* doc/c-arm.texi (): Document -mwarn-deprecated.
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2008
2 @c Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options:: Options
21 * ARM Syntax:: Syntax
22 * ARM Floating Point:: Floating Point
23 * ARM Directives:: ARM Machine Directives
24 * ARM Opcodes:: Opcodes
25 * ARM Mapping Symbols:: Mapping Symbols
26 * ARM Unwinding Tutorial:: Unwinding
27 @end menu
28
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
33
34 @table @code
35
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor. The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor. The following processor names are
41 recognized:
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa626te} (Faraday FA626TE processor),
106 @code{fa726te} (Faraday FA726TE processor),
107 @code{arm1136j-s},
108 @code{arm1136jf-s},
109 @code{arm1156t2-s},
110 @code{arm1156t2f-s},
111 @code{arm1176jz-s},
112 @code{arm1176jzf-s},
113 @code{mpcore},
114 @code{mpcorenovfp},
115 @code{cortex-a8},
116 @code{cortex-a9},
117 @code{cortex-r4},
118 @code{cortex-m3},
119 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
120 @code{i80200} (Intel XScale processor)
121 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
122 and
123 @code{xscale}.
124 The special name @code{all} may be used to allow the
125 assembler to accept instructions valid for any ARM processor.
126
127 In addition to the basic instruction set, the assembler can be told to
128 accept various extension mnemonics that extend the processor using the
129 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
130 is equivalent to specifying @code{-mcpu=ep9312}. The following extensions
131 are currently supported:
132 @code{+maverick}
133 @code{+iwmmxt}
134 and
135 @code{+xscale}.
136
137 @cindex @code{-march=} command line option, ARM
138 @item -march=@var{architecture}[+@var{extension}@dots{}]
139 This option specifies the target architecture. The assembler will issue
140 an error message if an attempt is made to assemble an instruction which
141 will not execute on the target architecture. The following architecture
142 names are recognized:
143 @code{armv1},
144 @code{armv2},
145 @code{armv2a},
146 @code{armv2s},
147 @code{armv3},
148 @code{armv3m},
149 @code{armv4},
150 @code{armv4xm},
151 @code{armv4t},
152 @code{armv4txm},
153 @code{armv5},
154 @code{armv5t},
155 @code{armv5txm},
156 @code{armv5te},
157 @code{armv5texp},
158 @code{armv6},
159 @code{armv6j},
160 @code{armv6k},
161 @code{armv6z},
162 @code{armv6zk},
163 @code{armv7},
164 @code{armv7-a},
165 @code{armv7-r},
166 @code{armv7-m},
167 @code{iwmmxt}
168 and
169 @code{xscale}.
170 If both @code{-mcpu} and
171 @code{-march} are specified, the assembler will use
172 the setting for @code{-mcpu}.
173
174 The architecture option can be extended with the same instruction set
175 extension options as the @code{-mcpu} option.
176
177 @cindex @code{-mfpu=} command line option, ARM
178 @item -mfpu=@var{floating-point-format}
179
180 This option specifies the floating point format to assemble for. The
181 assembler will issue an error message if an attempt is made to assemble
182 an instruction which will not execute on the target floating point unit.
183 The following format options are recognized:
184 @code{softfpa},
185 @code{fpe},
186 @code{fpe2},
187 @code{fpe3},
188 @code{fpa},
189 @code{fpa10},
190 @code{fpa11},
191 @code{arm7500fe},
192 @code{softvfp},
193 @code{softvfp+vfp},
194 @code{vfp},
195 @code{vfp10},
196 @code{vfp10-r0},
197 @code{vfp9},
198 @code{vfpxd},
199 @code{vfpv2}
200 @code{vfpv3}
201 @code{vfpv3-d16}
202 @code{arm1020t},
203 @code{arm1020e},
204 @code{arm1136jf-s},
205 @code{maverick}
206 and
207 @code{neon}.
208
209 In addition to determining which instructions are assembled, this option
210 also affects the way in which the @code{.double} assembler directive behaves
211 when assembling little-endian code.
212
213 The default is dependent on the processor selected. For Architecture 5 or
214 later, the default is to assembler for VFP instructions; for earlier
215 architectures the default is to assemble for FPA instructions.
