assembles the following section of code if the argument is not equal to zero
5575 (in other words, this is equivalent to @code{.if}).
5576
5577 @cindex @code{ifnes} directive
5578 @item .ifnes @var{string1},@var{string2}
5579 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5580 following section of code if the two strings are not the same.
5581 @end table
5582
5583 @node Incbin
5584 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5585
5586 @cindex @code{incbin} directive
5587 @cindex binary files, including
5588 The @code{incbin} directive includes @var{file} verbatim at the current
5589 location. You can control the search paths used with the @samp{-I} command-line
5590 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5591 around @var{file}.
5592
5593 The @var{skip} argument skips a number of bytes from the start of the
5594 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5595 read. Note that the data is not aligned in any way, so it is the user's
5596 responsibility to make sure that proper alignment is provided both before and
5597 after the @code{incbin} directive.
5598
5599 @node Include
5600 @section @code{.include "@var{file}"}
5601
5602 @cindex @code{include} directive
5603 @cindex supporting files, including
5604 @cindex files, including
5605 This directive provides a way to include supporting files at specified
5606 points in your source program. The code from @var{file} is assembled as
5607 if it followed the point of the @code{.include}; when the end of the
5608 included file is reached, assembly of the original file continues. You
5609 can control the search paths used with the @samp{-I} command-line option
5610 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5611 around @var{file}.
5612
5613 @node Int
5614 @section @code{.int @var{expressions}}
5615
5616 @cindex @code{int} directive
5617 @cindex integers, 32-bit
5618 Expect zero or more @var{expressions}, of any section, separated by commas.
5619 For each expression, emit a number that, at run time, is the value of that
5620 expression. The byte order and bit size of the number depends on what kind
5621 of target the assembly is for.
5622
5623 @ifclear GENERIC
5624 @ifset H8
5625 On most forms of the H8/300, @code{.int} emits 16-bit
5626 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5627 32-bit integers.
5628 @end ifset
5629 @end ifclear
5630
5631 @ifset ELF
5632 @node Internal
5633 @section @code{.internal @var{names}}
5634
5635 @cindex @code{internal} directive
5636 @cindex visibility
5637 This is one of the ELF visibility directives. The other two are
5638 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5639 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5640
5641 This directive overrides the named symbols default visibility (which is set by
5642 their binding: local, global or weak). The directive sets the visibility to
5643 @code{internal} which means that the symbols are considered to be @code{hidden}
5644 (i.e., not visible to other components), and that some extra, processor specific
5645 processing must also be performed upon the symbols as well.
5646 @end ifset
5647
5648 @node Irp
5649 @section @code{.irp @var{symbol},@var{values}}@dots{}
5650
5651 @cindex @code{irp} directive
5652 Evaluate a sequence of statements assigning different values to @var{symbol}.
5653 The sequence of statements starts at the @code{.irp} directive, and is
5654 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5655 set to @var{value}, and the sequence of statements is assembled. If no
5656 @var{value} is listed, the sequence of statements is assembled once, with
5657 @var{symbol} set to the null string. To refer to @var{symbol} within the
5658 sequence of statements, use @var{\symbol}.
5659
5660 For example, assembling
5661
5662 @example
5663 .irp param,1,2,3
5664 move d\param,sp@@-
5665 .endr
5666 @end example
5667
5668 is equivalent to assembling
5669
5670 @example
5671 move d1,sp@@-
5672 move d2,sp@@-
5673 move d3,sp@@-
5674 @end example
5675
5676 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5677
5678 @node Irpc
5679 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5680
5681 @cindex @code{irpc} directive
5682 Evaluate a sequence of statements assigning different values to @var{symbol}.
5683 The sequence of statements starts at the @code{.irpc} directive, and is
5684 terminated by an @code{.endr} directive. For each character in @var{value},
5685 @var{symbol} is set to the character, and the sequence of statements is
5686 assembled. If no @var{value} is listed, the sequence of statements is
5687 assembled once, with @var{symbol} set to the null string. To refer to
5688 @var{symbol} within the sequence of statements, use @var{\symbol}.
5689
5690 For example, assembling
5691
5692 @example
5693 .irpc param,123
5694 move d\param,sp@@-
5695 .endr
5696 @end example
5697
5698 is equivalent to assembling
5699
5700 @example
5701 move d1,sp@@-
5702 move d2,sp@@-
5703 move d3,sp@@-
5704 @end example
5705
5706 For some caveats with the spelling of @var{symbol}, see also the discussion
5707 at @xref{Macro}.
5708
5709 @node Lcomm
5710 @section @code{.lcomm @var{symbol} , @var{length}}
5711
5712 @cindex @code{lcomm} directive
5713 @cindex local common symbols
5714 @cindex symbols, local common
5715 Reserve @var{length} (an absolute expression) bytes for a local common
5716 denoted by @var{symbol}. The section and value of @var{symbol} are
5717 those of the new local common. The addresses are allocated in the bss
5718 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5719 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5720 not visible to @code{@value{LD}}.
5721
5722 @ifset GENERIC
5723 Some targets permit a third argument to be used with @code{.lcomm}. This
5724 argument specifies the desired alignment of the symbol in the bss section.
5725 @end ifset
5726
5727 @ifset HPPA
5728 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5729 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5730 @end ifset
5731
5732 @node Lflags
5733 @section @code{.lflags}
5734
5735 @cindex @code{lflags} directive (ignored)
5736 @command{@value{AS}} accepts this directive, for compatibility with other
5737 assemblers, but ignores it.
5738
5739 @ifclear no-line-dir
5740 @node Line
5741 @section @code{.line @var{line-number}}
5742
5743 @cindex @code{line} directive
5744 @cindex logical line number
5745 @ifset aout
5746 Change the logical line number. @var{line-number} must be an absolute
5747 expression. The next line has that logical line number. Therefore any other
5748 statements on the current line (after a statement separator character) are
5749 reported as on logical line number @var{line-number} @minus{} 1. One day
5750 @command{@value{AS}} will no longer support this directive: it is recognized only
5751 for compatibility with existing assembler programs.
5752 @end ifset
5753
5754 Even though this is a directive associated with the @code{a.out} or
5755 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5756 when producing COFF output, and treats @samp{.line} as though it
5757 were the COFF @samp{.ln} @emph{if} it is found outside a
5758 @code{.def}/@code{.endef} pair.
5759
5760 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5761 used by compilers to generate auxiliary symbol information for
5762 debugging.
5763 @end ifclear
5764
5765 @node Linkonce
5766 @section @code{.linkonce [@var{type}]}
5767 @cindex COMDAT
5768 @cindex @code{linkonce} directive
5769 @cindex common sections
5770 Mark the current section so that the linker only includes a single copy of it.
5771 This may be used to include the same section in several different object files,
5772 but ensure that the linker will only include it once in the final output file.
5773 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5774 Duplicate sections are detected based on the section name, so it should be
5775 unique.
5776
5777 This directive is only supported by a few object file formats; as of this
5778 writing, the only object file format which supports it is the Portable
5779 Executable format used on Windows NT.
5780
5781 The @var{type} argument is optional. If specified, it must be one of the
5782 following strings. For example:
5783 @smallexample
5784 .linkonce same_size
5785 @end smallexample
5786 Not all types may be supported on all object file formats.
5787
5788 @table @code
5789 @item discard
5790 Silently discard duplicate sections. This is the default.
5791
5792 @item one_only
5793 Warn if there are duplicate sections, but still keep only one copy.
5794
5795 @item same_size
5796 Warn if any of the duplicates have different sizes.
5797
5798 @item same_contents
5799 Warn if any of the duplicates do not have exactly the same contents.
5800 @end table
5801
5802 @node List
5803 @section @code{.list}
5804
5805 @cindex @code{list} directive
5806 @cindex listing control, turning on
5807 Control (in conjunction with the @code{.nolist} directive) whether or
5808 not assembly listings are generated. These two directives maintain an
5809 internal counter (which is zero initially). @code{.list} increments the
5810 counter, and @code{.nolist} decrements it. Assembly listings are
5811 generated whenever the counter is greater than zero.
5812
5813 By default, listings are disabled. When you enable them (with the
5814 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5815 the initial value of the listing counter is one.
5816
5817 @node Ln
5818 @section @code{.ln @var{line-number}}
5819
5820 @cindex @code{ln} directive
5821 @ifclear no-line-dir
5822 @samp{.ln} is a synonym for @samp{.line}.
5823 @end ifclear
5824 @ifset no-line-dir
5825 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5826 must be an absolute expression. The next line has that logical
5827 line number, so any other statements on the current line (after a
5828 statement separator character @code{;}) are reported as on logical
5829 line number @var{line-number} @minus{} 1.
5830 @end ifset
5831
5832 @node Loc
5833 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5834 @cindex @code{loc} directive
5835 When emitting DWARF2 line number information,
5836 the @code{.loc} directive will add a row to the @code{.debug_line} line
5837 number matrix corresponding to the immediately following assembly
5838 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5839 arguments will be applied to the @code{.debug_line} state machine before
5840 the row is added.
5841
5842 The @var{options} are a sequence of the following tokens in any order:
5843
5844 @table @code
5845 @item basic_block
5846 This option will set the @code{basic_block} register in the
5847 @code{.debug_line} state machine to @code{true}.
5848
5849 @item prologue_end
5850 This option will set the @code{prologue_end} register in the
5851 @code{.debug_line} state machine to @code{true}.
5852
5853 @item epilogue_begin
5854 This option will set the @code{epilogue_begin} register in the
5855 @code{.debug_line} state machine to @code{true}.
5856
5857 @item is_stmt @var{value}
5858 This option will set the @code{is_stmt} register in the
5859 @code{.debug_line} state machine to @code{value}, which must be
5860 either 0 or 1.
5861
5862 @item isa @var{value}
5863 This directive will set the @code{isa} register in the @code{.debug_line}
5864 state machine to @var{value}, which must be an unsigned integer.
5865
5866 @item discriminator @var{value}
5867 This directive will set the @code{discriminator} register in the @code{.debug_line}
5868 state machine to @var{value}, which must be an unsigned integer.
5869
5870 @item view @var{value}
5871 This option causes a row to be added to @code{.debug_line} in reference to the
5872 current address (which might not be the same as that of the following assembly
5873 instruction), and to associate @var{value} with the @code{view} register in the
5874 @code{.debug_line} state machine. If @var{value} is a label, both the
5875 @code{view} register and the label are set to the number of prior @code{.loc}
5876 directives at the same program location. If @var{value} is the literal
5877 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5878 that there aren't any prior @code{.loc} directives at the same program
5879 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5880 the @code{view} register to be reset in this row, even if there are prior
5881 @code{.loc} directives at the same program location.
5882
5883 @end table
5884
5885 @node Loc_mark_labels
5886 @section @code{.loc_mark_labels @var{enable}}
5887 @cindex @code{loc_mark_labels} directive
5888 When emitting DWARF2 line number information,
5889 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5890 to the @code{.debug_line} line number matrix with the @code{basic_block}
5891 register in the state machine set whenever a code label is seen.
5892 The @var{enable} argument should be either 1 or 0, to enable or disable
5893 this function respectively.
5894
5895 @ifset ELF
5896 @node Local
5897 @section @code{.local @var{names}}
5898
5899 @cindex @code{local} directive
5900 This directive, which is available for ELF targets, marks each symbol in
5901 the comma-separated list of @code{names} as a local symbol so that it
5902 will not be externally visible. If the symbols do not already exist,
5903 they will be created.
5904
5905 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
5906 accept an alignment argument, which is the case for most ELF targets,
5907 the @code{.local} directive can be used in combination with @code{.comm}
5908 (@pxref{Comm}) to define aligned local common data.
