* bfd/elf32-arm.c (v8): New array.
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
2 @c 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options:: Options
21 * ARM Syntax:: Syntax
22 * ARM Floating Point:: Floating Point
23 * ARM Directives:: ARM Machine Directives
24 * ARM Opcodes:: Opcodes
25 * ARM Mapping Symbols:: Mapping Symbols
26 * ARM Unwinding Tutorial:: Unwinding
27 @end menu
28
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
33
34 @table @code
35
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor. The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor. The following processor names are
41 recognized:
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa606te} (Faraday FA606TE processor),
106 @code{fa616te} (Faraday FA616TE processor),
107 @code{fa626te} (Faraday FA626TE processor),
108 @code{fmp626} (Faraday FMP626 processor),
109 @code{fa726te} (Faraday FA726TE processor),
110 @code{arm1136j-s},
111 @code{arm1136jf-s},
112 @code{arm1156t2-s},
113 @code{arm1156t2f-s},
114 @code{arm1176jz-s},
115 @code{arm1176jzf-s},
116 @code{mpcore},
117 @code{mpcorenovfp},
118 @code{cortex-a5},
119 @code{cortex-a7},
120 @code{cortex-a8},
121 @code{cortex-a9},
122 @code{cortex-a15},
123 @code{cortex-r4},
124 @code{cortex-r4f},
125 @code{cortex-m4},
126 @code{cortex-m3},
127 @code{cortex-m1},
128 @code{cortex-m0},
129 @code{cortex-m0plus},
130 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
131 @code{i80200} (Intel XScale processor)
132 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
133 and
134 @code{xscale}.
135 The special name @code{all} may be used to allow the
136 assembler to accept instructions valid for any ARM processor.
137
138 In addition to the basic instruction set, the assembler can be told to
139 accept various extension mnemonics that extend the processor using the
140 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
141 is equivalent to specifying @code{-mcpu=ep9312}.
142
143 Multiple extensions may be specified, separated by a @code{+}. The
144 extensions should be specified in ascending alphabetical order.
145
146 Some extensions may be restricted to particular architectures; this is
147 documented in the list of extensions below.
148
149 Extension mnemonics may also be removed from those the assembler accepts.
150 This is done be prepending @code{no} to the option that adds the extension.
151 Extensions that are removed should be listed after all extensions which have
152 been added, again in ascending alphabetical order. For example,
153 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
154
155
156 The following extensions are currently supported:
157 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
158 @code{fp} (Floating Point Extensions for v8-A architecture),
159 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
160 @code{iwmmxt},
161 @code{iwmmxt2},
162 @code{maverick},
163 @code{mp} (Multiprocessing Extensions for v7-A and v7-R architectures),
164 @code{os} (Operating System for v6M architecture),
165 @code{sec} (Security Extensions for v6K and v7-A architectures),
166 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
167 @code{virt} (Virtualization Extensions for v7-A architecture, implies
168 @code{idiv}),
169 and
170 @code{xscale}.
171
172 @cindex @code{-march=} command line option, ARM
173 @item -march=@var{architecture}[+@var{extension}@dots{}]
174 This option specifies the target architecture. The assembler will issue
175 an error message if an attempt is made to assemble an instruction which
176 will not execute on the target architecture. The following architecture
177 names are recognized:
178 @code{armv1},
179 @code{armv2},
180 @code{armv2a},
181 @code{armv2s},
182 @code{armv3},
183 @code{armv3m},
184 @code{armv4},
185 @code{armv4xm},
186 @code{armv4t},
187 @code{armv4txm},
188 @code{armv5},
189 @code{armv5t},
190 @code{armv5txm},
191 @code{armv5te},
192 @code{armv5texp},
193 @code{armv6},
194 @code{armv6j},
195 @code{armv6k},
196 @code{armv6z},
197 @code{armv6zk},
198 @code{armv6-m},
199 @code{armv6s-m},
200 @code{armv7},
201 @code{armv7-a},
202 @code{armv7-r},
203 @code{armv7-m},
204 @code{armv7e-m},
205 @code{armv8-a},
206 @code{iwmmxt}
207 and
208 @code{xscale}.
209 If both @code{-mcpu} and
210 @code{-march} are specified, the assembler will use
211 the setting for @code{-mcpu}.
212
213 The architecture option can be extended with the same instruction set
214 extension options as the @code{-mcpu} option.
215
216 @cindex @code{-mfpu=} command line option, ARM
217 @item -mfpu=@var{floating-point-format}
218
219 This option specifies the floating point format to assemble for. The
220 assembler will issue an error message if an attempt is made to assemble
221 an instruction which will not execute on the target floating point unit.
