[GAS, Arm] CLI with architecture sensitive extensions
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command-line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a17},
123 @code{cortex-a32},
124 @code{cortex-a35},
125 @code{cortex-a53},
126 @code{cortex-a55},
127 @code{cortex-a57},
128 @code{cortex-a72},
129 @code{cortex-a73},
130 @code{cortex-a75},
131 @code{cortex-a76},
132 @code{ares},
133 @code{cortex-r4},
134 @code{cortex-r4f},
135 @code{cortex-r5},
136 @code{cortex-r7},
137 @code{cortex-r8},
138 @code{cortex-r52},
139 @code{cortex-m33},
140 @code{cortex-m23},
141 @code{cortex-m7},
142 @code{cortex-m4},
143 @code{cortex-m3},
144 @code{cortex-m1},
145 @code{cortex-m0},
146 @code{cortex-m0plus},
147 @code{exynos-m1},
148 @code{marvell-pj4},
149 @code{marvell-whitney},
150 @code{neoverse-n1},
151 @code{xgene1},
152 @code{xgene2},
153 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
154 @code{i80200} (Intel XScale processor)
155 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
156 and
157 @code{xscale}.
158 The special name @code{all} may be used to allow the
159 assembler to accept instructions valid for any ARM processor.
160
161 In addition to the basic instruction set, the assembler can be told to
162 accept various extension mnemonics that extend the processor using the
163 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
164 is equivalent to specifying @code{-mcpu=ep9312}.
165
166 Multiple extensions may be specified, separated by a @code{+}. The
167 extensions should be specified in ascending alphabetical order.
168
169 Some extensions may be restricted to particular architectures; this is
170 documented in the list of extensions below.
171
172 Extension mnemonics may also be removed from those the assembler accepts.
173 This is done be prepending @code{no} to the option that adds the extension.
174 Extensions that are removed should be listed after all extensions which have
175 been added, again in ascending alphabetical order. For example,
176 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
177
178
179 The following extensions are currently supported:
180 @code{crc}
181 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
182 @code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
183 @code{fp} (Floating Point Extensions for v8-A architecture),
184 @code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
185 @code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
186 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
187 @code{iwmmxt},
188 @code{iwmmxt2},
189 @code{xscale},
190 @code{maverick},
191 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
192 architectures),
193 @code{os} (Operating System for v6M architecture),
194 @code{predres} (Execution and Data Prediction Restriction Instruction for
195 v8-A architectures, added by default from v8.5-A),
196 @code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
197 default from v8.5-A),
198 @code{sec} (Security Extensions for v6K and v7-A architectures),
199 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
200 @code{virt} (Virtualization Extensions for v7-A architecture, implies
201 @code{idiv}),
202 @code{pan} (Privileged Access Never Extensions for v8-A architecture),
203 @code{ras} (Reliability, Availability and Serviceability extensions
204 for v8-A architecture),
205 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
206 @code{simd})
207 and
208 @code{xscale}.
209
210 @cindex @code{-march=} command-line option, ARM
211 @item -march=@var{architecture}[+@var{extension}@dots{}]
212 This option specifies the target architecture. The assembler will issue
213 an error message if an attempt is made to assemble an instruction which
214 will not execute on the target architecture. The following architecture
215 names are recognized:
216 @code{armv1},
217 @code{armv2},
218 @code{armv2a},
219 @code{armv2s},
220 @code{armv3},
221 @code{armv3m},
222 @code{armv4},
223 @code{armv4xm},
224 @code{armv4t},
225 @code{armv4txm},
226 @code{armv5},
227 @code{armv5t},
228 @code{armv5txm},
229 @code{armv5te},
230 @code{armv5texp},
231 @code{armv6},
232 @code{armv6j},
233 @code{armv6k},
234 @code{armv6z},
235 @code{armv6kz},
236 @code{armv6-m},
237 @code{armv6s-m},
238 @code{armv7},
239 @code{armv7-a},
240 @code{armv7ve},
241 @code{armv7-r},
242 @code{armv7-m},
243 @code{armv7e-m},
244 @code{armv8-a},
245 @code{armv8.1-a},
246 @code{armv8.2-a},
247 @code{armv8.3-a},
248 @code{armv8-r},
249 @code{armv8.4-a},
250 @code{armv8.5-a},
251 @code{armv8-m.base},
252 @code{armv8-m.main},
253 @code{iwmmxt},
254 @code{iwmmxt2}
255 and
256 @code{xscale}.
257 If both @code{-mcpu} and
258 @code{-march} are specified, the assembler will use
259 the setting for @code{-mcpu}.
260
261 The architecture option can be extended with a set extension options. These
262 extensions are context sensitive, i.e. the same extension may mean different
263 things when used with different architectures. When used together with a
264 @code{-mfpu} option, the union of both feature enablement is taken.
265 See their availability and meaning below:
266
267 For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
268
269 @code{+fp}: Enables VFPv2 instructions.
270 @code{+nofp}: Disables all FPU instrunctions.
271
272 For @code{armv7}:
273
274 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
275 @code{+nofp}: Disables all FPU instructions.
276
277 For @code{armv7-a}:
278
279 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
280 @code{+vfpv3-d16}: Alias for @code{+fp}.
281 @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
282 @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
283 conversion instructions and 16 double-word registers.
284 @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
285 instructions and 32 double-word registers.
286 @code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
287 @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
288 @code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
289 registers.
290 @code{+neon}: Alias for @code{+simd}.
291 @code{+neon-vfpv3}: Alias for @code{+simd}.
292 @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
293 NEONv1 instructions with 32 double-word registers.
294 @code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
295 double-word registers.
296 @code{+mp}: Enables Multiprocessing Extensions.
297 @code{+sec}: Enables Security Extensions.
298 @code{+nofp}: Disables all FPU and NEON instructions.
