[arm][gas] Add support for Neoverse N1
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command-line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a17},
123 @code{cortex-a32},
124 @code{cortex-a35},
125 @code{cortex-a53},
126 @code{cortex-a55},
127 @code{cortex-a57},
128 @code{cortex-a72},
129 @code{cortex-a73},
130 @code{cortex-a75},
131 @code{cortex-a76},
132 @code{ares},
133 @code{cortex-r4},
134 @code{cortex-r4f},
135 @code{cortex-r5},
136 @code{cortex-r7},
137 @code{cortex-r8},
138 @code{cortex-r52},
139 @code{cortex-m33},
140 @code{cortex-m23},
141 @code{cortex-m7},
142 @code{cortex-m4},
143 @code{cortex-m3},
144 @code{cortex-m1},
145 @code{cortex-m0},
146 @code{cortex-m0plus},
147 @code{exynos-m1},
148 @code{marvell-pj4},
149 @code{marvell-whitney},
150 @code{neoverse-n1},
151 @code{xgene1},
152 @code{xgene2},
153 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
154 @code{i80200} (Intel XScale processor)
155 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
156 and
157 @code{xscale}.
158 The special name @code{all} may be used to allow the
159 assembler to accept instructions valid for any ARM processor.
160
161 In addition to the basic instruction set, the assembler can be told to
162 accept various extension mnemonics that extend the processor using the
163 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
164 is equivalent to specifying @code{-mcpu=ep9312}.
165
166 Multiple extensions may be specified, separated by a @code{+}. The
167 extensions should be specified in ascending alphabetical order.
168
169 Some extensions may be restricted to particular architectures; this is
170 documented in the list of extensions below.
171
172 Extension mnemonics may also be removed from those the assembler accepts.
173 This is done be prepending @code{no} to the option that adds the extension.
174 Extensions that are removed should be listed after all extensions which have
175 been added, again in ascending alphabetical order. For example,
176 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
177
178
179 The following extensions are currently supported:
180 @code{crc}
181 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
182 @code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
183 @code{fp} (Floating Point Extensions for v8-A architecture),
184 @code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
185 @code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
186 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
187 @code{iwmmxt},
188 @code{iwmmxt2},
189 @code{xscale},
190 @code{maverick},
191 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
192 architectures),
193 @code{os} (Operating System for v6M architecture),
194 @code{predres} (Execution and Data Prediction Restriction Instruction for
195 v8-A architectures, added by default from v8.5-A),
196 @code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
197 default from v8.5-A),
198 @code{sec} (Security Extensions for v6K and v7-A architectures),
199 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
200 @code{virt} (Virtualization Extensions for v7-A architecture, implies
201 @code{idiv}),
202 @code{pan} (Privileged Access Never Extensions for v8-A architecture),
203 @code{ras} (Reliability, Availability and Serviceability extensions
204 for v8-A architecture),
205 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
206 @code{simd})
207 and
208 @code{xscale}.
209
210 @cindex @code{-march=} command-line option, ARM
211 @item -march=@var{architecture}[+@var{extension}@dots{}]
212 This option specifies the target architecture. The assembler will issue
213 an error message if an attempt is made to assemble an instruction which
214 will not execute on the target architecture. The following architecture
215 names are recognized:
216 @code{armv1},
217 @code{armv2},
218 @code{armv2a},
219 @code{armv2s},
220 @code{armv3},
221 @code{armv3m},
222 @code{armv4},
223 @code{armv4xm},
224 @code{armv4t},
225 @code{armv4txm},
226 @code{armv5},
227 @code{armv5t},
228 @code{armv5txm},
229 @code{armv5te},
230 @code{armv5texp},
231 @code{armv6},
232 @code{armv6j},
233 @code{armv6k},
234 @code{armv6z},
235 @code{armv6kz},
236 @code{armv6-m},
237 @code{armv6s-m},
238 @code{armv7},
239 @code{armv7-a},
240 @code{armv7ve},
241 @code{armv7-r},
242 @code{armv7-m},
243 @code{armv7e-m},
244 @code{armv8-a},
245 @code{armv8.1-a},
246 @code{armv8.2-a},
247 @code{armv8.3-a},
248 @code{armv8-r},
249 @code{armv8.4-a},
250 @code{armv8.5-a},
251 @code{iwmmxt}
252 @code{iwmmxt2}
253 and
254 @code{xscale}.
255 If both @code{-mcpu} and
256 @code{-march} are specified, the assembler will use
257 the setting for @code{-mcpu}.
258
259 The architecture option can be extended with the same instruction set
260 extension options as the @code{-mcpu} option.
261
262 @cindex @code{-mfpu=} command-line option, ARM
263 @item -mfpu=@var{floating-point-format}
264
265 This option specifies the floating point format to assemble for. The
266 assembler will issue an error message if an attempt is made to assemble
267 an instruction which will not execute on the target floating point unit.
