[ARM] Support for ARMv8.1 command line option
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a53},
123 @code{cortex-a57},
124 @code{cortex-a72},
125 @code{cortex-r4},
126 @code{cortex-r4f},
127 @code{cortex-r5},
128 @code{cortex-r7},
129 @code{cortex-m7},
130 @code{cortex-m4},
131 @code{cortex-m3},
132 @code{cortex-m1},
133 @code{cortex-m0},
134 @code{cortex-m0plus},
135 @code{exynos-m1},
136 @code{marvell-pj4},
137 @code{marvell-whitney},
138 @code{xgene1},
139 @code{xgene2},
140 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
141 @code{i80200} (Intel XScale processor)
142 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
143 and
144 @code{xscale}.
145 The special name @code{all} may be used to allow the
146 assembler to accept instructions valid for any ARM processor.
147
148 In addition to the basic instruction set, the assembler can be told to
149 accept various extension mnemonics that extend the processor using the
150 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
151 is equivalent to specifying @code{-mcpu=ep9312}.
152
153 Multiple extensions may be specified, separated by a @code{+}. The
154 extensions should be specified in ascending alphabetical order.
155
156 Some extensions may be restricted to particular architectures; this is
157 documented in the list of extensions below.
158
159 Extension mnemonics may also be removed from those the assembler accepts.
160 This is done be prepending @code{no} to the option that adds the extension.
161 Extensions that are removed should be listed after all extensions which have
162 been added, again in ascending alphabetical order. For example,
163 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
164
165
166 The following extensions are currently supported:
167 @code{crc}
168 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
169 @code{fp} (Floating Point Extensions for v8-A architecture),
170 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
171 @code{iwmmxt},
172 @code{iwmmxt2},
173 @code{xscale},
174 @code{maverick},
175 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
176 architectures),
177 @code{os} (Operating System for v6M architecture),
178 @code{sec} (Security Extensions for v6K and v7-A architectures),
179 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
180 @code{virt} (Virtualization Extensions for v7-A architecture, implies
181 @code{idiv}),
182 @code{pan} (Priviliged Access Never Extensions for v8-A architecture),
183 @code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
184 @code{simd})
185 and
186 @code{xscale}.
187
188 @cindex @code{-march=} command line option, ARM
189 @item -march=@var{architecture}[+@var{extension}@dots{}]
190 This option specifies the target architecture. The assembler will issue
191 an error message if an attempt is made to assemble an instruction which
192 will not execute on the target architecture. The following architecture
193 names are recognized:
194 @code{armv1},
195 @code{armv2},
196 @code{armv2a},
197 @code{armv2s},
198 @code{armv3},
199 @code{armv3m},
200 @code{armv4},
201 @code{armv4xm},
202 @code{armv4t},
203 @code{armv4txm},
204 @code{armv5},
205 @code{armv5t},
206 @code{armv5txm},
207 @code{armv5te},
208 @code{armv5texp},
209 @code{armv6},
210 @code{armv6j},
211 @code{armv6k},
212 @code{armv6z},
213 @code{armv6zk},
214 @code{armv6-m},
215 @code{armv6s-m},
216 @code{armv7},
217 @code{armv7-a},
218 @code{armv7ve},
219 @code{armv7-r},
220 @code{armv7-m},
221 @code{armv7e-m},
222 @code{armv8-a},
223 @code{armv8.1-a},
224 @code{iwmmxt}
225 @code{iwmmxt2}
226 and
227 @code{xscale}.
228 If both @code{-mcpu} and
229 @code{-march} are specified, the assembler will use
230 the setting for @code{-mcpu}.
231
232 The architecture option can be extended with the same instruction set
233 extension options as the @code{-mcpu} option.
234
235 @cindex @code{-mfpu=} command line option, ARM
236 @item -mfpu=@var{floating-point-format}
237
238 This option specifies the floating point format to assemble for. The
239 assembler will issue an error message if an attempt is made to assemble
240 an instruction which will not execute on the target floating point unit.
241 The following format options are recognized:
242 @code{softfpa},
243 @code{fpe},
244 @code{fpe2},
245 @code{fpe3},
246 @code{fpa},
247 @code{fpa10},
248 @code{fpa11},
249 @code{arm7500fe},
250 @code{softvfp},
251 @code{softvfp+vfp},
252 @code{vfp},
253 @code{vfp10},
254 @code{vfp10-r0},
255 @code{vfp9},
256 @code{vfpxd},
257 @code{vfpv2},
258 @code{vfpv3},
259 @code{vfpv3-fp16},
260 @code{vfpv3-d16},
261 @code{vfpv3-d16-fp16},
262 @code{vfpv3xd},
263 @code{vfpv3xd-d16},
264 @code{vfpv4},
265 @code{vfpv4-d16},
266 @code{fpv4-sp-d16},
267 @code{fpv5-sp-d16},
268 @code{fpv5-d16},
269 @code{fp-armv8},
270 @code{arm1020t},
271 @code{arm1020e},
272 @code{arm1136jf-s},
273 @code{maverick},
274 @code{neon},
275 @code{neon-vfpv4},
276 @code{neon-fp-armv8},
277 @code{crypto-neon-fp-armv8}.
