Add support for Cortex-A35
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a35},
123 @code{cortex-a53},
124 @code{cortex-a57},
125 @code{cortex-a72},
126 @code{cortex-r4},
127 @code{cortex-r4f},
128 @code{cortex-r5},
129 @code{cortex-r7},
130 @code{cortex-m7},
131 @code{cortex-m4},
132 @code{cortex-m3},
133 @code{cortex-m1},
134 @code{cortex-m0},
135 @code{cortex-m0plus},
136 @code{exynos-m1},
137 @code{marvell-pj4},
138 @code{marvell-whitney},
139 @code{qdf24xx},
140 @code{xgene1},
141 @code{xgene2},
142 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
143 @code{i80200} (Intel XScale processor)
144 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
145 and
146 @code{xscale}.
147 The special name @code{all} may be used to allow the
148 assembler to accept instructions valid for any ARM processor.
149
150 In addition to the basic instruction set, the assembler can be told to
151 accept various extension mnemonics that extend the processor using the
152 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
153 is equivalent to specifying @code{-mcpu=ep9312}.
154
155 Multiple extensions may be specified, separated by a @code{+}. The
156 extensions should be specified in ascending alphabetical order.
157
158 Some extensions may be restricted to particular architectures; this is
159 documented in the list of extensions below.
160
161 Extension mnemonics may also be removed from those the assembler accepts.
162 This is done be prepending @code{no} to the option that adds the extension.
163 Extensions that are removed should be listed after all extensions which have
164 been added, again in ascending alphabetical order. For example,
165 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
166
167
168 The following extensions are currently supported:
169 @code{crc}
170 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
171 @code{fp} (Floating Point Extensions for v8-A architecture),
172 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
173 @code{iwmmxt},
174 @code{iwmmxt2},
175 @code{xscale},
176 @code{maverick},
177 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
178 architectures),
179 @code{os} (Operating System for v6M architecture),
180 @code{sec} (Security Extensions for v6K and v7-A architectures),
181 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
182 @code{virt} (Virtualization Extensions for v7-A architecture, implies
183 @code{idiv}),
184 @code{pan} (Priviliged Access Never Extensions for v8-A architecture),
185 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
186 @code{simd})
187 and
188 @code{xscale}.
189
190 @cindex @code{-march=} command line option, ARM
191 @item -march=@var{architecture}[+@var{extension}@dots{}]
192 This option specifies the target architecture. The assembler will issue
193 an error message if an attempt is made to assemble an instruction which
194 will not execute on the target architecture. The following architecture
195 names are recognized:
196 @code{armv1},
197 @code{armv2},
198 @code{armv2a},
199 @code{armv2s},
200 @code{armv3},
201 @code{armv3m},
202 @code{armv4},
203 @code{armv4xm},
204 @code{armv4t},
205 @code{armv4txm},
206 @code{armv5},
207 @code{armv5t},
208 @code{armv5txm},
209 @code{armv5te},
210 @code{armv5texp},
211 @code{armv6},
212 @code{armv6j},
213 @code{armv6k},
214 @code{armv6z},
215 @code{armv6kz},
216 @code{armv6-m},
217 @code{armv6s-m},
218 @code{armv7},
219 @code{armv7-a},
220 @code{armv7ve},
221 @code{armv7-r},
222 @code{armv7-m},
223 @code{armv7e-m},
224 @code{armv8-a},
225 @code{armv8.1-a},
226 @code{iwmmxt}
227 @code{iwmmxt2}
228 and
229 @code{xscale}.
230 If both @code{-mcpu} and
231 @code{-march} are specified, the assembler will use
232 the setting for @code{-mcpu}.
233
234 The architecture option can be extended with the same instruction set
235 extension options as the @code{-mcpu} option.
236
237 @cindex @code{-mfpu=} command line option, ARM
238 @item -mfpu=@var{floating-point-format}
239
240 This option specifies the floating point format to assemble for. The
241 assembler will issue an error message if an attempt is made to assemble
242 an instruction which will not execute on the target floating point unit.
243 The following format options are recognized:
244 @code{softfpa},
245 @code{fpe},
246 @code{fpe2},
247 @code{fpe3},
248 @code{fpa},
249 @code{fpa10},
250 @code{fpa11},
251 @code{arm7500fe},
252 @code{softvfp},
253 @code{softvfp+vfp},
254 @code{vfp},
255 @code{vfp10},
256 @code{vfp10-r0},
257 @code{vfp9},
258 @code{vfpxd},
259 @code{vfpv2},
260 @code{vfpv3},
261 @code{vfpv3-fp16},
262 @code{vfpv3-d16},
263 @code{vfpv3-d16-fp16},
264 @code{vfpv3xd},
265 @code{vfpv3xd-d16},
266 @code{vfpv4},
267 @code{vfpv4-d16},
268 @code{fpv4-sp-d16},
269 @code{fpv5-sp-d16},
270 @code{fpv5-d16},
271 @code{fp-armv8},
272 @code{arm1020t},
273 @code{arm1020e},
274 @code{arm1136jf-s},
275 @code{maverick},
276 @code{neon},
277 @code{neon-vfpv4},
278 @code{neon-fp-armv8},
279 @code{crypto-neon-fp-armv8},
280 @code{neon-fp-armv8.1}
281 and
282 @code{crypto-neon-fp-armv8.1}.