268 The following format options are recognized:
269 @code{softfpa},
270 @code{fpe},
271 @code{fpe2},
272 @code{fpe3},
273 @code{fpa},
274 @code{fpa10},
275 @code{fpa11},
276 @code{arm7500fe},
277 @code{softvfp},
278 @code{softvfp+vfp},
279 @code{vfp},
280 @code{vfp10},
281 @code{vfp10-r0},
282 @code{vfp9},
283 @code{vfpxd},
284 @code{vfpv2},
285 @code{vfpv3},
286 @code{vfpv3-fp16},
287 @code{vfpv3-d16},
288 @code{vfpv3-d16-fp16},
289 @code{vfpv3xd},
290 @code{vfpv3xd-d16},
291 @code{vfpv4},
292 @code{vfpv4-d16},
293 @code{fpv4-sp-d16},
294 @code{fpv5-sp-d16},
295 @code{fpv5-d16},
296 @code{fp-armv8},
297 @code{arm1020t},
298 @code{arm1020e},
299 @code{arm1136jf-s},
300 @code{maverick},
301 @code{neon},
302 @code{neon-vfpv3},
303 @code{neon-fp16},
304 @code{neon-vfpv4},
305 @code{neon-fp-armv8},
306 @code{crypto-neon-fp-armv8},
307 @code{neon-fp-armv8.1}
308 and
309 @code{crypto-neon-fp-armv8.1}.
310
311 In addition to determining which instructions are assembled, this option
312 also affects the way in which the @code{.double} assembler directive behaves
313 when assembling little-endian code.
314
315 The default is dependent on the processor selected. For Architecture 5 or
316 later, the default is to assemble for VFP instructions; for earlier
317 architectures the default is to assemble for FPA instructions.
318
319 @cindex @code{-mthumb} command-line option, ARM
320 @item -mthumb
321 This option specifies that the assembler should start assembling Thumb
322 instructions; that is, it should behave as though the file starts with a
323 @code{.code 16} directive.
324
325 @cindex @code{-mthumb-interwork} command-line option, ARM
326 @item -mthumb-interwork
327 This option specifies that the output generated by the assembler should
328 be marked as supporting interworking. It also affects the behaviour
329 of the @code{ADR} and @code{ADRL} pseudo opcodes.
330
331 @cindex @code{-mimplicit-it} command-line option, ARM
332 @item -mimplicit-it=never
333 @itemx -mimplicit-it=always
334 @itemx -mimplicit-it=arm
335 @itemx -mimplicit-it=thumb
336 The @code{-mimplicit-it} option controls the behavior of the assembler when
337 conditional instructions are not enclosed in IT blocks.
338 There are four possible behaviors.
339 If @code{never} is specified, such constructs cause a warning in ARM
340 code and an error in Thumb-2 code.
341 If @code{always} is specified, such constructs are accepted in both
342 ARM and Thumb-2 code, where the IT instruction is added implicitly.
343 If @code{arm} is specified, such constructs are accepted in ARM code
344 and cause an error in Thumb-2 code.
345 If @code{thumb} is specified, such constructs cause a warning in ARM
346 code and are accepted in Thumb-2 code. If you omit this option, the
347 behavior is equivalent to @code{-mimplicit-it=arm}.
348
349 @cindex @code{-mapcs-26} command-line option, ARM
350 @cindex @code{-mapcs-32} command-line option, ARM
351 @item -mapcs-26
352 @itemx -mapcs-32
353 These options specify that the output generated by the assembler should
354 be marked as supporting the indicated version of the Arm Procedure.
355 Calling Standard.
356
357 @cindex @code{-matpcs} command-line option, ARM
358 @item -matpcs
359 This option specifies that the output generated by the assembler should
360 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
361 enabled this option will cause the assembler to create an empty
362 debugging section in the object file called .arm.atpcs. Debuggers can
363 use this to determine the ABI being used by.
364
365 @cindex @code{-mapcs-float} command-line option, ARM
366 @item -mapcs-float
367 This indicates the floating point variant of the APCS should be
368 used. In this variant floating point arguments are passed in FP
369 registers rather than integer registers.
370
371 @cindex @code{-mapcs-reentrant} command-line option, ARM
372 @item -mapcs-reentrant
373 This indicates that the reentrant variant of the APCS should be used.
374 This variant supports position independent code.
375
376 @cindex @code{-mfloat-abi=} command-line option, ARM
377 @item -mfloat-abi=@var{abi}
378 This option specifies that the output generated by the assembler should be
379 marked as using specified floating point ABI.
380 The following values are recognized:
381 @code{soft},
382 @code{softfp}
383 and
384 @code{hard}.
385
386 @cindex @code{-eabi=} command-line option, ARM
387 @item -meabi=@var{ver}
388 This option specifies which EABI version the produced object files should
389 conform to.
390 The following values are recognized:
391 @code{gnu},
392 @code{4}
393 and
394 @code{5}.
395
396 @cindex @code{-EB} command-line option, ARM
397 @item -EB
398 This option specifies that the output generated by the assembler should
399 be marked as being encoded for a big-endian processor.
400
401 Note: If a program is being built for a system with big-endian data
402 and little-endian instructions then it should be assembled with the
403 @option{-EB} option, (all of it, code and data) and then linked with
404 the @option{--be8} option. This will reverse the endianness of the
405 instructions back to little-endian, but leave the data as big-endian.
