PR gas/14315
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2 @c 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options:: Options
21 * ARM Syntax:: Syntax
22 * ARM Floating Point:: Floating Point
23 * ARM Directives:: ARM Machine Directives
24 * ARM Opcodes:: Opcodes
25 * ARM Mapping Symbols:: Mapping Symbols
26 * ARM Unwinding Tutorial:: Unwinding
27 @end menu
28
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
33
34 @table @code
35
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor. The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor. The following processor names are
41 recognized:
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa606te} (Faraday FA606TE processor),
106 @code{fa616te} (Faraday FA616TE processor),
107 @code{fa626te} (Faraday FA626TE processor),
108 @code{fmp626} (Faraday FMP626 processor),
109 @code{fa726te} (Faraday FA726TE processor),
110 @code{arm1136j-s},
111 @code{arm1136jf-s},
112 @code{arm1156t2-s},
113 @code{arm1156t2f-s},
114 @code{arm1176jz-s},
115 @code{arm1176jzf-s},
116 @code{mpcore},
117 @code{mpcorenovfp},
118 @code{cortex-a5},
119 @code{cortex-a7},
120 @code{cortex-a8},
121 @code{cortex-a9},
122 @code{cortex-a15},
123 @code{cortex-r4},
124 @code{cortex-r4f},
125 @code{cortex-m4},
126 @code{cortex-m3},
127 @code{cortex-m1},
128 @code{cortex-m0},
129 @code{cortex-m0plus},
130 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
131 @code{i80200} (Intel XScale processor)
132 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
133 and
134 @code{xscale}.
135 The special name @code{all} may be used to allow the
136 assembler to accept instructions valid for any ARM processor.
137
138 In addition to the basic instruction set, the assembler can be told to
139 accept various extension mnemonics that extend the processor using the
140 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
141 is equivalent to specifying @code{-mcpu=ep9312}.
142
143 Multiple extensions may be specified, separated by a @code{+}. The
144 extensions should be specified in ascending alphabetical order.
145
146 Some extensions may be restricted to particular architectures; this is
147 documented in the list of extensions below.
148
149 Extension mnemonics may also be removed from those the assembler accepts.
150 This is done be prepending @code{no} to the option that adds the extension.
151 Extensions that are removed should be listed after all extensions which have
152 been added, again in ascending alphabetical order. For example,
153 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
154
155
156 The following extensions are currently supported:
157 @code{idiv}, (Integer Divide Extensions for v7-A and v7-R architectures),
158 @code{iwmmxt},
159 @code{iwmmxt2},
160 @code{maverick},
161 @code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures),
162 @code{os} (Operating System for v6M architecture),
163 @code{sec} (Security Extensions for v6K and v7-A architectures),
164 @code{virt} (Virtualization Extensions for v7-A architecture, implies
165 @code{idiv}),
166 and
167 @code{xscale}.
168
169 @cindex @code{-march=} command line option, ARM
170 @item -march=@var{architecture}[+@var{extension}@dots{}]
171 This option specifies the target architecture. The assembler will issue
172 an error message if an attempt is made to assemble an instruction which
173 will not execute on the target architecture. The following architecture
174 names are recognized:
175 @code{armv1},
176 @code{armv2},
177 @code{armv2a},
178 @code{armv2s},
179 @code{armv3},
180 @code{armv3m},
181 @code{armv4},
182 @code{armv4xm},
183 @code{armv4t},
184 @code{armv4txm},
185 @code{armv5},
186 @code{armv5t},
187 @code{armv5txm},
188 @code{armv5te},
189 @code{armv5texp},
190 @code{armv6},
191 @code{armv6j},
192 @code{armv6k},
193 @code{armv6z},
194 @code{armv6zk},
195 @code{armv6-m},
196 @code{armv6s-m},
197 @code{armv7},
198 @code{armv7-a},
199 @code{armv7-r},
200 @code{armv7-m},
201 @code{armv7e-m},
202 @code{iwmmxt}
203 and
204 @code{xscale}.
205 If both @code{-mcpu} and
206 @code{-march} are specified, the assembler will use
207 the setting for @code{-mcpu}.
208
209 The architecture option can be extended with the same instruction set
210 extension options as the @code{-mcpu} option.
211
212 @cindex @code{-mfpu=} command line option, ARM
213 @item -mfpu=@var{floating-point-format}
214
215 This option specifies the floating point format to assemble for. The
216 assembler will issue an error message if an attempt is made to assemble
217 an instruction which will not execute on the target floating point unit.