5909 @end ifset
5910
5911 @node Long
5912 @section @code{.long @var{expressions}}
5913
5914 @cindex @code{long} directive
5915 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
5916
5917 @ignore
5918 @c no one seems to know what this is for or whether this description is
5919 @c what it really ought to do
5920 @node Lsym
5921 @section @code{.lsym @var{symbol}, @var{expression}}
5922
5923 @cindex @code{lsym} directive
5924 @cindex symbol, not referenced in assembly
5925 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
5926 the hash table, ensuring it cannot be referenced by name during the
5927 rest of the assembly. This sets the attributes of the symbol to be
5928 the same as the expression value:
5929 @smallexample
5930 @var{other} = @var{descriptor} = 0
5931 @var{type} = @r{(section of @var{expression})}
5932 @var{value} = @var{expression}
5933 @end smallexample
5934 @noindent
5935 The new symbol is not flagged as external.
5936 @end ignore
5937
5938 @node Macro
5939 @section @code{.macro}
5940
5941 @cindex macros
5942 The commands @code{.macro} and @code{.endm} allow you to define macros that
5943 generate assembly output. For example, this definition specifies a macro
5944 @code{sum} that puts a sequence of numbers into memory:
5945
5946 @example
5947 .macro sum from=0, to=5
5948 .long \from
5949 .if \to-\from
5950 sum "(\from+1)",\to
5951 .endif
5952 .endm
5953 @end example
5954
5955 @noindent
5956 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
5957
5958 @example
5959 .long 0
5960 .long 1
5961 .long 2
5962 .long 3
5963 .long 4
5964 .long 5
5965 @end example
5966
5967 @ftable @code
5968 @item .macro @var{macname}
5969 @itemx .macro @var{macname} @var{macargs} @dots{}
5970 @cindex @code{macro} directive
5971 Begin the definition of a macro called @var{macname}. If your macro
5972 definition requires arguments, specify their names after the macro name,
5973 separated by commas or spaces. You can qualify the macro argument to
5974 indicate whether all invocations must specify a non-blank value (through
5975 @samp{:@code{req}}), or whether it takes all of the remaining arguments
5976 (through @samp{:@code{vararg}}). You can supply a default value for any
5977 macro argument by following the name with @samp{=@var{deflt}}. You
5978 cannot define two macros with the same @var{macname} unless it has been
5979 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
5980 definitions. For example, these are all valid @code{.macro} statements:
5981
5982 @table @code
5983 @item .macro comm
5984 Begin the definition of a macro called @code{comm}, which takes no
5985 arguments.
5986
5987 @item .macro plus1 p, p1
5988 @itemx .macro plus1 p p1
5989 Either statement begins the definition of a macro called @code{plus1},
5990 which takes two arguments; within the macro definition, write
5991 @samp{\p} or @samp{\p1} to evaluate the arguments.
5992
5993 @item .macro reserve_str p1=0 p2
5994 Begin the definition of a macro called @code{reserve_str}, with two
5995 arguments. The first argument has a default value, but not the second.
5996 After the definition is complete, you can call the macro either as
5997 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
5998 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
5999 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
6000 @samp{0}, and @samp{\p2} evaluating to @var{b}).
6001
6002 @item .macro m p1:req, p2=0, p3:vararg
6003 Begin the definition of a macro called @code{m}, with at least three
6004 arguments. The first argument must always have a value specified, but
6005 not the second, which instead has a default value. The third formal
6006 will get assigned all remaining arguments specified at invocation time.
6007
6008 When you call a macro, you can specify the argument values either by
6009 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
6010 @samp{sum to=17, from=9}.
6011
6012 @end table
6013
6014 Note that since each of the @var{macargs} can be an identifier exactly
6015 as any other one permitted by the target architecture, there may be
6016 occasional problems if the target hand-crafts special meanings to certain
6017 characters when they occur in a special position. For example, if the colon
6018 (@code{:}) is generally permitted to be part of a symbol name, but the
6019 architecture specific code special-cases it when occurring as the final
6020 character of a symbol (to denote a label), then the macro parameter
6021 replacement code will have no way of knowing that and consider the whole
6022 construct (including the colon) an identifier, and check only this
6023 identifier for being the subject to parameter substitution. So for example
6024 this macro definition:
6025
6026 @example
6027 .macro label l
6028 \l:
6029 .endm
6030 @end example
6031
6032 might not work as expected. Invoking @samp{label foo} might not create a label
6033 called @samp{foo} but instead just insert the text @samp{\l:} into the
6034 assembler source, probably generating an error about an unrecognised
6035 identifier.
6036
6037 Similarly problems might occur with the period character (@samp{.})
6038 which is often allowed inside opcode names (and hence identifier names). So
6039 for example constructing a macro to build an opcode from a base name and a
6040 length specifier like this:
6041
6042 @example
6043 .macro opcode base length
6044 \base.\length
6045 .endm
6046 @end example
6047
6048 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
6049 instruction but instead generate some kind of error as the assembler tries to
6050 interpret the text @samp{\base.\length}.
6051
6052 There are several possible ways around this problem:
6053
6054 @table @code
6055 @item Insert white space
6056 If it is possible to use white space characters then this is the simplest
6057 solution. eg:
6058
6059 @example
6060 .macro label l
6061 \l :
6062 .endm
6063 @end example
6064
6065 @item Use @samp{\()}
6066 The string @samp{\()} can be used to separate the end of a macro argument from
6067 the following text. eg:
6068
6069 @example
6070 .macro opcode base length
6071 \base\().\length
6072 .endm
6073 @end example
6074
6075 @item Use the alternate macro syntax mode
6076 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6077 used as a separator. eg:
6078
6079 @example
6080 .altmacro
6081 .macro label l
6082 l&:
6083 .endm
6084 @end example
6085 @end table
6086
6087 Note: this problem of correctly identifying string parameters to pseudo ops
6088 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6089 and @code{.irpc} (@pxref{Irpc}) as well.
6090
6091 @item .endm
6092 @cindex @code{endm} directive
6093 Mark the end of a macro definition.
6094
6095 @item .exitm
6096 @cindex @code{exitm} directive
6097 Exit early from the current macro definition.
6098
6099 @cindex number of macros executed
6100 @cindex macros, count executed
6101 @item \@@
6102 @command{@value{AS}} maintains a counter of how many macros it has
6103 executed in this pseudo-variable; you can copy that number to your
6104 output with @samp{\@@}, but @emph{only within a macro definition}.
6105
6106 @item LOCAL @var{name} [ , @dots{} ]
6107 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6108 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6109 @xref{Altmacro,,@code{.altmacro}}.
6110 @end ftable
6111
6112 @node MRI
6113 @section @code{.mri @var{val}}
6114
6115 @cindex @code{mri} directive
6116 @cindex MRI mode, temporarily
6117 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6118 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6119 affects code assembled until the next @code{.mri} directive, or until the end
6120 of the file. @xref{M, MRI mode, MRI mode}.
6121
6122 @node Noaltmacro
6123 @section @code{.noaltmacro}
6124 Disable alternate macro mode. @xref{Altmacro}.
6125
6126 @node Nolist
6127 @section @code{.nolist}
6128
6129 @cindex @code{nolist} directive
6130 @cindex listing control, turning off
6131 Control (in conjunction with the @code{.list} directive) whether or
6132 not assembly listings are generated. These two directives maintain an
6133 internal counter (which is zero initially). @code{.list} increments the
6134 counter, and @code{.nolist} decrements it. Assembly listings are
6135 generated whenever the counter is greater than zero.
6136
6137 @node Nops
6138 @section @code{.nops @var{size}[, @var{control}]}
6139
6140 @cindex @code{nops} directive
6141 @cindex filling memory with no-op instructions
6142 This directive emits @var{size} bytes filled with no-op instructions.
6143 @var{size} is absolute expression, which must be a positve value.
6144 @var{control} controls how no-op instructions should be generated. If
6145 the comma and @var{control} are omitted, @var{control} is assumed to be
6146 zero.
6147
6148 Note: For Intel 80386 and AMD x86-64 targets, @var{control} specifies
6149 the size limit of a no-op instruction. The valid values of @var{control}
6150 are between 0 and 4 in 16-bit mode, between 0 and 7 when tuning for
6151 older processors in 32-bit mode, between 0 and 11 in 64-bit mode or when
6152 tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6153 instruction size limit is set to the maximum supported size.
6154
6155 @node Octa
6156 @section @code{.octa @var{bignums}}
6157
6158 @c FIXME: double size emitted for "octa" on some? Or warn?
6159 @cindex @code{octa} directive
6160 @cindex integer, 16-byte
6161 @cindex sixteen byte integer
6162 This directive expects zero or more bignums, separated by commas. For each
6163 bignum, it emits a 16-byte integer.
6164
6165 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6166 hence @emph{octa}-word for 16 bytes.
6167
6168 @node Offset
6169 @section @code{.offset @var{loc}}
6170
6171 @cindex @code{offset} directive
6172 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6173 be an absolute expression. This directive may be useful for defining
6174 symbols with absolute values. Do not confuse it with the @code{.org}
6175 directive.
6176
6177 @node Org
6178 @section @code{.org @var{new-lc} , @var{fill}}
6179
6180 @cindex @code{org} directive
6181 @cindex location counter, advancing
6182 @cindex advancing location counter
6183 @cindex current address, advancing
6184 Advance the location counter of the current section to
6185 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6186 expression with the same section as the current subsection. That is,
6187 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6188 wrong section, the @code{.org} directive is ignored. To be compatible
6189 with former assemblers, if the section of @var{new-lc} is absolute,
6190 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6191 is the same as the current subsection.
6192
6193 @code{.org} may only increase the location counter, or leave it
6194 unchanged; you cannot use @code{.org} to move the location counter
6195 backwards.
6196
6197 @c double negative used below "not undefined" because this is a specific
6198 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6199 @c section. doc@cygnus.com 18feb91
6200 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6201 may not be undefined. If you really detest this restriction we eagerly await
6202 a chance to share your improved assembler.
6203
6204 Beware that the origin is relative to the start of the section, not
6205 to the start of the subsection. This is compatible with other
6206 people's assemblers.
6207
6208 When the location counter (of the current subsection) is advanced, the
6209 intervening bytes are filled with @var{fill} which should be an
6210 absolute expression. If the comma and @var{fill} are omitted,
6211 @var{fill} defaults to zero.
6212
6213 @node P2align
6214 @section @code{.p2align[wl] [@var{abs-expr}[, @var{abs-expr}[, @var{abs-expr}]]]}
6215
6216 @cindex padding the location counter given a power of two
6217 @cindex @code{p2align} directive
6218 Pad the location counter (in the current subsection) to a particular
6219 storage boundary. The first expression (which must be absolute) is the
6220 number of low-order zero bits the location counter must have after
6221 advancement. For example @samp{.p2align 3} advances the location
6222 counter until it is a multiple of 8. If the location counter is already a
6223 multiple of 8, no change is needed. If the expression is omitted then a
6224 default value of 0 is used, effectively disabling alignment requirements.
6225
6226 The second expression (also absolute) gives the fill value to be stored in the
6227 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6228 padding bytes are normally zero. However, on most systems, if the section is
6229 marked as containing code and the fill value is omitted, the space is filled
6230 with no-op instructions.
6231
6232 The third expression is also absolute, and is also optional. If it is present,
6233 it is the maximum number of bytes that should be skipped by this alignment
6234 directive. If doing the alignment would require skipping more bytes than the
6235 specified maximum, then the alignment is not done at all. You can omit the
6236 fill value (the second argument) entirely by simply using two commas after the
6237 required alignment; this can be useful if you want the alignment to be filled
6238 with no-op instructions when appropriate.
6239
6240 @cindex @code{p2alignw} directive
6241 @cindex @code{p2alignl} directive
6242 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6243 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6244 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6245 fill pattern as a four byte longword value. For example, @code{.p2alignw
6246 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6247 filled in with the value 0x368d (the exact placement of the bytes depends upon
6248 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6249 undefined.