216
217 @cindex @code{-mthumb} command line option, ARM
218 @item -mthumb
219 This option specifies that the assembler should start assembling Thumb
220 instructions; that is, it should behave as though the file starts with a
221 @code{.code 16} directive.
222
223 @cindex @code{-mthumb-interwork} command line option, ARM
224 @item -mthumb-interwork
225 This option specifies that the output generated by the assembler should
226 be marked as supporting interworking.
227
228 @cindex @code{-mapcs} command line option, ARM
229 @item -mapcs @code{[26|32]}
230 This option specifies that the output generated by the assembler should
231 be marked as supporting the indicated version of the Arm Procedure.
232 Calling Standard.
233
234 @cindex @code{-matpcs} command line option, ARM
235 @item -matpcs
236 This option specifies that the output generated by the assembler should
237 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
238 enabled this option will cause the assembler to create an empty
239 debugging section in the object file called .arm.atpcs. Debuggers can
240 use this to determine the ABI being used by.
241
242 @cindex @code{-mapcs-float} command line option, ARM
243 @item -mapcs-float
244 This indicates the floating point variant of the APCS should be
245 used. In this variant floating point arguments are passed in FP
246 registers rather than integer registers.
247
248 @cindex @code{-mapcs-reentrant} command line option, ARM
249 @item -mapcs-reentrant
250 This indicates that the reentrant variant of the APCS should be used.
251 This variant supports position independent code.
252
253 @cindex @code{-mfloat-abi=} command line option, ARM
254 @item -mfloat-abi=@var{abi}
255 This option specifies that the output generated by the assembler should be
256 marked as using specified floating point ABI.
257 The following values are recognized:
258 @code{soft},
259 @code{softfp}
260 and
261 @code{hard}.
262
263 @cindex @code{-eabi=} command line option, ARM
264 @item -meabi=@var{ver}
265 This option specifies which EABI version the produced object files should
266 conform to.
267 The following values are recognized:
268 @code{gnu},
269 @code{4}
270 and
271 @code{5}.
272
273 @cindex @code{-EB} command line option, ARM
274 @item -EB
275 This option specifies that the output generated by the assembler should
276 be marked as being encoded for a big-endian processor.
277
278 @cindex @code{-EL} command line option, ARM
279 @item -EL
280 This option specifies that the output generated by the assembler should
281 be marked as being encoded for a little-endian processor.
282
283 @cindex @code{-k} command line option, ARM
284 @cindex PIC code generation for ARM
285 @item -k
286 This option specifies that the output of the assembler should be marked
287 as position-independent code (PIC).
288
289 @cindex @code{--fix-v4bx} command line option, ARM
290 @item --fix-v4bx
291 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
292 the linker option of the same name.
293
294 @cindex @code{-mwarn-deprecated} command line option, ARM
295 @item -mwarn-deprecated
296 @itemx -mno-warn-deprecated
297 Enable or disable warnings about using deprecated options or
298 features. The default is to warn.
299
300 @end table
301
302
303 @node ARM Syntax
304 @section Syntax
305 @menu
306 * ARM-Chars:: Special Characters
307 * ARM-Regs:: Register Names
308 * ARM-Relocations:: Relocations
309 @end menu
310
311 @node ARM-Chars
312 @subsection Special Characters
313
314 @cindex line comment character, ARM
315 @cindex ARM line comment character
316 The presence of a @samp{@@} on a line indicates the start of a comment
317 that extends to the end of the current line. If a @samp{#} appears as
318 the first character of a line, the whole line is treated as a comment.
319
320 @cindex line separator, ARM
321 @cindex statement separator, ARM
322 @cindex ARM line separator
323 The @samp{;} character can be used instead of a newline to separate
324 statements.
325
326 @cindex immediate character, ARM
327 @cindex ARM immediate character
328 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
329
330 @cindex identifiers, ARM
331 @cindex ARM identifiers
332 *TODO* Explain about /data modifier on symbols.
333
334 @node ARM-Regs
335 @subsection Register Names
336
337 @cindex ARM register names
338 @cindex register names, ARM
339 *TODO* Explain about ARM register naming, and the predefined names.