218 The following format options are recognized:
219 @code{softfpa},
220 @code{fpe},
221 @code{fpe2},
222 @code{fpe3},
223 @code{fpa},
224 @code{fpa10},
225 @code{fpa11},
226 @code{arm7500fe},
227 @code{softvfp},
228 @code{softvfp+vfp},
229 @code{vfp},
230 @code{vfp10},
231 @code{vfp10-r0},
232 @code{vfp9},
233 @code{vfpxd},
234 @code{vfpv2},
235 @code{vfpv3},
236 @code{vfpv3-fp16},
237 @code{vfpv3-d16},
238 @code{vfpv3-d16-fp16},
239 @code{vfpv3xd},
240 @code{vfpv3xd-d16},
241 @code{vfpv4},
242 @code{vfpv4-d16},
243 @code{fpv4-sp-d16},
244 @code{arm1020t},
245 @code{arm1020e},
246 @code{arm1136jf-s},
247 @code{maverick},
248 @code{neon},
249 and
250 @code{neon-vfpv4}.
251
252 In addition to determining which instructions are assembled, this option
253 also affects the way in which the @code{.double} assembler directive behaves
254 when assembling little-endian code.
255
256 The default is dependent on the processor selected. For Architecture 5 or
257 later, the default is to assembler for VFP instructions; for earlier
258 architectures the default is to assemble for FPA instructions.
259
260 @cindex @code{-mthumb} command line option, ARM
261 @item -mthumb
262 This option specifies that the assembler should start assembling Thumb
263 instructions; that is, it should behave as though the file starts with a
264 @code{.code 16} directive.
265
266 @cindex @code{-mthumb-interwork} command line option, ARM
267 @item -mthumb-interwork
268 This option specifies that the output generated by the assembler should
269 be marked as supporting interworking.
270
271 @cindex @code{-mimplicit-it} command line option, ARM
272 @item -mimplicit-it=never
273 @itemx -mimplicit-it=always
274 @itemx -mimplicit-it=arm
275 @itemx -mimplicit-it=thumb
276 The @code{-mimplicit-it} option controls the behavior of the assembler when
277 conditional instructions are not enclosed in IT blocks.
278 There are four possible behaviors.
279 If @code{never} is specified, such constructs cause a warning in ARM
280 code and an error in Thumb-2 code.
281 If @code{always} is specified, such constructs are accepted in both
282 ARM and Thumb-2 code, where the IT instruction is added implicitly.
283 If @code{arm} is specified, such constructs are accepted in ARM code
284 and cause an error in Thumb-2 code.
285 If @code{thumb} is specified, such constructs cause a warning in ARM
286 code and are accepted in Thumb-2 code. If you omit this option, the
287 behavior is equivalent to @code{-mimplicit-it=arm}.
288
289 @cindex @code{-mapcs-26} command line option, ARM
290 @cindex @code{-mapcs-32} command line option, ARM
291 @item -mapcs-26
292 @itemx -mapcs-32
293 These options specify that the output generated by the assembler should
294 be marked as supporting the indicated version of the Arm Procedure.
295 Calling Standard.
296
297 @cindex @code{-matpcs} command line option, ARM
298 @item -matpcs
299 This option specifies that the output generated by the assembler should
300 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
301 enabled this option will cause the assembler to create an empty
302 debugging section in the object file called .arm.atpcs. Debuggers can
303 use this to determine the ABI being used by.
304
305 @cindex @code{-mapcs-float} command line option, ARM
306 @item -mapcs-float
307 This indicates the floating point variant of the APCS should be
308 used. In this variant floating point arguments are passed in FP
309 registers rather than integer registers.
310
311 @cindex @code{-mapcs-reentrant} command line option, ARM
312 @item -mapcs-reentrant
313 This indicates that the reentrant variant of the APCS should be used.
314 This variant supports position independent code.
315
316 @cindex @code{-mfloat-abi=} command line option, ARM
317 @item -mfloat-abi=@var{abi}
318 This option specifies that the output generated by the assembler should be
319 marked as using specified floating point ABI.
320 The following values are recognized:
321 @code{soft},
322 @code{softfp}
323 and
324 @code{hard}.
325
326 @cindex @code{-eabi=} command line option, ARM
327 @item -meabi=@var{ver}
328 This option specifies which EABI version the produced object files should
329 conform to.
330 The following values are recognized:
331 @code{gnu},
332 @code{4}
333 and
334 @code{5}.
335
336 @cindex @code{-EB} command line option, ARM
337 @item -EB
338 This option specifies that the output generated by the assembler should
339 be marked as being encoded for a big-endian processor.
340
341 @cindex @code{-EL} command line option, ARM
342 @item -EL
343 This option specifies that the output generated by the assembler should
344 be marked as being encoded for a little-endian processor.
345
346 @cindex @code{-k} command line option, ARM
347 @cindex PIC code generation for ARM
348 @item -k
349 This option specifies that the output of the assembler should be marked
350 as position-independent code (PIC).
