or1k: Add the l.muld, l.muldu, l.macu, l.msbu insns
[deliverable/binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset H8/300
44 @set H8
45 @end ifset
46 @ifset SH
47 @set H8
48 @end ifset
49 @ifset HPPA
50 @set abnormal-separator
51 @end ifset
52 @c ------------
53 @ifset GENERIC
54 @settitle Using @value{AS}
55 @end ifset
56 @ifclear GENERIC
57 @settitle Using @value{AS} (@value{TARGET})
58 @end ifclear
59 @setchapternewpage odd
60 @c %**end of header
61
62 @c @smallbook
63 @c @set SMALL
64 @c WARE! Some of the machine-dependent sections contain tables of machine
65 @c instructions. Except in multi-column format, these tables look silly.
66 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
67 @c the multi-col format is faked within @example sections.
68 @c
69 @c Again unfortunately, the natural size that fits on a page, for these tables,
70 @c is different depending on whether or not smallbook is turned on.
71 @c This matters, because of order: text flow switches columns at each page
72 @c break.
73 @c
74 @c The format faked in this source works reasonably well for smallbook,
75 @c not well for the default large-page format. This manual expects that if you
76 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
77 @c tables in question. You can turn on one without the other at your
78 @c discretion, of course.
79 @ifinfo
80 @set SMALL
81 @c the insn tables look just as silly in info files regardless of smallbook,
82 @c might as well show 'em anyways.
83 @end ifinfo
84
85 @ifnottex
86 @dircategory Software development
87 @direntry
88 * As: (as). The GNU assembler.
89 * Gas: (as). The GNU assembler.
90 @end direntry
91 @end ifnottex
92
93 @finalout
94 @syncodeindex ky cp
95
96 @copying
97 This file documents the GNU Assembler "@value{AS}".
98
99 @c man begin COPYRIGHT
100 Copyright @copyright{} 1991-2018 Free Software Foundation, Inc.
101
102 Permission is granted to copy, distribute and/or modify this document
103 under the terms of the GNU Free Documentation License, Version 1.3
104 or any later version published by the Free Software Foundation;
105 with no Invariant Sections, with no Front-Cover Texts, and with no
106 Back-Cover Texts. A copy of the license is included in the
107 section entitled ``GNU Free Documentation License''.
108
109 @c man end
110 @end copying
111
112 @titlepage
113 @title Using @value{AS}
114 @subtitle The @sc{gnu} Assembler
115 @ifclear GENERIC
116 @subtitle for the @value{TARGET} family
117 @end ifclear
118 @ifset VERSION_PACKAGE
119 @sp 1
120 @subtitle @value{VERSION_PACKAGE}
121 @end ifset
122 @sp 1
123 @subtitle Version @value{VERSION}
124 @sp 1
125 @sp 13
126 The Free Software Foundation Inc.@: thanks The Nice Computer
127 Company of Australia for loaning Dean Elsner to write the
128 first (Vax) version of @command{as} for Project @sc{gnu}.
129 The proprietors, management and staff of TNCCA thank FSF for
130 distracting the boss while they got some work
131 done.
132 @sp 3
133 @author Dean Elsner, Jay Fenlason & friends
134 @page
135 @tex
136 {\parskip=0pt
137 \hfill {\it Using {\tt @value{AS}}}\par
138 \hfill Edited by Cygnus Support\par
139 }
140 %"boxit" macro for figures:
141 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
142 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
143 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
144 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
145 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
146 @end tex
147
148 @vskip 0pt plus 1filll
149 Copyright @copyright{} 1991-2018 Free Software Foundation, Inc.
150
151 Permission is granted to copy, distribute and/or modify this document
152 under the terms of the GNU Free Documentation License, Version 1.3
153 or any later version published by the Free Software Foundation;
154 with no Invariant Sections, with no Front-Cover Texts, and with no
155 Back-Cover Texts. A copy of the license is included in the
156 section entitled ``GNU Free Documentation License''.
157
158 @end titlepage
159 @contents
160
161 @ifnottex
162 @node Top
163 @top Using @value{AS}
164
165 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
166 @ifset VERSION_PACKAGE
167 @value{VERSION_PACKAGE}
168 @end ifset
169 version @value{VERSION}.
170 @ifclear GENERIC
171 This version of the file describes @command{@value{AS}} configured to generate
172 code for @value{TARGET} architectures.
173 @end ifclear
174
175 This document is distributed under the terms of the GNU Free
176 Documentation License. A copy of the license is included in the
177 section entitled ``GNU Free Documentation License''.
178
179 @menu
180 * Overview:: Overview
181 * Invoking:: Command-Line Options
182 * Syntax:: Syntax
183 * Sections:: Sections and Relocation
184 * Symbols:: Symbols
185 * Expressions:: Expressions
186 * Pseudo Ops:: Assembler Directives
187 @ifset ELF
188 * Object Attributes:: Object Attributes
189 @end ifset
190 * Machine Dependencies:: Machine Dependent Features
191 * Reporting Bugs:: Reporting Bugs
192 * Acknowledgements:: Who Did What
193 * GNU Free Documentation License:: GNU Free Documentation License
194 * AS Index:: AS Index
195 @end menu
196 @end ifnottex
197
198 @node Overview
199 @chapter Overview
200 @iftex
201 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
202 @ifclear GENERIC
203 This version of the manual describes @command{@value{AS}} configured to generate
204 code for @value{TARGET} architectures.
205 @end ifclear
206 @end iftex
207
208 @cindex invocation summary
209 @cindex option summary
210 @cindex summary of options
211 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
212 see @ref{Invoking,,Command-Line Options}.
213
214 @c man title AS the portable GNU assembler.
215
216 @ignore
217 @c man begin SEEALSO
218 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
219 @c man end
220 @end ignore
221
222 @c We don't use deffn and friends for the following because they seem
223 @c to be limited to one line for the header.
224 @smallexample
225 @c man begin SYNOPSIS
226 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
227 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
228 [@b{--debug-prefix-map} @var{old}=@var{new}]
229 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
230 [@b{--gstabs+}] [@b{--gdwarf-2}] [@b{--gdwarf-sections}]
231 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
232 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
233 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
234 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
235 [@b{--no-pad-sections}]
236 [@b{-o} @var{objfile}] [@b{-R}]
237 [@b{--hash-size}=@var{NUM}] [@b{--reduce-memory-overheads}]
238 [@b{--statistics}]
239 [@b{-v}] [@b{-version}] [@b{--version}]
240 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
241 [@b{-Z}] [@b{@@@var{FILE}}]
242 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
243 [@b{--elf-stt-common=[no|yes]}]
244 [@b{--generate-missing-build-notes=[no|yes]}]
245 [@b{--target-help}] [@var{target-options}]
246 [@b{--}|@var{files} @dots{}]
247 @c
248 @c man end
249 @c Target dependent options are listed below. Keep the list sorted.
250 @c Add an empty line for separation.
251 @c man begin TARGET
252 @ifset AARCH64
253
254 @emph{Target AArch64 options:}
255 [@b{-EB}|@b{-EL}]
256 [@b{-mabi}=@var{ABI}]
257 @end ifset
258 @ifset ALPHA
259
260 @emph{Target Alpha options:}
261 [@b{-m@var{cpu}}]
262 [@b{-mdebug} | @b{-no-mdebug}]
263 [@b{-replace} | @b{-noreplace}]
264 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
265 [@b{-F}] [@b{-32addr}]
266 @end ifset
267 @ifset ARC
268
269 @emph{Target ARC options:}
270 [@b{-mcpu=@var{cpu}}]
271 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
272 [@b{-mcode-density}]
273 [@b{-mrelax}]
274 [@b{-EB}|@b{-EL}]
275 @end ifset
276 @ifset ARM
277
278 @emph{Target ARM options:}
279 @c Don't document the deprecated options
280 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
281 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
282 [@b{-mfpu}=@var{floating-point-format}]
283 [@b{-mfloat-abi}=@var{abi}]
284 [@b{-meabi}=@var{ver}]
285 [@b{-mthumb}]
286 [@b{-EB}|@b{-EL}]
287 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
288 @b{-mapcs-reentrant}]
289 [@b{-mthumb-interwork}] [@b{-k}]
290 @end ifset
291 @ifset Blackfin
292
293 @emph{Target Blackfin options:}
294 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
295 [@b{-mfdpic}]
296 [@b{-mno-fdpic}]
297 [@b{-mnopic}]
298 @end ifset
299 @ifset CRIS
300
301 @emph{Target CRIS options:}
302 [@b{--underscore} | @b{--no-underscore}]
303 [@b{--pic}] [@b{-N}]
304 [@b{--emulation=criself} | @b{--emulation=crisaout}]
305 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
306 @c Deprecated -- deliberately not documented.
307 @c [@b{-h}] [@b{-H}]
308 @end ifset
309 @ifset CSKY
310
311 @emph{Target C-SKY options:}
312 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
313 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
314 [@b{-fpic}] [@b{-pic}]
315 [@b{-mljump}] [@b{-mno-ljump}]
316 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
317 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
318 [@b{-mnolrw }] [@b{-mno-lrw}]
319 [@b{-melrw}] [@b{-mno-elrw}]
320 [@b{-mlaf }] [@b{-mliterals-after-func}]
321 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
322 [@b{-mlabr}] [@b{-mliterals-after-br}]
323 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
324 [@b{-mistack}] [@b{-mno-istack}]
325 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
326 [@b{-msecurity}] [@b{-mtrust}]
327 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
328 @end ifset
329 @ifset D10V
330
331 @emph{Target D10V options:}
332 [@b{-O}]
333 @end ifset
334 @ifset D30V
335
336 @emph{Target D30V options:}
337 [@b{-O}|@b{-n}|@b{-N}]
338 @end ifset
339 @ifset EPIPHANY
340
341 @emph{Target EPIPHANY options:}
342 [@b{-mepiphany}|@b{-mepiphany16}]
343 @end ifset
344 @ifset H8
345
346 @emph{Target H8/300 options:}
347 [-h-tick-hex]
348 @end ifset
349 @ifset HPPA
350 @c HPPA has no machine-dependent assembler options (yet).
351 @end ifset
352 @ifset I80386
353
354 @emph{Target i386 options:}
355 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
356 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
357 @end ifset
358 @ifset IA64
359
360 @emph{Target IA-64 options:}
361 [@b{-mconstant-gp}|@b{-mauto-pic}]
362 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
363 [@b{-mle}|@b{mbe}]
364 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
365 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
366 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
367 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
368 @end ifset
369 @ifset IP2K
370
371 @emph{Target IP2K options:}
372 [@b{-mip2022}|@b{-mip2022ext}]
373 @end ifset
374 @ifset M32C
375
376 @emph{Target M32C options:}
377 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
378 @end ifset
379 @ifset M32R
380
381 @emph{Target M32R options:}
382 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
383 @b{--W[n]p}]
384 @end ifset
385 @ifset M680X0
386
387 @emph{Target M680X0 options:}
388 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
389 @end ifset
390 @ifset M68HC11
391
392 @emph{Target M68HC11 options:}
393 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
394 [@b{-mshort}|@b{-mlong}]
395 [@b{-mshort-double}|@b{-mlong-double}]
396 [@b{--force-long-branches}] [@b{--short-branches}]
397 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
398 [@b{--print-opcodes}] [@b{--generate-example}]
399 @end ifset
400 @ifset MCORE
401
402 @emph{Target MCORE options:}
403 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
404 [@b{-mcpu=[210|340]}]
405 @end ifset
406 @ifset METAG
407
408 @emph{Target Meta options:}
409 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
410 @end ifset
411 @ifset MICROBLAZE
412 @emph{Target MICROBLAZE options:}
413 @c MicroBlaze has no machine-dependent assembler options.
414 @end ifset
415 @ifset MIPS
416
417 @emph{Target MIPS options:}
418 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
419 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
420 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
421 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
422 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
423 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
424 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
425 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
426 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
427 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
428 [@b{-construct-floats}] [@b{-no-construct-floats}]
429 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
430 [@b{-mnan=@var{encoding}}]
431 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
432 [@b{-mips16}] [@b{-no-mips16}]
433 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
434 [@b{-mmicromips}] [@b{-mno-micromips}]
435 [@b{-msmartmips}] [@b{-mno-smartmips}]
436 [@b{-mips3d}] [@b{-no-mips3d}]
437 [@b{-mdmx}] [@b{-no-mdmx}]
438 [@b{-mdsp}] [@b{-mno-dsp}]
439 [@b{-mdspr2}] [@b{-mno-dspr2}]
440 [@b{-mdspr3}] [@b{-mno-dspr3}]
441 [@b{-mmsa}] [@b{-mno-msa}]
442 [@b{-mxpa}] [@b{-mno-xpa}]
443 [@b{-mmt}] [@b{-mno-mt}]
444 [@b{-mmcu}] [@b{-mno-mcu}]
445 [@b{-mcrc}] [@b{-mno-crc}]
446 [@b{-mginv}] [@b{-mno-ginv}]
447 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
448 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
449 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
450 [@b{-mloongson-ext2}] [@b{-mno-loongson-ext2}]
451 [@b{-minsn32}] [@b{-mno-insn32}]
452 [@b{-mfix7000}] [@b{-mno-fix7000}]
453 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
454 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
455 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
456 [@b{-mdebug}] [@b{-no-mdebug}]
457 [@b{-mpdr}] [@b{-mno-pdr}]
458 @end ifset
459 @ifset MMIX
460
461 @emph{Target MMIX options:}
462 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
463 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
464 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
465 [@b{--linker-allocated-gregs}]
466 @end ifset
467 @ifset NIOSII
468
469 @emph{Target Nios II options:}
470 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
471 [@b{-EB}] [@b{-EL}]
472 @end ifset
473 @ifset NDS32
474
475 @emph{Target NDS32 options:}
476 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
477 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
478 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
479 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
480 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
481 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
482 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
483 [@b{-mb2bb}]
484 @end ifset
485 @ifset PDP11
486
487 @emph{Target PDP11 options:}
488 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
489 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
490 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
491 @end ifset
492 @ifset PJ
493
494 @emph{Target picoJava options:}
495 [@b{-mb}|@b{-me}]
496 @end ifset
497 @ifset PPC
498
499 @emph{Target PowerPC options:}
500 [@b{-a32}|@b{-a64}]
501 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
502 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
503 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
504 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
505 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
506 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
507 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
508 [@b{-mregnames}|@b{-mno-regnames}]
509 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
510 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
511 [@b{-msolaris}|@b{-mno-solaris}]
512 [@b{-nops=@var{count}}]
513 @end ifset
514 @ifset PRU
515
516 @emph{Target PRU options:}
517 [@b{-link-relax}]
518 [@b{-mnolink-relax}]
519 [@b{-mno-warn-regname-label}]
520 @end ifset
521 @ifset RISCV
522
523 @emph{Target RISC-V options:}
524 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
525 [@b{-march}=@var{ISA}]
526 [@b{-mabi}=@var{ABI}]
527 @end ifset
528 @ifset RL78
529
530 @emph{Target RL78 options:}
531 [@b{-mg10}]
532 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
533 @end ifset
534 @ifset RX
535
536 @emph{Target RX options:}
537 [@b{-mlittle-endian}|@b{-mbig-endian}]
538 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
539 [@b{-muse-conventional-section-names}]
540 [@b{-msmall-data-limit}]
541 [@b{-mpid}]
542 [@b{-mrelax}]
543 [@b{-mint-register=@var{number}}]
544 [@b{-mgcc-abi}|@b{-mrx-abi}]
545 @end ifset
546 @ifset S390
547
548 @emph{Target s390 options:}
549 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
550 [@b{-mregnames}|@b{-mno-regnames}]
551 [@b{-mwarn-areg-zero}]
552 @end ifset
553 @ifset SCORE
554
555 @emph{Target SCORE options:}
556 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
557 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
558 [@b{-march=score7}][@b{-march=score3}]
559 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
560 @end ifset
561 @ifset SPARC
562
563 @emph{Target SPARC options:}
564 @c The order here is important. See c-sparc.texi.
565 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
566 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
567 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
568 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
569 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
570 @b{-Asparcvisr}|@b{-Asparc5}]
571 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
572 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
573 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
574 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
575 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
576 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
577 @b{-bump}]
578 [@b{-32}|@b{-64}]
579 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
580 @end ifset
581 @ifset TIC54X
582
583 @emph{Target TIC54X options:}
584 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
585 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
586 @end ifset
587 @ifset TIC6X
588
589 @emph{Target TIC6X options:}
590 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
591 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
592 [@b{-mpic}|@b{-mno-pic}]
593 @end ifset
594 @ifset TILEGX
595
596 @emph{Target TILE-Gx options:}
597 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
598 @end ifset
599 @ifset TILEPRO
600 @c TILEPro has no machine-dependent assembler options
601 @end ifset
602 @ifset VISIUM
603
604 @emph{Target Visium options:}
605 [@b{-mtune=@var{arch}}]
606 @end ifset
607 @ifset XTENSA
608
609 @emph{Target Xtensa options:}
610 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
611 [@b{--[no-]absolute-literals}]
612 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
613 [@b{--[no-]transform}]
614 [@b{--rename-section} @var{oldname}=@var{newname}]
615 [@b{--[no-]trampolines}]
616 @end ifset
617 @ifset Z80
618
619 @emph{Target Z80 options:}
620 [@b{-z80}] [@b{-r800}]
621 [@b{ -ignore-undocumented-instructions}] [@b{-Wnud}]
622 [@b{ -ignore-unportable-instructions}] [@b{-Wnup}]
623 [@b{ -warn-undocumented-instructions}] [@b{-Wud}]
624 [@b{ -warn-unportable-instructions}] [@b{-Wup}]
625 [@b{ -forbid-undocumented-instructions}] [@b{-Fud}]
626 [@b{ -forbid-unportable-instructions}] [@b{-Fup}]
627 @end ifset
628 @ifset Z8000
629
630 @c Z8000 has no machine-dependent assembler options
631 @end ifset
632
633 @c man end
634 @end smallexample
635
636 @c man begin OPTIONS
637
638 @table @gcctabopt
639 @include at-file.texi
640
641 @item -a[cdghlmns]
642 Turn on listings, in any of a variety of ways:
643
644 @table @gcctabopt
645 @item -ac
646 omit false conditionals
647
648 @item -ad
649 omit debugging directives
650
651 @item -ag
652 include general information, like @value{AS} version and options passed
653
654 @item -ah
655 include high-level source
656
657 @item -al
658 include assembly
659
660 @item -am
661 include macro expansions
662
663 @item -an
664 omit forms processing
665
666 @item -as
667 include symbols
668
669 @item =file
670 set the name of the listing file
671 @end table
672
673 You may combine these options; for example, use @samp{-aln} for assembly
674 listing without forms processing. The @samp{=file} option, if used, must be
675 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
676
677 @item --alternate
678 Begin in alternate macro mode.
679 @ifclear man
680 @xref{Altmacro,,@code{.altmacro}}.
681 @end ifclear
682
683 @item --compress-debug-sections
684 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
685 ELF ABI. The resulting object file may not be compatible with older
686 linkers and object file utilities. Note if compression would make a
687 given section @emph{larger} then it is not compressed.
688
689 @ifset ELF
690 @cindex @samp{--compress-debug-sections=} option
691 @item --compress-debug-sections=none
692 @itemx --compress-debug-sections=zlib
693 @itemx --compress-debug-sections=zlib-gnu
694 @itemx --compress-debug-sections=zlib-gabi
695 These options control how DWARF debug sections are compressed.
696 @option{--compress-debug-sections=none} is equivalent to
697 @option{--nocompress-debug-sections}.
698 @option{--compress-debug-sections=zlib} and
699 @option{--compress-debug-sections=zlib-gabi} are equivalent to
700 @option{--compress-debug-sections}.
701 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
702 sections using zlib. The debug sections are renamed to begin with
703 @samp{.zdebug}. Note if compression would make a given section
704 @emph{larger} then it is not compressed nor renamed.
705
706 @end ifset
707
708 @item --nocompress-debug-sections
709 Do not compress DWARF debug sections. This is usually the default for all
710 targets except the x86/x86_64, but a configure time option can be used to
711 override this.
712
713 @item -D
714 Ignored. This option is accepted for script compatibility with calls to
715 other assemblers.
716
717 @item --debug-prefix-map @var{old}=@var{new}
718 When assembling files in directory @file{@var{old}}, record debugging
719 information describing them as in @file{@var{new}} instead.
720
721 @item --defsym @var{sym}=@var{value}
722 Define the symbol @var{sym} to be @var{value} before assembling the input file.
723 @var{value} must be an integer constant. As in C, a leading @samp{0x}
724 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
725 value. The value of the symbol can be overridden inside a source file via the
726 use of a @code{.set} pseudo-op.
727
728 @item -f
729 ``fast''---skip whitespace and comment preprocessing (assume source is
730 compiler output).
731
732 @item -g
733 @itemx --gen-debug
734 Generate debugging information for each assembler source line using whichever
735 debug format is preferred by the target. This currently means either STABS,
736 ECOFF or DWARF2.
737
738 @item --gstabs
739 Generate stabs debugging information for each assembler line. This
740 may help debugging assembler code, if the debugger can handle it.
741
742 @item --gstabs+
743 Generate stabs debugging information for each assembler line, with GNU
744 extensions that probably only gdb can handle, and that could make other
745 debuggers crash or refuse to read your program. This
746 may help debugging assembler code. Currently the only GNU extension is
747 the location of the current working directory at assembling time.
748
749 @item --gdwarf-2
750 Generate DWARF2 debugging information for each assembler line. This
751 may help debugging assembler code, if the debugger can handle it. Note---this
752 option is only supported by some targets, not all of them.
753
754 @item --gdwarf-sections
755 Instead of creating a .debug_line section, create a series of
756 .debug_line.@var{foo} sections where @var{foo} is the name of the
757 corresponding code section. For example a code section called @var{.text.func}
758 will have its dwarf line number information placed into a section called
759 @var{.debug_line.text.func}. If the code section is just called @var{.text}
760 then debug line section will still be called just @var{.debug_line} without any
761 suffix.
762
763 @ifset ELF
764 @item --size-check=error
765 @itemx --size-check=warning
766 Issue an error or warning for invalid ELF .size directive.
767
768 @item --elf-stt-common=no
769 @itemx --elf-stt-common=yes
770 These options control whether the ELF assembler should generate common
771 symbols with the @code{STT_COMMON} type. The default can be controlled
772 by a configure option @option{--enable-elf-stt-common}.
773
774 @item --generate-missing-build-notes=yes
775 @itemx --generate-missing-build-notes=no
776 These options control whether the ELF assembler should generate GNU Build
777 attribute notes if none are present in the input sources.
778 The default can be controlled by the @option{--enable-generate-build-notes}
779 configure option.
780
781 @end ifset
782
783 @item --help
784 Print a summary of the command-line options and exit.
785
786 @item --target-help
787 Print a summary of all target specific options and exit.
788
789 @item -I @var{dir}
790 Add directory @var{dir} to the search list for @code{.include} directives.
791
792 @item -J
793 Don't warn about signed overflow.
794
795 @item -K
796 @ifclear DIFF-TBL-KLUGE
797 This option is accepted but has no effect on the @value{TARGET} family.
798 @end ifclear
799 @ifset DIFF-TBL-KLUGE
800 Issue warnings when difference tables altered for long displacements.
801 @end ifset
802
803 @item -L
804 @itemx --keep-locals
805 Keep (in the symbol table) local symbols. These symbols start with
806 system-specific local label prefixes, typically @samp{.L} for ELF systems
807 or @samp{L} for traditional a.out systems.
808 @ifclear man
809 @xref{Symbol Names}.
810 @end ifclear
811
812 @item --listing-lhs-width=@var{number}
813 Set the maximum width, in words, of the output data column for an assembler
814 listing to @var{number}.
815
816 @item --listing-lhs-width2=@var{number}
817 Set the maximum width, in words, of the output data column for continuation
818 lines in an assembler listing to @var{number}.
819
820 @item --listing-rhs-width=@var{number}
821 Set the maximum width of an input source line, as displayed in a listing, to
822 @var{number} bytes.
823
824 @item --listing-cont-lines=@var{number}
825 Set the maximum number of lines printed in a listing for a single line of input
826 to @var{number} + 1.
827
828 @item --no-pad-sections
829 Stop the assembler for padding the ends of output sections to the alignment
830 of that section. The default is to pad the sections, but this can waste space
831 which might be needed on targets which have tight memory constraints.
832
833 @item -o @var{objfile}
834 Name the object-file output from @command{@value{AS}} @var{objfile}.
835
836 @item -R
837 Fold the data section into the text section.
838
839 @item --hash-size=@var{number}
840 Set the default size of GAS's hash tables to a prime number close to
841 @var{number}. Increasing this value can reduce the length of time it takes the
842 assembler to perform its tasks, at the expense of increasing the assembler's
843 memory requirements. Similarly reducing this value can reduce the memory
844 requirements at the expense of speed.
845
846 @item --reduce-memory-overheads
847 This option reduces GAS's memory requirements, at the expense of making the
848 assembly processes slower. Currently this switch is a synonym for
849 @samp{--hash-size=4051}, but in the future it may have other effects as well.
850
851 @ifset ELF
852 @item --sectname-subst
853 Honor substitution sequences in section names.
854 @ifclear man
855 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
856 @end ifclear
857 @end ifset
858
859 @item --statistics
860 Print the maximum space (in bytes) and total time (in seconds) used by
861 assembly.
862
863 @item --strip-local-absolute
864 Remove local absolute symbols from the outgoing symbol table.
865
866 @item -v
867 @itemx -version
868 Print the @command{as} version.
869
870 @item --version
871 Print the @command{as} version and exit.
872
873 @item -W
874 @itemx --no-warn
875 Suppress warning messages.
876
877 @item --fatal-warnings
878 Treat warnings as errors.
879
880 @item --warn
881 Don't suppress warning messages or treat them as errors.
882
883 @item -w
884 Ignored.
885
886 @item -x
887 Ignored.
888
889 @item -Z
890 Generate an object file even after errors.
891
892 @item -- | @var{files} @dots{}
893 Standard input, or source files to assemble.
894
895 @end table
896 @c man end
897
898 @ifset AARCH64
899
900 @ifclear man
901 @xref{AArch64 Options}, for the options available when @value{AS} is configured
902 for the 64-bit mode of the ARM Architecture (AArch64).
903 @end ifclear
904
905 @ifset man
906 @c man begin OPTIONS
907 The following options are available when @value{AS} is configured for the
908 64-bit mode of the ARM Architecture (AArch64).
909 @c man end
910 @c man begin INCLUDE
911 @include c-aarch64.texi
912 @c ended inside the included file
913 @end ifset
914
915 @end ifset
916
917 @ifset ALPHA
918
919 @ifclear man
920 @xref{Alpha Options}, for the options available when @value{AS} is configured
921 for an Alpha processor.
922 @end ifclear
923
924 @ifset man
925 @c man begin OPTIONS
926 The following options are available when @value{AS} is configured for an Alpha
927 processor.
928 @c man end
929 @c man begin INCLUDE
930 @include c-alpha.texi
931 @c ended inside the included file
932 @end ifset
933
934 @end ifset
935
936 @c man begin OPTIONS
937 @ifset ARC
938 The following options are available when @value{AS} is configured for an ARC
939 processor.
940
941 @table @gcctabopt
942 @item -mcpu=@var{cpu}
943 This option selects the core processor variant.
944 @item -EB | -EL
945 Select either big-endian (-EB) or little-endian (-EL) output.
946 @item -mcode-density
947 Enable Code Density extenssion instructions.
948 @end table
949 @end ifset
950
951 @ifset ARM
952 The following options are available when @value{AS} is configured for the ARM
953 processor family.
954
955 @table @gcctabopt
956 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
957 Specify which ARM processor variant is the target.
958 @item -march=@var{architecture}[+@var{extension}@dots{}]
959 Specify which ARM architecture variant is used by the target.
960 @item -mfpu=@var{floating-point-format}
961 Select which Floating Point architecture is the target.
962 @item -mfloat-abi=@var{abi}
963 Select which floating point ABI is in use.
964 @item -mthumb
965 Enable Thumb only instruction decoding.
966 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
967 Select which procedure calling convention is in use.
968 @item -EB | -EL
969 Select either big-endian (-EB) or little-endian (-EL) output.
970 @item -mthumb-interwork
971 Specify that the code has been generated with interworking between Thumb and
972 ARM code in mind.
973 @item -mccs
974 Turns on CodeComposer Studio assembly syntax compatibility mode.
975 @item -k
976 Specify that PIC code has been generated.
977 @end table
978 @end ifset
979 @c man end
980
981 @ifset Blackfin
982
983 @ifclear man
984 @xref{Blackfin Options}, for the options available when @value{AS} is
985 configured for the Blackfin processor family.
986 @end ifclear
987
988 @ifset man
989 @c man begin OPTIONS
990 The following options are available when @value{AS} is configured for
991 the Blackfin processor family.
992 @c man end
993 @c man begin INCLUDE
994 @include c-bfin.texi
995 @c ended inside the included file
996 @end ifset
997
998 @end ifset
999
1000 @c man begin OPTIONS
1001 @ifset CRIS
1002 See the info pages for documentation of the CRIS-specific options.
1003 @end ifset
1004
1005 @ifset CSKY
1006
1007 @ifclear man
1008 @xref{C-SKY Options}, for the options available when @value{AS} is
1009 configured for the C-SKY processor family.
1010 @end ifclear
1011
1012 @ifset man
1013 @c man begin OPTIONS
1014 The following options are available when @value{AS} is configured for
1015 the C-SKY processor family.
1016 @c man end
1017 @c man begin INCLUDE
1018 @include c-csky.texi
1019 @c ended inside the included file
1020 @end ifset
1021
1022 @end ifset
1023
1024 @ifset D10V
1025 The following options are available when @value{AS} is configured for
1026 a D10V processor.
1027 @table @gcctabopt
1028 @cindex D10V optimization
1029 @cindex optimization, D10V
1030 @item -O
1031 Optimize output by parallelizing instructions.
1032 @end table
1033 @end ifset
1034
1035 @ifset D30V
1036 The following options are available when @value{AS} is configured for a D30V
1037 processor.
1038 @table @gcctabopt
1039 @cindex D30V optimization
1040 @cindex optimization, D30V
1041 @item -O
1042 Optimize output by parallelizing instructions.
1043
1044 @cindex D30V nops
1045 @item -n
1046 Warn when nops are generated.
1047
1048 @cindex D30V nops after 32-bit multiply
1049 @item -N
1050 Warn when a nop after a 32-bit multiply instruction is generated.
1051 @end table
1052 @end ifset
1053 @c man end
1054
1055 @ifset EPIPHANY
1056 The following options are available when @value{AS} is configured for the
1057 Adapteva EPIPHANY series.
1058
1059 @ifclear man
1060 @xref{Epiphany Options}, for the options available when @value{AS} is
1061 configured for an Epiphany processor.
1062 @end ifclear
1063
1064 @ifset man
1065 @c man begin OPTIONS
1066 The following options are available when @value{AS} is configured for
1067 an Epiphany processor.
1068 @c man end
1069 @c man begin INCLUDE
1070 @include c-epiphany.texi
1071 @c ended inside the included file
1072 @end ifset
1073
1074 @end ifset
1075
1076 @ifset H8300
1077
1078 @ifclear man
1079 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1080 for an H8/300 processor.
1081 @end ifclear
1082
1083 @ifset man
1084 @c man begin OPTIONS
1085 The following options are available when @value{AS} is configured for an H8/300
1086 processor.
1087 @c man end
1088 @c man begin INCLUDE
1089 @include c-h8300.texi
1090 @c ended inside the included file
1091 @end ifset
1092
1093 @end ifset
1094
1095 @ifset I80386
1096
1097 @ifclear man
1098 @xref{i386-Options}, for the options available when @value{AS} is
1099 configured for an i386 processor.
1100 @end ifclear
1101
1102 @ifset man
1103 @c man begin OPTIONS
1104 The following options are available when @value{AS} is configured for
1105 an i386 processor.
1106 @c man end
1107 @c man begin INCLUDE
1108 @include c-i386.texi
1109 @c ended inside the included file
1110 @end ifset
1111
1112 @end ifset
1113
1114 @c man begin OPTIONS
1115 @ifset IP2K
1116 The following options are available when @value{AS} is configured for the
1117 Ubicom IP2K series.
1118
1119 @table @gcctabopt
1120
1121 @item -mip2022ext
1122 Specifies that the extended IP2022 instructions are allowed.
1123
1124 @item -mip2022
1125 Restores the default behaviour, which restricts the permitted instructions to
1126 just the basic IP2022 ones.
1127
1128 @end table
1129 @end ifset
1130
1131 @ifset M32C
1132 The following options are available when @value{AS} is configured for the
1133 Renesas M32C and M16C processors.
1134
1135 @table @gcctabopt
1136
1137 @item -m32c
1138 Assemble M32C instructions.
1139
1140 @item -m16c
1141 Assemble M16C instructions (the default).
1142
1143 @item -relax
1144 Enable support for link-time relaxations.
1145
1146 @item -h-tick-hex
1147 Support H'00 style hex constants in addition to 0x00 style.
1148
1149 @end table
1150 @end ifset
1151
1152 @ifset M32R
1153 The following options are available when @value{AS} is configured for the
1154 Renesas M32R (formerly Mitsubishi M32R) series.
1155
1156 @table @gcctabopt
1157
1158 @item --m32rx
1159 Specify which processor in the M32R family is the target. The default
1160 is normally the M32R, but this option changes it to the M32RX.
1161
1162 @item --warn-explicit-parallel-conflicts or --Wp
1163 Produce warning messages when questionable parallel constructs are
1164 encountered.
1165
1166 @item --no-warn-explicit-parallel-conflicts or --Wnp
1167 Do not produce warning messages when questionable parallel constructs are
1168 encountered.