278 and
279 @code{neon-fp-armv8-1},
280
281 In addition to determining which instructions are assembled, this option
282 also affects the way in which the @code{.double} assembler directive behaves
283 when assembling little-endian code.
284
285 The default is dependent on the processor selected. For Architecture 5 or
286 later, the default is to assembler for VFP instructions; for earlier
287 architectures the default is to assemble for FPA instructions.
288
289 @cindex @code{-mthumb} command line option, ARM
290 @item -mthumb
291 This option specifies that the assembler should start assembling Thumb
292 instructions; that is, it should behave as though the file starts with a
293 @code{.code 16} directive.
294
295 @cindex @code{-mthumb-interwork} command line option, ARM
296 @item -mthumb-interwork
297 This option specifies that the output generated by the assembler should
298 be marked as supporting interworking.
299
300 @cindex @code{-mimplicit-it} command line option, ARM
301 @item -mimplicit-it=never
302 @itemx -mimplicit-it=always
303 @itemx -mimplicit-it=arm
304 @itemx -mimplicit-it=thumb
305 The @code{-mimplicit-it} option controls the behavior of the assembler when
306 conditional instructions are not enclosed in IT blocks.
307 There are four possible behaviors.
308 If @code{never} is specified, such constructs cause a warning in ARM
309 code and an error in Thumb-2 code.
310 If @code{always} is specified, such constructs are accepted in both
311 ARM and Thumb-2 code, where the IT instruction is added implicitly.
312 If @code{arm} is specified, such constructs are accepted in ARM code
313 and cause an error in Thumb-2 code.
314 If @code{thumb} is specified, such constructs cause a warning in ARM
315 code and are accepted in Thumb-2 code. If you omit this option, the
316 behavior is equivalent to @code{-mimplicit-it=arm}.
317
318 @cindex @code{-mapcs-26} command line option, ARM
319 @cindex @code{-mapcs-32} command line option, ARM
320 @item -mapcs-26
321 @itemx -mapcs-32
322 These options specify that the output generated by the assembler should
323 be marked as supporting the indicated version of the Arm Procedure.
324 Calling Standard.
325
326 @cindex @code{-matpcs} command line option, ARM
327 @item -matpcs
328 This option specifies that the output generated by the assembler should
329 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
330 enabled this option will cause the assembler to create an empty
331 debugging section in the object file called .arm.atpcs. Debuggers can
332 use this to determine the ABI being used by.
333
334 @cindex @code{-mapcs-float} command line option, ARM
335 @item -mapcs-float
336 This indicates the floating point variant of the APCS should be
337 used. In this variant floating point arguments are passed in FP
338 registers rather than integer registers.
339
340 @cindex @code{-mapcs-reentrant} command line option, ARM
341 @item -mapcs-reentrant
342 This indicates that the reentrant variant of the APCS should be used.
343 This variant supports position independent code.
344
345 @cindex @code{-mfloat-abi=} command line option, ARM
346 @item -mfloat-abi=@var{abi}
347 This option specifies that the output generated by the assembler should be
348 marked as using specified floating point ABI.
349 The following values are recognized:
350 @code{soft},
351 @code{softfp}
352 and
353 @code{hard}.
354
355 @cindex @code{-eabi=} command line option, ARM
356 @item -meabi=@var{ver}
357 This option specifies which EABI version the produced object files should
358 conform to.
359 The following values are recognized:
360 @code{gnu},
361 @code{4}
362 and
363 @code{5}.
364
365 @cindex @code{-EB} command line option, ARM
366 @item -EB
367 This option specifies that the output generated by the assembler should
368 be marked as being encoded for a big-endian processor.
369
370 Note: If a program is being built for a system with big-endian data
371 and little-endian instructions then it should be assembled with the
372 @option{-EB} option, (all of it, code and data) and then linked with
373 the @option{--be8} option. This will reverse the endianness of the
374 instructions back to little-endian, but leave the data as big-endian.
375
376 @cindex @code{-EL} command line option, ARM
377 @item -EL
378 This option specifies that the output generated by the assembler should
379 be marked as being encoded for a little-endian processor.
380
381 @cindex @code{-k} command line option, ARM
382 @cindex PIC code generation for ARM
383 @item -k
384 This option specifies that the output of the assembler should be marked
385 as position-independent code (PIC).
386
387 @cindex @code{--fix-v4bx} command line option, ARM
388 @item --fix-v4bx
389 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
390 the linker option of the same name.
