d31ba0297582bf73e88dc32ad6d187b110381afd
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a53},
123 @code{cortex-a57},
124 @code{cortex-a72},
125 @code{cortex-r4},
126 @code{cortex-r4f},
127 @code{cortex-r5},
128 @code{cortex-r7},
129 @code{cortex-m7},
130 @code{cortex-m4},
131 @code{cortex-m3},
132 @code{cortex-m1},
133 @code{cortex-m0},
134 @code{cortex-m0plus},
135 @code{exynos-m1},
136 @code{marvell-pj4},
137 @code{marvell-whitney},
138 @code{xgene1},
139 @code{xgene2},
140 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
141 @code{i80200} (Intel XScale processor)
142 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
143 and
144 @code{xscale}.
145 The special name @code{all} may be used to allow the
146 assembler to accept instructions valid for any ARM processor.
147
148 In addition to the basic instruction set, the assembler can be told to
149 accept various extension mnemonics that extend the processor using the
150 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
151 is equivalent to specifying @code{-mcpu=ep9312}.
152
153 Multiple extensions may be specified, separated by a @code{+}. The
154 extensions should be specified in ascending alphabetical order.
155
156 Some extensions may be restricted to particular architectures; this is
157 documented in the list of extensions below.
158
159 Extension mnemonics may also be removed from those the assembler accepts.
160 This is done be prepending @code{no} to the option that adds the extension.
161 Extensions that are removed should be listed after all extensions which have
162 been added, again in ascending alphabetical order. For example,
163 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
164
165
166 The following extensions are currently supported:
167 @code{crc}
168 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
169 @code{fp} (Floating Point Extensions for v8-A architecture),
170 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
171 @code{iwmmxt},
172 @code{iwmmxt2},
173 @code{xscale},
174 @code{maverick},
175 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
176 architectures),
177 @code{os} (Operating System for v6M architecture),
178 @code{sec} (Security Extensions for v6K and v7-A architectures),
179 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
180 @code{virt} (Virtualization Extensions for v7-A architecture, implies
181 @code{idiv}),
182 and
183 @code{xscale}.
184
185 @cindex @code{-march=} command line option, ARM
186 @item -march=@var{architecture}[+@var{extension}@dots{}]
187 This option specifies the target architecture. The assembler will issue
188 an error message if an attempt is made to assemble an instruction which
189 will not execute on the target architecture. The following architecture
190 names are recognized:
191 @code{armv1},
192 @code{armv2},
193 @code{armv2a},
194 @code{armv2s},
195 @code{armv3},
196 @code{armv3m},
197 @code{armv4},
198 @code{armv4xm},
199 @code{armv4t},
200 @code{armv4txm},
201 @code{armv5},
202 @code{armv5t},
203 @code{armv5txm},
204 @code{armv5te},
205 @code{armv5texp},
206 @code{armv6},
207 @code{armv6j},
208 @code{armv6k},
209 @code{armv6z},
210 @code{armv6zk},
211 @code{armv6-m},
212 @code{armv6s-m},
213 @code{armv7},
214 @code{armv7-a},
215 @code{armv7ve},
216 @code{armv7-r},
217 @code{armv7-m},
218 @code{armv7e-m},
219 @code{armv8-a},
220 @code{iwmmxt}
221 @code{iwmmxt2}
222 and
223 @code{xscale}.
224 If both @code{-mcpu} and
225 @code{-march} are specified, the assembler will use
226 the setting for @code{-mcpu}.
227
228 The architecture option can be extended with the same instruction set
229 extension options as the @code{-mcpu} option.
230
231 @cindex @code{-mfpu=} command line option, ARM
232 @item -mfpu=@var{floating-point-format}
233
234 This option specifies the floating point format to assemble for. The
235 assembler will issue an error message if an attempt is made to assemble
236 an instruction which will not execute on the target floating point unit.
237 The following format options are recognized:
238 @code{softfpa},
239 @code{fpe},
240 @code{fpe2},
241 @code{fpe3},
242 @code{fpa},
243 @code{fpa10},
244 @code{fpa11},
245 @code{arm7500fe},
246 @code{softvfp},
247 @code{softvfp+vfp},
248 @code{vfp},
249 @code{vfp10},
250 @code{vfp10-r0},
251 @code{vfp9},
252 @code{vfpxd},
253 @code{vfpv2},
254 @code{vfpv3},
255 @code{vfpv3-fp16},
256 @code{vfpv3-d16},
257 @code{vfpv3-d16-fp16},
258 @code{vfpv3xd},
259 @code{vfpv3xd-d16},
260 @code{vfpv4},
261 @code{vfpv4-d16},
262 @code{fpv4-sp-d16},
263 @code{fpv5-sp-d16},
264 @code{fpv5-d16},
265 @code{fp-armv8},
266 @code{arm1020t},
267 @code{arm1020e},
268 @code{arm1136jf-s},
269 @code{maverick},
270 @code{neon},
271 @code{neon-vfpv4},
272 @code{neon-fp-armv8},
273 and
274 @code{crypto-neon-fp-armv8}.