283
284 In addition to determining which instructions are assembled, this option
285 also affects the way in which the @code{.double} assembler directive behaves
286 when assembling little-endian code.
287
288 The default is dependent on the processor selected. For Architecture 5 or
289 later, the default is to assembler for VFP instructions; for earlier
290 architectures the default is to assemble for FPA instructions.
291
292 @cindex @code{-mthumb} command line option, ARM
293 @item -mthumb
294 This option specifies that the assembler should start assembling Thumb
295 instructions; that is, it should behave as though the file starts with a
296 @code{.code 16} directive.
297
298 @cindex @code{-mthumb-interwork} command line option, ARM
299 @item -mthumb-interwork
300 This option specifies that the output generated by the assembler should
301 be marked as supporting interworking.
302
303 @cindex @code{-mimplicit-it} command line option, ARM
304 @item -mimplicit-it=never
305 @itemx -mimplicit-it=always
306 @itemx -mimplicit-it=arm
307 @itemx -mimplicit-it=thumb
308 The @code{-mimplicit-it} option controls the behavior of the assembler when
309 conditional instructions are not enclosed in IT blocks.
310 There are four possible behaviors.
311 If @code{never} is specified, such constructs cause a warning in ARM
312 code and an error in Thumb-2 code.
313 If @code{always} is specified, such constructs are accepted in both
314 ARM and Thumb-2 code, where the IT instruction is added implicitly.
315 If @code{arm} is specified, such constructs are accepted in ARM code
316 and cause an error in Thumb-2 code.
317 If @code{thumb} is specified, such constructs cause a warning in ARM
318 code and are accepted in Thumb-2 code. If you omit this option, the
319 behavior is equivalent to @code{-mimplicit-it=arm}.
320
321 @cindex @code{-mapcs-26} command line option, ARM
322 @cindex @code{-mapcs-32} command line option, ARM
323 @item -mapcs-26
324 @itemx -mapcs-32
325 These options specify that the output generated by the assembler should
326 be marked as supporting the indicated version of the Arm Procedure.
327 Calling Standard.
328
329 @cindex @code{-matpcs} command line option, ARM
330 @item -matpcs
331 This option specifies that the output generated by the assembler should
332 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
333 enabled this option will cause the assembler to create an empty
334 debugging section in the object file called .arm.atpcs. Debuggers can
335 use this to determine the ABI being used by.
336
337 @cindex @code{-mapcs-float} command line option, ARM
338 @item -mapcs-float
339 This indicates the floating point variant of the APCS should be
340 used. In this variant floating point arguments are passed in FP
341 registers rather than integer registers.
342
343 @cindex @code{-mapcs-reentrant} command line option, ARM
344 @item -mapcs-reentrant
345 This indicates that the reentrant variant of the APCS should be used.
346 This variant supports position independent code.
347
348 @cindex @code{-mfloat-abi=} command line option, ARM
349 @item -mfloat-abi=@var{abi}
350 This option specifies that the output generated by the assembler should be
351 marked as using specified floating point ABI.
352 The following values are recognized:
353 @code{soft},
354 @code{softfp}
355 and
356 @code{hard}.
357
358 @cindex @code{-eabi=} command line option, ARM
359 @item -meabi=@var{ver}
360 This option specifies which EABI version the produced object files should
361 conform to.
362 The following values are recognized:
363 @code{gnu},
364 @code{4}
365 and
366 @code{5}.
367
368 @cindex @code{-EB} command line option, ARM
369 @item -EB
370 This option specifies that the output generated by the assembler should
371 be marked as being encoded for a big-endian processor.
372
373 Note: If a program is being built for a system with big-endian data
374 and little-endian instructions then it should be assembled with the
375 @option{-EB} option, (all of it, code and data) and then linked with
376 the @option{--be8} option. This will reverse the endianness of the
377 instructions back to little-endian, but leave the data as big-endian.
378
379 @cindex @code{-EL} command line option, ARM
380 @item -EL
381 This option specifies that the output generated by the assembler should
382 be marked as being encoded for a little-endian processor.
383
384 @cindex @code{-k} command line option, ARM
385 @cindex PIC code generation for ARM
386 @item -k
387 This option specifies that the output of the assembler should be marked
388 as position-independent code (PIC).