222 The following format options are recognized:
223 @code{softfpa},
224 @code{fpe},
225 @code{fpe2},
226 @code{fpe3},
227 @code{fpa},
228 @code{fpa10},
229 @code{fpa11},
230 @code{arm7500fe},
231 @code{softvfp},
232 @code{softvfp+vfp},
233 @code{vfp},
234 @code{vfp10},
235 @code{vfp10-r0},
236 @code{vfp9},
237 @code{vfpxd},
238 @code{vfpv2},
239 @code{vfpv3},
240 @code{vfpv3-fp16},
241 @code{vfpv3-d16},
242 @code{vfpv3-d16-fp16},
243 @code{vfpv3xd},
244 @code{vfpv3xd-d16},
245 @code{vfpv4},
246 @code{vfpv4-d16},
247 @code{fpv4-sp-d16},
248 @code{fp-armv8},
249 @code{arm1020t},
250 @code{arm1020e},
251 @code{arm1136jf-s},
252 @code{maverick},
253 @code{neon},
254 @code{neon-vfpv4},
255 @code{neon-fp-armv8},
256 and
257 @code{crypto-neon-fp-armv8}.
258
259 In addition to determining which instructions are assembled, this option
260 also affects the way in which the @code{.double} assembler directive behaves
261 when assembling little-endian code.
262
263 The default is dependent on the processor selected. For Architecture 5 or
264 later, the default is to assembler for VFP instructions; for earlier
265 architectures the default is to assemble for FPA instructions.
266
267 @cindex @code{-mthumb} command line option, ARM
268 @item -mthumb
269 This option specifies that the assembler should start assembling Thumb
270 instructions; that is, it should behave as though the file starts with a
271 @code{.code 16} directive.
272
273 @cindex @code{-mthumb-interwork} command line option, ARM
274 @item -mthumb-interwork
275 This option specifies that the output generated by the assembler should
276 be marked as supporting interworking.
277
278 @cindex @code{-mimplicit-it} command line option, ARM
279 @item -mimplicit-it=never
280 @itemx -mimplicit-it=always
281 @itemx -mimplicit-it=arm
282 @itemx -mimplicit-it=thumb
283 The @code{-mimplicit-it} option controls the behavior of the assembler when
284 conditional instructions are not enclosed in IT blocks.
285 There are four possible behaviors.
286 If @code{never} is specified, such constructs cause a warning in ARM
287 code and an error in Thumb-2 code.
288 If @code{always} is specified, such constructs are accepted in both
289 ARM and Thumb-2 code, where the IT instruction is added implicitly.
290 If @code{arm} is specified, such constructs are accepted in ARM code
291 and cause an error in Thumb-2 code.
292 If @code{thumb} is specified, such constructs cause a warning in ARM
293 code and are accepted in Thumb-2 code. If you omit this option, the
294 behavior is equivalent to @code{-mimplicit-it=arm}.
295
296 @cindex @code{-mapcs-26} command line option, ARM
297 @cindex @code{-mapcs-32} command line option, ARM
298 @item -mapcs-26
299 @itemx -mapcs-32
300 These options specify that the output generated by the assembler should
301 be marked as supporting the indicated version of the Arm Procedure.
302 Calling Standard.
303
304 @cindex @code{-matpcs} command line option, ARM
305 @item -matpcs
306 This option specifies that the output generated by the assembler should
307 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
308 enabled this option will cause the assembler to create an empty
309 debugging section in the object file called .arm.atpcs. Debuggers can
310 use this to determine the ABI being used by.
311
312 @cindex @code{-mapcs-float} command line option, ARM
313 @item -mapcs-float
314 This indicates the floating point variant of the APCS should be
315 used. In this variant floating point arguments are passed in FP
316 registers rather than integer registers.
317
318 @cindex @code{-mapcs-reentrant} command line option, ARM
319 @item -mapcs-reentrant
320 This indicates that the reentrant variant of the APCS should be used.
321 This variant supports position independent code.
322
323 @cindex @code{-mfloat-abi=} command line option, ARM
324 @item -mfloat-abi=@var{abi}
325 This option specifies that the output generated by the assembler should be
326 marked as using specified floating point ABI.
327 The following values are recognized:
328 @code{soft},
329 @code{softfp}
330 and
331 @code{hard}.
332
333 @cindex @code{-eabi=} command line option, ARM
334 @item -meabi=@var{ver}
335 This option specifies which EABI version the produced object files should
336 conform to.
337 The following values are recognized:
338 @code{gnu},
339 @code{4}
340 and
341 @code{5}.
342
343 @cindex @code{-EB} command line option, ARM
344 @item -EB
345 This option specifies that the output generated by the assembler should
346 be marked as being encoded for a big-endian processor.
347
348 @cindex @code{-EL} command line option, ARM
349 @item -EL
350 This option specifies that the output generated by the assembler should
351 be marked as being encoded for a little-endian processor.
