[ARM] Add support for the Samsung Exynos M1 processor
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a53},
123 @code{cortex-a57},
124 @code{cortex-a72},
125 @code{cortex-r4},
126 @code{cortex-r4f},
127 @code{cortex-r5},
128 @code{cortex-r7},
129 @code{cortex-m7},
130 @code{cortex-m4},
131 @code{cortex-m3},
132 @code{cortex-m1},
133 @code{cortex-m0},
134 @code{cortex-m0plus},
135 @code{exynos-m1},
136 @code{marvell-pj4},
137 @code{marvell-whitney},
138 @code{xgene1},
139 @code{xgene2},
140 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
141 @code{i80200} (Intel XScale processor)
142 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
143 and
144 @code{xscale}.
145 The special name @code{all} may be used to allow the
146 assembler to accept instructions valid for any ARM processor.
147
148 In addition to the basic instruction set, the assembler can be told to
149 accept various extension mnemonics that extend the processor using the
150 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
151 is equivalent to specifying @code{-mcpu=ep9312}.
152
153 Multiple extensions may be specified, separated by a @code{+}. The
154 extensions should be specified in ascending alphabetical order.
155
156 Some extensions may be restricted to particular architectures; this is
157 documented in the list of extensions below.
158
159 Extension mnemonics may also be removed from those the assembler accepts.
160 This is done be prepending @code{no} to the option that adds the extension.
161 Extensions that are removed should be listed after all extensions which have
162 been added, again in ascending alphabetical order. For example,
163 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
164
165
166 The following extensions are currently supported:
167 @code{crc}
168 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
169 @code{fp} (Floating Point Extensions for v8-A architecture),
170 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
171 @code{iwmmxt},
172 @code{iwmmxt2},
173 @code{xscale},
174 @code{maverick},
175 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
176 architectures),
177 @code{os} (Operating System for v6M architecture),
178 @code{sec} (Security Extensions for v6K and v7-A architectures),
179 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
180 @code{virt} (Virtualization Extensions for v7-A architecture, implies
181 @code{idiv}),
182 and
183 @code{xscale}.
184
185 @cindex @code{-march=} command line option, ARM
186 @item -march=@var{architecture}[+@var{extension}@dots{}]
187 This option specifies the target architecture. The assembler will issue
188 an error message if an attempt is made to assemble an instruction which
189 will not execute on the target architecture. The following architecture
190 names are recognized:
191 @code{armv1},
192 @code{armv2},
193 @code{armv2a},
194 @code{armv2s},
195 @code{armv3},
196 @code{armv3m},
197 @code{armv4},
198 @code{armv4xm},
199 @code{armv4t},
200 @code{armv4txm},
201 @code{armv5},
202 @code{armv5t},
203 @code{armv5txm},
204 @code{armv5te},
205 @code{armv5texp},
206 @code{armv6},
207 @code{armv6j},
208 @code{armv6k},
209 @code{armv6z},
210 @code{armv6zk},
211 @code{armv6-m},
212 @code{armv6s-m},
213 @code{armv7},
214 @code{armv7-a},
215 @code{armv7ve},
216 @code{armv7-r},
217 @code{armv7-m},
218 @code{armv7e-m},
219 @code{armv8-a},
220 @code{iwmmxt}
221 @code{iwmmxt2}
222 and
223 @code{xscale}.
224 If both @code{-mcpu} and
225 @code{-march} are specified, the assembler will use
226 the setting for @code{-mcpu}.
227
228 The architecture option can be extended with the same instruction set
229 extension options as the @code{-mcpu} option.
230
231 @cindex @code{-mfpu=} command line option, ARM
232 @item -mfpu=@var{floating-point-format}
233
234 This option specifies the floating point format to assemble for. The
235 assembler will issue an error message if an attempt is made to assemble
236 an instruction which will not execute on the target floating point unit.
237 The following format options are recognized:
238 @code{softfpa},
239 @code{fpe},
240 @code{fpe2},
241 @code{fpe3},
242 @code{fpa},
243 @code{fpa10},
244 @code{fpa11},
245 @code{arm7500fe},
246 @code{softvfp},
247 @code{softvfp+vfp},
248 @code{vfp},
249 @code{vfp10},
250 @code{vfp10-r0},
251 @code{vfp9},
252 @code{vfpxd},
253 @code{vfpv2},
254 @code{vfpv3},
255 @code{vfpv3-fp16},
256 @code{vfpv3-d16},
257 @code{vfpv3-d16-fp16},
258 @code{vfpv3xd},
259 @code{vfpv3xd-d16},
260 @code{vfpv4},
261 @code{vfpv4-d16},
262 @code{fpv4-sp-d16},
263 @code{fpv5-sp-d16},
264 @code{fpv5-d16},
265 @code{fp-armv8},
266 @code{arm1020t},
267 @code{arm1020e},
268 @code{arm1136jf-s},
269 @code{maverick},
270 @code{neon},
271 @code{neon-vfpv4},
272 @code{neon-fp-armv8},
273 and
274 @code{crypto-neon-fp-armv8}.