340
341 @node ARM Floating Point
342 @section Floating Point
343
344 @cindex floating point, ARM (@sc{ieee})
345 @cindex ARM floating point (@sc{ieee})
346 The ARM family uses @sc{ieee} floating-point numbers.
347
348 @node ARM-Relocations
349 @subsection ARM relocation generation
350
351 @cindex data relocations, ARM
352 @cindex ARM data relocations
353 Specific data relocations can be generated by putting the relocation name
354 in parentheses after the symbol name. For example:
355
356 @smallexample
357 .word foo(TARGET1)
358 @end smallexample
359
360 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
361 @var{foo}.
362 The following relocations are supported:
363 @code{GOT},
364 @code{GOTOFF},
365 @code{TARGET1},
366 @code{TARGET2},
367 @code{SBREL},
368 @code{TLSGD},
369 @code{TLSLDM},
370 @code{TLSLDO},
371 @code{GOTTPOFF}
372 and
373 @code{TPOFF}.
374
375 For compatibility with older toolchains the assembler also accepts
376 @code{(PLT)} after branch targets. This will generate the deprecated
377 @samp{R_ARM_PLT32} relocation.
378
379 @cindex MOVW and MOVT relocations, ARM
380 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
381 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
382 respectively. For example to load the 32-bit address of foo into r0:
383
384 @smallexample
385 MOVW r0, #:lower16:foo
386 MOVT r0, #:upper16:foo
387 @end smallexample
388
389 @node ARM Directives
390 @section ARM Machine Directives
391
392 @cindex machine directives, ARM
393 @cindex ARM machine directives
394 @table @code
395
396 @cindex @code{align} directive, ARM
397 @item .align @var{expression} [, @var{expression}]
398 This is the generic @var{.align} directive. For the ARM however if the
399 first argument is zero (ie no alignment is needed) the assembler will
400 behave as if the argument had been 2 (ie pad to the next four byte
401 boundary). This is for compatibility with ARM's own assembler.
402
403 @cindex @code{req} directive, ARM
404 @item @var{name} .req @var{register name}
405 This creates an alias for @var{register name} called @var{name}. For
406 example:
407
408 @smallexample
409 foo .req r0
410 @end smallexample
411
412 @cindex @code{unreq} directive, ARM
413 @item .unreq @var{alias-name}
414 This undefines a register alias which was previously defined using the
415 @code{req}, @code{dn} or @code{qn} directives. For example:
416
417 @smallexample
418 foo .req r0
419 .unreq foo
420 @end smallexample
421
422 An error occurs if the name is undefined. Note - this pseudo op can
423 be used to delete builtin in register name aliases (eg 'r0'). This
424 should only be done if it is really necessary.
425
426 @cindex @code{dn} and @code{qn} directives, ARM
427 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
428 @item @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
429
430 The @code{dn} and @code{qn} directives are used to create typed
431 and/or indexed register aliases for use in Advanced SIMD Extension
432 (Neon) instructions. The former should be used to create aliases
433 of double-precision registers, and the latter to create aliases of
434 quad-precision registers.
435
436 If these directives are used to create typed aliases, those aliases can
437 be used in Neon instructions instead of writing types after the mnemonic
438 or after each operand. For example:
439
440 @smallexample
441 x .dn d2.f32
442 y .dn d3.f32
443 z .dn d4.f32[1]
444 vmul x,y,z
445 @end smallexample
446
447 This is equivalent to writing the following:
448
449 @smallexample
450 vmul.f32 d2,d3,d4[1]
451 @end smallexample
452
453 Aliases created using @code{dn} or @code{qn} can be destroyed using
454 @code{unreq}.
455
456 @cindex @code{code} directive, ARM
457 @item .code @code{[16|32]}
458 This directive selects the instruction set being generated. The value 16
459 selects Thumb, with the value 32 selecting ARM.