352
353 @cindex @code{-k} command line option, ARM
354 @cindex PIC code generation for ARM
355 @item -k
356 This option specifies that the output of the assembler should be marked
357 as position-independent code (PIC).
358
359 @cindex @code{--fix-v4bx} command line option, ARM
360 @item --fix-v4bx
361 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
362 the linker option of the same name.
363
364 @cindex @code{-mwarn-deprecated} command line option, ARM
365 @item -mwarn-deprecated
366 @itemx -mno-warn-deprecated
367 Enable or disable warnings about using deprecated options or
368 features. The default is to warn.
369
370 @end table
371
372
373 @node ARM Syntax
374 @section Syntax
375 @menu
376 * ARM-Instruction-Set:: Instruction Set
377 * ARM-Chars:: Special Characters
378 * ARM-Regs:: Register Names
379 * ARM-Relocations:: Relocations
380 * ARM-Neon-Alignment:: NEON Alignment Specifiers
381 @end menu
382
383 @node ARM-Instruction-Set
384 @subsection Instruction Set Syntax
385 Two slightly different syntaxes are support for ARM and THUMB
386 instructions. The default, @code{divided}, uses the old style where
387 ARM and THUMB instructions had their own, separate syntaxes. The new,
388 @code{unified} syntax, which can be selected via the @code{.syntax}
389 directive, and has the following main features:
390
391 @table @bullet
392 @item
393 Immediate operands do not require a @code{#} prefix.
394
395 @item
396 The @code{IT} instruction may appear, and if it does it is validated
397 against subsequent conditional affixes. In ARM mode it does not
398 generate machine code, in THUMB mode it does.
399
400 @item
401 For ARM instructions the conditional affixes always appear at the end
402 of the instruction. For THUMB instructions conditional affixes can be
403 used, but only inside the scope of an @code{IT} instruction.
404
405 @item
406 All of the instructions new to the V6T2 architecture (and later) are
407 available. (Only a few such instructions can be written in the
408 @code{divided} syntax).
409
410 @item
411 The @code{.N} and @code{.W} suffixes are recognized and honored.
412
413 @item
414 All instructions set the flags if and only if they have an @code{s}
415 affix.
416 @end table
417
418 @node ARM-Chars
419 @subsection Special Characters
420
421 @cindex line comment character, ARM
422 @cindex ARM line comment character
423 The presence of a @samp{@@} anywhere on a line indicates the start of
424 a comment that extends to the end of that line.
425
426 If a @samp{#} appears as the first character of a line then the whole
427 line is treated as a comment, but in this case the line could also be
428 a logical line number directive (@pxref{Comments}) or a preprocessor
429 control command (@pxref{Preprocessing}).
430
431 @cindex line separator, ARM
432 @cindex statement separator, ARM
433 @cindex ARM line separator
434 The @samp{;} character can be used instead of a newline to separate
435 statements.
436
437 @cindex immediate character, ARM
438 @cindex ARM immediate character
439 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
440
441 @cindex identifiers, ARM
442 @cindex ARM identifiers
443 *TODO* Explain about /data modifier on symbols.
444
445 @node ARM-Regs
446 @subsection Register Names
447
448 @cindex ARM register names
449 @cindex register names, ARM
450 *TODO* Explain about ARM register naming, and the predefined names.
451
452 @node ARM-Neon-Alignment
453 @subsection NEON Alignment Specifiers
454
455 @cindex alignment for NEON instructions
456 Some NEON load/store instructions allow an optional address
457 alignment qualifier.
458 The ARM documentation specifies that this is indicated by
459 @samp{@@ @var{align}}. However GAS already interprets
460 the @samp{@@} character as a "line comment" start,
461 so @samp{: @var{align}} is used instead. For example:
462
463 @smallexample
464 vld1.8 @{q0@}, [r0, :128]
465 @end smallexample
466
467 @node ARM Floating Point
468 @section Floating Point
469
470 @cindex floating point, ARM (@sc{ieee})
471 @cindex ARM floating point (@sc{ieee})
472 The ARM family uses @sc{ieee} floating-point numbers.
473
474 @node ARM-Relocations
475 @subsection ARM relocation generation
476
477 @cindex data relocations, ARM
478 @cindex ARM data relocations
479 Specific data relocations can be generated by putting the relocation name
480 in parentheses after the symbol name. For example:
481
482 @smallexample
483 .word foo(TARGET1)
484 @end smallexample
485
486 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
487 @var{foo}.
488 The following relocations are supported:
489 @code{GOT},
490 @code{GOTOFF},
491 @code{TARGET1},
492 @code{TARGET2},
493 @code{SBREL},
494 @code{TLSGD},
495 @code{TLSLDM},
496 @code{TLSLDO},
497 @code{TLSDESC},
498 @code{TLSCALL},
499 @code{GOTTPOFF},
500 @code{GOT_PREL}
501 and
502 @code{TPOFF}.