406
407 @cindex @code{-EL} command-line option, ARM
408 @item -EL
409 This option specifies that the output generated by the assembler should
410 be marked as being encoded for a little-endian processor.
411
412 @cindex @code{-k} command-line option, ARM
413 @cindex PIC code generation for ARM
414 @item -k
415 This option specifies that the output of the assembler should be marked
416 as position-independent code (PIC).
417
418 @cindex @code{--fix-v4bx} command-line option, ARM
419 @item --fix-v4bx
420 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
421 the linker option of the same name.
422
423 @cindex @code{-mwarn-deprecated} command-line option, ARM
424 @item -mwarn-deprecated
425 @itemx -mno-warn-deprecated
426 Enable or disable warnings about using deprecated options or
427 features. The default is to warn.
428
429 @cindex @code{-mccs} command-line option, ARM
430 @item -mccs
431 Turns on CodeComposer Studio assembly syntax compatibility mode.
432
433 @cindex @code{-mwarn-syms} command-line option, ARM
434 @item -mwarn-syms
435 @itemx -mno-warn-syms
436 Enable or disable warnings about symbols that match the names of ARM
437 instructions. The default is to warn.
438
439 @end table
440
441
442 @node ARM Syntax
443 @section Syntax
444 @menu
445 * ARM-Instruction-Set:: Instruction Set
446 * ARM-Chars:: Special Characters
447 * ARM-Regs:: Register Names
448 * ARM-Relocations:: Relocations
449 * ARM-Neon-Alignment:: NEON Alignment Specifiers
450 @end menu
451
452 @node ARM-Instruction-Set
453 @subsection Instruction Set Syntax
454 Two slightly different syntaxes are support for ARM and THUMB
455 instructions. The default, @code{divided}, uses the old style where
456 ARM and THUMB instructions had their own, separate syntaxes. The new,
457 @code{unified} syntax, which can be selected via the @code{.syntax}
458 directive, and has the following main features:
459
460 @itemize @bullet
461 @item
462 Immediate operands do not require a @code{#} prefix.
463
464 @item
465 The @code{IT} instruction may appear, and if it does it is validated
466 against subsequent conditional affixes. In ARM mode it does not
467 generate machine code, in THUMB mode it does.
468
469 @item
470 For ARM instructions the conditional affixes always appear at the end
471 of the instruction. For THUMB instructions conditional affixes can be
472 used, but only inside the scope of an @code{IT} instruction.
473
474 @item
475 All of the instructions new to the V6T2 architecture (and later) are
476 available. (Only a few such instructions can be written in the
477 @code{divided} syntax).
478
479 @item
480 The @code{.N} and @code{.W} suffixes are recognized and honored.
481
482 @item
483 All instructions set the flags if and only if they have an @code{s}
484 affix.
485 @end itemize
486
487 @node ARM-Chars
488 @subsection Special Characters
489
490 @cindex line comment character, ARM
491 @cindex ARM line comment character
492 The presence of a @samp{@@} anywhere on a line indicates the start of
493 a comment that extends to the end of that line.
494
495 If a @samp{#} appears as the first character of a line then the whole
496 line is treated as a comment, but in this case the line could also be
497 a logical line number directive (@pxref{Comments}) or a preprocessor
498 control command (@pxref{Preprocessing}).
499
500 @cindex line separator, ARM
501 @cindex statement separator, ARM
502 @cindex ARM line separator
503 The @samp{;} character can be used instead of a newline to separate
504 statements.
505
506 @cindex immediate character, ARM
507 @cindex ARM immediate character
508 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
509
510 @cindex identifiers, ARM
511 @cindex ARM identifiers
512 *TODO* Explain about /data modifier on symbols.
513
514 @node ARM-Regs
515 @subsection Register Names
516
517 @cindex ARM register names
518 @cindex register names, ARM
519 *TODO* Explain about ARM register naming, and the predefined names.
520
521 @node ARM-Relocations
522 @subsection ARM relocation generation
523
524 @cindex data relocations, ARM
525 @cindex ARM data relocations
526 Specific data relocations can be generated by putting the relocation name
527 in parentheses after the symbol name. For example:
528
529 @smallexample
530 .word foo(TARGET1)
531 @end smallexample
532
533 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
534 @var{foo}.
535 The following relocations are supported:
536 @code{GOT},
537 @code{GOTOFF},
538 @code{TARGET1},
539 @code{TARGET2},
540 @code{SBREL},
541 @code{TLSGD},
542 @code{TLSLDM},
543 @code{TLSLDO},
544 @code{TLSDESC},
545 @code{TLSCALL},
546 @code{GOTTPOFF},
547 @code{GOT_PREL}
548 and
549 @code{TPOFF}.
550
551 For compatibility with older toolchains the assembler also accepts
552 @code{(PLT)} after branch targets. On legacy targets this will
553 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
554 targets it will encode either the @samp{R_ARM_CALL} or
555 @samp{R_ARM_JUMP24} relocation, as appropriate.