460
461 @cindex @code{thumb} directive, ARM
462 @item .thumb
463 This performs the same action as @var{.code 16}.
464
465 @cindex @code{arm} directive, ARM
466 @item .arm
467 This performs the same action as @var{.code 32}.
468
469 @cindex @code{force_thumb} directive, ARM
470 @item .force_thumb
471 This directive forces the selection of Thumb instructions, even if the
472 target processor does not support those instructions
473
474 @cindex @code{thumb_func} directive, ARM
475 @item .thumb_func
476 This directive specifies that the following symbol is the name of a
477 Thumb encoded function. This information is necessary in order to allow
478 the assembler and linker to generate correct code for interworking
479 between Arm and Thumb instructions and should be used even if
480 interworking is not going to be performed. The presence of this
481 directive also implies @code{.thumb}
482
483 This directive is not neccessary when generating EABI objects. On these
484 targets the encoding is implicit when generating Thumb code.
485
486 @cindex @code{thumb_set} directive, ARM
487 @item .thumb_set
488 This performs the equivalent of a @code{.set} directive in that it
489 creates a symbol which is an alias for another symbol (possibly not yet
490 defined). This directive also has the added property in that it marks
491 the aliased symbol as being a thumb function entry point, in the same
492 way that the @code{.thumb_func} directive does.
493
494 @cindex @code{.ltorg} directive, ARM
495 @item .ltorg
496 This directive causes the current contents of the literal pool to be
497 dumped into the current section (which is assumed to be the .text
498 section) at the current location (aligned to a word boundary).
499 @code{GAS} maintains a separate literal pool for each section and each
500 sub-section. The @code{.ltorg} directive will only affect the literal
501 pool of the current section and sub-section. At the end of assembly
502 all remaining, un-empty literal pools will automatically be dumped.
503
504 Note - older versions of @code{GAS} would dump the current literal
505 pool any time a section change occurred. This is no longer done, since
506 it prevents accurate control of the placement of literal pools.
507
508 @cindex @code{.pool} directive, ARM
509 @item .pool
510 This is a synonym for .ltorg.
511
512 @anchor{arm_fnstart}
513 @cindex @code{.fnstart} directive, ARM
514 @item .fnstart
515 Marks the start of a function with an unwind table entry.
516
517 @anchor{arm_fnend}
518 @cindex @code{.fnend} directive, ARM
519 @item .fnend
520 Marks the end of a function with an unwind table entry. The unwind index
521 table entry is created when this directive is processed.
522
523 If no personality routine has been specified then standard personality
524 routine 0 or 1 will be used, depending on the number of unwind opcodes
525 required.
526
527 @cindex @code{.cantunwind} directive, ARM
528 @item .cantunwind
529 Prevents unwinding through the current function. No personality routine
530 or exception table data is required or permitted.
531
532 @cindex @code{.personality} directive, ARM
533 @item .personality @var{name}
534 Sets the personality routine for the current function to @var{name}.
535
536 @cindex @code{.personalityindex} directive, ARM
537 @item .personalityindex @var{index}
538 Sets the personality routine for the current function to the EABI standard
539 routine number @var{index}
540
541 @cindex @code{.handlerdata} directive, ARM
542 @item .handlerdata
543 Marks the end of the current function, and the start of the exception table
544 entry for that function. Anything between this directive and the
545 @code{.fnend} directive will be added to the exception table entry.
546
547 Must be preceded by a @code{.personality} or @code{.personalityindex}
548 directive.
549
550 @anchor{arm_save}
551 @cindex @code{.save} directive, ARM
552 @item .save @var{reglist}
553 Generate unwinder annotations to restore the registers in @var{reglist}.
554 The format of @var{reglist} is the same as the corresponding store-multiple
555 instruction.
556
557 @smallexample
558 @exdent @emph{core registers}
559 .save @{r4, r5, r6, lr@}
560 stmfd sp!, @{r4, r5, r6, lr@}
561 @exdent @emph{FPA registers}
562 .save f4, 2
563 sfmfd f4, 2, [sp]!
564 @exdent @emph{VFP registers}
565 .save @{d8, d9, d10@}
566 fstmdx sp!, @{d8, d9, d10@}
567 @exdent @emph{iWMMXt registers}
568 .save @{wr10, wr11@}
569 wstrd wr11, [sp, #-8]!
570 wstrd wr10, [sp, #-8]!
571 or
572 .save wr11
573 wstrd wr11, [sp, #-8]!
574 .save wr10
575 wstrd wr10, [sp, #-8]!