1169
1170 @end table
1171 @end ifset
1172
1173 @ifset M680X0
1174 The following options are available when @value{AS} is configured for the
1175 Motorola 68000 series.
1176
1177 @table @gcctabopt
1178
1179 @item -l
1180 Shorten references to undefined symbols, to one word instead of two.
1181
1182 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1183 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1184 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1185 Specify what processor in the 68000 family is the target. The default
1186 is normally the 68020, but this can be changed at configuration time.
1187
1188 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1189 The target machine does (or does not) have a floating-point coprocessor.
1190 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1191 the basic 68000 is not compatible with the 68881, a combination of the
1192 two can be specified, since it's possible to do emulation of the
1193 coprocessor instructions with the main processor.
1194
1195 @item -m68851 | -mno-68851
1196 The target machine does (or does not) have a memory-management
1197 unit coprocessor. The default is to assume an MMU for 68020 and up.
1198
1199 @end table
1200 @end ifset
1201
1202 @ifset NIOSII
1203
1204 @ifclear man
1205 @xref{Nios II Options}, for the options available when @value{AS} is configured
1206 for an Altera Nios II processor.
1207 @end ifclear
1208
1209 @ifset man
1210 @c man begin OPTIONS
1211 The following options are available when @value{AS} is configured for an
1212 Altera Nios II processor.
1213 @c man end
1214 @c man begin INCLUDE
1215 @include c-nios2.texi
1216 @c ended inside the included file
1217 @end ifset
1218 @end ifset
1219
1220 @ifset PDP11
1221
1222 For details about the PDP-11 machine dependent features options,
1223 see @ref{PDP-11-Options}.
1224
1225 @table @gcctabopt
1226 @item -mpic | -mno-pic
1227 Generate position-independent (or position-dependent) code. The
1228 default is @option{-mpic}.
1229
1230 @item -mall
1231 @itemx -mall-extensions
1232 Enable all instruction set extensions. This is the default.
1233
1234 @item -mno-extensions
1235 Disable all instruction set extensions.
1236
1237 @item -m@var{extension} | -mno-@var{extension}
1238 Enable (or disable) a particular instruction set extension.
1239
1240 @item -m@var{cpu}
1241 Enable the instruction set extensions supported by a particular CPU, and
1242 disable all other extensions.
1243
1244 @item -m@var{machine}
1245 Enable the instruction set extensions supported by a particular machine
1246 model, and disable all other extensions.
1247 @end table
1248
1249 @end ifset
1250
1251 @ifset PJ
1252 The following options are available when @value{AS} is configured for
1253 a picoJava processor.
1254
1255 @table @gcctabopt
1256
1257 @cindex PJ endianness
1258 @cindex endianness, PJ
1259 @cindex big endian output, PJ
1260 @item -mb
1261 Generate ``big endian'' format output.
1262
1263 @cindex little endian output, PJ
1264 @item -ml
1265 Generate ``little endian'' format output.
1266
1267 @end table
1268 @end ifset
1269
1270 @ifset PRU
1271
1272 @ifclear man
1273 @xref{PRU Options}, for the options available when @value{AS} is configured
1274 for a PRU processor.
1275 @end ifclear
1276
1277 @ifset man
1278 @c man begin OPTIONS
1279 The following options are available when @value{AS} is configured for a
1280 PRU processor.
1281 @c man end
1282 @c man begin INCLUDE
1283 @include c-pru.texi
1284 @c ended inside the included file
1285 @end ifset
1286 @end ifset
1287
1288 @ifset M68HC11
1289 The following options are available when @value{AS} is configured for the
1290 Motorola 68HC11 or 68HC12 series.
1291
1292 @table @gcctabopt
1293
1294 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1295 Specify what processor is the target. The default is
1296 defined by the configuration option when building the assembler.
1297
1298 @item --xgate-ramoffset
1299 Instruct the linker to offset RAM addresses from S12X address space into
1300 XGATE address space.
1301
1302 @item -mshort
1303 Specify to use the 16-bit integer ABI.
1304
1305 @item -mlong
1306 Specify to use the 32-bit integer ABI.
1307
1308 @item -mshort-double
1309 Specify to use the 32-bit double ABI.
1310
1311 @item -mlong-double
1312 Specify to use the 64-bit double ABI.
1313
1314 @item --force-long-branches
1315 Relative branches are turned into absolute ones. This concerns
1316 conditional branches, unconditional branches and branches to a
1317 sub routine.
1318
1319 @item -S | --short-branches
1320 Do not turn relative branches into absolute ones
1321 when the offset is out of range.
1322
1323 @item --strict-direct-mode
1324 Do not turn the direct addressing mode into extended addressing mode
1325 when the instruction does not support direct addressing mode.
1326
1327 @item --print-insn-syntax
1328 Print the syntax of instruction in case of error.
1329
1330 @item --print-opcodes
1331 Print the list of instructions with syntax and then exit.
1332
1333 @item --generate-example
1334 Print an example of instruction for each possible instruction and then exit.
1335 This option is only useful for testing @command{@value{AS}}.
1336
1337 @end table
1338 @end ifset
1339
1340 @ifset SPARC
1341 The following options are available when @command{@value{AS}} is configured
1342 for the SPARC architecture:
1343
1344 @table @gcctabopt
1345 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1346 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1347 Explicitly select a variant of the SPARC architecture.
1348
1349 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1350 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1351
1352 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1353 UltraSPARC extensions.
1354
1355 @item -xarch=v8plus | -xarch=v8plusa
1356 For compatibility with the Solaris v9 assembler. These options are
1357 equivalent to -Av8plus and -Av8plusa, respectively.
1358
1359 @item -bump
1360 Warn when the assembler switches to another architecture.
1361 @end table
1362 @end ifset
1363
1364 @ifset TIC54X
1365 The following options are available when @value{AS} is configured for the 'c54x
1366 architecture.
1367
1368 @table @gcctabopt
1369 @item -mfar-mode
1370 Enable extended addressing mode. All addresses and relocations will assume
1371 extended addressing (usually 23 bits).
1372 @item -mcpu=@var{CPU_VERSION}
1373 Sets the CPU version being compiled for.
1374 @item -merrors-to-file @var{FILENAME}
1375 Redirect error output to a file, for broken systems which don't support such
1376 behaviour in the shell.
1377 @end table
1378 @end ifset
1379
1380 @ifset MIPS
1381 @c man begin OPTIONS
1382 The following options are available when @value{AS} is configured for
1383 a MIPS processor.
1384
1385 @table @gcctabopt
1386 @item -G @var{num}
1387 This option sets the largest size of an object that can be referenced
1388 implicitly with the @code{gp} register. It is only accepted for targets that
1389 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1390
1391 @cindex MIPS endianness
1392 @cindex endianness, MIPS
1393 @cindex big endian output, MIPS
1394 @item -EB
1395 Generate ``big endian'' format output.
1396
1397 @cindex little endian output, MIPS
1398 @item -EL
1399 Generate ``little endian'' format output.
1400
1401 @cindex MIPS ISA
1402 @item -mips1
1403 @itemx -mips2
1404 @itemx -mips3
1405 @itemx -mips4
1406 @itemx -mips5
1407 @itemx -mips32
1408 @itemx -mips32r2
1409 @itemx -mips32r3
1410 @itemx -mips32r5
1411 @itemx -mips32r6
1412 @itemx -mips64
1413 @itemx -mips64r2
1414 @itemx -mips64r3
1415 @itemx -mips64r5
1416 @itemx -mips64r6
1417 Generate code for a particular MIPS Instruction Set Architecture level.
1418 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1419 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1420 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1421 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1422 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1423 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1424 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1425 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1426 MIPS64 Release 6 ISA processors, respectively.
1427
1428 @item -march=@var{cpu}
1429 Generate code for a particular MIPS CPU.
1430
1431 @item -mtune=@var{cpu}
1432 Schedule and tune for a particular MIPS CPU.
1433
1434 @item -mfix7000
1435 @itemx -mno-fix7000
1436 Cause nops to be inserted if the read of the destination register
1437 of an mfhi or mflo instruction occurs in the following two instructions.
1438
1439 @item -mfix-rm7000
1440 @itemx -mno-fix-rm7000
1441 Cause nops to be inserted if a dmult or dmultu instruction is
1442 followed by a load instruction.
1443
1444 @item -mdebug
1445 @itemx -no-mdebug
1446 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1447 section instead of the standard ELF .stabs sections.
1448
1449 @item -mpdr
1450 @itemx -mno-pdr
1451 Control generation of @code{.pdr} sections.
1452
1453 @item -mgp32
1454 @itemx -mfp32
1455 The register sizes are normally inferred from the ISA and ABI, but these
1456 flags force a certain group of registers to be treated as 32 bits wide at
1457 all times. @samp{-mgp32} controls the size of general-purpose registers
1458 and @samp{-mfp32} controls the size of floating-point registers.
1459
1460 @item -mgp64
1461 @itemx -mfp64
1462 The register sizes are normally inferred from the ISA and ABI, but these
1463 flags force a certain group of registers to be treated as 64 bits wide at
1464 all times. @samp{-mgp64} controls the size of general-purpose registers
1465 and @samp{-mfp64} controls the size of floating-point registers.
1466
1467 @item -mfpxx
1468 The register sizes are normally inferred from the ISA and ABI, but using
1469 this flag in combination with @samp{-mabi=32} enables an ABI variant
1470 which will operate correctly with floating-point registers which are
1471 32 or 64 bits wide.
1472
1473 @item -modd-spreg
1474 @itemx -mno-odd-spreg
1475 Enable use of floating-point operations on odd-numbered single-precision
1476 registers when supported by the ISA. @samp{-mfpxx} implies
1477 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1478
1479 @item -mips16
1480 @itemx -no-mips16
1481 Generate code for the MIPS 16 processor. This is equivalent to putting
1482 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1483 turns off this option.
1484
1485 @item -mmips16e2
1486 @itemx -mno-mips16e2
1487 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1488 to putting @code{.module mips16e2} at the start of the assembly file.
1489 @samp{-mno-mips16e2} turns off this option.
1490
1491 @item -mmicromips
1492 @itemx -mno-micromips
1493 Generate code for the microMIPS processor. This is equivalent to putting
1494 @code{.module micromips} at the start of the assembly file.
1495 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1496 @code{.module nomicromips} at the start of the assembly file.
1497
1498 @item -msmartmips
1499 @itemx -mno-smartmips
1500 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1501 equivalent to putting @code{.module smartmips} at the start of the assembly
1502 file. @samp{-mno-smartmips} turns off this option.
1503
1504 @item -mips3d
1505 @itemx -no-mips3d
1506 Generate code for the MIPS-3D Application Specific Extension.
1507 This tells the assembler to accept MIPS-3D instructions.
1508 @samp{-no-mips3d} turns off this option.
1509
1510 @item -mdmx
1511 @itemx -no-mdmx
1512 Generate code for the MDMX Application Specific Extension.
1513 This tells the assembler to accept MDMX instructions.
1514 @samp{-no-mdmx} turns off this option.
1515
1516 @item -mdsp
1517 @itemx -mno-dsp
1518 Generate code for the DSP Release 1 Application Specific Extension.
1519 This tells the assembler to accept DSP Release 1 instructions.
1520 @samp{-mno-dsp} turns off this option.
1521
1522 @item -mdspr2
1523 @itemx -mno-dspr2
1524 Generate code for the DSP Release 2 Application Specific Extension.
1525 This option implies @samp{-mdsp}.
1526 This tells the assembler to accept DSP Release 2 instructions.
1527 @samp{-mno-dspr2} turns off this option.
1528
1529 @item -mdspr3
1530 @itemx -mno-dspr3
1531 Generate code for the DSP Release 3 Application Specific Extension.
1532 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1533 This tells the assembler to accept DSP Release 3 instructions.
1534 @samp{-mno-dspr3} turns off this option.
1535
1536 @item -mmsa
1537 @itemx -mno-msa
1538 Generate code for the MIPS SIMD Architecture Extension.
1539 This tells the assembler to accept MSA instructions.
1540 @samp{-mno-msa} turns off this option.
1541
1542 @item -mxpa
1543 @itemx -mno-xpa
1544 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1545 This tells the assembler to accept XPA instructions.
1546 @samp{-mno-xpa} turns off this option.
1547
1548 @item -mmt
1549 @itemx -mno-mt
1550 Generate code for the MT Application Specific Extension.
1551 This tells the assembler to accept MT instructions.
1552 @samp{-mno-mt} turns off this option.
1553
1554 @item -mmcu
1555 @itemx -mno-mcu
1556 Generate code for the MCU Application Specific Extension.
1557 This tells the assembler to accept MCU instructions.
1558 @samp{-mno-mcu} turns off this option.
1559
1560 @item -mcrc
1561 @itemx -mno-crc
1562 Generate code for the MIPS cyclic redundancy check (CRC) Application
1563 Specific Extension. This tells the assembler to accept CRC instructions.
1564 @samp{-mno-crc} turns off this option.
1565
1566 @item -mginv
1567 @itemx -mno-ginv
1568 Generate code for the Global INValidate (GINV) Application Specific
1569 Extension. This tells the assembler to accept GINV instructions.
1570 @samp{-mno-ginv} turns off this option.
1571
1572 @item -mloongson-mmi
1573 @itemx -mno-loongson-mmi
1574 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1575 Application Specific Extension. This tells the assembler to accept MMI
1576 instructions.
1577 @samp{-mno-loongson-mmi} turns off this option.
1578
1579 @item -mloongson-cam
1580 @itemx -mno-loongson-cam
1581 Generate code for the Loongson Content Address Memory (CAM) instructions.
1582 This tells the assembler to accept Loongson CAM instructions.
1583 @samp{-mno-loongson-cam} turns off this option.
1584
1585 @item -mloongson-ext
1586 @itemx -mno-loongson-ext
1587 Generate code for the Loongson EXTensions (EXT) instructions.
1588 This tells the assembler to accept Loongson EXT instructions.
1589 @samp{-mno-loongson-ext} turns off this option.
1590
1591 @item -mloongson-ext2
1592 @itemx -mno-loongson-ext2
1593 Generate code for the Loongson EXTensions R2 (EXT2) instructions.
1594 This option implies @samp{-mloongson-ext}.
1595 This tells the assembler to accept Loongson EXT2 instructions.
1596 @samp{-mno-loongson-ext2} turns off this option.
1597
1598 @item -minsn32
1599 @itemx -mno-insn32
1600 Only use 32-bit instruction encodings when generating code for the
1601 microMIPS processor. This option inhibits the use of any 16-bit
1602 instructions. This is equivalent to putting @code{.set insn32} at
1603 the start of the assembly file. @samp{-mno-insn32} turns off this
1604 option. This is equivalent to putting @code{.set noinsn32} at the
1605 start of the assembly file. By default @samp{-mno-insn32} is
1606 selected, allowing all instructions to be used.
1607
1608 @item --construct-floats
1609 @itemx --no-construct-floats
1610 The @samp{--no-construct-floats} option disables the construction of
1611 double width floating point constants by loading the two halves of the
1612 value into the two single width floating point registers that make up
1613 the double width register. By default @samp{--construct-floats} is
1614 selected, allowing construction of these floating point constants.
1615
1616 @item --relax-branch
1617 @itemx --no-relax-branch
1618 The @samp{--relax-branch} option enables the relaxation of out-of-range
1619 branches. By default @samp{--no-relax-branch} is selected, causing any
1620 out-of-range branches to produce an error.
1621
1622 @item -mignore-branch-isa
1623 @itemx -mno-ignore-branch-isa
1624 Ignore branch checks for invalid transitions between ISA modes. The
1625 semantics of branches does not provide for an ISA mode switch, so in
1626 most cases the ISA mode a branch has been encoded for has to be the
1627 same as the ISA mode of the branch's target label. Therefore GAS has
1628 checks implemented that verify in branch assembly that the two ISA
1629 modes match. @samp{-mignore-branch-isa} disables these checks. By
1630 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1631 branch requiring a transition between ISA modes to produce an error.
1632
1633 @item -mnan=@var{encoding}
1634 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1635 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1636
1637 @cindex emulation
1638 @item --emulation=@var{name}
1639 This option was formerly used to switch between ELF and ECOFF output
1640 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1641 removed in GAS 2.24, so the option now serves little purpose.
1642 It is retained for backwards compatibility.
1643
1644 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1645 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1646 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1647 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1648 preferred options instead.
1649
1650 @item -nocpp
1651 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1652 the native tools.
1653
1654 @item --trap
1655 @itemx --no-trap
1656 @itemx --break
1657 @itemx --no-break
1658 Control how to deal with multiplication overflow and division by zero.
1659 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1660 (and only work for Instruction Set Architecture level 2 and higher);
1661 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1662 break exception.
1663
1664 @item -n
1665 When this option is used, @command{@value{AS}} will issue a warning every
1666 time it generates a nop instruction from a macro.
1667 @end table
1668 @c man end
1669 @end ifset
1670
1671 @ifset MCORE
1672 The following options are available when @value{AS} is configured for
1673 an MCore processor.
1674
1675 @table @gcctabopt
1676 @item -jsri2bsr
1677 @itemx -nojsri2bsr
1678 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1679 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1680
1681 @item -sifilter
1682 @itemx -nosifilter
1683 Enable or disable the silicon filter behaviour. By default this is disabled.
1684 The default can be overridden by the @samp{-sifilter} command-line option.
1685
1686 @item -relax
1687 Alter jump instructions for long displacements.
1688
1689 @item -mcpu=[210|340]
1690 Select the cpu type on the target hardware. This controls which instructions
1691 can be assembled.
1692
1693 @item -EB
1694 Assemble for a big endian target.
1695
1696 @item -EL
1697 Assemble for a little endian target.
1698
1699 @end table
1700 @end ifset
1701 @c man end
1702
1703 @ifset METAG
1704
1705 @ifclear man
1706 @xref{Meta Options}, for the options available when @value{AS} is configured
1707 for a Meta processor.
1708 @end ifclear
1709
1710 @ifset man
1711 @c man begin OPTIONS
1712 The following options are available when @value{AS} is configured for a
1713 Meta processor.
1714 @c man end
1715 @c man begin INCLUDE
1716 @include c-metag.texi
1717 @c ended inside the included file
1718 @end ifset
1719
1720 @end ifset
1721
1722 @c man begin OPTIONS
1723 @ifset MMIX
1724 See the info pages for documentation of the MMIX-specific options.
1725 @end ifset
1726
1727 @ifset NDS32
1728
1729 @ifclear man
1730 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1731 for a NDS32 processor.
1732 @end ifclear
1733 @c ended inside the included file
1734 @end ifset
1735
1736 @ifset man
1737 @c man begin OPTIONS
1738 The following options are available when @value{AS} is configured for a
1739 NDS32 processor.
1740 @c man end
1741 @c man begin INCLUDE
1742 @include c-nds32.texi
1743 @c ended inside the included file
1744 @end ifset
1745
1746 @c man end
1747 @ifset PPC
1748
1749 @ifclear man
1750 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1751 for a PowerPC processor.
1752 @end ifclear
1753
1754 @ifset man
1755 @c man begin OPTIONS
1756 The following options are available when @value{AS} is configured for a
1757 PowerPC processor.
1758 @c man end
1759 @c man begin INCLUDE
1760 @include c-ppc.texi
1761 @c ended inside the included file
1762 @end ifset
1763
1764 @end ifset
1765
1766 @ifset RISCV
1767
1768 @ifclear man
1769 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1770 for a RISC-V processor.
1771 @end ifclear
1772
1773 @ifset man
1774 @c man begin OPTIONS
1775 The following options are available when @value{AS} is configured for a
1776 RISC-V processor.
1777 @c man end
1778 @c man begin INCLUDE
1779 @include c-riscv.texi
1780 @c ended inside the included file
1781 @end ifset
1782
1783 @end ifset
1784
1785 @c man begin OPTIONS
1786 @ifset RX
1787 See the info pages for documentation of the RX-specific options.
1788 @end ifset
1789
1790 @ifset S390
1791 The following options are available when @value{AS} is configured for the s390
1792 processor family.
1793
1794 @table @gcctabopt
1795 @item -m31
1796 @itemx -m64
1797 Select the word size, either 31/32 bits or 64 bits.
1798 @item -mesa
1799 @item -mzarch
1800 Select the architecture mode, either the Enterprise System
1801 Architecture (esa) or the z/Architecture mode (zarch).
1802 @item -march=@var{processor}
1803 Specify which s390 processor variant is the target, @samp{g5} (or
1804 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1805 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1806 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1807 @samp{z13} (or @samp{arch11}), or @samp{z14} (or @samp{arch12}).
1808 @item -mregnames
1809 @itemx -mno-regnames
1810 Allow or disallow symbolic names for registers.
1811 @item -mwarn-areg-zero
1812 Warn whenever the operand for a base or index register has been specified
1813 but evaluates to zero.
1814 @end table
1815 @end ifset
1816 @c man end
1817
1818 @ifset TIC6X
1819
1820 @ifclear man
1821 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1822 for a TMS320C6000 processor.
1823 @end ifclear
1824
1825 @ifset man
1826 @c man begin OPTIONS
1827 The following options are available when @value{AS} is configured for a
1828 TMS320C6000 processor.
1829 @c man end
1830 @c man begin INCLUDE
1831 @include c-tic6x.texi
1832 @c ended inside the included file
1833 @end ifset
1834
1835 @end ifset
1836
1837 @ifset TILEGX
1838
1839 @ifclear man
1840 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1841 for a TILE-Gx processor.
1842 @end ifclear
1843
1844 @ifset man
1845 @c man begin OPTIONS
1846 The following options are available when @value{AS} is configured for a TILE-Gx
1847 processor.
1848 @c man end
1849 @c man begin INCLUDE
1850 @include c-tilegx.texi
1851 @c ended inside the included file
1852 @end ifset
1853
1854 @end ifset
1855
1856 @ifset VISIUM
1857
1858 @ifclear man
1859 @xref{Visium Options}, for the options available when @value{AS} is configured
1860 for a Visium processor.
1861 @end ifclear
1862
1863 @ifset man
1864 @c man begin OPTIONS
1865 The following option is available when @value{AS} is configured for a Visium
1866 processor.
1867 @c man end
1868 @c man begin INCLUDE
1869 @include c-visium.texi
1870 @c ended inside the included file
1871 @end ifset
1872
1873 @end ifset
1874
1875 @ifset XTENSA
1876
1877 @ifclear man
1878 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1879 for an Xtensa processor.
1880 @end ifclear
1881
1882 @ifset man
1883 @c man begin OPTIONS
1884 The following options are available when @value{AS} is configured for an
1885 Xtensa processor.
1886 @c man end
1887 @c man begin INCLUDE
1888 @include c-xtensa.texi
1889 @c ended inside the included file
1890 @end ifset
1891
1892 @end ifset
1893
1894 @c man begin OPTIONS
1895
1896 @ifset Z80
1897 The following options are available when @value{AS} is configured for
1898 a Z80 family processor.
1899 @table @gcctabopt
1900 @item -z80
1901 Assemble for Z80 processor.
1902 @item -r800
1903 Assemble for R800 processor.
1904 @item -ignore-undocumented-instructions
1905 @itemx -Wnud
1906 Assemble undocumented Z80 instructions that also work on R800 without warning.
1907 @item -ignore-unportable-instructions
1908 @itemx -Wnup
1909 Assemble all undocumented Z80 instructions without warning.
1910 @item -warn-undocumented-instructions
1911 @itemx -Wud
1912 Issue a warning for undocumented Z80 instructions that also work on R800.
1913 @item -warn-unportable-instructions
1914 @itemx -Wup
1915 Issue a warning for undocumented Z80 instructions that do not work on R800.
1916 @item -forbid-undocumented-instructions
1917 @itemx -Fud
1918 Treat all undocumented instructions as errors.
1919 @item -forbid-unportable-instructions
1920 @itemx -Fup
1921 Treat undocumented Z80 instructions that do not work on R800 as errors.
1922 @end table
1923 @end ifset
1924
1925 @c man end
1926
1927 @menu
1928 * Manual:: Structure of this Manual
1929 * GNU Assembler:: The GNU Assembler
1930 * Object Formats:: Object File Formats
1931 * Command Line:: Command Line
1932 * Input Files:: Input Files
1933 * Object:: Output (Object) File
1934 * Errors:: Error and Warning Messages
1935 @end menu
1936
1937 @node Manual
1938 @section Structure of this Manual
1939
1940 @cindex manual, structure and purpose
1941 This manual is intended to describe what you need to know to use
1942 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
1943 notation for symbols, constants, and expressions; the directives that
1944 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
1945
1946 @ifclear GENERIC
1947 We also cover special features in the @value{TARGET}
1948 configuration of @command{@value{AS}}, including assembler directives.
1949 @end ifclear
1950 @ifset GENERIC
1951 This manual also describes some of the machine-dependent features of
1952 various flavors of the assembler.
1953 @end ifset
1954
1955 @cindex machine instructions (not covered)
1956 On the other hand, this manual is @emph{not} intended as an introduction
1957 to programming in assembly language---let alone programming in general!
1958 In a similar vein, we make no attempt to introduce the machine
1959 architecture; we do @emph{not} describe the instruction set, standard
1960 mnemonics, registers or addressing modes that are standard to a
1961 particular architecture.
1962 @ifset GENERIC
1963 You may want to consult the manufacturer's
1964 machine architecture manual for this information.
1965 @end ifset
1966 @ifclear GENERIC
1967 @ifset H8/300
1968 For information on the H8/300 machine instruction set, see @cite{H8/300
1969 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
1970 Programming Manual} (Renesas).
1971 @end ifset
1972 @ifset SH
1973 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
1974 see @cite{SH-Microcomputer User's Manual} (Renesas) or
1975 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
1976 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
1977 @end ifset
1978 @ifset Z8000
1979 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
1980 @end ifset
1981 @end ifclear
1982
1983 @c I think this is premature---doc@cygnus.com, 17jan1991
1984 @ignore
1985 Throughout this manual, we assume that you are running @dfn{GNU},
1986 the portable operating system from the @dfn{Free Software
1987 Foundation, Inc.}. This restricts our attention to certain kinds of
1988 computer (in particular, the kinds of computers that @sc{gnu} can run on);
1989 once this assumption is granted examples and definitions need less
1990 qualification.
1991
1992 @command{@value{AS}} is part of a team of programs that turn a high-level
1993 human-readable series of instructions into a low-level
1994 computer-readable series of instructions. Different versions of
1995 @command{@value{AS}} are used for different kinds of computer.
1996 @end ignore
1997
1998 @c There used to be a section "Terminology" here, which defined
1999 @c "contents", "byte", "word", and "long". Defining "word" to any
2000 @c particular size is confusing when the .word directive may generate 16
2001 @c bits on one machine and 32 bits on another; in general, for the user
2002 @c version of this manual, none of these terms seem essential to define.
2003 @c They were used very little even in the former draft of the manual;
2004 @c this draft makes an effort to avoid them (except in names of
2005 @c directives).
2006
2007 @node GNU Assembler
2008 @section The GNU Assembler
2009
2010 @c man begin DESCRIPTION
2011
2012 @sc{gnu} @command{as} is really a family of assemblers.
2013 @ifclear GENERIC
2014 This manual describes @command{@value{AS}}, a member of that family which is
2015 configured for the @value{TARGET} architectures.
2016 @end ifclear
2017 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2018 should find a fairly similar environment when you use it on another
2019 architecture. Each version has much in common with the others,
2020 including object file formats, most assembler directives (often called
2021 @dfn{pseudo-ops}) and assembler syntax.@refill
2022
2023 @cindex purpose of @sc{gnu} assembler
2024 @command{@value{AS}} is primarily intended to assemble the output of the
2025 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2026 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2027 assemble correctly everything that other assemblers for the same
2028 machine would assemble.
2029 @ifset VAX
2030 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2031 @end ifset
2032 @ifset M680X0
2033 @c This remark should appear in generic version of manual; assumption
2034 @c here is that generic version sets M680x0.
2035 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2036 assembler for the same architecture; for example, we know of several
2037 incompatible versions of 680x0 assembly language syntax.
2038 @end ifset
2039
2040 @c man end
2041
2042 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2043 program in one pass of the source file. This has a subtle impact on the
2044 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2045
2046 @node Object Formats
2047 @section Object File Formats
2048
2049 @cindex object file format
2050 The @sc{gnu} assembler can be configured to produce several alternative
2051 object file formats. For the most part, this does not affect how you
2052 write assembly language programs; but directives for debugging symbols
2053 are typically different in different file formats. @xref{Symbol
2054 Attributes,,Symbol Attributes}.
2055 @ifclear GENERIC
2056 @ifclear MULTI-OBJ
2057 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2058 @value{OBJ-NAME} format object files.
2059 @end ifclear
2060 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2061 @ifset HPPA
2062 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2063 SOM or ELF format object files.
2064 @end ifset
2065 @end ifclear
2066
2067 @node Command Line
2068 @section Command Line
2069
2070 @cindex command line conventions
2071
2072 After the program name @command{@value{AS}}, the command line may contain
2073 options and file names. Options may appear in any order, and may be
2074 before, after, or between file names. The order of file names is
2075 significant.
2076
2077 @cindex standard input, as input file
2078 @kindex --
2079 @file{--} (two hyphens) by itself names the standard input file
2080 explicitly, as one of the files for @command{@value{AS}} to assemble.
2081
2082 @cindex options, command line
2083 Except for @samp{--} any command-line argument that begins with a
2084 hyphen (@samp{-}) is an option. Each option changes the behavior of
2085 @command{@value{AS}}. No option changes the way another option works. An
2086 option is a @samp{-} followed by one or more letters; the case of
2087 the letter is important. All options are optional.
2088
2089 Some options expect exactly one file name to follow them. The file
2090 name may either immediately follow the option's letter (compatible
2091 with older assemblers) or it may be the next command argument (@sc{gnu}
2092 standard). These two command lines are equivalent:
2093
2094 @smallexample
2095 @value{AS} -o my-object-file.o mumble.s
2096 @value{AS} -omy-object-file.o mumble.s
2097 @end smallexample
2098
2099 @node Input Files
2100 @section Input Files
2101
2102 @cindex input
2103 @cindex source program
2104 @cindex files, input
2105 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2106 describe the program input to one run of @command{@value{AS}}. The program may
2107 be in one or more files; how the source is partitioned into files
2108 doesn't change the meaning of the source.
2109
2110 @c I added "con" prefix to "catenation" just to prove I can overcome my
2111 @c APL training... doc@cygnus.com
2112 The source program is a concatenation of the text in all the files, in the
2113 order specified.
2114
2115 @c man begin DESCRIPTION
2116 Each time you run @command{@value{AS}} it assembles exactly one source
2117 program. The source program is made up of one or more files.
2118 (The standard input is also a file.)
2119
2120 You give @command{@value{AS}} a command line that has zero or more input file
2121 names. The input files are read (from left file name to right). A
2122 command-line argument (in any position) that has no special meaning
2123 is taken to be an input file name.
2124
2125 If you give @command{@value{AS}} no file names it attempts to read one input file
2126 from the @command{@value{AS}} standard input, which is normally your terminal. You
2127 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2128 to assemble.
2129
2130 Use @samp{--} if you need to explicitly name the standard input file
2131 in your command line.
2132
2133 If the source is empty, @command{@value{AS}} produces a small, empty object
2134 file.
2135
2136 @c man end
2137
2138 @subheading Filenames and Line-numbers
2139
2140 @cindex input file linenumbers
2141 @cindex line numbers, in input files
2142 There are two ways of locating a line in the input file (or files) and
2143 either may be used in reporting error messages. One way refers to a line
2144 number in a physical file; the other refers to a line number in a
2145 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2146
2147 @dfn{Physical files} are those files named in the command line given
2148 to @command{@value{AS}}.
2149
2150 @dfn{Logical files} are simply names declared explicitly by assembler
2151 directives; they bear no relation to physical files. Logical file names help
2152 error messages reflect the original source file, when @command{@value{AS}} source
2153 is itself synthesized from other files. @command{@value{AS}} understands the
2154 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2155 @ref{File,,@code{.file}}.
2156
2157 @node Object
2158 @section Output (Object) File
2159
2160 @cindex object file
2161 @cindex output file
2162 @kindex a.out
2163 @kindex .o
2164 Every time you run @command{@value{AS}} it produces an output file, which is
2165 your assembly language program translated into numbers. This file
2166 is the object file. Its default name is @code{a.out}.
2167 You can give it another name by using the @option{-o} option. Conventionally,
2168 object file names end with @file{.o}. The default name is used for historical
2169 reasons: older assemblers were capable of assembling self-contained programs
2170 directly into a runnable program. (For some formats, this isn't currently
2171 possible, but it can be done for the @code{a.out} format.)
2172
2173 @cindex linker
2174 @kindex ld
2175 The object file is meant for input to the linker @code{@value{LD}}. It contains
2176 assembled program code, information to help @code{@value{LD}} integrate
2177 the assembled program into a runnable file, and (optionally) symbolic
2178 information for the debugger.
2179
2180 @c link above to some info file(s) like the description of a.out.
2181 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2182
2183 @node Errors
2184 @section Error and Warning Messages
2185
2186 @c man begin DESCRIPTION
2187
2188 @cindex error messages
2189 @cindex warning messages
2190 @cindex messages from assembler
2191 @command{@value{AS}} may write warnings and error messages to the standard error
2192 file (usually your terminal). This should not happen when a compiler
2193 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2194 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2195 grave problem that stops the assembly.
2196
2197 @c man end
2198
2199 @cindex format of warning messages
2200 Warning messages have the format
2201
2202 @smallexample
2203 file_name:@b{NNN}:Warning Message Text
2204 @end smallexample
2205
2206 @noindent
2207 @cindex file names and line numbers, in warnings/errors
2208 (where @b{NNN} is a line number). If both a logical file name
2209 (@pxref{File,,@code{.file}}) and a logical line number
2210 @ifset GENERIC
2211 (@pxref{Line,,@code{.line}})
2212 @end ifset
2213 have been given then they will be used, otherwise the file name and line number
2214 in the current assembler source file will be used. The message text is
2215 intended to be self explanatory (in the grand Unix tradition).