391
392 @cindex @code{-mwarn-deprecated} command line option, ARM
393 @item -mwarn-deprecated
394 @itemx -mno-warn-deprecated
395 Enable or disable warnings about using deprecated options or
396 features. The default is to warn.
397
398 @cindex @code{-mccs} command line option, ARM
399 @item -mccs
400 Turns on CodeComposer Studio assembly syntax compatibility mode.
401
402 @cindex @code{-mwarn-syms} command line option, ARM
403 @item -mwarn-syms
404 @itemx -mno-warn-syms
405 Enable or disable warnings about symbols that match the names of ARM
406 instructions. The default is to warn.
407
408 @end table
409
410
411 @node ARM Syntax
412 @section Syntax
413 @menu
414 * ARM-Instruction-Set:: Instruction Set
415 * ARM-Chars:: Special Characters
416 * ARM-Regs:: Register Names
417 * ARM-Relocations:: Relocations
418 * ARM-Neon-Alignment:: NEON Alignment Specifiers
419 @end menu
420
421 @node ARM-Instruction-Set
422 @subsection Instruction Set Syntax
423 Two slightly different syntaxes are support for ARM and THUMB
424 instructions. The default, @code{divided}, uses the old style where
425 ARM and THUMB instructions had their own, separate syntaxes. The new,
426 @code{unified} syntax, which can be selected via the @code{.syntax}
427 directive, and has the following main features:
428
429 @itemize @bullet
430 @item
431 Immediate operands do not require a @code{#} prefix.
432
433 @item
434 The @code{IT} instruction may appear, and if it does it is validated
435 against subsequent conditional affixes. In ARM mode it does not
436 generate machine code, in THUMB mode it does.
437
438 @item
439 For ARM instructions the conditional affixes always appear at the end
440 of the instruction. For THUMB instructions conditional affixes can be
441 used, but only inside the scope of an @code{IT} instruction.
442
443 @item
444 All of the instructions new to the V6T2 architecture (and later) are
445 available. (Only a few such instructions can be written in the
446 @code{divided} syntax).
447
448 @item
449 The @code{.N} and @code{.W} suffixes are recognized and honored.
450
451 @item
452 All instructions set the flags if and only if they have an @code{s}
453 affix.
454 @end itemize
455
456 @node ARM-Chars
457 @subsection Special Characters
458
459 @cindex line comment character, ARM
460 @cindex ARM line comment character
461 The presence of a @samp{@@} anywhere on a line indicates the start of
462 a comment that extends to the end of that line.
463
464 If a @samp{#} appears as the first character of a line then the whole
465 line is treated as a comment, but in this case the line could also be
466 a logical line number directive (@pxref{Comments}) or a preprocessor
467 control command (@pxref{Preprocessing}).
468
469 @cindex line separator, ARM
470 @cindex statement separator, ARM
471 @cindex ARM line separator
472 The @samp{;} character can be used instead of a newline to separate
473 statements.
474
475 @cindex immediate character, ARM
476 @cindex ARM immediate character
477 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
478
479 @cindex identifiers, ARM
480 @cindex ARM identifiers
481 *TODO* Explain about /data modifier on symbols.
482
483 @node ARM-Regs
484 @subsection Register Names
485
486 @cindex ARM register names
487 @cindex register names, ARM
488 *TODO* Explain about ARM register naming, and the predefined names.
489
490 @node ARM-Relocations
491 @subsection ARM relocation generation
492
493 @cindex data relocations, ARM
494 @cindex ARM data relocations
495 Specific data relocations can be generated by putting the relocation name
496 in parentheses after the symbol name. For example:
497
498 @smallexample
499 .word foo(TARGET1)
500 @end smallexample
501
502 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
503 @var{foo}.
504 The following relocations are supported:
505 @code{GOT},
506 @code{GOTOFF},
507 @code{TARGET1},
508 @code{TARGET2},
509 @code{SBREL},
510 @code{TLSGD},
511 @code{TLSLDM},
512 @code{TLSLDO},
513 @code{TLSDESC},
514 @code{TLSCALL},
515 @code{GOTTPOFF},
516 @code{GOT_PREL}
517 and
518 @code{TPOFF}.
519
520 For compatibility with older toolchains the assembler also accepts
521 @code{(PLT)} after branch targets. On legacy targets this will
522 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
523 targets it will encode either the @samp{R_ARM_CALL} or
524 @samp{R_ARM_JUMP24} relocation, as appropriate.
525
526 @cindex MOVW and MOVT relocations, ARM
527 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
528 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
529 respectively. For example to load the 32-bit address of foo into r0:
530
531 @smallexample
532 MOVW r0, #:lower16:foo
533 MOVT r0, #:upper16:foo
534 @end smallexample
535
536 @node ARM-Neon-Alignment
537 @subsection NEON Alignment Specifiers
538
539 @cindex alignment for NEON instructions
540 Some NEON load/store instructions allow an optional address
541 alignment qualifier.