299 @code{+nosimd}: Disables all NEON instructions.
300
301 For @code{armv7ve}:
302
303 @code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
304 @code{+vfpv4-d16}: Alias for @code{+fp}.
305 @code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
306 @code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
307 @code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
308 conversion instructions and 16 double-word registers.
309 @code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
310 instructions and 32 double-word registers.
311 @code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
312 @code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
313 double-word registers.
314 @code{+neon-vfpv4}: Alias for @code{+simd}.
315 @code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
316 registers.
317 @code{+neon-vfpv3}: Alias for @code{+neon}.
318 @code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
319 NEONv1 instructions with 32 double-word registers.
320 double-word registers.
321 @code{+nofp}: Disables all FPU and NEON instructions.
322 @code{+nosimd}: Disables all NEON instructions.
323
324 For @code{armv7-r}:
325
326 @code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
327 double-word registers.
328 @code{+vfpv3xd}: Alias for @code{+fp.sp}.
329 @code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
330 @code{+vfpv3-d16}: Alias for @code{+fp}.
331 @code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
332 floating-point conversion instructions with 16 double-word registers.
333 @code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
334 conversion instructions with 16 double-word registers.
335 @code{+idiv}: Enables integer division instructions in ARM mode.
336 @code{+nofp}: Disables all FPU instructions.
337
338 For @code{armv7e-m}:
339
340 @code{+fp}: Enables single-precision only VFPv4 instructions with 16
341 double-word registers.
342 @code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
343 @code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
344 double-word registers.
345 @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
346 @code{+fpv5-d16"}: Alias for @code{+fp.dp}.
347 @code{+nofp}: Disables all FPU instructions.
348
349 For @code{armv8-m.main}:
350
351 @code{+dsp}: Enables DSP Extension.
352 @code{+fp}: Enables single-precision only VFPv5 instructions with 16
353 double-word registers.
354 @code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
355 @code{+nofp}: Disables all FPU instructions.
356 @code{+nodsp}: Disables DSP Extension.
357
358 For @code{armv8-a}:
359
360 @code{+crc}: Enables CRC32 Extension.
361 @code{+simd}: Enables VFP and NEON for Armv8-A.
362 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
363 @code{+simd}.
364 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
365 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
366 for Armv8-A.
367 @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
368 @code{+nocrypto}: Disables Cryptography Extensions.
369
370 For @code{armv8.1-a}:
371
372 @code{+simd}: Enables VFP and NEON for Armv8.1-A.
373 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
374 @code{+simd}.
375 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
376 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
377 for Armv8-A.
378 @code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
379 @code{+nocrypto}: Disables Cryptography Extensions.
380
381 For @code{armv8.2-a} and @code{armv8.3-a}:
382
383 @code{+simd}: Enables VFP and NEON for Armv8.1-A.
384 @code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
385 @code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
386 for Armv8.2-A, implies @code{+fp16}.
387 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
388 @code{+simd}.
389 @code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies
390 @code{+simd}.
391 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
392 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
393 for Armv8-A.
394 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
395 @code{+nocrypto}: Disables Cryptography Extensions.
396
397 For @code{armv8.4-a}:
398
399 @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
400 Armv8.2-A.
401 @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
402 Variant Extensions for Armv8.2-A, implies @code{+simd}.
403 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
404 @code{+simd}.
405 @code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
406 @code{+predres}: Enables Execution and Data Prediction Restriction Instruction
407 for Armv8-A.
408 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
409 @code{+nocryptp}: Disables Cryptography Extensions.
410
411 For @code{armv8.5-a}:
412
413 @code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
414 Armv8.2-A.
415 @code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
416 Variant Extensions for Armv8.2-A, implies @code{+simd}.
417 @code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
418 @code{+simd}.
419 @code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
420 @code{+nocryptp}: Disables Cryptography Extensions.
421
422
423 @cindex @code{-mfpu=} command-line option, ARM
424 @item -mfpu=@var{floating-point-format}
425
426 This option specifies the floating point format to assemble for. The
427 assembler will issue an error message if an attempt is made to assemble
428 an instruction which will not execute on the target floating point unit.
429 The following format options are recognized:
430 @code{softfpa},
431 @code{fpe},
432 @code{fpe2},
433 @code{fpe3},
434 @code{fpa},
435 @code{fpa10},
436 @code{fpa11},
437 @code{arm7500fe},
438 @code{softvfp},
439 @code{softvfp+vfp},
440 @code{vfp},
441 @code{vfp10},
442 @code{vfp10-r0},
443 @code{vfp9},
444 @code{vfpxd},
445 @code{vfpv2},
446 @code{vfpv3},
447 @code{vfpv3-fp16},
448 @code{vfpv3-d16},
449 @code{vfpv3-d16-fp16},
450 @code{vfpv3xd},
451 @code{vfpv3xd-d16},
452 @code{vfpv4},
453 @code{vfpv4-d16},
454 @code{fpv4-sp-d16},
455 @code{fpv5-sp-d16},
456 @code{fpv5-d16},
457 @code{fp-armv8},
458 @code{arm1020t},
459 @code{arm1020e},
460 @code{arm1136jf-s},
461 @code{maverick},
462 @code{neon},
463 @code{neon-vfpv3},
464 @code{neon-fp16},
465 @code{neon-vfpv4},
466 @code{neon-fp-armv8},
467 @code{crypto-neon-fp-armv8},
468 @code{neon-fp-armv8.1}
469 and
470 @code{crypto-neon-fp-armv8.1}.
471
472 In addition to determining which instructions are assembled, this option
473 also affects the way in which the @code{.double} assembler directive behaves
474 when assembling little-endian code.
475
476 The default is dependent on the processor selected. For Architecture 5 or
477 later, the default is to assemble for VFP instructions; for earlier
478 architectures the default is to assemble for FPA instructions.