275
276 In addition to determining which instructions are assembled, this option
277 also affects the way in which the @code{.double} assembler directive behaves
278 when assembling little-endian code.
279
280 The default is dependent on the processor selected. For Architecture 5 or
281 later, the default is to assembler for VFP instructions; for earlier
282 architectures the default is to assemble for FPA instructions.
283
284 @cindex @code{-mthumb} command line option, ARM
285 @item -mthumb
286 This option specifies that the assembler should start assembling Thumb
287 instructions; that is, it should behave as though the file starts with a
288 @code{.code 16} directive.
289
290 @cindex @code{-mthumb-interwork} command line option, ARM
291 @item -mthumb-interwork
292 This option specifies that the output generated by the assembler should
293 be marked as supporting interworking.
294
295 @cindex @code{-mimplicit-it} command line option, ARM
296 @item -mimplicit-it=never
297 @itemx -mimplicit-it=always
298 @itemx -mimplicit-it=arm
299 @itemx -mimplicit-it=thumb
300 The @code{-mimplicit-it} option controls the behavior of the assembler when
301 conditional instructions are not enclosed in IT blocks.
302 There are four possible behaviors.
303 If @code{never} is specified, such constructs cause a warning in ARM
304 code and an error in Thumb-2 code.
305 If @code{always} is specified, such constructs are accepted in both
306 ARM and Thumb-2 code, where the IT instruction is added implicitly.
307 If @code{arm} is specified, such constructs are accepted in ARM code
308 and cause an error in Thumb-2 code.
309 If @code{thumb} is specified, such constructs cause a warning in ARM
310 code and are accepted in Thumb-2 code. If you omit this option, the
311 behavior is equivalent to @code{-mimplicit-it=arm}.
312
313 @cindex @code{-mapcs-26} command line option, ARM
314 @cindex @code{-mapcs-32} command line option, ARM
315 @item -mapcs-26
316 @itemx -mapcs-32
317 These options specify that the output generated by the assembler should
318 be marked as supporting the indicated version of the Arm Procedure.
319 Calling Standard.
320
321 @cindex @code{-matpcs} command line option, ARM
322 @item -matpcs
323 This option specifies that the output generated by the assembler should
324 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
325 enabled this option will cause the assembler to create an empty
326 debugging section in the object file called .arm.atpcs. Debuggers can
327 use this to determine the ABI being used by.
328
329 @cindex @code{-mapcs-float} command line option, ARM
330 @item -mapcs-float
331 This indicates the floating point variant of the APCS should be
332 used. In this variant floating point arguments are passed in FP
333 registers rather than integer registers.
334
335 @cindex @code{-mapcs-reentrant} command line option, ARM
336 @item -mapcs-reentrant
337 This indicates that the reentrant variant of the APCS should be used.
338 This variant supports position independent code.
339
340 @cindex @code{-mfloat-abi=} command line option, ARM
341 @item -mfloat-abi=@var{abi}
342 This option specifies that the output generated by the assembler should be
343 marked as using specified floating point ABI.
344 The following values are recognized:
345 @code{soft},
346 @code{softfp}
347 and
348 @code{hard}.
349
350 @cindex @code{-eabi=} command line option, ARM
351 @item -meabi=@var{ver}
352 This option specifies which EABI version the produced object files should
353 conform to.
354 The following values are recognized:
355 @code{gnu},
356 @code{4}
357 and
358 @code{5}.
359
360 @cindex @code{-EB} command line option, ARM
361 @item -EB
362 This option specifies that the output generated by the assembler should
363 be marked as being encoded for a big-endian processor.
364
365 @cindex @code{-EL} command line option, ARM
366 @item -EL
367 This option specifies that the output generated by the assembler should
368 be marked as being encoded for a little-endian processor.
369
370 @cindex @code{-k} command line option, ARM
371 @cindex PIC code generation for ARM
372 @item -k
373 This option specifies that the output of the assembler should be marked
374 as position-independent code (PIC).
375
376 @cindex @code{--fix-v4bx} command line option, ARM
377 @item --fix-v4bx
378 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
379 the linker option of the same name.
380
381 @cindex @code{-mwarn-deprecated} command line option, ARM
382 @item -mwarn-deprecated
383 @itemx -mno-warn-deprecated
384 Enable or disable warnings about using deprecated options or
385 features. The default is to warn.