351
352 @cindex @code{--fix-v4bx} command line option, ARM
353 @item --fix-v4bx
354 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
355 the linker option of the same name.
356
357 @cindex @code{-mwarn-deprecated} command line option, ARM
358 @item -mwarn-deprecated
359 @itemx -mno-warn-deprecated
360 Enable or disable warnings about using deprecated options or
361 features. The default is to warn.
362
363 @end table
364
365
366 @node ARM Syntax
367 @section Syntax
368 @menu
369 * ARM-Instruction-Set:: Instruction Set
370 * ARM-Chars:: Special Characters
371 * ARM-Regs:: Register Names
372 * ARM-Relocations:: Relocations
373 * ARM-Neon-Alignment:: NEON Alignment Specifiers
374 @end menu
375
376 @node ARM-Instruction-Set
377 @subsection Instruction Set Syntax
378 Two slightly different syntaxes are support for ARM and THUMB
379 instructions. The default, @code{divided}, uses the old style where
380 ARM and THUMB instructions had their own, separate syntaxes. The new,
381 @code{unified} syntax, which can be selected via the @code{.syntax}
382 directive, and has the following main features:
383
384 @table @bullet
385 @item
386 Immediate operands do not require a @code{#} prefix.
387
388 @item
389 The @code{IT} instruction may appear, and if it does it is validated
390 against subsequent conditional affixes. In ARM mode it does not
391 generate machine code, in THUMB mode it does.
392
393 @item
394 For ARM instructions the conditional affixes always appear at the end
395 of the instruction. For THUMB instructions conditional affixes can be
396 used, but only inside the scope of an @code{IT} instruction.
397
398 @item
399 All of the instructions new to the V6T2 architecture (and later) are
400 available. (Only a few such instructions can be written in the
401 @code{divided} syntax).
402
403 @item
404 The @code{.N} and @code{.W} suffixes are recognized and honored.
405
406 @item
407 All instructions set the flags if and only if they have an @code{s}
408 affix.
409 @end table
410
411 @node ARM-Chars
412 @subsection Special Characters
413
414 @cindex line comment character, ARM
415 @cindex ARM line comment character
416 The presence of a @samp{@@} anywhere on a line indicates the start of
417 a comment that extends to the end of that line.
418
419 If a @samp{#} appears as the first character of a line then the whole
420 line is treated as a comment, but in this case the line could also be
421 a logical line number directive (@pxref{Comments}) or a preprocessor
422 control command (@pxref{Preprocessing}).
423
424 @cindex line separator, ARM
425 @cindex statement separator, ARM
426 @cindex ARM line separator
427 The @samp{;} character can be used instead of a newline to separate
428 statements.
429
430 @cindex immediate character, ARM
431 @cindex ARM immediate character
432 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
433
434 @cindex identifiers, ARM
435 @cindex ARM identifiers
436 *TODO* Explain about /data modifier on symbols.
437
438 @node ARM-Regs
439 @subsection Register Names
440
441 @cindex ARM register names
442 @cindex register names, ARM
443 *TODO* Explain about ARM register naming, and the predefined names.
444
445 @node ARM-Neon-Alignment
446 @subsection NEON Alignment Specifiers
447
448 @cindex alignment for NEON instructions
449 Some NEON load/store instructions allow an optional address
450 alignment qualifier.
451 The ARM documentation specifies that this is indicated by
452 @samp{@@ @var{align}}. However GAS already interprets
453 the @samp{@@} character as a "line comment" start,
454 so @samp{: @var{align}} is used instead. For example:
455
456 @smallexample
457 vld1.8 @{q0@}, [r0, :128]
458 @end smallexample
459
460 @node ARM Floating Point
461 @section Floating Point
462
463 @cindex floating point, ARM (@sc{ieee})
464 @cindex ARM floating point (@sc{ieee})
465 The ARM family uses @sc{ieee} floating-point numbers.
466
467 @node ARM-Relocations
468 @subsection ARM relocation generation
469
470 @cindex data relocations, ARM
471 @cindex ARM data relocations
472 Specific data relocations can be generated by putting the relocation name
473 in parentheses after the symbol name. For example:
474
475 @smallexample
476 .word foo(TARGET1)
477 @end smallexample
478
479 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
480 @var{foo}.
481 The following relocations are supported:
482 @code{GOT},
483 @code{GOTOFF},
484 @code{TARGET1},
485 @code{TARGET2},
486 @code{SBREL},
487 @code{TLSGD},
488 @code{TLSLDM},
489 @code{TLSLDO},
490 @code{TLSDESC},
491 @code{TLSCALL},
492 @code{GOTTPOFF},
493 @code{GOT_PREL}
494 and
495 @code{TPOFF}.