6250
6251 @ifset ELF
6252 @node PopSection
6253 @section @code{.popsection}
6254
6255 @cindex @code{popsection} directive
6256 @cindex Section Stack
6257 This is one of the ELF section stack manipulation directives. The others are
6258 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6259 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6260 (@pxref{Previous}).
6261
6262 This directive replaces the current section (and subsection) with the top
6263 section (and subsection) on the section stack. This section is popped off the
6264 stack.
6265 @end ifset
6266
6267 @ifset ELF
6268 @node Previous
6269 @section @code{.previous}
6270
6271 @cindex @code{previous} directive
6272 @cindex Section Stack
6273 This is one of the ELF section stack manipulation directives. The others are
6274 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6275 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6276 (@pxref{PopSection}).
6277
6278 This directive swaps the current section (and subsection) with most recently
6279 referenced section/subsection pair prior to this one. Multiple
6280 @code{.previous} directives in a row will flip between two sections (and their
6281 subsections). For example:
6282
6283 @smallexample
6284 .section A
6285 .subsection 1
6286 .word 0x1234
6287 .subsection 2
6288 .word 0x5678
6289 .previous
6290 .word 0x9abc
6291 @end smallexample
6292
6293 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6294 section A. Whilst:
6295
6296 @smallexample
6297 .section A
6298 .subsection 1
6299 # Now in section A subsection 1
6300 .word 0x1234
6301 .section B
6302 .subsection 0
6303 # Now in section B subsection 0
6304 .word 0x5678
6305 .subsection 1
6306 # Now in section B subsection 1
6307 .word 0x9abc
6308 .previous
6309 # Now in section B subsection 0
6310 .word 0xdef0
6311 @end smallexample
6312
6313 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6314 section B and 0x9abc into subsection 1 of section B.
6315
6316 In terms of the section stack, this directive swaps the current section with
6317 the top section on the section stack.
6318 @end ifset
6319
6320 @node Print
6321 @section @code{.print @var{string}}
6322
6323 @cindex @code{print} directive
6324 @command{@value{AS}} will print @var{string} on the standard output during
6325 assembly. You must put @var{string} in double quotes.
6326
6327 @ifset ELF
6328 @node Protected
6329 @section @code{.protected @var{names}}
6330
6331 @cindex @code{protected} directive
6332 @cindex visibility
6333 This is one of the ELF visibility directives. The other two are
6334 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6335
6336 This directive overrides the named symbols default visibility (which is set by
6337 their binding: local, global or weak). The directive sets the visibility to
6338 @code{protected} which means that any references to the symbols from within the
6339 components that defines them must be resolved to the definition in that
6340 component, even if a definition in another component would normally preempt
6341 this.
6342 @end ifset
6343
6344 @node Psize
6345 @section @code{.psize @var{lines} , @var{columns}}
6346
6347 @cindex @code{psize} directive
6348 @cindex listing control: paper size
6349 @cindex paper size, for listings
6350 Use this directive to declare the number of lines---and, optionally, the
6351 number of columns---to use for each page, when generating listings.
6352
6353 If you do not use @code{.psize}, listings use a default line-count
6354 of 60. You may omit the comma and @var{columns} specification; the
6355 default width is 200 columns.
6356
6357 @command{@value{AS}} generates formfeeds whenever the specified number of
6358 lines is exceeded (or whenever you explicitly request one, using
6359 @code{.eject}).
6360
6361 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6362 those explicitly specified with @code{.eject}.
6363
6364 @node Purgem
6365 @section @code{.purgem @var{name}}
6366
6367 @cindex @code{purgem} directive
6368 Undefine the macro @var{name}, so that later uses of the string will not be
6369 expanded. @xref{Macro}.
6370
6371 @ifset ELF
6372 @node PushSection
6373 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6374
6375 @cindex @code{pushsection} directive
6376 @cindex Section Stack
6377 This is one of the ELF section stack manipulation directives. The others are
6378 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6379 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6380 (@pxref{Previous}).
6381
6382 This directive pushes the current section (and subsection) onto the
6383 top of the section stack, and then replaces the current section and
6384 subsection with @code{name} and @code{subsection}. The optional
6385 @code{flags}, @code{type} and @code{arguments} are treated the same
6386 as in the @code{.section} (@pxref{Section}) directive.
6387 @end ifset
6388
6389 @node Quad
6390 @section @code{.quad @var{bignums}}
6391
6392 @cindex @code{quad} directive
6393 @code{.quad} expects zero or more bignums, separated by commas. For
6394 each bignum, it emits
6395 @ifclear bignum-16
6396 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6397 warning message; and just takes the lowest order 8 bytes of the bignum.
6398 @cindex eight-byte integer
6399 @cindex integer, 8-byte
6400
6401 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6402 hence @emph{quad}-word for 8 bytes.
6403 @end ifclear
6404 @ifset bignum-16
6405 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6406 warning message; and just takes the lowest order 16 bytes of the bignum.
6407 @cindex sixteen-byte integer
6408 @cindex integer, 16-byte
6409 @end ifset
6410
6411 @node Reloc
6412 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6413
6414 @cindex @code{reloc} directive
6415 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6416 @var{expression}. If @var{offset} is a number, the relocation is generated in
6417 the current section. If @var{offset} is an expression that resolves to a
6418 symbol plus offset, the relocation is generated in the given symbol's section.
6419 @var{expression}, if present, must resolve to a symbol plus addend or to an
6420 absolute value, but note that not all targets support an addend. e.g. ELF REL
6421 targets such as i386 store an addend in the section contents rather than in the
6422 relocation. This low level interface does not support addends stored in the
6423 section.
6424
6425 @node Rept
6426 @section @code{.rept @var{count}}
6427
6428 @cindex @code{rept} directive
6429 Repeat the sequence of lines between the @code{.rept} directive and the next
6430 @code{.endr} directive @var{count} times.
6431
6432 For example, assembling
6433
6434 @example
6435 .rept 3
6436 .long 0
6437 .endr
6438 @end example
6439
6440 is equivalent to assembling
6441
6442 @example
6443 .long 0
6444 .long 0
6445 .long 0
6446 @end example
6447
6448 A count of zero is allowed, but nothing is generated. Negative counts are not
6449 allowed and if encountered will be treated as if they were zero.
6450
6451 @node Sbttl
6452 @section @code{.sbttl "@var{subheading}"}
6453
6454 @cindex @code{sbttl} directive
6455 @cindex subtitles for listings
6456 @cindex listing control: subtitle
6457 Use @var{subheading} as the title (third line, immediately after the
6458 title line) when generating assembly listings.
6459
6460 This directive affects subsequent pages, as well as the current page if
6461 it appears within ten lines of the top of a page.
6462
6463 @ifset COFF
6464 @node Scl
6465 @section @code{.scl @var{class}}
6466
6467 @cindex @code{scl} directive
6468 @cindex symbol storage class (COFF)
6469 @cindex COFF symbol storage class
6470 Set the storage-class value for a symbol. This directive may only be
6471 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6472 whether a symbol is static or external, or it may record further
6473 symbolic debugging information.
6474 @end ifset
6475
6476 @ifset COFF-ELF
6477 @node Section
6478 @section @code{.section @var{name}}
6479
6480 @cindex named section
6481 Use the @code{.section} directive to assemble the following code into a section
6482 named @var{name}.
6483
6484 This directive is only supported for targets that actually support arbitrarily
6485 named sections; on @code{a.out} targets, for example, it is not accepted, even
6486 with a standard @code{a.out} section name.
6487
6488 @ifset COFF
6489 @ifset ELF
6490 @c only print the extra heading if both COFF and ELF are set
6491 @subheading COFF Version
6492 @end ifset
6493
6494 @cindex @code{section} directive (COFF version)
6495 For COFF targets, the @code{.section} directive is used in one of the following
6496 ways:
6497
6498 @smallexample
6499 .section @var{name}[, "@var{flags}"]
6500 .section @var{name}[, @var{subsection}]
6501 @end smallexample
6502
6503 If the optional argument is quoted, it is taken as flags to use for the
6504 section. Each flag is a single character. The following flags are recognized:
6505
6506 @table @code
6507 @item b
6508 bss section (uninitialized data)
6509 @item n
6510 section is not loaded
6511 @item w
6512 writable section
6513 @item d
6514 data section
6515 @item e
6516 exclude section from linking
6517 @item r
6518 read-only section
6519 @item x
6520 executable section
6521 @item s
6522 shared section (meaningful for PE targets)
6523 @item a
6524 ignored. (For compatibility with the ELF version)
6525 @item y
6526 section is not readable (meaningful for PE targets)
6527 @item 0-9
6528 single-digit power-of-two section alignment (GNU extension)
6529 @end table
6530
6531 If no flags are specified, the default flags depend upon the section name. If
6532 the section name is not recognized, the default will be for the section to be
6533 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6534 from the section, rather than adding them, so if they are used on their own it
6535 will be as if no flags had been specified at all.
6536
6537 If the optional argument to the @code{.section} directive is not quoted, it is
6538 taken as a subsection number (@pxref{Sub-Sections}).
6539 @end ifset
6540
6541 @ifset ELF
6542 @ifset COFF
6543 @c only print the extra heading if both COFF and ELF are set
6544 @subheading ELF Version
6545 @end ifset
6546
6547 @cindex Section Stack
6548 This is one of the ELF section stack manipulation directives. The others are
6549 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6550 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6551 @code{.previous} (@pxref{Previous}).
6552
6553 @cindex @code{section} directive (ELF version)
6554 For ELF targets, the @code{.section} directive is used like this:
6555
6556 @smallexample
6557 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6558 @end smallexample
6559
6560 @anchor{Section Name Substitutions}
6561 @kindex --sectname-subst
6562 @cindex section name substitution
6563 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6564 argument may contain a substitution sequence. Only @code{%S} is supported
6565 at the moment, and substitutes the current section name. For example:
6566
6567 @smallexample
6568 .macro exception_code
6569 .section %S.exception
6570 [exception code here]
6571 .previous
6572 .endm
6573
6574 .text
6575 [code]
6576 exception_code
6577 [...]
6578
6579 .section .init
6580 [init code]
6581 exception_code
6582 [...]
6583 @end smallexample
6584
6585 The two @code{exception_code} invocations above would create the
6586 @code{.text.exception} and @code{.init.exception} sections respectively.
6587 This is useful e.g. to discriminate between ancillary sections that are
6588 tied to setup code to be discarded after use from ancillary sections that
6589 need to stay resident without having to define multiple @code{exception_code}
6590 macros just for that purpose.
6591
6592 The optional @var{flags} argument is a quoted string which may contain any
6593 combination of the following characters:
6594
6595 @table @code
6596 @item a
6597 section is allocatable
6598 @item d
6599 section is a GNU_MBIND section
6600 @item e
6601 section is excluded from executable and shared library.
6602 @item o
6603 section references a symbol defined in another section (the linked-to
6604 section) in the same file.
6605 @item w
6606 section is writable
6607 @item x
6608 section is executable
6609 @item M
6610 section is mergeable
6611 @item S
6612 section contains zero terminated strings
6613 @item G
6614 section is a member of a section group
6615 @item T
6616 section is used for thread-local-storage
6617 @item ?
6618 section is a member of the previously-current section's group, if any
6619 @item @code{<number>}
6620 a numeric value indicating the bits to be set in the ELF section header's flags
6621 field. Note - if one or more of the alphabetic characters described above is
6622 also included in the flags field, their bit values will be ORed into the
6623 resulting value.
6624 @item @code{<target specific>}
6625 some targets extend this list with their own flag characters
6626 @end table
6627
6628 Note - once a section's flags have been set they cannot be changed. There are
6629 a few exceptions to this rule however. Processor and application specific
6630 flags can be added to an already defined section. The @code{.interp},
6631 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6632 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6633 section may have the executable (@code{x}) flag added.
