* config/tc-arm.c (it_fsm_post_encode): New forward declaration.
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
2 @c 2008, 2009 Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options:: Options
21 * ARM Syntax:: Syntax
22 * ARM Floating Point:: Floating Point
23 * ARM Directives:: ARM Machine Directives
24 * ARM Opcodes:: Opcodes
25 * ARM Mapping Symbols:: Mapping Symbols
26 * ARM Unwinding Tutorial:: Unwinding
27 @end menu
28
29 @node ARM Options
30 @section Options
31 @cindex ARM options (none)
32 @cindex options for ARM (none)
33
34 @table @code
35
36 @cindex @code{-mcpu=} command line option, ARM
37 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
38 This option specifies the target processor. The assembler will issue an
39 error message if an attempt is made to assemble an instruction which
40 will not execute on the target processor. The following processor names are
41 recognized:
42 @code{arm1},
43 @code{arm2},
44 @code{arm250},
45 @code{arm3},
46 @code{arm6},
47 @code{arm60},
48 @code{arm600},
49 @code{arm610},
50 @code{arm620},
51 @code{arm7},
52 @code{arm7m},
53 @code{arm7d},
54 @code{arm7dm},
55 @code{arm7di},
56 @code{arm7dmi},
57 @code{arm70},
58 @code{arm700},
59 @code{arm700i},
60 @code{arm710},
61 @code{arm710t},
62 @code{arm720},
63 @code{arm720t},
64 @code{arm740t},
65 @code{arm710c},
66 @code{arm7100},
67 @code{arm7500},
68 @code{arm7500fe},
69 @code{arm7t},
70 @code{arm7tdmi},
71 @code{arm7tdmi-s},
72 @code{arm8},
73 @code{arm810},
74 @code{strongarm},
75 @code{strongarm1},
76 @code{strongarm110},
77 @code{strongarm1100},
78 @code{strongarm1110},
79 @code{arm9},
80 @code{arm920},
81 @code{arm920t},
82 @code{arm922t},
83 @code{arm940t},
84 @code{arm9tdmi},
85 @code{fa526} (Faraday FA526 processor),
86 @code{fa626} (Faraday FA626 processor),
87 @code{arm9e},
88 @code{arm926e},
89 @code{arm926ej-s},
90 @code{arm946e-r0},
91 @code{arm946e},
92 @code{arm946e-s},
93 @code{arm966e-r0},
94 @code{arm966e},
95 @code{arm966e-s},
96 @code{arm968e-s},
97 @code{arm10t},
98 @code{arm10tdmi},
99 @code{arm10e},
100 @code{arm1020},
101 @code{arm1020t},
102 @code{arm1020e},
103 @code{arm1022e},
104 @code{arm1026ej-s},
105 @code{fa626te} (Faraday FA626TE processor),
106 @code{fa726te} (Faraday FA726TE processor),
107 @code{arm1136j-s},
108 @code{arm1136jf-s},
109 @code{arm1156t2-s},
110 @code{arm1156t2f-s},
111 @code{arm1176jz-s},
112 @code{arm1176jzf-s},
113 @code{mpcore},
114 @code{mpcorenovfp},
115 @code{cortex-a8},
116 @code{cortex-a9},
117 @code{cortex-r4},
118 @code{cortex-m3},
119 @code{cortex-m1},
120 @code{cortex-m0},
121 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
122 @code{i80200} (Intel XScale processor)
123 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
124 and
125 @code{xscale}.
126 The special name @code{all} may be used to allow the
127 assembler to accept instructions valid for any ARM processor.
128
129 In addition to the basic instruction set, the assembler can be told to
130 accept various extension mnemonics that extend the processor using the
131 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
132 is equivalent to specifying @code{-mcpu=ep9312}. The following extensions
133 are currently supported:
134 @code{+maverick}
135 @code{+iwmmxt}
136 and
137 @code{+xscale}.