479
480 @cindex @code{-mthumb} command-line option, ARM
481 @item -mthumb
482 This option specifies that the assembler should start assembling Thumb
483 instructions; that is, it should behave as though the file starts with a
484 @code{.code 16} directive.
485
486 @cindex @code{-mthumb-interwork} command-line option, ARM
487 @item -mthumb-interwork
488 This option specifies that the output generated by the assembler should
489 be marked as supporting interworking. It also affects the behaviour
490 of the @code{ADR} and @code{ADRL} pseudo opcodes.
491
492 @cindex @code{-mimplicit-it} command-line option, ARM
493 @item -mimplicit-it=never
494 @itemx -mimplicit-it=always
495 @itemx -mimplicit-it=arm
496 @itemx -mimplicit-it=thumb
497 The @code{-mimplicit-it} option controls the behavior of the assembler when
498 conditional instructions are not enclosed in IT blocks.
499 There are four possible behaviors.
500 If @code{never} is specified, such constructs cause a warning in ARM
501 code and an error in Thumb-2 code.
502 If @code{always} is specified, such constructs are accepted in both
503 ARM and Thumb-2 code, where the IT instruction is added implicitly.
504 If @code{arm} is specified, such constructs are accepted in ARM code
505 and cause an error in Thumb-2 code.
506 If @code{thumb} is specified, such constructs cause a warning in ARM
507 code and are accepted in Thumb-2 code. If you omit this option, the
508 behavior is equivalent to @code{-mimplicit-it=arm}.
509
510 @cindex @code{-mapcs-26} command-line option, ARM
511 @cindex @code{-mapcs-32} command-line option, ARM
512 @item -mapcs-26
513 @itemx -mapcs-32
514 These options specify that the output generated by the assembler should
515 be marked as supporting the indicated version of the Arm Procedure.
516 Calling Standard.
517
518 @cindex @code{-matpcs} command-line option, ARM
519 @item -matpcs
520 This option specifies that the output generated by the assembler should
521 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
522 enabled this option will cause the assembler to create an empty
523 debugging section in the object file called .arm.atpcs. Debuggers can
524 use this to determine the ABI being used by.
525
526 @cindex @code{-mapcs-float} command-line option, ARM
527 @item -mapcs-float
528 This indicates the floating point variant of the APCS should be
529 used. In this variant floating point arguments are passed in FP
530 registers rather than integer registers.
531
532 @cindex @code{-mapcs-reentrant} command-line option, ARM
533 @item -mapcs-reentrant
534 This indicates that the reentrant variant of the APCS should be used.
535 This variant supports position independent code.
536
537 @cindex @code{-mfloat-abi=} command-line option, ARM
538 @item -mfloat-abi=@var{abi}
539 This option specifies that the output generated by the assembler should be
540 marked as using specified floating point ABI.
541 The following values are recognized:
542 @code{soft},
543 @code{softfp}
544 and
545 @code{hard}.
546
547 @cindex @code{-eabi=} command-line option, ARM
548 @item -meabi=@var{ver}
549 This option specifies which EABI version the produced object files should
550 conform to.
551 The following values are recognized:
552 @code{gnu},
553 @code{4}
554 and
555 @code{5}.
556
557 @cindex @code{-EB} command-line option, ARM
558 @item -EB
559 This option specifies that the output generated by the assembler should
560 be marked as being encoded for a big-endian processor.
561
562 Note: If a program is being built for a system with big-endian data
563 and little-endian instructions then it should be assembled with the
564 @option{-EB} option, (all of it, code and data) and then linked with
565 the @option{--be8} option. This will reverse the endianness of the
566 instructions back to little-endian, but leave the data as big-endian.
567
568 @cindex @code{-EL} command-line option, ARM
569 @item -EL
570 This option specifies that the output generated by the assembler should
571 be marked as being encoded for a little-endian processor.
572
573 @cindex @code{-k} command-line option, ARM
574 @cindex PIC code generation for ARM
575 @item -k
576 This option specifies that the output of the assembler should be marked
577 as position-independent code (PIC).
578
579 @cindex @code{--fix-v4bx} command-line option, ARM
580 @item --fix-v4bx
581 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
582 the linker option of the same name.
583
584 @cindex @code{-mwarn-deprecated} command-line option, ARM
585 @item -mwarn-deprecated
586 @itemx -mno-warn-deprecated
587 Enable or disable warnings about using deprecated options or
588 features. The default is to warn.
589
590 @cindex @code{-mccs} command-line option, ARM
591 @item -mccs
592 Turns on CodeComposer Studio assembly syntax compatibility mode.
593
594 @cindex @code{-mwarn-syms} command-line option, ARM
595 @item -mwarn-syms
596 @itemx -mno-warn-syms
597 Enable or disable warnings about symbols that match the names of ARM
598 instructions. The default is to warn.
599
600 @end table
601
602
603 @node ARM Syntax
604 @section Syntax
605 @menu
606 * ARM-Instruction-Set:: Instruction Set
607 * ARM-Chars:: Special Characters
608 * ARM-Regs:: Register Names
609 * ARM-Relocations:: Relocations
610 * ARM-Neon-Alignment:: NEON Alignment Specifiers
611 @end menu
612
613 @node ARM-Instruction-Set
614 @subsection Instruction Set Syntax
615 Two slightly different syntaxes are support for ARM and THUMB
616 instructions. The default, @code{divided}, uses the old style where
617 ARM and THUMB instructions had their own, separate syntaxes. The new,
618 @code{unified} syntax, which can be selected via the @code{.syntax}
619 directive, and has the following main features:
620
621 @itemize @bullet
622 @item
623 Immediate operands do not require a @code{#} prefix.
624
625 @item
626 The @code{IT} instruction may appear, and if it does it is validated
627 against subsequent conditional affixes. In ARM mode it does not
628 generate machine code, in THUMB mode it does.