556
557 @cindex MOVW and MOVT relocations, ARM
558 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
559 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
560 respectively. For example to load the 32-bit address of foo into r0:
561
562 @smallexample
563 MOVW r0, #:lower16:foo
564 MOVT r0, #:upper16:foo
565 @end smallexample
566
567 Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
568 @samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
569 generated by prefixing the value with @samp{#:lower0_7:#},
570 @samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
571 respectively. For example to load the 32-bit address of foo into r0:
572
573 @smallexample
574 MOVS r0, #:upper8_15:#foo
575 LSLS r0, r0, #8
576 ADDS r0, #:upper0_7:#foo
577 LSLS r0, r0, #8
578 ADDS r0, #:lower8_15:#foo
579 LSLS r0, r0, #8
580 ADDS r0, #:lower0_7:#foo
581 @end smallexample
582
583 @node ARM-Neon-Alignment
584 @subsection NEON Alignment Specifiers
585
586 @cindex alignment for NEON instructions
587 Some NEON load/store instructions allow an optional address
588 alignment qualifier.
589 The ARM documentation specifies that this is indicated by
590 @samp{@@ @var{align}}. However GAS already interprets
591 the @samp{@@} character as a "line comment" start,
592 so @samp{: @var{align}} is used instead. For example:
593
594 @smallexample
595 vld1.8 @{q0@}, [r0, :128]
596 @end smallexample
597
598 @node ARM Floating Point
599 @section Floating Point
600
601 @cindex floating point, ARM (@sc{ieee})
602 @cindex ARM floating point (@sc{ieee})
603 The ARM family uses @sc{ieee} floating-point numbers.
604
605 @node ARM Directives
606 @section ARM Machine Directives
607
608 @cindex machine directives, ARM
609 @cindex ARM machine directives
610 @table @code
611
612 @c AAAAAAAAAAAAAAAAAAAAAAAAA
613
614 @ifclear ELF
615 @cindex @code{.2byte} directive, ARM
616 @cindex @code{.4byte} directive, ARM
617 @cindex @code{.8byte} directive, ARM
618 @item .2byte @var{expression} [, @var{expression}]*
619 @itemx .4byte @var{expression} [, @var{expression}]*
620 @itemx .8byte @var{expression} [, @var{expression}]*
621 These directives write 2, 4 or 8 byte values to the output section.
622 @end ifclear
623
624 @cindex @code{.align} directive, ARM
625 @item .align @var{expression} [, @var{expression}]
626 This is the generic @var{.align} directive. For the ARM however if the
627 first argument is zero (ie no alignment is needed) the assembler will
628 behave as if the argument had been 2 (ie pad to the next four byte
629 boundary). This is for compatibility with ARM's own assembler.
630
631 @cindex @code{.arch} directive, ARM
632 @item .arch @var{name}
633 Select the target architecture. Valid values for @var{name} are the same as
634 for the @option{-march} command-line option without the instruction set
635 extension.
636
637 Specifying @code{.arch} clears any previously selected architecture
638 extensions.
639
640 @cindex @code{.arch_extension} directive, ARM
641 @item .arch_extension @var{name}
642 Add or remove an architecture extension to the target architecture. Valid
643 values for @var{name} are the same as those accepted as architectural
644 extensions by the @option{-mcpu} and @option{-march} command-line options.
645
646 @code{.arch_extension} may be used multiple times to add or remove extensions
647 incrementally to the architecture being compiled for.
648
649 @cindex @code{.arm} directive, ARM
650 @item .arm
651 This performs the same action as @var{.code 32}.
652
653 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
654
655 @cindex @code{.bss} directive, ARM
656 @item .bss
657 This directive switches to the @code{.bss} section.
658
659 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
660
661 @cindex @code{.cantunwind} directive, ARM
662 @item .cantunwind
663 Prevents unwinding through the current function. No personality routine
664 or exception table data is required or permitted.
665
666 @cindex @code{.code} directive, ARM
667 @item .code @code{[16|32]}
668 This directive selects the instruction set being generated. The value 16
669 selects Thumb, with the value 32 selecting ARM.
670
671 @cindex @code{.cpu} directive, ARM
672 @item .cpu @var{name}
673 Select the target processor. Valid values for @var{name} are the same as
674 for the @option{-mcpu} command-line option without the instruction set
675 extension.
676
677 Specifying @code{.cpu} clears any previously selected architecture
678 extensions.
679
680 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
681
682 @cindex @code{.dn} and @code{.qn} directives, ARM
683 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
684 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
685
686 The @code{dn} and @code{qn} directives are used to create typed
687 and/or indexed register aliases for use in Advanced SIMD Extension
688 (Neon) instructions. The former should be used to create aliases
689 of double-precision registers, and the latter to create aliases of
690 quad-precision registers.
691
692 If these directives are used to create typed aliases, those aliases can
693 be used in Neon instructions instead of writing types after the mnemonic
694 or after each operand. For example:
695
696 @smallexample
697 x .dn d2.f32
698 y .dn d3.f32
699 z .dn d4.f32[1]
700 vmul x,y,z
701 @end smallexample
702
703 This is equivalent to writing the following:
704
705 @smallexample
706 vmul.f32 d2,d3,d4[1]
707 @end smallexample
708
709 Aliases created using @code{dn} or @code{qn} can be destroyed using
710 @code{unreq}.