496
497 For compatibility with older toolchains the assembler also accepts
498 @code{(PLT)} after branch targets. On legacy targets this will
499 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
500 targets it will encode either the @samp{R_ARM_CALL} or
501 @samp{R_ARM_JUMP24} relocation, as appropriate.
502
503 @cindex MOVW and MOVT relocations, ARM
504 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
505 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
506 respectively. For example to load the 32-bit address of foo into r0:
507
508 @smallexample
509 MOVW r0, #:lower16:foo
510 MOVT r0, #:upper16:foo
511 @end smallexample
512
513 @node ARM Directives
514 @section ARM Machine Directives
515
516 @cindex machine directives, ARM
517 @cindex ARM machine directives
518 @table @code
519
520 @c AAAAAAAAAAAAAAAAAAAAAAAAA
521
522 @cindex @code{.2byte} directive, ARM
523 @cindex @code{.4byte} directive, ARM
524 @cindex @code{.8byte} directive, ARM
525 @item .2byte @var{expression} [, @var{expression}]*
526 @itemx .4byte @var{expression} [, @var{expression}]*
527 @itemx .8byte @var{expression} [, @var{expression}]*
528 These directives write 2, 4 or 8 byte values to the output section.
529
530 @cindex @code{.align} directive, ARM
531 @item .align @var{expression} [, @var{expression}]
532 This is the generic @var{.align} directive. For the ARM however if the
533 first argument is zero (ie no alignment is needed) the assembler will
534 behave as if the argument had been 2 (ie pad to the next four byte
535 boundary). This is for compatibility with ARM's own assembler.
536
537 @cindex @code{.arch} directive, ARM
538 @item .arch @var{name}
539 Select the target architecture. Valid values for @var{name} are the same as
540 for the @option{-march} commandline option.
541
542 Specifying @code{.arch} clears any previously selected architecture
543 extensions.
544
545 @cindex @code{.arch_extension} directive, ARM
546 @item .arch_extension @var{name}
547 Add or remove an architecture extension to the target architecture. Valid
548 values for @var{name} are the same as those accepted as architectural
549 extensions by the @option{-mcpu} commandline option.
550
551 @code{.arch_extension} may be used multiple times to add or remove extensions
552 incrementally to the architecture being compiled for.
553
554 @cindex @code{.arm} directive, ARM
555 @item .arm
556 This performs the same action as @var{.code 32}.
557
558 @anchor{arm_pad}
559 @cindex @code{.pad} directive, ARM
560 @item .pad #@var{count}
561 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
562 A positive value indicates the function prologue allocated stack space by
563 decrementing the stack pointer.
564
565 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
566
567 @cindex @code{.bss} directive, ARM
568 @item .bss
569 This directive switches to the @code{.bss} section.
570
571 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
572
573 @cindex @code{.cantunwind} directive, ARM
574 @item .cantunwind
575 Prevents unwinding through the current function. No personality routine
576 or exception table data is required or permitted.
577
578 @cindex @code{.code} directive, ARM
579 @item .code @code{[16|32]}
580 This directive selects the instruction set being generated. The value 16
581 selects Thumb, with the value 32 selecting ARM.
582
583 @cindex @code{.cpu} directive, ARM
584 @item .cpu @var{name}
585 Select the target processor. Valid values for @var{name} are the same as
586 for the @option{-mcpu} commandline option.
587
588 Specifying @code{.cpu} clears any previously selected architecture
589 extensions.
590
591 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
592
593 @cindex @code{.dn} and @code{.qn} directives, ARM
594 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
595 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
596
597 The @code{dn} and @code{qn} directives are used to create typed
598 and/or indexed register aliases for use in Advanced SIMD Extension
599 (Neon) instructions. The former should be used to create aliases
600 of double-precision registers, and the latter to create aliases of
601 quad-precision registers.
602
603 If these directives are used to create typed aliases, those aliases can
604 be used in Neon instructions instead of writing types after the mnemonic
605 or after each operand. For example:
606
607 @smallexample
608 x .dn d2.f32
609 y .dn d3.f32
610 z .dn d4.f32[1]
611 vmul x,y,z
612 @end smallexample
613
614 This is equivalent to writing the following:
615
616 @smallexample
617 vmul.f32 d2,d3,d4[1]
618 @end smallexample
619
620 Aliases created using @code{dn} or @code{qn} can be destroyed using
621 @code{unreq}.
622
623 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
624
625 @cindex @code{.eabi_attribute} directive, ARM
626 @item .eabi_attribute @var{tag}, @var{value}
627 Set the EABI object attribute @var{tag} to @var{value}.
628
629 The @var{tag} is either an attribute number, or one of the following:
630 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
631 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
632 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
633 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
634 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
635 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
636 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
637 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
638 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
639 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
640 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
641 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
642 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
643 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
644 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
645 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
646 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
647 @code{Tag_conformance}, @code{Tag_T2EE_use},
648 @code{Tag_Virtualization_use}
649
650 The @var{value} is either a @code{number}, @code{"string"}, or
651 @code{number, "string"} depending on the tag.