6634
6635 The optional @var{type} argument may contain one of the following constants:
6636
6637 @table @code
6638 @item @@progbits
6639 section contains data
6640 @item @@nobits
6641 section does not contain data (i.e., section only occupies space)
6642 @item @@note
6643 section contains data which is used by things other than the program
6644 @item @@init_array
6645 section contains an array of pointers to init functions
6646 @item @@fini_array
6647 section contains an array of pointers to finish functions
6648 @item @@preinit_array
6649 section contains an array of pointers to pre-init functions
6650 @item @@@code{<number>}
6651 a numeric value to be set as the ELF section header's type field.
6652 @item @@@code{<target specific>}
6653 some targets extend this list with their own types
6654 @end table
6655
6656 Many targets only support the first three section types. The type may be
6657 enclosed in double quotes if necessary.
6658
6659 Note on targets where the @code{@@} character is the start of a comment (eg
6660 ARM) then another character is used instead. For example the ARM port uses the
6661 @code{%} character.
6662
6663 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6664 special and have fixed types. Any attempt to declare them with a different
6665 type will generate an error from the assembler.
6666
6667 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6668 be specified as well as an extra argument---@var{entsize}---like this:
6669
6670 @smallexample
6671 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6672 @end smallexample
6673
6674 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6675 constants, each @var{entsize} octets long. Sections with both @code{M} and
6676 @code{S} must contain zero terminated strings where each character is
6677 @var{entsize} bytes long. The linker may remove duplicates within sections with
6678 the same name, same entity size and same flags. @var{entsize} must be an
6679 absolute expression. For sections with both @code{M} and @code{S}, a string
6680 which is a suffix of a larger string is considered a duplicate. Thus
6681 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6682 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6683
6684 If @var{flags} contains the @code{o} flag, then the @var{type} argument
6685 must be present along with an additional field like this:
6686
6687 @smallexample
6688 .section @var{name},"@var{flags}"o,@@@var{type},@var{SymbolName}
6689 @end smallexample
6690
6691 The @var{SymbolName} field specifies the symbol name which the section
6692 references.
6693
6694 Note: If both the @var{M} and @var{o} flags are present, then the fields
6695 for the Merge flag should come first, like this:
6696
6697 @smallexample
6698 .section @var{name},"@var{flags}"Mo,@@@var{type},@var{entsize},@var{SymbolName}
6699 @end smallexample
6700
6701 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6702 be present along with an additional field like this:
6703
6704 @smallexample
6705 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6706 @end smallexample
6707
6708 The @var{GroupName} field specifies the name of the section group to which this
6709 particular section belongs. The optional linkage field can contain:
6710
6711 @table @code
6712 @item comdat
6713 indicates that only one copy of this section should be retained
6714 @item .gnu.linkonce
6715 an alias for comdat
6716 @end table
6717
6718 Note: if both the @var{M} and @var{G} flags are present then the fields for
6719 the Merge flag should come first, like this:
6720
6721 @smallexample
6722 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6723 @end smallexample
6724
6725 If both @code{o} flag and @code{G} flag are present, then the
6726 @var{SymbolName} field for @code{o} comes first, like this:
6727
6728 @smallexample
6729 .section @var{name},"@var{flags}"oG,@@@var{type},@var{SymbolName},@var{GroupName}[,@var{linkage}]
6730 @end smallexample
6731
6732 If @var{flags} contains the @code{?} symbol then it may not also contain the
6733 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6734 present. Instead, @code{?} says to consider the section that's current before
6735 this directive. If that section used @code{G}, then the new section will use
6736 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6737 If not, then the @code{?} symbol has no effect.
6738
6739 The optional @var{unique,@code{<number>}} argument must come last. It
6740 assigns @var{@code{<number>}} as a unique section ID to distinguish
6741 different sections with the same section name like these:
6742
6743 @smallexample
6744 .section @var{name},"@var{flags}",@@@var{type},@var{unique,@code{<number>}}
6745 .section @var{name},"@var{flags}"G,@@@var{type},@var{GroupName},[@var{linkage}],@var{unique,@code{<number>}}
6746 .section @var{name},"@var{flags}"MG,@@@var{type},@var{entsize},@var{GroupName}[,@var{linkage}],@var{unique,@code{<number>}}
6747 @end smallexample
6748
6749 The valid values of @var{@code{<number>}} are between 0 and 4294967295.
6750
6751 If no flags are specified, the default flags depend upon the section name. If
6752 the section name is not recognized, the default will be for the section to have
6753 none of the above flags: it will not be allocated in memory, nor writable, nor
6754 executable. The section will contain data.
6755
6756 For ELF targets, the assembler supports another type of @code{.section}
6757 directive for compatibility with the Solaris assembler:
6758
6759 @smallexample
6760 .section "@var{name}"[, @var{flags}...]
6761 @end smallexample
6762
6763 Note that the section name is quoted. There may be a sequence of comma
6764 separated flags:
6765
6766 @table @code
6767 @item #alloc
6768 section is allocatable
6769 @item #write
6770 section is writable
6771 @item #execinstr
6772 section is executable
6773 @item #exclude
6774 section is excluded from executable and shared library.
6775 @item #tls
6776 section is used for thread local storage
6777 @end table
6778
6779 This directive replaces the current section and subsection. See the
6780 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6781 some examples of how this directive and the other section stack directives
6782 work.
6783 @end ifset
6784 @end ifset
6785
6786 @node Set
6787 @section @code{.set @var{symbol}, @var{expression}}
6788
6789 @cindex @code{set} directive
6790 @cindex symbol value, setting
6791 Set the value of @var{symbol} to @var{expression}. This
6792 changes @var{symbol}'s value and type to conform to
6793 @var{expression}. If @var{symbol} was flagged as external, it remains
6794 flagged (@pxref{Symbol Attributes}).
6795
6796 You may @code{.set} a symbol many times in the same assembly provided that the
6797 values given to the symbol are constants. Values that are based on expressions
6798 involving other symbols are allowed, but some targets may restrict this to only
6799 being done once per assembly. This is because those targets do not set the
6800 addresses of symbols at assembly time, but rather delay the assignment until a
6801 final link is performed. This allows the linker a chance to change the code in
6802 the files, changing the location of, and the relative distance between, various
6803 different symbols.
6804
6805 If you @code{.set} a global symbol, the value stored in the object
6806 file is the last value stored into it.
6807
6808 @ifset Z80
6809 On Z80 @code{set} is a real instruction, use @code{.set} or
6810 @samp{@var{symbol} defl @var{expression}} instead.
6811 @end ifset
6812
6813 @node Short
6814 @section @code{.short @var{expressions}}
6815
6816 @cindex @code{short} directive
6817 @ifset GENERIC
6818 @code{.short} is normally the same as @samp{.word}.
6819 @xref{Word,,@code{.word}}.
6820
6821 In some configurations, however, @code{.short} and @code{.word} generate
6822 numbers of different lengths. @xref{Machine Dependencies}.
6823 @end ifset
6824 @ifclear GENERIC
6825 @ifset W16
6826 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6827 @end ifset
6828 @ifset W32
6829 This expects zero or more @var{expressions}, and emits
6830 a 16 bit number for each.
6831 @end ifset
6832 @end ifclear
6833
6834 @node Single
6835 @section @code{.single @var{flonums}}
6836
6837 @cindex @code{single} directive
6838 @cindex floating point numbers (single)
6839 This directive assembles zero or more flonums, separated by commas. It
6840 has the same effect as @code{.float}.
6841 @ifset GENERIC
6842 The exact kind of floating point numbers emitted depends on how
6843 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6844 @end ifset
6845 @ifclear GENERIC
6846 @ifset IEEEFLOAT
6847 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6848 numbers in @sc{ieee} format.
6849 @end ifset
6850 @end ifclear
6851
6852 @ifset COFF-ELF
6853 @node Size
6854 @section @code{.size}
6855
6856 This directive is used to set the size associated with a symbol.
6857
6858 @ifset COFF
6859 @ifset ELF
6860 @c only print the extra heading if both COFF and ELF are set
6861 @subheading COFF Version
6862 @end ifset
6863
6864 @cindex @code{size} directive (COFF version)
6865 For COFF targets, the @code{.size} directive is only permitted inside
6866 @code{.def}/@code{.endef} pairs. It is used like this:
6867
6868 @smallexample
6869 .size @var{expression}
6870 @end smallexample
6871
6872 @end ifset
6873
6874 @ifset ELF
6875 @ifset COFF
6876 @c only print the extra heading if both COFF and ELF are set
6877 @subheading ELF Version
6878 @end ifset
6879
6880 @cindex @code{size} directive (ELF version)
6881 For ELF targets, the @code{.size} directive is used like this:
6882
6883 @smallexample
6884 .size @var{name} , @var{expression}
6885 @end smallexample
6886
6887 This directive sets the size associated with a symbol @var{name}.
6888 The size in bytes is computed from @var{expression} which can make use of label
6889 arithmetic. This directive is typically used to set the size of function
6890 symbols.
6891 @end ifset
6892 @end ifset
6893
6894 @ifclear no-space-dir
6895 @node Skip
6896 @section @code{.skip @var{size} [,@var{fill}]}
6897
6898 @cindex @code{skip} directive
6899 @cindex filling memory
6900 This directive emits @var{size} bytes, each of value @var{fill}. Both
6901 @var{size} and @var{fill} are absolute expressions. If the comma and
6902 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
6903 @samp{.space}.
6904 @end ifclear
6905
6906 @node Sleb128
6907 @section @code{.sleb128 @var{expressions}}
6908
6909 @cindex @code{sleb128} directive
6910 @var{sleb128} stands for ``signed little endian base 128.'' This is a
6911 compact, variable length representation of numbers used by the DWARF
6912 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
6913
6914 @ifclear no-space-dir
6915 @node Space
6916 @section @code{.space @var{size} [,@var{fill}]}
6917
6918 @cindex @code{space} directive
6919 @cindex filling memory
6920 This directive emits @var{size} bytes, each of value @var{fill}. Both
6921 @var{size} and @var{fill} are absolute expressions. If the comma
6922 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
6923 as @samp{.skip}.
6924
6925 @ifset HPPA
6926 @quotation
6927 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
6928 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
6929 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
6930 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
6931 for a summary.
6932 @end quotation
6933 @end ifset
6934 @end ifclear
6935
6936 @ifset have-stabs
6937 @node Stab
6938 @section @code{.stabd, .stabn, .stabs}
6939
6940 @cindex symbolic debuggers, information for
6941 @cindex @code{stab@var{x}} directives
6942 There are three directives that begin @samp{.stab}.
6943 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
6944 The symbols are not entered in the @command{@value{AS}} hash table: they
6945 cannot be referenced elsewhere in the source file.
6946 Up to five fields are required:
6947
6948 @table @var
6949 @item string
6950 This is the symbol's name. It may contain any character except
6951 @samp{\000}, so is more general than ordinary symbol names. Some
6952 debuggers used to code arbitrarily complex structures into symbol names
6953 using this field.
6954
6955 @item type
6956 An absolute expression. The symbol's type is set to the low 8 bits of
6957 this expression. Any bit pattern is permitted, but @code{@value{LD}}
6958 and debuggers choke on silly bit patterns.
6959
6960 @item other
6961 An absolute expression. The symbol's ``other'' attribute is set to the
6962 low 8 bits of this expression.
6963
6964 @item desc
6965 An absolute expression. The symbol's descriptor is set to the low 16
6966 bits of this expression.
6967
6968 @item value
6969 An absolute expression which becomes the symbol's value.
6970 @end table
6971
6972 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
6973 or @code{.stabs} statement, the symbol has probably already been created;
6974 you get a half-formed symbol in your object file. This is
6975 compatible with earlier assemblers!
6976
6977 @table @code
6978 @cindex @code{stabd} directive
6979 @item .stabd @var{type} , @var{other} , @var{desc}
6980
6981 The ``name'' of the symbol generated is not even an empty string.
6982 It is a null pointer, for compatibility. Older assemblers used a
6983 null pointer so they didn't waste space in object files with empty
6984 strings.