386
387 @cindex @code{-mccs} command line option, ARM
388 @item -mccs
389 Turns on CodeComposer Studio assembly syntax compatibility mode.
390
391 @end table
392
393
394 @node ARM Syntax
395 @section Syntax
396 @menu
397 * ARM-Instruction-Set:: Instruction Set
398 * ARM-Chars:: Special Characters
399 * ARM-Regs:: Register Names
400 * ARM-Relocations:: Relocations
401 * ARM-Neon-Alignment:: NEON Alignment Specifiers
402 @end menu
403
404 @node ARM-Instruction-Set
405 @subsection Instruction Set Syntax
406 Two slightly different syntaxes are support for ARM and THUMB
407 instructions. The default, @code{divided}, uses the old style where
408 ARM and THUMB instructions had their own, separate syntaxes. The new,
409 @code{unified} syntax, which can be selected via the @code{.syntax}
410 directive, and has the following main features:
411
412 @itemize @bullet
413 @item
414 Immediate operands do not require a @code{#} prefix.
415
416 @item
417 The @code{IT} instruction may appear, and if it does it is validated
418 against subsequent conditional affixes. In ARM mode it does not
419 generate machine code, in THUMB mode it does.
420
421 @item
422 For ARM instructions the conditional affixes always appear at the end
423 of the instruction. For THUMB instructions conditional affixes can be
424 used, but only inside the scope of an @code{IT} instruction.
425
426 @item
427 All of the instructions new to the V6T2 architecture (and later) are
428 available. (Only a few such instructions can be written in the
429 @code{divided} syntax).
430
431 @item
432 The @code{.N} and @code{.W} suffixes are recognized and honored.
433
434 @item
435 All instructions set the flags if and only if they have an @code{s}
436 affix.
437 @end itemize
438
439 @node ARM-Chars
440 @subsection Special Characters
441
442 @cindex line comment character, ARM
443 @cindex ARM line comment character
444 The presence of a @samp{@@} anywhere on a line indicates the start of
445 a comment that extends to the end of that line.
446
447 If a @samp{#} appears as the first character of a line then the whole
448 line is treated as a comment, but in this case the line could also be
449 a logical line number directive (@pxref{Comments}) or a preprocessor
450 control command (@pxref{Preprocessing}).
451
452 @cindex line separator, ARM
453 @cindex statement separator, ARM
454 @cindex ARM line separator
455 The @samp{;} character can be used instead of a newline to separate
456 statements.
457
458 @cindex immediate character, ARM
459 @cindex ARM immediate character
460 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
461
462 @cindex identifiers, ARM
463 @cindex ARM identifiers
464 *TODO* Explain about /data modifier on symbols.
465
466 @node ARM-Regs
467 @subsection Register Names
468
469 @cindex ARM register names
470 @cindex register names, ARM
471 *TODO* Explain about ARM register naming, and the predefined names.
472
473 @node ARM-Relocations
474 @subsection ARM relocation generation
475
476 @cindex data relocations, ARM
477 @cindex ARM data relocations
478 Specific data relocations can be generated by putting the relocation name
479 in parentheses after the symbol name. For example:
480
481 @smallexample
482 .word foo(TARGET1)
483 @end smallexample
484
485 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
486 @var{foo}.
487 The following relocations are supported:
488 @code{GOT},
489 @code{GOTOFF},
490 @code{TARGET1},
491 @code{TARGET2},
492 @code{SBREL},
493 @code{TLSGD},
494 @code{TLSLDM},
495 @code{TLSLDO},
496 @code{TLSDESC},
497 @code{TLSCALL},
498 @code{GOTTPOFF},
499 @code{GOT_PREL}
500 and
501 @code{TPOFF}.
502
503 For compatibility with older toolchains the assembler also accepts
504 @code{(PLT)} after branch targets. On legacy targets this will
505 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
506 targets it will encode either the @samp{R_ARM_CALL} or
507 @samp{R_ARM_JUMP24} relocation, as appropriate.
508
509 @cindex MOVW and MOVT relocations, ARM
510 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
511 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
512 respectively. For example to load the 32-bit address of foo into r0:
513
514 @smallexample
515 MOVW r0, #:lower16:foo
516 MOVT r0, #:upper16:foo
517 @end smallexample
518
519 @node ARM-Neon-Alignment
520 @subsection NEON Alignment Specifiers
521
522 @cindex alignment for NEON instructions
523 Some NEON load/store instructions allow an optional address
524 alignment qualifier.