652
653 Note - the following legacy values are also accepted by @var{tag}:
654 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
655 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
656
657 @cindex @code{.even} directive, ARM
658 @item .even
659 This directive aligns to an even-numbered address.
660
661 @cindex @code{.extend} directive, ARM
662 @cindex @code{.ldouble} directive, ARM
663 @item .extend @var{expression} [, @var{expression}]*
664 @itemx .ldouble @var{expression} [, @var{expression}]*
665 These directives write 12byte long double floating-point values to the
666 output section. These are not compatible with current ARM processors
667 or ABIs.
668
669 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
670
671 @anchor{arm_fnend}
672 @cindex @code{.fnend} directive, ARM
673 @item .fnend
674 Marks the end of a function with an unwind table entry. The unwind index
675 table entry is created when this directive is processed.
676
677 If no personality routine has been specified then standard personality
678 routine 0 or 1 will be used, depending on the number of unwind opcodes
679 required.
680
681 @anchor{arm_fnstart}
682 @cindex @code{.fnstart} directive, ARM
683 @item .fnstart
684 Marks the start of a function with an unwind table entry.
685
686 @cindex @code{.force_thumb} directive, ARM
687 @item .force_thumb
688 This directive forces the selection of Thumb instructions, even if the
689 target processor does not support those instructions
690
691 @cindex @code{.fpu} directive, ARM
692 @item .fpu @var{name}
693 Select the floating-point unit to assemble for. Valid values for @var{name}
694 are the same as for the @option{-mfpu} commandline option.
695
696 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
697 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
698
699 @cindex @code{.handlerdata} directive, ARM
700 @item .handlerdata
701 Marks the end of the current function, and the start of the exception table
702 entry for that function. Anything between this directive and the
703 @code{.fnend} directive will be added to the exception table entry.
704
705 Must be preceded by a @code{.personality} or @code{.personalityindex}
706 directive.
707
708 @c IIIIIIIIIIIIIIIIIIIIIIIIII
709
710 @cindex @code{.inst} directive, ARM
711 @item .inst @var{opcode} [ , @dots{} ]
712 @itemx .inst.n @var{opcode} [ , @dots{} ]
713 @itemx .inst.w @var{opcode} [ , @dots{} ]
714 Generates the instruction corresponding to the numerical value @var{opcode}.
715 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
716 specified explicitly, overriding the normal encoding rules.
717
718 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
719 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
720 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
721
722 @item .ldouble @var{expression} [, @var{expression}]*
723 See @code{.extend}.
724
725 @cindex @code{.ltorg} directive, ARM
726 @item .ltorg
727 This directive causes the current contents of the literal pool to be
728 dumped into the current section (which is assumed to be the .text
729 section) at the current location (aligned to a word boundary).
730 @code{GAS} maintains a separate literal pool for each section and each
731 sub-section. The @code{.ltorg} directive will only affect the literal
732 pool of the current section and sub-section. At the end of assembly
733 all remaining, un-empty literal pools will automatically be dumped.
734
735 Note - older versions of @code{GAS} would dump the current literal
736 pool any time a section change occurred. This is no longer done, since
737 it prevents accurate control of the placement of literal pools.
738
739 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
740
741 @cindex @code{.movsp} directive, ARM
742 @item .movsp @var{reg} [, #@var{offset}]
743 Tell the unwinder that @var{reg} contains an offset from the current
744 stack pointer. If @var{offset} is not specified then it is assumed to be
745 zero.
746
747 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
748 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
749
750 @cindex @code{.object_arch} directive, ARM
751 @item .object_arch @var{name}
752 Override the architecture recorded in the EABI object attribute section.
753 Valid values for @var{name} are the same as for the @code{.arch} directive.
754 Typically this is useful when code uses runtime detection of CPU features.
755
756 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
757
758 @cindex @code{.packed} directive, ARM
759 @item .packed @var{expression} [, @var{expression}]*
760 This directive writes 12-byte packed floating-point values to the
761 output section. These are not compatible with current ARM processors
762 or ABIs.
763
764 @cindex @code{.pad} directive, ARM
765 @item .pad #@var{count}
766 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
767 A positive value indicates the function prologue allocated stack space by
768 decrementing the stack pointer.