711
712 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
713
714 @cindex @code{.eabi_attribute} directive, ARM
715 @item .eabi_attribute @var{tag}, @var{value}
716 Set the EABI object attribute @var{tag} to @var{value}.
717
718 The @var{tag} is either an attribute number, or one of the following:
719 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
720 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
721 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
722 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
723 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
724 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
725 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
726 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
727 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
728 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
729 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
730 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
731 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
732 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
733 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
734 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
735 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
736 @code{Tag_conformance}, @code{Tag_T2EE_use},
737 @code{Tag_Virtualization_use}
738
739 The @var{value} is either a @code{number}, @code{"string"}, or
740 @code{number, "string"} depending on the tag.
741
742 Note - the following legacy values are also accepted by @var{tag}:
743 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
744 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
745
746 @cindex @code{.even} directive, ARM
747 @item .even
748 This directive aligns to an even-numbered address.
749
750 @cindex @code{.extend} directive, ARM
751 @cindex @code{.ldouble} directive, ARM
752 @item .extend @var{expression} [, @var{expression}]*
753 @itemx .ldouble @var{expression} [, @var{expression}]*
754 These directives write 12byte long double floating-point values to the
755 output section. These are not compatible with current ARM processors
756 or ABIs.
757
758 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
759
760 @anchor{arm_fnend}
761 @cindex @code{.fnend} directive, ARM
762 @item .fnend
763 Marks the end of a function with an unwind table entry. The unwind index
764 table entry is created when this directive is processed.
765
766 If no personality routine has been specified then standard personality
767 routine 0 or 1 will be used, depending on the number of unwind opcodes
768 required.
769
770 @anchor{arm_fnstart}
771 @cindex @code{.fnstart} directive, ARM
772 @item .fnstart
773 Marks the start of a function with an unwind table entry.
774
775 @cindex @code{.force_thumb} directive, ARM
776 @item .force_thumb
777 This directive forces the selection of Thumb instructions, even if the
778 target processor does not support those instructions
779
780 @cindex @code{.fpu} directive, ARM
781 @item .fpu @var{name}
782 Select the floating-point unit to assemble for. Valid values for @var{name}
783 are the same as for the @option{-mfpu} command-line option.
784
785 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
786 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
787
788 @cindex @code{.handlerdata} directive, ARM
789 @item .handlerdata
790 Marks the end of the current function, and the start of the exception table
791 entry for that function. Anything between this directive and the
792 @code{.fnend} directive will be added to the exception table entry.
793
794 Must be preceded by a @code{.personality} or @code{.personalityindex}
795 directive.
796
797 @c IIIIIIIIIIIIIIIIIIIIIIIIII
798
799 @cindex @code{.inst} directive, ARM
800 @item .inst @var{opcode} [ , @dots{} ]
801 @itemx .inst.n @var{opcode} [ , @dots{} ]
802 @itemx .inst.w @var{opcode} [ , @dots{} ]
803 Generates the instruction corresponding to the numerical value @var{opcode}.
804 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
805 specified explicitly, overriding the normal encoding rules.
806
807 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
808 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
809 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
810
811 @item .ldouble @var{expression} [, @var{expression}]*
812 See @code{.extend}.
813
814 @cindex @code{.ltorg} directive, ARM
815 @item .ltorg
816 This directive causes the current contents of the literal pool to be
817 dumped into the current section (which is assumed to be the .text
818 section) at the current location (aligned to a word boundary).
819 @code{GAS} maintains a separate literal pool for each section and each
820 sub-section. The @code{.ltorg} directive will only affect the literal
821 pool of the current section and sub-section. At the end of assembly
822 all remaining, un-empty literal pools will automatically be dumped.
823
824 Note - older versions of @code{GAS} would dump the current literal
825 pool any time a section change occurred. This is no longer done, since
826 it prevents accurate control of the placement of literal pools.
827
828 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
829
830 @cindex @code{.movsp} directive, ARM
831 @item .movsp @var{reg} [, #@var{offset}]
832 Tell the unwinder that @var{reg} contains an offset from the current
833 stack pointer. If @var{offset} is not specified then it is assumed to be
834 zero.
835
836 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
837 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
838
839 @cindex @code{.object_arch} directive, ARM
840 @item .object_arch @var{name}
841 Override the architecture recorded in the EABI object attribute section.
842 Valid values for @var{name} are the same as for the @code{.arch} directive.
843 Typically this is useful when code uses runtime detection of CPU features.
844
845 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
846
847 @cindex @code{.packed} directive, ARM
848 @item .packed @var{expression} [, @var{expression}]*
849 This directive writes 12-byte packed floating-point values to the
850 output section. These are not compatible with current ARM processors
851 or ABIs.
852
853 @anchor{arm_pad}
854 @cindex @code{.pad} directive, ARM
855 @item .pad #@var{count}
856 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
857 A positive value indicates the function prologue allocated stack space by
858 decrementing the stack pointer.