389
390 @cindex @code{--fix-v4bx} command line option, ARM
391 @item --fix-v4bx
392 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
393 the linker option of the same name.
394
395 @cindex @code{-mwarn-deprecated} command line option, ARM
396 @item -mwarn-deprecated
397 @itemx -mno-warn-deprecated
398 Enable or disable warnings about using deprecated options or
399 features. The default is to warn.
400
401 @cindex @code{-mccs} command line option, ARM
402 @item -mccs
403 Turns on CodeComposer Studio assembly syntax compatibility mode.
404
405 @cindex @code{-mwarn-syms} command line option, ARM
406 @item -mwarn-syms
407 @itemx -mno-warn-syms
408 Enable or disable warnings about symbols that match the names of ARM
409 instructions. The default is to warn.
410
411 @end table
412
413
414 @node ARM Syntax
415 @section Syntax
416 @menu
417 * ARM-Instruction-Set:: Instruction Set
418 * ARM-Chars:: Special Characters
419 * ARM-Regs:: Register Names
420 * ARM-Relocations:: Relocations
421 * ARM-Neon-Alignment:: NEON Alignment Specifiers
422 @end menu
423
424 @node ARM-Instruction-Set
425 @subsection Instruction Set Syntax
426 Two slightly different syntaxes are support for ARM and THUMB
427 instructions. The default, @code{divided}, uses the old style where
428 ARM and THUMB instructions had their own, separate syntaxes. The new,
429 @code{unified} syntax, which can be selected via the @code{.syntax}
430 directive, and has the following main features:
431
432 @itemize @bullet
433 @item
434 Immediate operands do not require a @code{#} prefix.
435
436 @item
437 The @code{IT} instruction may appear, and if it does it is validated
438 against subsequent conditional affixes. In ARM mode it does not
439 generate machine code, in THUMB mode it does.
440
441 @item
442 For ARM instructions the conditional affixes always appear at the end
443 of the instruction. For THUMB instructions conditional affixes can be
444 used, but only inside the scope of an @code{IT} instruction.
445
446 @item
447 All of the instructions new to the V6T2 architecture (and later) are
448 available. (Only a few such instructions can be written in the
449 @code{divided} syntax).
450
451 @item
452 The @code{.N} and @code{.W} suffixes are recognized and honored.
453
454 @item
455 All instructions set the flags if and only if they have an @code{s}
456 affix.
457 @end itemize
458
459 @node ARM-Chars
460 @subsection Special Characters
461
462 @cindex line comment character, ARM
463 @cindex ARM line comment character
464 The presence of a @samp{@@} anywhere on a line indicates the start of
465 a comment that extends to the end of that line.
466
467 If a @samp{#} appears as the first character of a line then the whole
468 line is treated as a comment, but in this case the line could also be
469 a logical line number directive (@pxref{Comments}) or a preprocessor
470 control command (@pxref{Preprocessing}).
471
472 @cindex line separator, ARM
473 @cindex statement separator, ARM
474 @cindex ARM line separator
475 The @samp{;} character can be used instead of a newline to separate
476 statements.
477
478 @cindex immediate character, ARM
479 @cindex ARM immediate character
480 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
481
482 @cindex identifiers, ARM
483 @cindex ARM identifiers
484 *TODO* Explain about /data modifier on symbols.
485
486 @node ARM-Regs
487 @subsection Register Names
488
489 @cindex ARM register names
490 @cindex register names, ARM
491 *TODO* Explain about ARM register naming, and the predefined names.
492
493 @node ARM-Relocations
494 @subsection ARM relocation generation
495
496 @cindex data relocations, ARM
497 @cindex ARM data relocations
498 Specific data relocations can be generated by putting the relocation name
499 in parentheses after the symbol name. For example:
500
501 @smallexample
502 .word foo(TARGET1)
503 @end smallexample
504
505 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
506 @var{foo}.
507 The following relocations are supported:
508 @code{GOT},
509 @code{GOTOFF},
510 @code{TARGET1},
511 @code{TARGET2},
512 @code{SBREL},
513 @code{TLSGD},
514 @code{TLSLDM},
515 @code{TLSLDO},
516 @code{TLSDESC},
517 @code{TLSCALL},
518 @code{GOTTPOFF},
519 @code{GOT_PREL}
520 and
521 @code{TPOFF}.
522
523 For compatibility with older toolchains the assembler also accepts
524 @code{(PLT)} after branch targets. On legacy targets this will
525 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
526 targets it will encode either the @samp{R_ARM_CALL} or
527 @samp{R_ARM_JUMP24} relocation, as appropriate.