275
276 In addition to determining which instructions are assembled, this option
277 also affects the way in which the @code{.double} assembler directive behaves
278 when assembling little-endian code.
279
280 The default is dependent on the processor selected. For Architecture 5 or
281 later, the default is to assembler for VFP instructions; for earlier
282 architectures the default is to assemble for FPA instructions.
283
284 @cindex @code{-mthumb} command line option, ARM
285 @item -mthumb
286 This option specifies that the assembler should start assembling Thumb
287 instructions; that is, it should behave as though the file starts with a
288 @code{.code 16} directive.
289
290 @cindex @code{-mthumb-interwork} command line option, ARM
291 @item -mthumb-interwork
292 This option specifies that the output generated by the assembler should
293 be marked as supporting interworking.
294
295 @cindex @code{-mimplicit-it} command line option, ARM
296 @item -mimplicit-it=never
297 @itemx -mimplicit-it=always
298 @itemx -mimplicit-it=arm
299 @itemx -mimplicit-it=thumb
300 The @code{-mimplicit-it} option controls the behavior of the assembler when
301 conditional instructions are not enclosed in IT blocks.
302 There are four possible behaviors.
303 If @code{never} is specified, such constructs cause a warning in ARM
304 code and an error in Thumb-2 code.
305 If @code{always} is specified, such constructs are accepted in both
306 ARM and Thumb-2 code, where the IT instruction is added implicitly.
307 If @code{arm} is specified, such constructs are accepted in ARM code
308 and cause an error in Thumb-2 code.
309 If @code{thumb} is specified, such constructs cause a warning in ARM
310 code and are accepted in Thumb-2 code. If you omit this option, the
311 behavior is equivalent to @code{-mimplicit-it=arm}.
312
313 @cindex @code{-mapcs-26} command line option, ARM
314 @cindex @code{-mapcs-32} command line option, ARM
315 @item -mapcs-26
316 @itemx -mapcs-32
317 These options specify that the output generated by the assembler should
318 be marked as supporting the indicated version of the Arm Procedure.
319 Calling Standard.
320
321 @cindex @code{-matpcs} command line option, ARM
322 @item -matpcs
323 This option specifies that the output generated by the assembler should
324 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
325 enabled this option will cause the assembler to create an empty
326 debugging section in the object file called .arm.atpcs. Debuggers can
327 use this to determine the ABI being used by.
328
329 @cindex @code{-mapcs-float} command line option, ARM
330 @item -mapcs-float
331 This indicates the floating point variant of the APCS should be
332 used. In this variant floating point arguments are passed in FP
333 registers rather than integer registers.
334
335 @cindex @code{-mapcs-reentrant} command line option, ARM
336 @item -mapcs-reentrant
337 This indicates that the reentrant variant of the APCS should be used.
338 This variant supports position independent code.
339
340 @cindex @code{-mfloat-abi=} command line option, ARM
341 @item -mfloat-abi=@var{abi}
342 This option specifies that the output generated by the assembler should be
343 marked as using specified floating point ABI.
344 The following values are recognized:
345 @code{soft},
346 @code{softfp}
347 and
348 @code{hard}.
349
350 @cindex @code{-eabi=} command line option, ARM
351 @item -meabi=@var{ver}
352 This option specifies which EABI version the produced object files should
353 conform to.
354 The following values are recognized:
355 @code{gnu},
356 @code{4}
357 and
358 @code{5}.
359
360 @cindex @code{-EB} command line option, ARM
361 @item -EB
362 This option specifies that the output generated by the assembler should
363 be marked as being encoded for a big-endian processor.
364
365 Note: If a program is being built for a system with big-endian data
366 and little-endian instructions then it should be assembled with the
367 @option{-EB} option, (all of it, code and data) and then linked with
368 the @option{--be8} option. This will reverse the endianness of the
369 instructions back to little-endian, but leave the data as big-endian.
370
371 @cindex @code{-EL} command line option, ARM
372 @item -EL
373 This option specifies that the output generated by the assembler should
374 be marked as being encoded for a little-endian processor.
375
376 @cindex @code{-k} command line option, ARM
377 @cindex PIC code generation for ARM
378 @item -k
379 This option specifies that the output of the assembler should be marked
380 as position-independent code (PIC).
381
382 @cindex @code{--fix-v4bx} command line option, ARM
383 @item --fix-v4bx
384 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
385 the linker option of the same name.