6985
6986 The symbol's value is set to the location counter,
6987 relocatably. When your program is linked, the value of this symbol
6988 is the address of the location counter when the @code{.stabd} was
6989 assembled.
6990
6991 @cindex @code{stabn} directive
6992 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
6993 The name of the symbol is set to the empty string @code{""}.
6994
6995 @cindex @code{stabs} directive
6996 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
6997 All five fields are specified.
6998 @end table
6999 @end ifset
7000 @c end have-stabs
7001
7002 @node String
7003 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
7004 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
7005
7006 @cindex string, copying to object file
7007 @cindex string8, copying to object file
7008 @cindex string16, copying to object file
7009 @cindex string32, copying to object file
7010 @cindex string64, copying to object file
7011 @cindex @code{string} directive
7012 @cindex @code{string8} directive
7013 @cindex @code{string16} directive
7014 @cindex @code{string32} directive
7015 @cindex @code{string64} directive
7016
7017 Copy the characters in @var{str} to the object file. You may specify more than
7018 one string to copy, separated by commas. Unless otherwise specified for a
7019 particular machine, the assembler marks the end of each string with a 0 byte.
7020 You can use any of the escape sequences described in @ref{Strings,,Strings}.
7021
7022 The variants @code{string16}, @code{string32} and @code{string64} differ from
7023 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
7024 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
7025 are stored in target endianness byte order.
7026
7027 Example:
7028 @smallexample
7029 .string32 "BYE"
7030 expands to:
7031 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
7032 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
7033 @end smallexample
7034
7035
7036 @node Struct
7037 @section @code{.struct @var{expression}}
7038
7039 @cindex @code{struct} directive
7040 Switch to the absolute section, and set the section offset to @var{expression},
7041 which must be an absolute expression. You might use this as follows:
7042 @smallexample
7043 .struct 0
7044 field1:
7045 .struct field1 + 4
7046 field2:
7047 .struct field2 + 4
7048 field3:
7049 @end smallexample
7050 This would define the symbol @code{field1} to have the value 0, the symbol
7051 @code{field2} to have the value 4, and the symbol @code{field3} to have the
7052 value 8. Assembly would be left in the absolute section, and you would need to
7053 use a @code{.section} directive of some sort to change to some other section
7054 before further assembly.
7055
7056 @ifset ELF
7057 @node SubSection
7058 @section @code{.subsection @var{name}}
7059
7060 @cindex @code{subsection} directive
7061 @cindex Section Stack
7062 This is one of the ELF section stack manipulation directives. The others are
7063 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
7064 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
7065 (@pxref{Previous}).
7066
7067 This directive replaces the current subsection with @code{name}. The current
7068 section is not changed. The replaced subsection is put onto the section stack
7069 in place of the then current top of stack subsection.
7070 @end ifset
7071
7072 @ifset ELF
7073 @node Symver
7074 @section @code{.symver}
7075 @cindex @code{symver} directive
7076 @cindex symbol versioning
7077 @cindex versions of symbols
7078 Use the @code{.symver} directive to bind symbols to specific version nodes
7079 within a source file. This is only supported on ELF platforms, and is
7080 typically used when assembling files to be linked into a shared library.
7081 There are cases where it may make sense to use this in objects to be bound
7082 into an application itself so as to override a versioned symbol from a
7083 shared library.
7084
7085 For ELF targets, the @code{.symver} directive can be used like this:
7086 @smallexample
7087 .symver @var{name}, @var{name2@@nodename}
7088 @end smallexample
7089 If the symbol @var{name} is defined within the file
7090 being assembled, the @code{.symver} directive effectively creates a symbol
7091 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7092 just don't try and create a regular alias is that the @var{@@} character isn't
7093 permitted in symbol names. The @var{name2} part of the name is the actual name
7094 of the symbol by which it will be externally referenced. The name @var{name}
7095 itself is merely a name of convenience that is used so that it is possible to
7096 have definitions for multiple versions of a function within a single source
7097 file, and so that the compiler can unambiguously know which version of a
7098 function is being mentioned. The @var{nodename} portion of the alias should be
7099 the name of a node specified in the version script supplied to the linker when
7100 building a shared library. If you are attempting to override a versioned
7101 symbol from a shared library, then @var{nodename} should correspond to the
7102 nodename of the symbol you are trying to override.
7103
7104 If the symbol @var{name} is not defined within the file being assembled, all
7105 references to @var{name} will be changed to @var{name2@@nodename}. If no
7106 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7107 symbol table.
7108
7109 Another usage of the @code{.symver} directive is:
7110 @smallexample
7111 .symver @var{name}, @var{name2@@@@nodename}
7112 @end smallexample
7113 In this case, the symbol @var{name} must exist and be defined within
7114 the file being assembled. It is similar to @var{name2@@nodename}. The
7115 difference is @var{name2@@@@nodename} will also be used to resolve
7116 references to @var{name2} by the linker.
7117
7118 The third usage of the @code{.symver} directive is:
7119 @smallexample
7120 .symver @var{name}, @var{name2@@@@@@nodename}
7121 @end smallexample
7122 When @var{name} is not defined within the
7123 file being assembled, it is treated as @var{name2@@nodename}. When
7124 @var{name} is defined within the file being assembled, the symbol
7125 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7126 @end ifset
7127
7128 @ifset COFF
7129 @node Tag
7130 @section @code{.tag @var{structname}}
7131
7132 @cindex COFF structure debugging
7133 @cindex structure debugging, COFF
7134 @cindex @code{tag} directive
7135 This directive is generated by compilers to include auxiliary debugging
7136 information in the symbol table. It is only permitted inside
7137 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7138 definitions in the symbol table with instances of those structures.
7139 @end ifset
7140
7141 @node Text
7142 @section @code{.text @var{subsection}}
7143
7144 @cindex @code{text} directive
7145 Tells @command{@value{AS}} to assemble the following statements onto the end of
7146 the text subsection numbered @var{subsection}, which is an absolute
7147 expression. If @var{subsection} is omitted, subsection number zero
7148 is used.
7149
7150 @node Title
7151 @section @code{.title "@var{heading}"}
7152
7153 @cindex @code{title} directive
7154 @cindex listing control: title line
7155 Use @var{heading} as the title (second line, immediately after the
7156 source file name and pagenumber) when generating assembly listings.
7157
7158 This directive affects subsequent pages, as well as the current page if
7159 it appears within ten lines of the top of a page.
7160
7161 @ifset COFF-ELF
7162 @node Type
7163 @section @code{.type}
7164
7165 This directive is used to set the type of a symbol.
7166
7167 @ifset COFF
7168 @ifset ELF
7169 @c only print the extra heading if both COFF and ELF are set
7170 @subheading COFF Version
7171 @end ifset
7172
7173 @cindex COFF symbol type
7174 @cindex symbol type, COFF
7175 @cindex @code{type} directive (COFF version)
7176 For COFF targets, this directive is permitted only within
7177 @code{.def}/@code{.endef} pairs. It is used like this:
7178
7179 @smallexample
7180 .type @var{int}
7181 @end smallexample
7182
7183 This records the integer @var{int} as the type attribute of a symbol table
7184 entry.
7185
7186 @end ifset
7187
7188 @ifset ELF
7189 @ifset COFF
7190 @c only print the extra heading if both COFF and ELF are set
7191 @subheading ELF Version
7192 @end ifset
7193
7194 @cindex ELF symbol type
7195 @cindex symbol type, ELF
7196 @cindex @code{type} directive (ELF version)
7197 For ELF targets, the @code{.type} directive is used like this:
7198
7199 @smallexample
7200 .type @var{name} , @var{type description}
7201 @end smallexample
7202
7203 This sets the type of symbol @var{name} to be either a
7204 function symbol or an object symbol. There are five different syntaxes
7205 supported for the @var{type description} field, in order to provide
7206 compatibility with various other assemblers.
7207
7208 Because some of the characters used in these syntaxes (such as @samp{@@} and
7209 @samp{#}) are comment characters for some architectures, some of the syntaxes
7210 below do not work on all architectures. The first variant will be accepted by
7211 the GNU assembler on all architectures so that variant should be used for
7212 maximum portability, if you do not need to assemble your code with other
7213 assemblers.
7214
7215 The syntaxes supported are:
7216
7217 @smallexample
7218 .type <name> STT_<TYPE_IN_UPPER_CASE>
7219 .type <name>,#<type>
7220 .type <name>,@@<type>
7221 .type <name>,%<type>
7222 .type <name>,"<type>"
7223 @end smallexample
7224
7225 The types supported are:
7226
7227 @table @gcctabopt
7228 @item STT_FUNC
7229 @itemx function
7230 Mark the symbol as being a function name.
7231
7232 @item STT_GNU_IFUNC
7233 @itemx gnu_indirect_function
7234 Mark the symbol as an indirect function when evaluated during reloc
7235 processing. (This is only supported on assemblers targeting GNU systems).
7236
7237 @item STT_OBJECT
7238 @itemx object
7239 Mark the symbol as being a data object.
7240
7241 @item STT_TLS
7242 @itemx tls_object
7243 Mark the symbol as being a thread-local data object.
7244
7245 @item STT_COMMON
7246 @itemx common
7247 Mark the symbol as being a common data object.
7248
7249 @item STT_NOTYPE
7250 @itemx notype
7251 Does not mark the symbol in any way. It is supported just for completeness.
7252
7253 @item gnu_unique_object
7254 Marks the symbol as being a globally unique data object. The dynamic linker
7255 will make sure that in the entire process there is just one symbol with this
7256 name and type in use. (This is only supported on assemblers targeting GNU
7257 systems).
7258
7259 @end table
7260
7261 Changing between incompatible types other than from/to STT_NOTYPE will
7262 result in a diagnostic. An intermediate change to STT_NOTYPE will silence
7263 this.
7264
7265 Note: Some targets support extra types in addition to those listed above.
7266
7267 @end ifset
7268 @end ifset
7269
7270 @node Uleb128
7271 @section @code{.uleb128 @var{expressions}}
7272
7273 @cindex @code{uleb128} directive
7274 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7275 compact, variable length representation of numbers used by the DWARF
7276 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7277
7278 @ifset COFF
7279 @node Val
7280 @section @code{.val @var{addr}}
7281
7282 @cindex @code{val} directive
7283 @cindex COFF value attribute
7284 @cindex value attribute, COFF
7285 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7286 records the address @var{addr} as the value attribute of a symbol table
7287 entry.
7288 @end ifset
7289
7290 @ifset ELF
7291 @node Version
7292 @section @code{.version "@var{string}"}
7293
7294 @cindex @code{version} directive
7295 This directive creates a @code{.note} section and places into it an ELF
7296 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7297 @end ifset
7298
7299 @ifset ELF
7300 @node VTableEntry
7301 @section @code{.vtable_entry @var{table}, @var{offset}}
7302
7303 @cindex @code{vtable_entry} directive
7304 This directive finds or creates a symbol @code{table} and creates a
7305 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7306
7307 @node VTableInherit
7308 @section @code{.vtable_inherit @var{child}, @var{parent}}
7309
7310 @cindex @code{vtable_inherit} directive
7311 This directive finds the symbol @code{child} and finds or creates the symbol
7312 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7313 parent whose addend is the value of the child symbol. As a special case the
7314 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7315 @end ifset
7316
7317 @node Warning
7318 @section @code{.warning "@var{string}"}
7319 @cindex warning directive
7320 Similar to the directive @code{.error}
7321 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7322
7323 @node Weak
7324 @section @code{.weak @var{names}}
7325
7326 @cindex @code{weak} directive
7327 This directive sets the weak attribute on the comma separated list of symbol
7328 @code{names}. If the symbols do not already exist, they will be created.