528
529 @cindex MOVW and MOVT relocations, ARM
530 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
531 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
532 respectively. For example to load the 32-bit address of foo into r0:
533
534 @smallexample
535 MOVW r0, #:lower16:foo
536 MOVT r0, #:upper16:foo
537 @end smallexample
538
539 @node ARM-Neon-Alignment
540 @subsection NEON Alignment Specifiers
541
542 @cindex alignment for NEON instructions
543 Some NEON load/store instructions allow an optional address
544 alignment qualifier.
545 The ARM documentation specifies that this is indicated by
546 @samp{@@ @var{align}}. However GAS already interprets
547 the @samp{@@} character as a "line comment" start,
548 so @samp{: @var{align}} is used instead. For example:
549
550 @smallexample
551 vld1.8 @{q0@}, [r0, :128]
552 @end smallexample
553
554 @node ARM Floating Point
555 @section Floating Point
556
557 @cindex floating point, ARM (@sc{ieee})
558 @cindex ARM floating point (@sc{ieee})
559 The ARM family uses @sc{ieee} floating-point numbers.
560
561 @node ARM Directives
562 @section ARM Machine Directives
563
564 @cindex machine directives, ARM
565 @cindex ARM machine directives
566 @table @code
567
568 @c AAAAAAAAAAAAAAAAAAAAAAAAA
569
570 @cindex @code{.2byte} directive, ARM
571 @cindex @code{.4byte} directive, ARM
572 @cindex @code{.8byte} directive, ARM
573 @item .2byte @var{expression} [, @var{expression}]*
574 @itemx .4byte @var{expression} [, @var{expression}]*
575 @itemx .8byte @var{expression} [, @var{expression}]*
576 These directives write 2, 4 or 8 byte values to the output section.
577
578 @cindex @code{.align} directive, ARM
579 @item .align @var{expression} [, @var{expression}]
580 This is the generic @var{.align} directive. For the ARM however if the
581 first argument is zero (ie no alignment is needed) the assembler will
582 behave as if the argument had been 2 (ie pad to the next four byte
583 boundary). This is for compatibility with ARM's own assembler.
584
585 @cindex @code{.arch} directive, ARM
586 @item .arch @var{name}
587 Select the target architecture. Valid values for @var{name} are the same as
588 for the @option{-march} commandline option.
589
590 Specifying @code{.arch} clears any previously selected architecture
591 extensions.
592
593 @cindex @code{.arch_extension} directive, ARM
594 @item .arch_extension @var{name}
595 Add or remove an architecture extension to the target architecture. Valid
596 values for @var{name} are the same as those accepted as architectural
597 extensions by the @option{-mcpu} commandline option.
598
599 @code{.arch_extension} may be used multiple times to add or remove extensions
600 incrementally to the architecture being compiled for.
601
602 @cindex @code{.arm} directive, ARM
603 @item .arm
604 This performs the same action as @var{.code 32}.
605
606 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
607
608 @cindex @code{.bss} directive, ARM
609 @item .bss
610 This directive switches to the @code{.bss} section.
611
612 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
613
614 @cindex @code{.cantunwind} directive, ARM
615 @item .cantunwind
616 Prevents unwinding through the current function. No personality routine
617 or exception table data is required or permitted.
618
619 @cindex @code{.code} directive, ARM
620 @item .code @code{[16|32]}
621 This directive selects the instruction set being generated. The value 16
622 selects Thumb, with the value 32 selecting ARM.
623
624 @cindex @code{.cpu} directive, ARM
625 @item .cpu @var{name}
626 Select the target processor. Valid values for @var{name} are the same as
627 for the @option{-mcpu} commandline option.
628
629 Specifying @code{.cpu} clears any previously selected architecture
630 extensions.
631
632 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
633
634 @cindex @code{.dn} and @code{.qn} directives, ARM
635 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
636 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
637
638 The @code{dn} and @code{qn} directives are used to create typed
639 and/or indexed register aliases for use in Advanced SIMD Extension
640 (Neon) instructions. The former should be used to create aliases
641 of double-precision registers, and the latter to create aliases of
642 quad-precision registers.
643
644 If these directives are used to create typed aliases, those aliases can
645 be used in Neon instructions instead of writing types after the mnemonic
646 or after each operand. For example:
647
648 @smallexample
649 x .dn d2.f32
650 y .dn d3.f32
651 z .dn d4.f32[1]
652 vmul x,y,z
653 @end smallexample
654
655 This is equivalent to writing the following:
656
657 @smallexample
658 vmul.f32 d2,d3,d4[1]
659 @end smallexample
660
661 Aliases created using @code{dn} or @code{qn} can be destroyed using
662 @code{unreq}.
663
664 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
665
666 @cindex @code{.eabi_attribute} directive, ARM
667 @item .eabi_attribute @var{tag}, @var{value}
668 Set the EABI object attribute @var{tag} to @var{value}.
669
670 The @var{tag} is either an attribute number, or one of the following:
671 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
672 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
673 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
674 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
675 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
676 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
677 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
678 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
679 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
680 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
681 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
682 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
683 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
684 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
685 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
686 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
687 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
688 @code{Tag_conformance}, @code{Tag_T2EE_use},
689 @code{Tag_Virtualization_use}
690
691 The @var{value} is either a @code{number}, @code{"string"}, or
692 @code{number, "string"} depending on the tag.