386
387 @cindex @code{-mwarn-deprecated} command line option, ARM
388 @item -mwarn-deprecated
389 @itemx -mno-warn-deprecated
390 Enable or disable warnings about using deprecated options or
391 features. The default is to warn.
392
393 @cindex @code{-mccs} command line option, ARM
394 @item -mccs
395 Turns on CodeComposer Studio assembly syntax compatibility mode.
396
397 @cindex @code{-mwarn-syms} command line option, ARM
398 @item -mwarn-syms
399 @itemx -mno-warn-syms
400 Enable or disable warnings about symbols that match the names of ARM
401 instructions. The default is to warn.
402
403 @end table
404
405
406 @node ARM Syntax
407 @section Syntax
408 @menu
409 * ARM-Instruction-Set:: Instruction Set
410 * ARM-Chars:: Special Characters
411 * ARM-Regs:: Register Names
412 * ARM-Relocations:: Relocations
413 * ARM-Neon-Alignment:: NEON Alignment Specifiers
414 @end menu
415
416 @node ARM-Instruction-Set
417 @subsection Instruction Set Syntax
418 Two slightly different syntaxes are support for ARM and THUMB
419 instructions. The default, @code{divided}, uses the old style where
420 ARM and THUMB instructions had their own, separate syntaxes. The new,
421 @code{unified} syntax, which can be selected via the @code{.syntax}
422 directive, and has the following main features:
423
424 @itemize @bullet
425 @item
426 Immediate operands do not require a @code{#} prefix.
427
428 @item
429 The @code{IT} instruction may appear, and if it does it is validated
430 against subsequent conditional affixes. In ARM mode it does not
431 generate machine code, in THUMB mode it does.
432
433 @item
434 For ARM instructions the conditional affixes always appear at the end
435 of the instruction. For THUMB instructions conditional affixes can be
436 used, but only inside the scope of an @code{IT} instruction.
437
438 @item
439 All of the instructions new to the V6T2 architecture (and later) are
440 available. (Only a few such instructions can be written in the
441 @code{divided} syntax).
442
443 @item
444 The @code{.N} and @code{.W} suffixes are recognized and honored.
445
446 @item
447 All instructions set the flags if and only if they have an @code{s}
448 affix.
449 @end itemize
450
451 @node ARM-Chars
452 @subsection Special Characters
453
454 @cindex line comment character, ARM
455 @cindex ARM line comment character
456 The presence of a @samp{@@} anywhere on a line indicates the start of
457 a comment that extends to the end of that line.
458
459 If a @samp{#} appears as the first character of a line then the whole
460 line is treated as a comment, but in this case the line could also be
461 a logical line number directive (@pxref{Comments}) or a preprocessor
462 control command (@pxref{Preprocessing}).
463
464 @cindex line separator, ARM
465 @cindex statement separator, ARM
466 @cindex ARM line separator
467 The @samp{;} character can be used instead of a newline to separate
468 statements.
469
470 @cindex immediate character, ARM
471 @cindex ARM immediate character
472 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
473
474 @cindex identifiers, ARM
475 @cindex ARM identifiers
476 *TODO* Explain about /data modifier on symbols.
477
478 @node ARM-Regs
479 @subsection Register Names
480
481 @cindex ARM register names
482 @cindex register names, ARM
483 *TODO* Explain about ARM register naming, and the predefined names.
484
485 @node ARM-Relocations
486 @subsection ARM relocation generation
487
488 @cindex data relocations, ARM
489 @cindex ARM data relocations
490 Specific data relocations can be generated by putting the relocation name
491 in parentheses after the symbol name. For example:
492
493 @smallexample
494 .word foo(TARGET1)
495 @end smallexample
496
497 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
498 @var{foo}.
499 The following relocations are supported:
500 @code{GOT},
501 @code{GOTOFF},
502 @code{TARGET1},
503 @code{TARGET2},
504 @code{SBREL},
505 @code{TLSGD},
506 @code{TLSLDM},
507 @code{TLSLDO},
508 @code{TLSDESC},
509 @code{TLSCALL},
510 @code{GOTTPOFF},
511 @code{GOT_PREL}
512 and
513 @code{TPOFF}.
514
515 For compatibility with older toolchains the assembler also accepts
516 @code{(PLT)} after branch targets. On legacy targets this will
517 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
518 targets it will encode either the @samp{R_ARM_CALL} or
519 @samp{R_ARM_JUMP24} relocation, as appropriate.
520
521 @cindex MOVW and MOVT relocations, ARM
522 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
523 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
524 respectively. For example to load the 32-bit address of foo into r0:
525
526 @smallexample
527 MOVW r0, #:lower16:foo
528 MOVT r0, #:upper16:foo
529 @end smallexample
530
531 @node ARM-Neon-Alignment
532 @subsection NEON Alignment Specifiers
533
534 @cindex alignment for NEON instructions
535 Some NEON load/store instructions allow an optional address
536 alignment qualifier.