525 The ARM documentation specifies that this is indicated by
526 @samp{@@ @var{align}}. However GAS already interprets
527 the @samp{@@} character as a "line comment" start,
528 so @samp{: @var{align}} is used instead. For example:
529
530 @smallexample
531 vld1.8 @{q0@}, [r0, :128]
532 @end smallexample
533
534 @node ARM Floating Point
535 @section Floating Point
536
537 @cindex floating point, ARM (@sc{ieee})
538 @cindex ARM floating point (@sc{ieee})
539 The ARM family uses @sc{ieee} floating-point numbers.
540
541 @node ARM Directives
542 @section ARM Machine Directives
543
544 @cindex machine directives, ARM
545 @cindex ARM machine directives
546 @table @code
547
548 @c AAAAAAAAAAAAAAAAAAAAAAAAA
549
550 @cindex @code{.2byte} directive, ARM
551 @cindex @code{.4byte} directive, ARM
552 @cindex @code{.8byte} directive, ARM
553 @item .2byte @var{expression} [, @var{expression}]*
554 @itemx .4byte @var{expression} [, @var{expression}]*
555 @itemx .8byte @var{expression} [, @var{expression}]*
556 These directives write 2, 4 or 8 byte values to the output section.
557
558 @cindex @code{.align} directive, ARM
559 @item .align @var{expression} [, @var{expression}]
560 This is the generic @var{.align} directive. For the ARM however if the
561 first argument is zero (ie no alignment is needed) the assembler will
562 behave as if the argument had been 2 (ie pad to the next four byte
563 boundary). This is for compatibility with ARM's own assembler.
564
565 @cindex @code{.arch} directive, ARM
566 @item .arch @var{name}
567 Select the target architecture. Valid values for @var{name} are the same as
568 for the @option{-march} commandline option.
569
570 Specifying @code{.arch} clears any previously selected architecture
571 extensions.
572
573 @cindex @code{.arch_extension} directive, ARM
574 @item .arch_extension @var{name}
575 Add or remove an architecture extension to the target architecture. Valid
576 values for @var{name} are the same as those accepted as architectural
577 extensions by the @option{-mcpu} commandline option.
578
579 @code{.arch_extension} may be used multiple times to add or remove extensions
580 incrementally to the architecture being compiled for.
581
582 @cindex @code{.arm} directive, ARM
583 @item .arm
584 This performs the same action as @var{.code 32}.
585
586 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
587
588 @cindex @code{.bss} directive, ARM
589 @item .bss
590 This directive switches to the @code{.bss} section.
591
592 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
593
594 @cindex @code{.cantunwind} directive, ARM
595 @item .cantunwind
596 Prevents unwinding through the current function. No personality routine
597 or exception table data is required or permitted.
598
599 @cindex @code{.code} directive, ARM
600 @item .code @code{[16|32]}
601 This directive selects the instruction set being generated. The value 16
602 selects Thumb, with the value 32 selecting ARM.
603
604 @cindex @code{.cpu} directive, ARM
605 @item .cpu @var{name}
606 Select the target processor. Valid values for @var{name} are the same as
607 for the @option{-mcpu} commandline option.
608
609 Specifying @code{.cpu} clears any previously selected architecture
610 extensions.
611
612 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
613
614 @cindex @code{.dn} and @code{.qn} directives, ARM
615 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
616 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
617
618 The @code{dn} and @code{qn} directives are used to create typed
619 and/or indexed register aliases for use in Advanced SIMD Extension
620 (Neon) instructions. The former should be used to create aliases
621 of double-precision registers, and the latter to create aliases of
622 quad-precision registers.
623
624 If these directives are used to create typed aliases, those aliases can
625 be used in Neon instructions instead of writing types after the mnemonic
626 or after each operand. For example:
627
628 @smallexample
629 x .dn d2.f32
630 y .dn d3.f32
631 z .dn d4.f32[1]
632 vmul x,y,z
633 @end smallexample
634
635 This is equivalent to writing the following:
636
637 @smallexample
638 vmul.f32 d2,d3,d4[1]
639 @end smallexample
640
641 Aliases created using @code{dn} or @code{qn} can be destroyed using
642 @code{unreq}.
643
644 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
645
646 @cindex @code{.eabi_attribute} directive, ARM
647 @item .eabi_attribute @var{tag}, @var{value}
648 Set the EABI object attribute @var{tag} to @var{value}.
649
650 The @var{tag} is either an attribute number, or one of the following:
651 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
652 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
653 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
654 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
655 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
656 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
657 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
658 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
659 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
660 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
661 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
662 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
663 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
664 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
665 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
666 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
667 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
668 @code{Tag_conformance}, @code{Tag_T2EE_use},
669 @code{Tag_Virtualization_use}
670
671 The @var{value} is either a @code{number}, @code{"string"}, or
672 @code{number, "string"} depending on the tag.