693
694 Note - the following legacy values are also accepted by @var{tag}:
695 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
696 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
697
698 @cindex @code{.even} directive, ARM
699 @item .even
700 This directive aligns to an even-numbered address.
701
702 @cindex @code{.extend} directive, ARM
703 @cindex @code{.ldouble} directive, ARM
704 @item .extend @var{expression} [, @var{expression}]*
705 @itemx .ldouble @var{expression} [, @var{expression}]*
706 These directives write 12byte long double floating-point values to the
707 output section. These are not compatible with current ARM processors
708 or ABIs.
709
710 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
711
712 @anchor{arm_fnend}
713 @cindex @code{.fnend} directive, ARM
714 @item .fnend
715 Marks the end of a function with an unwind table entry. The unwind index
716 table entry is created when this directive is processed.
717
718 If no personality routine has been specified then standard personality
719 routine 0 or 1 will be used, depending on the number of unwind opcodes
720 required.
721
722 @anchor{arm_fnstart}
723 @cindex @code{.fnstart} directive, ARM
724 @item .fnstart
725 Marks the start of a function with an unwind table entry.
726
727 @cindex @code{.force_thumb} directive, ARM
728 @item .force_thumb
729 This directive forces the selection of Thumb instructions, even if the
730 target processor does not support those instructions
731
732 @cindex @code{.fpu} directive, ARM
733 @item .fpu @var{name}
734 Select the floating-point unit to assemble for. Valid values for @var{name}
735 are the same as for the @option{-mfpu} commandline option.
736
737 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
738 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
739
740 @cindex @code{.handlerdata} directive, ARM
741 @item .handlerdata
742 Marks the end of the current function, and the start of the exception table
743 entry for that function. Anything between this directive and the
744 @code{.fnend} directive will be added to the exception table entry.
745
746 Must be preceded by a @code{.personality} or @code{.personalityindex}
747 directive.
748
749 @c IIIIIIIIIIIIIIIIIIIIIIIIII
750
751 @cindex @code{.inst} directive, ARM
752 @item .inst @var{opcode} [ , @dots{} ]
753 @itemx .inst.n @var{opcode} [ , @dots{} ]
754 @itemx .inst.w @var{opcode} [ , @dots{} ]
755 Generates the instruction corresponding to the numerical value @var{opcode}.
756 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
757 specified explicitly, overriding the normal encoding rules.
758
759 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
760 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
761 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
762
763 @item .ldouble @var{expression} [, @var{expression}]*
764 See @code{.extend}.
765
766 @cindex @code{.ltorg} directive, ARM
767 @item .ltorg
768 This directive causes the current contents of the literal pool to be
769 dumped into the current section (which is assumed to be the .text
770 section) at the current location (aligned to a word boundary).
771 @code{GAS} maintains a separate literal pool for each section and each
772 sub-section. The @code{.ltorg} directive will only affect the literal
773 pool of the current section and sub-section. At the end of assembly
774 all remaining, un-empty literal pools will automatically be dumped.
775
776 Note - older versions of @code{GAS} would dump the current literal
777 pool any time a section change occurred. This is no longer done, since
778 it prevents accurate control of the placement of literal pools.
779
780 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
781
782 @cindex @code{.movsp} directive, ARM
783 @item .movsp @var{reg} [, #@var{offset}]
784 Tell the unwinder that @var{reg} contains an offset from the current
785 stack pointer. If @var{offset} is not specified then it is assumed to be
786 zero.
787
788 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
789 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
790
791 @cindex @code{.object_arch} directive, ARM
792 @item .object_arch @var{name}
793 Override the architecture recorded in the EABI object attribute section.
794 Valid values for @var{name} are the same as for the @code{.arch} directive.
795 Typically this is useful when code uses runtime detection of CPU features.
796
797 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
798
799 @cindex @code{.packed} directive, ARM
800 @item .packed @var{expression} [, @var{expression}]*
801 This directive writes 12-byte packed floating-point values to the
802 output section. These are not compatible with current ARM processors
803 or ABIs.
804
805 @anchor{arm_pad}
806 @cindex @code{.pad} directive, ARM
807 @item .pad #@var{count}
808 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
809 A positive value indicates the function prologue allocated stack space by
810 decrementing the stack pointer.