537 The ARM documentation specifies that this is indicated by
538 @samp{@@ @var{align}}. However GAS already interprets
539 the @samp{@@} character as a "line comment" start,
540 so @samp{: @var{align}} is used instead. For example:
541
542 @smallexample
543 vld1.8 @{q0@}, [r0, :128]
544 @end smallexample
545
546 @node ARM Floating Point
547 @section Floating Point
548
549 @cindex floating point, ARM (@sc{ieee})
550 @cindex ARM floating point (@sc{ieee})
551 The ARM family uses @sc{ieee} floating-point numbers.
552
553 @node ARM Directives
554 @section ARM Machine Directives
555
556 @cindex machine directives, ARM
557 @cindex ARM machine directives
558 @table @code
559
560 @c AAAAAAAAAAAAAAAAAAAAAAAAA
561
562 @cindex @code{.2byte} directive, ARM
563 @cindex @code{.4byte} directive, ARM
564 @cindex @code{.8byte} directive, ARM
565 @item .2byte @var{expression} [, @var{expression}]*
566 @itemx .4byte @var{expression} [, @var{expression}]*
567 @itemx .8byte @var{expression} [, @var{expression}]*
568 These directives write 2, 4 or 8 byte values to the output section.
569
570 @cindex @code{.align} directive, ARM
571 @item .align @var{expression} [, @var{expression}]
572 This is the generic @var{.align} directive. For the ARM however if the
573 first argument is zero (ie no alignment is needed) the assembler will
574 behave as if the argument had been 2 (ie pad to the next four byte
575 boundary). This is for compatibility with ARM's own assembler.
576
577 @cindex @code{.arch} directive, ARM
578 @item .arch @var{name}
579 Select the target architecture. Valid values for @var{name} are the same as
580 for the @option{-march} commandline option.
581
582 Specifying @code{.arch} clears any previously selected architecture
583 extensions.
584
585 @cindex @code{.arch_extension} directive, ARM
586 @item .arch_extension @var{name}
587 Add or remove an architecture extension to the target architecture. Valid
588 values for @var{name} are the same as those accepted as architectural
589 extensions by the @option{-mcpu} commandline option.
590
591 @code{.arch_extension} may be used multiple times to add or remove extensions
592 incrementally to the architecture being compiled for.
593
594 @cindex @code{.arm} directive, ARM
595 @item .arm
596 This performs the same action as @var{.code 32}.
597
598 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
599
600 @cindex @code{.bss} directive, ARM
601 @item .bss
602 This directive switches to the @code{.bss} section.
603
604 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
605
606 @cindex @code{.cantunwind} directive, ARM
607 @item .cantunwind
608 Prevents unwinding through the current function. No personality routine
609 or exception table data is required or permitted.
610
611 @cindex @code{.code} directive, ARM
612 @item .code @code{[16|32]}
613 This directive selects the instruction set being generated. The value 16
614 selects Thumb, with the value 32 selecting ARM.
615
616 @cindex @code{.cpu} directive, ARM
617 @item .cpu @var{name}
618 Select the target processor. Valid values for @var{name} are the same as
619 for the @option{-mcpu} commandline option.
620
621 Specifying @code{.cpu} clears any previously selected architecture
622 extensions.
623
624 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
625
626 @cindex @code{.dn} and @code{.qn} directives, ARM
627 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
628 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
629
630 The @code{dn} and @code{qn} directives are used to create typed
631 and/or indexed register aliases for use in Advanced SIMD Extension
632 (Neon) instructions. The former should be used to create aliases
633 of double-precision registers, and the latter to create aliases of
634 quad-precision registers.
635
636 If these directives are used to create typed aliases, those aliases can
637 be used in Neon instructions instead of writing types after the mnemonic
638 or after each operand. For example:
639
640 @smallexample
641 x .dn d2.f32
642 y .dn d3.f32
643 z .dn d4.f32[1]
644 vmul x,y,z
645 @end smallexample
646
647 This is equivalent to writing the following:
648
649 @smallexample
650 vmul.f32 d2,d3,d4[1]
651 @end smallexample
652
653 Aliases created using @code{dn} or @code{qn} can be destroyed using
654 @code{unreq}.
655
656 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
657
658 @cindex @code{.eabi_attribute} directive, ARM
659 @item .eabi_attribute @var{tag}, @var{value}
660 Set the EABI object attribute @var{tag} to @var{value}.
661
662 The @var{tag} is either an attribute number, or one of the following:
663 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
664 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
665 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
666 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
667 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
668 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
669 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
670 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
671 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
672 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
673 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
674 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
675 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
676 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
677 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
678 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
679 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
680 @code{Tag_conformance}, @code{Tag_T2EE_use},
681 @code{Tag_Virtualization_use}
682
683 The @var{value} is either a @code{number}, @code{"string"}, or
684 @code{number, "string"} depending on the tag.