629
630 @item
631 For ARM instructions the conditional affixes always appear at the end
632 of the instruction. For THUMB instructions conditional affixes can be
633 used, but only inside the scope of an @code{IT} instruction.
634
635 @item
636 All of the instructions new to the V6T2 architecture (and later) are
637 available. (Only a few such instructions can be written in the
638 @code{divided} syntax).
639
640 @item
641 The @code{.N} and @code{.W} suffixes are recognized and honored.
642
643 @item
644 All instructions set the flags if and only if they have an @code{s}
645 affix.
646 @end itemize
647
648 @node ARM-Chars
649 @subsection Special Characters
650
651 @cindex line comment character, ARM
652 @cindex ARM line comment character
653 The presence of a @samp{@@} anywhere on a line indicates the start of
654 a comment that extends to the end of that line.
655
656 If a @samp{#} appears as the first character of a line then the whole
657 line is treated as a comment, but in this case the line could also be
658 a logical line number directive (@pxref{Comments}) or a preprocessor
659 control command (@pxref{Preprocessing}).
660
661 @cindex line separator, ARM
662 @cindex statement separator, ARM
663 @cindex ARM line separator
664 The @samp{;} character can be used instead of a newline to separate
665 statements.
666
667 @cindex immediate character, ARM
668 @cindex ARM immediate character
669 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
670
671 @cindex identifiers, ARM
672 @cindex ARM identifiers
673 *TODO* Explain about /data modifier on symbols.
674
675 @node ARM-Regs
676 @subsection Register Names
677
678 @cindex ARM register names
679 @cindex register names, ARM
680 *TODO* Explain about ARM register naming, and the predefined names.
681
682 @node ARM-Relocations
683 @subsection ARM relocation generation
684
685 @cindex data relocations, ARM
686 @cindex ARM data relocations
687 Specific data relocations can be generated by putting the relocation name
688 in parentheses after the symbol name. For example:
689
690 @smallexample
691 .word foo(TARGET1)
692 @end smallexample
693
694 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
695 @var{foo}.
696 The following relocations are supported:
697 @code{GOT},
698 @code{GOTOFF},
699 @code{TARGET1},
700 @code{TARGET2},
701 @code{SBREL},
702 @code{TLSGD},
703 @code{TLSLDM},
704 @code{TLSLDO},
705 @code{TLSDESC},
706 @code{TLSCALL},
707 @code{GOTTPOFF},
708 @code{GOT_PREL}
709 and
710 @code{TPOFF}.
711
712 For compatibility with older toolchains the assembler also accepts
713 @code{(PLT)} after branch targets. On legacy targets this will
714 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
715 targets it will encode either the @samp{R_ARM_CALL} or
716 @samp{R_ARM_JUMP24} relocation, as appropriate.
717
718 @cindex MOVW and MOVT relocations, ARM
719 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
720 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
721 respectively. For example to load the 32-bit address of foo into r0:
722
723 @smallexample
724 MOVW r0, #:lower16:foo
725 MOVT r0, #:upper16:foo
726 @end smallexample
727
728 Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
729 @samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
730 generated by prefixing the value with @samp{#:lower0_7:#},
731 @samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
732 respectively. For example to load the 32-bit address of foo into r0:
733
734 @smallexample
735 MOVS r0, #:upper8_15:#foo
736 LSLS r0, r0, #8
737 ADDS r0, #:upper0_7:#foo
738 LSLS r0, r0, #8
739 ADDS r0, #:lower8_15:#foo
740 LSLS r0, r0, #8
741 ADDS r0, #:lower0_7:#foo
742 @end smallexample
743
744 @node ARM-Neon-Alignment
745 @subsection NEON Alignment Specifiers
746
747 @cindex alignment for NEON instructions
748 Some NEON load/store instructions allow an optional address
749 alignment qualifier.
750 The ARM documentation specifies that this is indicated by
751 @samp{@@ @var{align}}. However GAS already interprets
752 the @samp{@@} character as a "line comment" start,
753 so @samp{: @var{align}} is used instead. For example:
754
755 @smallexample
756 vld1.8 @{q0@}, [r0, :128]
757 @end smallexample
758
759 @node ARM Floating Point
760 @section Floating Point
761
762 @cindex floating point, ARM (@sc{ieee})
763 @cindex ARM floating point (@sc{ieee})
764 The ARM family uses @sc{ieee} floating-point numbers.
765
766 @node ARM Directives
767 @section ARM Machine Directives
768
769 @cindex machine directives, ARM
770 @cindex ARM machine directives
771 @table @code
772
773 @c AAAAAAAAAAAAAAAAAAAAAAAAA
774
775 @ifclear ELF
776 @cindex @code{.2byte} directive, ARM
777 @cindex @code{.4byte} directive, ARM
778 @cindex @code{.8byte} directive, ARM
779 @item .2byte @var{expression} [, @var{expression}]*
780 @itemx .4byte @var{expression} [, @var{expression}]*
781 @itemx .8byte @var{expression} [, @var{expression}]*
782 These directives write 2, 4 or 8 byte values to the output section.
783 @end ifclear
784
785 @cindex @code{.align} directive, ARM
786 @item .align @var{expression} [, @var{expression}]
787 This is the generic @var{.align} directive. For the ARM however if the
788 first argument is zero (ie no alignment is needed) the assembler will
789 behave as if the argument had been 2 (ie pad to the next four byte
790 boundary). This is for compatibility with ARM's own assembler.
791
792 @cindex @code{.arch} directive, ARM
793 @item .arch @var{name}
794 Select the target architecture. Valid values for @var{name} are the same as
795 for the @option{-march} command-line option without the instruction set
796 extension.