2216
2217 Note the file name must be set via the logical version of the @code{.file}
2218 directive, not the DWARF2 version of the @code{.file} directive. For example:
2219
2220 @smallexample
2221 .file 2 "bar.c"
2222 error_assembler_source
2223 .file "foo.c"
2224 .line 30
2225 error_c_source
2226 @end smallexample
2227
2228 produces this output:
2229
2230 @smallexample
2231 Assembler messages:
2232 asm.s:2: Error: no such instruction: `error_assembler_source'
2233 foo.c:31: Error: no such instruction: `error_c_source'
2234 @end smallexample
2235
2236 @cindex format of error messages
2237 Error messages have the format
2238
2239 @smallexample
2240 file_name:@b{NNN}:FATAL:Error Message Text
2241 @end smallexample
2242
2243 The file name and line number are derived as for warning
2244 messages. The actual message text may be rather less explanatory
2245 because many of them aren't supposed to happen.
2246
2247 @node Invoking
2248 @chapter Command-Line Options
2249
2250 @cindex options, all versions of assembler
2251 This chapter describes command-line options available in @emph{all}
2252 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2253 for options specific
2254 @ifclear GENERIC
2255 to the @value{TARGET} target.
2256 @end ifclear
2257 @ifset GENERIC
2258 to particular machine architectures.
2259 @end ifset
2260
2261 @c man begin DESCRIPTION
2262
2263 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2264 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2265 The assembler arguments must be separated from each other (and the @samp{-Wa})
2266 by commas. For example:
2267
2268 @smallexample
2269 gcc -c -g -O -Wa,-alh,-L file.c
2270 @end smallexample
2271
2272 @noindent
2273 This passes two options to the assembler: @samp{-alh} (emit a listing to
2274 standard output with high-level and assembly source) and @samp{-L} (retain
2275 local symbols in the symbol table).
2276
2277 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2278 command-line options are automatically passed to the assembler by the compiler.
2279 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2280 precisely what options it passes to each compilation pass, including the
2281 assembler.)
2282
2283 @c man end
2284
2285 @menu
2286 * a:: -a[cdghlns] enable listings
2287 * alternate:: --alternate enable alternate macro syntax
2288 * D:: -D for compatibility
2289 * f:: -f to work faster
2290 * I:: -I for .include search path
2291 @ifclear DIFF-TBL-KLUGE
2292 * K:: -K for compatibility
2293 @end ifclear
2294 @ifset DIFF-TBL-KLUGE
2295 * K:: -K for difference tables
2296 @end ifset
2297
2298 * L:: -L to retain local symbols
2299 * listing:: --listing-XXX to configure listing output
2300 * M:: -M or --mri to assemble in MRI compatibility mode
2301 * MD:: --MD for dependency tracking
2302 * no-pad-sections:: --no-pad-sections to stop section padding
2303 * o:: -o to name the object file
2304 * R:: -R to join data and text sections
2305 * statistics:: --statistics to see statistics about assembly
2306 * traditional-format:: --traditional-format for compatible output
2307 * v:: -v to announce version
2308 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2309 * Z:: -Z to make object file even after errors
2310 @end menu
2311
2312 @node a
2313 @section Enable Listings: @option{-a[cdghlns]}
2314
2315 @kindex -a
2316 @kindex -ac
2317 @kindex -ad
2318 @kindex -ag
2319 @kindex -ah
2320 @kindex -al
2321 @kindex -an
2322 @kindex -as
2323 @cindex listings, enabling
2324 @cindex assembly listings, enabling
2325
2326 These options enable listing output from the assembler. By itself,
2327 @samp{-a} requests high-level, assembly, and symbols listing.
2328 You can use other letters to select specific options for the list:
2329 @samp{-ah} requests a high-level language listing,
2330 @samp{-al} requests an output-program assembly listing, and
2331 @samp{-as} requests a symbol table listing.
2332 High-level listings require that a compiler debugging option like
2333 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2334 also.
2335
2336 Use the @samp{-ag} option to print a first section with general assembly
2337 information, like @value{AS} version, switches passed, or time stamp.
2338
2339 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2340 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2341 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2342 omitted from the listing.
2343
2344 Use the @samp{-ad} option to omit debugging directives from the
2345 listing.
2346
2347 Once you have specified one of these options, you can further control
2348 listing output and its appearance using the directives @code{.list},
2349 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2350 @code{.sbttl}.
2351 The @samp{-an} option turns off all forms processing.
2352 If you do not request listing output with one of the @samp{-a} options, the
2353 listing-control directives have no effect.
2354
2355 The letters after @samp{-a} may be combined into one option,
2356 @emph{e.g.}, @samp{-aln}.
2357
2358 Note if the assembler source is coming from the standard input (e.g.,
2359 because it
2360 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2361 is being used) then the listing will not contain any comments or preprocessor
2362 directives. This is because the listing code buffers input source lines from
2363 stdin only after they have been preprocessed by the assembler. This reduces
2364 memory usage and makes the code more efficient.
2365
2366 @node alternate
2367 @section @option{--alternate}
2368
2369 @kindex --alternate
2370 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2371
2372 @node D
2373 @section @option{-D}
2374
2375 @kindex -D
2376 This option has no effect whatsoever, but it is accepted to make it more
2377 likely that scripts written for other assemblers also work with
2378 @command{@value{AS}}.
2379
2380 @node f
2381 @section Work Faster: @option{-f}
2382
2383 @kindex -f
2384 @cindex trusted compiler
2385 @cindex faster processing (@option{-f})
2386 @samp{-f} should only be used when assembling programs written by a
2387 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2388 and comment preprocessing on
2389 the input file(s) before assembling them. @xref{Preprocessing,
2390 ,Preprocessing}.
2391
2392 @quotation
2393 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2394 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2395 not work correctly.
2396 @end quotation
2397
2398 @node I
2399 @section @code{.include} Search Path: @option{-I} @var{path}
2400
2401 @kindex -I @var{path}
2402 @cindex paths for @code{.include}
2403 @cindex search path for @code{.include}
2404 @cindex @code{include} directive search path
2405 Use this option to add a @var{path} to the list of directories
2406 @command{@value{AS}} searches for files specified in @code{.include}
2407 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2408 many times as necessary to include a variety of paths. The current
2409 working directory is always searched first; after that, @command{@value{AS}}
2410 searches any @samp{-I} directories in the same order as they were
2411 specified (left to right) on the command line.
2412
2413 @node K
2414 @section Difference Tables: @option{-K}
2415
2416 @kindex -K
2417 @ifclear DIFF-TBL-KLUGE
2418 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2419 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2420 where it can be used to warn when the assembler alters the machine code
2421 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2422 family does not have the addressing limitations that sometimes lead to this
2423 alteration on other platforms.
2424 @end ifclear
2425
2426 @ifset DIFF-TBL-KLUGE
2427 @cindex difference tables, warning
2428 @cindex warning for altered difference tables
2429 @command{@value{AS}} sometimes alters the code emitted for directives of the
2430 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2431 You can use the @samp{-K} option if you want a warning issued when this
2432 is done.
2433 @end ifset
2434
2435 @node L
2436 @section Include Local Symbols: @option{-L}
2437
2438 @kindex -L
2439 @cindex local symbols, retaining in output
2440 Symbols beginning with system-specific local label prefixes, typically
2441 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2442 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2443 such symbols when debugging, because they are intended for the use of
2444 programs (like compilers) that compose assembler programs, not for your
2445 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2446 such symbols, so you do not normally debug with them.
2447
2448 This option tells @command{@value{AS}} to retain those local symbols
2449 in the object file. Usually if you do this you also tell the linker
2450 @code{@value{LD}} to preserve those symbols.
2451
2452 @node listing
2453 @section Configuring listing output: @option{--listing}
2454
2455 The listing feature of the assembler can be enabled via the command-line switch
2456 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2457 hex dump of the corresponding locations in the output object file, and displays
2458 them as a listing file. The format of this listing can be controlled by
2459 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2460 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2461 @code{.psize} (@pxref{Psize}), and
2462 @code{.eject} (@pxref{Eject}) and also by the following switches:
2463
2464 @table @gcctabopt
2465 @item --listing-lhs-width=@samp{number}
2466 @kindex --listing-lhs-width
2467 @cindex Width of first line disassembly output
2468 Sets the maximum width, in words, of the first line of the hex byte dump. This
2469 dump appears on the left hand side of the listing output.
2470
2471 @item --listing-lhs-width2=@samp{number}
2472 @kindex --listing-lhs-width2
2473 @cindex Width of continuation lines of disassembly output
2474 Sets the maximum width, in words, of any further lines of the hex byte dump for
2475 a given input source line. If this value is not specified, it defaults to being
2476 the same as the value specified for @samp{--listing-lhs-width}. If neither
2477 switch is used the default is to one.
2478
2479 @item --listing-rhs-width=@samp{number}
2480 @kindex --listing-rhs-width
2481 @cindex Width of source line output
2482 Sets the maximum width, in characters, of the source line that is displayed
2483 alongside the hex dump. The default value for this parameter is 100. The
2484 source line is displayed on the right hand side of the listing output.
2485
2486 @item --listing-cont-lines=@samp{number}
2487 @kindex --listing-cont-lines
2488 @cindex Maximum number of continuation lines
2489 Sets the maximum number of continuation lines of hex dump that will be
2490 displayed for a given single line of source input. The default value is 4.
2491 @end table
2492
2493 @node M
2494 @section Assemble in MRI Compatibility Mode: @option{-M}
2495
2496 @kindex -M
2497 @cindex MRI compatibility mode
2498 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2499 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2500 compatible with the @code{ASM68K} assembler from Microtec Research.
2501 The exact nature of the
2502 MRI syntax will not be documented here; see the MRI manuals for more
2503 information. Note in particular that the handling of macros and macro
2504 arguments is somewhat different. The purpose of this option is to permit
2505 assembling existing MRI assembler code using @command{@value{AS}}.
2506
2507 The MRI compatibility is not complete. Certain operations of the MRI assembler
2508 depend upon its object file format, and can not be supported using other object
2509 file formats. Supporting these would require enhancing each object file format
2510 individually. These are:
2511
2512 @itemize @bullet
2513 @item global symbols in common section
2514
2515 The m68k MRI assembler supports common sections which are merged by the linker.
2516 Other object file formats do not support this. @command{@value{AS}} handles
2517 common sections by treating them as a single common symbol. It permits local
2518 symbols to be defined within a common section, but it can not support global
2519 symbols, since it has no way to describe them.
2520
2521 @item complex relocations
2522
2523 The MRI assemblers support relocations against a negated section address, and
2524 relocations which combine the start addresses of two or more sections. These
2525 are not support by other object file formats.
2526
2527 @item @code{END} pseudo-op specifying start address
2528
2529 The MRI @code{END} pseudo-op permits the specification of a start address.
2530 This is not supported by other object file formats. The start address may
2531 instead be specified using the @option{-e} option to the linker, or in a linker
2532 script.
2533
2534 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2535
2536 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2537 name to the output file. This is not supported by other object file formats.
2538
2539 @item @code{ORG} pseudo-op
2540
2541 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2542 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2543 which changes the location within the current section. Absolute sections are
2544 not supported by other object file formats. The address of a section may be
2545 assigned within a linker script.
2546 @end itemize
2547
2548 There are some other features of the MRI assembler which are not supported by
2549 @command{@value{AS}}, typically either because they are difficult or because they
2550 seem of little consequence. Some of these may be supported in future releases.
2551
2552 @itemize @bullet
2553
2554 @item EBCDIC strings
2555
2556 EBCDIC strings are not supported.
2557
2558 @item packed binary coded decimal
2559
2560 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2561 and @code{DCB.P} pseudo-ops are not supported.
2562
2563 @item @code{FEQU} pseudo-op
2564
2565 The m68k @code{FEQU} pseudo-op is not supported.
2566
2567 @item @code{NOOBJ} pseudo-op
2568
2569 The m68k @code{NOOBJ} pseudo-op is not supported.
2570
2571 @item @code{OPT} branch control options
2572
2573 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2574 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2575 relaxes all branches, whether forward or backward, to an appropriate size, so
2576 these options serve no purpose.
2577
2578 @item @code{OPT} list control options
2579
2580 The following m68k @code{OPT} list control options are ignored: @code{C},
2581 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2582 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2583
2584 @item other @code{OPT} options
2585
2586 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2587 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2588
2589 @item @code{OPT} @code{D} option is default
2590
2591 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2592 @code{OPT NOD} may be used to turn it off.
2593
2594 @item @code{XREF} pseudo-op.
2595
2596 The m68k @code{XREF} pseudo-op is ignored.
2597
2598 @end itemize
2599
2600 @node MD
2601 @section Dependency Tracking: @option{--MD}
2602
2603 @kindex --MD
2604 @cindex dependency tracking
2605 @cindex make rules
2606
2607 @command{@value{AS}} can generate a dependency file for the file it creates. This
2608 file consists of a single rule suitable for @code{make} describing the
2609 dependencies of the main source file.
2610
2611 The rule is written to the file named in its argument.
2612
2613 This feature is used in the automatic updating of makefiles.
2614
2615 @node no-pad-sections
2616 @section Output Section Padding
2617 @kindex --no-pad-sections
2618 @cindex output section padding
2619 Normally the assembler will pad the end of each output section up to its
2620 alignment boundary. But this can waste space, which can be significant on
2621 memory constrained targets. So the @option{--no-pad-sections} option will
2622 disable this behaviour.
2623
2624 @node o
2625 @section Name the Object File: @option{-o}
2626
2627 @kindex -o
2628 @cindex naming object file
2629 @cindex object file name
2630 There is always one object file output when you run @command{@value{AS}}. By
2631 default it has the name @file{a.out}.
2632 You use this option (which takes exactly one filename) to give the
2633 object file a different name.
2634
2635 Whatever the object file is called, @command{@value{AS}} overwrites any
2636 existing file of the same name.
2637
2638 @node R
2639 @section Join Data and Text Sections: @option{-R}
2640
2641 @kindex -R
2642 @cindex data and text sections, joining
2643 @cindex text and data sections, joining
2644 @cindex joining text and data sections
2645 @cindex merging text and data sections
2646 @option{-R} tells @command{@value{AS}} to write the object file as if all
2647 data-section data lives in the text section. This is only done at
2648 the very last moment: your binary data are the same, but data
2649 section parts are relocated differently. The data section part of
2650 your object file is zero bytes long because all its bytes are
2651 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2652
2653 When you specify @option{-R} it would be possible to generate shorter
2654 address displacements (because we do not have to cross between text and
2655 data section). We refrain from doing this simply for compatibility with
2656 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2657
2658 @ifset COFF-ELF
2659 When @command{@value{AS}} is configured for COFF or ELF output,
2660 this option is only useful if you use sections named @samp{.text} and
2661 @samp{.data}.
2662 @end ifset
2663
2664 @ifset HPPA
2665 @option{-R} is not supported for any of the HPPA targets. Using
2666 @option{-R} generates a warning from @command{@value{AS}}.
2667 @end ifset
2668
2669 @node statistics
2670 @section Display Assembly Statistics: @option{--statistics}
2671
2672 @kindex --statistics
2673 @cindex statistics, about assembly
2674 @cindex time, total for assembly
2675 @cindex space used, maximum for assembly
2676 Use @samp{--statistics} to display two statistics about the resources used by
2677 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2678 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2679 seconds).
2680
2681 @node traditional-format
2682 @section Compatible Output: @option{--traditional-format}
2683
2684 @kindex --traditional-format
2685 For some targets, the output of @command{@value{AS}} is different in some ways
2686 from the output of some existing assembler. This switch requests
2687 @command{@value{AS}} to use the traditional format instead.
2688
2689 For example, it disables the exception frame optimizations which
2690 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2691
2692 @node v
2693 @section Announce Version: @option{-v}
2694
2695 @kindex -v
2696 @kindex -version
2697 @cindex assembler version
2698 @cindex version of assembler
2699 You can find out what version of as is running by including the
2700 option @samp{-v} (which you can also spell as @samp{-version}) on the
2701 command line.
2702
2703 @node W
2704 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2705
2706 @command{@value{AS}} should never give a warning or error message when
2707 assembling compiler output. But programs written by people often
2708 cause @command{@value{AS}} to give a warning that a particular assumption was
2709 made. All such warnings are directed to the standard error file.
2710
2711 @kindex -W
2712 @kindex --no-warn
2713 @cindex suppressing warnings
2714 @cindex warnings, suppressing
2715 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2716 This only affects the warning messages: it does not change any particular of
2717 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2718 are still reported.
2719
2720 @kindex --fatal-warnings
2721 @cindex errors, caused by warnings
2722 @cindex warnings, causing error
2723 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2724 files that generate warnings to be in error.
2725
2726 @kindex --warn
2727 @cindex warnings, switching on
2728 You can switch these options off again by specifying @option{--warn}, which
2729 causes warnings to be output as usual.
2730
2731 @node Z
2732 @section Generate Object File in Spite of Errors: @option{-Z}
2733 @cindex object file, after errors
2734 @cindex errors, continuing after
2735 After an error message, @command{@value{AS}} normally produces no output. If for
2736 some reason you are interested in object file output even after
2737 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2738 option. If there are any errors, @command{@value{AS}} continues anyways, and
2739 writes an object file after a final warning message of the form @samp{@var{n}
2740 errors, @var{m} warnings, generating bad object file.}
2741
2742 @node Syntax
2743 @chapter Syntax
2744
2745 @cindex machine-independent syntax
2746 @cindex syntax, machine-independent
2747 This chapter describes the machine-independent syntax allowed in a
2748 source file. @command{@value{AS}} syntax is similar to what many other
2749 assemblers use; it is inspired by the BSD 4.2
2750 @ifclear VAX
2751 assembler.
2752 @end ifclear
2753 @ifset VAX
2754 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2755 @end ifset
2756
2757 @menu
2758 * Preprocessing:: Preprocessing
2759 * Whitespace:: Whitespace
2760 * Comments:: Comments
2761 * Symbol Intro:: Symbols
2762 * Statements:: Statements
2763 * Constants:: Constants
2764 @end menu
2765
2766 @node Preprocessing
2767 @section Preprocessing
2768
2769 @cindex preprocessing
2770 The @command{@value{AS}} internal preprocessor:
2771 @itemize @bullet
2772 @cindex whitespace, removed by preprocessor
2773 @item
2774 adjusts and removes extra whitespace. It leaves one space or tab before
2775 the keywords on a line, and turns any other whitespace on the line into
2776 a single space.
2777
2778 @cindex comments, removed by preprocessor
2779 @item
2780 removes all comments, replacing them with a single space, or an
2781 appropriate number of newlines.
2782
2783 @cindex constants, converted by preprocessor
2784 @item
2785 converts character constants into the appropriate numeric values.
2786 @end itemize
2787
2788 It does not do macro processing, include file handling, or
2789 anything else you may get from your C compiler's preprocessor. You can
2790 do include file processing with the @code{.include} directive
2791 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2792 to get other ``CPP'' style preprocessing by giving the input file a
2793 @samp{.S} suffix. @xref{Overall Options, ,Options Controlling the Kind of
2794 Output, gcc info, Using GNU CC}.
2795
2796 Excess whitespace, comments, and character constants
2797 cannot be used in the portions of the input text that are not
2798 preprocessed.
2799
2800 @cindex turning preprocessing on and off
2801 @cindex preprocessing, turning on and off
2802 @kindex #NO_APP
2803 @kindex #APP
2804 If the first line of an input file is @code{#NO_APP} or if you use the
2805 @samp{-f} option, whitespace and comments are not removed from the input file.
2806 Within an input file, you can ask for whitespace and comment removal in
2807 specific portions of the by putting a line that says @code{#APP} before the
2808 text that may contain whitespace or comments, and putting a line that says
2809 @code{#NO_APP} after this text. This feature is mainly intend to support
2810 @code{asm} statements in compilers whose output is otherwise free of comments
2811 and whitespace.
2812
2813 @node Whitespace
2814 @section Whitespace
2815
2816 @cindex whitespace
2817 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2818 Whitespace is used to separate symbols, and to make programs neater for
2819 people to read. Unless within character constants
2820 (@pxref{Characters,,Character Constants}), any whitespace means the same
2821 as exactly one space.
2822
2823 @node Comments
2824 @section Comments
2825
2826 @cindex comments
2827 There are two ways of rendering comments to @command{@value{AS}}. In both
2828 cases the comment is equivalent to one space.
2829
2830 Anything from @samp{/*} through the next @samp{*/} is a comment.
2831 This means you may not nest these comments.
2832
2833 @smallexample
2834 /*
2835 The only way to include a newline ('\n') in a comment
2836 is to use this sort of comment.
2837 */
2838
2839 /* This sort of comment does not nest. */
2840 @end smallexample
2841
2842 @cindex line comment character
2843 Anything from a @dfn{line comment} character up to the next newline is
2844 considered a comment and is ignored. The line comment character is target
2845 specific, and some targets multiple comment characters. Some targets also have
2846 line comment characters that only work if they are the first character on a
2847 line. Some targets use a sequence of two characters to introduce a line
2848 comment. Some targets can also change their line comment characters depending
2849 upon command-line options that have been used. For more details see the
2850 @emph{Syntax} section in the documentation for individual targets.
2851
2852 If the line comment character is the hash sign (@samp{#}) then it still has the
2853 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2854 to specify logical line numbers:
2855
2856 @kindex #
2857 @cindex lines starting with @code{#}
2858 @cindex logical line numbers
2859 To be compatible with past assemblers, lines that begin with @samp{#} have a
2860 special interpretation. Following the @samp{#} should be an absolute
2861 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2862 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2863 new logical file name. The rest of the line, if any, should be whitespace.
2864
2865 If the first non-whitespace characters on the line are not numeric,
2866 the line is ignored. (Just like a comment.)
2867
2868 @smallexample
2869 # This is an ordinary comment.
2870 # 42-6 "new_file_name" # New logical file name
2871 # This is logical line # 36.
2872 @end smallexample
2873 This feature is deprecated, and may disappear from future versions
2874 of @command{@value{AS}}.
2875
2876 @node Symbol Intro
2877 @section Symbols
2878
2879 @cindex characters used in symbols
2880 @ifclear SPECIAL-SYMS
2881 A @dfn{symbol} is one or more characters chosen from the set of all
2882 letters (both upper and lower case), digits and the three characters
2883 @samp{_.$}.
2884 @end ifclear
2885 @ifset SPECIAL-SYMS
2886 @ifclear GENERIC
2887 @ifset H8
2888 A @dfn{symbol} is one or more characters chosen from the set of all
2889 letters (both upper and lower case), digits and the three characters
2890 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2891 symbol names.)
2892 @end ifset
2893 @end ifclear
2894 @end ifset
2895 @ifset GENERIC
2896 On most machines, you can also use @code{$} in symbol names; exceptions
2897 are noted in @ref{Machine Dependencies}.
2898 @end ifset
2899 No symbol may begin with a digit. Case is significant.
2900 There is no length limit; all characters are significant. Multibyte characters
2901 are supported. Symbols are delimited by characters not in that set, or by the
2902 beginning of a file (since the source program must end with a newline, the end
2903 of a file is not a possible symbol delimiter). @xref{Symbols}.
2904
2905 Symbol names may also be enclosed in double quote @code{"} characters. In such
2906 cases any characters are allowed, except for the NUL character. If a double
2907 quote character is to be included in the symbol name it must be preceeded by a
2908 backslash @code{\} character.
2909 @cindex length of symbols
2910
2911 @node Statements
2912 @section Statements
2913
2914 @cindex statements, structure of
2915 @cindex line separator character
2916 @cindex statement separator character
2917
2918 A @dfn{statement} ends at a newline character (@samp{\n}) or a
2919 @dfn{line separator character}. The line separator character is target
2920 specific and described in the @emph{Syntax} section of each
2921 target's documentation. Not all targets support a line separator character.
2922 The newline or line separator character is considered to be part of the
2923 preceding statement. Newlines and separators within character constants are an
2924 exception: they do not end statements.
2925
2926 @cindex newline, required at file end
2927 @cindex EOF, newline must precede
2928 It is an error to end any statement with end-of-file: the last
2929 character of any input file should be a newline.@refill
2930
2931 An empty statement is allowed, and may include whitespace. It is ignored.
2932
2933 @cindex instructions and directives
2934 @cindex directives and instructions
2935 @c "key symbol" is not used elsewhere in the document; seems pedantic to
2936 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
2937 @c 13feb91.
2938 A statement begins with zero or more labels, optionally followed by a
2939 key symbol which determines what kind of statement it is. The key
2940 symbol determines the syntax of the rest of the statement. If the
2941 symbol begins with a dot @samp{.} then the statement is an assembler
2942 directive: typically valid for any computer. If the symbol begins with
2943 a letter the statement is an assembly language @dfn{instruction}: it
2944 assembles into a machine language instruction.
2945 @ifset GENERIC
2946 Different versions of @command{@value{AS}} for different computers
2947 recognize different instructions. In fact, the same symbol may
2948 represent a different instruction in a different computer's assembly
2949 language.@refill
2950 @end ifset
2951
2952 @cindex @code{:} (label)
2953 @cindex label (@code{:})
2954 A label is a symbol immediately followed by a colon (@code{:}).
2955 Whitespace before a label or after a colon is permitted, but you may not
2956 have whitespace between a label's symbol and its colon. @xref{Labels}.
2957
2958 @ifset HPPA
2959 For HPPA targets, labels need not be immediately followed by a colon, but
2960 the definition of a label must begin in column zero. This also implies that
2961 only one label may be defined on each line.
2962 @end ifset
2963
2964 @smallexample
2965 label: .directive followed by something
2966 another_label: # This is an empty statement.
2967 instruction operand_1, operand_2, @dots{}
2968 @end smallexample
2969
2970 @node Constants
2971 @section Constants
2972
2973 @cindex constants
2974 A constant is a number, written so that its value is known by
2975 inspection, without knowing any context. Like this:
2976 @smallexample
2977 @group
2978 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
2979 .ascii "Ring the bell\7" # A string constant.
2980 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
2981 .float 0f-314159265358979323846264338327\
2982 95028841971.693993751E-40 # - pi, a flonum.
2983 @end group
2984 @end smallexample
2985
2986 @menu
2987 * Characters:: Character Constants
2988 * Numbers:: Number Constants
2989 @end menu
2990
2991 @node Characters
2992 @subsection Character Constants
2993
2994 @cindex character constants
2995 @cindex constants, character
2996 There are two kinds of character constants. A @dfn{character} stands
2997 for one character in one byte and its value may be used in
2998 numeric expressions. String constants (properly called string
2999 @emph{literals}) are potentially many bytes and their values may not be
3000 used in arithmetic expressions.
3001
3002 @menu
3003 * Strings:: Strings
3004 * Chars:: Characters
3005 @end menu
3006
3007 @node Strings
3008 @subsubsection Strings
3009
3010 @cindex string constants
3011 @cindex constants, string
3012 A @dfn{string} is written between double-quotes. It may contain
3013 double-quotes or null characters. The way to get special characters
3014 into a string is to @dfn{escape} these characters: precede them with
3015 a backslash @samp{\} character. For example @samp{\\} represents
3016 one backslash: the first @code{\} is an escape which tells
3017 @command{@value{AS}} to interpret the second character literally as a backslash
3018 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3019 escape character). The complete list of escapes follows.
3020
3021 @cindex escape codes, character
3022 @cindex character escape codes
3023 @c NOTE: Cindex entries must not start with a backlash character.
3024 @c NOTE: This confuses the pdf2texi script when it is creating the
3025 @c NOTE: index based upon the first character and so it generates:
3026 @c NOTE: \initial {\\}
3027 @c NOTE: which then results in the error message:
3028 @c NOTE: Argument of \\ has an extra }.
3029 @c NOTE: So in the index entries below a space character has been
3030 @c NOTE: prepended to avoid this problem.
3031 @table @kbd
3032 @c @item \a
3033 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3034 @c
3035 @cindex @code{ \b} (backspace character)
3036 @cindex backspace (@code{\b})
3037 @item \b
3038 Mnemonic for backspace; for ASCII this is octal code 010.
3039
3040 @c @item \e
3041 @c Mnemonic for EOText; for ASCII this is octal code 004.
3042 @c
3043 @cindex @code{ \f} (formfeed character)
3044 @cindex formfeed (@code{\f})
3045 @item backslash-f
3046 Mnemonic for FormFeed; for ASCII this is octal code 014.
3047
3048 @cindex @code{ \n} (newline character)
3049 @cindex newline (@code{\n})
3050 @item \n
3051 Mnemonic for newline; for ASCII this is octal code 012.
3052
3053 @c @item \p
3054 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3055 @c
3056 @cindex @code{ \r} (carriage return character)
3057 @cindex carriage return (@code{backslash-r})
3058 @item \r
3059 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3060
3061 @c @item \s
3062 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3063 @c other assemblers.
3064 @c
3065 @cindex @code{ \t} (tab)
3066 @cindex tab (@code{\t})
3067 @item \t
3068 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3069
3070 @c @item \v
3071 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3072 @c @item \x @var{digit} @var{digit} @var{digit}
3073 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3074 @c
3075 @cindex @code{ \@var{ddd}} (octal character code)
3076 @cindex octal character code (@code{\@var{ddd}})
3077 @item \ @var{digit} @var{digit} @var{digit}
3078 An octal character code. The numeric code is 3 octal digits.
3079 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3080 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3081
3082 @cindex @code{ \@var{xd...}} (hex character code)
3083 @cindex hex character code (@code{\@var{xd...}})
3084 @item \@code{x} @var{hex-digits...}
3085 A hex character code. All trailing hex digits are combined. Either upper or
3086 lower case @code{x} works.
3087
3088 @cindex @code{ \\} (@samp{\} character)
3089 @cindex backslash (@code{\\})
3090 @item \\
3091 Represents one @samp{\} character.
3092
3093 @c @item \'
3094 @c Represents one @samp{'} (accent acute) character.
3095 @c This is needed in single character literals
3096 @c (@xref{Characters,,Character Constants}.) to represent
3097 @c a @samp{'}.
3098 @c
3099 @cindex @code{ \"} (doublequote character)
3100 @cindex doublequote (@code{\"})
3101 @item \"
3102 Represents one @samp{"} character. Needed in strings to represent
3103 this character, because an unescaped @samp{"} would end the string.
3104
3105 @item \ @var{anything-else}
3106 Any other character when escaped by @kbd{\} gives a warning, but
3107 assembles as if the @samp{\} was not present. The idea is that if
3108 you used an escape sequence you clearly didn't want the literal
3109 interpretation of the following character. However @command{@value{AS}} has no
3110 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3111 code and warns you of the fact.
3112 @end table
3113
3114 Which characters are escapable, and what those escapes represent,
3115 varies widely among assemblers. The current set is what we think
3116 the BSD 4.2 assembler recognizes, and is a subset of what most C
3117 compilers recognize. If you are in doubt, do not use an escape
3118 sequence.
3119
3120 @node Chars
3121 @subsubsection Characters
3122
3123 @cindex single character constant
3124 @cindex character, single
3125 @cindex constant, single character
3126 A single character may be written as a single quote immediately followed by
3127 that character. Some backslash escapes apply to characters, @code{\b},
3128 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3129 as for strings, plus @code{\'} for a single quote. So if you want to write the
3130 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3131 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3132 accent. A newline
3133 @ifclear GENERIC
3134 @ifclear abnormal-separator
3135 (or semicolon @samp{;})
3136 @end ifclear
3137 @ifset abnormal-separator
3138 @ifset H8
3139 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3140 Renesas SH)
3141 @end ifset
3142 @end ifset
3143 @end ifclear
3144 immediately following an acute accent is taken as a literal character
3145 and does not count as the end of a statement. The value of a character
3146 constant in a numeric expression is the machine's byte-wide code for
3147 that character. @command{@value{AS}} assumes your character code is ASCII:
3148 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3149
3150 @node Numbers
3151 @subsection Number Constants
3152
3153 @cindex constants, number
3154 @cindex number constants
3155 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3156 are stored in the target machine. @emph{Integers} are numbers that
3157 would fit into an @code{int} in the C language. @emph{Bignums} are
3158 integers, but they are stored in more than 32 bits. @emph{Flonums}
3159 are floating point numbers, described below.
3160
3161 @menu
3162 * Integers:: Integers
3163 * Bignums:: Bignums
3164 * Flonums:: Flonums
3165 @ifclear GENERIC
3166 @end ifclear
3167 @end menu
3168
3169 @node Integers
3170 @subsubsection Integers
3171 @cindex integers
3172 @cindex constants, integer
3173
3174 @cindex binary integers
3175 @cindex integers, binary
3176 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3177 the binary digits @samp{01}.
3178
3179 @cindex octal integers
3180 @cindex integers, octal
3181 An octal integer is @samp{0} followed by zero or more of the octal
3182 digits (@samp{01234567}).
3183
3184 @cindex decimal integers
3185 @cindex integers, decimal
3186 A decimal integer starts with a non-zero digit followed by zero or
3187 more digits (@samp{0123456789}).
3188
3189 @cindex hexadecimal integers
3190 @cindex integers, hexadecimal
3191 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3192 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3193
3194 Integers have the usual values. To denote a negative integer, use
3195 the prefix operator @samp{-} discussed under expressions
3196 (@pxref{Prefix Ops,,Prefix Operators}).
3197
3198 @node Bignums
3199 @subsubsection Bignums
3200
3201 @cindex bignums
3202 @cindex constants, bignum
3203 A @dfn{bignum} has the same syntax and semantics as an integer
3204 except that the number (or its negative) takes more than 32 bits to
3205 represent in binary. The distinction is made because in some places
3206 integers are permitted while bignums are not.