542 The ARM documentation specifies that this is indicated by
543 @samp{@@ @var{align}}. However GAS already interprets
544 the @samp{@@} character as a "line comment" start,
545 so @samp{: @var{align}} is used instead. For example:
546
547 @smallexample
548 vld1.8 @{q0@}, [r0, :128]
549 @end smallexample
550
551 @node ARM Floating Point
552 @section Floating Point
553
554 @cindex floating point, ARM (@sc{ieee})
555 @cindex ARM floating point (@sc{ieee})
556 The ARM family uses @sc{ieee} floating-point numbers.
557
558 @node ARM Directives
559 @section ARM Machine Directives
560
561 @cindex machine directives, ARM
562 @cindex ARM machine directives
563 @table @code
564
565 @c AAAAAAAAAAAAAAAAAAAAAAAAA
566
567 @cindex @code{.2byte} directive, ARM
568 @cindex @code{.4byte} directive, ARM
569 @cindex @code{.8byte} directive, ARM
570 @item .2byte @var{expression} [, @var{expression}]*
571 @itemx .4byte @var{expression} [, @var{expression}]*
572 @itemx .8byte @var{expression} [, @var{expression}]*
573 These directives write 2, 4 or 8 byte values to the output section.
574
575 @cindex @code{.align} directive, ARM
576 @item .align @var{expression} [, @var{expression}]
577 This is the generic @var{.align} directive. For the ARM however if the
578 first argument is zero (ie no alignment is needed) the assembler will
579 behave as if the argument had been 2 (ie pad to the next four byte
580 boundary). This is for compatibility with ARM's own assembler.
581
582 @cindex @code{.arch} directive, ARM
583 @item .arch @var{name}
584 Select the target architecture. Valid values for @var{name} are the same as
585 for the @option{-march} commandline option.
586
587 Specifying @code{.arch} clears any previously selected architecture
588 extensions.
589
590 @cindex @code{.arch_extension} directive, ARM
591 @item .arch_extension @var{name}
592 Add or remove an architecture extension to the target architecture. Valid
593 values for @var{name} are the same as those accepted as architectural
594 extensions by the @option{-mcpu} commandline option.
595
596 @code{.arch_extension} may be used multiple times to add or remove extensions
597 incrementally to the architecture being compiled for.
598
599 @cindex @code{.arm} directive, ARM
600 @item .arm
601 This performs the same action as @var{.code 32}.
602
603 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
604
605 @cindex @code{.bss} directive, ARM
606 @item .bss
607 This directive switches to the @code{.bss} section.
608
609 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
610
611 @cindex @code{.cantunwind} directive, ARM
612 @item .cantunwind
613 Prevents unwinding through the current function. No personality routine
614 or exception table data is required or permitted.
615
616 @cindex @code{.code} directive, ARM
617 @item .code @code{[16|32]}
618 This directive selects the instruction set being generated. The value 16
619 selects Thumb, with the value 32 selecting ARM.
620
621 @cindex @code{.cpu} directive, ARM
622 @item .cpu @var{name}
623 Select the target processor. Valid values for @var{name} are the same as
624 for the @option{-mcpu} commandline option.
625
626 Specifying @code{.cpu} clears any previously selected architecture
627 extensions.
628
629 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
630
631 @cindex @code{.dn} and @code{.qn} directives, ARM
632 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
633 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
634
635 The @code{dn} and @code{qn} directives are used to create typed
636 and/or indexed register aliases for use in Advanced SIMD Extension
637 (Neon) instructions. The former should be used to create aliases
638 of double-precision registers, and the latter to create aliases of
639 quad-precision registers.
640
641 If these directives are used to create typed aliases, those aliases can
642 be used in Neon instructions instead of writing types after the mnemonic
643 or after each operand. For example:
644
645 @smallexample
646 x .dn d2.f32
647 y .dn d3.f32
648 z .dn d4.f32[1]
649 vmul x,y,z
650 @end smallexample
651
652 This is equivalent to writing the following:
653
654 @smallexample
655 vmul.f32 d2,d3,d4[1]
656 @end smallexample
657
658 Aliases created using @code{dn} or @code{qn} can be destroyed using
659 @code{unreq}.
660
661 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
662
663 @cindex @code{.eabi_attribute} directive, ARM
664 @item .eabi_attribute @var{tag}, @var{value}
665 Set the EABI object attribute @var{tag} to @var{value}.
666
667 The @var{tag} is either an attribute number, or one of the following:
668 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
669 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
670 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
671 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
672 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
673 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
674 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
675 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
676 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
677 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
678 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
679 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
680 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
681 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
682 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
683 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
684 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
685 @code{Tag_conformance}, @code{Tag_T2EE_use},
686 @code{Tag_Virtualization_use}
687
688 The @var{value} is either a @code{number}, @code{"string"}, or
689 @code{number, "string"} depending on the tag.