503
504 For compatibility with older toolchains the assembler also accepts
505 @code{(PLT)} after branch targets. On legacy targets this will
506 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
507 targets it will encode either the @samp{R_ARM_CALL} or
508 @samp{R_ARM_JUMP24} relocation, as appropriate.
509
510 @cindex MOVW and MOVT relocations, ARM
511 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
512 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
513 respectively. For example to load the 32-bit address of foo into r0:
514
515 @smallexample
516 MOVW r0, #:lower16:foo
517 MOVT r0, #:upper16:foo
518 @end smallexample
519
520 @node ARM Directives
521 @section ARM Machine Directives
522
523 @cindex machine directives, ARM
524 @cindex ARM machine directives
525 @table @code
526
527 @c AAAAAAAAAAAAAAAAAAAAAAAAA
528
529 @cindex @code{.2byte} directive, ARM
530 @cindex @code{.4byte} directive, ARM
531 @cindex @code{.8byte} directive, ARM
532 @item .2byte @var{expression} [, @var{expression}]*
533 @itemx .4byte @var{expression} [, @var{expression}]*
534 @itemx .8byte @var{expression} [, @var{expression}]*
535 These directives write 2, 4 or 8 byte values to the output section.
536
537 @cindex @code{.align} directive, ARM
538 @item .align @var{expression} [, @var{expression}]
539 This is the generic @var{.align} directive. For the ARM however if the
540 first argument is zero (ie no alignment is needed) the assembler will
541 behave as if the argument had been 2 (ie pad to the next four byte
542 boundary). This is for compatibility with ARM's own assembler.
543
544 @cindex @code{.arch} directive, ARM
545 @item .arch @var{name}
546 Select the target architecture. Valid values for @var{name} are the same as
547 for the @option{-march} commandline option.
548
549 Specifying @code{.arch} clears any previously selected architecture
550 extensions.
551
552 @cindex @code{.arch_extension} directive, ARM
553 @item .arch_extension @var{name}
554 Add or remove an architecture extension to the target architecture. Valid
555 values for @var{name} are the same as those accepted as architectural
556 extensions by the @option{-mcpu} commandline option.
557
558 @code{.arch_extension} may be used multiple times to add or remove extensions
559 incrementally to the architecture being compiled for.
560
561 @cindex @code{.arm} directive, ARM
562 @item .arm
563 This performs the same action as @var{.code 32}.
564
565 @anchor{arm_pad}
566 @cindex @code{.pad} directive, ARM
567 @item .pad #@var{count}
568 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
569 A positive value indicates the function prologue allocated stack space by
570 decrementing the stack pointer.
571
572 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
573
574 @cindex @code{.bss} directive, ARM
575 @item .bss
576 This directive switches to the @code{.bss} section.
577
578 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
579
580 @cindex @code{.cantunwind} directive, ARM
581 @item .cantunwind
582 Prevents unwinding through the current function. No personality routine
583 or exception table data is required or permitted.
584
585 @cindex @code{.code} directive, ARM
586 @item .code @code{[16|32]}
587 This directive selects the instruction set being generated. The value 16
588 selects Thumb, with the value 32 selecting ARM.
589
590 @cindex @code{.cpu} directive, ARM
591 @item .cpu @var{name}
592 Select the target processor. Valid values for @var{name} are the same as
593 for the @option{-mcpu} commandline option.
594
595 Specifying @code{.cpu} clears any previously selected architecture
596 extensions.
597
598 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
599
600 @cindex @code{.dn} and @code{.qn} directives, ARM
601 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
602 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
603
604 The @code{dn} and @code{qn} directives are used to create typed
605 and/or indexed register aliases for use in Advanced SIMD Extension
606 (Neon) instructions. The former should be used to create aliases
607 of double-precision registers, and the latter to create aliases of
608 quad-precision registers.
609
610 If these directives are used to create typed aliases, those aliases can
611 be used in Neon instructions instead of writing types after the mnemonic
612 or after each operand. For example:
613
614 @smallexample
615 x .dn d2.f32
616 y .dn d3.f32
617 z .dn d4.f32[1]
618 vmul x,y,z
619 @end smallexample
620
621 This is equivalent to writing the following:
622
623 @smallexample
624 vmul.f32 d2,d3,d4[1]
625 @end smallexample
626
627 Aliases created using @code{dn} or @code{qn} can be destroyed using
628 @code{unreq}.
629
630 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
631
632 @cindex @code{.eabi_attribute} directive, ARM
633 @item .eabi_attribute @var{tag}, @var{value}
634 Set the EABI object attribute @var{tag} to @var{value}.
635
636 The @var{tag} is either an attribute number, or one of the following:
637 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
638 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
639 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
640 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
641 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
642 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
643 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
644 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
645 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
646 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
647 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
648 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
649 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
650 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
651 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
652 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
653 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
654 @code{Tag_conformance}, @code{Tag_T2EE_use},
655 @code{Tag_Virtualization_use}
656
657 The @var{value} is either a @code{number}, @code{"string"}, or
658 @code{number, "string"} depending on the tag.