859
860 @cindex @code{.personality} directive, ARM
861 @item .personality @var{name}
862 Sets the personality routine for the current function to @var{name}.
863
864 @cindex @code{.personalityindex} directive, ARM
865 @item .personalityindex @var{index}
866 Sets the personality routine for the current function to the EABI standard
867 routine number @var{index}
868
869 @cindex @code{.pool} directive, ARM
870 @item .pool
871 This is a synonym for .ltorg.
872
873 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
874 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
875
876 @cindex @code{.req} directive, ARM
877 @item @var{name} .req @var{register name}
878 This creates an alias for @var{register name} called @var{name}. For
879 example:
880
881 @smallexample
882 foo .req r0
883 @end smallexample
884
885 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
886
887 @anchor{arm_save}
888 @cindex @code{.save} directive, ARM
889 @item .save @var{reglist}
890 Generate unwinder annotations to restore the registers in @var{reglist}.
891 The format of @var{reglist} is the same as the corresponding store-multiple
892 instruction.
893
894 @smallexample
895 @exdent @emph{core registers}
896 .save @{r4, r5, r6, lr@}
897 stmfd sp!, @{r4, r5, r6, lr@}
898 @exdent @emph{FPA registers}
899 .save f4, 2
900 sfmfd f4, 2, [sp]!
901 @exdent @emph{VFP registers}
902 .save @{d8, d9, d10@}
903 fstmdx sp!, @{d8, d9, d10@}
904 @exdent @emph{iWMMXt registers}
905 .save @{wr10, wr11@}
906 wstrd wr11, [sp, #-8]!
907 wstrd wr10, [sp, #-8]!
908 or
909 .save wr11
910 wstrd wr11, [sp, #-8]!
911 .save wr10
912 wstrd wr10, [sp, #-8]!
913 @end smallexample
914
915 @anchor{arm_setfp}
916 @cindex @code{.setfp} directive, ARM
917 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
918 Make all unwinder annotations relative to a frame pointer. Without this
919 the unwinder will use offsets from the stack pointer.
920
921 The syntax of this directive is the same as the @code{add} or @code{mov}
922 instruction used to set the frame pointer. @var{spreg} must be either
923 @code{sp} or mentioned in a previous @code{.movsp} directive.
924
925 @smallexample
926 .movsp ip
927 mov ip, sp
928 @dots{}
929 .setfp fp, ip, #4
930 add fp, ip, #4
931 @end smallexample
932
933 @cindex @code{.secrel32} directive, ARM
934 @item .secrel32 @var{expression} [, @var{expression}]*
935 This directive emits relocations that evaluate to the section-relative
936 offset of each expression's symbol. This directive is only supported
937 for PE targets.
938
939 @cindex @code{.syntax} directive, ARM
940 @item .syntax [@code{unified} | @code{divided}]
941 This directive sets the Instruction Set Syntax as described in the
942 @ref{ARM-Instruction-Set} section.
943
944 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
945
946 @cindex @code{.thumb} directive, ARM
947 @item .thumb
948 This performs the same action as @var{.code 16}.
949
950 @cindex @code{.thumb_func} directive, ARM
951 @item .thumb_func
952 This directive specifies that the following symbol is the name of a
953 Thumb encoded function. This information is necessary in order to allow
954 the assembler and linker to generate correct code for interworking
955 between Arm and Thumb instructions and should be used even if
956 interworking is not going to be performed. The presence of this
957 directive also implies @code{.thumb}
958
959 This directive is not necessary when generating EABI objects. On these
960 targets the encoding is implicit when generating Thumb code.
961
962 @cindex @code{.thumb_set} directive, ARM
963 @item .thumb_set
964 This performs the equivalent of a @code{.set} directive in that it
965 creates a symbol which is an alias for another symbol (possibly not yet
966 defined). This directive also has the added property in that it marks
967 the aliased symbol as being a thumb function entry point, in the same
968 way that the @code{.thumb_func} directive does.
969
970 @cindex @code{.tlsdescseq} directive, ARM
971 @item .tlsdescseq @var{tls-variable}
972 This directive is used to annotate parts of an inlined TLS descriptor
973 trampoline. Normally the trampoline is provided by the linker, and
974 this directive is not needed.
975
976 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
977
978 @cindex @code{.unreq} directive, ARM
979 @item .unreq @var{alias-name}
980 This undefines a register alias which was previously defined using the
981 @code{req}, @code{dn} or @code{qn} directives. For example:
982
983 @smallexample
984 foo .req r0
985 .unreq foo
986 @end smallexample
987
988 An error occurs if the name is undefined. Note - this pseudo op can
989 be used to delete builtin in register name aliases (eg 'r0'). This
990 should only be done if it is really necessary.
991
992 @cindex @code{.unwind_raw} directive, ARM
993 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
994 Insert one of more arbitrary unwind opcode bytes, which are known to adjust
995 the stack pointer by @var{offset} bytes.
996
997 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
998 @code{.save @{r0@}}
999
1000 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
1001
1002 @cindex @code{.vsave} directive, ARM
1003 @item .vsave @var{vfp-reglist}
1004 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1005 using FLDMD. Also works for VFPv3 registers
1006 that are to be restored using VLDM.
1007 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1008 instruction.