7329
7330 On COFF targets other than PE, weak symbols are a GNU extension. This
7331 directive sets the weak attribute on the comma separated list of symbol
7332 @code{names}. If the symbols do not already exist, they will be created.
7333
7334 On the PE target, weak symbols are supported natively as weak aliases.
7335 When a weak symbol is created that is not an alias, GAS creates an
7336 alternate symbol to hold the default value.
7337
7338 @node Weakref
7339 @section @code{.weakref @var{alias}, @var{target}}
7340
7341 @cindex @code{weakref} directive
7342 This directive creates an alias to the target symbol that enables the symbol to
7343 be referenced with weak-symbol semantics, but without actually making it weak.
7344 If direct references or definitions of the symbol are present, then the symbol
7345 will not be weak, but if all references to it are through weak references, the
7346 symbol will be marked as weak in the symbol table.
7347
7348 The effect is equivalent to moving all references to the alias to a separate
7349 assembly source file, renaming the alias to the symbol in it, declaring the
7350 symbol as weak there, and running a reloadable link to merge the object files
7351 resulting from the assembly of the new source file and the old source file that
7352 had the references to the alias removed.
7353
7354 The alias itself never makes to the symbol table, and is entirely handled
7355 within the assembler.
7356
7357 @node Word
7358 @section @code{.word @var{expressions}}
7359
7360 @cindex @code{word} directive
7361 This directive expects zero or more @var{expressions}, of any section,
7362 separated by commas.
7363 @ifclear GENERIC
7364 @ifset W32
7365 For each expression, @command{@value{AS}} emits a 32-bit number.
7366 @end ifset
7367 @ifset W16
7368 For each expression, @command{@value{AS}} emits a 16-bit number.
7369 @end ifset
7370 @end ifclear
7371 @ifset GENERIC
7372
7373 The size of the number emitted, and its byte order,
7374 depend on what target computer the assembly is for.
7375 @end ifset
7376
7377 @c on sparc the "special treatment to support compilers" doesn't
7378 @c happen---32-bit addressability, period; no long/short jumps.
7379 @ifset DIFF-TBL-KLUGE
7380 @cindex difference tables altered
7381 @cindex altered difference tables
7382 @quotation
7383 @emph{Warning: Special Treatment to support Compilers}
7384 @end quotation
7385
7386 @ifset GENERIC
7387 Machines with a 32-bit address space, but that do less than 32-bit
7388 addressing, require the following special treatment. If the machine of
7389 interest to you does 32-bit addressing (or doesn't require it;
7390 @pxref{Machine Dependencies}), you can ignore this issue.
7391
7392 @end ifset
7393 In order to assemble compiler output into something that works,
7394 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7395 Directives of the form @samp{.word sym1-sym2} are often emitted by
7396 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7397 directive of the form @samp{.word sym1-sym2}, and the difference between
7398 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7399 creates a @dfn{secondary jump table}, immediately before the next label.
7400 This secondary jump table is preceded by a short-jump to the
7401 first byte after the secondary table. This short-jump prevents the flow
7402 of control from accidentally falling into the new table. Inside the
7403 table is a long-jump to @code{sym2}. The original @samp{.word}
7404 contains @code{sym1} minus the address of the long-jump to
7405 @code{sym2}.
7406
7407 If there were several occurrences of @samp{.word sym1-sym2} before the
7408 secondary jump table, all of them are adjusted. If there was a
7409 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7410 long-jump to @code{sym4} is included in the secondary jump table,
7411 and the @code{.word} directives are adjusted to contain @code{sym3}
7412 minus the address of the long-jump to @code{sym4}; and so on, for as many
7413 entries in the original jump table as necessary.
7414
7415 @ifset INTERNALS
7416 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7417 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7418 assembly language programmers.
7419 @end ifset
7420 @end ifset
7421 @c end DIFF-TBL-KLUGE
7422
7423 @ifclear no-space-dir
7424 @node Zero
7425 @section @code{.zero @var{size}}
7426
7427 @cindex @code{zero} directive
7428 @cindex filling memory with zero bytes
7429 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7430 expression. This directive is actually an alias for the @samp{.skip} directive
7431 so it can take an optional second argument of the value to store in the bytes
7432 instead of zero. Using @samp{.zero} in this way would be confusing however.
7433 @end ifclear
7434
7435 @ifset ELF
7436 @node 2byte
7437 @section @code{.2byte @var{expression} [, @var{expression}]*}
7438 @cindex @code{2byte} directive
7439 @cindex two-byte integer
7440 @cindex integer, 2-byte
7441
7442 This directive expects zero or more expressions, separated by commas. If there
7443 are no expressions then the directive does nothing. Otherwise each expression
7444 is evaluated in turn and placed in the next two bytes of the current output
7445 section, using the endian model of the target. If an expression will not fit
7446 in two bytes, a warning message is displayed and the least significant two
7447 bytes of the expression's value are used. If an expression cannot be evaluated
7448 at assembly time then relocations will be generated in order to compute the
7449 value at link time.
7450
7451 This directive does not apply any alignment before or after inserting the
7452 values. As a result of this, if relocations are generated, they may be
7453 different from those used for inserting values with a guaranteed alignment.
7454
7455 This directive is only available for ELF targets,
7456
7457 @node 4byte
7458 @section @code{.4byte @var{expression} [, @var{expression}]*}
7459 @cindex @code{4byte} directive
7460 @cindex four-byte integer
7461 @cindex integer, 4-byte
7462
7463 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7464 long values into the output.
7465
7466 @node 8byte
7467 @section @code{.8byte @var{expression} [, @var{expression}]*}
7468 @cindex @code{8byte} directive
7469 @cindex eight-byte integer
7470 @cindex integer, 8-byte
7471
7472 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7473 byte long bignum values into the output.
7474
7475 @end ifset
7476
7477 @node Deprecated
7478 @section Deprecated Directives
7479
7480 @cindex deprecated directives
7481 @cindex obsolescent directives
7482 One day these directives won't work.
7483 They are included for compatibility with older assemblers.
7484 @table @t
7485 @item .abort
7486 @item .line
7487 @end table
7488
7489 @ifset ELF
7490 @node Object Attributes
7491 @chapter Object Attributes
7492 @cindex object attributes
7493
7494 @command{@value{AS}} assembles source files written for a specific architecture
7495 into object files for that architecture. But not all object files are alike.
7496 Many architectures support incompatible variations. For instance, floating
7497 point arguments might be passed in floating point registers if the object file
7498 requires hardware floating point support---or floating point arguments might be
7499 passed in integer registers if the object file supports processors with no
7500 hardware floating point unit. Or, if two objects are built for different
7501 generations of the same architecture, the combination may require the
7502 newer generation at run-time.
7503
7504 This information is useful during and after linking. At link time,
7505 @command{@value{LD}} can warn about incompatible object files. After link
7506 time, tools like @command{gdb} can use it to process the linked file
7507 correctly.
7508
7509 Compatibility information is recorded as a series of object attributes. Each
7510 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7511 string, and indicates who sets the meaning of the tag. The tag is an integer,
7512 and indicates what property the attribute describes. The value may be a string
7513 or an integer, and indicates how the property affects this object. Missing
7514 attributes are the same as attributes with a zero value or empty string value.
7515
7516 Object attributes were developed as part of the ABI for the ARM Architecture.
7517 The file format is documented in @cite{ELF for the ARM Architecture}.
7518
7519 @menu
7520 * GNU Object Attributes:: @sc{gnu} Object Attributes
7521 * Defining New Object Attributes:: Defining New Object Attributes
7522 @end menu
7523
7524 @node GNU Object Attributes
7525 @section @sc{gnu} Object Attributes
7526
7527 The @code{.gnu_attribute} directive records an object attribute
7528 with vendor @samp{gnu}.
7529
7530 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7531 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7532 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7533 2} is set for architecture-independent attributes and clear for
7534 architecture-dependent ones.
7535
7536 @subsection Common @sc{gnu} attributes
7537
7538 These attributes are valid on all architectures.
7539
7540 @table @r
7541 @item Tag_compatibility (32)
7542 The compatibility attribute takes an integer flag value and a vendor name. If
7543 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7544 then the file is only compatible with the named toolchain. If it is greater
7545 than 1, the file can only be processed by other toolchains under some private
7546 arrangement indicated by the flag value and the vendor name.
7547 @end table
7548
7549 @subsection MIPS Attributes
7550
7551 @table @r
7552 @item Tag_GNU_MIPS_ABI_FP (4)
7553 The floating-point ABI used by this object file. The value will be:
7554
7555 @itemize @bullet
7556 @item
7557 0 for files not affected by the floating-point ABI.
7558 @item
7559 1 for files using the hardware floating-point ABI with a standard
7560 double-precision FPU.
7561 @item
7562 2 for files using the hardware floating-point ABI with a single-precision FPU.
7563 @item
7564 3 for files using the software floating-point ABI.
7565 @item
7566 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7567 floating-point registers, 32-bit general-purpose registers and increased the
7568 number of callee-saved floating-point registers.
7569 @item
7570 5 for files using the hardware floating-point ABI with a double-precision FPU
7571 with either 32-bit or 64-bit floating-point registers and 32-bit
7572 general-purpose registers.
7573 @item
7574 6 for files using the hardware floating-point ABI with 64-bit floating-point
7575 registers and 32-bit general-purpose registers.
7576 @item
7577 7 for files using the hardware floating-point ABI with 64-bit floating-point
7578 registers, 32-bit general-purpose registers and a rule that forbids the
7579 direct use of odd-numbered single-precision floating-point registers.
7580 @end itemize
7581 @end table
7582
7583 @subsection PowerPC Attributes
7584
7585 @table @r
7586 @item Tag_GNU_Power_ABI_FP (4)
7587 The floating-point ABI used by this object file. The value will be:
7588
7589 @itemize @bullet
7590 @item
7591 0 for files not affected by the floating-point ABI.
7592 @item
7593 1 for files using double-precision hardware floating-point ABI.
7594 @item
7595 2 for files using the software floating-point ABI.
7596 @item
7597 3 for files using single-precision hardware floating-point ABI.
7598 @end itemize
7599
7600 @item Tag_GNU_Power_ABI_Vector (8)
7601 The vector ABI used by this object file. The value will be:
7602
7603 @itemize @bullet
7604 @item
7605 0 for files not affected by the vector ABI.
7606 @item
7607 1 for files using general purpose registers to pass vectors.
7608 @item
7609 2 for files using AltiVec registers to pass vectors.
7610 @item
7611 3 for files using SPE registers to pass vectors.
7612 @end itemize
7613 @end table
7614
7615 @subsection IBM z Systems Attributes
7616
7617 @table @r
7618 @item Tag_GNU_S390_ABI_Vector (8)
7619 The vector ABI used by this object file. The value will be:
7620
7621 @itemize @bullet
7622 @item
7623 0 for files not affected by the vector ABI.
7624 @item
7625 1 for files using software vector ABI.
7626 @item
7627 2 for files using hardware vector ABI.
7628 @end itemize
7629 @end table
7630
7631 @subsection MSP430 Attributes
7632
7633 @table @r
7634 @item Tag_GNU_MSP430_Data_Region (4)
7635 The data region used by this object file. The value will be:
7636
7637 @itemize @bullet
7638 @item
7639 0 for files not using the large memory model.
7640 @item
7641 1 for files which have been compiled with the condition that all
7642 data is in the lower memory region, i.e. below address 0x10000.
7643 @item
7644 2 for files which allow data to be placed in the full 20-bit memory range.
7645 @end itemize
7646 @end table
7647
7648 @node Defining New Object Attributes
7649 @section Defining New Object Attributes
7650
7651 If you want to define a new @sc{gnu} object attribute, here are the places you
7652 will need to modify. New attributes should be discussed on the @samp{binutils}
7653 mailing list.