576 @end smallexample
577
578 @cindex @code{.vsave} directive, ARM
579 @item .vsave @var{vfp-reglist}
580 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
581 using FLDMD. Also works for VFPv3 registers
582 that are to be restored using VLDM.
583 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
584 instruction.
585
586 @smallexample
587 @exdent @emph{VFP registers}
588 .vsave @{d8, d9, d10@}
589 fstmdd sp!, @{d8, d9, d10@}
590 @exdent @emph{VFPv3 registers}
591 .vsave @{d15, d16, d17@}
592 vstm sp!, @{d15, d16, d17@}
593 @end smallexample
594
595 Since FLDMX and FSTMX are now deprecated, this directive should be
596 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
597
598 @anchor{arm_pad}
599 @cindex @code{.pad} directive, ARM
600 @item .pad #@var{count}
601 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
602 A positive value indicates the function prologue allocated stack space by
603 decrementing the stack pointer.
604
605 @anchor{arm_movsp}
606 @cindex @code{.movsp} directive, ARM
607 @item .movsp @var{reg} [, #@var{offset}]
608 Tell the unwinder that @var{reg} contains an offset from the current
609 stack pointer. If @var{offset} is not specified then it is assumed to be
610 zero.
611
612 @anchor{arm_setfp}
613 @cindex @code{.setfp} directive, ARM
614 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
615 Make all unwinder annotations relaive to a frame pointer. Without this
616 the unwinder will use offsets from the stack pointer.
617
618 The syntax of this directive is the same as the @code{sub} or @code{mov}
619 instruction used to set the frame pointer. @var{spreg} must be either
620 @code{sp} or mentioned in a previous @code{.movsp} directive.
621
622 @smallexample
623 .movsp ip
624 mov ip, sp
625 @dots{}
626 .setfp fp, ip, #4
627 sub fp, ip, #4
628 @end smallexample
629
630 @cindex @code{.unwind_raw} directive, ARM
631 @item .raw @var{offset}, @var{byte1}, @dots{}
632 Insert one of more arbitary unwind opcode bytes, which are known to adjust
633 the stack pointer by @var{offset} bytes.
634
635 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
636 @code{.save @{r0@}}
637
638 @cindex @code{.cpu} directive, ARM
639 @item .cpu @var{name}
640 Select the target processor. Valid values for @var{name} are the same as
641 for the @option{-mcpu} commandline option.
642
643 @cindex @code{.arch} directive, ARM
644 @item .arch @var{name}
645 Select the target architecture. Valid values for @var{name} are the same as
646 for the @option{-march} commandline option.
647
648 @cindex @code{.object_arch} directive, ARM
649 @item .object_arch @var{name}
650 Override the architecture recorded in the EABI object attribute section.
651 Valid values for @var{name} are the same as for the @code{.arch} directive.
652 Typically this is useful when code uses runtime detection of CPU features.
653
654 @cindex @code{.fpu} directive, ARM
655 @item .fpu @var{name}
656 Select the floating point unit to assemble for. Valid values for @var{name}
657 are the same as for the @option{-mfpu} commandline option.
658
659 @cindex @code{.eabi_attribute} directive, ARM
660 @item .eabi_attribute @var{tag}, @var{value}
661 Set the EABI object attribute @var{tag} to @var{value}.
662
663 The @var{tag} is either an attribute number, or one of the following:
664 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
665 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
666 @code{Tag_THUMB_ISA_use}, @code{Tag_VFP_arch}, @code{Tag_WMMX_arch},
667 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
668 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
669 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
670 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
671 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
672 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
673 @code{Tag_ABI_align8_needed}, @code{Tag_ABI_align8_preserved},
674 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
675 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
676 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
677 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
678 @code{Tag_VFP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
679 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
680 @code{Tag_conformance}, @code{Tag_T2EE_use},
681 @code{Tag_Virtualization_use}, @code{Tag_MPextension_use}
682
683 The @var{value} is either a @code{number}, @code{"string"}, or
684 @code{number, "string"} depending on the tag.
685
686 @end table
687
688 @node ARM Opcodes
689 @section Opcodes
690
691 @cindex ARM opcodes
692 @cindex opcodes for ARM
693 @code{@value{AS}} implements all the standard ARM opcodes. It also
694 implements several pseudo opcodes, including several synthetic load
695 instructions.