811
812 @cindex @code{.personality} directive, ARM
813 @item .personality @var{name}
814 Sets the personality routine for the current function to @var{name}.
815
816 @cindex @code{.personalityindex} directive, ARM
817 @item .personalityindex @var{index}
818 Sets the personality routine for the current function to the EABI standard
819 routine number @var{index}
820
821 @cindex @code{.pool} directive, ARM
822 @item .pool
823 This is a synonym for .ltorg.
824
825 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
826 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
827
828 @cindex @code{.req} directive, ARM
829 @item @var{name} .req @var{register name}
830 This creates an alias for @var{register name} called @var{name}. For
831 example:
832
833 @smallexample
834 foo .req r0
835 @end smallexample
836
837 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
838
839 @anchor{arm_save}
840 @cindex @code{.save} directive, ARM
841 @item .save @var{reglist}
842 Generate unwinder annotations to restore the registers in @var{reglist}.
843 The format of @var{reglist} is the same as the corresponding store-multiple
844 instruction.
845
846 @smallexample
847 @exdent @emph{core registers}
848 .save @{r4, r5, r6, lr@}
849 stmfd sp!, @{r4, r5, r6, lr@}
850 @exdent @emph{FPA registers}
851 .save f4, 2
852 sfmfd f4, 2, [sp]!
853 @exdent @emph{VFP registers}
854 .save @{d8, d9, d10@}
855 fstmdx sp!, @{d8, d9, d10@}
856 @exdent @emph{iWMMXt registers}
857 .save @{wr10, wr11@}
858 wstrd wr11, [sp, #-8]!
859 wstrd wr10, [sp, #-8]!
860 or
861 .save wr11
862 wstrd wr11, [sp, #-8]!
863 .save wr10
864 wstrd wr10, [sp, #-8]!
865 @end smallexample
866
867 @anchor{arm_setfp}
868 @cindex @code{.setfp} directive, ARM
869 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
870 Make all unwinder annotations relative to a frame pointer. Without this
871 the unwinder will use offsets from the stack pointer.
872
873 The syntax of this directive is the same as the @code{add} or @code{mov}
874 instruction used to set the frame pointer. @var{spreg} must be either
875 @code{sp} or mentioned in a previous @code{.movsp} directive.
876
877 @smallexample
878 .movsp ip
879 mov ip, sp
880 @dots{}
881 .setfp fp, ip, #4
882 add fp, ip, #4
883 @end smallexample
884
885 @cindex @code{.secrel32} directive, ARM
886 @item .secrel32 @var{expression} [, @var{expression}]*
887 This directive emits relocations that evaluate to the section-relative
888 offset of each expression's symbol. This directive is only supported
889 for PE targets.
890
891 @cindex @code{.syntax} directive, ARM
892 @item .syntax [@code{unified} | @code{divided}]
893 This directive sets the Instruction Set Syntax as described in the
894 @ref{ARM-Instruction-Set} section.
895
896 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
897
898 @cindex @code{.thumb} directive, ARM
899 @item .thumb
900 This performs the same action as @var{.code 16}.
901
902 @cindex @code{.thumb_func} directive, ARM
903 @item .thumb_func
904 This directive specifies that the following symbol is the name of a
905 Thumb encoded function. This information is necessary in order to allow
906 the assembler and linker to generate correct code for interworking
907 between Arm and Thumb instructions and should be used even if
908 interworking is not going to be performed. The presence of this
909 directive also implies @code{.thumb}
910
911 This directive is not neccessary when generating EABI objects. On these
912 targets the encoding is implicit when generating Thumb code.
913
914 @cindex @code{.thumb_set} directive, ARM
915 @item .thumb_set
916 This performs the equivalent of a @code{.set} directive in that it
917 creates a symbol which is an alias for another symbol (possibly not yet
918 defined). This directive also has the added property in that it marks
919 the aliased symbol as being a thumb function entry point, in the same
920 way that the @code{.thumb_func} directive does.
921
922 @cindex @code{.tlsdescseq} directive, ARM
923 @item .tlsdescseq @var{tls-variable}
924 This directive is used to annotate parts of an inlined TLS descriptor
925 trampoline. Normally the trampoline is provided by the linker, and
926 this directive is not needed.
927
928 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
929
930 @cindex @code{.unreq} directive, ARM
931 @item .unreq @var{alias-name}
932 This undefines a register alias which was previously defined using the
933 @code{req}, @code{dn} or @code{qn} directives. For example:
934
935 @smallexample
936 foo .req r0
937 .unreq foo
938 @end smallexample
939
940 An error occurs if the name is undefined. Note - this pseudo op can
941 be used to delete builtin in register name aliases (eg 'r0'). This
942 should only be done if it is really necessary.
943
944 @cindex @code{.unwind_raw} directive, ARM
945 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
946 Insert one of more arbitary unwind opcode bytes, which are known to adjust
947 the stack pointer by @var{offset} bytes.