7654
7655 @itemize @bullet
7656 @item
7657 This manual, which is the official register of attributes.
7658 @item
7659 The header for your architecture @file{include/elf}, to define the tag.
7660 @item
7661 The @file{bfd} support file for your architecture, to merge the attribute
7662 and issue any appropriate link warnings.
7663 @item
7664 Test cases in @file{ld/testsuite} for merging and link warnings.
7665 @item
7666 @file{binutils/readelf.c} to display your attribute.
7667 @item
7668 GCC, if you want the compiler to mark the attribute automatically.
7669 @end itemize
7670
7671 @end ifset
7672
7673 @ifset GENERIC
7674 @node Machine Dependencies
7675 @chapter Machine Dependent Features
7676
7677 @cindex machine dependencies
7678 The machine instruction sets are (almost by definition) different on
7679 each machine where @command{@value{AS}} runs. Floating point representations
7680 vary as well, and @command{@value{AS}} often supports a few additional
7681 directives or command-line options for compatibility with other
7682 assemblers on a particular platform. Finally, some versions of
7683 @command{@value{AS}} support special pseudo-instructions for branch
7684 optimization.
7685
7686 This chapter discusses most of these differences, though it does not
7687 include details on any machine's instruction set. For details on that
7688 subject, see the hardware manufacturer's manual.
7689
7690 @menu
7691 @ifset AARCH64
7692 * AArch64-Dependent:: AArch64 Dependent Features
7693 @end ifset
7694 @ifset ALPHA
7695 * Alpha-Dependent:: Alpha Dependent Features
7696 @end ifset
7697 @ifset ARC
7698 * ARC-Dependent:: ARC Dependent Features
7699 @end ifset
7700 @ifset ARM
7701 * ARM-Dependent:: ARM Dependent Features
7702 @end ifset
7703 @ifset AVR
7704 * AVR-Dependent:: AVR Dependent Features
7705 @end ifset
7706 @ifset Blackfin
7707 * Blackfin-Dependent:: Blackfin Dependent Features
7708 @end ifset
7709 @ifset BPF
7710 * BPF-Dependent:: BPF Dependent Features
7711 @end ifset
7712 @ifset CR16
7713 * CR16-Dependent:: CR16 Dependent Features
7714 @end ifset
7715 @ifset CRIS
7716 * CRIS-Dependent:: CRIS Dependent Features
7717 @end ifset
7718 @ifset CSKY
7719 * C-SKY-Dependent:: C-SKY Dependent Features
7720 @end ifset
7721 @ifset D10V
7722 * D10V-Dependent:: D10V Dependent Features
7723 @end ifset
7724 @ifset D30V
7725 * D30V-Dependent:: D30V Dependent Features
7726 @end ifset
7727 @ifset EPIPHANY
7728 * Epiphany-Dependent:: EPIPHANY Dependent Features
7729 @end ifset
7730 @ifset H8/300
7731 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7732 @end ifset
7733 @ifset HPPA
7734 * HPPA-Dependent:: HPPA Dependent Features
7735 @end ifset
7736 @ifset I80386
7737 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7738 @end ifset
7739 @ifset IA64
7740 * IA-64-Dependent:: Intel IA-64 Dependent Features
7741 @end ifset
7742 @ifset IP2K
7743 * IP2K-Dependent:: IP2K Dependent Features
7744 @end ifset
7745 @ifset LM32
7746 * LM32-Dependent:: LM32 Dependent Features
7747 @end ifset
7748 @ifset M32C
7749 * M32C-Dependent:: M32C Dependent Features
7750 @end ifset
7751 @ifset M32R
7752 * M32R-Dependent:: M32R Dependent Features
7753 @end ifset
7754 @ifset M680X0
7755 * M68K-Dependent:: M680x0 Dependent Features
7756 @end ifset
7757 @ifset M68HC11
7758 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7759 @end ifset
7760 @ifset S12Z
7761 * S12Z-Dependent:: S12Z Dependent Features
7762 @end ifset
7763 @ifset METAG
7764 * Meta-Dependent :: Meta Dependent Features
7765 @end ifset
7766 @ifset MICROBLAZE
7767 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7768 @end ifset
7769 @ifset MIPS
7770 * MIPS-Dependent:: MIPS Dependent Features
7771 @end ifset
7772 @ifset MMIX
7773 * MMIX-Dependent:: MMIX Dependent Features
7774 @end ifset
7775 @ifset MSP430
7776 * MSP430-Dependent:: MSP430 Dependent Features
7777 @end ifset
7778 @ifset NDS32
7779 * NDS32-Dependent:: Andes NDS32 Dependent Features
7780 @end ifset
7781 @ifset NIOSII
7782 * NiosII-Dependent:: Altera Nios II Dependent Features
7783 @end ifset
7784 @ifset NS32K
7785 * NS32K-Dependent:: NS32K Dependent Features
7786 @end ifset
7787 @ifset OPENRISC
7788 * OpenRISC-Dependent:: OpenRISC 1000 Features
7789 @end ifset
7790 @ifset PDP11
7791 * PDP-11-Dependent:: PDP-11 Dependent Features
7792 @end ifset
7793 @ifset PJ
7794 * PJ-Dependent:: picoJava Dependent Features
7795 @end ifset
7796 @ifset PPC
7797 * PPC-Dependent:: PowerPC Dependent Features
7798 @end ifset
7799 @ifset PRU
7800 * PRU-Dependent:: PRU Dependent Features
7801 @end ifset
7802 @ifset RISCV
7803 * RISC-V-Dependent:: RISC-V Dependent Features
7804 @end ifset
7805 @ifset RL78
7806 * RL78-Dependent:: RL78 Dependent Features
7807 @end ifset
7808 @ifset RX
7809 * RX-Dependent:: RX Dependent Features
7810 @end ifset
7811 @ifset S390
7812 * S/390-Dependent:: IBM S/390 Dependent Features
7813 @end ifset
7814 @ifset SCORE
7815 * SCORE-Dependent:: SCORE Dependent Features
7816 @end ifset
7817 @ifset SH
7818 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7819 @end ifset
7820 @ifset SPARC
7821 * Sparc-Dependent:: SPARC Dependent Features
7822 @end ifset
7823 @ifset TIC54X
7824 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7825 @end ifset
7826 @ifset TIC6X
7827 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7828 @end ifset
7829 @ifset TILEGX
7830 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7831 @end ifset
7832 @ifset TILEPRO
7833 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7834 @end ifset
7835 @ifset V850
7836 * V850-Dependent:: V850 Dependent Features
7837 @end ifset
7838 @ifset VAX
7839 * Vax-Dependent:: VAX Dependent Features
7840 @end ifset
7841 @ifset VISIUM
7842 * Visium-Dependent:: Visium Dependent Features
7843 @end ifset
7844 @ifset WASM32
7845 * WebAssembly-Dependent:: WebAssembly Dependent Features
7846 @end ifset
7847 @ifset XGATE
7848 * XGATE-Dependent:: XGATE Dependent Features
7849 @end ifset
7850 @ifset XSTORMY16
7851 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7852 @end ifset
7853 @ifset XTENSA
7854 * Xtensa-Dependent:: Xtensa Dependent Features
7855 @end ifset
7856 @ifset Z80
7857 * Z80-Dependent:: Z80 Dependent Features
7858 @end ifset
7859 @ifset Z8000
7860 * Z8000-Dependent:: Z8000 Dependent Features
7861 @end ifset
7862 @end menu
7863
7864 @lowersections
7865 @end ifset
7866
7867 @c The following major nodes are *sections* in the GENERIC version, *chapters*
7868 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
7869 @c peculiarity: to preserve cross-references, there must be a node called
7870 @c "Machine Dependencies". Hence the conditional nodenames in each
7871 @c major node below. Node defaulting in makeinfo requires adjacency of
7872 @c node and sectioning commands; hence the repetition of @chapter BLAH
7873 @c in both conditional blocks.
7874
7875 @ifset AARCH64
7876 @include c-aarch64.texi
7877 @end ifset
7878
7879 @ifset ALPHA
7880 @include c-alpha.texi
7881 @end ifset
7882
7883 @ifset ARC
7884 @include c-arc.texi
7885 @end ifset
7886
7887 @ifset ARM
7888 @include c-arm.texi
7889 @end ifset
7890
7891 @ifset AVR
7892 @include c-avr.texi
7893 @end ifset
7894
7895 @ifset Blackfin
7896 @include c-bfin.texi
7897 @end ifset
7898
7899 @ifset BPF
7900 @include c-bpf.texi
7901 @end ifset
7902
7903 @ifset CR16
7904 @include c-cr16.texi
7905 @end ifset
7906
7907 @ifset CRIS
7908 @include c-cris.texi
7909 @end ifset
7910
7911 @ifset CSKY
7912 @include c-csky.texi
7913 @end ifset
7914
7915 @ifset Renesas-all
7916 @ifclear GENERIC
7917 @node Machine Dependencies
7918 @chapter Machine Dependent Features
7919
7920 The machine instruction sets are different on each Renesas chip family,
7921 and there are also some syntax differences among the families. This
7922 chapter describes the specific @command{@value{AS}} features for each
7923 family.
7924
7925 @menu
7926 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7927 * SH-Dependent:: Renesas SH Dependent Features
7928 @end menu
7929 @lowersections
7930 @end ifclear
7931 @end ifset
7932
7933 @ifset D10V
7934 @include c-d10v.texi
7935 @end ifset
7936
7937 @ifset D30V
7938 @include c-d30v.texi
7939 @end ifset
7940
7941 @ifset EPIPHANY
7942 @include c-epiphany.texi
7943 @end ifset
7944
7945 @ifset H8/300
7946 @include c-h8300.texi
7947 @end ifset
7948
7949 @ifset HPPA
7950 @include c-hppa.texi
7951 @end ifset
7952
7953 @ifset I80386
7954 @include c-i386.texi
7955 @end ifset
7956
7957 @ifset IA64
7958 @include c-ia64.texi
7959 @end ifset
7960
7961 @ifset IP2K
7962 @include c-ip2k.texi
7963 @end ifset
7964
7965 @ifset LM32
7966 @include c-lm32.texi
7967 @end ifset
7968
7969 @ifset M32C
7970 @include c-m32c.texi
7971 @end ifset
7972
7973 @ifset M32R
7974 @include c-m32r.texi
7975 @end ifset
7976
7977 @ifset M680X0
7978 @include c-m68k.texi
7979 @end ifset
7980
7981 @ifset M68HC11
7982 @include c-m68hc11.texi
7983 @end ifset
7984
7985 @ifset S12Z
7986 @include c-s12z.texi
7987 @end ifset
7988
7989 @ifset METAG
7990 @include c-metag.texi
7991 @end ifset
7992
7993 @ifset MICROBLAZE
7994 @include c-microblaze.texi
7995 @end ifset
7996
7997 @ifset MIPS
7998 @include c-mips.texi
7999 @end ifset
8000
8001 @ifset MMIX
8002 @include c-mmix.texi
8003 @end ifset
8004
8005 @ifset MSP430
8006 @include c-msp430.texi
8007 @end ifset
8008
8009 @ifset NDS32
8010 @include c-nds32.texi
8011 @end ifset
8012
8013 @ifset NIOSII
8014 @include c-nios2.texi
8015 @end ifset
8016
8017 @ifset NS32K
8018 @include c-ns32k.texi
8019 @end ifset
8020
8021 @ifset OPENRISC
8022 @include c-or1k.texi
8023 @end ifset
8024
8025 @ifset PDP11
8026 @include c-pdp11.texi
8027 @end ifset
8028
8029 @ifset PJ
8030 @include c-pj.texi
8031 @end ifset
8032
8033 @ifset PPC
8034 @include c-ppc.texi
8035 @end ifset
8036
8037 @ifset PRU
8038 @include c-pru.texi
8039 @end ifset
8040
8041 @ifset RISCV
8042 @include c-riscv.texi
8043 @end ifset
8044
8045 @ifset RL78
8046 @include c-rl78.texi
8047 @end ifset
8048
8049 @ifset RX
8050 @include c-rx.texi
8051 @end ifset
8052
8053 @ifset S390
8054 @include c-s390.texi
8055 @end ifset
8056
8057 @ifset SCORE
8058 @include c-score.texi
8059 @end ifset
8060
8061 @ifset SH
8062 @include c-sh.texi
8063 @end ifset
8064
8065 @ifset SPARC
8066 @include c-sparc.texi
8067 @end ifset
8068
8069 @ifset TIC54X
8070 @include c-tic54x.texi
8071 @end ifset
8072
8073 @ifset TIC6X
8074 @include c-tic6x.texi
8075 @end ifset
8076
8077 @ifset TILEGX
8078 @include c-tilegx.texi
8079 @end ifset
8080
8081 @ifset TILEPRO
8082 @include c-tilepro.texi
8083 @end ifset
8084
8085 @ifset V850
8086 @include c-v850.texi
8087 @end ifset
8088
8089 @ifset VAX
8090 @include c-vax.texi
8091 @end ifset
8092
8093 @ifset VISIUM
8094 @include c-visium.texi
8095 @end ifset
8096
8097 @ifset WASM32
8098 @include c-wasm32.texi
8099 @end ifset
8100
8101 @ifset XGATE
8102 @include c-xgate.texi
8103 @end ifset
8104
8105 @ifset XSTORMY16
8106 @include c-xstormy16.texi
8107 @end ifset
8108
8109 @ifset XTENSA
8110 @include c-xtensa.texi
8111 @end ifset
8112
8113 @ifset Z80
8114 @include c-z80.texi
8115 @end ifset
8116
8117 @ifset Z8000
8118 @include c-z8k.texi
8119 @end ifset
8120
8121 @ifset GENERIC
8122 @c reverse effect of @down at top of generic Machine-Dep chapter
8123 @raisesections
8124 @end ifset
8125
8126 @node Reporting Bugs
8127 @chapter Reporting Bugs
8128 @cindex bugs in assembler
8129 @cindex reporting bugs in assembler
8130
8131 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8132
8133 Reporting a bug may help you by bringing a solution to your problem, or it may
8134 not. But in any case the principal function of a bug report is to help the
8135 entire community by making the next version of @command{@value{AS}} work better.