673
674 Note - the following legacy values are also accepted by @var{tag}:
675 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
676 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
677
678 @cindex @code{.even} directive, ARM
679 @item .even
680 This directive aligns to an even-numbered address.
681
682 @cindex @code{.extend} directive, ARM
683 @cindex @code{.ldouble} directive, ARM
684 @item .extend @var{expression} [, @var{expression}]*
685 @itemx .ldouble @var{expression} [, @var{expression}]*
686 These directives write 12byte long double floating-point values to the
687 output section. These are not compatible with current ARM processors
688 or ABIs.
689
690 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
691
692 @anchor{arm_fnend}
693 @cindex @code{.fnend} directive, ARM
694 @item .fnend
695 Marks the end of a function with an unwind table entry. The unwind index
696 table entry is created when this directive is processed.
697
698 If no personality routine has been specified then standard personality
699 routine 0 or 1 will be used, depending on the number of unwind opcodes
700 required.
701
702 @anchor{arm_fnstart}
703 @cindex @code{.fnstart} directive, ARM
704 @item .fnstart
705 Marks the start of a function with an unwind table entry.
706
707 @cindex @code{.force_thumb} directive, ARM
708 @item .force_thumb
709 This directive forces the selection of Thumb instructions, even if the
710 target processor does not support those instructions
711
712 @cindex @code{.fpu} directive, ARM
713 @item .fpu @var{name}
714 Select the floating-point unit to assemble for. Valid values for @var{name}
715 are the same as for the @option{-mfpu} commandline option.
716
717 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
718 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
719
720 @cindex @code{.handlerdata} directive, ARM
721 @item .handlerdata
722 Marks the end of the current function, and the start of the exception table
723 entry for that function. Anything between this directive and the
724 @code{.fnend} directive will be added to the exception table entry.
725
726 Must be preceded by a @code{.personality} or @code{.personalityindex}
727 directive.
728
729 @c IIIIIIIIIIIIIIIIIIIIIIIIII
730
731 @cindex @code{.inst} directive, ARM
732 @item .inst @var{opcode} [ , @dots{} ]
733 @itemx .inst.n @var{opcode} [ , @dots{} ]
734 @itemx .inst.w @var{opcode} [ , @dots{} ]
735 Generates the instruction corresponding to the numerical value @var{opcode}.
736 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
737 specified explicitly, overriding the normal encoding rules.
738
739 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
740 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
741 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
742
743 @item .ldouble @var{expression} [, @var{expression}]*
744 See @code{.extend}.
745
746 @cindex @code{.ltorg} directive, ARM
747 @item .ltorg
748 This directive causes the current contents of the literal pool to be
749 dumped into the current section (which is assumed to be the .text
750 section) at the current location (aligned to a word boundary).
751 @code{GAS} maintains a separate literal pool for each section and each
752 sub-section. The @code{.ltorg} directive will only affect the literal
753 pool of the current section and sub-section. At the end of assembly
754 all remaining, un-empty literal pools will automatically be dumped.
755
756 Note - older versions of @code{GAS} would dump the current literal
757 pool any time a section change occurred. This is no longer done, since
758 it prevents accurate control of the placement of literal pools.
759
760 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
761
762 @cindex @code{.movsp} directive, ARM
763 @item .movsp @var{reg} [, #@var{offset}]
764 Tell the unwinder that @var{reg} contains an offset from the current
765 stack pointer. If @var{offset} is not specified then it is assumed to be
766 zero.
767
768 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
769 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
770
771 @cindex @code{.object_arch} directive, ARM
772 @item .object_arch @var{name}
773 Override the architecture recorded in the EABI object attribute section.
774 Valid values for @var{name} are the same as for the @code{.arch} directive.
775 Typically this is useful when code uses runtime detection of CPU features.
776
777 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
778
779 @cindex @code{.packed} directive, ARM
780 @item .packed @var{expression} [, @var{expression}]*
781 This directive writes 12-byte packed floating-point values to the
782 output section. These are not compatible with current ARM processors
783 or ABIs.
784
785 @anchor{arm_pad}
786 @cindex @code{.pad} directive, ARM
787 @item .pad #@var{count}
788 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
789 A positive value indicates the function prologue allocated stack space by
790 decrementing the stack pointer.
791
792 @cindex @code{.personality} directive, ARM
793 @item .personality @var{name}
794 Sets the personality routine for the current function to @var{name}.
795
796 @cindex @code{.personalityindex} directive, ARM
797 @item .personalityindex @var{index}
798 Sets the personality routine for the current function to the EABI standard
799 routine number @var{index}
800
801 @cindex @code{.pool} directive, ARM
802 @item .pool
803 This is a synonym for .ltorg.
804
805 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
806 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
807
808 @cindex @code{.req} directive, ARM
809 @item @var{name} .req @var{register name}
810 This creates an alias for @var{register name} called @var{name}. For
811 example:
812
813 @smallexample
814 foo .req r0
815 @end smallexample
816
817 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
818
819 @anchor{arm_save}
820 @cindex @code{.save} directive, ARM
821 @item .save @var{reglist}
822 Generate unwinder annotations to restore the registers in @var{reglist}.
823 The format of @var{reglist} is the same as the corresponding store-multiple
824 instruction.