948
949 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
950 @code{.save @{r0@}}
951
952 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
953
954 @cindex @code{.vsave} directive, ARM
955 @item .vsave @var{vfp-reglist}
956 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
957 using FLDMD. Also works for VFPv3 registers
958 that are to be restored using VLDM.
959 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
960 instruction.
961
962 @smallexample
963 @exdent @emph{VFP registers}
964 .vsave @{d8, d9, d10@}
965 fstmdd sp!, @{d8, d9, d10@}
966 @exdent @emph{VFPv3 registers}
967 .vsave @{d15, d16, d17@}
968 vstm sp!, @{d15, d16, d17@}
969 @end smallexample
970
971 Since FLDMX and FSTMX are now deprecated, this directive should be
972 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
973
974 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
975 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
976 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
977 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
978
979 @end table
980
981 @node ARM Opcodes
982 @section Opcodes
983
984 @cindex ARM opcodes
985 @cindex opcodes for ARM
986 @code{@value{AS}} implements all the standard ARM opcodes. It also
987 implements several pseudo opcodes, including several synthetic load
988 instructions.
989
990 @table @code
991
992 @cindex @code{NOP} pseudo op, ARM
993 @item NOP
994 @smallexample
995 nop
996 @end smallexample
997
998 This pseudo op will always evaluate to a legal ARM instruction that does
999 nothing. Currently it will evaluate to MOV r0, r0.
1000
1001 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1002 @item LDR
1003 @smallexample
1004 ldr <register> , = <expression>
1005 @end smallexample
1006
1007 If expression evaluates to a numeric constant then a MOV or MVN
1008 instruction will be used in place of the LDR instruction, if the
1009 constant can be generated by either of these instructions. Otherwise
1010 the constant will be placed into the nearest literal pool (if it not
1011 already there) and a PC relative LDR instruction will be generated.
1012
1013 @cindex @code{ADR reg,<label>} pseudo op, ARM
1014 @item ADR
1015 @smallexample
1016 adr <register> <label>
1017 @end smallexample
1018
1019 This instruction will load the address of @var{label} into the indicated
1020 register. The instruction will evaluate to a PC relative ADD or SUB
1021 instruction depending upon where the label is located. If the label is
1022 out of range, or if it is not defined in the same file (and section) as
1023 the ADR instruction, then an error will be generated. This instruction
1024 will not make use of the literal pool.
1025
1026 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1027 @item ADRL
1028 @smallexample
1029 adrl <register> <label>
1030 @end smallexample
1031
1032 This instruction will load the address of @var{label} into the indicated
1033 register. The instruction will evaluate to one or two PC relative ADD
1034 or SUB instructions depending upon where the label is located. If a
1035 second instruction is not needed a NOP instruction will be generated in
1036 its place, so that this instruction is always 8 bytes long.
1037
1038 If the label is out of range, or if it is not defined in the same file
1039 (and section) as the ADRL instruction, then an error will be generated.
1040 This instruction will not make use of the literal pool.
1041
1042 @end table
1043
1044 For information on the ARM or Thumb instruction sets, see @cite{ARM
1045 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1046 Ltd.
1047
1048 @node ARM Mapping Symbols
1049 @section Mapping Symbols
1050
1051 The ARM ELF specification requires that special symbols be inserted
1052 into object files to mark certain features:
1053
1054 @table @code
1055
1056 @cindex @code{$a}
1057 @item $a
1058 At the start of a region of code containing ARM instructions.
1059
1060 @cindex @code{$t}
1061 @item $t
1062 At the start of a region of code containing THUMB instructions.
1063
1064 @cindex @code{$d}
1065 @item $d
1066 At the start of a region of data.
1067
1068 @end table
1069
1070 The assembler will automatically insert these symbols for you - there
1071 is no need to code them yourself. Support for tagging symbols ($b,
1072 $f, $p and $m) which is also mentioned in the current ARM ELF
1073 specification is not implemented. This is because they have been
1074 dropped from the new EABI and so tools cannot rely upon their
1075 presence.
1076
1077 @node ARM Unwinding Tutorial
1078 @section Unwinding
1079
1080 The ABI for the ARM Architecture specifies a standard format for
1081 exception unwind information. This information is used when an
1082 exception is thrown to determine where control should be transferred.
1083 In particular, the unwind information is used to determine which
1084 function called the function that threw the exception, and which
1085 function called that one, and so forth. This information is also used
1086 to restore the values of callee-saved registers in the function
1087 catching the exception.
1088
1089 If you are writing functions in assembly code, and those functions
1090 call other functions that throw exceptions, you must use assembly
1091 pseudo ops to ensure that appropriate exception unwind information is
1092 generated. Otherwise, if one of the functions called by your assembly
1093 code throws an exception, the run-time library will be unable to
1094 unwind the stack through your assembly code and your program will not
1095 behave correctly.