769
770 @cindex @code{.personality} directive, ARM
771 @item .personality @var{name}
772 Sets the personality routine for the current function to @var{name}.
773
774 @cindex @code{.personalityindex} directive, ARM
775 @item .personalityindex @var{index}
776 Sets the personality routine for the current function to the EABI standard
777 routine number @var{index}
778
779 @cindex @code{.pool} directive, ARM
780 @item .pool
781 This is a synonym for .ltorg.
782
783 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
784 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
785
786 @cindex @code{.req} directive, ARM
787 @item @var{name} .req @var{register name}
788 This creates an alias for @var{register name} called @var{name}. For
789 example:
790
791 @smallexample
792 foo .req r0
793 @end smallexample
794
795 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
796
797 @anchor{arm_save}
798 @cindex @code{.save} directive, ARM
799 @item .save @var{reglist}
800 Generate unwinder annotations to restore the registers in @var{reglist}.
801 The format of @var{reglist} is the same as the corresponding store-multiple
802 instruction.
803
804 @smallexample
805 @exdent @emph{core registers}
806 .save @{r4, r5, r6, lr@}
807 stmfd sp!, @{r4, r5, r6, lr@}
808 @exdent @emph{FPA registers}
809 .save f4, 2
810 sfmfd f4, 2, [sp]!
811 @exdent @emph{VFP registers}
812 .save @{d8, d9, d10@}
813 fstmdx sp!, @{d8, d9, d10@}
814 @exdent @emph{iWMMXt registers}
815 .save @{wr10, wr11@}
816 wstrd wr11, [sp, #-8]!
817 wstrd wr10, [sp, #-8]!
818 or
819 .save wr11
820 wstrd wr11, [sp, #-8]!
821 .save wr10
822 wstrd wr10, [sp, #-8]!
823 @end smallexample
824
825 @anchor{arm_setfp}
826 @cindex @code{.setfp} directive, ARM
827 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
828 Make all unwinder annotations relative to a frame pointer. Without this
829 the unwinder will use offsets from the stack pointer.
830
831 The syntax of this directive is the same as the @code{add} or @code{mov}
832 instruction used to set the frame pointer. @var{spreg} must be either
833 @code{sp} or mentioned in a previous @code{.movsp} directive.
834
835 @smallexample
836 .movsp ip
837 mov ip, sp
838 @dots{}
839 .setfp fp, ip, #4
840 add fp, ip, #4
841 @end smallexample
842
843 @cindex @code{.secrel32} directive, ARM
844 @item .secrel32 @var{expression} [, @var{expression}]*
845 This directive emits relocations that evaluate to the section-relative
846 offset of each expression's symbol. This directive is only supported
847 for PE targets.
848
849 @cindex @code{.syntax} directive, ARM
850 @item .syntax [@code{unified} | @code{divided}]
851 This directive sets the Instruction Set Syntax as described in the
852 @ref{ARM-Instruction-Set} section.
853
854 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
855
856 @cindex @code{.thumb} directive, ARM
857 @item .thumb
858 This performs the same action as @var{.code 16}.
859
860 @cindex @code{.thumb_func} directive, ARM
861 @item .thumb_func
862 This directive specifies that the following symbol is the name of a
863 Thumb encoded function. This information is necessary in order to allow
864 the assembler and linker to generate correct code for interworking
865 between Arm and Thumb instructions and should be used even if
866 interworking is not going to be performed. The presence of this
867 directive also implies @code{.thumb}
868
869 This directive is not neccessary when generating EABI objects. On these
870 targets the encoding is implicit when generating Thumb code.
871
872 @cindex @code{.thumb_set} directive, ARM
873 @item .thumb_set
874 This performs the equivalent of a @code{.set} directive in that it
875 creates a symbol which is an alias for another symbol (possibly not yet
876 defined). This directive also has the added property in that it marks
877 the aliased symbol as being a thumb function entry point, in the same
878 way that the @code{.thumb_func} directive does.
879
880 @cindex @code{.tlsdescseq} directive, ARM
881 @item .tlsdescseq @var{tls-variable}
882 This directive is used to annotate parts of an inlined TLS descriptor
883 trampoline. Normally the trampoline is provided by the linker, and
884 this directive is not needed.
885
886 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
887
888 @cindex @code{.unreq} directive, ARM
889 @item .unreq @var{alias-name}
890 This undefines a register alias which was previously defined using the
891 @code{req}, @code{dn} or @code{qn} directives. For example:
892
893 @smallexample
894 foo .req r0
895 .unreq foo
896 @end smallexample
897
898 An error occurs if the name is undefined. Note - this pseudo op can
899 be used to delete builtin in register name aliases (eg 'r0'). This
900 should only be done if it is really necessary.
901
902 @cindex @code{.unwind_raw} directive, ARM
903 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
904 Insert one of more arbitary unwind opcode bytes, which are known to adjust
905 the stack pointer by @var{offset} bytes.
906
907 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
908 @code{.save @{r0@}}
909
910 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
911
912 @cindex @code{.vsave} directive, ARM
913 @item .vsave @var{vfp-reglist}
914 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
915 using FLDMD. Also works for VFPv3 registers
916 that are to be restored using VLDM.