825
826 @smallexample
827 @exdent @emph{core registers}
828 .save @{r4, r5, r6, lr@}
829 stmfd sp!, @{r4, r5, r6, lr@}
830 @exdent @emph{FPA registers}
831 .save f4, 2
832 sfmfd f4, 2, [sp]!
833 @exdent @emph{VFP registers}
834 .save @{d8, d9, d10@}
835 fstmdx sp!, @{d8, d9, d10@}
836 @exdent @emph{iWMMXt registers}
837 .save @{wr10, wr11@}
838 wstrd wr11, [sp, #-8]!
839 wstrd wr10, [sp, #-8]!
840 or
841 .save wr11
842 wstrd wr11, [sp, #-8]!
843 .save wr10
844 wstrd wr10, [sp, #-8]!
845 @end smallexample
846
847 @anchor{arm_setfp}
848 @cindex @code{.setfp} directive, ARM
849 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
850 Make all unwinder annotations relative to a frame pointer. Without this
851 the unwinder will use offsets from the stack pointer.
852
853 The syntax of this directive is the same as the @code{add} or @code{mov}
854 instruction used to set the frame pointer. @var{spreg} must be either
855 @code{sp} or mentioned in a previous @code{.movsp} directive.
856
857 @smallexample
858 .movsp ip
859 mov ip, sp
860 @dots{}
861 .setfp fp, ip, #4
862 add fp, ip, #4
863 @end smallexample
864
865 @cindex @code{.secrel32} directive, ARM
866 @item .secrel32 @var{expression} [, @var{expression}]*
867 This directive emits relocations that evaluate to the section-relative
868 offset of each expression's symbol. This directive is only supported
869 for PE targets.
870
871 @cindex @code{.syntax} directive, ARM
872 @item .syntax [@code{unified} | @code{divided}]
873 This directive sets the Instruction Set Syntax as described in the
874 @ref{ARM-Instruction-Set} section.
875
876 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
877
878 @cindex @code{.thumb} directive, ARM
879 @item .thumb
880 This performs the same action as @var{.code 16}.
881
882 @cindex @code{.thumb_func} directive, ARM
883 @item .thumb_func
884 This directive specifies that the following symbol is the name of a
885 Thumb encoded function. This information is necessary in order to allow
886 the assembler and linker to generate correct code for interworking
887 between Arm and Thumb instructions and should be used even if
888 interworking is not going to be performed. The presence of this
889 directive also implies @code{.thumb}
890
891 This directive is not neccessary when generating EABI objects. On these
892 targets the encoding is implicit when generating Thumb code.
893
894 @cindex @code{.thumb_set} directive, ARM
895 @item .thumb_set
896 This performs the equivalent of a @code{.set} directive in that it
897 creates a symbol which is an alias for another symbol (possibly not yet
898 defined). This directive also has the added property in that it marks
899 the aliased symbol as being a thumb function entry point, in the same
900 way that the @code{.thumb_func} directive does.
901
902 @cindex @code{.tlsdescseq} directive, ARM
903 @item .tlsdescseq @var{tls-variable}
904 This directive is used to annotate parts of an inlined TLS descriptor
905 trampoline. Normally the trampoline is provided by the linker, and
906 this directive is not needed.
907
908 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
909
910 @cindex @code{.unreq} directive, ARM
911 @item .unreq @var{alias-name}
912 This undefines a register alias which was previously defined using the
913 @code{req}, @code{dn} or @code{qn} directives. For example:
914
915 @smallexample
916 foo .req r0
917 .unreq foo
918 @end smallexample
919
920 An error occurs if the name is undefined. Note - this pseudo op can
921 be used to delete builtin in register name aliases (eg 'r0'). This
922 should only be done if it is really necessary.
923
924 @cindex @code{.unwind_raw} directive, ARM
925 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
926 Insert one of more arbitary unwind opcode bytes, which are known to adjust
927 the stack pointer by @var{offset} bytes.
928
929 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
930 @code{.save @{r0@}}
931
932 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
933
934 @cindex @code{.vsave} directive, ARM
935 @item .vsave @var{vfp-reglist}
936 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
937 using FLDMD. Also works for VFPv3 registers
938 that are to be restored using VLDM.
939 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
940 instruction.