659
660 Note - the following legacy values are also accepted by @var{tag}:
661 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
662 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
663
664 @cindex @code{.even} directive, ARM
665 @item .even
666 This directive aligns to an even-numbered address.
667
668 @cindex @code{.extend} directive, ARM
669 @cindex @code{.ldouble} directive, ARM
670 @item .extend @var{expression} [, @var{expression}]*
671 @itemx .ldouble @var{expression} [, @var{expression}]*
672 These directives write 12byte long double floating-point values to the
673 output section. These are not compatible with current ARM processors
674 or ABIs.
675
676 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
677
678 @anchor{arm_fnend}
679 @cindex @code{.fnend} directive, ARM
680 @item .fnend
681 Marks the end of a function with an unwind table entry. The unwind index
682 table entry is created when this directive is processed.
683
684 If no personality routine has been specified then standard personality
685 routine 0 or 1 will be used, depending on the number of unwind opcodes
686 required.
687
688 @anchor{arm_fnstart}
689 @cindex @code{.fnstart} directive, ARM
690 @item .fnstart
691 Marks the start of a function with an unwind table entry.
692
693 @cindex @code{.force_thumb} directive, ARM
694 @item .force_thumb
695 This directive forces the selection of Thumb instructions, even if the
696 target processor does not support those instructions
697
698 @cindex @code{.fpu} directive, ARM
699 @item .fpu @var{name}
700 Select the floating-point unit to assemble for. Valid values for @var{name}
701 are the same as for the @option{-mfpu} commandline option.
702
703 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
704 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
705
706 @cindex @code{.handlerdata} directive, ARM
707 @item .handlerdata
708 Marks the end of the current function, and the start of the exception table
709 entry for that function. Anything between this directive and the
710 @code{.fnend} directive will be added to the exception table entry.
711
712 Must be preceded by a @code{.personality} or @code{.personalityindex}
713 directive.
714
715 @c IIIIIIIIIIIIIIIIIIIIIIIIII
716
717 @cindex @code{.inst} directive, ARM
718 @item .inst @var{opcode} [ , @dots{} ]
719 @itemx .inst.n @var{opcode} [ , @dots{} ]
720 @itemx .inst.w @var{opcode} [ , @dots{} ]
721 Generates the instruction corresponding to the numerical value @var{opcode}.
722 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
723 specified explicitly, overriding the normal encoding rules.
724
725 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
726 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
727 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
728
729 @item .ldouble @var{expression} [, @var{expression}]*
730 See @code{.extend}.
731
732 @cindex @code{.ltorg} directive, ARM
733 @item .ltorg
734 This directive causes the current contents of the literal pool to be
735 dumped into the current section (which is assumed to be the .text
736 section) at the current location (aligned to a word boundary).
737 @code{GAS} maintains a separate literal pool for each section and each
738 sub-section. The @code{.ltorg} directive will only affect the literal
739 pool of the current section and sub-section. At the end of assembly
740 all remaining, un-empty literal pools will automatically be dumped.
741
742 Note - older versions of @code{GAS} would dump the current literal
743 pool any time a section change occurred. This is no longer done, since
744 it prevents accurate control of the placement of literal pools.
745
746 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
747
748 @cindex @code{.movsp} directive, ARM
749 @item .movsp @var{reg} [, #@var{offset}]
750 Tell the unwinder that @var{reg} contains an offset from the current
751 stack pointer. If @var{offset} is not specified then it is assumed to be
752 zero.
753
754 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
755 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
756
757 @cindex @code{.object_arch} directive, ARM
758 @item .object_arch @var{name}
759 Override the architecture recorded in the EABI object attribute section.
760 Valid values for @var{name} are the same as for the @code{.arch} directive.
761 Typically this is useful when code uses runtime detection of CPU features.
762
763 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
764
765 @cindex @code{.packed} directive, ARM
766 @item .packed @var{expression} [, @var{expression}]*
767 This directive writes 12-byte packed floating-point values to the
768 output section. These are not compatible with current ARM processors
769 or ABIs.
770
771 @cindex @code{.pad} directive, ARM
772 @item .pad #@var{count}
773 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
774 A positive value indicates the function prologue allocated stack space by
775 decrementing the stack pointer.