917 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
918 instruction.
919
920 @smallexample
921 @exdent @emph{VFP registers}
922 .vsave @{d8, d9, d10@}
923 fstmdd sp!, @{d8, d9, d10@}
924 @exdent @emph{VFPv3 registers}
925 .vsave @{d15, d16, d17@}
926 vstm sp!, @{d15, d16, d17@}
927 @end smallexample
928
929 Since FLDMX and FSTMX are now deprecated, this directive should be
930 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
931
932 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
933 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
934 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
935 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
936
937 @end table
938
939 @node ARM Opcodes
940 @section Opcodes
941
942 @cindex ARM opcodes
943 @cindex opcodes for ARM
944 @code{@value{AS}} implements all the standard ARM opcodes. It also
945 implements several pseudo opcodes, including several synthetic load
946 instructions.
947
948 @table @code
949
950 @cindex @code{NOP} pseudo op, ARM
951 @item NOP
952 @smallexample
953 nop
954 @end smallexample
955
956 This pseudo op will always evaluate to a legal ARM instruction that does
957 nothing. Currently it will evaluate to MOV r0, r0.
958
959 @cindex @code{LDR reg,=<label>} pseudo op, ARM
960 @item LDR
961 @smallexample
962 ldr <register> , = <expression>
963 @end smallexample
964
965 If expression evaluates to a numeric constant then a MOV or MVN
966 instruction will be used in place of the LDR instruction, if the
967 constant can be generated by either of these instructions. Otherwise
968 the constant will be placed into the nearest literal pool (if it not
969 already there) and a PC relative LDR instruction will be generated.
970
971 @cindex @code{ADR reg,<label>} pseudo op, ARM
972 @item ADR
973 @smallexample
974 adr <register> <label>
975 @end smallexample
976
977 This instruction will load the address of @var{label} into the indicated
978 register. The instruction will evaluate to a PC relative ADD or SUB
979 instruction depending upon where the label is located. If the label is
980 out of range, or if it is not defined in the same file (and section) as
981 the ADR instruction, then an error will be generated. This instruction
982 will not make use of the literal pool.
983
984 @cindex @code{ADRL reg,<label>} pseudo op, ARM
985 @item ADRL
986 @smallexample
987 adrl <register> <label>
988 @end smallexample
989
990 This instruction will load the address of @var{label} into the indicated
991 register. The instruction will evaluate to one or two PC relative ADD
992 or SUB instructions depending upon where the label is located. If a
993 second instruction is not needed a NOP instruction will be generated in
994 its place, so that this instruction is always 8 bytes long.
995
996 If the label is out of range, or if it is not defined in the same file
997 (and section) as the ADRL instruction, then an error will be generated.
998 This instruction will not make use of the literal pool.
999
1000 @end table
1001
1002 For information on the ARM or Thumb instruction sets, see @cite{ARM
1003 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1004 Ltd.
1005
1006 @node ARM Mapping Symbols
1007 @section Mapping Symbols
1008
1009 The ARM ELF specification requires that special symbols be inserted
1010 into object files to mark certain features:
1011
1012 @table @code
1013
1014 @cindex @code{$a}
1015 @item $a
1016 At the start of a region of code containing ARM instructions.
1017
1018 @cindex @code{$t}
1019 @item $t
1020 At the start of a region of code containing THUMB instructions.
1021
1022 @cindex @code{$d}
1023 @item $d
1024 At the start of a region of data.
1025
1026 @end table
1027
1028 The assembler will automatically insert these symbols for you - there
1029 is no need to code them yourself. Support for tagging symbols ($b,
1030 $f, $p and $m) which is also mentioned in the current ARM ELF
1031 specification is not implemented. This is because they have been
1032 dropped from the new EABI and so tools cannot rely upon their
1033 presence.
1034
1035 @node ARM Unwinding Tutorial
1036 @section Unwinding
1037
1038 The ABI for the ARM Architecture specifies a standard format for
1039 exception unwind information. This information is used when an
1040 exception is thrown to determine where control should be transferred.
1041 In particular, the unwind information is used to determine which
1042 function called the function that threw the exception, and which
1043 function called that one, and so forth. This information is also used
1044 to restore the values of callee-saved registers in the function
1045 catching the exception.
1046
1047 If you are writing functions in assembly code, and those functions
1048 call other functions that throw exceptions, you must use assembly
1049 pseudo ops to ensure that appropriate exception unwind information is
1050 generated. Otherwise, if one of the functions called by your assembly
1051 code throws an exception, the run-time library will be unable to
1052 unwind the stack through your assembly code and your program will not
1053 behave correctly.