797
798 Specifying @code{.arch} clears any previously selected architecture
799 extensions.
800
801 @cindex @code{.arch_extension} directive, ARM
802 @item .arch_extension @var{name}
803 Add or remove an architecture extension to the target architecture. Valid
804 values for @var{name} are the same as those accepted as architectural
805 extensions by the @option{-mcpu} and @option{-march} command-line options.
806
807 @code{.arch_extension} may be used multiple times to add or remove extensions
808 incrementally to the architecture being compiled for.
809
810 @cindex @code{.arm} directive, ARM
811 @item .arm
812 This performs the same action as @var{.code 32}.
813
814 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
815
816 @cindex @code{.bss} directive, ARM
817 @item .bss
818 This directive switches to the @code{.bss} section.
819
820 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
821
822 @cindex @code{.cantunwind} directive, ARM
823 @item .cantunwind
824 Prevents unwinding through the current function. No personality routine
825 or exception table data is required or permitted.
826
827 @cindex @code{.code} directive, ARM
828 @item .code @code{[16|32]}
829 This directive selects the instruction set being generated. The value 16
830 selects Thumb, with the value 32 selecting ARM.
831
832 @cindex @code{.cpu} directive, ARM
833 @item .cpu @var{name}
834 Select the target processor. Valid values for @var{name} are the same as
835 for the @option{-mcpu} command-line option without the instruction set
836 extension.
837
838 Specifying @code{.cpu} clears any previously selected architecture
839 extensions.
840
841 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
842
843 @cindex @code{.dn} and @code{.qn} directives, ARM
844 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
845 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
846
847 The @code{dn} and @code{qn} directives are used to create typed
848 and/or indexed register aliases for use in Advanced SIMD Extension
849 (Neon) instructions. The former should be used to create aliases
850 of double-precision registers, and the latter to create aliases of
851 quad-precision registers.
852
853 If these directives are used to create typed aliases, those aliases can
854 be used in Neon instructions instead of writing types after the mnemonic
855 or after each operand. For example:
856
857 @smallexample
858 x .dn d2.f32
859 y .dn d3.f32
860 z .dn d4.f32[1]
861 vmul x,y,z
862 @end smallexample
863
864 This is equivalent to writing the following:
865
866 @smallexample
867 vmul.f32 d2,d3,d4[1]
868 @end smallexample
869
870 Aliases created using @code{dn} or @code{qn} can be destroyed using
871 @code{unreq}.
872
873 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
874
875 @cindex @code{.eabi_attribute} directive, ARM
876 @item .eabi_attribute @var{tag}, @var{value}
877 Set the EABI object attribute @var{tag} to @var{value}.
878
879 The @var{tag} is either an attribute number, or one of the following:
880 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
881 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
882 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
883 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
884 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
885 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
886 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
887 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
888 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
889 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
890 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
891 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
892 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
893 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
894 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
895 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
896 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
897 @code{Tag_conformance}, @code{Tag_T2EE_use},
898 @code{Tag_Virtualization_use}
899
900 The @var{value} is either a @code{number}, @code{"string"}, or
901 @code{number, "string"} depending on the tag.
902
903 Note - the following legacy values are also accepted by @var{tag}:
904 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
905 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
906
907 @cindex @code{.even} directive, ARM
908 @item .even
909 This directive aligns to an even-numbered address.
910
911 @cindex @code{.extend} directive, ARM
912 @cindex @code{.ldouble} directive, ARM
913 @item .extend @var{expression} [, @var{expression}]*
914 @itemx .ldouble @var{expression} [, @var{expression}]*
915 These directives write 12byte long double floating-point values to the
916 output section. These are not compatible with current ARM processors
917 or ABIs.
918
919 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
920
921 @anchor{arm_fnend}
922 @cindex @code{.fnend} directive, ARM
923 @item .fnend
924 Marks the end of a function with an unwind table entry. The unwind index
925 table entry is created when this directive is processed.
926
927 If no personality routine has been specified then standard personality
928 routine 0 or 1 will be used, depending on the number of unwind opcodes
929 required.
930
931 @anchor{arm_fnstart}
932 @cindex @code{.fnstart} directive, ARM
933 @item .fnstart
934 Marks the start of a function with an unwind table entry.
935
936 @cindex @code{.force_thumb} directive, ARM
937 @item .force_thumb
938 This directive forces the selection of Thumb instructions, even if the
939 target processor does not support those instructions
940
941 @cindex @code{.fpu} directive, ARM
942 @item .fpu @var{name}
943 Select the floating-point unit to assemble for. Valid values for @var{name}
944 are the same as for the @option{-mfpu} command-line option.
945
946 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
947 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
948
949 @cindex @code{.handlerdata} directive, ARM
950 @item .handlerdata
951 Marks the end of the current function, and the start of the exception table
952 entry for that function. Anything between this directive and the
953 @code{.fnend} directive will be added to the exception table entry.
954
955 Must be preceded by a @code{.personality} or @code{.personalityindex}
956 directive.
957
958 @c IIIIIIIIIIIIIIIIIIIIIIIIII
959
960 @cindex @code{.inst} directive, ARM
961 @item .inst @var{opcode} [ , @dots{} ]
962 @itemx .inst.n @var{opcode} [ , @dots{} ]
963 @itemx .inst.w @var{opcode} [ , @dots{} ]
964 Generates the instruction corresponding to the numerical value @var{opcode}.
965 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
966 specified explicitly, overriding the normal encoding rules.
967
968 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
969 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
970 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
971
972 @item .ldouble @var{expression} [, @var{expression}]*
973 See @code{.extend}.
974
975 @cindex @code{.ltorg} directive, ARM
976 @item .ltorg
977 This directive causes the current contents of the literal pool to be
978 dumped into the current section (which is assumed to be the .text
979 section) at the current location (aligned to a word boundary).