685
686 Note - the following legacy values are also accepted by @var{tag}:
687 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
688 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
689
690 @cindex @code{.even} directive, ARM
691 @item .even
692 This directive aligns to an even-numbered address.
693
694 @cindex @code{.extend} directive, ARM
695 @cindex @code{.ldouble} directive, ARM
696 @item .extend @var{expression} [, @var{expression}]*
697 @itemx .ldouble @var{expression} [, @var{expression}]*
698 These directives write 12byte long double floating-point values to the
699 output section. These are not compatible with current ARM processors
700 or ABIs.
701
702 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
703
704 @anchor{arm_fnend}
705 @cindex @code{.fnend} directive, ARM
706 @item .fnend
707 Marks the end of a function with an unwind table entry. The unwind index
708 table entry is created when this directive is processed.
709
710 If no personality routine has been specified then standard personality
711 routine 0 or 1 will be used, depending on the number of unwind opcodes
712 required.
713
714 @anchor{arm_fnstart}
715 @cindex @code{.fnstart} directive, ARM
716 @item .fnstart
717 Marks the start of a function with an unwind table entry.
718
719 @cindex @code{.force_thumb} directive, ARM
720 @item .force_thumb
721 This directive forces the selection of Thumb instructions, even if the
722 target processor does not support those instructions
723
724 @cindex @code{.fpu} directive, ARM
725 @item .fpu @var{name}
726 Select the floating-point unit to assemble for. Valid values for @var{name}
727 are the same as for the @option{-mfpu} commandline option.
728
729 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
730 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
731
732 @cindex @code{.handlerdata} directive, ARM
733 @item .handlerdata
734 Marks the end of the current function, and the start of the exception table
735 entry for that function. Anything between this directive and the
736 @code{.fnend} directive will be added to the exception table entry.
737
738 Must be preceded by a @code{.personality} or @code{.personalityindex}
739 directive.
740
741 @c IIIIIIIIIIIIIIIIIIIIIIIIII
742
743 @cindex @code{.inst} directive, ARM
744 @item .inst @var{opcode} [ , @dots{} ]
745 @itemx .inst.n @var{opcode} [ , @dots{} ]
746 @itemx .inst.w @var{opcode} [ , @dots{} ]
747 Generates the instruction corresponding to the numerical value @var{opcode}.
748 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
749 specified explicitly, overriding the normal encoding rules.
750
751 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
752 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
753 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
754
755 @item .ldouble @var{expression} [, @var{expression}]*
756 See @code{.extend}.
757
758 @cindex @code{.ltorg} directive, ARM
759 @item .ltorg
760 This directive causes the current contents of the literal pool to be
761 dumped into the current section (which is assumed to be the .text
762 section) at the current location (aligned to a word boundary).
763 @code{GAS} maintains a separate literal pool for each section and each
764 sub-section. The @code{.ltorg} directive will only affect the literal
765 pool of the current section and sub-section. At the end of assembly
766 all remaining, un-empty literal pools will automatically be dumped.
767
768 Note - older versions of @code{GAS} would dump the current literal
769 pool any time a section change occurred. This is no longer done, since
770 it prevents accurate control of the placement of literal pools.
771
772 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
773
774 @cindex @code{.movsp} directive, ARM
775 @item .movsp @var{reg} [, #@var{offset}]
776 Tell the unwinder that @var{reg} contains an offset from the current
777 stack pointer. If @var{offset} is not specified then it is assumed to be
778 zero.
779
780 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
781 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
782
783 @cindex @code{.object_arch} directive, ARM
784 @item .object_arch @var{name}
785 Override the architecture recorded in the EABI object attribute section.
786 Valid values for @var{name} are the same as for the @code{.arch} directive.
787 Typically this is useful when code uses runtime detection of CPU features.
788
789 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
790
791 @cindex @code{.packed} directive, ARM
792 @item .packed @var{expression} [, @var{expression}]*
793 This directive writes 12-byte packed floating-point values to the
794 output section. These are not compatible with current ARM processors
795 or ABIs.
796
797 @anchor{arm_pad}
798 @cindex @code{.pad} directive, ARM
799 @item .pad #@var{count}
800 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
801 A positive value indicates the function prologue allocated stack space by
802 decrementing the stack pointer.