3207
3208 @node Flonums
3209 @subsubsection Flonums
3210 @cindex flonums
3211 @cindex floating point numbers
3212 @cindex constants, floating point
3213
3214 @cindex precision, floating point
3215 A @dfn{flonum} represents a floating point number. The translation is
3216 indirect: a decimal floating point number from the text is converted by
3217 @command{@value{AS}} to a generic binary floating point number of more than
3218 sufficient precision. This generic floating point number is converted
3219 to a particular computer's floating point format (or formats) by a
3220 portion of @command{@value{AS}} specialized to that computer.
3221
3222 A flonum is written by writing (in order)
3223 @itemize @bullet
3224 @item
3225 The digit @samp{0}.
3226 @ifset HPPA
3227 (@samp{0} is optional on the HPPA.)
3228 @end ifset
3229
3230 @item
3231 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3232 @ifset GENERIC
3233 @kbd{e} is recommended. Case is not important.
3234 @ignore
3235 @c FIXME: verify if flonum syntax really this vague for most cases
3236 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3237 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3238 @end ignore
3239
3240 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3241 one of the letters @samp{DFPRSX} (in upper or lower case).
3242
3243 On the ARC, the letter must be one of the letters @samp{DFRS}
3244 (in upper or lower case).
3245
3246 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3247 @end ifset
3248 @ifclear GENERIC
3249 @ifset ARC
3250 One of the letters @samp{DFRS} (in upper or lower case).
3251 @end ifset
3252 @ifset H8
3253 One of the letters @samp{DFPRSX} (in upper or lower case).
3254 @end ifset
3255 @ifset HPPA
3256 The letter @samp{E} (upper case only).
3257 @end ifset
3258 @end ifclear
3259
3260 @item
3261 An optional sign: either @samp{+} or @samp{-}.
3262
3263 @item
3264 An optional @dfn{integer part}: zero or more decimal digits.
3265
3266 @item
3267 An optional @dfn{fractional part}: @samp{.} followed by zero
3268 or more decimal digits.
3269
3270 @item
3271 An optional exponent, consisting of:
3272
3273 @itemize @bullet
3274 @item
3275 An @samp{E} or @samp{e}.
3276 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3277 @c principle this can perfectly well be different on different targets.
3278 @item
3279 Optional sign: either @samp{+} or @samp{-}.
3280 @item
3281 One or more decimal digits.
3282 @end itemize
3283
3284 @end itemize
3285
3286 At least one of the integer part or the fractional part must be
3287 present. The floating point number has the usual base-10 value.
3288
3289 @command{@value{AS}} does all processing using integers. Flonums are computed
3290 independently of any floating point hardware in the computer running
3291 @command{@value{AS}}.
3292
3293 @node Sections
3294 @chapter Sections and Relocation
3295 @cindex sections
3296 @cindex relocation
3297
3298 @menu
3299 * Secs Background:: Background
3300 * Ld Sections:: Linker Sections
3301 * As Sections:: Assembler Internal Sections
3302 * Sub-Sections:: Sub-Sections
3303 * bss:: bss Section
3304 @end menu
3305
3306 @node Secs Background
3307 @section Background
3308
3309 Roughly, a section is a range of addresses, with no gaps; all data
3310 ``in'' those addresses is treated the same for some particular purpose.
3311 For example there may be a ``read only'' section.
3312
3313 @cindex linker, and assembler
3314 @cindex assembler, and linker
3315 The linker @code{@value{LD}} reads many object files (partial programs) and
3316 combines their contents to form a runnable program. When @command{@value{AS}}
3317 emits an object file, the partial program is assumed to start at address 0.
3318 @code{@value{LD}} assigns the final addresses for the partial program, so that
3319 different partial programs do not overlap. This is actually an
3320 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3321 sections.
3322
3323 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3324 addresses. These blocks slide to their run-time addresses as rigid
3325 units; their length does not change and neither does the order of bytes
3326 within them. Such a rigid unit is called a @emph{section}. Assigning
3327 run-time addresses to sections is called @dfn{relocation}. It includes
3328 the task of adjusting mentions of object-file addresses so they refer to
3329 the proper run-time addresses.
3330 @ifset H8
3331 For the H8/300, and for the Renesas / SuperH SH,
3332 @command{@value{AS}} pads sections if needed to
3333 ensure they end on a word (sixteen bit) boundary.
3334 @end ifset
3335
3336 @cindex standard assembler sections
3337 An object file written by @command{@value{AS}} has at least three sections, any
3338 of which may be empty. These are named @dfn{text}, @dfn{data} and
3339 @dfn{bss} sections.
3340
3341 @ifset COFF-ELF
3342 @ifset GENERIC
3343 When it generates COFF or ELF output,
3344 @end ifset
3345 @command{@value{AS}} can also generate whatever other named sections you specify
3346 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3347 If you do not use any directives that place output in the @samp{.text}
3348 or @samp{.data} sections, these sections still exist, but are empty.
3349 @end ifset
3350
3351 @ifset HPPA
3352 @ifset GENERIC
3353 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3354 @end ifset
3355 @command{@value{AS}} can also generate whatever other named sections you
3356 specify using the @samp{.space} and @samp{.subspace} directives. See
3357 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3358 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3359 assembler directives.
3360
3361 @ifset SOM
3362 Additionally, @command{@value{AS}} uses different names for the standard
3363 text, data, and bss sections when generating SOM output. Program text
3364 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3365 BSS into @samp{$BSS$}.
3366 @end ifset
3367 @end ifset
3368
3369 Within the object file, the text section starts at address @code{0}, the
3370 data section follows, and the bss section follows the data section.
3371
3372 @ifset HPPA
3373 When generating either SOM or ELF output files on the HPPA, the text
3374 section starts at address @code{0}, the data section at address
3375 @code{0x4000000}, and the bss section follows the data section.
3376 @end ifset
3377
3378 To let @code{@value{LD}} know which data changes when the sections are
3379 relocated, and how to change that data, @command{@value{AS}} also writes to the
3380 object file details of the relocation needed. To perform relocation
3381 @code{@value{LD}} must know, each time an address in the object
3382 file is mentioned:
3383 @itemize @bullet
3384 @item
3385 Where in the object file is the beginning of this reference to
3386 an address?
3387 @item
3388 How long (in bytes) is this reference?
3389 @item
3390 Which section does the address refer to? What is the numeric value of
3391 @display
3392 (@var{address}) @minus{} (@var{start-address of section})?
3393 @end display
3394 @item
3395 Is the reference to an address ``Program-Counter relative''?
3396 @end itemize
3397
3398 @cindex addresses, format of
3399 @cindex section-relative addressing
3400 In fact, every address @command{@value{AS}} ever uses is expressed as
3401 @display
3402 (@var{section}) + (@var{offset into section})
3403 @end display
3404 @noindent
3405 Further, most expressions @command{@value{AS}} computes have this section-relative
3406 nature.
3407 @ifset SOM
3408 (For some object formats, such as SOM for the HPPA, some expressions are
3409 symbol-relative instead.)
3410 @end ifset
3411
3412 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3413 @var{N} into section @var{secname}.''
3414
3415 Apart from text, data and bss sections you need to know about the
3416 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3417 addresses in the absolute section remain unchanged. For example, address
3418 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3419 @code{@value{LD}}. Although the linker never arranges two partial programs'
3420 data sections with overlapping addresses after linking, @emph{by definition}
3421 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3422 part of a program is always the same address when the program is running as
3423 address @code{@{absolute@ 239@}} in any other part of the program.
3424
3425 The idea of sections is extended to the @dfn{undefined} section. Any
3426 address whose section is unknown at assembly time is by definition
3427 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3428 Since numbers are always defined, the only way to generate an undefined
3429 address is to mention an undefined symbol. A reference to a named
3430 common block would be such a symbol: its value is unknown at assembly
3431 time so it has section @emph{undefined}.
3432
3433 By analogy the word @emph{section} is used to describe groups of sections in
3434 the linked program. @code{@value{LD}} puts all partial programs' text
3435 sections in contiguous addresses in the linked program. It is
3436 customary to refer to the @emph{text section} of a program, meaning all
3437 the addresses of all partial programs' text sections. Likewise for
3438 data and bss sections.
3439
3440 Some sections are manipulated by @code{@value{LD}}; others are invented for
3441 use of @command{@value{AS}} and have no meaning except during assembly.
3442
3443 @node Ld Sections
3444 @section Linker Sections
3445 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3446
3447 @table @strong
3448
3449 @ifset COFF-ELF
3450 @cindex named sections
3451 @cindex sections, named
3452 @item named sections
3453 @end ifset
3454 @ifset aout
3455 @cindex text section
3456 @cindex data section
3457 @itemx text section
3458 @itemx data section
3459 @end ifset
3460 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3461 separate but equal sections. Anything you can say of one section is
3462 true of another.
3463 @c @ifset aout
3464 When the program is running, however, it is
3465 customary for the text section to be unalterable. The
3466 text section is often shared among processes: it contains
3467 instructions, constants and the like. The data section of a running
3468 program is usually alterable: for example, C variables would be stored
3469 in the data section.
3470 @c @end ifset
3471
3472 @cindex bss section
3473 @item bss section
3474 This section contains zeroed bytes when your program begins running. It
3475 is used to hold uninitialized variables or common storage. The length of
3476 each partial program's bss section is important, but because it starts
3477 out containing zeroed bytes there is no need to store explicit zero
3478 bytes in the object file. The bss section was invented to eliminate
3479 those explicit zeros from object files.
3480
3481 @cindex absolute section
3482 @item absolute section
3483 Address 0 of this section is always ``relocated'' to runtime address 0.
3484 This is useful if you want to refer to an address that @code{@value{LD}} must
3485 not change when relocating. In this sense we speak of absolute
3486 addresses being ``unrelocatable'': they do not change during relocation.
3487
3488 @cindex undefined section
3489 @item undefined section
3490 This ``section'' is a catch-all for address references to objects not in
3491 the preceding sections.
3492 @c FIXME: ref to some other doc on obj-file formats could go here.
3493 @end table
3494
3495 @cindex relocation example
3496 An idealized example of three relocatable sections follows.
3497 @ifset COFF-ELF
3498 The example uses the traditional section names @samp{.text} and @samp{.data}.
3499 @end ifset
3500 Memory addresses are on the horizontal axis.
3501
3502 @c TEXI2ROFF-KILL
3503 @ifnottex
3504 @c END TEXI2ROFF-KILL
3505 @smallexample
3506 +-----+----+--+
3507 partial program # 1: |ttttt|dddd|00|
3508 +-----+----+--+
3509
3510 text data bss
3511 seg. seg. seg.
3512
3513 +---+---+---+
3514 partial program # 2: |TTT|DDD|000|
3515 +---+---+---+
3516
3517 +--+---+-----+--+----+---+-----+~~
3518 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3519 +--+---+-----+--+----+---+-----+~~
3520
3521 addresses: 0 @dots{}
3522 @end smallexample
3523 @c TEXI2ROFF-KILL
3524 @end ifnottex
3525 @need 5000
3526 @tex
3527 \bigskip
3528 \line{\it Partial program \#1: \hfil}
3529 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3530 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3531
3532 \line{\it Partial program \#2: \hfil}
3533 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3534 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3535
3536 \line{\it linked program: \hfil}
3537 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3538 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3539 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3540 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3541
3542 \line{\it addresses: \hfil}
3543 \line{0\dots\hfil}
3544
3545 @end tex
3546 @c END TEXI2ROFF-KILL
3547
3548 @node As Sections
3549 @section Assembler Internal Sections
3550
3551 @cindex internal assembler sections
3552 @cindex sections in messages, internal
3553 These sections are meant only for the internal use of @command{@value{AS}}. They
3554 have no meaning at run-time. You do not really need to know about these
3555 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3556 warning messages, so it might be helpful to have an idea of their
3557 meanings to @command{@value{AS}}. These sections are used to permit the
3558 value of every expression in your assembly language program to be a
3559 section-relative address.
3560
3561 @table @b
3562 @cindex assembler internal logic error
3563 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3564 An internal assembler logic error has been found. This means there is a
3565 bug in the assembler.
3566
3567 @cindex expr (internal section)
3568 @item expr section
3569 The assembler stores complex expression internally as combinations of
3570 symbols. When it needs to represent an expression as a symbol, it puts
3571 it in the expr section.
3572 @c FIXME item debug
3573 @c FIXME item transfer[t] vector preload
3574 @c FIXME item transfer[t] vector postload
3575 @c FIXME item register
3576 @end table
3577
3578 @node Sub-Sections
3579 @section Sub-Sections
3580
3581 @cindex numbered subsections
3582 @cindex grouping data
3583 @ifset aout
3584 Assembled bytes
3585 @ifset COFF-ELF
3586 conventionally
3587 @end ifset
3588 fall into two sections: text and data.
3589 @end ifset
3590 You may have separate groups of
3591 @ifset GENERIC
3592 data in named sections
3593 @end ifset
3594 @ifclear GENERIC
3595 @ifclear aout
3596 data in named sections
3597 @end ifclear
3598 @ifset aout
3599 text or data
3600 @end ifset
3601 @end ifclear
3602 that you want to end up near to each other in the object file, even though they
3603 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3604 use @dfn{subsections} for this purpose. Within each section, there can be
3605 numbered subsections with values from 0 to 8192. Objects assembled into the
3606 same subsection go into the object file together with other objects in the same
3607 subsection. For example, a compiler might want to store constants in the text
3608 section, but might not want to have them interspersed with the program being
3609 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3610 section of code being output, and a @samp{.text 1} before each group of
3611 constants being output.
3612
3613 Subsections are optional. If you do not use subsections, everything
3614 goes in subsection number zero.
3615
3616 @ifset GENERIC
3617 Each subsection is zero-padded up to a multiple of four bytes.
3618 (Subsections may be padded a different amount on different flavors
3619 of @command{@value{AS}}.)
3620 @end ifset
3621 @ifclear GENERIC
3622 @ifset H8
3623 On the H8/300 platform, each subsection is zero-padded to a word
3624 boundary (two bytes).
3625 The same is true on the Renesas SH.
3626 @end ifset
3627 @end ifclear
3628
3629 Subsections appear in your object file in numeric order, lowest numbered
3630 to highest. (All this to be compatible with other people's assemblers.)
3631 The object file contains no representation of subsections; @code{@value{LD}} and
3632 other programs that manipulate object files see no trace of them.
3633 They just see all your text subsections as a text section, and all your
3634 data subsections as a data section.
3635
3636 To specify which subsection you want subsequent statements assembled
3637 into, use a numeric argument to specify it, in a @samp{.text
3638 @var{expression}} or a @samp{.data @var{expression}} statement.
3639 @ifset COFF
3640 @ifset GENERIC
3641 When generating COFF output, you
3642 @end ifset
3643 @ifclear GENERIC
3644 You
3645 @end ifclear
3646 can also use an extra subsection
3647 argument with arbitrary named sections: @samp{.section @var{name},
3648 @var{expression}}.
3649 @end ifset
3650 @ifset ELF
3651 @ifset GENERIC
3652 When generating ELF output, you
3653 @end ifset
3654 @ifclear GENERIC
3655 You
3656 @end ifclear
3657 can also use the @code{.subsection} directive (@pxref{SubSection})
3658 to specify a subsection: @samp{.subsection @var{expression}}.
3659 @end ifset
3660 @var{Expression} should be an absolute expression
3661 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3662 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3663 begins in @code{text 0}. For instance:
3664 @smallexample
3665 .text 0 # The default subsection is text 0 anyway.
3666 .ascii "This lives in the first text subsection. *"
3667 .text 1
3668 .ascii "But this lives in the second text subsection."
3669 .data 0
3670 .ascii "This lives in the data section,"
3671 .ascii "in the first data subsection."
3672 .text 0
3673 .ascii "This lives in the first text section,"
3674 .ascii "immediately following the asterisk (*)."
3675 @end smallexample
3676
3677 Each section has a @dfn{location counter} incremented by one for every byte
3678 assembled into that section. Because subsections are merely a convenience
3679 restricted to @command{@value{AS}} there is no concept of a subsection location
3680 counter. There is no way to directly manipulate a location counter---but the
3681 @code{.align} directive changes it, and any label definition captures its
3682 current value. The location counter of the section where statements are being
3683 assembled is said to be the @dfn{active} location counter.
3684
3685 @node bss
3686 @section bss Section
3687
3688 @cindex bss section
3689 @cindex common variable storage
3690 The bss section is used for local common variable storage.
3691 You may allocate address space in the bss section, but you may
3692 not dictate data to load into it before your program executes. When
3693 your program starts running, all the contents of the bss
3694 section are zeroed bytes.
3695
3696 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3697 @ref{Lcomm,,@code{.lcomm}}.
3698
3699 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3700 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3701
3702 @ifset GENERIC
3703 When assembling for a target which supports multiple sections, such as ELF or
3704 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3705 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3706 section. Typically the section will only contain symbol definitions and
3707 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3708 @end ifset
3709
3710 @node Symbols
3711 @chapter Symbols
3712
3713 @cindex symbols
3714 Symbols are a central concept: the programmer uses symbols to name
3715 things, the linker uses symbols to link, and the debugger uses symbols
3716 to debug.
3717
3718 @quotation
3719 @cindex debuggers, and symbol order
3720 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3721 the same order they were declared. This may break some debuggers.
3722 @end quotation
3723
3724 @menu
3725 * Labels:: Labels
3726 * Setting Symbols:: Giving Symbols Other Values
3727 * Symbol Names:: Symbol Names
3728 * Dot:: The Special Dot Symbol
3729 * Symbol Attributes:: Symbol Attributes
3730 @end menu
3731
3732 @node Labels
3733 @section Labels
3734
3735 @cindex labels
3736 A @dfn{label} is written as a symbol immediately followed by a colon
3737 @samp{:}. The symbol then represents the current value of the
3738 active location counter, and is, for example, a suitable instruction
3739 operand. You are warned if you use the same symbol to represent two
3740 different locations: the first definition overrides any other
3741 definitions.
3742
3743 @ifset HPPA
3744 On the HPPA, the usual form for a label need not be immediately followed by a
3745 colon, but instead must start in column zero. Only one label may be defined on
3746 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3747 provides a special directive @code{.label} for defining labels more flexibly.
3748 @end ifset
3749
3750 @node Setting Symbols
3751 @section Giving Symbols Other Values
3752
3753 @cindex assigning values to symbols
3754 @cindex symbol values, assigning
3755 A symbol can be given an arbitrary value by writing a symbol, followed
3756 by an equals sign @samp{=}, followed by an expression
3757 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3758 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3759 equals sign @samp{=}@samp{=} here represents an equivalent of the
3760 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3761
3762 @ifset Blackfin
3763 Blackfin does not support symbol assignment with @samp{=}.
3764 @end ifset
3765
3766 @node Symbol Names
3767 @section Symbol Names
3768
3769 @cindex symbol names
3770 @cindex names, symbol
3771 @ifclear SPECIAL-SYMS
3772 Symbol names begin with a letter or with one of @samp{._}. On most
3773 machines, you can also use @code{$} in symbol names; exceptions are
3774 noted in @ref{Machine Dependencies}. That character may be followed by any
3775 string of digits, letters, dollar signs (unless otherwise noted for a
3776 particular target machine), and underscores.
3777 @end ifclear
3778 @ifset SPECIAL-SYMS
3779 @ifset H8
3780 Symbol names begin with a letter or with one of @samp{._}. On the
3781 Renesas SH you can also use @code{$} in symbol names. That
3782 character may be followed by any string of digits, letters, dollar signs (save
3783 on the H8/300), and underscores.
3784 @end ifset
3785 @end ifset
3786
3787 Case of letters is significant: @code{foo} is a different symbol name
3788 than @code{Foo}.
3789
3790 Symbol names do not start with a digit. An exception to this rule is made for
3791 Local Labels. See below.
3792
3793 Multibyte characters are supported. To generate a symbol name containing
3794 multibyte characters enclose it within double quotes and use escape codes. cf
3795 @xref{Strings}. Generating a multibyte symbol name from a label is not
3796 currently supported.
3797
3798 Each symbol has exactly one name. Each name in an assembly language program
3799 refers to exactly one symbol. You may use that symbol name any number of times
3800 in a program.
3801
3802 @subheading Local Symbol Names
3803
3804 @cindex local symbol names
3805 @cindex symbol names, local
3806 A local symbol is any symbol beginning with certain local label prefixes.
3807 By default, the local label prefix is @samp{.L} for ELF systems or
3808 @samp{L} for traditional a.out systems, but each target may have its own
3809 set of local label prefixes.
3810 @ifset HPPA
3811 On the HPPA local symbols begin with @samp{L$}.
3812 @end ifset
3813
3814 Local symbols are defined and used within the assembler, but they are
3815 normally not saved in object files. Thus, they are not visible when debugging.
3816 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3817 to retain the local symbols in the object files.
3818
3819 @subheading Local Labels
3820
3821 @cindex local labels
3822 @cindex temporary symbol names
3823 @cindex symbol names, temporary
3824 Local labels are different from local symbols. Local labels help compilers and
3825 programmers use names temporarily. They create symbols which are guaranteed to
3826 be unique over the entire scope of the input source code and which can be
3827 referred to by a simple notation. To define a local label, write a label of
3828 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3829 To refer to the most recent previous definition of that label write
3830 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3831 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3832 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3833
3834 There is no restriction on how you can use these labels, and you can reuse them
3835 too. So that it is possible to repeatedly define the same local label (using
3836 the same number @samp{@b{N}}), although you can only refer to the most recently
3837 defined local label of that number (for a backwards reference) or the next
3838 definition of a specific local label for a forward reference. It is also worth
3839 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3840 implemented in a slightly more efficient manner than the others.
3841
3842 Here is an example:
3843
3844 @smallexample
3845 1: branch 1f
3846 2: branch 1b
3847 1: branch 2f
3848 2: branch 1b
3849 @end smallexample
3850
3851 Which is the equivalent of:
3852
3853 @smallexample
3854 label_1: branch label_3
3855 label_2: branch label_1
3856 label_3: branch label_4
3857 label_4: branch label_3
3858 @end smallexample
3859
3860 Local label names are only a notational device. They are immediately
3861 transformed into more conventional symbol names before the assembler uses them.
3862 The symbol names are stored in the symbol table, appear in error messages, and
3863 are optionally emitted to the object file. The names are constructed using
3864 these parts:
3865
3866 @table @code
3867 @item @emph{local label prefix}
3868 All local symbols begin with the system-specific local label prefix.
3869 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3870 that start with the local label prefix. These labels are
3871 used for symbols you are never intended to see. If you use the
3872 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3873 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3874 you may use them in debugging.
3875
3876 @item @var{number}
3877 This is the number that was used in the local label definition. So if the
3878 label is written @samp{55:} then the number is @samp{55}.
3879
3880 @item @kbd{C-B}
3881 This unusual character is included so you do not accidentally invent a symbol
3882 of the same name. The character has ASCII value of @samp{\002} (control-B).
3883
3884 @item @emph{ordinal number}
3885 This is a serial number to keep the labels distinct. The first definition of
3886 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3887 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3888 the number @samp{1} and its 15th definition gets @samp{15} as well.
3889 @end table
3890
3891 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3892 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3893
3894 @subheading Dollar Local Labels
3895 @cindex dollar local symbols
3896
3897 On some targets @code{@value{AS}} also supports an even more local form of
3898 local labels called dollar labels. These labels go out of scope (i.e., they
3899 become undefined) as soon as a non-local label is defined. Thus they remain
3900 valid for only a small region of the input source code. Normal local labels,
3901 by contrast, remain in scope for the entire file, or until they are redefined
3902 by another occurrence of the same local label.
3903
3904 Dollar labels are defined in exactly the same way as ordinary local labels,
3905 except that they have a dollar sign suffix to their numeric value, e.g.,
3906 @samp{@b{55$:}}.
3907
3908 They can also be distinguished from ordinary local labels by their transformed
3909 names which use ASCII character @samp{\001} (control-A) as the magic character
3910 to distinguish them from ordinary labels. For example, the fifth definition of
3911 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
3912
3913 @node Dot
3914 @section The Special Dot Symbol
3915
3916 @cindex dot (symbol)
3917 @cindex @code{.} (symbol)
3918 @cindex current address
3919 @cindex location counter
3920 The special symbol @samp{.} refers to the current address that
3921 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
3922 .long .} defines @code{melvin} to contain its own address.
3923 Assigning a value to @code{.} is treated the same as a @code{.org}
3924 directive.
3925 @ifclear no-space-dir
3926 Thus, the expression @samp{.=.+4} is the same as saying
3927 @samp{.space 4}.
3928 @end ifclear
3929
3930 @node Symbol Attributes
3931 @section Symbol Attributes
3932
3933 @cindex symbol attributes
3934 @cindex attributes, symbol
3935 Every symbol has, as well as its name, the attributes ``Value'' and
3936 ``Type''. Depending on output format, symbols can also have auxiliary
3937 attributes.
3938 @ifset INTERNALS
3939 The detailed definitions are in @file{a.out.h}.
3940 @end ifset
3941
3942 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
3943 all these attributes, and probably won't warn you. This makes the
3944 symbol an externally defined symbol, which is generally what you
3945 would want.
3946
3947 @menu
3948 * Symbol Value:: Value
3949 * Symbol Type:: Type
3950 @ifset aout
3951 * a.out Symbols:: Symbol Attributes: @code{a.out}
3952 @end ifset
3953 @ifset COFF
3954 * COFF Symbols:: Symbol Attributes for COFF
3955 @end ifset
3956 @ifset SOM
3957 * SOM Symbols:: Symbol Attributes for SOM
3958 @end ifset
3959 @end menu
3960
3961 @node Symbol Value
3962 @subsection Value
3963
3964 @cindex value of a symbol
3965 @cindex symbol value
3966 The value of a symbol is (usually) 32 bits. For a symbol which labels a
3967 location in the text, data, bss or absolute sections the value is the
3968 number of addresses from the start of that section to the label.
3969 Naturally for text, data and bss sections the value of a symbol changes
3970 as @code{@value{LD}} changes section base addresses during linking. Absolute
3971 symbols' values do not change during linking: that is why they are
3972 called absolute.
3973
3974 The value of an undefined symbol is treated in a special way. If it is
3975 0 then the symbol is not defined in this assembler source file, and
3976 @code{@value{LD}} tries to determine its value from other files linked into the
3977 same program. You make this kind of symbol simply by mentioning a symbol
3978 name without defining it. A non-zero value represents a @code{.comm}
3979 common declaration. The value is how much common storage to reserve, in
3980 bytes (addresses). The symbol refers to the first address of the
3981 allocated storage.
3982
3983 @node Symbol Type
3984 @subsection Type
3985
3986 @cindex type of a symbol
3987 @cindex symbol type
3988 The type attribute of a symbol contains relocation (section)
3989 information, any flag settings indicating that a symbol is external, and
3990 (optionally), other information for linkers and debuggers. The exact
3991 format depends on the object-code output format in use.
3992
3993 @ifset aout
3994 @node a.out Symbols
3995 @subsection Symbol Attributes: @code{a.out}
3996
3997 @cindex @code{a.out} symbol attributes
3998 @cindex symbol attributes, @code{a.out}
3999
4000 @menu
4001 * Symbol Desc:: Descriptor
4002 * Symbol Other:: Other
4003 @end menu
4004
4005 @node Symbol Desc
4006 @subsubsection Descriptor
4007
4008 @cindex descriptor, of @code{a.out} symbol
4009 This is an arbitrary 16-bit value. You may establish a symbol's
4010 descriptor value by using a @code{.desc} statement
4011 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4012 @command{@value{AS}}.
4013
4014 @node Symbol Other
4015 @subsubsection Other
4016
4017 @cindex other attribute, of @code{a.out} symbol
4018 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4019 @end ifset
4020
4021 @ifset COFF
4022 @node COFF Symbols
4023 @subsection Symbol Attributes for COFF
4024
4025 @cindex COFF symbol attributes
4026 @cindex symbol attributes, COFF
4027
4028 The COFF format supports a multitude of auxiliary symbol attributes;
4029 like the primary symbol attributes, they are set between @code{.def} and
4030 @code{.endef} directives.
4031
4032 @subsubsection Primary Attributes
4033
4034 @cindex primary attributes, COFF symbols
4035 The symbol name is set with @code{.def}; the value and type,
4036 respectively, with @code{.val} and @code{.type}.
4037
4038 @subsubsection Auxiliary Attributes
4039
4040 @cindex auxiliary attributes, COFF symbols
4041 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4042 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4043 table information for COFF.
4044 @end ifset
4045
4046 @ifset SOM
4047 @node SOM Symbols
4048 @subsection Symbol Attributes for SOM
4049
4050 @cindex SOM symbol attributes
4051 @cindex symbol attributes, SOM
4052
4053 The SOM format for the HPPA supports a multitude of symbol attributes set with
4054 the @code{.EXPORT} and @code{.IMPORT} directives.
4055
4056 The attributes are described in @cite{HP9000 Series 800 Assembly
4057 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4058 @code{EXPORT} assembler directive documentation.
4059 @end ifset
4060
4061 @node Expressions
4062 @chapter Expressions
4063
4064 @cindex expressions
4065 @cindex addresses
4066 @cindex numeric values
4067 An @dfn{expression} specifies an address or numeric value.
4068 Whitespace may precede and/or follow an expression.
4069
4070 The result of an expression must be an absolute number, or else an offset into
4071 a particular section. If an expression is not absolute, and there is not
4072 enough information when @command{@value{AS}} sees the expression to know its
4073 section, a second pass over the source program might be necessary to interpret
4074 the expression---but the second pass is currently not implemented.
4075 @command{@value{AS}} aborts with an error message in this situation.
4076
4077 @menu
4078 * Empty Exprs:: Empty Expressions
4079 * Integer Exprs:: Integer Expressions
4080 @end menu
4081
4082 @node Empty Exprs
4083 @section Empty Expressions
4084
4085 @cindex empty expressions
4086 @cindex expressions, empty
4087 An empty expression has no value: it is just whitespace or null.
4088 Wherever an absolute expression is required, you may omit the
4089 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4090 is compatible with other assemblers.
4091
4092 @node Integer Exprs
4093 @section Integer Expressions
4094
4095 @cindex integer expressions
4096 @cindex expressions, integer
4097 An @dfn{integer expression} is one or more @emph{arguments} delimited
4098 by @emph{operators}.
4099
4100 @menu
4101 * Arguments:: Arguments
4102 * Operators:: Operators
4103 * Prefix Ops:: Prefix Operators
4104 * Infix Ops:: Infix Operators
4105 @end menu
4106
4107 @node Arguments
4108 @subsection Arguments
4109
4110 @cindex expression arguments
4111 @cindex arguments in expressions
4112 @cindex operands in expressions
4113 @cindex arithmetic operands
4114 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4115 contexts arguments are sometimes called ``arithmetic operands''. In
4116 this manual, to avoid confusing them with the ``instruction operands'' of
4117 the machine language, we use the term ``argument'' to refer to parts of
4118 expressions only, reserving the word ``operand'' to refer only to machine
4119 instruction operands.
4120
4121 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4122 @var{section} is one of text, data, bss, absolute,
4123 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4124 integer.
4125
4126 Numbers are usually integers.
4127
4128 A number can be a flonum or bignum. In this case, you are warned
4129 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4130 these 32 bits are an integer. You may write integer-manipulating
4131 instructions that act on exotic constants, compatible with other
4132 assemblers.
4133
4134 @cindex subexpressions
4135 Subexpressions are a left parenthesis @samp{(} followed by an integer
4136 expression, followed by a right parenthesis @samp{)}; or a prefix
4137 operator followed by an argument.
4138
4139 @node Operators
4140 @subsection Operators
4141
4142 @cindex operators, in expressions
4143 @cindex arithmetic functions
4144 @cindex functions, in expressions
4145 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4146 operators are followed by an argument. Infix operators appear
4147 between their arguments. Operators may be preceded and/or followed by
4148 whitespace.
4149
4150 @node Prefix Ops
4151 @subsection Prefix Operator
4152
4153 @cindex prefix operators
4154 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4155 one argument, which must be absolute.
4156
4157 @c the tex/end tex stuff surrounding this small table is meant to make
4158 @c it align, on the printed page, with the similar table in the next
4159 @c section (which is inside an enumerate).
4160 @tex
4161 \global\advance\leftskip by \itemindent
4162 @end tex
4163
4164 @table @code
4165 @item -
4166 @dfn{Negation}. Two's complement negation.
4167 @item ~
4168 @dfn{Complementation}. Bitwise not.
4169 @end table
4170
4171 @tex
4172 \global\advance\leftskip by -\itemindent
4173 @end tex
4174
4175 @node Infix Ops
4176 @subsection Infix Operators
4177
4178 @cindex infix operators
4179 @cindex operators, permitted arguments
4180 @dfn{Infix operators} take two arguments, one on either side. Operators
4181 have precedence, but operations with equal precedence are performed left
4182 to right. Apart from @code{+} or @option{-}, both arguments must be
4183 absolute, and the result is absolute.
4184
4185 @enumerate
4186 @cindex operator precedence
4187 @cindex precedence of operators
4188
4189 @item
4190 Highest Precedence
4191
4192 @table @code
4193 @item *
4194 @dfn{Multiplication}.
4195
4196 @item /
4197 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4198
4199 @item %
4200 @dfn{Remainder}.
4201
4202 @item <<
4203 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4204
4205 @item >>
4206 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4207 @end table
4208
4209 @item
4210 Intermediate precedence
4211
4212 @table @code
4213 @item |
4214
4215 @dfn{Bitwise Inclusive Or}.
4216
4217 @item &
4218 @dfn{Bitwise And}.
4219
4220 @item ^
4221 @dfn{Bitwise Exclusive Or}.
4222
4223 @item !
4224 @dfn{Bitwise Or Not}.
4225 @end table
4226
4227 @item
4228 Low Precedence
4229
4230 @table @code
4231 @cindex addition, permitted arguments
4232 @cindex plus, permitted arguments
4233 @cindex arguments for addition
4234 @item +
4235 @dfn{Addition}. If either argument is absolute, the result has the section of
4236 the other argument. You may not add together arguments from different
4237 sections.