980 @code{GAS} maintains a separate literal pool for each section and each
981 sub-section. The @code{.ltorg} directive will only affect the literal
982 pool of the current section and sub-section. At the end of assembly
983 all remaining, un-empty literal pools will automatically be dumped.
984
985 Note - older versions of @code{GAS} would dump the current literal
986 pool any time a section change occurred. This is no longer done, since
987 it prevents accurate control of the placement of literal pools.
988
989 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
990
991 @cindex @code{.movsp} directive, ARM
992 @item .movsp @var{reg} [, #@var{offset}]
993 Tell the unwinder that @var{reg} contains an offset from the current
994 stack pointer. If @var{offset} is not specified then it is assumed to be
995 zero.
996
997 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
998 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
999
1000 @cindex @code{.object_arch} directive, ARM
1001 @item .object_arch @var{name}
1002 Override the architecture recorded in the EABI object attribute section.
1003 Valid values for @var{name} are the same as for the @code{.arch} directive.
1004 Typically this is useful when code uses runtime detection of CPU features.
1005
1006 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
1007
1008 @cindex @code{.packed} directive, ARM
1009 @item .packed @var{expression} [, @var{expression}]*
1010 This directive writes 12-byte packed floating-point values to the
1011 output section. These are not compatible with current ARM processors
1012 or ABIs.
1013
1014 @anchor{arm_pad}
1015 @cindex @code{.pad} directive, ARM
1016 @item .pad #@var{count}
1017 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1018 A positive value indicates the function prologue allocated stack space by
1019 decrementing the stack pointer.
1020
1021 @cindex @code{.personality} directive, ARM
1022 @item .personality @var{name}
1023 Sets the personality routine for the current function to @var{name}.
1024
1025 @cindex @code{.personalityindex} directive, ARM
1026 @item .personalityindex @var{index}
1027 Sets the personality routine for the current function to the EABI standard
1028 routine number @var{index}
1029
1030 @cindex @code{.pool} directive, ARM
1031 @item .pool
1032 This is a synonym for .ltorg.
1033
1034 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1035 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
1036
1037 @cindex @code{.req} directive, ARM
1038 @item @var{name} .req @var{register name}
1039 This creates an alias for @var{register name} called @var{name}. For
1040 example:
1041
1042 @smallexample
1043 foo .req r0
1044 @end smallexample
1045
1046 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
1047
1048 @anchor{arm_save}
1049 @cindex @code{.save} directive, ARM
1050 @item .save @var{reglist}
1051 Generate unwinder annotations to restore the registers in @var{reglist}.
1052 The format of @var{reglist} is the same as the corresponding store-multiple
1053 instruction.
1054
1055 @smallexample
1056 @exdent @emph{core registers}
1057 .save @{r4, r5, r6, lr@}
1058 stmfd sp!, @{r4, r5, r6, lr@}
1059 @exdent @emph{FPA registers}
1060 .save f4, 2
1061 sfmfd f4, 2, [sp]!
1062 @exdent @emph{VFP registers}
1063 .save @{d8, d9, d10@}
1064 fstmdx sp!, @{d8, d9, d10@}
1065 @exdent @emph{iWMMXt registers}
1066 .save @{wr10, wr11@}
1067 wstrd wr11, [sp, #-8]!
1068 wstrd wr10, [sp, #-8]!
1069 or
1070 .save wr11
1071 wstrd wr11, [sp, #-8]!
1072 .save wr10
1073 wstrd wr10, [sp, #-8]!
1074 @end smallexample
1075
1076 @anchor{arm_setfp}
1077 @cindex @code{.setfp} directive, ARM
1078 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
1079 Make all unwinder annotations relative to a frame pointer. Without this
1080 the unwinder will use offsets from the stack pointer.
1081
1082 The syntax of this directive is the same as the @code{add} or @code{mov}
1083 instruction used to set the frame pointer. @var{spreg} must be either
1084 @code{sp} or mentioned in a previous @code{.movsp} directive.
1085
1086 @smallexample
1087 .movsp ip
1088 mov ip, sp
1089 @dots{}
1090 .setfp fp, ip, #4
1091 add fp, ip, #4
1092 @end smallexample
1093
1094 @cindex @code{.secrel32} directive, ARM
1095 @item .secrel32 @var{expression} [, @var{expression}]*
1096 This directive emits relocations that evaluate to the section-relative
1097 offset of each expression's symbol. This directive is only supported
1098 for PE targets.
1099
1100 @cindex @code{.syntax} directive, ARM
1101 @item .syntax [@code{unified} | @code{divided}]
1102 This directive sets the Instruction Set Syntax as described in the
1103 @ref{ARM-Instruction-Set} section.
1104
1105 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
1106
1107 @cindex @code{.thumb} directive, ARM
1108 @item .thumb
1109 This performs the same action as @var{.code 16}.
1110
1111 @cindex @code{.thumb_func} directive, ARM
1112 @item .thumb_func
1113 This directive specifies that the following symbol is the name of a
1114 Thumb encoded function. This information is necessary in order to allow
1115 the assembler and linker to generate correct code for interworking
1116 between Arm and Thumb instructions and should be used even if
1117 interworking is not going to be performed. The presence of this
1118 directive also implies @code{.thumb}
1119
1120 This directive is not necessary when generating EABI objects. On these
1121 targets the encoding is implicit when generating Thumb code.
1122
1123 @cindex @code{.thumb_set} directive, ARM
1124 @item .thumb_set
1125 This performs the equivalent of a @code{.set} directive in that it
1126 creates a symbol which is an alias for another symbol (possibly not yet
1127 defined). This directive also has the added property in that it marks
1128 the aliased symbol as being a thumb function entry point, in the same
1129 way that the @code{.thumb_func} directive does.