803
804 @cindex @code{.personality} directive, ARM
805 @item .personality @var{name}
806 Sets the personality routine for the current function to @var{name}.
807
808 @cindex @code{.personalityindex} directive, ARM
809 @item .personalityindex @var{index}
810 Sets the personality routine for the current function to the EABI standard
811 routine number @var{index}
812
813 @cindex @code{.pool} directive, ARM
814 @item .pool
815 This is a synonym for .ltorg.
816
817 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
818 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
819
820 @cindex @code{.req} directive, ARM
821 @item @var{name} .req @var{register name}
822 This creates an alias for @var{register name} called @var{name}. For
823 example:
824
825 @smallexample
826 foo .req r0
827 @end smallexample
828
829 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
830
831 @anchor{arm_save}
832 @cindex @code{.save} directive, ARM
833 @item .save @var{reglist}
834 Generate unwinder annotations to restore the registers in @var{reglist}.
835 The format of @var{reglist} is the same as the corresponding store-multiple
836 instruction.
837
838 @smallexample
839 @exdent @emph{core registers}
840 .save @{r4, r5, r6, lr@}
841 stmfd sp!, @{r4, r5, r6, lr@}
842 @exdent @emph{FPA registers}
843 .save f4, 2
844 sfmfd f4, 2, [sp]!
845 @exdent @emph{VFP registers}
846 .save @{d8, d9, d10@}
847 fstmdx sp!, @{d8, d9, d10@}
848 @exdent @emph{iWMMXt registers}
849 .save @{wr10, wr11@}
850 wstrd wr11, [sp, #-8]!
851 wstrd wr10, [sp, #-8]!
852 or
853 .save wr11
854 wstrd wr11, [sp, #-8]!
855 .save wr10
856 wstrd wr10, [sp, #-8]!
857 @end smallexample
858
859 @anchor{arm_setfp}
860 @cindex @code{.setfp} directive, ARM
861 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
862 Make all unwinder annotations relative to a frame pointer. Without this
863 the unwinder will use offsets from the stack pointer.
864
865 The syntax of this directive is the same as the @code{add} or @code{mov}
866 instruction used to set the frame pointer. @var{spreg} must be either
867 @code{sp} or mentioned in a previous @code{.movsp} directive.
868
869 @smallexample
870 .movsp ip
871 mov ip, sp
872 @dots{}
873 .setfp fp, ip, #4
874 add fp, ip, #4
875 @end smallexample
876
877 @cindex @code{.secrel32} directive, ARM
878 @item .secrel32 @var{expression} [, @var{expression}]*
879 This directive emits relocations that evaluate to the section-relative
880 offset of each expression's symbol. This directive is only supported
881 for PE targets.
882
883 @cindex @code{.syntax} directive, ARM
884 @item .syntax [@code{unified} | @code{divided}]
885 This directive sets the Instruction Set Syntax as described in the
886 @ref{ARM-Instruction-Set} section.
887
888 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
889
890 @cindex @code{.thumb} directive, ARM
891 @item .thumb
892 This performs the same action as @var{.code 16}.
893
894 @cindex @code{.thumb_func} directive, ARM
895 @item .thumb_func
896 This directive specifies that the following symbol is the name of a
897 Thumb encoded function. This information is necessary in order to allow
898 the assembler and linker to generate correct code for interworking
899 between Arm and Thumb instructions and should be used even if
900 interworking is not going to be performed. The presence of this
901 directive also implies @code{.thumb}
902
903 This directive is not neccessary when generating EABI objects. On these
904 targets the encoding is implicit when generating Thumb code.
905
906 @cindex @code{.thumb_set} directive, ARM
907 @item .thumb_set
908 This performs the equivalent of a @code{.set} directive in that it
909 creates a symbol which is an alias for another symbol (possibly not yet
910 defined). This directive also has the added property in that it marks
911 the aliased symbol as being a thumb function entry point, in the same
912 way that the @code{.thumb_func} directive does.
913
914 @cindex @code{.tlsdescseq} directive, ARM
915 @item .tlsdescseq @var{tls-variable}
916 This directive is used to annotate parts of an inlined TLS descriptor
917 trampoline. Normally the trampoline is provided by the linker, and
918 this directive is not needed.
919
920 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
921
922 @cindex @code{.unreq} directive, ARM
923 @item .unreq @var{alias-name}
924 This undefines a register alias which was previously defined using the
925 @code{req}, @code{dn} or @code{qn} directives. For example:
926
927 @smallexample
928 foo .req r0
929 .unreq foo
930 @end smallexample
931
932 An error occurs if the name is undefined. Note - this pseudo op can
933 be used to delete builtin in register name aliases (eg 'r0'). This
934 should only be done if it is really necessary.
935
936 @cindex @code{.unwind_raw} directive, ARM
937 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
938 Insert one of more arbitary unwind opcode bytes, which are known to adjust
939 the stack pointer by @var{offset} bytes.
940
941 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
942 @code{.save @{r0@}}
943
944 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
945
946 @cindex @code{.vsave} directive, ARM
947 @item .vsave @var{vfp-reglist}
948 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
949 using FLDMD. Also works for VFPv3 registers
950 that are to be restored using VLDM.