690
691 Note - the following legacy values are also accepted by @var{tag}:
692 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
693 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
694
695 @cindex @code{.even} directive, ARM
696 @item .even
697 This directive aligns to an even-numbered address.
698
699 @cindex @code{.extend} directive, ARM
700 @cindex @code{.ldouble} directive, ARM
701 @item .extend @var{expression} [, @var{expression}]*
702 @itemx .ldouble @var{expression} [, @var{expression}]*
703 These directives write 12byte long double floating-point values to the
704 output section. These are not compatible with current ARM processors
705 or ABIs.
706
707 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
708
709 @anchor{arm_fnend}
710 @cindex @code{.fnend} directive, ARM
711 @item .fnend
712 Marks the end of a function with an unwind table entry. The unwind index
713 table entry is created when this directive is processed.
714
715 If no personality routine has been specified then standard personality
716 routine 0 or 1 will be used, depending on the number of unwind opcodes
717 required.
718
719 @anchor{arm_fnstart}
720 @cindex @code{.fnstart} directive, ARM
721 @item .fnstart
722 Marks the start of a function with an unwind table entry.
723
724 @cindex @code{.force_thumb} directive, ARM
725 @item .force_thumb
726 This directive forces the selection of Thumb instructions, even if the
727 target processor does not support those instructions
728
729 @cindex @code{.fpu} directive, ARM
730 @item .fpu @var{name}
731 Select the floating-point unit to assemble for. Valid values for @var{name}
732 are the same as for the @option{-mfpu} commandline option.
733
734 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
735 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
736
737 @cindex @code{.handlerdata} directive, ARM
738 @item .handlerdata
739 Marks the end of the current function, and the start of the exception table
740 entry for that function. Anything between this directive and the
741 @code{.fnend} directive will be added to the exception table entry.
742
743 Must be preceded by a @code{.personality} or @code{.personalityindex}
744 directive.
745
746 @c IIIIIIIIIIIIIIIIIIIIIIIIII
747
748 @cindex @code{.inst} directive, ARM
749 @item .inst @var{opcode} [ , @dots{} ]
750 @itemx .inst.n @var{opcode} [ , @dots{} ]
751 @itemx .inst.w @var{opcode} [ , @dots{} ]
752 Generates the instruction corresponding to the numerical value @var{opcode}.
753 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
754 specified explicitly, overriding the normal encoding rules.
755
756 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
757 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
758 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
759
760 @item .ldouble @var{expression} [, @var{expression}]*
761 See @code{.extend}.
762
763 @cindex @code{.ltorg} directive, ARM
764 @item .ltorg
765 This directive causes the current contents of the literal pool to be
766 dumped into the current section (which is assumed to be the .text
767 section) at the current location (aligned to a word boundary).
768 @code{GAS} maintains a separate literal pool for each section and each
769 sub-section. The @code{.ltorg} directive will only affect the literal
770 pool of the current section and sub-section. At the end of assembly
771 all remaining, un-empty literal pools will automatically be dumped.
772
773 Note - older versions of @code{GAS} would dump the current literal
774 pool any time a section change occurred. This is no longer done, since
775 it prevents accurate control of the placement of literal pools.
776
777 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
778
779 @cindex @code{.movsp} directive, ARM
780 @item .movsp @var{reg} [, #@var{offset}]
781 Tell the unwinder that @var{reg} contains an offset from the current
782 stack pointer. If @var{offset} is not specified then it is assumed to be
783 zero.
784
785 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
786 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
787
788 @cindex @code{.object_arch} directive, ARM
789 @item .object_arch @var{name}
790 Override the architecture recorded in the EABI object attribute section.
791 Valid values for @var{name} are the same as for the @code{.arch} directive.
792 Typically this is useful when code uses runtime detection of CPU features.
793
794 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
795
796 @cindex @code{.packed} directive, ARM
797 @item .packed @var{expression} [, @var{expression}]*
798 This directive writes 12-byte packed floating-point values to the
799 output section. These are not compatible with current ARM processors
800 or ABIs.
801
802 @anchor{arm_pad}
803 @cindex @code{.pad} directive, ARM
804 @item .pad #@var{count}
805 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
806 A positive value indicates the function prologue allocated stack space by
807 decrementing the stack pointer.