1130
1131 @cindex @code{.tlsdescseq} directive, ARM
1132 @item .tlsdescseq @var{tls-variable}
1133 This directive is used to annotate parts of an inlined TLS descriptor
1134 trampoline. Normally the trampoline is provided by the linker, and
1135 this directive is not needed.
1136
1137 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
1138
1139 @cindex @code{.unreq} directive, ARM
1140 @item .unreq @var{alias-name}
1141 This undefines a register alias which was previously defined using the
1142 @code{req}, @code{dn} or @code{qn} directives. For example:
1143
1144 @smallexample
1145 foo .req r0
1146 .unreq foo
1147 @end smallexample
1148
1149 An error occurs if the name is undefined. Note - this pseudo op can
1150 be used to delete builtin in register name aliases (eg 'r0'). This
1151 should only be done if it is really necessary.
1152
1153 @cindex @code{.unwind_raw} directive, ARM
1154 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
1155 Insert one of more arbitrary unwind opcode bytes, which are known to adjust
1156 the stack pointer by @var{offset} bytes.
1157
1158 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1159 @code{.save @{r0@}}
1160
1161 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
1162
1163 @cindex @code{.vsave} directive, ARM
1164 @item .vsave @var{vfp-reglist}
1165 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1166 using FLDMD. Also works for VFPv3 registers
1167 that are to be restored using VLDM.
1168 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1169 instruction.
1170
1171 @smallexample
1172 @exdent @emph{VFP registers}
1173 .vsave @{d8, d9, d10@}
1174 fstmdd sp!, @{d8, d9, d10@}
1175 @exdent @emph{VFPv3 registers}
1176 .vsave @{d15, d16, d17@}
1177 vstm sp!, @{d15, d16, d17@}
1178 @end smallexample
1179
1180 Since FLDMX and FSTMX are now deprecated, this directive should be
1181 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1182
1183 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
1184 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
1185 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
1186 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1187
1188 @end table
1189
1190 @node ARM Opcodes
1191 @section Opcodes
1192
1193 @cindex ARM opcodes
1194 @cindex opcodes for ARM
1195 @code{@value{AS}} implements all the standard ARM opcodes. It also
1196 implements several pseudo opcodes, including several synthetic load
1197 instructions.
1198
1199 @table @code
1200
1201 @cindex @code{NOP} pseudo op, ARM
1202 @item NOP
1203 @smallexample
1204 nop
1205 @end smallexample
1206
1207 This pseudo op will always evaluate to a legal ARM instruction that does
1208 nothing. Currently it will evaluate to MOV r0, r0.
1209
1210 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1211 @item LDR
1212 @smallexample
1213 ldr <register> , = <expression>
1214 @end smallexample
1215
1216 If expression evaluates to a numeric constant then a MOV or MVN
1217 instruction will be used in place of the LDR instruction, if the
1218 constant can be generated by either of these instructions. Otherwise
1219 the constant will be placed into the nearest literal pool (if it not
1220 already there) and a PC relative LDR instruction will be generated.
1221
1222 @cindex @code{ADR reg,<label>} pseudo op, ARM
1223 @item ADR
1224 @smallexample
1225 adr <register> <label>
1226 @end smallexample
1227
1228 This instruction will load the address of @var{label} into the indicated
1229 register. The instruction will evaluate to a PC relative ADD or SUB
1230 instruction depending upon where the label is located. If the label is
1231 out of range, or if it is not defined in the same file (and section) as
1232 the ADR instruction, then an error will be generated. This instruction
1233 will not make use of the literal pool.
1234
1235 If @var{label} is a thumb function symbol, and thumb interworking has
1236 been enabled via the @option{-mthumb-interwork} option then the bottom
1237 bit of the value stored into @var{register} will be set. This allows
1238 the following sequence to work as expected:
1239
1240 @smallexample
1241 adr r0, thumb_function
1242 blx r0
1243 @end smallexample
1244
1245 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1246 @item ADRL
1247 @smallexample
1248 adrl <register> <label>
1249 @end smallexample
1250
1251 This instruction will load the address of @var{label} into the indicated
1252 register. The instruction will evaluate to one or two PC relative ADD
1253 or SUB instructions depending upon where the label is located. If a
1254 second instruction is not needed a NOP instruction will be generated in
1255 its place, so that this instruction is always 8 bytes long.
1256
1257 If the label is out of range, or if it is not defined in the same file
1258 (and section) as the ADRL instruction, then an error will be generated.
1259 This instruction will not make use of the literal pool.
1260
1261 If @var{label} is a thumb function symbol, and thumb interworking has
1262 been enabled via the @option{-mthumb-interwork} option then the bottom
1263 bit of the value stored into @var{register} will be set.
1264
1265 @end table
1266
1267 For information on the ARM or Thumb instruction sets, see @cite{ARM
1268 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1269 Ltd.
1270
1271 @node ARM Mapping Symbols
1272 @section Mapping Symbols
1273
1274 The ARM ELF specification requires that special symbols be inserted
1275 into object files to mark certain features:
1276
1277 @table @code
1278
1279 @cindex @code{$a}
1280 @item $a
1281 At the start of a region of code containing ARM instructions.
1282
1283 @cindex @code{$t}
1284 @item $t
1285 At the start of a region of code containing THUMB instructions.
1286
1287 @cindex @code{$d}
1288 @item $d
1289 At the start of a region of data.
1290
1291 @end table
1292
1293 The assembler will automatically insert these symbols for you - there
1294 is no need to code them yourself. Support for tagging symbols ($b,
1295 $f, $p and $m) which is also mentioned in the current ARM ELF
1296 specification is not implemented. This is because they have been
1297 dropped from the new EABI and so tools cannot rely upon their
1298 presence.