1009
1010 @smallexample
1011 @exdent @emph{VFP registers}
1012 .vsave @{d8, d9, d10@}
1013 fstmdd sp!, @{d8, d9, d10@}
1014 @exdent @emph{VFPv3 registers}
1015 .vsave @{d15, d16, d17@}
1016 vstm sp!, @{d15, d16, d17@}
1017 @end smallexample
1018
1019 Since FLDMX and FSTMX are now deprecated, this directive should be
1020 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
1021
1022 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
1023 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
1024 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
1025 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
1026
1027 @end table
1028
1029 @node ARM Opcodes
1030 @section Opcodes
1031
1032 @cindex ARM opcodes
1033 @cindex opcodes for ARM
1034 @code{@value{AS}} implements all the standard ARM opcodes. It also
1035 implements several pseudo opcodes, including several synthetic load
1036 instructions.
1037
1038 @table @code
1039
1040 @cindex @code{NOP} pseudo op, ARM
1041 @item NOP
1042 @smallexample
1043 nop
1044 @end smallexample
1045
1046 This pseudo op will always evaluate to a legal ARM instruction that does
1047 nothing. Currently it will evaluate to MOV r0, r0.
1048
1049 @cindex @code{LDR reg,=<label>} pseudo op, ARM
1050 @item LDR
1051 @smallexample
1052 ldr <register> , = <expression>
1053 @end smallexample
1054
1055 If expression evaluates to a numeric constant then a MOV or MVN
1056 instruction will be used in place of the LDR instruction, if the
1057 constant can be generated by either of these instructions. Otherwise
1058 the constant will be placed into the nearest literal pool (if it not
1059 already there) and a PC relative LDR instruction will be generated.
1060
1061 @cindex @code{ADR reg,<label>} pseudo op, ARM
1062 @item ADR
1063 @smallexample
1064 adr <register> <label>
1065 @end smallexample
1066
1067 This instruction will load the address of @var{label} into the indicated
1068 register. The instruction will evaluate to a PC relative ADD or SUB
1069 instruction depending upon where the label is located. If the label is
1070 out of range, or if it is not defined in the same file (and section) as
1071 the ADR instruction, then an error will be generated. This instruction
1072 will not make use of the literal pool.
1073
1074 If @var{label} is a thumb function symbol, and thumb interworking has
1075 been enabled via the @option{-mthumb-interwork} option then the bottom
1076 bit of the value stored into @var{register} will be set. This allows
1077 the following sequence to work as expected:
1078
1079 @smallexample
1080 adr r0, thumb_function
1081 blx r0
1082 @end smallexample
1083
1084 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1085 @item ADRL
1086 @smallexample
1087 adrl <register> <label>
1088 @end smallexample
1089
1090 This instruction will load the address of @var{label} into the indicated
1091 register. The instruction will evaluate to one or two PC relative ADD
1092 or SUB instructions depending upon where the label is located. If a
1093 second instruction is not needed a NOP instruction will be generated in
1094 its place, so that this instruction is always 8 bytes long.
1095
1096 If the label is out of range, or if it is not defined in the same file
1097 (and section) as the ADRL instruction, then an error will be generated.
1098 This instruction will not make use of the literal pool.
1099
1100 If @var{label} is a thumb function symbol, and thumb interworking has
1101 been enabled via the @option{-mthumb-interwork} option then the bottom
1102 bit of the value stored into @var{register} will be set.
1103
1104 @end table
1105
1106 For information on the ARM or Thumb instruction sets, see @cite{ARM
1107 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1108 Ltd.
1109
1110 @node ARM Mapping Symbols
1111 @section Mapping Symbols
1112
1113 The ARM ELF specification requires that special symbols be inserted
1114 into object files to mark certain features:
1115
1116 @table @code
1117
1118 @cindex @code{$a}
1119 @item $a
1120 At the start of a region of code containing ARM instructions.
1121
1122 @cindex @code{$t}
1123 @item $t
1124 At the start of a region of code containing THUMB instructions.
1125
1126 @cindex @code{$d}
1127 @item $d
1128 At the start of a region of data.
1129
1130 @end table
1131
1132 The assembler will automatically insert these symbols for you - there
1133 is no need to code them yourself. Support for tagging symbols ($b,
1134 $f, $p and $m) which is also mentioned in the current ARM ELF
1135 specification is not implemented. This is because they have been
1136 dropped from the new EABI and so tools cannot rely upon their
1137 presence.
1138
1139 @node ARM Unwinding Tutorial
1140 @section Unwinding
1141
1142 The ABI for the ARM Architecture specifies a standard format for
1143 exception unwind information. This information is used when an
1144 exception is thrown to determine where control should be transferred.
1145 In particular, the unwind information is used to determine which
1146 function called the function that threw the exception, and which
1147 function called that one, and so forth. This information is also used
1148 to restore the values of callee-saved registers in the function
1149 catching the exception.
1150
1151 If you are writing functions in assembly code, and those functions
1152 call other functions that throw exceptions, you must use assembly
1153 pseudo ops to ensure that appropriate exception unwind information is
1154 generated. Otherwise, if one of the functions called by your assembly
1155 code throws an exception, the run-time library will be unable to
1156 unwind the stack through your assembly code and your program will not
1157 behave correctly.