776
777 @cindex @code{.personality} directive, ARM
778 @item .personality @var{name}
779 Sets the personality routine for the current function to @var{name}.
780
781 @cindex @code{.personalityindex} directive, ARM
782 @item .personalityindex @var{index}
783 Sets the personality routine for the current function to the EABI standard
784 routine number @var{index}
785
786 @cindex @code{.pool} directive, ARM
787 @item .pool
788 This is a synonym for .ltorg.
789
790 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
791 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
792
793 @cindex @code{.req} directive, ARM
794 @item @var{name} .req @var{register name}
795 This creates an alias for @var{register name} called @var{name}. For
796 example:
797
798 @smallexample
799 foo .req r0
800 @end smallexample
801
802 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
803
804 @anchor{arm_save}
805 @cindex @code{.save} directive, ARM
806 @item .save @var{reglist}
807 Generate unwinder annotations to restore the registers in @var{reglist}.
808 The format of @var{reglist} is the same as the corresponding store-multiple
809 instruction.
810
811 @smallexample
812 @exdent @emph{core registers}
813 .save @{r4, r5, r6, lr@}
814 stmfd sp!, @{r4, r5, r6, lr@}
815 @exdent @emph{FPA registers}
816 .save f4, 2
817 sfmfd f4, 2, [sp]!
818 @exdent @emph{VFP registers}
819 .save @{d8, d9, d10@}
820 fstmdx sp!, @{d8, d9, d10@}
821 @exdent @emph{iWMMXt registers}
822 .save @{wr10, wr11@}
823 wstrd wr11, [sp, #-8]!
824 wstrd wr10, [sp, #-8]!
825 or
826 .save wr11
827 wstrd wr11, [sp, #-8]!
828 .save wr10
829 wstrd wr10, [sp, #-8]!
830 @end smallexample
831
832 @anchor{arm_setfp}
833 @cindex @code{.setfp} directive, ARM
834 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
835 Make all unwinder annotations relative to a frame pointer. Without this
836 the unwinder will use offsets from the stack pointer.
837
838 The syntax of this directive is the same as the @code{add} or @code{mov}
839 instruction used to set the frame pointer. @var{spreg} must be either
840 @code{sp} or mentioned in a previous @code{.movsp} directive.
841
842 @smallexample
843 .movsp ip
844 mov ip, sp
845 @dots{}
846 .setfp fp, ip, #4
847 add fp, ip, #4
848 @end smallexample
849
850 @cindex @code{.secrel32} directive, ARM
851 @item .secrel32 @var{expression} [, @var{expression}]*
852 This directive emits relocations that evaluate to the section-relative
853 offset of each expression's symbol. This directive is only supported
854 for PE targets.
855
856 @cindex @code{.syntax} directive, ARM
857 @item .syntax [@code{unified} | @code{divided}]
858 This directive sets the Instruction Set Syntax as described in the
859 @ref{ARM-Instruction-Set} section.
860
861 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
862
863 @cindex @code{.thumb} directive, ARM
864 @item .thumb
865 This performs the same action as @var{.code 16}.
866
867 @cindex @code{.thumb_func} directive, ARM
868 @item .thumb_func
869 This directive specifies that the following symbol is the name of a
870 Thumb encoded function. This information is necessary in order to allow
871 the assembler and linker to generate correct code for interworking
872 between Arm and Thumb instructions and should be used even if
873 interworking is not going to be performed. The presence of this
874 directive also implies @code{.thumb}
875
876 This directive is not neccessary when generating EABI objects. On these
877 targets the encoding is implicit when generating Thumb code.
878
879 @cindex @code{.thumb_set} directive, ARM
880 @item .thumb_set
881 This performs the equivalent of a @code{.set} directive in that it
882 creates a symbol which is an alias for another symbol (possibly not yet
883 defined). This directive also has the added property in that it marks
884 the aliased symbol as being a thumb function entry point, in the same
885 way that the @code{.thumb_func} directive does.
886
887 @cindex @code{.tlsdescseq} directive, ARM
888 @item .tlsdescseq @var{tls-variable}
889 This directive is used to annotate parts of an inlined TLS descriptor
890 trampoline. Normally the trampoline is provided by the linker, and
891 this directive is not needed.
892
893 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
894
895 @cindex @code{.unreq} directive, ARM
896 @item .unreq @var{alias-name}
897 This undefines a register alias which was previously defined using the
898 @code{req}, @code{dn} or @code{qn} directives. For example:
899
900 @smallexample
901 foo .req r0
902 .unreq foo
903 @end smallexample
904
905 An error occurs if the name is undefined. Note - this pseudo op can
906 be used to delete builtin in register name aliases (eg 'r0'). This
907 should only be done if it is really necessary.
908
909 @cindex @code{.unwind_raw} directive, ARM
910 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
911 Insert one of more arbitary unwind opcode bytes, which are known to adjust
912 the stack pointer by @var{offset} bytes.
913
914 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
915 @code{.save @{r0@}}
916
917 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
918
919 @cindex @code{.vsave} directive, ARM
920 @item .vsave @var{vfp-reglist}
921 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
922 using FLDMD. Also works for VFPv3 registers
923 that are to be restored using VLDM.