696
697 @table @code
698
699 @cindex @code{NOP} pseudo op, ARM
700 @item NOP
701 @smallexample
702 nop
703 @end smallexample
704
705 This pseudo op will always evaluate to a legal ARM instruction that does
706 nothing. Currently it will evaluate to MOV r0, r0.
707
708 @cindex @code{LDR reg,=<label>} pseudo op, ARM
709 @item LDR
710 @smallexample
711 ldr <register> , = <expression>
712 @end smallexample
713
714 If expression evaluates to a numeric constant then a MOV or MVN
715 instruction will be used in place of the LDR instruction, if the
716 constant can be generated by either of these instructions. Otherwise
717 the constant will be placed into the nearest literal pool (if it not
718 already there) and a PC relative LDR instruction will be generated.
719
720 @cindex @code{ADR reg,<label>} pseudo op, ARM
721 @item ADR
722 @smallexample
723 adr <register> <label>
724 @end smallexample
725
726 This instruction will load the address of @var{label} into the indicated
727 register. The instruction will evaluate to a PC relative ADD or SUB
728 instruction depending upon where the label is located. If the label is
729 out of range, or if it is not defined in the same file (and section) as
730 the ADR instruction, then an error will be generated. This instruction
731 will not make use of the literal pool.
732
733 @cindex @code{ADRL reg,<label>} pseudo op, ARM
734 @item ADRL
735 @smallexample
736 adrl <register> <label>
737 @end smallexample
738
739 This instruction will load the address of @var{label} into the indicated
740 register. The instruction will evaluate to one or two PC relative ADD
741 or SUB instructions depending upon where the label is located. If a
742 second instruction is not needed a NOP instruction will be generated in
743 its place, so that this instruction is always 8 bytes long.
744
745 If the label is out of range, or if it is not defined in the same file
746 (and section) as the ADRL instruction, then an error will be generated.
747 This instruction will not make use of the literal pool.
748
749 @end table
750
751 For information on the ARM or Thumb instruction sets, see @cite{ARM
752 Software Development Toolkit Reference Manual}, Advanced RISC Machines
753 Ltd.
754
755 @node ARM Mapping Symbols
756 @section Mapping Symbols
757
758 The ARM ELF specification requires that special symbols be inserted
759 into object files to mark certain features:
760
761 @table @code
762
763 @cindex @code{$a}
764 @item $a
765 At the start of a region of code containing ARM instructions.
766
767 @cindex @code{$t}
768 @item $t
769 At the start of a region of code containing THUMB instructions.
770
771 @cindex @code{$d}
772 @item $d
773 At the start of a region of data.
774
775 @end table
776
777 The assembler will automatically insert these symbols for you - there
778 is no need to code them yourself. Support for tagging symbols ($b,
779 $f, $p and $m) which is also mentioned in the current ARM ELF
780 specification is not implemented. This is because they have been
781 dropped from the new EABI and so tools cannot rely upon their
782 presence.
783
784 @node ARM Unwinding Tutorial
785 @section Unwinding
786
787 The ABI for the ARM Architecture specifies a standard format for
788 exception unwind information. This information is used when an
789 exception is thrown to determine where control should be transferred.
790 In particular, the unwind information is used to determine which
791 function called the function that threw the exception, and which
792 function called that one, and so forth. This information is also used
793 to restore the values of callee-saved registers in the function
794 catching the exception.
795
796 If you are writing functions in assembly code, and those functions
797 call other functions that throw exceptions, you must use assembly
798 pseudo ops to ensure that appropriate exception unwind information is
799 generated. Otherwise, if one of the functions called by your assembly
800 code throws an exception, the run-time library will be unable to
801 unwind the stack through your assembly code and your program will not
802 behave correctly.
803
804 To illustrate the use of these pseudo ops, we will examine the code
805 that G++ generates for the following C++ input:
806
807 @verbatim
808 void callee (int *);
809
810 int
811 caller ()
812 {
813 int i;
814 callee (&i);
815 return i;
816 }
817 @end verbatim
818
819 This example does not show how to throw or catch an exception from
820 assembly code. That is a much more complex operation and should
821 always be done in a high-level language, such as C++, that directly
822 supports exceptions.