1158
1159 To illustrate the use of these pseudo ops, we will examine the code
1160 that G++ generates for the following C++ input:
1161
1162 @verbatim
1163 void callee (int *);
1164
1165 int
1166 caller ()
1167 {
1168 int i;
1169 callee (&i);
1170 return i;
1171 }
1172 @end verbatim
1173
1174 This example does not show how to throw or catch an exception from
1175 assembly code. That is a much more complex operation and should
1176 always be done in a high-level language, such as C++, that directly
1177 supports exceptions.
1178
1179 The code generated by one particular version of G++ when compiling the
1180 example above is:
1181
1182 @verbatim
1183 _Z6callerv:
1184 .fnstart
1185 .LFB2:
1186 @ Function supports interworking.
1187 @ args = 0, pretend = 0, frame = 8
1188 @ frame_needed = 1, uses_anonymous_args = 0
1189 stmfd sp!, {fp, lr}
1190 .save {fp, lr}
1191 .LCFI0:
1192 .setfp fp, sp, #4
1193 add fp, sp, #4
1194 .LCFI1:
1195 .pad #8
1196 sub sp, sp, #8
1197 .LCFI2:
1198 sub r3, fp, #8
1199 mov r0, r3
1200 bl _Z6calleePi
1201 ldr r3, [fp, #-8]
1202 mov r0, r3
1203 sub sp, fp, #4
1204 ldmfd sp!, {fp, lr}
1205 bx lr
1206 .LFE2:
1207 .fnend
1208 @end verbatim
1209
1210 Of course, the sequence of instructions varies based on the options
1211 you pass to GCC and on the version of GCC in use. The exact
1212 instructions are not important since we are focusing on the pseudo ops
1213 that are used to generate unwind information.
1214
1215 An important assumption made by the unwinder is that the stack frame
1216 does not change during the body of the function. In particular, since
1217 we assume that the assembly code does not itself throw an exception,
1218 the only point where an exception can be thrown is from a call, such
1219 as the @code{bl} instruction above. At each call site, the same saved
1220 registers (including @code{lr}, which indicates the return address)
1221 must be located in the same locations relative to the frame pointer.
1222
1223 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1224 op appears immediately before the first instruction of the function
1225 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1226 op appears immediately after the last instruction of the function.
1227 These pseudo ops specify the range of the function.
1228
1229 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1230 @code{.pad}) matters; their exact locations are irrelevant. In the
1231 example above, the compiler emits the pseudo ops with particular
1232 instructions. That makes it easier to understand the code, but it is
1233 not required for correctness. It would work just as well to emit all
1234 of the pseudo ops other than @code{.fnend} in the same order, but
1235 immediately after @code{.fnstart}.
1236
1237 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1238 indicates registers that have been saved to the stack so that they can
1239 be restored before the function returns. The argument to the
1240 @code{.save} pseudo op is a list of registers to save. If a register
1241 is ``callee-saved'' (as specified by the ABI) and is modified by the
1242 function you are writing, then your code must save the value before it
1243 is modified and restore the original value before the function
1244 returns. If an exception is thrown, the run-time library restores the
1245 values of these registers from their locations on the stack before
1246 returning control to the exception handler. (Of course, if an
1247 exception is not thrown, the function that contains the @code{.save}
1248 pseudo op restores these registers in the function epilogue, as is
1249 done with the @code{ldmfd} instruction above.)
1250
1251 You do not have to save callee-saved registers at the very beginning
1252 of the function and you do not need to use the @code{.save} pseudo op
1253 immediately following the point at which the registers are saved.
1254 However, if you modify a callee-saved register, you must save it on
1255 the stack before modifying it and before calling any functions which
1256 might throw an exception. And, you must use the @code{.save} pseudo
1257 op to indicate that you have done so.
1258
1259 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1260 modification of the stack pointer that does not save any registers.
1261 The argument is the number of bytes (in decimal) that are subtracted
1262 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1263 subtracting from the stack pointer increases the size of the stack.)
1264
1265 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1266 indicates the register that contains the frame pointer. The first
1267 argument is the register that is set, which is typically @code{fp}.
1268 The second argument indicates the register from which the frame
1269 pointer takes its value. The third argument, if present, is the value
1270 (in decimal) added to the register specified by the second argument to
1271 compute the value of the frame pointer. You should not modify the
1272 frame pointer in the body of the function.
1273
1274 If you do not use a frame pointer, then you should not use the
1275 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1276 should avoid modifying the stack pointer outside of the function
1277 prologue. Otherwise, the run-time library will be unable to find
1278 saved registers when it is unwinding the stack.
1279
1280 The pseudo ops described above are sufficient for writing assembly
1281 code that calls functions which may throw exceptions. If you need to
1282 know more about the object-file format used to represent unwind
1283 information, you may consult the @cite{Exception Handling ABI for the
1284 ARM Architecture} available from @uref{http://infocenter.arm.com}.
1285
This page took 0.067353 seconds and 5 git commands to generate.