4238
4239 @cindex subtraction, permitted arguments
4240 @cindex minus, permitted arguments
4241 @cindex arguments for subtraction
4242 @item -
4243 @dfn{Subtraction}. If the right argument is absolute, the
4244 result has the section of the left argument.
4245 If both arguments are in the same section, the result is absolute.
4246 You may not subtract arguments from different sections.
4247 @c FIXME is there still something useful to say about undefined - undefined ?
4248
4249 @cindex comparison expressions
4250 @cindex expressions, comparison
4251 @item ==
4252 @dfn{Is Equal To}
4253 @item <>
4254 @itemx !=
4255 @dfn{Is Not Equal To}
4256 @item <
4257 @dfn{Is Less Than}
4258 @item >
4259 @dfn{Is Greater Than}
4260 @item >=
4261 @dfn{Is Greater Than Or Equal To}
4262 @item <=
4263 @dfn{Is Less Than Or Equal To}
4264
4265 The comparison operators can be used as infix operators. A true results has a
4266 value of -1 whereas a false result has a value of 0. Note, these operators
4267 perform signed comparisons.
4268 @end table
4269
4270 @item Lowest Precedence
4271
4272 @table @code
4273 @item &&
4274 @dfn{Logical And}.
4275
4276 @item ||
4277 @dfn{Logical Or}.
4278
4279 These two logical operations can be used to combine the results of sub
4280 expressions. Note, unlike the comparison operators a true result returns a
4281 value of 1 but a false results does still return 0. Also note that the logical
4282 or operator has a slightly lower precedence than logical and.
4283
4284 @end table
4285 @end enumerate
4286
4287 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4288 address; you can only have a defined section in one of the two arguments.
4289
4290 @node Pseudo Ops
4291 @chapter Assembler Directives
4292
4293 @cindex directives, machine independent
4294 @cindex pseudo-ops, machine independent
4295 @cindex machine independent directives
4296 All assembler directives have names that begin with a period (@samp{.}).
4297 The names are case insensitive for most targets, and usually written
4298 in lower case.
4299
4300 This chapter discusses directives that are available regardless of the
4301 target machine configuration for the @sc{gnu} assembler.
4302 @ifset GENERIC
4303 Some machine configurations provide additional directives.
4304 @xref{Machine Dependencies}.
4305 @end ifset
4306 @ifclear GENERIC
4307 @ifset machine-directives
4308 @xref{Machine Dependencies}, for additional directives.
4309 @end ifset
4310 @end ifclear
4311
4312 @menu
4313 * Abort:: @code{.abort}
4314 @ifset COFF
4315 * ABORT (COFF):: @code{.ABORT}
4316 @end ifset
4317
4318 * Align:: @code{.align @var{abs-expr} , @var{abs-expr}}
4319 * Altmacro:: @code{.altmacro}
4320 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4321 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4322 * Balign:: @code{.balign @var{abs-expr} , @var{abs-expr}}
4323 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4324 * Byte:: @code{.byte @var{expressions}}
4325 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4326 * Comm:: @code{.comm @var{symbol} , @var{length} }
4327 * Data:: @code{.data @var{subsection}}
4328 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4329 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4330 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4331 @ifset COFF
4332 * Def:: @code{.def @var{name}}
4333 @end ifset
4334 @ifset aout
4335 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4336 @end ifset
4337 @ifset COFF
4338 * Dim:: @code{.dim}
4339 @end ifset
4340
4341 * Double:: @code{.double @var{flonums}}
4342 * Eject:: @code{.eject}
4343 * Else:: @code{.else}
4344 * Elseif:: @code{.elseif}
4345 * End:: @code{.end}
4346 @ifset COFF
4347 * Endef:: @code{.endef}
4348 @end ifset
4349
4350 * Endfunc:: @code{.endfunc}
4351 * Endif:: @code{.endif}
4352 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4353 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4354 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4355 * Err:: @code{.err}
4356 * Error:: @code{.error @var{string}}
4357 * Exitm:: @code{.exitm}
4358 * Extern:: @code{.extern}
4359 * Fail:: @code{.fail}
4360 * File:: @code{.file}
4361 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4362 * Float:: @code{.float @var{flonums}}
4363 * Func:: @code{.func}
4364 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4365 @ifset ELF
4366 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4367 * Hidden:: @code{.hidden @var{names}}
4368 @end ifset
4369
4370 * hword:: @code{.hword @var{expressions}}
4371 * Ident:: @code{.ident}
4372 * If:: @code{.if @var{absolute expression}}
4373 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4374 * Include:: @code{.include "@var{file}"}
4375 * Int:: @code{.int @var{expressions}}
4376 @ifset ELF
4377 * Internal:: @code{.internal @var{names}}
4378 @end ifset
4379
4380 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4381 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4382 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4383 * Lflags:: @code{.lflags}
4384 @ifclear no-line-dir
4385 * Line:: @code{.line @var{line-number}}
4386 @end ifclear
4387
4388 * Linkonce:: @code{.linkonce [@var{type}]}
4389 * List:: @code{.list}
4390 * Ln:: @code{.ln @var{line-number}}
4391 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4392 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4393 @ifset ELF
4394 * Local:: @code{.local @var{names}}
4395 @end ifset
4396
4397 * Long:: @code{.long @var{expressions}}
4398 @ignore
4399 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4400 @end ignore
4401
4402 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4403 * MRI:: @code{.mri @var{val}}
4404 * Noaltmacro:: @code{.noaltmacro}
4405 * Nolist:: @code{.nolist}
4406 * Nops:: @code{.nops @var{size}[, @var{control}]}
4407 * Octa:: @code{.octa @var{bignums}}
4408 * Offset:: @code{.offset @var{loc}}
4409 * Org:: @code{.org @var{new-lc}, @var{fill}}
4410 * P2align:: @code{.p2align @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4411 @ifset ELF
4412 * PopSection:: @code{.popsection}
4413 * Previous:: @code{.previous}
4414 @end ifset
4415
4416 * Print:: @code{.print @var{string}}
4417 @ifset ELF
4418 * Protected:: @code{.protected @var{names}}
4419 @end ifset
4420
4421 * Psize:: @code{.psize @var{lines}, @var{columns}}
4422 * Purgem:: @code{.purgem @var{name}}
4423 @ifset ELF
4424 * PushSection:: @code{.pushsection @var{name}}
4425 @end ifset
4426
4427 * Quad:: @code{.quad @var{bignums}}
4428 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4429 * Rept:: @code{.rept @var{count}}
4430 * Sbttl:: @code{.sbttl "@var{subheading}"}
4431 @ifset COFF
4432 * Scl:: @code{.scl @var{class}}
4433 @end ifset
4434 @ifset COFF-ELF
4435 * Section:: @code{.section @var{name}[, @var{flags}]}
4436 @end ifset
4437
4438 * Set:: @code{.set @var{symbol}, @var{expression}}
4439 * Short:: @code{.short @var{expressions}}
4440 * Single:: @code{.single @var{flonums}}
4441 @ifset COFF-ELF
4442 * Size:: @code{.size [@var{name} , @var{expression}]}
4443 @end ifset
4444 @ifclear no-space-dir
4445 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4446 @end ifclear
4447
4448 * Sleb128:: @code{.sleb128 @var{expressions}}
4449 @ifclear no-space-dir
4450 * Space:: @code{.space @var{size} [,@var{fill}]}
4451 @end ifclear
4452 @ifset have-stabs
4453 * Stab:: @code{.stabd, .stabn, .stabs}
4454 @end ifset
4455
4456 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4457 * Struct:: @code{.struct @var{expression}}
4458 @ifset ELF
4459 * SubSection:: @code{.subsection}
4460 * Symver:: @code{.symver @var{name},@var{name2@@nodename}}
4461 @end ifset
4462
4463 @ifset COFF
4464 * Tag:: @code{.tag @var{structname}}
4465 @end ifset
4466
4467 * Text:: @code{.text @var{subsection}}
4468 * Title:: @code{.title "@var{heading}"}
4469 @ifset COFF-ELF
4470 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4471 @end ifset
4472
4473 * Uleb128:: @code{.uleb128 @var{expressions}}
4474 @ifset COFF
4475 * Val:: @code{.val @var{addr}}
4476 @end ifset
4477
4478 @ifset ELF
4479 * Version:: @code{.version "@var{string}"}
4480 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4481 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4482 @end ifset
4483
4484 * Warning:: @code{.warning @var{string}}
4485 * Weak:: @code{.weak @var{names}}
4486 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4487 * Word:: @code{.word @var{expressions}}
4488 @ifclear no-space-dir
4489 * Zero:: @code{.zero @var{size}}
4490 @end ifclear
4491 @ifset ELF
4492 * 2byte:: @code{.2byte @var{expressions}}
4493 * 4byte:: @code{.4byte @var{expressions}}
4494 * 8byte:: @code{.8byte @var{bignums}}
4495 @end ifset
4496 * Deprecated:: Deprecated Directives
4497 @end menu
4498
4499 @node Abort
4500 @section @code{.abort}
4501
4502 @cindex @code{abort} directive
4503 @cindex stopping the assembly
4504 This directive stops the assembly immediately. It is for
4505 compatibility with other assemblers. The original idea was that the
4506 assembly language source would be piped into the assembler. If the sender
4507 of the source quit, it could use this directive tells @command{@value{AS}} to
4508 quit also. One day @code{.abort} will not be supported.
4509
4510 @ifset COFF
4511 @node ABORT (COFF)
4512 @section @code{.ABORT} (COFF)
4513
4514 @cindex @code{ABORT} directive
4515 When producing COFF output, @command{@value{AS}} accepts this directive as a
4516 synonym for @samp{.abort}.
4517
4518 @end ifset
4519
4520 @node Align
4521 @section @code{.align @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4522
4523 @cindex padding the location counter
4524 @cindex @code{align} directive
4525 Pad the location counter (in the current subsection) to a particular storage
4526 boundary. The first expression (which must be absolute) is the alignment
4527 required, as described below.
4528
4529 The second expression (also absolute) gives the fill value to be stored in the
4530 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4531 padding bytes are normally zero. However, on most systems, if the section is
4532 marked as containing code and the fill value is omitted, the space is filled
4533 with no-op instructions.
4534
4535 The third expression is also absolute, and is also optional. If it is present,
4536 it is the maximum number of bytes that should be skipped by this alignment
4537 directive. If doing the alignment would require skipping more bytes than the
4538 specified maximum, then the alignment is not done at all. You can omit the
4539 fill value (the second argument) entirely by simply using two commas after the
4540 required alignment; this can be useful if you want the alignment to be filled
4541 with no-op instructions when appropriate.
4542
4543 The way the required alignment is specified varies from system to system.
4544 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4545 s390, sparc, tic4x, tic80 and xtensa, the first expression is the
4546 alignment request in bytes. For example @samp{.align 8} advances
4547 the location counter until it is a multiple of 8. If the location counter
4548 is already a multiple of 8, no change is needed. For the tic54x, the
4549 first expression is the alignment request in words.
4550
4551 For other systems, including ppc, i386 using a.out format, arm and
4552 strongarm, it is the
4553 number of low-order zero bits the location counter must have after
4554 advancement. For example @samp{.align 3} advances the location
4555 counter until it a multiple of 8. If the location counter is already a
4556 multiple of 8, no change is needed.
4557
4558 This inconsistency is due to the different behaviors of the various
4559 native assemblers for these systems which GAS must emulate.
4560 GAS also provides @code{.balign} and @code{.p2align} directives,
4561 described later, which have a consistent behavior across all
4562 architectures (but are specific to GAS).
4563
4564 @node Altmacro
4565 @section @code{.altmacro}
4566 Enable alternate macro mode, enabling:
4567
4568 @ftable @code
4569 @item LOCAL @var{name} [ , @dots{} ]
4570 One additional directive, @code{LOCAL}, is available. It is used to
4571 generate a string replacement for each of the @var{name} arguments, and
4572 replace any instances of @var{name} in each macro expansion. The
4573 replacement string is unique in the assembly, and different for each
4574 separate macro expansion. @code{LOCAL} allows you to write macros that
4575 define symbols, without fear of conflict between separate macro expansions.
4576
4577 @item String delimiters
4578 You can write strings delimited in these other ways besides
4579 @code{"@var{string}"}:
4580
4581 @table @code
4582 @item '@var{string}'
4583 You can delimit strings with single-quote characters.
4584
4585 @item <@var{string}>
4586 You can delimit strings with matching angle brackets.
4587 @end table
4588
4589 @item single-character string escape
4590 To include any single character literally in a string (even if the
4591 character would otherwise have some special meaning), you can prefix the
4592 character with @samp{!} (an exclamation mark). For example, you can
4593 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4594
4595 @item Expression results as strings
4596 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4597 and use the result as a string.
4598 @end ftable
4599
4600 @node Ascii
4601 @section @code{.ascii "@var{string}"}@dots{}
4602
4603 @cindex @code{ascii} directive
4604 @cindex string literals
4605 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4606 separated by commas. It assembles each string (with no automatic
4607 trailing zero byte) into consecutive addresses.
4608
4609 @node Asciz
4610 @section @code{.asciz "@var{string}"}@dots{}
4611
4612 @cindex @code{asciz} directive
4613 @cindex zero-terminated strings
4614 @cindex null-terminated strings
4615 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4616 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''.
4617
4618 @node Balign
4619 @section @code{.balign[wl] @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4620
4621 @cindex padding the location counter given number of bytes
4622 @cindex @code{balign} directive
4623 Pad the location counter (in the current subsection) to a particular
4624 storage boundary. The first expression (which must be absolute) is the
4625 alignment request in bytes. For example @samp{.balign 8} advances
4626 the location counter until it is a multiple of 8. If the location counter
4627 is already a multiple of 8, no change is needed.
4628
4629 The second expression (also absolute) gives the fill value to be stored in the
4630 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4631 padding bytes are normally zero. However, on most systems, if the section is
4632 marked as containing code and the fill value is omitted, the space is filled
4633 with no-op instructions.
4634
4635 The third expression is also absolute, and is also optional. If it is present,
4636 it is the maximum number of bytes that should be skipped by this alignment
4637 directive. If doing the alignment would require skipping more bytes than the
4638 specified maximum, then the alignment is not done at all. You can omit the
4639 fill value (the second argument) entirely by simply using two commas after the
4640 required alignment; this can be useful if you want the alignment to be filled
4641 with no-op instructions when appropriate.
4642
4643 @cindex @code{balignw} directive
4644 @cindex @code{balignl} directive
4645 The @code{.balignw} and @code{.balignl} directives are variants of the
4646 @code{.balign} directive. The @code{.balignw} directive treats the fill
4647 pattern as a two byte word value. The @code{.balignl} directives treats the
4648 fill pattern as a four byte longword value. For example, @code{.balignw
4649 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4650 filled in with the value 0x368d (the exact placement of the bytes depends upon
4651 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4652 undefined.
4653
4654 @node Bundle directives
4655 @section Bundle directives
4656 @subsection @code{.bundle_align_mode @var{abs-expr}}
4657 @cindex @code{bundle_align_mode} directive
4658 @cindex bundle
4659 @cindex instruction bundle
4660 @cindex aligned instruction bundle
4661 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4662 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4663 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4664 disabled (which is the default state). If the argument it not zero, it
4665 gives the size of an instruction bundle as a power of two (as for the
4666 @code{.p2align} directive, @pxref{P2align}).
4667
4668 For some targets, it's an ABI requirement that no instruction may span a
4669 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4670 instructions that starts on an aligned boundary. For example, if
4671 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4672 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4673 effect, no single instruction may span a boundary between bundles. If an
4674 instruction would start too close to the end of a bundle for the length of
4675 that particular instruction to fit within the bundle, then the space at the
4676 end of that bundle is filled with no-op instructions so the instruction
4677 starts in the next bundle. As a corollary, it's an error if any single
4678 instruction's encoding is longer than the bundle size.
4679
4680 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4681 @cindex @code{bundle_lock} directive
4682 @cindex @code{bundle_unlock} directive
4683 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4684 allow explicit control over instruction bundle padding. These directives
4685 are only valid when @code{.bundle_align_mode} has been used to enable
4686 aligned instruction bundle mode. It's an error if they appear when
4687 @code{.bundle_align_mode} has not been used at all, or when the last
4688 directive was @w{@code{.bundle_align_mode 0}}.
4689
4690 @cindex bundle-locked
4691 For some targets, it's an ABI requirement that certain instructions may
4692 appear only as part of specified permissible sequences of multiple
4693 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4694 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4695 instruction sequence. For purposes of aligned instruction bundle mode, a
4696 sequence starting with @code{.bundle_lock} and ending with
4697 @code{.bundle_unlock} is treated as a single instruction. That is, the
4698 entire sequence must fit into a single bundle and may not span a bundle
4699 boundary. If necessary, no-op instructions will be inserted before the
4700 first instruction of the sequence so that the whole sequence starts on an
4701 aligned bundle boundary. It's an error if the sequence is longer than the
4702 bundle size.
4703
4704 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4705 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4706 nested. That is, a second @code{.bundle_lock} directive before the next
4707 @code{.bundle_unlock} directive has no effect except that it must be
4708 matched by another closing @code{.bundle_unlock} so that there is the
4709 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4710
4711 @node Byte
4712 @section @code{.byte @var{expressions}}
4713
4714 @cindex @code{byte} directive
4715 @cindex integers, one byte
4716 @code{.byte} expects zero or more expressions, separated by commas.
4717 Each expression is assembled into the next byte.
4718
4719 @node CFI directives
4720 @section CFI directives
4721 @subsection @code{.cfi_sections @var{section_list}}
4722 @cindex @code{cfi_sections} directive
4723 @code{.cfi_sections} may be used to specify whether CFI directives
4724 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4725 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4726 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4727 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4728 directive is not used is @code{.cfi_sections .eh_frame}.
4729
4730 On targets that support compact unwinding tables these can be generated
4731 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4732
4733 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4734 which is used by the @value{TIC6X} target.
4735
4736 The @code{.cfi_sections} directive can be repeated, with the same or different
4737 arguments, provided that CFI generation has not yet started. Once CFI
4738 generation has started however the section list is fixed and any attempts to
4739 redefine it will result in an error.
4740
4741 @subsection @code{.cfi_startproc [simple]}
4742 @cindex @code{cfi_startproc} directive
4743 @code{.cfi_startproc} is used at the beginning of each function that
4744 should have an entry in @code{.eh_frame}. It initializes some internal
4745 data structures. Don't forget to close the function by
4746 @code{.cfi_endproc}.
4747
4748 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4749 it also emits some architecture dependent initial CFI instructions.
4750
4751 @subsection @code{.cfi_endproc}
4752 @cindex @code{cfi_endproc} directive
4753 @code{.cfi_endproc} is used at the end of a function where it closes its
4754 unwind entry previously opened by
4755 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4756
4757 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4758 @cindex @code{cfi_personality} directive
4759 @code{.cfi_personality} defines personality routine and its encoding.
4760 @var{encoding} must be a constant determining how the personality
4761 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4762 argument is not present, otherwise second argument should be
4763 a constant or a symbol name. When using indirect encodings,
4764 the symbol provided should be the location where personality
4765 can be loaded from, not the personality routine itself.
4766 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4767 no personality routine.
4768
4769 @subsection @code{.cfi_personality_id @var{id}}
4770 @cindex @code{cfi_personality_id} directive
4771 @code{cfi_personality_id} defines a personality routine by its index as
4772 defined in a compact unwinding format.
4773 Only valid when generating compact EH frames (i.e.
4774 with @code{.cfi_sections eh_frame_entry}.
4775
4776 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4777 @cindex @code{cfi_fde_data} directive
4778 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4779 used for the current function. These are emitted inline in the
4780 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4781 in the @code{.gnu.extab} section otherwise.
4782 Only valid when generating compact EH frames (i.e.
4783 with @code{.cfi_sections eh_frame_entry}.
4784
4785 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4786 @code{.cfi_lsda} defines LSDA and its encoding.
4787 @var{encoding} must be a constant determining how the LSDA
4788 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4789 argument is not present, otherwise the second argument should be a constant
4790 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4791 meaning that no LSDA is present.
4792
4793 @subsection @code{.cfi_inline_lsda} [@var{align}]
4794 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4795 switches to the corresponding @code{.gnu.extab} section.
4796 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4797 Only valid when generating compact EH frames (i.e.
4798 with @code{.cfi_sections eh_frame_entry}.
4799
4800 The table header and unwinding opcodes will be generated at this point,
4801 so that they are immediately followed by the LSDA data. The symbol
4802 referenced by the @code{.cfi_lsda} directive should still be defined
4803 in case a fallback FDE based encoding is used. The LSDA data is terminated
4804 by a section directive.
4805
4806 The optional @var{align} argument specifies the alignment required.
4807 The alignment is specified as a power of two, as with the
4808 @code{.p2align} directive.
4809
4810 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4811 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4812 address from @var{register} and add @var{offset} to it}.
4813
4814 @subsection @code{.cfi_def_cfa_register @var{register}}
4815 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4816 now on @var{register} will be used instead of the old one. Offset
4817 remains the same.
4818
4819 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4820 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4821 remains the same, but @var{offset} is new. Note that it is the
4822 absolute offset that will be added to a defined register to compute
4823 CFA address.
4824
4825 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4826 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4827 value that is added/subtracted from the previous offset.
4828
4829 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4830 Previous value of @var{register} is saved at offset @var{offset} from
4831 CFA.
4832
4833 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4834 Previous value of @var{register} is CFA + @var{offset}.
4835
4836 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4837 Previous value of @var{register} is saved at offset @var{offset} from
4838 the current CFA register. This is transformed to @code{.cfi_offset}
4839 using the known displacement of the CFA register from the CFA.
4840 This is often easier to use, because the number will match the
4841 code it's annotating.
4842
4843 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4844 Previous value of @var{register1} is saved in register @var{register2}.
4845
4846 @subsection @code{.cfi_restore @var{register}}
4847 @code{.cfi_restore} says that the rule for @var{register} is now the
4848 same as it was at the beginning of the function, after all initial
4849 instruction added by @code{.cfi_startproc} were executed.
4850
4851 @subsection @code{.cfi_undefined @var{register}}
4852 From now on the previous value of @var{register} can't be restored anymore.
4853
4854 @subsection @code{.cfi_same_value @var{register}}
4855 Current value of @var{register} is the same like in the previous frame,
4856 i.e. no restoration needed.
4857
4858 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4859 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4860 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4861 places them in the current row. This is useful for situations where you have
4862 multiple @code{.cfi_*} directives that need to be undone due to the control
4863 flow of the program. For example, we could have something like this (assuming
4864 the CFA is the value of @code{rbp}):
4865
4866 @smallexample
4867 je label
4868 popq %rbx
4869 .cfi_restore %rbx
4870 popq %r12
4871 .cfi_restore %r12
4872 popq %rbp
4873 .cfi_restore %rbp
4874 .cfi_def_cfa %rsp, 8
4875 ret
4876 label:
4877 /* Do something else */
4878 @end smallexample
4879
4880 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4881 to the instructions before @code{label}. This means we'd have to add multiple
4882 @code{.cfi} directives after @code{label} to recreate the original save
4883 locations of the registers, as well as setting the CFA back to the value of
4884 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
4885 we can write:
4886
4887 @smallexample
4888 je label
4889 popq %rbx
4890 .cfi_remember_state
4891 .cfi_restore %rbx
4892 popq %r12
4893 .cfi_restore %r12
4894 popq %rbp
4895 .cfi_restore %rbp
4896 .cfi_def_cfa %rsp, 8
4897 ret
4898 label:
4899 .cfi_restore_state
4900 /* Do something else */
4901 @end smallexample
4902
4903 That way, the rules for the instructions after @code{label} will be the same
4904 as before the first @code{.cfi_restore} without having to use multiple
4905 @code{.cfi} directives.
4906
4907 @subsection @code{.cfi_return_column @var{register}}
4908 Change return column @var{register}, i.e. the return address is either
4909 directly in @var{register} or can be accessed by rules for @var{register}.
4910
4911 @subsection @code{.cfi_signal_frame}
4912 Mark current function as signal trampoline.
4913
4914 @subsection @code{.cfi_window_save}
4915 SPARC register window has been saved.
4916
4917 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
4918 Allows the user to add arbitrary bytes to the unwind info. One
4919 might use this to add OS-specific CFI opcodes, or generic CFI
4920 opcodes that GAS does not yet support.
4921
4922 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
4923 The current value of @var{register} is @var{label}. The value of @var{label}
4924 will be encoded in the output file according to @var{encoding}; see the
4925 description of @code{.cfi_personality} for details on this encoding.
4926
4927 The usefulness of equating a register to a fixed label is probably
4928 limited to the return address register. Here, it can be useful to
4929 mark a code segment that has only one return address which is reached
4930 by a direct branch and no copy of the return address exists in memory
4931 or another register.
4932
4933 @node Comm
4934 @section @code{.comm @var{symbol} , @var{length} }
4935
4936 @cindex @code{comm} directive
4937 @cindex symbol, common
4938 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
4939 common symbol in one object file may be merged with a defined or common symbol
4940 of the same name in another object file. If @code{@value{LD}} does not see a
4941 definition for the symbol--just one or more common symbols--then it will
4942 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
4943 absolute expression. If @code{@value{LD}} sees multiple common symbols with
4944 the same name, and they do not all have the same size, it will allocate space
4945 using the largest size.
4946
4947 @ifset COFF-ELF
4948 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
4949 an optional third argument. This is the desired alignment of the symbol,
4950 specified for ELF as a byte boundary (for example, an alignment of 16 means
4951 that the least significant 4 bits of the address should be zero), and for PE
4952 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
4953 boundary). The alignment must be an absolute expression, and it must be a
4954 power of two. If @code{@value{LD}} allocates uninitialized memory for the
4955 common symbol, it will use the alignment when placing the symbol. If no
4956 alignment is specified, @command{@value{AS}} will set the alignment to the
4957 largest power of two less than or equal to the size of the symbol, up to a
4958 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
4959 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
4960 @samp{--section-alignment} option; image file sections in PE are aligned to
4961 multiples of 4096, which is far too large an alignment for ordinary variables.
4962 It is rather the default alignment for (non-debug) sections within object
4963 (@samp{*.o}) files, which are less strictly aligned.}.
4964 @end ifset
4965
4966 @ifset HPPA
4967 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
4968 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
4969 @end ifset
4970
4971 @node Data
4972 @section @code{.data @var{subsection}}
4973 @cindex @code{data} directive
4974
4975 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
4976 end of the data subsection numbered @var{subsection} (which is an
4977 absolute expression). If @var{subsection} is omitted, it defaults
4978 to zero.
4979
4980 @node Dc
4981 @section @code{.dc[@var{size}] @var{expressions}}
4982 @cindex @code{dc} directive
4983
4984 The @code{.dc} directive expects zero or more @var{expressions} separated by
4985 commas. These expressions are evaluated and their values inserted into the
4986 current section. The size of the emitted value depends upon the suffix to the
4987 @code{.dc} directive:
4988
4989 @table @code
4990 @item @samp{.a}
4991 Emits N-bit values, where N is the size of an address on the target system.
4992 @item @samp{.b}
4993 Emits 8-bit values.
4994 @item @samp{.d}
4995 Emits double precision floating-point values.
4996 @item @samp{.l}
4997 Emits 32-bit values.
4998 @item @samp{.s}
4999 Emits single precision floating-point values.
5000 @item @samp{.w}
5001 Emits 16-bit values.
5002 Note - this is true even on targets where the @code{.word} directive would emit
5003 32-bit values.
5004 @item @samp{.x}
5005 Emits long double precision floating-point values.
5006 @end table
5007
5008 If no suffix is used then @samp{.w} is assumed.
5009
5010 The byte ordering is target dependent, as is the size and format of floating
5011 point values.
5012
5013 @node Dcb
5014 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5015 @cindex @code{dcb} directive
5016 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5017 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5018 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5019 @var{size} suffix, if present, must be one of:
5020
5021 @table @code
5022 @item @samp{.b}
5023 Emits single byte values.
5024 @item @samp{.d}
5025 Emits double-precision floating point values.
5026 @item @samp{.l}
5027 Emits 4-byte values.
5028 @item @samp{.s}
5029 Emits single-precision floating point values.
5030 @item @samp{.w}
5031 Emits 2-byte values.
5032 @item @samp{.x}
5033 Emits long double-precision floating point values.
5034 @end table
5035
5036 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5037
5038 The byte ordering is target dependent, as is the size and format of floating
5039 point values.
5040
5041 @node Ds
5042 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5043 @cindex @code{ds} directive
5044 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5045 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5046 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5047 @var{size} suffix, if present, must be one of:
5048
5049 @table @code
5050 @item @samp{.b}
5051 Emits single byte values.
5052 @item @samp{.d}
5053 Emits 8-byte values.
5054 @item @samp{.l}
5055 Emits 4-byte values.
5056 @item @samp{.p}
5057 Emits 12-byte values.
5058 @item @samp{.s}
5059 Emits 4-byte values.
5060 @item @samp{.w}
5061 Emits 2-byte values.
5062 @item @samp{.x}
5063 Emits 12-byte values.
5064 @end table
5065
5066 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5067 suffixes do not indicate that floating-point values are to be inserted.
5068
5069 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5070
5071 The byte ordering is target dependent.
5072
5073
5074 @ifset COFF
5075 @node Def
5076 @section @code{.def @var{name}}
5077
5078 @cindex @code{def} directive
5079 @cindex COFF symbols, debugging
5080 @cindex debugging COFF symbols
5081 Begin defining debugging information for a symbol @var{name}; the
5082 definition extends until the @code{.endef} directive is encountered.
5083 @end ifset
5084
5085 @ifset aout
5086 @node Desc
5087 @section @code{.desc @var{symbol}, @var{abs-expression}}
5088
5089 @cindex @code{desc} directive
5090 @cindex COFF symbol descriptor
5091 @cindex symbol descriptor, COFF
5092 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5093 to the low 16 bits of an absolute expression.
5094
5095 @ifset COFF
5096 The @samp{.desc} directive is not available when @command{@value{AS}} is
5097 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5098 object format. For the sake of compatibility, @command{@value{AS}} accepts
5099 it, but produces no output, when configured for COFF.
5100 @end ifset
5101 @end ifset
5102
5103 @ifset COFF
5104 @node Dim
5105 @section @code{.dim}
5106
5107 @cindex @code{dim} directive
5108 @cindex COFF auxiliary symbol information
5109 @cindex auxiliary symbol information, COFF
5110 This directive is generated by compilers to include auxiliary debugging
5111 information in the symbol table. It is only permitted inside
5112 @code{.def}/@code{.endef} pairs.
5113 @end ifset
5114
5115 @node Double
5116 @section @code{.double @var{flonums}}
5117
5118 @cindex @code{double} directive
5119 @cindex floating point numbers (double)
5120 @code{.double} expects zero or more flonums, separated by commas. It
5121 assembles floating point numbers.
5122 @ifset GENERIC
5123 The exact kind of floating point numbers emitted depends on how
5124 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5125 @end ifset
5126 @ifclear GENERIC
5127 @ifset IEEEFLOAT
5128 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5129 in @sc{ieee} format.
5130 @end ifset
5131 @end ifclear
5132
5133 @node Eject
5134 @section @code{.eject}
5135
5136 @cindex @code{eject} directive
5137 @cindex new page, in listings
5138 @cindex page, in listings
5139 @cindex listing control: new page
5140 Force a page break at this point, when generating assembly listings.
5141
5142 @node Else
5143 @section @code{.else}
5144
5145 @cindex @code{else} directive
5146 @code{.else} is part of the @command{@value{AS}} support for conditional
5147 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5148 of code to be assembled if the condition for the preceding @code{.if}
5149 was false.
5150
5151 @node Elseif
5152 @section @code{.elseif}
5153
5154 @cindex @code{elseif} directive
5155 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5156 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5157 @code{.if} block that would otherwise fill the entire @code{.else} section.
5158
5159 @node End
5160 @section @code{.end}
5161
5162 @cindex @code{end} directive
5163 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5164 process anything in the file past the @code{.end} directive.
5165
5166 @ifset COFF
5167 @node Endef
5168 @section @code{.endef}
5169
5170 @cindex @code{endef} directive
5171 This directive flags the end of a symbol definition begun with
5172 @code{.def}.
5173 @end ifset
5174
5175 @node Endfunc
5176 @section @code{.endfunc}
5177 @cindex @code{endfunc} directive
5178 @code{.endfunc} marks the end of a function specified with @code{.func}.
5179
5180 @node Endif
5181 @section @code{.endif}
5182
5183 @cindex @code{endif} directive
5184 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5185 it marks the end of a block of code that is only assembled
5186 conditionally. @xref{If,,@code{.if}}.
5187
5188 @node Equ
5189 @section @code{.equ @var{symbol}, @var{expression}}
5190
5191 @cindex @code{equ} directive
5192 @cindex assigning values to symbols
5193 @cindex symbols, assigning values to
5194 This directive sets the value of @var{symbol} to @var{expression}.
5195 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5196
5197 @ifset HPPA
5198 The syntax for @code{equ} on the HPPA is
5199 @samp{@var{symbol} .equ @var{expression}}.
5200 @end ifset
5201
5202 @ifset Z80
5203 The syntax for @code{equ} on the Z80 is
5204 @samp{@var{symbol} equ @var{expression}}.
5205 On the Z80 it is an error if @var{symbol} is already defined,
5206 but the symbol is not protected from later redefinition.
5207 Compare @ref{Equiv}.
5208 @end ifset
5209
5210 @node Equiv
5211 @section @code{.equiv @var{symbol}, @var{expression}}
5212 @cindex @code{equiv} directive
5213 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5214 the assembler will signal an error if @var{symbol} is already defined. Note a
5215 symbol which has been referenced but not actually defined is considered to be
5216 undefined.