808
809 @cindex @code{.personality} directive, ARM
810 @item .personality @var{name}
811 Sets the personality routine for the current function to @var{name}.
812
813 @cindex @code{.personalityindex} directive, ARM
814 @item .personalityindex @var{index}
815 Sets the personality routine for the current function to the EABI standard
816 routine number @var{index}
817
818 @cindex @code{.pool} directive, ARM
819 @item .pool
820 This is a synonym for .ltorg.
821
822 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
823 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
824
825 @cindex @code{.req} directive, ARM
826 @item @var{name} .req @var{register name}
827 This creates an alias for @var{register name} called @var{name}. For
828 example:
829
830 @smallexample
831 foo .req r0
832 @end smallexample
833
834 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
835
836 @anchor{arm_save}
837 @cindex @code{.save} directive, ARM
838 @item .save @var{reglist}
839 Generate unwinder annotations to restore the registers in @var{reglist}.
840 The format of @var{reglist} is the same as the corresponding store-multiple
841 instruction.
842
843 @smallexample
844 @exdent @emph{core registers}
845 .save @{r4, r5, r6, lr@}
846 stmfd sp!, @{r4, r5, r6, lr@}
847 @exdent @emph{FPA registers}
848 .save f4, 2
849 sfmfd f4, 2, [sp]!
850 @exdent @emph{VFP registers}
851 .save @{d8, d9, d10@}
852 fstmdx sp!, @{d8, d9, d10@}
853 @exdent @emph{iWMMXt registers}
854 .save @{wr10, wr11@}
855 wstrd wr11, [sp, #-8]!
856 wstrd wr10, [sp, #-8]!
857 or
858 .save wr11
859 wstrd wr11, [sp, #-8]!
860 .save wr10
861 wstrd wr10, [sp, #-8]!
862 @end smallexample
863
864 @anchor{arm_setfp}
865 @cindex @code{.setfp} directive, ARM
866 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
867 Make all unwinder annotations relative to a frame pointer. Without this
868 the unwinder will use offsets from the stack pointer.
869
870 The syntax of this directive is the same as the @code{add} or @code{mov}
871 instruction used to set the frame pointer. @var{spreg} must be either
872 @code{sp} or mentioned in a previous @code{.movsp} directive.
873
874 @smallexample
875 .movsp ip
876 mov ip, sp
877 @dots{}
878 .setfp fp, ip, #4
879 add fp, ip, #4
880 @end smallexample
881
882 @cindex @code{.secrel32} directive, ARM
883 @item .secrel32 @var{expression} [, @var{expression}]*
884 This directive emits relocations that evaluate to the section-relative
885 offset of each expression's symbol. This directive is only supported
886 for PE targets.
887
888 @cindex @code{.syntax} directive, ARM
889 @item .syntax [@code{unified} | @code{divided}]
890 This directive sets the Instruction Set Syntax as described in the
891 @ref{ARM-Instruction-Set} section.
892
893 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
894
895 @cindex @code{.thumb} directive, ARM
896 @item .thumb
897 This performs the same action as @var{.code 16}.
898
899 @cindex @code{.thumb_func} directive, ARM
900 @item .thumb_func
901 This directive specifies that the following symbol is the name of a
902 Thumb encoded function. This information is necessary in order to allow
903 the assembler and linker to generate correct code for interworking
904 between Arm and Thumb instructions and should be used even if
905 interworking is not going to be performed. The presence of this
906 directive also implies @code{.thumb}
907
908 This directive is not neccessary when generating EABI objects. On these
909 targets the encoding is implicit when generating Thumb code.
910
911 @cindex @code{.thumb_set} directive, ARM
912 @item .thumb_set
913 This performs the equivalent of a @code{.set} directive in that it
914 creates a symbol which is an alias for another symbol (possibly not yet
915 defined). This directive also has the added property in that it marks
916 the aliased symbol as being a thumb function entry point, in the same
917 way that the @code{.thumb_func} directive does.
918
919 @cindex @code{.tlsdescseq} directive, ARM
920 @item .tlsdescseq @var{tls-variable}
921 This directive is used to annotate parts of an inlined TLS descriptor
922 trampoline. Normally the trampoline is provided by the linker, and
923 this directive is not needed.
924
925 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
926
927 @cindex @code{.unreq} directive, ARM
928 @item .unreq @var{alias-name}
929 This undefines a register alias which was previously defined using the
930 @code{req}, @code{dn} or @code{qn} directives. For example:
931
932 @smallexample
933 foo .req r0
934 .unreq foo
935 @end smallexample
936
937 An error occurs if the name is undefined. Note - this pseudo op can
938 be used to delete builtin in register name aliases (eg 'r0'). This
939 should only be done if it is really necessary.
940
941 @cindex @code{.unwind_raw} directive, ARM
942 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
943 Insert one of more arbitary unwind opcode bytes, which are known to adjust
944 the stack pointer by @var{offset} bytes.
945
946 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
947 @code{.save @{r0@}}
948
949 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
950
951 @cindex @code{.vsave} directive, ARM
952 @item .vsave @var{vfp-reglist}
953 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
954 using FLDMD. Also works for VFPv3 registers
955 that are to be restored using VLDM.