941
942 @smallexample
943 @exdent @emph{VFP registers}
944 .vsave @{d8, d9, d10@}
945 fstmdd sp!, @{d8, d9, d10@}
946 @exdent @emph{VFPv3 registers}
947 .vsave @{d15, d16, d17@}
948 vstm sp!, @{d15, d16, d17@}
949 @end smallexample
950
951 Since FLDMX and FSTMX are now deprecated, this directive should be
952 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
953
954 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
955 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
956 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
957 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
958
959 @end table
960
961 @node ARM Opcodes
962 @section Opcodes
963
964 @cindex ARM opcodes
965 @cindex opcodes for ARM
966 @code{@value{AS}} implements all the standard ARM opcodes. It also
967 implements several pseudo opcodes, including several synthetic load
968 instructions.
969
970 @table @code
971
972 @cindex @code{NOP} pseudo op, ARM
973 @item NOP
974 @smallexample
975 nop
976 @end smallexample
977
978 This pseudo op will always evaluate to a legal ARM instruction that does
979 nothing. Currently it will evaluate to MOV r0, r0.
980
981 @cindex @code{LDR reg,=<label>} pseudo op, ARM
982 @item LDR
983 @smallexample
984 ldr <register> , = <expression>
985 @end smallexample
986
987 If expression evaluates to a numeric constant then a MOV or MVN
988 instruction will be used in place of the LDR instruction, if the
989 constant can be generated by either of these instructions. Otherwise
990 the constant will be placed into the nearest literal pool (if it not
991 already there) and a PC relative LDR instruction will be generated.
992
993 @cindex @code{ADR reg,<label>} pseudo op, ARM
994 @item ADR
995 @smallexample
996 adr <register> <label>
997 @end smallexample
998
999 This instruction will load the address of @var{label} into the indicated
1000 register. The instruction will evaluate to a PC relative ADD or SUB
1001 instruction depending upon where the label is located. If the label is
1002 out of range, or if it is not defined in the same file (and section) as
1003 the ADR instruction, then an error will be generated. This instruction
1004 will not make use of the literal pool.
1005
1006 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1007 @item ADRL
1008 @smallexample
1009 adrl <register> <label>
1010 @end smallexample
1011
1012 This instruction will load the address of @var{label} into the indicated
1013 register. The instruction will evaluate to one or two PC relative ADD
1014 or SUB instructions depending upon where the label is located. If a
1015 second instruction is not needed a NOP instruction will be generated in
1016 its place, so that this instruction is always 8 bytes long.
1017
1018 If the label is out of range, or if it is not defined in the same file
1019 (and section) as the ADRL instruction, then an error will be generated.
1020 This instruction will not make use of the literal pool.
1021
1022 @end table
1023
1024 For information on the ARM or Thumb instruction sets, see @cite{ARM
1025 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1026 Ltd.
1027
1028 @node ARM Mapping Symbols
1029 @section Mapping Symbols
1030
1031 The ARM ELF specification requires that special symbols be inserted
1032 into object files to mark certain features:
1033
1034 @table @code
1035
1036 @cindex @code{$a}
1037 @item $a
1038 At the start of a region of code containing ARM instructions.
1039
1040 @cindex @code{$t}
1041 @item $t
1042 At the start of a region of code containing THUMB instructions.
1043
1044 @cindex @code{$d}
1045 @item $d
1046 At the start of a region of data.
1047
1048 @end table
1049
1050 The assembler will automatically insert these symbols for you - there
1051 is no need to code them yourself. Support for tagging symbols ($b,
1052 $f, $p and $m) which is also mentioned in the current ARM ELF
1053 specification is not implemented. This is because they have been
1054 dropped from the new EABI and so tools cannot rely upon their
1055 presence.
1056
1057 @node ARM Unwinding Tutorial
1058 @section Unwinding
1059
1060 The ABI for the ARM Architecture specifies a standard format for
1061 exception unwind information. This information is used when an
1062 exception is thrown to determine where control should be transferred.
1063 In particular, the unwind information is used to determine which
1064 function called the function that threw the exception, and which
1065 function called that one, and so forth. This information is also used
1066 to restore the values of callee-saved registers in the function
1067 catching the exception.
1068
1069 If you are writing functions in assembly code, and those functions
1070 call other functions that throw exceptions, you must use assembly
1071 pseudo ops to ensure that appropriate exception unwind information is
1072 generated. Otherwise, if one of the functions called by your assembly
1073 code throws an exception, the run-time library will be unable to
1074 unwind the stack through your assembly code and your program will not
1075 behave correctly.