924 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
925 instruction.
926
927 @smallexample
928 @exdent @emph{VFP registers}
929 .vsave @{d8, d9, d10@}
930 fstmdd sp!, @{d8, d9, d10@}
931 @exdent @emph{VFPv3 registers}
932 .vsave @{d15, d16, d17@}
933 vstm sp!, @{d15, d16, d17@}
934 @end smallexample
935
936 Since FLDMX and FSTMX are now deprecated, this directive should be
937 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
938
939 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
940 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
941 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
942 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
943
944 @end table
945
946 @node ARM Opcodes
947 @section Opcodes
948
949 @cindex ARM opcodes
950 @cindex opcodes for ARM
951 @code{@value{AS}} implements all the standard ARM opcodes. It also
952 implements several pseudo opcodes, including several synthetic load
953 instructions.
954
955 @table @code
956
957 @cindex @code{NOP} pseudo op, ARM
958 @item NOP
959 @smallexample
960 nop
961 @end smallexample
962
963 This pseudo op will always evaluate to a legal ARM instruction that does
964 nothing. Currently it will evaluate to MOV r0, r0.
965
966 @cindex @code{LDR reg,=<label>} pseudo op, ARM
967 @item LDR
968 @smallexample
969 ldr <register> , = <expression>
970 @end smallexample
971
972 If expression evaluates to a numeric constant then a MOV or MVN
973 instruction will be used in place of the LDR instruction, if the
974 constant can be generated by either of these instructions. Otherwise
975 the constant will be placed into the nearest literal pool (if it not
976 already there) and a PC relative LDR instruction will be generated.
977
978 @cindex @code{ADR reg,<label>} pseudo op, ARM
979 @item ADR
980 @smallexample
981 adr <register> <label>
982 @end smallexample
983
984 This instruction will load the address of @var{label} into the indicated
985 register. The instruction will evaluate to a PC relative ADD or SUB
986 instruction depending upon where the label is located. If the label is
987 out of range, or if it is not defined in the same file (and section) as
988 the ADR instruction, then an error will be generated. This instruction
989 will not make use of the literal pool.
990
991 @cindex @code{ADRL reg,<label>} pseudo op, ARM
992 @item ADRL
993 @smallexample
994 adrl <register> <label>
995 @end smallexample
996
997 This instruction will load the address of @var{label} into the indicated
998 register. The instruction will evaluate to one or two PC relative ADD
999 or SUB instructions depending upon where the label is located. If a
1000 second instruction is not needed a NOP instruction will be generated in
1001 its place, so that this instruction is always 8 bytes long.
1002
1003 If the label is out of range, or if it is not defined in the same file
1004 (and section) as the ADRL instruction, then an error will be generated.
1005 This instruction will not make use of the literal pool.
1006
1007 @end table
1008
1009 For information on the ARM or Thumb instruction sets, see @cite{ARM
1010 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1011 Ltd.
1012
1013 @node ARM Mapping Symbols
1014 @section Mapping Symbols
1015
1016 The ARM ELF specification requires that special symbols be inserted
1017 into object files to mark certain features:
1018
1019 @table @code
1020
1021 @cindex @code{$a}
1022 @item $a
1023 At the start of a region of code containing ARM instructions.
1024
1025 @cindex @code{$t}
1026 @item $t
1027 At the start of a region of code containing THUMB instructions.
1028
1029 @cindex @code{$d}
1030 @item $d
1031 At the start of a region of data.
1032
1033 @end table
1034
1035 The assembler will automatically insert these symbols for you - there
1036 is no need to code them yourself. Support for tagging symbols ($b,
1037 $f, $p and $m) which is also mentioned in the current ARM ELF
1038 specification is not implemented. This is because they have been
1039 dropped from the new EABI and so tools cannot rely upon their
1040 presence.
1041
1042 @node ARM Unwinding Tutorial
1043 @section Unwinding
1044
1045 The ABI for the ARM Architecture specifies a standard format for
1046 exception unwind information. This information is used when an
1047 exception is thrown to determine where control should be transferred.
1048 In particular, the unwind information is used to determine which
1049 function called the function that threw the exception, and which
1050 function called that one, and so forth. This information is also used
1051 to restore the values of callee-saved registers in the function
1052 catching the exception.
1053
1054 If you are writing functions in assembly code, and those functions
1055 call other functions that throw exceptions, you must use assembly
1056 pseudo ops to ensure that appropriate exception unwind information is
1057 generated. Otherwise, if one of the functions called by your assembly
1058 code throws an exception, the run-time library will be unable to
1059 unwind the stack through your assembly code and your program will not
1060 behave correctly.