956 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
957 instruction.
958
959 @smallexample
960 @exdent @emph{VFP registers}
961 .vsave @{d8, d9, d10@}
962 fstmdd sp!, @{d8, d9, d10@}
963 @exdent @emph{VFPv3 registers}
964 .vsave @{d15, d16, d17@}
965 vstm sp!, @{d15, d16, d17@}
966 @end smallexample
967
968 Since FLDMX and FSTMX are now deprecated, this directive should be
969 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
970
971 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
972 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
973 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
974 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
975
976 @end table
977
978 @node ARM Opcodes
979 @section Opcodes
980
981 @cindex ARM opcodes
982 @cindex opcodes for ARM
983 @code{@value{AS}} implements all the standard ARM opcodes. It also
984 implements several pseudo opcodes, including several synthetic load
985 instructions.
986
987 @table @code
988
989 @cindex @code{NOP} pseudo op, ARM
990 @item NOP
991 @smallexample
992 nop
993 @end smallexample
994
995 This pseudo op will always evaluate to a legal ARM instruction that does
996 nothing. Currently it will evaluate to MOV r0, r0.
997
998 @cindex @code{LDR reg,=<label>} pseudo op, ARM
999 @item LDR
1000 @smallexample
1001 ldr <register> , = <expression>
1002 @end smallexample
1003
1004 If expression evaluates to a numeric constant then a MOV or MVN
1005 instruction will be used in place of the LDR instruction, if the
1006 constant can be generated by either of these instructions. Otherwise
1007 the constant will be placed into the nearest literal pool (if it not
1008 already there) and a PC relative LDR instruction will be generated.
1009
1010 @cindex @code{ADR reg,<label>} pseudo op, ARM
1011 @item ADR
1012 @smallexample
1013 adr <register> <label>
1014 @end smallexample
1015
1016 This instruction will load the address of @var{label} into the indicated
1017 register. The instruction will evaluate to a PC relative ADD or SUB
1018 instruction depending upon where the label is located. If the label is
1019 out of range, or if it is not defined in the same file (and section) as
1020 the ADR instruction, then an error will be generated. This instruction
1021 will not make use of the literal pool.
1022
1023 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1024 @item ADRL
1025 @smallexample
1026 adrl <register> <label>
1027 @end smallexample
1028
1029 This instruction will load the address of @var{label} into the indicated
1030 register. The instruction will evaluate to one or two PC relative ADD
1031 or SUB instructions depending upon where the label is located. If a
1032 second instruction is not needed a NOP instruction will be generated in
1033 its place, so that this instruction is always 8 bytes long.
1034
1035 If the label is out of range, or if it is not defined in the same file
1036 (and section) as the ADRL instruction, then an error will be generated.
1037 This instruction will not make use of the literal pool.
1038
1039 @end table
1040
1041 For information on the ARM or Thumb instruction sets, see @cite{ARM
1042 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1043 Ltd.
1044
1045 @node ARM Mapping Symbols
1046 @section Mapping Symbols
1047
1048 The ARM ELF specification requires that special symbols be inserted
1049 into object files to mark certain features:
1050
1051 @table @code
1052
1053 @cindex @code{$a}
1054 @item $a
1055 At the start of a region of code containing ARM instructions.
1056
1057 @cindex @code{$t}
1058 @item $t
1059 At the start of a region of code containing THUMB instructions.
1060
1061 @cindex @code{$d}
1062 @item $d
1063 At the start of a region of data.
1064
1065 @end table
1066
1067 The assembler will automatically insert these symbols for you - there
1068 is no need to code them yourself. Support for tagging symbols ($b,
1069 $f, $p and $m) which is also mentioned in the current ARM ELF
1070 specification is not implemented. This is because they have been
1071 dropped from the new EABI and so tools cannot rely upon their
1072 presence.
1073
1074 @node ARM Unwinding Tutorial
1075 @section Unwinding
1076
1077 The ABI for the ARM Architecture specifies a standard format for
1078 exception unwind information. This information is used when an
1079 exception is thrown to determine where control should be transferred.
1080 In particular, the unwind information is used to determine which
1081 function called the function that threw the exception, and which
1082 function called that one, and so forth. This information is also used
1083 to restore the values of callee-saved registers in the function
1084 catching the exception.
1085
1086 If you are writing functions in assembly code, and those functions
1087 call other functions that throw exceptions, you must use assembly
1088 pseudo ops to ensure that appropriate exception unwind information is
1089 generated. Otherwise, if one of the functions called by your assembly
1090 code throws an exception, the run-time library will be unable to
1091 unwind the stack through your assembly code and your program will not
1092 behave correctly.