8136 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8137
8138 In order for a bug report to serve its purpose, you must include the
8139 information that enables us to fix the bug.
8140
8141 @menu
8142 * Bug Criteria:: Have you found a bug?
8143 * Bug Reporting:: How to report bugs
8144 @end menu
8145
8146 @node Bug Criteria
8147 @section Have You Found a Bug?
8148 @cindex bug criteria
8149
8150 If you are not sure whether you have found a bug, here are some guidelines:
8151
8152 @itemize @bullet
8153 @cindex fatal signal
8154 @cindex assembler crash
8155 @cindex crash of assembler
8156 @item
8157 If the assembler gets a fatal signal, for any input whatever, that is a
8158 @command{@value{AS}} bug. Reliable assemblers never crash.
8159
8160 @cindex error on valid input
8161 @item
8162 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8163
8164 @cindex invalid input
8165 @item
8166 If @command{@value{AS}} does not produce an error message for invalid input, that
8167 is a bug. However, you should note that your idea of ``invalid input'' might
8168 be our idea of ``an extension'' or ``support for traditional practice''.
8169
8170 @item
8171 If you are an experienced user of assemblers, your suggestions for improvement
8172 of @command{@value{AS}} are welcome in any case.
8173 @end itemize
8174
8175 @node Bug Reporting
8176 @section How to Report Bugs
8177 @cindex bug reports
8178 @cindex assembler bugs, reporting
8179
8180 A number of companies and individuals offer support for @sc{gnu} products. If
8181 you obtained @command{@value{AS}} from a support organization, we recommend you
8182 contact that organization first.
8183
8184 You can find contact information for many support companies and
8185 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8186 distribution.
8187
8188 @ifset BUGURL
8189 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8190 to @value{BUGURL}.
8191 @end ifset
8192
8193 The fundamental principle of reporting bugs usefully is this:
8194 @strong{report all the facts}. If you are not sure whether to state a
8195 fact or leave it out, state it!
8196
8197 Often people omit facts because they think they know what causes the problem
8198 and assume that some details do not matter. Thus, you might assume that the
8199 name of a symbol you use in an example does not matter. Well, probably it does
8200 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8201 happens to fetch from the location where that name is stored in memory;
8202 perhaps, if the name were different, the contents of that location would fool
8203 the assembler into doing the right thing despite the bug. Play it safe and
8204 give a specific, complete example. That is the easiest thing for you to do,
8205 and the most helpful.
8206
8207 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8208 it is new to us. Therefore, always write your bug reports on the assumption
8209 that the bug has not been reported previously.
8210
8211 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8212 bell?'' This cannot help us fix a bug, so it is basically useless. We
8213 respond by asking for enough details to enable us to investigate.
8214 You might as well expedite matters by sending them to begin with.
8215
8216 To enable us to fix the bug, you should include all these things:
8217
8218 @itemize @bullet
8219 @item
8220 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8221 it with the @samp{--version} argument.
8222
8223 Without this, we will not know whether there is any point in looking for
8224 the bug in the current version of @command{@value{AS}}.
8225
8226 @item
8227 Any patches you may have applied to the @command{@value{AS}} source.
8228
8229 @item
8230 The type of machine you are using, and the operating system name and
8231 version number.
8232
8233 @item
8234 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8235 ``@code{gcc-2.7}''.
8236
8237 @item
8238 The command arguments you gave the assembler to assemble your example and
8239 observe the bug. To guarantee you will not omit something important, list them
8240 all. A copy of the Makefile (or the output from make) is sufficient.
8241
8242 If we were to try to guess the arguments, we would probably guess wrong
8243 and then we might not encounter the bug.
8244
8245 @item
8246 A complete input file that will reproduce the bug. If the bug is observed when
8247 the assembler is invoked via a compiler, send the assembler source, not the
8248 high level language source. Most compilers will produce the assembler source
8249 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8250 the options @samp{-v --save-temps}; this will save the assembler source in a
8251 file with an extension of @file{.s}, and also show you exactly how
8252 @command{@value{AS}} is being run.
8253
8254 @item
8255 A description of what behavior you observe that you believe is
8256 incorrect. For example, ``It gets a fatal signal.''
8257
8258 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8259 will certainly notice it. But if the bug is incorrect output, we might not
8260 notice unless it is glaringly wrong. You might as well not give us a chance to
8261 make a mistake.
8262
8263 Even if the problem you experience is a fatal signal, you should still say so
8264 explicitly. Suppose something strange is going on, such as, your copy of
8265 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8266 library on your system. (This has happened!) Your copy might crash and ours
8267 would not. If you told us to expect a crash, then when ours fails to crash, we
8268 would know that the bug was not happening for us. If you had not told us to
8269 expect a crash, then we would not be able to draw any conclusion from our
8270 observations.
8271
8272 @item
8273 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8274 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8275 option. Always send diffs from the old file to the new file. If you even
8276 discuss something in the @command{@value{AS}} source, refer to it by context, not
8277 by line number.
8278
8279 The line numbers in our development sources will not match those in your
8280 sources. Your line numbers would convey no useful information to us.
8281 @end itemize
8282
8283 Here are some things that are not necessary:
8284
8285 @itemize @bullet
8286 @item
8287 A description of the envelope of the bug.
8288
8289 Often people who encounter a bug spend a lot of time investigating
8290 which changes to the input file will make the bug go away and which
8291 changes will not affect it.
8292
8293 This is often time consuming and not very useful, because the way we
8294 will find the bug is by running a single example under the debugger
8295 with breakpoints, not by pure deduction from a series of examples.
8296 We recommend that you save your time for something else.
8297
8298 Of course, if you can find a simpler example to report @emph{instead}
8299 of the original one, that is a convenience for us. Errors in the
8300 output will be easier to spot, running under the debugger will take
8301 less time, and so on.
8302
8303 However, simplification is not vital; if you do not want to do this,
8304 report the bug anyway and send us the entire test case you used.
8305
8306 @item
8307 A patch for the bug.
8308
8309 A patch for the bug does help us if it is a good one. But do not omit
8310 the necessary information, such as the test case, on the assumption that
8311 a patch is all we need. We might see problems with your patch and decide
8312 to fix the problem another way, or we might not understand it at all.
8313
8314 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8315 construct an example that will make the program follow a certain path through
8316 the code. If you do not send us the example, we will not be able to construct
8317 one, so we will not be able to verify that the bug is fixed.
8318
8319 And if we cannot understand what bug you are trying to fix, or why your
8320 patch should be an improvement, we will not install it. A test case will
8321 help us to understand.
8322
8323 @item
8324 A guess about what the bug is or what it depends on.
8325
8326 Such guesses are usually wrong. Even we cannot guess right about such
8327 things without first using the debugger to find the facts.
8328 @end itemize
8329
8330 @node Acknowledgements
8331 @chapter Acknowledgements
8332
8333 If you have contributed to GAS and your name isn't listed here,
8334 it is not meant as a slight. We just don't know about it. Send mail to the
8335 maintainer, and we'll correct the situation. Currently
8336 @c (October 2012),
8337 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8338
8339 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8340 more details?}
8341
8342 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8343 information and the 68k series machines, most of the preprocessing pass, and
8344 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8345
8346 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8347 many bug fixes, including merging support for several processors, breaking GAS
8348 up to handle multiple object file format back ends (including heavy rewrite,
8349 testing, an integration of the coff and b.out back ends), adding configuration
8350 including heavy testing and verification of cross assemblers and file splits
8351 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8352 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8353 port (including considerable amounts of reverse engineering), a SPARC opcode
8354 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8355 assertions and made them work, much other reorganization, cleanup, and lint.
8356
8357 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8358 in format-specific I/O modules.
8359
8360 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8361 has done much work with it since.
8362
8363 The Intel 80386 machine description was written by Eliot Dresselhaus.
8364
8365 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8366
8367 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8368 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8369
8370 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8371 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8372 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8373 support a.out format.
8374
8375 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8376 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8377 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8378 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8379 targets.
8380
8381 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8382 simplified the configuration of which versions accept which directives. He
8383 updated the 68k machine description so that Motorola's opcodes always produced
8384 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8385 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8386 cross-compilation support, and one bug in relaxation that took a week and
8387 required the proverbial one-bit fix.
8388
8389 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8390 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8391 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8392 PowerPC assembler, and made a few other minor patches.
8393
8394 Steve Chamberlain made GAS able to generate listings.
8395
8396 Hewlett-Packard contributed support for the HP9000/300.
8397
8398 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8399 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8400 formats). This work was supported by both the Center for Software Science at
8401 the University of Utah and Cygnus Support.
8402
8403 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8404 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8405 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8406 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8407 and some initial 64-bit support).
8408
8409 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8410
8411 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8412 support for openVMS/Alpha.
8413
8414 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8415 flavors.
8416
8417 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8418 Inc.@: added support for Xtensa processors.
8419
8420 Several engineers at Cygnus Support have also provided many small bug fixes and
8421 configuration enhancements.
8422
8423 Jon Beniston added support for the Lattice Mico32 architecture.
8424
8425 Many others have contributed large or small bugfixes and enhancements. If
8426 you have contributed significant work and are not mentioned on this list, and
8427 want to be, let us know. Some of the history has been lost; we are not
8428 intentionally leaving anyone out.
8429
8430 @node GNU Free Documentation License
8431 @appendix GNU Free Documentation License
8432 @include fdl.texi
8433
8434 @node AS Index
8435 @unnumbered AS Index
8436
8437 @printindex cp
8438
8439 @bye
8440 @c Local Variables:
8441 @c fill-column: 79
8442 @c End:
This page took 0.305546 seconds and 4 git commands to generate.