1061
1062 To illustrate the use of these pseudo ops, we will examine the code
1063 that G++ generates for the following C++ input:
1064
1065 @verbatim
1066 void callee (int *);
1067
1068 int
1069 caller ()
1070 {
1071 int i;
1072 callee (&i);
1073 return i;
1074 }
1075 @end verbatim
1076
1077 This example does not show how to throw or catch an exception from
1078 assembly code. That is a much more complex operation and should
1079 always be done in a high-level language, such as C++, that directly
1080 supports exceptions.
1081
1082 The code generated by one particular version of G++ when compiling the
1083 example above is:
1084
1085 @verbatim
1086 _Z6callerv:
1087 .fnstart
1088 .LFB2:
1089 @ Function supports interworking.
1090 @ args = 0, pretend = 0, frame = 8
1091 @ frame_needed = 1, uses_anonymous_args = 0
1092 stmfd sp!, {fp, lr}
1093 .save {fp, lr}
1094 .LCFI0:
1095 .setfp fp, sp, #4
1096 add fp, sp, #4
1097 .LCFI1:
1098 .pad #8
1099 sub sp, sp, #8
1100 .LCFI2:
1101 sub r3, fp, #8
1102 mov r0, r3
1103 bl _Z6calleePi
1104 ldr r3, [fp, #-8]
1105 mov r0, r3
1106 sub sp, fp, #4
1107 ldmfd sp!, {fp, lr}
1108 bx lr
1109 .LFE2:
1110 .fnend
1111 @end verbatim
1112
1113 Of course, the sequence of instructions varies based on the options
1114 you pass to GCC and on the version of GCC in use. The exact
1115 instructions are not important since we are focusing on the pseudo ops
1116 that are used to generate unwind information.
1117
1118 An important assumption made by the unwinder is that the stack frame
1119 does not change during the body of the function. In particular, since
1120 we assume that the assembly code does not itself throw an exception,
1121 the only point where an exception can be thrown is from a call, such
1122 as the @code{bl} instruction above. At each call site, the same saved
1123 registers (including @code{lr}, which indicates the return address)
1124 must be located in the same locations relative to the frame pointer.
1125
1126 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1127 op appears immediately before the first instruction of the function
1128 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1129 op appears immediately after the last instruction of the function.
1130 These pseudo ops specify the range of the function.
1131
1132 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1133 @code{.pad}) matters; their exact locations are irrelevant. In the
1134 example above, the compiler emits the pseudo ops with particular
1135 instructions. That makes it easier to understand the code, but it is
1136 not required for correctness. It would work just as well to emit all
1137 of the pseudo ops other than @code{.fnend} in the same order, but
1138 immediately after @code{.fnstart}.
1139
1140 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1141 indicates registers that have been saved to the stack so that they can
1142 be restored before the function returns. The argument to the
1143 @code{.save} pseudo op is a list of registers to save. If a register
1144 is ``callee-saved'' (as specified by the ABI) and is modified by the
1145 function you are writing, then your code must save the value before it
1146 is modified and restore the original value before the function
1147 returns. If an exception is thrown, the run-time library restores the
1148 values of these registers from their locations on the stack before
1149 returning control to the exception handler. (Of course, if an
1150 exception is not thrown, the function that contains the @code{.save}
1151 pseudo op restores these registers in the function epilogue, as is
1152 done with the @code{ldmfd} instruction above.)
1153
1154 You do not have to save callee-saved registers at the very beginning
1155 of the function and you do not need to use the @code{.save} pseudo op
1156 immediately following the point at which the registers are saved.
1157 However, if you modify a callee-saved register, you must save it on
1158 the stack before modifying it and before calling any functions which
1159 might throw an exception. And, you must use the @code{.save} pseudo
1160 op to indicate that you have done so.
1161
1162 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1163 modification of the stack pointer that does not save any registers.
1164 The argument is the number of bytes (in decimal) that are subtracted
1165 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1166 subtracting from the stack pointer increases the size of the stack.)
1167
1168 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1169 indicates the register that contains the frame pointer. The first
1170 argument is the register that is set, which is typically @code{fp}.
1171 The second argument indicates the register from which the frame
1172 pointer takes its value. The third argument, if present, is the value
1173 (in decimal) added to the register specified by the second argument to
1174 compute the value of the frame pointer. You should not modify the
1175 frame pointer in the body of the function.
1176
1177 If you do not use a frame pointer, then you should not use the
1178 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1179 should avoid modifying the stack pointer outside of the function
1180 prologue. Otherwise, the run-time library will be unable to find
1181 saved registers when it is unwinding the stack.
1182
1183 The pseudo ops described above are sufficient for writing assembly
1184 code that calls functions which may throw exceptions. If you need to
1185 know more about the object-file format used to represent unwind
1186 information, you may consult the @cite{Exception Handling ABI for the
1187 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.082391 seconds and 5 git commands to generate.