1093
1094 To illustrate the use of these pseudo ops, we will examine the code
1095 that G++ generates for the following C++ input:
1096
1097 @verbatim
1098 void callee (int *);
1099
1100 int
1101 caller ()
1102 {
1103 int i;
1104 callee (&i);
1105 return i;
1106 }
1107 @end verbatim
1108
1109 This example does not show how to throw or catch an exception from
1110 assembly code. That is a much more complex operation and should
1111 always be done in a high-level language, such as C++, that directly
1112 supports exceptions.
1113
1114 The code generated by one particular version of G++ when compiling the
1115 example above is:
1116
1117 @verbatim
1118 _Z6callerv:
1119 .fnstart
1120 .LFB2:
1121 @ Function supports interworking.
1122 @ args = 0, pretend = 0, frame = 8
1123 @ frame_needed = 1, uses_anonymous_args = 0
1124 stmfd sp!, {fp, lr}
1125 .save {fp, lr}
1126 .LCFI0:
1127 .setfp fp, sp, #4
1128 add fp, sp, #4
1129 .LCFI1:
1130 .pad #8
1131 sub sp, sp, #8
1132 .LCFI2:
1133 sub r3, fp, #8
1134 mov r0, r3
1135 bl _Z6calleePi
1136 ldr r3, [fp, #-8]
1137 mov r0, r3
1138 sub sp, fp, #4
1139 ldmfd sp!, {fp, lr}
1140 bx lr
1141 .LFE2:
1142 .fnend
1143 @end verbatim
1144
1145 Of course, the sequence of instructions varies based on the options
1146 you pass to GCC and on the version of GCC in use. The exact
1147 instructions are not important since we are focusing on the pseudo ops
1148 that are used to generate unwind information.
1149
1150 An important assumption made by the unwinder is that the stack frame
1151 does not change during the body of the function. In particular, since
1152 we assume that the assembly code does not itself throw an exception,
1153 the only point where an exception can be thrown is from a call, such
1154 as the @code{bl} instruction above. At each call site, the same saved
1155 registers (including @code{lr}, which indicates the return address)
1156 must be located in the same locations relative to the frame pointer.
1157
1158 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1159 op appears immediately before the first instruction of the function
1160 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1161 op appears immediately after the last instruction of the function.
1162 These pseudo ops specify the range of the function.
1163
1164 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1165 @code{.pad}) matters; their exact locations are irrelevant. In the
1166 example above, the compiler emits the pseudo ops with particular
1167 instructions. That makes it easier to understand the code, but it is
1168 not required for correctness. It would work just as well to emit all
1169 of the pseudo ops other than @code{.fnend} in the same order, but
1170 immediately after @code{.fnstart}.
1171
1172 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1173 indicates registers that have been saved to the stack so that they can
1174 be restored before the function returns. The argument to the
1175 @code{.save} pseudo op is a list of registers to save. If a register
1176 is ``callee-saved'' (as specified by the ABI) and is modified by the
1177 function you are writing, then your code must save the value before it
1178 is modified and restore the original value before the function
1179 returns. If an exception is thrown, the run-time library restores the
1180 values of these registers from their locations on the stack before
1181 returning control to the exception handler. (Of course, if an
1182 exception is not thrown, the function that contains the @code{.save}
1183 pseudo op restores these registers in the function epilogue, as is
1184 done with the @code{ldmfd} instruction above.)
1185
1186 You do not have to save callee-saved registers at the very beginning
1187 of the function and you do not need to use the @code{.save} pseudo op
1188 immediately following the point at which the registers are saved.
1189 However, if you modify a callee-saved register, you must save it on
1190 the stack before modifying it and before calling any functions which
1191 might throw an exception. And, you must use the @code{.save} pseudo
1192 op to indicate that you have done so.
1193
1194 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1195 modification of the stack pointer that does not save any registers.
1196 The argument is the number of bytes (in decimal) that are subtracted
1197 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1198 subtracting from the stack pointer increases the size of the stack.)
1199
1200 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1201 indicates the register that contains the frame pointer. The first
1202 argument is the register that is set, which is typically @code{fp}.
1203 The second argument indicates the register from which the frame
1204 pointer takes its value. The third argument, if present, is the value
1205 (in decimal) added to the register specified by the second argument to
1206 compute the value of the frame pointer. You should not modify the
1207 frame pointer in the body of the function.
1208
1209 If you do not use a frame pointer, then you should not use the
1210 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1211 should avoid modifying the stack pointer outside of the function
1212 prologue. Otherwise, the run-time library will be unable to find
1213 saved registers when it is unwinding the stack.
1214
1215 The pseudo ops described above are sufficient for writing assembly
1216 code that calls functions which may throw exceptions. If you need to
1217 know more about the object-file format used to represent unwind
1218 information, you may consult the @cite{Exception Handling ABI for the
1219 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.06782 seconds and 5 git commands to generate.