823
824 The code generated by one particular version of G++ when compiling the
825 example above is:
826
827 @verbatim
828 _Z6callerv:
829 .fnstart
830 .LFB2:
831 @ Function supports interworking.
832 @ args = 0, pretend = 0, frame = 8
833 @ frame_needed = 1, uses_anonymous_args = 0
834 stmfd sp!, {fp, lr}
835 .save {fp, lr}
836 .LCFI0:
837 .setfp fp, sp, #4
838 add fp, sp, #4
839 .LCFI1:
840 .pad #8
841 sub sp, sp, #8
842 .LCFI2:
843 sub r3, fp, #8
844 mov r0, r3
845 bl _Z6calleePi
846 ldr r3, [fp, #-8]
847 mov r0, r3
848 sub sp, fp, #4
849 ldmfd sp!, {fp, lr}
850 bx lr
851 .LFE2:
852 .fnend
853 @end verbatim
854
855 Of course, the sequence of instructions varies based on the options
856 you pass to GCC and on the version of GCC in use. The exact
857 instructions are not important since we are focusing on the pseudo ops
858 that are used to generate unwind information.
859
860 An important assumption made by the unwinder is that the stack frame
861 does not change during the body of the function. In particular, since
862 we assume that the assembly code does not itself throw an exception,
863 the only point where an exception can be thrown is from a call, such
864 as the @code{bl} instruction above. At each call site, the same saved
865 registers (including @code{lr}, which indicates the return address)
866 must be located in the same locations relative to the frame pointer.
867
868 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
869 op appears immediately before the first instruction of the function
870 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
871 op appears immediately after the last instruction of the function.
872 These pseudo ops specify the range of the function.
873
874 Only the order of the other pseudos ops (e.g., @code{.setfp} or
875 @code{.pad}) matters; their exact locations are irrelevant. In the
876 example above, the compiler emits the pseudo ops with particular
877 instructions. That makes it easier to understand the code, but it is
878 not required for correctness. It would work just as well to emit all
879 of the pseudo ops other than @code{.fnend} in the same order, but
880 immediately after @code{.fnstart}.
881
882 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
883 indicates registers that have been saved to the stack so that they can
884 be restored before the function returns. The argument to the
885 @code{.save} pseudo op is a list of registers to save. If a register
886 is ``callee-saved'' (as specified by the ABI) and is modified by the
887 function you are writing, then your code must save the value before it
888 is modified and restore the original value before the function
889 returns. If an exception is thrown, the run-time library restores the
890 values of these registers from their locations on the stack before
891 returning control to the exception handler. (Of course, if an
892 exception is not thrown, the function that contains the @code{.save}
893 pseudo op restores these registers in the function epilogue, as is
894 done with the @code{ldmfd} instruction above.)
895
896 You do not have to save callee-saved registers at the very beginning
897 of the function and you do not need to use the @code{.save} pseudo op
898 immediately following the point at which the registers are saved.
899 However, if you modify a callee-saved register, you must save it on
900 the stack before modifying it and before calling any functions which
901 might throw an exception. And, you must use the @code{.save} pseudo
902 op to indicate that you have done so.
903
904 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
905 modification of the stack pointer that does not save any registers.
906 The argument is the number of bytes (in decimal) that are subtracted
907 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
908 subtracting from the stack pointer increases the size of the stack.)
909
910 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
911 indicates the register that contains the frame pointer. The first
912 argument is the register that is set, which is typically @code{fp}.
913 The second argument indicates the register from which the frame
914 pointer takes its value. The third argument, if present, is the value
915 (in decimal) added to the register specified by the second argument to
916 compute the value of the frame pointer. You should not modify the
917 frame pointer in the body of the function.
918
919 If you do not use a frame pointer, then you should not use the
920 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
921 should avoid modifying the stack pointer outside of the function
922 prologue. Otherwise, the run-time library will be unable to find
923 saved registers when it is unwinding the stack.
924
925 The pseudo ops described above are sufficient for writing assembly
926 code that calls functions which may throw exceptions. If you need to
927 know more about the object-file format used to represent unwind
928 information, you may consult the @cite{Exception Handling ABI for the
929 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.053509 seconds and 5 git commands to generate.