5217
5218 Except for the contents of the error message, this is roughly equivalent to
5219 @smallexample
5220 .ifdef SYM
5221 .err
5222 .endif
5223 .equ SYM,VAL
5224 @end smallexample
5225 plus it protects the symbol from later redefinition.
5226
5227 @node Eqv
5228 @section @code{.eqv @var{symbol}, @var{expression}}
5229 @cindex @code{eqv} directive
5230 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5231 evaluate the expression or any part of it immediately. Instead each time
5232 the resulting symbol is used in an expression, a snapshot of its current
5233 value is taken.
5234
5235 @node Err
5236 @section @code{.err}
5237 @cindex @code{err} directive
5238 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5239 message and, unless the @option{-Z} option was used, it will not generate an
5240 object file. This can be used to signal an error in conditionally compiled code.
5241
5242 @node Error
5243 @section @code{.error "@var{string}"}
5244 @cindex error directive
5245
5246 Similarly to @code{.err}, this directive emits an error, but you can specify a
5247 string that will be emitted as the error message. If you don't specify the
5248 message, it defaults to @code{".error directive invoked in source file"}.
5249 @xref{Errors, ,Error and Warning Messages}.
5250
5251 @smallexample
5252 .error "This code has not been assembled and tested."
5253 @end smallexample
5254
5255 @node Exitm
5256 @section @code{.exitm}
5257 Exit early from the current macro definition. @xref{Macro}.
5258
5259 @node Extern
5260 @section @code{.extern}
5261
5262 @cindex @code{extern} directive
5263 @code{.extern} is accepted in the source program---for compatibility
5264 with other assemblers---but it is ignored. @command{@value{AS}} treats
5265 all undefined symbols as external.
5266
5267 @node Fail
5268 @section @code{.fail @var{expression}}
5269
5270 @cindex @code{fail} directive
5271 Generates an error or a warning. If the value of the @var{expression} is 500
5272 or more, @command{@value{AS}} will print a warning message. If the value is less
5273 than 500, @command{@value{AS}} will print an error message. The message will
5274 include the value of @var{expression}. This can occasionally be useful inside
5275 complex nested macros or conditional assembly.
5276
5277 @node File
5278 @section @code{.file}
5279 @cindex @code{file} directive
5280
5281 @ifclear no-file-dir
5282 There are two different versions of the @code{.file} directive. Targets
5283 that support DWARF2 line number information use the DWARF2 version of
5284 @code{.file}. Other targets use the default version.
5285
5286 @subheading Default Version
5287
5288 @cindex logical file name
5289 @cindex file name, logical
5290 This version of the @code{.file} directive tells @command{@value{AS}} that we
5291 are about to start a new logical file. The syntax is:
5292
5293 @smallexample
5294 .file @var{string}
5295 @end smallexample
5296
5297 @var{string} is the new file name. In general, the filename is
5298 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5299 to specify an empty file name, you must give the quotes--@code{""}. This
5300 statement may go away in future: it is only recognized to be compatible with
5301 old @command{@value{AS}} programs.
5302
5303 @subheading DWARF2 Version
5304 @end ifclear
5305
5306 When emitting DWARF2 line number information, @code{.file} assigns filenames
5307 to the @code{.debug_line} file name table. The syntax is:
5308
5309 @smallexample
5310 .file @var{fileno} @var{filename}
5311 @end smallexample
5312
5313 The @var{fileno} operand should be a unique positive integer to use as the
5314 index of the entry in the table. The @var{filename} operand is a C string
5315 literal.
5316
5317 The detail of filename indices is exposed to the user because the filename
5318 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5319 information, and thus the user must know the exact indices that table
5320 entries will have.
5321
5322 @node Fill
5323 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5324
5325 @cindex @code{fill} directive
5326 @cindex writing patterns in memory
5327 @cindex patterns, writing in memory
5328 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5329 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5330 may be zero or more. @var{Size} may be zero or more, but if it is
5331 more than 8, then it is deemed to have the value 8, compatible with
5332 other people's assemblers. The contents of each @var{repeat} bytes
5333 is taken from an 8-byte number. The highest order 4 bytes are
5334 zero. The lowest order 4 bytes are @var{value} rendered in the
5335 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5336 Each @var{size} bytes in a repetition is taken from the lowest order
5337 @var{size} bytes of this number. Again, this bizarre behavior is
5338 compatible with other people's assemblers.
5339
5340 @var{size} and @var{value} are optional.
5341 If the second comma and @var{value} are absent, @var{value} is
5342 assumed zero. If the first comma and following tokens are absent,
5343 @var{size} is assumed to be 1.
5344
5345 @node Float
5346 @section @code{.float @var{flonums}}
5347
5348 @cindex floating point numbers (single)
5349 @cindex @code{float} directive
5350 This directive assembles zero or more flonums, separated by commas. It
5351 has the same effect as @code{.single}.
5352 @ifset GENERIC
5353 The exact kind of floating point numbers emitted depends on how
5354 @command{@value{AS}} is configured.
5355 @xref{Machine Dependencies}.
5356 @end ifset
5357 @ifclear GENERIC
5358 @ifset IEEEFLOAT
5359 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5360 in @sc{ieee} format.
5361 @end ifset
5362 @end ifclear
5363
5364 @node Func
5365 @section @code{.func @var{name}[,@var{label}]}
5366 @cindex @code{func} directive
5367 @code{.func} emits debugging information to denote function @var{name}, and
5368 is ignored unless the file is assembled with debugging enabled.
5369 Only @samp{--gstabs[+]} is currently supported.
5370 @var{label} is the entry point of the function and if omitted @var{name}
5371 prepended with the @samp{leading char} is used.
5372 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5373 All functions are currently defined to have @code{void} return type.
5374 The function must be terminated with @code{.endfunc}.
5375
5376 @node Global
5377 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5378
5379 @cindex @code{global} directive
5380 @cindex symbol, making visible to linker
5381 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5382 @var{symbol} in your partial program, its value is made available to
5383 other partial programs that are linked with it. Otherwise,
5384 @var{symbol} takes its attributes from a symbol of the same name
5385 from another file linked into the same program.
5386
5387 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5388 compatibility with other assemblers.
5389
5390 @ifset HPPA
5391 On the HPPA, @code{.global} is not always enough to make it accessible to other
5392 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5393 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5394 @end ifset
5395
5396 @ifset ELF
5397 @node Gnu_attribute
5398 @section @code{.gnu_attribute @var{tag},@var{value}}
5399 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5400
5401 @node Hidden
5402 @section @code{.hidden @var{names}}
5403
5404 @cindex @code{hidden} directive
5405 @cindex visibility
5406 This is one of the ELF visibility directives. The other two are
5407 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5408 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5409
5410 This directive overrides the named symbols default visibility (which is set by
5411 their binding: local, global or weak). The directive sets the visibility to
5412 @code{hidden} which means that the symbols are not visible to other components.
5413 Such symbols are always considered to be @code{protected} as well.
5414 @end ifset
5415
5416 @node hword
5417 @section @code{.hword @var{expressions}}
5418
5419 @cindex @code{hword} directive
5420 @cindex integers, 16-bit
5421 @cindex numbers, 16-bit
5422 @cindex sixteen bit integers
5423 This expects zero or more @var{expressions}, and emits
5424 a 16 bit number for each.
5425
5426 @ifset GENERIC
5427 This directive is a synonym for @samp{.short}; depending on the target
5428 architecture, it may also be a synonym for @samp{.word}.
5429 @end ifset
5430 @ifclear GENERIC
5431 @ifset W32
5432 This directive is a synonym for @samp{.short}.
5433 @end ifset
5434 @ifset W16
5435 This directive is a synonym for both @samp{.short} and @samp{.word}.
5436 @end ifset
5437 @end ifclear
5438
5439 @node Ident
5440 @section @code{.ident}
5441
5442 @cindex @code{ident} directive
5443
5444 This directive is used by some assemblers to place tags in object files. The
5445 behavior of this directive varies depending on the target. When using the
5446 a.out object file format, @command{@value{AS}} simply accepts the directive for
5447 source-file compatibility with existing assemblers, but does not emit anything
5448 for it. When using COFF, comments are emitted to the @code{.comment} or
5449 @code{.rdata} section, depending on the target. When using ELF, comments are
5450 emitted to the @code{.comment} section.
5451
5452 @node If
5453 @section @code{.if @var{absolute expression}}
5454
5455 @cindex conditional assembly
5456 @cindex @code{if} directive
5457 @code{.if} marks the beginning of a section of code which is only
5458 considered part of the source program being assembled if the argument
5459 (which must be an @var{absolute expression}) is non-zero. The end of
5460 the conditional section of code must be marked by @code{.endif}
5461 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5462 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5463 If you have several conditions to check, @code{.elseif} may be used to avoid
5464 nesting blocks if/else within each subsequent @code{.else} block.
5465
5466 The following variants of @code{.if} are also supported:
5467 @table @code
5468 @cindex @code{ifdef} directive
5469 @item .ifdef @var{symbol}
5470 Assembles the following section of code if the specified @var{symbol}
5471 has been defined. Note a symbol which has been referenced but not yet defined
5472 is considered to be undefined.
5473
5474 @cindex @code{ifb} directive
5475 @item .ifb @var{text}
5476 Assembles the following section of code if the operand is blank (empty).
5477
5478 @cindex @code{ifc} directive
5479 @item .ifc @var{string1},@var{string2}
5480 Assembles the following section of code if the two strings are the same. The
5481 strings may be optionally quoted with single quotes. If they are not quoted,
5482 the first string stops at the first comma, and the second string stops at the
5483 end of the line. Strings which contain whitespace should be quoted. The
5484 string comparison is case sensitive.
5485
5486 @cindex @code{ifeq} directive
5487 @item .ifeq @var{absolute expression}
5488 Assembles the following section of code if the argument is zero.
5489
5490 @cindex @code{ifeqs} directive
5491 @item .ifeqs @var{string1},@var{string2}
5492 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5493
5494 @cindex @code{ifge} directive
5495 @item .ifge @var{absolute expression}
5496 Assembles the following section of code if the argument is greater than or
5497 equal to zero.
5498
5499 @cindex @code{ifgt} directive
5500 @item .ifgt @var{absolute expression}
5501 Assembles the following section of code if the argument is greater than zero.
5502
5503 @cindex @code{ifle} directive
5504 @item .ifle @var{absolute expression}
5505 Assembles the following section of code if the argument is less than or equal
5506 to zero.
5507
5508 @cindex @code{iflt} directive
5509 @item .iflt @var{absolute expression}
5510 Assembles the following section of code if the argument is less than zero.
5511
5512 @cindex @code{ifnb} directive
5513 @item .ifnb @var{text}
5514 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5515 following section of code if the operand is non-blank (non-empty).
5516
5517 @cindex @code{ifnc} directive
5518 @item .ifnc @var{string1},@var{string2}.
5519 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5520 following section of code if the two strings are not the same.
5521
5522 @cindex @code{ifndef} directive
5523 @cindex @code{ifnotdef} directive
5524 @item .ifndef @var{symbol}
5525 @itemx .ifnotdef @var{symbol}
5526 Assembles the following section of code if the specified @var{symbol}
5527 has not been defined. Both spelling variants are equivalent. Note a symbol
5528 which has been referenced but not yet defined is considered to be undefined.
5529
5530 @cindex @code{ifne} directive
5531 @item .ifne @var{absolute expression}
5532 Assembles the following section of code if the argument is not equal to zero
5533 (in other words, this is equivalent to @code{.if}).
5534
5535 @cindex @code{ifnes} directive
5536 @item .ifnes @var{string1},@var{string2}
5537 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5538 following section of code if the two strings are not the same.
5539 @end table
5540
5541 @node Incbin
5542 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5543
5544 @cindex @code{incbin} directive
5545 @cindex binary files, including
5546 The @code{incbin} directive includes @var{file} verbatim at the current
5547 location. You can control the search paths used with the @samp{-I} command-line
5548 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5549 around @var{file}.
5550
5551 The @var{skip} argument skips a number of bytes from the start of the
5552 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5553 read. Note that the data is not aligned in any way, so it is the user's
5554 responsibility to make sure that proper alignment is provided both before and
5555 after the @code{incbin} directive.
5556
5557 @node Include
5558 @section @code{.include "@var{file}"}
5559
5560 @cindex @code{include} directive
5561 @cindex supporting files, including
5562 @cindex files, including
5563 This directive provides a way to include supporting files at specified
5564 points in your source program. The code from @var{file} is assembled as
5565 if it followed the point of the @code{.include}; when the end of the
5566 included file is reached, assembly of the original file continues. You
5567 can control the search paths used with the @samp{-I} command-line option
5568 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5569 around @var{file}.
5570
5571 @node Int
5572 @section @code{.int @var{expressions}}
5573
5574 @cindex @code{int} directive
5575 @cindex integers, 32-bit
5576 Expect zero or more @var{expressions}, of any section, separated by commas.
5577 For each expression, emit a number that, at run time, is the value of that
5578 expression. The byte order and bit size of the number depends on what kind
5579 of target the assembly is for.
5580
5581 @ifclear GENERIC
5582 @ifset H8
5583 On most forms of the H8/300, @code{.int} emits 16-bit
5584 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5585 32-bit integers.
5586 @end ifset
5587 @end ifclear
5588
5589 @ifset ELF
5590 @node Internal
5591 @section @code{.internal @var{names}}
5592
5593 @cindex @code{internal} directive
5594 @cindex visibility
5595 This is one of the ELF visibility directives. The other two are
5596 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5597 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5598
5599 This directive overrides the named symbols default visibility (which is set by
5600 their binding: local, global or weak). The directive sets the visibility to
5601 @code{internal} which means that the symbols are considered to be @code{hidden}
5602 (i.e., not visible to other components), and that some extra, processor specific
5603 processing must also be performed upon the symbols as well.
5604 @end ifset
5605
5606 @node Irp
5607 @section @code{.irp @var{symbol},@var{values}}@dots{}
5608
5609 @cindex @code{irp} directive
5610 Evaluate a sequence of statements assigning different values to @var{symbol}.
5611 The sequence of statements starts at the @code{.irp} directive, and is
5612 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5613 set to @var{value}, and the sequence of statements is assembled. If no
5614 @var{value} is listed, the sequence of statements is assembled once, with
5615 @var{symbol} set to the null string. To refer to @var{symbol} within the
5616 sequence of statements, use @var{\symbol}.
5617
5618 For example, assembling
5619
5620 @example
5621 .irp param,1,2,3
5622 move d\param,sp@@-
5623 .endr
5624 @end example
5625
5626 is equivalent to assembling
5627
5628 @example
5629 move d1,sp@@-
5630 move d2,sp@@-
5631 move d3,sp@@-
5632 @end example
5633
5634 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5635
5636 @node Irpc
5637 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5638
5639 @cindex @code{irpc} directive
5640 Evaluate a sequence of statements assigning different values to @var{symbol}.
5641 The sequence of statements starts at the @code{.irpc} directive, and is
5642 terminated by an @code{.endr} directive. For each character in @var{value},
5643 @var{symbol} is set to the character, and the sequence of statements is
5644 assembled. If no @var{value} is listed, the sequence of statements is
5645 assembled once, with @var{symbol} set to the null string. To refer to
5646 @var{symbol} within the sequence of statements, use @var{\symbol}.
5647
5648 For example, assembling
5649
5650 @example
5651 .irpc param,123
5652 move d\param,sp@@-
5653 .endr
5654 @end example
5655
5656 is equivalent to assembling
5657
5658 @example
5659 move d1,sp@@-
5660 move d2,sp@@-
5661 move d3,sp@@-
5662 @end example
5663
5664 For some caveats with the spelling of @var{symbol}, see also the discussion
5665 at @xref{Macro}.
5666
5667 @node Lcomm
5668 @section @code{.lcomm @var{symbol} , @var{length}}
5669
5670 @cindex @code{lcomm} directive
5671 @cindex local common symbols
5672 @cindex symbols, local common
5673 Reserve @var{length} (an absolute expression) bytes for a local common
5674 denoted by @var{symbol}. The section and value of @var{symbol} are
5675 those of the new local common. The addresses are allocated in the bss
5676 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5677 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5678 not visible to @code{@value{LD}}.
5679
5680 @ifset GENERIC
5681 Some targets permit a third argument to be used with @code{.lcomm}. This
5682 argument specifies the desired alignment of the symbol in the bss section.
5683 @end ifset
5684
5685 @ifset HPPA
5686 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5687 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5688 @end ifset
5689
5690 @node Lflags
5691 @section @code{.lflags}
5692
5693 @cindex @code{lflags} directive (ignored)
5694 @command{@value{AS}} accepts this directive, for compatibility with other
5695 assemblers, but ignores it.
5696
5697 @ifclear no-line-dir
5698 @node Line
5699 @section @code{.line @var{line-number}}
5700
5701 @cindex @code{line} directive
5702 @cindex logical line number
5703 @ifset aout
5704 Change the logical line number. @var{line-number} must be an absolute
5705 expression. The next line has that logical line number. Therefore any other
5706 statements on the current line (after a statement separator character) are
5707 reported as on logical line number @var{line-number} @minus{} 1. One day
5708 @command{@value{AS}} will no longer support this directive: it is recognized only
5709 for compatibility with existing assembler programs.
5710 @end ifset
5711
5712 Even though this is a directive associated with the @code{a.out} or
5713 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5714 when producing COFF output, and treats @samp{.line} as though it
5715 were the COFF @samp{.ln} @emph{if} it is found outside a
5716 @code{.def}/@code{.endef} pair.
5717
5718 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5719 used by compilers to generate auxiliary symbol information for
5720 debugging.
5721 @end ifclear
5722
5723 @node Linkonce
5724 @section @code{.linkonce [@var{type}]}
5725 @cindex COMDAT
5726 @cindex @code{linkonce} directive
5727 @cindex common sections
5728 Mark the current section so that the linker only includes a single copy of it.
5729 This may be used to include the same section in several different object files,
5730 but ensure that the linker will only include it once in the final output file.
5731 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5732 Duplicate sections are detected based on the section name, so it should be
5733 unique.
5734
5735 This directive is only supported by a few object file formats; as of this
5736 writing, the only object file format which supports it is the Portable
5737 Executable format used on Windows NT.
5738
5739 The @var{type} argument is optional. If specified, it must be one of the
5740 following strings. For example:
5741 @smallexample
5742 .linkonce same_size
5743 @end smallexample
5744 Not all types may be supported on all object file formats.
5745
5746 @table @code
5747 @item discard
5748 Silently discard duplicate sections. This is the default.
5749
5750 @item one_only
5751 Warn if there are duplicate sections, but still keep only one copy.
5752
5753 @item same_size
5754 Warn if any of the duplicates have different sizes.
5755
5756 @item same_contents
5757 Warn if any of the duplicates do not have exactly the same contents.
5758 @end table
5759
5760 @node List
5761 @section @code{.list}
5762
5763 @cindex @code{list} directive
5764 @cindex listing control, turning on
5765 Control (in conjunction with the @code{.nolist} directive) whether or
5766 not assembly listings are generated. These two directives maintain an
5767 internal counter (which is zero initially). @code{.list} increments the
5768 counter, and @code{.nolist} decrements it. Assembly listings are
5769 generated whenever the counter is greater than zero.
5770
5771 By default, listings are disabled. When you enable them (with the
5772 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5773 the initial value of the listing counter is one.
5774
5775 @node Ln
5776 @section @code{.ln @var{line-number}}
5777
5778 @cindex @code{ln} directive
5779 @ifclear no-line-dir
5780 @samp{.ln} is a synonym for @samp{.line}.
5781 @end ifclear
5782 @ifset no-line-dir
5783 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5784 must be an absolute expression. The next line has that logical
5785 line number, so any other statements on the current line (after a
5786 statement separator character @code{;}) are reported as on logical
5787 line number @var{line-number} @minus{} 1.
5788 @end ifset
5789
5790 @node Loc
5791 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5792 @cindex @code{loc} directive
5793 When emitting DWARF2 line number information,
5794 the @code{.loc} directive will add a row to the @code{.debug_line} line
5795 number matrix corresponding to the immediately following assembly
5796 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5797 arguments will be applied to the @code{.debug_line} state machine before
5798 the row is added.
5799
5800 The @var{options} are a sequence of the following tokens in any order:
5801
5802 @table @code
5803 @item basic_block
5804 This option will set the @code{basic_block} register in the
5805 @code{.debug_line} state machine to @code{true}.
5806
5807 @item prologue_end
5808 This option will set the @code{prologue_end} register in the
5809 @code{.debug_line} state machine to @code{true}.
5810
5811 @item epilogue_begin
5812 This option will set the @code{epilogue_begin} register in the
5813 @code{.debug_line} state machine to @code{true}.
5814
5815 @item is_stmt @var{value}
5816 This option will set the @code{is_stmt} register in the
5817 @code{.debug_line} state machine to @code{value}, which must be
5818 either 0 or 1.
5819
5820 @item isa @var{value}
5821 This directive will set the @code{isa} register in the @code{.debug_line}
5822 state machine to @var{value}, which must be an unsigned integer.
5823
5824 @item discriminator @var{value}
5825 This directive will set the @code{discriminator} register in the @code{.debug_line}
5826 state machine to @var{value}, which must be an unsigned integer.
5827
5828 @item view @var{value}
5829 This option causes a row to be added to @code{.debug_line} in reference to the
5830 current address (which might not be the same as that of the following assembly
5831 instruction), and to associate @var{value} with the @code{view} register in the
5832 @code{.debug_line} state machine. If @var{value} is a label, both the
5833 @code{view} register and the label are set to the number of prior @code{.loc}
5834 directives at the same program location. If @var{value} is the literal
5835 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5836 that there aren't any prior @code{.loc} directives at the same program
5837 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5838 the @code{view} register to be reset in this row, even if there are prior
5839 @code{.loc} directives at the same program location.
5840
5841 @end table
5842
5843 @node Loc_mark_labels
5844 @section @code{.loc_mark_labels @var{enable}}
5845 @cindex @code{loc_mark_labels} directive
5846 When emitting DWARF2 line number information,
5847 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5848 to the @code{.debug_line} line number matrix with the @code{basic_block}
5849 register in the state machine set whenever a code label is seen.
5850 The @var{enable} argument should be either 1 or 0, to enable or disable
5851 this function respectively.
5852
5853 @ifset ELF
5854 @node Local
5855 @section @code{.local @var{names}}
5856
5857 @cindex @code{local} directive
5858 This directive, which is available for ELF targets, marks each symbol in
5859 the comma-separated list of @code{names} as a local symbol so that it
5860 will not be externally visible. If the symbols do not already exist,
5861 they will be created.
5862
5863 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
5864 accept an alignment argument, which is the case for most ELF targets,
5865 the @code{.local} directive can be used in combination with @code{.comm}
5866 (@pxref{Comm}) to define aligned local common data.
5867 @end ifset
5868
5869 @node Long
5870 @section @code{.long @var{expressions}}
5871
5872 @cindex @code{long} directive
5873 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
5874
5875 @ignore
5876 @c no one seems to know what this is for or whether this description is
5877 @c what it really ought to do
5878 @node Lsym
5879 @section @code{.lsym @var{symbol}, @var{expression}}
5880
5881 @cindex @code{lsym} directive
5882 @cindex symbol, not referenced in assembly
5883 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
5884 the hash table, ensuring it cannot be referenced by name during the
5885 rest of the assembly. This sets the attributes of the symbol to be
5886 the same as the expression value:
5887 @smallexample
5888 @var{other} = @var{descriptor} = 0
5889 @var{type} = @r{(section of @var{expression})}
5890 @var{value} = @var{expression}
5891 @end smallexample
5892 @noindent
5893 The new symbol is not flagged as external.
5894 @end ignore
5895
5896 @node Macro
5897 @section @code{.macro}
5898
5899 @cindex macros
5900 The commands @code{.macro} and @code{.endm} allow you to define macros that
5901 generate assembly output. For example, this definition specifies a macro
5902 @code{sum} that puts a sequence of numbers into memory:
5903
5904 @example
5905 .macro sum from=0, to=5
5906 .long \from
5907 .if \to-\from
5908 sum "(\from+1)",\to
5909 .endif
5910 .endm
5911 @end example
5912
5913 @noindent
5914 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
5915
5916 @example
5917 .long 0
5918 .long 1
5919 .long 2
5920 .long 3
5921 .long 4
5922 .long 5
5923 @end example
5924
5925 @ftable @code
5926 @item .macro @var{macname}
5927 @itemx .macro @var{macname} @var{macargs} @dots{}
5928 @cindex @code{macro} directive
5929 Begin the definition of a macro called @var{macname}. If your macro
5930 definition requires arguments, specify their names after the macro name,
5931 separated by commas or spaces. You can qualify the macro argument to
5932 indicate whether all invocations must specify a non-blank value (through
5933 @samp{:@code{req}}), or whether it takes all of the remaining arguments
5934 (through @samp{:@code{vararg}}). You can supply a default value for any
5935 macro argument by following the name with @samp{=@var{deflt}}. You
5936 cannot define two macros with the same @var{macname} unless it has been
5937 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
5938 definitions. For example, these are all valid @code{.macro} statements:
5939
5940 @table @code
5941 @item .macro comm
5942 Begin the definition of a macro called @code{comm}, which takes no
5943 arguments.
5944
5945 @item .macro plus1 p, p1
5946 @itemx .macro plus1 p p1
5947 Either statement begins the definition of a macro called @code{plus1},
5948 which takes two arguments; within the macro definition, write
5949 @samp{\p} or @samp{\p1} to evaluate the arguments.
5950
5951 @item .macro reserve_str p1=0 p2
5952 Begin the definition of a macro called @code{reserve_str}, with two
5953 arguments. The first argument has a default value, but not the second.
5954 After the definition is complete, you can call the macro either as
5955 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
5956 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
5957 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
5958 @samp{0}, and @samp{\p2} evaluating to @var{b}).
5959
5960 @item .macro m p1:req, p2=0, p3:vararg
5961 Begin the definition of a macro called @code{m}, with at least three
5962 arguments. The first argument must always have a value specified, but
5963 not the second, which instead has a default value. The third formal
5964 will get assigned all remaining arguments specified at invocation time.
5965
5966 When you call a macro, you can specify the argument values either by
5967 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
5968 @samp{sum to=17, from=9}.
5969
5970 @end table
5971
5972 Note that since each of the @var{macargs} can be an identifier exactly
5973 as any other one permitted by the target architecture, there may be
5974 occasional problems if the target hand-crafts special meanings to certain
5975 characters when they occur in a special position. For example, if the colon
5976 (@code{:}) is generally permitted to be part of a symbol name, but the
5977 architecture specific code special-cases it when occurring as the final
5978 character of a symbol (to denote a label), then the macro parameter
5979 replacement code will have no way of knowing that and consider the whole
5980 construct (including the colon) an identifier, and check only this
5981 identifier for being the subject to parameter substitution. So for example
5982 this macro definition:
5983
5984 @example
5985 .macro label l
5986 \l:
5987 .endm
5988 @end example
5989
5990 might not work as expected. Invoking @samp{label foo} might not create a label
5991 called @samp{foo} but instead just insert the text @samp{\l:} into the
5992 assembler source, probably generating an error about an unrecognised
5993 identifier.
5994
5995 Similarly problems might occur with the period character (@samp{.})
5996 which is often allowed inside opcode names (and hence identifier names). So
5997 for example constructing a macro to build an opcode from a base name and a
5998 length specifier like this:
5999
6000 @example
6001 .macro opcode base length
6002 \base.\length
6003 .endm
6004 @end example
6005
6006 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
6007 instruction but instead generate some kind of error as the assembler tries to
6008 interpret the text @samp{\base.\length}.
6009
6010 There are several possible ways around this problem:
6011
6012 @table @code
6013 @item Insert white space
6014 If it is possible to use white space characters then this is the simplest
6015 solution. eg:
6016
6017 @example
6018 .macro label l
6019 \l :
6020 .endm
6021 @end example
6022
6023 @item Use @samp{\()}
6024 The string @samp{\()} can be used to separate the end of a macro argument from
6025 the following text. eg:
6026
6027 @example
6028 .macro opcode base length
6029 \base\().\length
6030 .endm
6031 @end example
6032
6033 @item Use the alternate macro syntax mode
6034 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6035 used as a separator. eg:
6036
6037 @example
6038 .altmacro
6039 .macro label l
6040 l&:
6041 .endm
6042 @end example
6043 @end table
6044
6045 Note: this problem of correctly identifying string parameters to pseudo ops
6046 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6047 and @code{.irpc} (@pxref{Irpc}) as well.
6048
6049 @item .endm
6050 @cindex @code{endm} directive
6051 Mark the end of a macro definition.
6052
6053 @item .exitm
6054 @cindex @code{exitm} directive
6055 Exit early from the current macro definition.
6056
6057 @cindex number of macros executed
6058 @cindex macros, count executed
6059 @item \@@
6060 @command{@value{AS}} maintains a counter of how many macros it has
6061 executed in this pseudo-variable; you can copy that number to your
6062 output with @samp{\@@}, but @emph{only within a macro definition}.
6063
6064 @item LOCAL @var{name} [ , @dots{} ]
6065 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6066 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6067 @xref{Altmacro,,@code{.altmacro}}.
6068 @end ftable
6069
6070 @node MRI
6071 @section @code{.mri @var{val}}
6072
6073 @cindex @code{mri} directive
6074 @cindex MRI mode, temporarily
6075 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6076 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6077 affects code assembled until the next @code{.mri} directive, or until the end
6078 of the file. @xref{M, MRI mode, MRI mode}.
6079
6080 @node Noaltmacro
6081 @section @code{.noaltmacro}
6082 Disable alternate macro mode. @xref{Altmacro}.
6083
6084 @node Nolist
6085 @section @code{.nolist}
6086
6087 @cindex @code{nolist} directive
6088 @cindex listing control, turning off
6089 Control (in conjunction with the @code{.list} directive) whether or
6090 not assembly listings are generated. These two directives maintain an
6091 internal counter (which is zero initially). @code{.list} increments the
6092 counter, and @code{.nolist} decrements it. Assembly listings are
6093 generated whenever the counter is greater than zero.
6094
6095 @node Nops
6096 @section @code{.nops @var{size}[, @var{control}]}
6097
6098 @cindex @code{nops} directive
6099 @cindex filling memory with no-op instructions
6100 This directive emits @var{size} bytes filled with no-op instructions.
6101 @var{size} is absolute expression, which must be a positve value.
6102 @var{control} controls how no-op instructions should be generated. If
6103 the comma and @var{control} are omitted, @var{control} is assumed to be
6104 zero.
6105
6106 Note: For Intel 80386 and AMD x86-64 targets, @var{control} specifies
6107 the size limit of a no-op instruction. The valid values of @var{control}
6108 are between 0 and 4 in 16-bit mode, between 0 and 7 when tuning for
6109 older processors in 32-bit mode, between 0 and 11 in 64-bit mode or when
6110 tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6111 instruction size limit is set to the maximum supported size.
6112
6113 @node Octa
6114 @section @code{.octa @var{bignums}}
6115
6116 @c FIXME: double size emitted for "octa" on some? Or warn?
6117 @cindex @code{octa} directive
6118 @cindex integer, 16-byte
6119 @cindex sixteen byte integer
6120 This directive expects zero or more bignums, separated by commas. For each
6121 bignum, it emits a 16-byte integer.
6122
6123 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6124 hence @emph{octa}-word for 16 bytes.
6125
6126 @node Offset
6127 @section @code{.offset @var{loc}}
6128
6129 @cindex @code{offset} directive
6130 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6131 be an absolute expression. This directive may be useful for defining
6132 symbols with absolute values. Do not confuse it with the @code{.org}
6133 directive.
6134
6135 @node Org
6136 @section @code{.org @var{new-lc} , @var{fill}}
6137
6138 @cindex @code{org} directive
6139 @cindex location counter, advancing
6140 @cindex advancing location counter
6141 @cindex current address, advancing
6142 Advance the location counter of the current section to
6143 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6144 expression with the same section as the current subsection. That is,
6145 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6146 wrong section, the @code{.org} directive is ignored. To be compatible
6147 with former assemblers, if the section of @var{new-lc} is absolute,
6148 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6149 is the same as the current subsection.
6150
6151 @code{.org} may only increase the location counter, or leave it
6152 unchanged; you cannot use @code{.org} to move the location counter
6153 backwards.
6154
6155 @c double negative used below "not undefined" because this is a specific
6156 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6157 @c section. doc@cygnus.com 18feb91
6158 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6159 may not be undefined. If you really detest this restriction we eagerly await
6160 a chance to share your improved assembler.
6161
6162 Beware that the origin is relative to the start of the section, not
6163 to the start of the subsection. This is compatible with other
6164 people's assemblers.
6165
6166 When the location counter (of the current subsection) is advanced, the
6167 intervening bytes are filled with @var{fill} which should be an
6168 absolute expression. If the comma and @var{fill} are omitted,
6169 @var{fill} defaults to zero.
6170
6171 @node P2align
6172 @section @code{.p2align[wl] @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
6173
6174 @cindex padding the location counter given a power of two
6175 @cindex @code{p2align} directive
6176 Pad the location counter (in the current subsection) to a particular
6177 storage boundary. The first expression (which must be absolute) is the
6178 number of low-order zero bits the location counter must have after
6179 advancement. For example @samp{.p2align 3} advances the location
6180 counter until it a multiple of 8. If the location counter is already a
6181 multiple of 8, no change is needed.
6182
6183 The second expression (also absolute) gives the fill value to be stored in the
6184 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6185 padding bytes are normally zero. However, on most systems, if the section is
6186 marked as containing code and the fill value is omitted, the space is filled
6187 with no-op instructions.