1096
1097 To illustrate the use of these pseudo ops, we will examine the code
1098 that G++ generates for the following C++ input:
1099
1100 @verbatim
1101 void callee (int *);
1102
1103 int
1104 caller ()
1105 {
1106 int i;
1107 callee (&i);
1108 return i;
1109 }
1110 @end verbatim
1111
1112 This example does not show how to throw or catch an exception from
1113 assembly code. That is a much more complex operation and should
1114 always be done in a high-level language, such as C++, that directly
1115 supports exceptions.
1116
1117 The code generated by one particular version of G++ when compiling the
1118 example above is:
1119
1120 @verbatim
1121 _Z6callerv:
1122 .fnstart
1123 .LFB2:
1124 @ Function supports interworking.
1125 @ args = 0, pretend = 0, frame = 8
1126 @ frame_needed = 1, uses_anonymous_args = 0
1127 stmfd sp!, {fp, lr}
1128 .save {fp, lr}
1129 .LCFI0:
1130 .setfp fp, sp, #4
1131 add fp, sp, #4
1132 .LCFI1:
1133 .pad #8
1134 sub sp, sp, #8
1135 .LCFI2:
1136 sub r3, fp, #8
1137 mov r0, r3
1138 bl _Z6calleePi
1139 ldr r3, [fp, #-8]
1140 mov r0, r3
1141 sub sp, fp, #4
1142 ldmfd sp!, {fp, lr}
1143 bx lr
1144 .LFE2:
1145 .fnend
1146 @end verbatim
1147
1148 Of course, the sequence of instructions varies based on the options
1149 you pass to GCC and on the version of GCC in use. The exact
1150 instructions are not important since we are focusing on the pseudo ops
1151 that are used to generate unwind information.
1152
1153 An important assumption made by the unwinder is that the stack frame
1154 does not change during the body of the function. In particular, since
1155 we assume that the assembly code does not itself throw an exception,
1156 the only point where an exception can be thrown is from a call, such
1157 as the @code{bl} instruction above. At each call site, the same saved
1158 registers (including @code{lr}, which indicates the return address)
1159 must be located in the same locations relative to the frame pointer.
1160
1161 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1162 op appears immediately before the first instruction of the function
1163 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1164 op appears immediately after the last instruction of the function.
1165 These pseudo ops specify the range of the function.
1166
1167 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1168 @code{.pad}) matters; their exact locations are irrelevant. In the
1169 example above, the compiler emits the pseudo ops with particular
1170 instructions. That makes it easier to understand the code, but it is
1171 not required for correctness. It would work just as well to emit all
1172 of the pseudo ops other than @code{.fnend} in the same order, but
1173 immediately after @code{.fnstart}.
1174
1175 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1176 indicates registers that have been saved to the stack so that they can
1177 be restored before the function returns. The argument to the
1178 @code{.save} pseudo op is a list of registers to save. If a register
1179 is ``callee-saved'' (as specified by the ABI) and is modified by the
1180 function you are writing, then your code must save the value before it
1181 is modified and restore the original value before the function
1182 returns. If an exception is thrown, the run-time library restores the
1183 values of these registers from their locations on the stack before
1184 returning control to the exception handler. (Of course, if an
1185 exception is not thrown, the function that contains the @code{.save}
1186 pseudo op restores these registers in the function epilogue, as is
1187 done with the @code{ldmfd} instruction above.)
1188
1189 You do not have to save callee-saved registers at the very beginning
1190 of the function and you do not need to use the @code{.save} pseudo op
1191 immediately following the point at which the registers are saved.
1192 However, if you modify a callee-saved register, you must save it on
1193 the stack before modifying it and before calling any functions which
1194 might throw an exception. And, you must use the @code{.save} pseudo
1195 op to indicate that you have done so.
1196
1197 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1198 modification of the stack pointer that does not save any registers.
1199 The argument is the number of bytes (in decimal) that are subtracted
1200 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1201 subtracting from the stack pointer increases the size of the stack.)
1202
1203 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1204 indicates the register that contains the frame pointer. The first
1205 argument is the register that is set, which is typically @code{fp}.
1206 The second argument indicates the register from which the frame
1207 pointer takes its value. The third argument, if present, is the value
1208 (in decimal) added to the register specified by the second argument to
1209 compute the value of the frame pointer. You should not modify the
1210 frame pointer in the body of the function.
1211
1212 If you do not use a frame pointer, then you should not use the
1213 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1214 should avoid modifying the stack pointer outside of the function
1215 prologue. Otherwise, the run-time library will be unable to find
1216 saved registers when it is unwinding the stack.
1217
1218 The pseudo ops described above are sufficient for writing assembly
1219 code that calls functions which may throw exceptions. If you need to
1220 know more about the object-file format used to represent unwind
1221 information, you may consult the @cite{Exception Handling ABI for the
1222 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.061284 seconds and 5 git commands to generate.