951 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
952 instruction.
953
954 @smallexample
955 @exdent @emph{VFP registers}
956 .vsave @{d8, d9, d10@}
957 fstmdd sp!, @{d8, d9, d10@}
958 @exdent @emph{VFPv3 registers}
959 .vsave @{d15, d16, d17@}
960 vstm sp!, @{d15, d16, d17@}
961 @end smallexample
962
963 Since FLDMX and FSTMX are now deprecated, this directive should be
964 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
965
966 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
967 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
968 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
969 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
970
971 @end table
972
973 @node ARM Opcodes
974 @section Opcodes
975
976 @cindex ARM opcodes
977 @cindex opcodes for ARM
978 @code{@value{AS}} implements all the standard ARM opcodes. It also
979 implements several pseudo opcodes, including several synthetic load
980 instructions.
981
982 @table @code
983
984 @cindex @code{NOP} pseudo op, ARM
985 @item NOP
986 @smallexample
987 nop
988 @end smallexample
989
990 This pseudo op will always evaluate to a legal ARM instruction that does
991 nothing. Currently it will evaluate to MOV r0, r0.
992
993 @cindex @code{LDR reg,=<label>} pseudo op, ARM
994 @item LDR
995 @smallexample
996 ldr <register> , = <expression>
997 @end smallexample
998
999 If expression evaluates to a numeric constant then a MOV or MVN
1000 instruction will be used in place of the LDR instruction, if the
1001 constant can be generated by either of these instructions. Otherwise
1002 the constant will be placed into the nearest literal pool (if it not
1003 already there) and a PC relative LDR instruction will be generated.
1004
1005 @cindex @code{ADR reg,<label>} pseudo op, ARM
1006 @item ADR
1007 @smallexample
1008 adr <register> <label>
1009 @end smallexample
1010
1011 This instruction will load the address of @var{label} into the indicated
1012 register. The instruction will evaluate to a PC relative ADD or SUB
1013 instruction depending upon where the label is located. If the label is
1014 out of range, or if it is not defined in the same file (and section) as
1015 the ADR instruction, then an error will be generated. This instruction
1016 will not make use of the literal pool.
1017
1018 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1019 @item ADRL
1020 @smallexample
1021 adrl <register> <label>
1022 @end smallexample
1023
1024 This instruction will load the address of @var{label} into the indicated
1025 register. The instruction will evaluate to one or two PC relative ADD
1026 or SUB instructions depending upon where the label is located. If a
1027 second instruction is not needed a NOP instruction will be generated in
1028 its place, so that this instruction is always 8 bytes long.
1029
1030 If the label is out of range, or if it is not defined in the same file
1031 (and section) as the ADRL instruction, then an error will be generated.
1032 This instruction will not make use of the literal pool.
1033
1034 @end table
1035
1036 For information on the ARM or Thumb instruction sets, see @cite{ARM
1037 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1038 Ltd.
1039
1040 @node ARM Mapping Symbols
1041 @section Mapping Symbols
1042
1043 The ARM ELF specification requires that special symbols be inserted
1044 into object files to mark certain features:
1045
1046 @table @code
1047
1048 @cindex @code{$a}
1049 @item $a
1050 At the start of a region of code containing ARM instructions.
1051
1052 @cindex @code{$t}
1053 @item $t
1054 At the start of a region of code containing THUMB instructions.
1055
1056 @cindex @code{$d}
1057 @item $d
1058 At the start of a region of data.
1059
1060 @end table
1061
1062 The assembler will automatically insert these symbols for you - there
1063 is no need to code them yourself. Support for tagging symbols ($b,
1064 $f, $p and $m) which is also mentioned in the current ARM ELF
1065 specification is not implemented. This is because they have been
1066 dropped from the new EABI and so tools cannot rely upon their
1067 presence.
1068
1069 @node ARM Unwinding Tutorial
1070 @section Unwinding
1071
1072 The ABI for the ARM Architecture specifies a standard format for
1073 exception unwind information. This information is used when an
1074 exception is thrown to determine where control should be transferred.
1075 In particular, the unwind information is used to determine which
1076 function called the function that threw the exception, and which
1077 function called that one, and so forth. This information is also used
1078 to restore the values of callee-saved registers in the function
1079 catching the exception.
1080
1081 If you are writing functions in assembly code, and those functions
1082 call other functions that throw exceptions, you must use assembly
1083 pseudo ops to ensure that appropriate exception unwind information is
1084 generated. Otherwise, if one of the functions called by your assembly
1085 code throws an exception, the run-time library will be unable to
1086 unwind the stack through your assembly code and your program will not
1087 behave correctly.