1299
1300 @node ARM Unwinding Tutorial
1301 @section Unwinding
1302
1303 The ABI for the ARM Architecture specifies a standard format for
1304 exception unwind information. This information is used when an
1305 exception is thrown to determine where control should be transferred.
1306 In particular, the unwind information is used to determine which
1307 function called the function that threw the exception, and which
1308 function called that one, and so forth. This information is also used
1309 to restore the values of callee-saved registers in the function
1310 catching the exception.
1311
1312 If you are writing functions in assembly code, and those functions
1313 call other functions that throw exceptions, you must use assembly
1314 pseudo ops to ensure that appropriate exception unwind information is
1315 generated. Otherwise, if one of the functions called by your assembly
1316 code throws an exception, the run-time library will be unable to
1317 unwind the stack through your assembly code and your program will not
1318 behave correctly.
1319
1320 To illustrate the use of these pseudo ops, we will examine the code
1321 that G++ generates for the following C++ input:
1322
1323 @verbatim
1324 void callee (int *);
1325
1326 int
1327 caller ()
1328 {
1329 int i;
1330 callee (&i);
1331 return i;
1332 }
1333 @end verbatim
1334
1335 This example does not show how to throw or catch an exception from
1336 assembly code. That is a much more complex operation and should
1337 always be done in a high-level language, such as C++, that directly
1338 supports exceptions.
1339
1340 The code generated by one particular version of G++ when compiling the
1341 example above is:
1342
1343 @verbatim
1344 _Z6callerv:
1345 .fnstart
1346 .LFB2:
1347 @ Function supports interworking.
1348 @ args = 0, pretend = 0, frame = 8
1349 @ frame_needed = 1, uses_anonymous_args = 0
1350 stmfd sp!, {fp, lr}
1351 .save {fp, lr}
1352 .LCFI0:
1353 .setfp fp, sp, #4
1354 add fp, sp, #4
1355 .LCFI1:
1356 .pad #8
1357 sub sp, sp, #8
1358 .LCFI2:
1359 sub r3, fp, #8
1360 mov r0, r3
1361 bl _Z6calleePi
1362 ldr r3, [fp, #-8]
1363 mov r0, r3
1364 sub sp, fp, #4
1365 ldmfd sp!, {fp, lr}
1366 bx lr
1367 .LFE2:
1368 .fnend
1369 @end verbatim
1370
1371 Of course, the sequence of instructions varies based on the options
1372 you pass to GCC and on the version of GCC in use. The exact
1373 instructions are not important since we are focusing on the pseudo ops
1374 that are used to generate unwind information.
1375
1376 An important assumption made by the unwinder is that the stack frame
1377 does not change during the body of the function. In particular, since
1378 we assume that the assembly code does not itself throw an exception,
1379 the only point where an exception can be thrown is from a call, such
1380 as the @code{bl} instruction above. At each call site, the same saved
1381 registers (including @code{lr}, which indicates the return address)
1382 must be located in the same locations relative to the frame pointer.
1383
1384 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1385 op appears immediately before the first instruction of the function
1386 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1387 op appears immediately after the last instruction of the function.
1388 These pseudo ops specify the range of the function.
1389
1390 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1391 @code{.pad}) matters; their exact locations are irrelevant. In the
1392 example above, the compiler emits the pseudo ops with particular
1393 instructions. That makes it easier to understand the code, but it is
1394 not required for correctness. It would work just as well to emit all
1395 of the pseudo ops other than @code{.fnend} in the same order, but
1396 immediately after @code{.fnstart}.
1397
1398 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1399 indicates registers that have been saved to the stack so that they can
1400 be restored before the function returns. The argument to the
1401 @code{.save} pseudo op is a list of registers to save. If a register
1402 is ``callee-saved'' (as specified by the ABI) and is modified by the
1403 function you are writing, then your code must save the value before it
1404 is modified and restore the original value before the function
1405 returns. If an exception is thrown, the run-time library restores the
1406 values of these registers from their locations on the stack before
1407 returning control to the exception handler. (Of course, if an
1408 exception is not thrown, the function that contains the @code{.save}
1409 pseudo op restores these registers in the function epilogue, as is
1410 done with the @code{ldmfd} instruction above.)
1411
1412 You do not have to save callee-saved registers at the very beginning
1413 of the function and you do not need to use the @code{.save} pseudo op
1414 immediately following the point at which the registers are saved.
1415 However, if you modify a callee-saved register, you must save it on
1416 the stack before modifying it and before calling any functions which
1417 might throw an exception. And, you must use the @code{.save} pseudo
1418 op to indicate that you have done so.
1419
1420 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1421 modification of the stack pointer that does not save any registers.
1422 The argument is the number of bytes (in decimal) that are subtracted
1423 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1424 subtracting from the stack pointer increases the size of the stack.)
1425
1426 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1427 indicates the register that contains the frame pointer. The first
1428 argument is the register that is set, which is typically @code{fp}.
1429 The second argument indicates the register from which the frame
1430 pointer takes its value. The third argument, if present, is the value
1431 (in decimal) added to the register specified by the second argument to
1432 compute the value of the frame pointer. You should not modify the
1433 frame pointer in the body of the function.
1434
1435 If you do not use a frame pointer, then you should not use the
1436 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1437 should avoid modifying the stack pointer outside of the function
1438 prologue. Otherwise, the run-time library will be unable to find
1439 saved registers when it is unwinding the stack.
1440
1441 The pseudo ops described above are sufficient for writing assembly
1442 code that calls functions which may throw exceptions. If you need to
1443 know more about the object-file format used to represent unwind
1444 information, you may consult the @cite{Exception Handling ABI for the
1445 ARM Architecture} available from @uref{http://infocenter.arm.com}.
1446
This page took 0.067138 seconds and 5 git commands to generate.