6188
6189 The third expression is also absolute, and is also optional. If it is present,
6190 it is the maximum number of bytes that should be skipped by this alignment
6191 directive. If doing the alignment would require skipping more bytes than the
6192 specified maximum, then the alignment is not done at all. You can omit the
6193 fill value (the second argument) entirely by simply using two commas after the
6194 required alignment; this can be useful if you want the alignment to be filled
6195 with no-op instructions when appropriate.
6196
6197 @cindex @code{p2alignw} directive
6198 @cindex @code{p2alignl} directive
6199 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6200 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6201 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6202 fill pattern as a four byte longword value. For example, @code{.p2alignw
6203 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6204 filled in with the value 0x368d (the exact placement of the bytes depends upon
6205 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6206 undefined.
6207
6208 @ifset ELF
6209 @node PopSection
6210 @section @code{.popsection}
6211
6212 @cindex @code{popsection} directive
6213 @cindex Section Stack
6214 This is one of the ELF section stack manipulation directives. The others are
6215 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6216 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6217 (@pxref{Previous}).
6218
6219 This directive replaces the current section (and subsection) with the top
6220 section (and subsection) on the section stack. This section is popped off the
6221 stack.
6222 @end ifset
6223
6224 @ifset ELF
6225 @node Previous
6226 @section @code{.previous}
6227
6228 @cindex @code{previous} directive
6229 @cindex Section Stack
6230 This is one of the ELF section stack manipulation directives. The others are
6231 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6232 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6233 (@pxref{PopSection}).
6234
6235 This directive swaps the current section (and subsection) with most recently
6236 referenced section/subsection pair prior to this one. Multiple
6237 @code{.previous} directives in a row will flip between two sections (and their
6238 subsections). For example:
6239
6240 @smallexample
6241 .section A
6242 .subsection 1
6243 .word 0x1234
6244 .subsection 2
6245 .word 0x5678
6246 .previous
6247 .word 0x9abc
6248 @end smallexample
6249
6250 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6251 section A. Whilst:
6252
6253 @smallexample
6254 .section A
6255 .subsection 1
6256 # Now in section A subsection 1
6257 .word 0x1234
6258 .section B
6259 .subsection 0
6260 # Now in section B subsection 0
6261 .word 0x5678
6262 .subsection 1
6263 # Now in section B subsection 1
6264 .word 0x9abc
6265 .previous
6266 # Now in section B subsection 0
6267 .word 0xdef0
6268 @end smallexample
6269
6270 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6271 section B and 0x9abc into subsection 1 of section B.
6272
6273 In terms of the section stack, this directive swaps the current section with
6274 the top section on the section stack.
6275 @end ifset
6276
6277 @node Print
6278 @section @code{.print @var{string}}
6279
6280 @cindex @code{print} directive
6281 @command{@value{AS}} will print @var{string} on the standard output during
6282 assembly. You must put @var{string} in double quotes.
6283
6284 @ifset ELF
6285 @node Protected
6286 @section @code{.protected @var{names}}
6287
6288 @cindex @code{protected} directive
6289 @cindex visibility
6290 This is one of the ELF visibility directives. The other two are
6291 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6292
6293 This directive overrides the named symbols default visibility (which is set by
6294 their binding: local, global or weak). The directive sets the visibility to
6295 @code{protected} which means that any references to the symbols from within the
6296 components that defines them must be resolved to the definition in that
6297 component, even if a definition in another component would normally preempt
6298 this.
6299 @end ifset
6300
6301 @node Psize
6302 @section @code{.psize @var{lines} , @var{columns}}
6303
6304 @cindex @code{psize} directive
6305 @cindex listing control: paper size
6306 @cindex paper size, for listings
6307 Use this directive to declare the number of lines---and, optionally, the
6308 number of columns---to use for each page, when generating listings.
6309
6310 If you do not use @code{.psize}, listings use a default line-count
6311 of 60. You may omit the comma and @var{columns} specification; the
6312 default width is 200 columns.
6313
6314 @command{@value{AS}} generates formfeeds whenever the specified number of
6315 lines is exceeded (or whenever you explicitly request one, using
6316 @code{.eject}).
6317
6318 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6319 those explicitly specified with @code{.eject}.
6320
6321 @node Purgem
6322 @section @code{.purgem @var{name}}
6323
6324 @cindex @code{purgem} directive
6325 Undefine the macro @var{name}, so that later uses of the string will not be
6326 expanded. @xref{Macro}.
6327
6328 @ifset ELF
6329 @node PushSection
6330 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6331
6332 @cindex @code{pushsection} directive
6333 @cindex Section Stack
6334 This is one of the ELF section stack manipulation directives. The others are
6335 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6336 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6337 (@pxref{Previous}).
6338
6339 This directive pushes the current section (and subsection) onto the
6340 top of the section stack, and then replaces the current section and
6341 subsection with @code{name} and @code{subsection}. The optional
6342 @code{flags}, @code{type} and @code{arguments} are treated the same
6343 as in the @code{.section} (@pxref{Section}) directive.
6344 @end ifset
6345
6346 @node Quad
6347 @section @code{.quad @var{bignums}}
6348
6349 @cindex @code{quad} directive
6350 @code{.quad} expects zero or more bignums, separated by commas. For
6351 each bignum, it emits
6352 @ifclear bignum-16
6353 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6354 warning message; and just takes the lowest order 8 bytes of the bignum.
6355 @cindex eight-byte integer
6356 @cindex integer, 8-byte
6357
6358 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6359 hence @emph{quad}-word for 8 bytes.
6360 @end ifclear
6361 @ifset bignum-16
6362 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6363 warning message; and just takes the lowest order 16 bytes of the bignum.
6364 @cindex sixteen-byte integer
6365 @cindex integer, 16-byte
6366 @end ifset
6367
6368 @node Reloc
6369 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6370
6371 @cindex @code{reloc} directive
6372 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6373 @var{expression}. If @var{offset} is a number, the relocation is generated in
6374 the current section. If @var{offset} is an expression that resolves to a
6375 symbol plus offset, the relocation is generated in the given symbol's section.
6376 @var{expression}, if present, must resolve to a symbol plus addend or to an
6377 absolute value, but note that not all targets support an addend. e.g. ELF REL
6378 targets such as i386 store an addend in the section contents rather than in the
6379 relocation. This low level interface does not support addends stored in the
6380 section.
6381
6382 @node Rept
6383 @section @code{.rept @var{count}}
6384
6385 @cindex @code{rept} directive
6386 Repeat the sequence of lines between the @code{.rept} directive and the next
6387 @code{.endr} directive @var{count} times.
6388
6389 For example, assembling
6390
6391 @example
6392 .rept 3
6393 .long 0
6394 .endr
6395 @end example
6396
6397 is equivalent to assembling
6398
6399 @example
6400 .long 0
6401 .long 0
6402 .long 0
6403 @end example
6404
6405 A count of zero is allowed, but nothing is generated. Negative counts are not
6406 allowed and if encountered will be treated as if they were zero.
6407
6408 @node Sbttl
6409 @section @code{.sbttl "@var{subheading}"}
6410
6411 @cindex @code{sbttl} directive
6412 @cindex subtitles for listings
6413 @cindex listing control: subtitle
6414 Use @var{subheading} as the title (third line, immediately after the
6415 title line) when generating assembly listings.
6416
6417 This directive affects subsequent pages, as well as the current page if
6418 it appears within ten lines of the top of a page.
6419
6420 @ifset COFF
6421 @node Scl
6422 @section @code{.scl @var{class}}
6423
6424 @cindex @code{scl} directive
6425 @cindex symbol storage class (COFF)
6426 @cindex COFF symbol storage class
6427 Set the storage-class value for a symbol. This directive may only be
6428 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6429 whether a symbol is static or external, or it may record further
6430 symbolic debugging information.
6431 @end ifset
6432
6433 @ifset COFF-ELF
6434 @node Section
6435 @section @code{.section @var{name}}
6436
6437 @cindex named section
6438 Use the @code{.section} directive to assemble the following code into a section
6439 named @var{name}.
6440
6441 This directive is only supported for targets that actually support arbitrarily
6442 named sections; on @code{a.out} targets, for example, it is not accepted, even
6443 with a standard @code{a.out} section name.
6444
6445 @ifset COFF
6446 @ifset ELF
6447 @c only print the extra heading if both COFF and ELF are set
6448 @subheading COFF Version
6449 @end ifset
6450
6451 @cindex @code{section} directive (COFF version)
6452 For COFF targets, the @code{.section} directive is used in one of the following
6453 ways:
6454
6455 @smallexample
6456 .section @var{name}[, "@var{flags}"]
6457 .section @var{name}[, @var{subsection}]
6458 @end smallexample
6459
6460 If the optional argument is quoted, it is taken as flags to use for the
6461 section. Each flag is a single character. The following flags are recognized:
6462
6463 @table @code
6464 @item b
6465 bss section (uninitialized data)
6466 @item n
6467 section is not loaded
6468 @item w
6469 writable section
6470 @item d
6471 data section
6472 @item e
6473 exclude section from linking
6474 @item r
6475 read-only section
6476 @item x
6477 executable section
6478 @item s
6479 shared section (meaningful for PE targets)
6480 @item a
6481 ignored. (For compatibility with the ELF version)
6482 @item y
6483 section is not readable (meaningful for PE targets)
6484 @item 0-9
6485 single-digit power-of-two section alignment (GNU extension)
6486 @end table
6487
6488 If no flags are specified, the default flags depend upon the section name. If
6489 the section name is not recognized, the default will be for the section to be
6490 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6491 from the section, rather than adding them, so if they are used on their own it
6492 will be as if no flags had been specified at all.
6493
6494 If the optional argument to the @code{.section} directive is not quoted, it is
6495 taken as a subsection number (@pxref{Sub-Sections}).
6496 @end ifset
6497
6498 @ifset ELF
6499 @ifset COFF
6500 @c only print the extra heading if both COFF and ELF are set
6501 @subheading ELF Version
6502 @end ifset
6503
6504 @cindex Section Stack
6505 This is one of the ELF section stack manipulation directives. The others are
6506 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6507 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6508 @code{.previous} (@pxref{Previous}).
6509
6510 @cindex @code{section} directive (ELF version)
6511 For ELF targets, the @code{.section} directive is used like this:
6512
6513 @smallexample
6514 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6515 @end smallexample
6516
6517 @anchor{Section Name Substitutions}
6518 @kindex --sectname-subst
6519 @cindex section name substitution
6520 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6521 argument may contain a substitution sequence. Only @code{%S} is supported
6522 at the moment, and substitutes the current section name. For example:
6523
6524 @smallexample
6525 .macro exception_code
6526 .section %S.exception
6527 [exception code here]
6528 .previous
6529 .endm
6530
6531 .text
6532 [code]
6533 exception_code
6534 [...]
6535
6536 .section .init
6537 [init code]
6538 exception_code
6539 [...]
6540 @end smallexample
6541
6542 The two @code{exception_code} invocations above would create the
6543 @code{.text.exception} and @code{.init.exception} sections respectively.
6544 This is useful e.g. to discriminate between ancillary sections that are
6545 tied to setup code to be discarded after use from ancillary sections that
6546 need to stay resident without having to define multiple @code{exception_code}
6547 macros just for that purpose.
6548
6549 The optional @var{flags} argument is a quoted string which may contain any
6550 combination of the following characters:
6551
6552 @table @code
6553 @item a
6554 section is allocatable
6555 @item d
6556 section is a GNU_MBIND section
6557 @item e
6558 section is excluded from executable and shared library.
6559 @item w
6560 section is writable
6561 @item x
6562 section is executable
6563 @item M
6564 section is mergeable
6565 @item S
6566 section contains zero terminated strings
6567 @item G
6568 section is a member of a section group
6569 @item T
6570 section is used for thread-local-storage
6571 @item ?
6572 section is a member of the previously-current section's group, if any
6573 @item @code{<number>}
6574 a numeric value indicating the bits to be set in the ELF section header's flags
6575 field. Note - if one or more of the alphabetic characters described above is
6576 also included in the flags field, their bit values will be ORed into the
6577 resulting value.
6578 @item @code{<target specific>}
6579 some targets extend this list with their own flag characters
6580 @end table
6581
6582 Note - once a section's flags have been set they cannot be changed. There are
6583 a few exceptions to this rule however. Processor and application specific
6584 flags can be added to an already defined section. The @code{.interp},
6585 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6586 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6587 section may have the executable (@code{x}) flag added.
6588
6589 The optional @var{type} argument may contain one of the following constants:
6590
6591 @table @code
6592 @item @@progbits
6593 section contains data
6594 @item @@nobits
6595 section does not contain data (i.e., section only occupies space)
6596 @item @@note
6597 section contains data which is used by things other than the program
6598 @item @@init_array
6599 section contains an array of pointers to init functions
6600 @item @@fini_array
6601 section contains an array of pointers to finish functions
6602 @item @@preinit_array
6603 section contains an array of pointers to pre-init functions
6604 @item @@@code{<number>}
6605 a numeric value to be set as the ELF section header's type field.
6606 @item @@@code{<target specific>}
6607 some targets extend this list with their own types
6608 @end table
6609
6610 Many targets only support the first three section types. The type may be
6611 enclosed in double quotes if necessary.
6612
6613 Note on targets where the @code{@@} character is the start of a comment (eg
6614 ARM) then another character is used instead. For example the ARM port uses the
6615 @code{%} character.
6616
6617 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6618 special and have fixed types. Any attempt to declare them with a different
6619 type will generate an error from the assembler.
6620
6621 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6622 be specified as well as an extra argument---@var{entsize}---like this:
6623
6624 @smallexample
6625 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6626 @end smallexample
6627
6628 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6629 constants, each @var{entsize} octets long. Sections with both @code{M} and
6630 @code{S} must contain zero terminated strings where each character is
6631 @var{entsize} bytes long. The linker may remove duplicates within sections with
6632 the same name, same entity size and same flags. @var{entsize} must be an
6633 absolute expression. For sections with both @code{M} and @code{S}, a string
6634 which is a suffix of a larger string is considered a duplicate. Thus
6635 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6636 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6637
6638 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6639 be present along with an additional field like this:
6640
6641 @smallexample
6642 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6643 @end smallexample
6644
6645 The @var{GroupName} field specifies the name of the section group to which this
6646 particular section belongs. The optional linkage field can contain:
6647
6648 @table @code
6649 @item comdat
6650 indicates that only one copy of this section should be retained
6651 @item .gnu.linkonce
6652 an alias for comdat
6653 @end table
6654
6655 Note: if both the @var{M} and @var{G} flags are present then the fields for
6656 the Merge flag should come first, like this:
6657
6658 @smallexample
6659 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6660 @end smallexample
6661
6662 If @var{flags} contains the @code{?} symbol then it may not also contain the
6663 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6664 present. Instead, @code{?} says to consider the section that's current before
6665 this directive. If that section used @code{G}, then the new section will use
6666 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6667 If not, then the @code{?} symbol has no effect.
6668
6669 If no flags are specified, the default flags depend upon the section name. If
6670 the section name is not recognized, the default will be for the section to have
6671 none of the above flags: it will not be allocated in memory, nor writable, nor
6672 executable. The section will contain data.
6673
6674 For ELF targets, the assembler supports another type of @code{.section}
6675 directive for compatibility with the Solaris assembler:
6676
6677 @smallexample
6678 .section "@var{name}"[, @var{flags}...]
6679 @end smallexample
6680
6681 Note that the section name is quoted. There may be a sequence of comma
6682 separated flags:
6683
6684 @table @code
6685 @item #alloc
6686 section is allocatable
6687 @item #write
6688 section is writable
6689 @item #execinstr
6690 section is executable
6691 @item #exclude
6692 section is excluded from executable and shared library.
6693 @item #tls
6694 section is used for thread local storage
6695 @end table
6696
6697 This directive replaces the current section and subsection. See the
6698 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6699 some examples of how this directive and the other section stack directives
6700 work.
6701 @end ifset
6702 @end ifset
6703
6704 @node Set
6705 @section @code{.set @var{symbol}, @var{expression}}
6706
6707 @cindex @code{set} directive
6708 @cindex symbol value, setting
6709 Set the value of @var{symbol} to @var{expression}. This
6710 changes @var{symbol}'s value and type to conform to
6711 @var{expression}. If @var{symbol} was flagged as external, it remains
6712 flagged (@pxref{Symbol Attributes}).
6713
6714 You may @code{.set} a symbol many times in the same assembly provided that the
6715 values given to the symbol are constants. Values that are based on expressions
6716 involving other symbols are allowed, but some targets may restrict this to only
6717 being done once per assembly. This is because those targets do not set the
6718 addresses of symbols at assembly time, but rather delay the assignment until a
6719 final link is performed. This allows the linker a chance to change the code in
6720 the files, changing the location of, and the relative distance between, various
6721 different symbols.
6722
6723 If you @code{.set} a global symbol, the value stored in the object
6724 file is the last value stored into it.
6725
6726 @ifset Z80
6727 On Z80 @code{set} is a real instruction, use
6728 @samp{@var{symbol} defl @var{expression}} instead.
6729 @end ifset
6730
6731 @node Short
6732 @section @code{.short @var{expressions}}
6733
6734 @cindex @code{short} directive
6735 @ifset GENERIC
6736 @code{.short} is normally the same as @samp{.word}.
6737 @xref{Word,,@code{.word}}.
6738
6739 In some configurations, however, @code{.short} and @code{.word} generate
6740 numbers of different lengths. @xref{Machine Dependencies}.
6741 @end ifset
6742 @ifclear GENERIC
6743 @ifset W16
6744 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6745 @end ifset
6746 @ifset W32
6747 This expects zero or more @var{expressions}, and emits
6748 a 16 bit number for each.
6749 @end ifset
6750 @end ifclear
6751
6752 @node Single
6753 @section @code{.single @var{flonums}}
6754
6755 @cindex @code{single} directive
6756 @cindex floating point numbers (single)
6757 This directive assembles zero or more flonums, separated by commas. It
6758 has the same effect as @code{.float}.
6759 @ifset GENERIC
6760 The exact kind of floating point numbers emitted depends on how
6761 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6762 @end ifset
6763 @ifclear GENERIC
6764 @ifset IEEEFLOAT
6765 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6766 numbers in @sc{ieee} format.
6767 @end ifset
6768 @end ifclear
6769
6770 @ifset COFF-ELF
6771 @node Size
6772 @section @code{.size}
6773
6774 This directive is used to set the size associated with a symbol.
6775
6776 @ifset COFF
6777 @ifset ELF
6778 @c only print the extra heading if both COFF and ELF are set
6779 @subheading COFF Version
6780 @end ifset
6781
6782 @cindex @code{size} directive (COFF version)
6783 For COFF targets, the @code{.size} directive is only permitted inside
6784 @code{.def}/@code{.endef} pairs. It is used like this:
6785
6786 @smallexample
6787 .size @var{expression}
6788 @end smallexample
6789
6790 @end ifset
6791
6792 @ifset ELF
6793 @ifset COFF
6794 @c only print the extra heading if both COFF and ELF are set
6795 @subheading ELF Version
6796 @end ifset
6797
6798 @cindex @code{size} directive (ELF version)
6799 For ELF targets, the @code{.size} directive is used like this:
6800
6801 @smallexample
6802 .size @var{name} , @var{expression}
6803 @end smallexample
6804
6805 This directive sets the size associated with a symbol @var{name}.
6806 The size in bytes is computed from @var{expression} which can make use of label
6807 arithmetic. This directive is typically used to set the size of function
6808 symbols.
6809 @end ifset
6810 @end ifset
6811
6812 @ifclear no-space-dir
6813 @node Skip
6814 @section @code{.skip @var{size} [,@var{fill}]}
6815
6816 @cindex @code{skip} directive
6817 @cindex filling memory
6818 This directive emits @var{size} bytes, each of value @var{fill}. Both
6819 @var{size} and @var{fill} are absolute expressions. If the comma and
6820 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
6821 @samp{.space}.
6822 @end ifclear
6823
6824 @node Sleb128
6825 @section @code{.sleb128 @var{expressions}}
6826
6827 @cindex @code{sleb128} directive
6828 @var{sleb128} stands for ``signed little endian base 128.'' This is a
6829 compact, variable length representation of numbers used by the DWARF
6830 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
6831
6832 @ifclear no-space-dir
6833 @node Space
6834 @section @code{.space @var{size} [,@var{fill}]}
6835
6836 @cindex @code{space} directive
6837 @cindex filling memory
6838 This directive emits @var{size} bytes, each of value @var{fill}. Both
6839 @var{size} and @var{fill} are absolute expressions. If the comma
6840 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
6841 as @samp{.skip}.
6842
6843 @ifset HPPA
6844 @quotation
6845 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
6846 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
6847 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
6848 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
6849 for a summary.
6850 @end quotation
6851 @end ifset
6852 @end ifclear
6853
6854 @ifset have-stabs
6855 @node Stab
6856 @section @code{.stabd, .stabn, .stabs}
6857
6858 @cindex symbolic debuggers, information for
6859 @cindex @code{stab@var{x}} directives
6860 There are three directives that begin @samp{.stab}.
6861 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
6862 The symbols are not entered in the @command{@value{AS}} hash table: they
6863 cannot be referenced elsewhere in the source file.
6864 Up to five fields are required:
6865
6866 @table @var
6867 @item string
6868 This is the symbol's name. It may contain any character except
6869 @samp{\000}, so is more general than ordinary symbol names. Some
6870 debuggers used to code arbitrarily complex structures into symbol names
6871 using this field.
6872
6873 @item type
6874 An absolute expression. The symbol's type is set to the low 8 bits of
6875 this expression. Any bit pattern is permitted, but @code{@value{LD}}
6876 and debuggers choke on silly bit patterns.
6877
6878 @item other
6879 An absolute expression. The symbol's ``other'' attribute is set to the
6880 low 8 bits of this expression.
6881
6882 @item desc
6883 An absolute expression. The symbol's descriptor is set to the low 16
6884 bits of this expression.
6885
6886 @item value
6887 An absolute expression which becomes the symbol's value.
6888 @end table
6889
6890 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
6891 or @code{.stabs} statement, the symbol has probably already been created;
6892 you get a half-formed symbol in your object file. This is
6893 compatible with earlier assemblers!
6894
6895 @table @code
6896 @cindex @code{stabd} directive
6897 @item .stabd @var{type} , @var{other} , @var{desc}
6898
6899 The ``name'' of the symbol generated is not even an empty string.
6900 It is a null pointer, for compatibility. Older assemblers used a
6901 null pointer so they didn't waste space in object files with empty
6902 strings.
6903
6904 The symbol's value is set to the location counter,
6905 relocatably. When your program is linked, the value of this symbol
6906 is the address of the location counter when the @code{.stabd} was
6907 assembled.
6908
6909 @cindex @code{stabn} directive
6910 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
6911 The name of the symbol is set to the empty string @code{""}.
6912
6913 @cindex @code{stabs} directive
6914 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
6915 All five fields are specified.
6916 @end table
6917 @end ifset
6918 @c end have-stabs
6919
6920 @node String
6921 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
6922 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
6923
6924 @cindex string, copying to object file
6925 @cindex string8, copying to object file
6926 @cindex string16, copying to object file
6927 @cindex string32, copying to object file
6928 @cindex string64, copying to object file
6929 @cindex @code{string} directive
6930 @cindex @code{string8} directive
6931 @cindex @code{string16} directive
6932 @cindex @code{string32} directive
6933 @cindex @code{string64} directive
6934
6935 Copy the characters in @var{str} to the object file. You may specify more than
6936 one string to copy, separated by commas. Unless otherwise specified for a
6937 particular machine, the assembler marks the end of each string with a 0 byte.
6938 You can use any of the escape sequences described in @ref{Strings,,Strings}.
6939
6940 The variants @code{string16}, @code{string32} and @code{string64} differ from
6941 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
6942 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
6943 are stored in target endianness byte order.
6944
6945 Example:
6946 @smallexample
6947 .string32 "BYE"
6948 expands to:
6949 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
6950 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
6951 @end smallexample
6952
6953
6954 @node Struct
6955 @section @code{.struct @var{expression}}
6956
6957 @cindex @code{struct} directive
6958 Switch to the absolute section, and set the section offset to @var{expression},
6959 which must be an absolute expression. You might use this as follows:
6960 @smallexample
6961 .struct 0
6962 field1:
6963 .struct field1 + 4
6964 field2:
6965 .struct field2 + 4
6966 field3:
6967 @end smallexample
6968 This would define the symbol @code{field1} to have the value 0, the symbol
6969 @code{field2} to have the value 4, and the symbol @code{field3} to have the
6970 value 8. Assembly would be left in the absolute section, and you would need to
6971 use a @code{.section} directive of some sort to change to some other section
6972 before further assembly.
6973
6974 @ifset ELF
6975 @node SubSection
6976 @section @code{.subsection @var{name}}
6977
6978 @cindex @code{subsection} directive
6979 @cindex Section Stack
6980 This is one of the ELF section stack manipulation directives. The others are
6981 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
6982 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6983 (@pxref{Previous}).
6984
6985 This directive replaces the current subsection with @code{name}. The current
6986 section is not changed. The replaced subsection is put onto the section stack
6987 in place of the then current top of stack subsection.
6988 @end ifset
6989
6990 @ifset ELF
6991 @node Symver
6992 @section @code{.symver}
6993 @cindex @code{symver} directive
6994 @cindex symbol versioning
6995 @cindex versions of symbols
6996 Use the @code{.symver} directive to bind symbols to specific version nodes
6997 within a source file. This is only supported on ELF platforms, and is
6998 typically used when assembling files to be linked into a shared library.
6999 There are cases where it may make sense to use this in objects to be bound
7000 into an application itself so as to override a versioned symbol from a
7001 shared library.
7002
7003 For ELF targets, the @code{.symver} directive can be used like this:
7004 @smallexample
7005 .symver @var{name}, @var{name2@@nodename}
7006 @end smallexample
7007 If the symbol @var{name} is defined within the file
7008 being assembled, the @code{.symver} directive effectively creates a symbol
7009 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7010 just don't try and create a regular alias is that the @var{@@} character isn't
7011 permitted in symbol names. The @var{name2} part of the name is the actual name
7012 of the symbol by which it will be externally referenced. The name @var{name}
7013 itself is merely a name of convenience that is used so that it is possible to
7014 have definitions for multiple versions of a function within a single source
7015 file, and so that the compiler can unambiguously know which version of a
7016 function is being mentioned. The @var{nodename} portion of the alias should be
7017 the name of a node specified in the version script supplied to the linker when
7018 building a shared library. If you are attempting to override a versioned
7019 symbol from a shared library, then @var{nodename} should correspond to the
7020 nodename of the symbol you are trying to override.
7021
7022 If the symbol @var{name} is not defined within the file being assembled, all
7023 references to @var{name} will be changed to @var{name2@@nodename}. If no
7024 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7025 symbol table.
7026
7027 Another usage of the @code{.symver} directive is:
7028 @smallexample
7029 .symver @var{name}, @var{name2@@@@nodename}
7030 @end smallexample
7031 In this case, the symbol @var{name} must exist and be defined within
7032 the file being assembled. It is similar to @var{name2@@nodename}. The
7033 difference is @var{name2@@@@nodename} will also be used to resolve
7034 references to @var{name2} by the linker.
7035
7036 The third usage of the @code{.symver} directive is:
7037 @smallexample
7038 .symver @var{name}, @var{name2@@@@@@nodename}
7039 @end smallexample
7040 When @var{name} is not defined within the
7041 file being assembled, it is treated as @var{name2@@nodename}. When
7042 @var{name} is defined within the file being assembled, the symbol
7043 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7044 @end ifset
7045
7046 @ifset COFF
7047 @node Tag
7048 @section @code{.tag @var{structname}}
7049
7050 @cindex COFF structure debugging
7051 @cindex structure debugging, COFF
7052 @cindex @code{tag} directive
7053 This directive is generated by compilers to include auxiliary debugging
7054 information in the symbol table. It is only permitted inside
7055 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7056 definitions in the symbol table with instances of those structures.
7057 @end ifset
7058
7059 @node Text
7060 @section @code{.text @var{subsection}}
7061
7062 @cindex @code{text} directive
7063 Tells @command{@value{AS}} to assemble the following statements onto the end of
7064 the text subsection numbered @var{subsection}, which is an absolute
7065 expression. If @var{subsection} is omitted, subsection number zero
7066 is used.
7067
7068 @node Title
7069 @section @code{.title "@var{heading}"}
7070
7071 @cindex @code{title} directive
7072 @cindex listing control: title line
7073 Use @var{heading} as the title (second line, immediately after the
7074 source file name and pagenumber) when generating assembly listings.
7075
7076 This directive affects subsequent pages, as well as the current page if
7077 it appears within ten lines of the top of a page.
7078
7079 @ifset COFF-ELF
7080 @node Type
7081 @section @code{.type}
7082
7083 This directive is used to set the type of a symbol.
7084
7085 @ifset COFF
7086 @ifset ELF
7087 @c only print the extra heading if both COFF and ELF are set
7088 @subheading COFF Version
7089 @end ifset
7090
7091 @cindex COFF symbol type
7092 @cindex symbol type, COFF
7093 @cindex @code{type} directive (COFF version)
7094 For COFF targets, this directive is permitted only within
7095 @code{.def}/@code{.endef} pairs. It is used like this:
7096
7097 @smallexample
7098 .type @var{int}
7099 @end smallexample
7100
7101 This records the integer @var{int} as the type attribute of a symbol table
7102 entry.
7103
7104 @end ifset
7105
7106 @ifset ELF
7107 @ifset COFF
7108 @c only print the extra heading if both COFF and ELF are set
7109 @subheading ELF Version
7110 @end ifset
7111
7112 @cindex ELF symbol type
7113 @cindex symbol type, ELF
7114 @cindex @code{type} directive (ELF version)
7115 For ELF targets, the @code{.type} directive is used like this:
7116
7117 @smallexample
7118 .type @var{name} , @var{type description}
7119 @end smallexample
7120
7121 This sets the type of symbol @var{name} to be either a
7122 function symbol or an object symbol. There are five different syntaxes
7123 supported for the @var{type description} field, in order to provide
7124 compatibility with various other assemblers.
7125
7126 Because some of the characters used in these syntaxes (such as @samp{@@} and
7127 @samp{#}) are comment characters for some architectures, some of the syntaxes
7128 below do not work on all architectures. The first variant will be accepted by
7129 the GNU assembler on all architectures so that variant should be used for
7130 maximum portability, if you do not need to assemble your code with other
7131 assemblers.
7132
7133 The syntaxes supported are:
7134
7135 @smallexample
7136 .type <name> STT_<TYPE_IN_UPPER_CASE>
7137 .type <name>,#<type>
7138 .type <name>,@@<type>
7139 .type <name>,%<type>
7140 .type <name>,"<type>"
7141 @end smallexample
7142
7143 The types supported are:
7144
7145 @table @gcctabopt
7146 @item STT_FUNC
7147 @itemx function
7148 Mark the symbol as being a function name.
7149
7150 @item STT_GNU_IFUNC
7151 @itemx gnu_indirect_function
7152 Mark the symbol as an indirect function when evaluated during reloc
7153 processing. (This is only supported on assemblers targeting GNU systems).
7154
7155 @item STT_OBJECT
7156 @itemx object
7157 Mark the symbol as being a data object.
7158
7159 @item STT_TLS
7160 @itemx tls_object
7161 Mark the symbol as being a thread-local data object.
7162
7163 @item STT_COMMON
7164 @itemx common
7165 Mark the symbol as being a common data object.
7166
7167 @item STT_NOTYPE
7168 @itemx notype
7169 Does not mark the symbol in any way. It is supported just for completeness.
7170
7171 @item gnu_unique_object
7172 Marks the symbol as being a globally unique data object. The dynamic linker
7173 will make sure that in the entire process there is just one symbol with this
7174 name and type in use. (This is only supported on assemblers targeting GNU
7175 systems).
7176
7177 @end table
7178
7179 Note: Some targets support extra types in addition to those listed above.
7180
7181 @end ifset
7182 @end ifset
7183
7184 @node Uleb128
7185 @section @code{.uleb128 @var{expressions}}
7186
7187 @cindex @code{uleb128} directive
7188 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7189 compact, variable length representation of numbers used by the DWARF
7190 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7191
7192 @ifset COFF
7193 @node Val
7194 @section @code{.val @var{addr}}
7195
7196 @cindex @code{val} directive
7197 @cindex COFF value attribute
7198 @cindex value attribute, COFF
7199 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7200 records the address @var{addr} as the value attribute of a symbol table
7201 entry.
7202 @end ifset
7203
7204 @ifset ELF
7205 @node Version
7206 @section @code{.version "@var{string}"}
7207
7208 @cindex @code{version} directive
7209 This directive creates a @code{.note} section and places into it an ELF
7210 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7211 @end ifset
7212
7213 @ifset ELF
7214 @node VTableEntry
7215 @section @code{.vtable_entry @var{table}, @var{offset}}
7216
7217 @cindex @code{vtable_entry} directive
7218 This directive finds or creates a symbol @code{table} and creates a
7219 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7220
7221 @node VTableInherit
7222 @section @code{.vtable_inherit @var{child}, @var{parent}}
7223
7224 @cindex @code{vtable_inherit} directive
7225 This directive finds the symbol @code{child} and finds or creates the symbol
7226 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7227 parent whose addend is the value of the child symbol. As a special case the
7228 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7229 @end ifset
7230
7231 @node Warning
7232 @section @code{.warning "@var{string}"}
7233 @cindex warning directive
7234 Similar to the directive @code{.error}
7235 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7236
7237 @node Weak
7238 @section @code{.weak @var{names}}
7239
7240 @cindex @code{weak} directive
7241 This directive sets the weak attribute on the comma separated list of symbol
7242 @code{names}. If the symbols do not already exist, they will be created.
7243
7244 On COFF targets other than PE, weak symbols are a GNU extension. This
7245 directive sets the weak attribute on the comma separated list of symbol
7246 @code{names}. If the symbols do not already exist, they will be created.