1076
1077 To illustrate the use of these pseudo ops, we will examine the code
1078 that G++ generates for the following C++ input:
1079
1080 @verbatim
1081 void callee (int *);
1082
1083 int
1084 caller ()
1085 {
1086 int i;
1087 callee (&i);
1088 return i;
1089 }
1090 @end verbatim
1091
1092 This example does not show how to throw or catch an exception from
1093 assembly code. That is a much more complex operation and should
1094 always be done in a high-level language, such as C++, that directly
1095 supports exceptions.
1096
1097 The code generated by one particular version of G++ when compiling the
1098 example above is:
1099
1100 @verbatim
1101 _Z6callerv:
1102 .fnstart
1103 .LFB2:
1104 @ Function supports interworking.
1105 @ args = 0, pretend = 0, frame = 8
1106 @ frame_needed = 1, uses_anonymous_args = 0
1107 stmfd sp!, {fp, lr}
1108 .save {fp, lr}
1109 .LCFI0:
1110 .setfp fp, sp, #4
1111 add fp, sp, #4
1112 .LCFI1:
1113 .pad #8
1114 sub sp, sp, #8
1115 .LCFI2:
1116 sub r3, fp, #8
1117 mov r0, r3
1118 bl _Z6calleePi
1119 ldr r3, [fp, #-8]
1120 mov r0, r3
1121 sub sp, fp, #4
1122 ldmfd sp!, {fp, lr}
1123 bx lr
1124 .LFE2:
1125 .fnend
1126 @end verbatim
1127
1128 Of course, the sequence of instructions varies based on the options
1129 you pass to GCC and on the version of GCC in use. The exact
1130 instructions are not important since we are focusing on the pseudo ops
1131 that are used to generate unwind information.
1132
1133 An important assumption made by the unwinder is that the stack frame
1134 does not change during the body of the function. In particular, since
1135 we assume that the assembly code does not itself throw an exception,
1136 the only point where an exception can be thrown is from a call, such
1137 as the @code{bl} instruction above. At each call site, the same saved
1138 registers (including @code{lr}, which indicates the return address)
1139 must be located in the same locations relative to the frame pointer.
1140
1141 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1142 op appears immediately before the first instruction of the function
1143 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1144 op appears immediately after the last instruction of the function.
1145 These pseudo ops specify the range of the function.
1146
1147 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1148 @code{.pad}) matters; their exact locations are irrelevant. In the
1149 example above, the compiler emits the pseudo ops with particular
1150 instructions. That makes it easier to understand the code, but it is
1151 not required for correctness. It would work just as well to emit all
1152 of the pseudo ops other than @code{.fnend} in the same order, but
1153 immediately after @code{.fnstart}.
1154
1155 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1156 indicates registers that have been saved to the stack so that they can
1157 be restored before the function returns. The argument to the
1158 @code{.save} pseudo op is a list of registers to save. If a register
1159 is ``callee-saved'' (as specified by the ABI) and is modified by the
1160 function you are writing, then your code must save the value before it
1161 is modified and restore the original value before the function
1162 returns. If an exception is thrown, the run-time library restores the
1163 values of these registers from their locations on the stack before
1164 returning control to the exception handler. (Of course, if an
1165 exception is not thrown, the function that contains the @code{.save}
1166 pseudo op restores these registers in the function epilogue, as is
1167 done with the @code{ldmfd} instruction above.)
1168
1169 You do not have to save callee-saved registers at the very beginning
1170 of the function and you do not need to use the @code{.save} pseudo op
1171 immediately following the point at which the registers are saved.
1172 However, if you modify a callee-saved register, you must save it on
1173 the stack before modifying it and before calling any functions which
1174 might throw an exception. And, you must use the @code{.save} pseudo
1175 op to indicate that you have done so.
1176
1177 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1178 modification of the stack pointer that does not save any registers.
1179 The argument is the number of bytes (in decimal) that are subtracted
1180 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1181 subtracting from the stack pointer increases the size of the stack.)
1182
1183 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1184 indicates the register that contains the frame pointer. The first
1185 argument is the register that is set, which is typically @code{fp}.
1186 The second argument indicates the register from which the frame
1187 pointer takes its value. The third argument, if present, is the value
1188 (in decimal) added to the register specified by the second argument to
1189 compute the value of the frame pointer. You should not modify the
1190 frame pointer in the body of the function.
1191
1192 If you do not use a frame pointer, then you should not use the
1193 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1194 should avoid modifying the stack pointer outside of the function
1195 prologue. Otherwise, the run-time library will be unable to find
1196 saved registers when it is unwinding the stack.
1197
1198 The pseudo ops described above are sufficient for writing assembly
1199 code that calls functions which may throw exceptions. If you need to
1200 know more about the object-file format used to represent unwind
1201 information, you may consult the @cite{Exception Handling ABI for the
1202 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.07074 seconds and 5 git commands to generate.