1054
1055 To illustrate the use of these pseudo ops, we will examine the code
1056 that G++ generates for the following C++ input:
1057
1058 @verbatim
1059 void callee (int *);
1060
1061 int
1062 caller ()
1063 {
1064 int i;
1065 callee (&i);
1066 return i;
1067 }
1068 @end verbatim
1069
1070 This example does not show how to throw or catch an exception from
1071 assembly code. That is a much more complex operation and should
1072 always be done in a high-level language, such as C++, that directly
1073 supports exceptions.
1074
1075 The code generated by one particular version of G++ when compiling the
1076 example above is:
1077
1078 @verbatim
1079 _Z6callerv:
1080 .fnstart
1081 .LFB2:
1082 @ Function supports interworking.
1083 @ args = 0, pretend = 0, frame = 8
1084 @ frame_needed = 1, uses_anonymous_args = 0
1085 stmfd sp!, {fp, lr}
1086 .save {fp, lr}
1087 .LCFI0:
1088 .setfp fp, sp, #4
1089 add fp, sp, #4
1090 .LCFI1:
1091 .pad #8
1092 sub sp, sp, #8
1093 .LCFI2:
1094 sub r3, fp, #8
1095 mov r0, r3
1096 bl _Z6calleePi
1097 ldr r3, [fp, #-8]
1098 mov r0, r3
1099 sub sp, fp, #4
1100 ldmfd sp!, {fp, lr}
1101 bx lr
1102 .LFE2:
1103 .fnend
1104 @end verbatim
1105
1106 Of course, the sequence of instructions varies based on the options
1107 you pass to GCC and on the version of GCC in use. The exact
1108 instructions are not important since we are focusing on the pseudo ops
1109 that are used to generate unwind information.
1110
1111 An important assumption made by the unwinder is that the stack frame
1112 does not change during the body of the function. In particular, since
1113 we assume that the assembly code does not itself throw an exception,
1114 the only point where an exception can be thrown is from a call, such
1115 as the @code{bl} instruction above. At each call site, the same saved
1116 registers (including @code{lr}, which indicates the return address)
1117 must be located in the same locations relative to the frame pointer.
1118
1119 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1120 op appears immediately before the first instruction of the function
1121 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1122 op appears immediately after the last instruction of the function.
1123 These pseudo ops specify the range of the function.
1124
1125 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1126 @code{.pad}) matters; their exact locations are irrelevant. In the
1127 example above, the compiler emits the pseudo ops with particular
1128 instructions. That makes it easier to understand the code, but it is
1129 not required for correctness. It would work just as well to emit all
1130 of the pseudo ops other than @code{.fnend} in the same order, but
1131 immediately after @code{.fnstart}.
1132
1133 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1134 indicates registers that have been saved to the stack so that they can
1135 be restored before the function returns. The argument to the
1136 @code{.save} pseudo op is a list of registers to save. If a register
1137 is ``callee-saved'' (as specified by the ABI) and is modified by the
1138 function you are writing, then your code must save the value before it
1139 is modified and restore the original value before the function
1140 returns. If an exception is thrown, the run-time library restores the
1141 values of these registers from their locations on the stack before
1142 returning control to the exception handler. (Of course, if an
1143 exception is not thrown, the function that contains the @code{.save}
1144 pseudo op restores these registers in the function epilogue, as is
1145 done with the @code{ldmfd} instruction above.)
1146
1147 You do not have to save callee-saved registers at the very beginning
1148 of the function and you do not need to use the @code{.save} pseudo op
1149 immediately following the point at which the registers are saved.
1150 However, if you modify a callee-saved register, you must save it on
1151 the stack before modifying it and before calling any functions which
1152 might throw an exception. And, you must use the @code{.save} pseudo
1153 op to indicate that you have done so.
1154
1155 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1156 modification of the stack pointer that does not save any registers.
1157 The argument is the number of bytes (in decimal) that are subtracted
1158 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1159 subtracting from the stack pointer increases the size of the stack.)
1160
1161 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1162 indicates the register that contains the frame pointer. The first
1163 argument is the register that is set, which is typically @code{fp}.
1164 The second argument indicates the register from which the frame
1165 pointer takes its value. The third argument, if present, is the value
1166 (in decimal) added to the register specified by the second argument to
1167 compute the value of the frame pointer. You should not modify the
1168 frame pointer in the body of the function.
1169
1170 If you do not use a frame pointer, then you should not use the
1171 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1172 should avoid modifying the stack pointer outside of the function
1173 prologue. Otherwise, the run-time library will be unable to find
1174 saved registers when it is unwinding the stack.
1175
1176 The pseudo ops described above are sufficient for writing assembly
1177 code that calls functions which may throw exceptions. If you need to
1178 know more about the object-file format used to represent unwind
1179 information, you may consult the @cite{Exception Handling ABI for the
1180 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.076386 seconds and 4 git commands to generate.