1088
1089 To illustrate the use of these pseudo ops, we will examine the code
1090 that G++ generates for the following C++ input:
1091
1092 @verbatim
1093 void callee (int *);
1094
1095 int
1096 caller ()
1097 {
1098 int i;
1099 callee (&i);
1100 return i;
1101 }
1102 @end verbatim
1103
1104 This example does not show how to throw or catch an exception from
1105 assembly code. That is a much more complex operation and should
1106 always be done in a high-level language, such as C++, that directly
1107 supports exceptions.
1108
1109 The code generated by one particular version of G++ when compiling the
1110 example above is:
1111
1112 @verbatim
1113 _Z6callerv:
1114 .fnstart
1115 .LFB2:
1116 @ Function supports interworking.
1117 @ args = 0, pretend = 0, frame = 8
1118 @ frame_needed = 1, uses_anonymous_args = 0
1119 stmfd sp!, {fp, lr}
1120 .save {fp, lr}
1121 .LCFI0:
1122 .setfp fp, sp, #4
1123 add fp, sp, #4
1124 .LCFI1:
1125 .pad #8
1126 sub sp, sp, #8
1127 .LCFI2:
1128 sub r3, fp, #8
1129 mov r0, r3
1130 bl _Z6calleePi
1131 ldr r3, [fp, #-8]
1132 mov r0, r3
1133 sub sp, fp, #4
1134 ldmfd sp!, {fp, lr}
1135 bx lr
1136 .LFE2:
1137 .fnend
1138 @end verbatim
1139
1140 Of course, the sequence of instructions varies based on the options
1141 you pass to GCC and on the version of GCC in use. The exact
1142 instructions are not important since we are focusing on the pseudo ops
1143 that are used to generate unwind information.
1144
1145 An important assumption made by the unwinder is that the stack frame
1146 does not change during the body of the function. In particular, since
1147 we assume that the assembly code does not itself throw an exception,
1148 the only point where an exception can be thrown is from a call, such
1149 as the @code{bl} instruction above. At each call site, the same saved
1150 registers (including @code{lr}, which indicates the return address)
1151 must be located in the same locations relative to the frame pointer.
1152
1153 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1154 op appears immediately before the first instruction of the function
1155 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1156 op appears immediately after the last instruction of the function.
1157 These pseudo ops specify the range of the function.
1158
1159 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1160 @code{.pad}) matters; their exact locations are irrelevant. In the
1161 example above, the compiler emits the pseudo ops with particular
1162 instructions. That makes it easier to understand the code, but it is
1163 not required for correctness. It would work just as well to emit all
1164 of the pseudo ops other than @code{.fnend} in the same order, but
1165 immediately after @code{.fnstart}.
1166
1167 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1168 indicates registers that have been saved to the stack so that they can
1169 be restored before the function returns. The argument to the
1170 @code{.save} pseudo op is a list of registers to save. If a register
1171 is ``callee-saved'' (as specified by the ABI) and is modified by the
1172 function you are writing, then your code must save the value before it
1173 is modified and restore the original value before the function
1174 returns. If an exception is thrown, the run-time library restores the
1175 values of these registers from their locations on the stack before
1176 returning control to the exception handler. (Of course, if an
1177 exception is not thrown, the function that contains the @code{.save}
1178 pseudo op restores these registers in the function epilogue, as is
1179 done with the @code{ldmfd} instruction above.)
1180
1181 You do not have to save callee-saved registers at the very beginning
1182 of the function and you do not need to use the @code{.save} pseudo op
1183 immediately following the point at which the registers are saved.
1184 However, if you modify a callee-saved register, you must save it on
1185 the stack before modifying it and before calling any functions which
1186 might throw an exception. And, you must use the @code{.save} pseudo
1187 op to indicate that you have done so.
1188
1189 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1190 modification of the stack pointer that does not save any registers.
1191 The argument is the number of bytes (in decimal) that are subtracted
1192 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1193 subtracting from the stack pointer increases the size of the stack.)
1194
1195 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1196 indicates the register that contains the frame pointer. The first
1197 argument is the register that is set, which is typically @code{fp}.
1198 The second argument indicates the register from which the frame
1199 pointer takes its value. The third argument, if present, is the value
1200 (in decimal) added to the register specified by the second argument to
1201 compute the value of the frame pointer. You should not modify the
1202 frame pointer in the body of the function.
1203
1204 If you do not use a frame pointer, then you should not use the
1205 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1206 should avoid modifying the stack pointer outside of the function
1207 prologue. Otherwise, the run-time library will be unable to find
1208 saved registers when it is unwinding the stack.
1209
1210 The pseudo ops described above are sufficient for writing assembly
1211 code that calls functions which may throw exceptions. If you need to
1212 know more about the object-file format used to represent unwind
1213 information, you may consult the @cite{Exception Handling ABI for the
1214 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.051998 seconds and 3 git commands to generate.