7247
7248 On the PE target, weak symbols are supported natively as weak aliases.
7249 When a weak symbol is created that is not an alias, GAS creates an
7250 alternate symbol to hold the default value.
7251
7252 @node Weakref
7253 @section @code{.weakref @var{alias}, @var{target}}
7254
7255 @cindex @code{weakref} directive
7256 This directive creates an alias to the target symbol that enables the symbol to
7257 be referenced with weak-symbol semantics, but without actually making it weak.
7258 If direct references or definitions of the symbol are present, then the symbol
7259 will not be weak, but if all references to it are through weak references, the
7260 symbol will be marked as weak in the symbol table.
7261
7262 The effect is equivalent to moving all references to the alias to a separate
7263 assembly source file, renaming the alias to the symbol in it, declaring the
7264 symbol as weak there, and running a reloadable link to merge the object files
7265 resulting from the assembly of the new source file and the old source file that
7266 had the references to the alias removed.
7267
7268 The alias itself never makes to the symbol table, and is entirely handled
7269 within the assembler.
7270
7271 @node Word
7272 @section @code{.word @var{expressions}}
7273
7274 @cindex @code{word} directive
7275 This directive expects zero or more @var{expressions}, of any section,
7276 separated by commas.
7277 @ifclear GENERIC
7278 @ifset W32
7279 For each expression, @command{@value{AS}} emits a 32-bit number.
7280 @end ifset
7281 @ifset W16
7282 For each expression, @command{@value{AS}} emits a 16-bit number.
7283 @end ifset
7284 @end ifclear
7285 @ifset GENERIC
7286
7287 The size of the number emitted, and its byte order,
7288 depend on what target computer the assembly is for.
7289 @end ifset
7290
7291 @c on sparc the "special treatment to support compilers" doesn't
7292 @c happen---32-bit addressability, period; no long/short jumps.
7293 @ifset DIFF-TBL-KLUGE
7294 @cindex difference tables altered
7295 @cindex altered difference tables
7296 @quotation
7297 @emph{Warning: Special Treatment to support Compilers}
7298 @end quotation
7299
7300 @ifset GENERIC
7301 Machines with a 32-bit address space, but that do less than 32-bit
7302 addressing, require the following special treatment. If the machine of
7303 interest to you does 32-bit addressing (or doesn't require it;
7304 @pxref{Machine Dependencies}), you can ignore this issue.
7305
7306 @end ifset
7307 In order to assemble compiler output into something that works,
7308 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7309 Directives of the form @samp{.word sym1-sym2} are often emitted by
7310 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7311 directive of the form @samp{.word sym1-sym2}, and the difference between
7312 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7313 creates a @dfn{secondary jump table}, immediately before the next label.
7314 This secondary jump table is preceded by a short-jump to the
7315 first byte after the secondary table. This short-jump prevents the flow
7316 of control from accidentally falling into the new table. Inside the
7317 table is a long-jump to @code{sym2}. The original @samp{.word}
7318 contains @code{sym1} minus the address of the long-jump to
7319 @code{sym2}.
7320
7321 If there were several occurrences of @samp{.word sym1-sym2} before the
7322 secondary jump table, all of them are adjusted. If there was a
7323 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7324 long-jump to @code{sym4} is included in the secondary jump table,
7325 and the @code{.word} directives are adjusted to contain @code{sym3}
7326 minus the address of the long-jump to @code{sym4}; and so on, for as many
7327 entries in the original jump table as necessary.
7328
7329 @ifset INTERNALS
7330 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7331 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7332 assembly language programmers.
7333 @end ifset
7334 @end ifset
7335 @c end DIFF-TBL-KLUGE
7336
7337 @ifclear no-space-dir
7338 @node Zero
7339 @section @code{.zero @var{size}}
7340
7341 @cindex @code{zero} directive
7342 @cindex filling memory with zero bytes
7343 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7344 expression. This directive is actually an alias for the @samp{.skip} directive
7345 so in can take an optional second argument of the value to store in the bytes
7346 instead of zero. Using @samp{.zero} in this way would be confusing however.
7347 @end ifclear
7348
7349 @ifset ELF
7350 @node 2byte
7351 @section @code{.2byte @var{expression} [, @var{expression}]*}
7352 @cindex @code{2byte} directive
7353 @cindex two-byte integer
7354 @cindex integer, 2-byte
7355
7356 This directive expects zero or more expressions, separated by commas. If there
7357 are no expressions then the directive does nothing. Otherwise each expression
7358 is evaluated in turn and placed in the next two bytes of the current output
7359 section, using the endian model of the target. If an expression will not fit
7360 in two bytes, a warning message is displayed and the least significant two
7361 bytes of the expression's value are used. If an expression cannot be evaluated
7362 at assembly time then relocations will be generated in order to compute the
7363 value at link time.
7364
7365 This directive does not apply any alignment before or after inserting the
7366 values. As a result of this, if relocations are generated, they may be
7367 different from those used for inserting values with a guaranteed alignment.
7368
7369 This directive is only available for ELF targets,
7370
7371 @node 4byte
7372 @section @code{.4byte @var{expression} [, @var{expression}]*}
7373 @cindex @code{4byte} directive
7374 @cindex four-byte integer
7375 @cindex integer, 4-byte
7376
7377 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7378 long values into the output.
7379
7380 @node 8byte
7381 @section @code{.8byte @var{expression} [, @var{expression}]*}
7382 @cindex @code{8byte} directive
7383 @cindex eight-byte integer
7384 @cindex integer, 8-byte
7385
7386 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7387 byte long bignum values into the output.
7388
7389 @end ifset
7390
7391 @node Deprecated
7392 @section Deprecated Directives
7393
7394 @cindex deprecated directives
7395 @cindex obsolescent directives
7396 One day these directives won't work.
7397 They are included for compatibility with older assemblers.
7398 @table @t
7399 @item .abort
7400 @item .line
7401 @end table
7402
7403 @ifset ELF
7404 @node Object Attributes
7405 @chapter Object Attributes
7406 @cindex object attributes
7407
7408 @command{@value{AS}} assembles source files written for a specific architecture
7409 into object files for that architecture. But not all object files are alike.
7410 Many architectures support incompatible variations. For instance, floating
7411 point arguments might be passed in floating point registers if the object file
7412 requires hardware floating point support---or floating point arguments might be
7413 passed in integer registers if the object file supports processors with no
7414 hardware floating point unit. Or, if two objects are built for different
7415 generations of the same architecture, the combination may require the
7416 newer generation at run-time.
7417
7418 This information is useful during and after linking. At link time,
7419 @command{@value{LD}} can warn about incompatible object files. After link
7420 time, tools like @command{gdb} can use it to process the linked file
7421 correctly.
7422
7423 Compatibility information is recorded as a series of object attributes. Each
7424 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7425 string, and indicates who sets the meaning of the tag. The tag is an integer,
7426 and indicates what property the attribute describes. The value may be a string
7427 or an integer, and indicates how the property affects this object. Missing
7428 attributes are the same as attributes with a zero value or empty string value.
7429
7430 Object attributes were developed as part of the ABI for the ARM Architecture.
7431 The file format is documented in @cite{ELF for the ARM Architecture}.
7432
7433 @menu
7434 * GNU Object Attributes:: @sc{gnu} Object Attributes
7435 * Defining New Object Attributes:: Defining New Object Attributes
7436 @end menu
7437
7438 @node GNU Object Attributes
7439 @section @sc{gnu} Object Attributes
7440
7441 The @code{.gnu_attribute} directive records an object attribute
7442 with vendor @samp{gnu}.
7443
7444 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7445 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7446 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7447 2} is set for architecture-independent attributes and clear for
7448 architecture-dependent ones.
7449
7450 @subsection Common @sc{gnu} attributes
7451
7452 These attributes are valid on all architectures.
7453
7454 @table @r
7455 @item Tag_compatibility (32)
7456 The compatibility attribute takes an integer flag value and a vendor name. If
7457 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7458 then the file is only compatible with the named toolchain. If it is greater
7459 than 1, the file can only be processed by other toolchains under some private
7460 arrangement indicated by the flag value and the vendor name.
7461 @end table
7462
7463 @subsection MIPS Attributes
7464
7465 @table @r
7466 @item Tag_GNU_MIPS_ABI_FP (4)
7467 The floating-point ABI used by this object file. The value will be:
7468
7469 @itemize @bullet
7470 @item
7471 0 for files not affected by the floating-point ABI.
7472 @item
7473 1 for files using the hardware floating-point ABI with a standard
7474 double-precision FPU.
7475 @item
7476 2 for files using the hardware floating-point ABI with a single-precision FPU.
7477 @item
7478 3 for files using the software floating-point ABI.
7479 @item
7480 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7481 floating-point registers, 32-bit general-purpose registers and increased the
7482 number of callee-saved floating-point registers.
7483 @item
7484 5 for files using the hardware floating-point ABI with a double-precision FPU
7485 with either 32-bit or 64-bit floating-point registers and 32-bit
7486 general-purpose registers.
7487 @item
7488 6 for files using the hardware floating-point ABI with 64-bit floating-point
7489 registers and 32-bit general-purpose registers.
7490 @item
7491 7 for files using the hardware floating-point ABI with 64-bit floating-point
7492 registers, 32-bit general-purpose registers and a rule that forbids the
7493 direct use of odd-numbered single-precision floating-point registers.
7494 @end itemize
7495 @end table
7496
7497 @subsection PowerPC Attributes
7498
7499 @table @r
7500 @item Tag_GNU_Power_ABI_FP (4)
7501 The floating-point ABI used by this object file. The value will be:
7502
7503 @itemize @bullet
7504 @item
7505 0 for files not affected by the floating-point ABI.
7506 @item
7507 1 for files using double-precision hardware floating-point ABI.
7508 @item
7509 2 for files using the software floating-point ABI.
7510 @item
7511 3 for files using single-precision hardware floating-point ABI.
7512 @end itemize
7513
7514 @item Tag_GNU_Power_ABI_Vector (8)
7515 The vector ABI used by this object file. The value will be:
7516
7517 @itemize @bullet
7518 @item
7519 0 for files not affected by the vector ABI.
7520 @item
7521 1 for files using general purpose registers to pass vectors.
7522 @item
7523 2 for files using AltiVec registers to pass vectors.
7524 @item
7525 3 for files using SPE registers to pass vectors.
7526 @end itemize
7527 @end table
7528
7529 @subsection IBM z Systems Attributes
7530
7531 @table @r
7532 @item Tag_GNU_S390_ABI_Vector (8)
7533 The vector ABI used by this object file. The value will be:
7534
7535 @itemize @bullet
7536 @item
7537 0 for files not affected by the vector ABI.
7538 @item
7539 1 for files using software vector ABI.
7540 @item
7541 2 for files using hardware vector ABI.
7542 @end itemize
7543 @end table
7544
7545 @node Defining New Object Attributes
7546 @section Defining New Object Attributes
7547
7548 If you want to define a new @sc{gnu} object attribute, here are the places you
7549 will need to modify. New attributes should be discussed on the @samp{binutils}
7550 mailing list.
7551
7552 @itemize @bullet
7553 @item
7554 This manual, which is the official register of attributes.
7555 @item
7556 The header for your architecture @file{include/elf}, to define the tag.
7557 @item
7558 The @file{bfd} support file for your architecture, to merge the attribute
7559 and issue any appropriate link warnings.
7560 @item
7561 Test cases in @file{ld/testsuite} for merging and link warnings.
7562 @item
7563 @file{binutils/readelf.c} to display your attribute.
7564 @item
7565 GCC, if you want the compiler to mark the attribute automatically.
7566 @end itemize
7567
7568 @end ifset
7569
7570 @ifset GENERIC
7571 @node Machine Dependencies
7572 @chapter Machine Dependent Features
7573
7574 @cindex machine dependencies
7575 The machine instruction sets are (almost by definition) different on
7576 each machine where @command{@value{AS}} runs. Floating point representations
7577 vary as well, and @command{@value{AS}} often supports a few additional
7578 directives or command-line options for compatibility with other
7579 assemblers on a particular platform. Finally, some versions of
7580 @command{@value{AS}} support special pseudo-instructions for branch
7581 optimization.
7582
7583 This chapter discusses most of these differences, though it does not
7584 include details on any machine's instruction set. For details on that
7585 subject, see the hardware manufacturer's manual.
7586
7587 @menu
7588 @ifset AARCH64
7589 * AArch64-Dependent:: AArch64 Dependent Features
7590 @end ifset
7591 @ifset ALPHA
7592 * Alpha-Dependent:: Alpha Dependent Features
7593 @end ifset
7594 @ifset ARC
7595 * ARC-Dependent:: ARC Dependent Features
7596 @end ifset
7597 @ifset ARM
7598 * ARM-Dependent:: ARM Dependent Features
7599 @end ifset
7600 @ifset AVR
7601 * AVR-Dependent:: AVR Dependent Features
7602 @end ifset
7603 @ifset Blackfin
7604 * Blackfin-Dependent:: Blackfin Dependent Features
7605 @end ifset
7606 @ifset CR16
7607 * CR16-Dependent:: CR16 Dependent Features
7608 @end ifset
7609 @ifset CRIS
7610 * CRIS-Dependent:: CRIS Dependent Features
7611 @end ifset
7612 @ifset CSKY
7613 * C-SKY-Dependent:: C-SKY Dependent Features
7614 @end ifset
7615 @ifset D10V
7616 * D10V-Dependent:: D10V Dependent Features
7617 @end ifset
7618 @ifset D30V
7619 * D30V-Dependent:: D30V Dependent Features
7620 @end ifset
7621 @ifset EPIPHANY
7622 * Epiphany-Dependent:: EPIPHANY Dependent Features
7623 @end ifset
7624 @ifset H8/300
7625 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7626 @end ifset
7627 @ifset HPPA
7628 * HPPA-Dependent:: HPPA Dependent Features
7629 @end ifset
7630 @ifset I80386
7631 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7632 @end ifset
7633 @ifset IA64
7634 * IA-64-Dependent:: Intel IA-64 Dependent Features
7635 @end ifset
7636 @ifset IP2K
7637 * IP2K-Dependent:: IP2K Dependent Features
7638 @end ifset
7639 @ifset LM32
7640 * LM32-Dependent:: LM32 Dependent Features
7641 @end ifset
7642 @ifset M32C
7643 * M32C-Dependent:: M32C Dependent Features
7644 @end ifset
7645 @ifset M32R
7646 * M32R-Dependent:: M32R Dependent Features
7647 @end ifset
7648 @ifset M680X0
7649 * M68K-Dependent:: M680x0 Dependent Features
7650 @end ifset
7651 @ifset M68HC11
7652 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7653 @end ifset
7654 @ifset S12Z
7655 * S12Z-Dependent:: S12Z Dependent Features
7656 @end ifset
7657 @ifset METAG
7658 * Meta-Dependent :: Meta Dependent Features
7659 @end ifset
7660 @ifset MICROBLAZE
7661 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7662 @end ifset
7663 @ifset MIPS
7664 * MIPS-Dependent:: MIPS Dependent Features
7665 @end ifset
7666 @ifset MMIX
7667 * MMIX-Dependent:: MMIX Dependent Features
7668 @end ifset
7669 @ifset MSP430
7670 * MSP430-Dependent:: MSP430 Dependent Features
7671 @end ifset
7672 @ifset NDS32
7673 * NDS32-Dependent:: Andes NDS32 Dependent Features
7674 @end ifset
7675 @ifset NIOSII
7676 * NiosII-Dependent:: Altera Nios II Dependent Features
7677 @end ifset
7678 @ifset NS32K
7679 * NS32K-Dependent:: NS32K Dependent Features
7680 @end ifset
7681 @ifset PDP11
7682 * PDP-11-Dependent:: PDP-11 Dependent Features
7683 @end ifset
7684 @ifset PJ
7685 * PJ-Dependent:: picoJava Dependent Features
7686 @end ifset
7687 @ifset PPC
7688 * PPC-Dependent:: PowerPC Dependent Features
7689 @end ifset
7690 @ifset PRU
7691 * PRU-Dependent:: PRU Dependent Features
7692 @end ifset
7693 @ifset RISCV
7694 * RISC-V-Dependent:: RISC-V Dependent Features
7695 @end ifset
7696 @ifset RL78
7697 * RL78-Dependent:: RL78 Dependent Features
7698 @end ifset
7699 @ifset RX
7700 * RX-Dependent:: RX Dependent Features
7701 @end ifset
7702 @ifset S390
7703 * S/390-Dependent:: IBM S/390 Dependent Features
7704 @end ifset
7705 @ifset SCORE
7706 * SCORE-Dependent:: SCORE Dependent Features
7707 @end ifset
7708 @ifset SH
7709 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7710 @end ifset
7711 @ifset SPARC
7712 * Sparc-Dependent:: SPARC Dependent Features
7713 @end ifset
7714 @ifset TIC54X
7715 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7716 @end ifset
7717 @ifset TIC6X
7718 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7719 @end ifset
7720 @ifset TILEGX
7721 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7722 @end ifset
7723 @ifset TILEPRO
7724 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7725 @end ifset
7726 @ifset V850
7727 * V850-Dependent:: V850 Dependent Features
7728 @end ifset
7729 @ifset VAX
7730 * Vax-Dependent:: VAX Dependent Features
7731 @end ifset
7732 @ifset VISIUM
7733 * Visium-Dependent:: Visium Dependent Features
7734 @end ifset
7735 @ifset WASM32
7736 * WebAssembly-Dependent:: WebAssembly Dependent Features
7737 @end ifset
7738 @ifset XGATE
7739 * XGATE-Dependent:: XGATE Dependent Features
7740 @end ifset
7741 @ifset XSTORMY16
7742 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7743 @end ifset
7744 @ifset XTENSA
7745 * Xtensa-Dependent:: Xtensa Dependent Features
7746 @end ifset
7747 @ifset Z80
7748 * Z80-Dependent:: Z80 Dependent Features
7749 @end ifset
7750 @ifset Z8000
7751 * Z8000-Dependent:: Z8000 Dependent Features
7752 @end ifset
7753 @end menu
7754
7755 @lowersections
7756 @end ifset
7757
7758 @c The following major nodes are *sections* in the GENERIC version, *chapters*
7759 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
7760 @c peculiarity: to preserve cross-references, there must be a node called
7761 @c "Machine Dependencies". Hence the conditional nodenames in each
7762 @c major node below. Node defaulting in makeinfo requires adjacency of
7763 @c node and sectioning commands; hence the repetition of @chapter BLAH
7764 @c in both conditional blocks.
7765
7766 @ifset AARCH64
7767 @include c-aarch64.texi
7768 @end ifset
7769
7770 @ifset ALPHA
7771 @include c-alpha.texi
7772 @end ifset
7773
7774 @ifset ARC
7775 @include c-arc.texi
7776 @end ifset
7777
7778 @ifset ARM
7779 @include c-arm.texi
7780 @end ifset
7781
7782 @ifset AVR
7783 @include c-avr.texi
7784 @end ifset
7785
7786 @ifset Blackfin
7787 @include c-bfin.texi
7788 @end ifset
7789
7790 @ifset CR16
7791 @include c-cr16.texi
7792 @end ifset
7793
7794 @ifset CRIS
7795 @include c-cris.texi
7796 @end ifset
7797
7798 @ifset CSKY
7799 @include c-csky.texi
7800 @end ifset
7801
7802 @ifset Renesas-all
7803 @ifclear GENERIC
7804 @node Machine Dependencies
7805 @chapter Machine Dependent Features
7806
7807 The machine instruction sets are different on each Renesas chip family,
7808 and there are also some syntax differences among the families. This
7809 chapter describes the specific @command{@value{AS}} features for each
7810 family.
7811
7812 @menu
7813 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7814 * SH-Dependent:: Renesas SH Dependent Features
7815 @end menu
7816 @lowersections
7817 @end ifclear
7818 @end ifset
7819
7820 @ifset D10V
7821 @include c-d10v.texi
7822 @end ifset
7823
7824 @ifset D30V
7825 @include c-d30v.texi
7826 @end ifset
7827
7828 @ifset EPIPHANY
7829 @include c-epiphany.texi
7830 @end ifset
7831
7832 @ifset H8/300
7833 @include c-h8300.texi
7834 @end ifset
7835
7836 @ifset HPPA
7837 @include c-hppa.texi
7838 @end ifset
7839
7840 @ifset I80386
7841 @include c-i386.texi
7842 @end ifset
7843
7844 @ifset IA64
7845 @include c-ia64.texi
7846 @end ifset
7847
7848 @ifset IP2K
7849 @include c-ip2k.texi
7850 @end ifset
7851
7852 @ifset LM32
7853 @include c-lm32.texi
7854 @end ifset
7855
7856 @ifset M32C
7857 @include c-m32c.texi
7858 @end ifset
7859
7860 @ifset M32R
7861 @include c-m32r.texi
7862 @end ifset
7863
7864 @ifset M680X0
7865 @include c-m68k.texi
7866 @end ifset
7867
7868 @ifset M68HC11
7869 @include c-m68hc11.texi
7870 @end ifset
7871
7872 @ifset S12Z
7873 @include c-s12z.texi
7874 @end ifset
7875
7876 @ifset METAG
7877 @include c-metag.texi
7878 @end ifset
7879
7880 @ifset MICROBLAZE
7881 @include c-microblaze.texi
7882 @end ifset
7883
7884 @ifset MIPS
7885 @include c-mips.texi
7886 @end ifset
7887
7888 @ifset MMIX
7889 @include c-mmix.texi
7890 @end ifset
7891
7892 @ifset MSP430
7893 @include c-msp430.texi
7894 @end ifset
7895
7896 @ifset NDS32
7897 @include c-nds32.texi
7898 @end ifset
7899
7900 @ifset NIOSII
7901 @include c-nios2.texi
7902 @end ifset
7903
7904 @ifset NS32K
7905 @include c-ns32k.texi
7906 @end ifset
7907
7908 @ifset PDP11
7909 @include c-pdp11.texi
7910 @end ifset
7911
7912 @ifset PJ
7913 @include c-pj.texi
7914 @end ifset
7915
7916 @ifset PPC
7917 @include c-ppc.texi
7918 @end ifset
7919
7920 @ifset PRU
7921 @include c-pru.texi
7922 @end ifset
7923
7924 @ifset RISCV
7925 @include c-riscv.texi
7926 @end ifset
7927
7928 @ifset RL78
7929 @include c-rl78.texi
7930 @end ifset
7931
7932 @ifset RX
7933 @include c-rx.texi
7934 @end ifset
7935
7936 @ifset S390
7937 @include c-s390.texi
7938 @end ifset
7939
7940 @ifset SCORE
7941 @include c-score.texi
7942 @end ifset
7943
7944 @ifset SH
7945 @include c-sh.texi
7946 @end ifset
7947
7948 @ifset SPARC
7949 @include c-sparc.texi
7950 @end ifset
7951
7952 @ifset TIC54X
7953 @include c-tic54x.texi
7954 @end ifset
7955
7956 @ifset TIC6X
7957 @include c-tic6x.texi
7958 @end ifset
7959
7960 @ifset TILEGX
7961 @include c-tilegx.texi
7962 @end ifset
7963
7964 @ifset TILEPRO
7965 @include c-tilepro.texi
7966 @end ifset
7967
7968 @ifset V850
7969 @include c-v850.texi
7970 @end ifset
7971
7972 @ifset VAX
7973 @include c-vax.texi
7974 @end ifset
7975
7976 @ifset VISIUM
7977 @include c-visium.texi
7978 @end ifset
7979
7980 @ifset WASM32
7981 @include c-wasm32.texi
7982 @end ifset
7983
7984 @ifset XGATE
7985 @include c-xgate.texi
7986 @end ifset
7987
7988 @ifset XSTORMY16
7989 @include c-xstormy16.texi
7990 @end ifset
7991
7992 @ifset XTENSA
7993 @include c-xtensa.texi
7994 @end ifset
7995
7996 @ifset Z80
7997 @include c-z80.texi
7998 @end ifset
7999
8000 @ifset Z8000
8001 @include c-z8k.texi
8002 @end ifset
8003
8004 @ifset GENERIC
8005 @c reverse effect of @down at top of generic Machine-Dep chapter
8006 @raisesections
8007 @end ifset
8008
8009 @node Reporting Bugs
8010 @chapter Reporting Bugs
8011 @cindex bugs in assembler
8012 @cindex reporting bugs in assembler
8013
8014 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8015
8016 Reporting a bug may help you by bringing a solution to your problem, or it may
8017 not. But in any case the principal function of a bug report is to help the
8018 entire community by making the next version of @command{@value{AS}} work better.
8019 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8020
8021 In order for a bug report to serve its purpose, you must include the
8022 information that enables us to fix the bug.
8023
8024 @menu
8025 * Bug Criteria:: Have you found a bug?
8026 * Bug Reporting:: How to report bugs
8027 @end menu
8028
8029 @node Bug Criteria
8030 @section Have You Found a Bug?
8031 @cindex bug criteria
8032
8033 If you are not sure whether you have found a bug, here are some guidelines:
8034
8035 @itemize @bullet
8036 @cindex fatal signal
8037 @cindex assembler crash
8038 @cindex crash of assembler
8039 @item
8040 If the assembler gets a fatal signal, for any input whatever, that is a
8041 @command{@value{AS}} bug. Reliable assemblers never crash.
8042
8043 @cindex error on valid input
8044 @item
8045 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8046
8047 @cindex invalid input
8048 @item
8049 If @command{@value{AS}} does not produce an error message for invalid input, that
8050 is a bug. However, you should note that your idea of ``invalid input'' might
8051 be our idea of ``an extension'' or ``support for traditional practice''.
8052
8053 @item
8054 If you are an experienced user of assemblers, your suggestions for improvement
8055 of @command{@value{AS}} are welcome in any case.
8056 @end itemize
8057
8058 @node Bug Reporting
8059 @section How to Report Bugs
8060 @cindex bug reports
8061 @cindex assembler bugs, reporting
8062
8063 A number of companies and individuals offer support for @sc{gnu} products. If
8064 you obtained @command{@value{AS}} from a support organization, we recommend you
8065 contact that organization first.
8066
8067 You can find contact information for many support companies and
8068 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8069 distribution.
8070
8071 @ifset BUGURL
8072 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8073 to @value{BUGURL}.
8074 @end ifset
8075
8076 The fundamental principle of reporting bugs usefully is this:
8077 @strong{report all the facts}. If you are not sure whether to state a
8078 fact or leave it out, state it!
8079
8080 Often people omit facts because they think they know what causes the problem
8081 and assume that some details do not matter. Thus, you might assume that the
8082 name of a symbol you use in an example does not matter. Well, probably it does
8083 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8084 happens to fetch from the location where that name is stored in memory;
8085 perhaps, if the name were different, the contents of that location would fool
8086 the assembler into doing the right thing despite the bug. Play it safe and
8087 give a specific, complete example. That is the easiest thing for you to do,
8088 and the most helpful.
8089
8090 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8091 it is new to us. Therefore, always write your bug reports on the assumption
8092 that the bug has not been reported previously.
8093
8094 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8095 bell?'' This cannot help us fix a bug, so it is basically useless. We
8096 respond by asking for enough details to enable us to investigate.
8097 You might as well expedite matters by sending them to begin with.
8098
8099 To enable us to fix the bug, you should include all these things:
8100
8101 @itemize @bullet
8102 @item
8103 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8104 it with the @samp{--version} argument.
8105
8106 Without this, we will not know whether there is any point in looking for
8107 the bug in the current version of @command{@value{AS}}.
8108
8109 @item
8110 Any patches you may have applied to the @command{@value{AS}} source.
8111
8112 @item
8113 The type of machine you are using, and the operating system name and
8114 version number.
8115
8116 @item
8117 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8118 ``@code{gcc-2.7}''.
8119
8120 @item
8121 The command arguments you gave the assembler to assemble your example and
8122 observe the bug. To guarantee you will not omit something important, list them
8123 all. A copy of the Makefile (or the output from make) is sufficient.
8124
8125 If we were to try to guess the arguments, we would probably guess wrong
8126 and then we might not encounter the bug.
8127
8128 @item
8129 A complete input file that will reproduce the bug. If the bug is observed when
8130 the assembler is invoked via a compiler, send the assembler source, not the
8131 high level language source. Most compilers will produce the assembler source
8132 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8133 the options @samp{-v --save-temps}; this will save the assembler source in a
8134 file with an extension of @file{.s}, and also show you exactly how
8135 @command{@value{AS}} is being run.
8136
8137 @item
8138 A description of what behavior you observe that you believe is
8139 incorrect. For example, ``It gets a fatal signal.''
8140
8141 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8142 will certainly notice it. But if the bug is incorrect output, we might not
8143 notice unless it is glaringly wrong. You might as well not give us a chance to
8144 make a mistake.
8145
8146 Even if the problem you experience is a fatal signal, you should still say so
8147 explicitly. Suppose something strange is going on, such as, your copy of
8148 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8149 library on your system. (This has happened!) Your copy might crash and ours
8150 would not. If you told us to expect a crash, then when ours fails to crash, we
8151 would know that the bug was not happening for us. If you had not told us to
8152 expect a crash, then we would not be able to draw any conclusion from our
8153 observations.
8154
8155 @item
8156 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8157 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8158 option. Always send diffs from the old file to the new file. If you even
8159 discuss something in the @command{@value{AS}} source, refer to it by context, not
8160 by line number.
8161
8162 The line numbers in our development sources will not match those in your
8163 sources. Your line numbers would convey no useful information to us.
8164 @end itemize
8165
8166 Here are some things that are not necessary:
8167
8168 @itemize @bullet
8169 @item
8170 A description of the envelope of the bug.
8171
8172 Often people who encounter a bug spend a lot of time investigating
8173 which changes to the input file will make the bug go away and which
8174 changes will not affect it.
8175
8176 This is often time consuming and not very useful, because the way we
8177 will find the bug is by running a single example under the debugger
8178 with breakpoints, not by pure deduction from a series of examples.
8179 We recommend that you save your time for something else.
8180
8181 Of course, if you can find a simpler example to report @emph{instead}
8182 of the original one, that is a convenience for us. Errors in the
8183 output will be easier to spot, running under the debugger will take
8184 less time, and so on.
8185
8186 However, simplification is not vital; if you do not want to do this,
8187 report the bug anyway and send us the entire test case you used.
8188
8189 @item
8190 A patch for the bug.
8191
8192 A patch for the bug does help us if it is a good one. But do not omit
8193 the necessary information, such as the test case, on the assumption that
8194 a patch is all we need. We might see problems with your patch and decide
8195 to fix the problem another way, or we might not understand it at all.
8196
8197 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8198 construct an example that will make the program follow a certain path through
8199 the code. If you do not send us the example, we will not be able to construct
8200 one, so we will not be able to verify that the bug is fixed.
8201
8202 And if we cannot understand what bug you are trying to fix, or why your
8203 patch should be an improvement, we will not install it. A test case will
8204 help us to understand.
8205
8206 @item
8207 A guess about what the bug is or what it depends on.
8208
8209 Such guesses are usually wrong. Even we cannot guess right about such
8210 things without first using the debugger to find the facts.
8211 @end itemize
8212
8213 @node Acknowledgements
8214 @chapter Acknowledgements
8215
8216 If you have contributed to GAS and your name isn't listed here,
8217 it is not meant as a slight. We just don't know about it. Send mail to the
8218 maintainer, and we'll correct the situation. Currently
8219 @c (October 2012),
8220 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8221
8222 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8223 more details?}
8224
8225 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8226 information and the 68k series machines, most of the preprocessing pass, and
8227 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8228
8229 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8230 many bug fixes, including merging support for several processors, breaking GAS
8231 up to handle multiple object file format back ends (including heavy rewrite,
8232 testing, an integration of the coff and b.out back ends), adding configuration
8233 including heavy testing and verification of cross assemblers and file splits
8234 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8235 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8236 port (including considerable amounts of reverse engineering), a SPARC opcode
8237 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8238 assertions and made them work, much other reorganization, cleanup, and lint.
8239
8240 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8241 in format-specific I/O modules.
8242
8243 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8244 has done much work with it since.
8245
8246 The Intel 80386 machine description was written by Eliot Dresselhaus.
8247
8248 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8249
8250 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8251 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8252
8253 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8254 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8255 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8256 support a.out format.
8257
8258 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8259 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8260 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8261 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8262 targets.
8263
8264 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8265 simplified the configuration of which versions accept which directives. He
8266 updated the 68k machine description so that Motorola's opcodes always produced
8267 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8268 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8269 cross-compilation support, and one bug in relaxation that took a week and
8270 required the proverbial one-bit fix.
8271
8272 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8273 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8274 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8275 PowerPC assembler, and made a few other minor patches.
8276
8277 Steve Chamberlain made GAS able to generate listings.
8278
8279 Hewlett-Packard contributed support for the HP9000/300.
8280
8281 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8282 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8283 formats). This work was supported by both the Center for Software Science at
8284 the University of Utah and Cygnus Support.
8285
8286 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8287 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8288 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8289 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8290 and some initial 64-bit support).
8291
8292 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8293
8294 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8295 support for openVMS/Alpha.
8296
8297 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8298 flavors.
8299
8300 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8301 Inc.@: added support for Xtensa processors.
8302
8303 Several engineers at Cygnus Support have also provided many small bug fixes and
8304 configuration enhancements.
8305
8306 Jon Beniston added support for the Lattice Mico32 architecture.
8307
8308 Many others have contributed large or small bugfixes and enhancements. If
8309 you have contributed significant work and are not mentioned on this list, and
8310 want to be, let us know. Some of the history has been lost; we are not
8311 intentionally leaving anyone out.
8312
8313 @node GNU Free Documentation License
8314 @appendix GNU Free Documentation License
8315 @include fdl.texi
8316
8317 @node AS Index
8318 @unnumbered AS Index
8319
8320 @printindex cp
8321
8322 @bye
8323 @c Local Variables:
8324 @c fill-column: 79
8325 @c End:
This page took 0.21157 seconds and 4 git commands to generate.