138
139 @cindex @code{-march=} command line option, ARM
140 @item -march=@var{architecture}[+@var{extension}@dots{}]
141 This option specifies the target architecture. The assembler will issue
142 an error message if an attempt is made to assemble an instruction which
143 will not execute on the target architecture. The following architecture
144 names are recognized:
145 @code{armv1},
146 @code{armv2},
147 @code{armv2a},
148 @code{armv2s},
149 @code{armv3},
150 @code{armv3m},
151 @code{armv4},
152 @code{armv4xm},
153 @code{armv4t},
154 @code{armv4txm},
155 @code{armv5},
156 @code{armv5t},
157 @code{armv5txm},
158 @code{armv5te},
159 @code{armv5texp},
160 @code{armv6},
161 @code{armv6j},
162 @code{armv6k},
163 @code{armv6z},
164 @code{armv6zk},
165 @code{armv7},
166 @code{armv7-a},
167 @code{armv7-r},
168 @code{armv7-m},
169 @code{iwmmxt}
170 and
171 @code{xscale}.
172 If both @code{-mcpu} and
173 @code{-march} are specified, the assembler will use
174 the setting for @code{-mcpu}.
175
176 The architecture option can be extended with the same instruction set
177 extension options as the @code{-mcpu} option.
178
179 @cindex @code{-mfpu=} command line option, ARM
180 @item -mfpu=@var{floating-point-format}
181
182 This option specifies the floating point format to assemble for. The
183 assembler will issue an error message if an attempt is made to assemble
184 an instruction which will not execute on the target floating point unit.
185 The following format options are recognized:
186 @code{softfpa},
187 @code{fpe},
188 @code{fpe2},
189 @code{fpe3},
190 @code{fpa},
191 @code{fpa10},
192 @code{fpa11},
193 @code{arm7500fe},
194 @code{softvfp},
195 @code{softvfp+vfp},
196 @code{vfp},
197 @code{vfp10},
198 @code{vfp10-r0},
199 @code{vfp9},
200 @code{vfpxd},
201 @code{vfpv2}
202 @code{vfpv3}
203 @code{vfpv3-d16}
204 @code{arm1020t},
205 @code{arm1020e},
206 @code{arm1136jf-s},
207 @code{maverick}
208 and
209 @code{neon}.
210
211 In addition to determining which instructions are assembled, this option
212 also affects the way in which the @code{.double} assembler directive behaves
213 when assembling little-endian code.
214
215 The default is dependent on the processor selected. For Architecture 5 or
216 later, the default is to assembler for VFP instructions; for earlier
217 architectures the default is to assemble for FPA instructions.
218
219 @cindex @code{-mthumb} command line option, ARM
220 @item -mthumb
221 This option specifies that the assembler should start assembling Thumb
222 instructions; that is, it should behave as though the file starts with a
223 @code{.code 16} directive.
224
225 @cindex @code{-mthumb-interwork} command line option, ARM
226 @item -mthumb-interwork
227 This option specifies that the output generated by the assembler should
228 be marked as supporting interworking.
229
230 @cindex @code{-mauto-it} command line option, ARM
231 @item -mauto-it
232 This option enables the automatic generation of IT instructions for
233 conditional instructions not covered by an IT block.
234
235 @cindex @code{-mapcs} command line option, ARM
236 @item -mapcs @code{[26|32]}
237 This option specifies that the output generated by the assembler should
238 be marked as supporting the indicated version of the Arm Procedure.
239 Calling Standard.
240
241 @cindex @code{-matpcs} command line option, ARM
242 @item -matpcs
243 This option specifies that the output generated by the assembler should
244 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
245 enabled this option will cause the assembler to create an empty
246 debugging section in the object file called .arm.atpcs. Debuggers can
247 use this to determine the ABI being used by.
248
249 @cindex @code{-mapcs-float} command line option, ARM
250 @item -mapcs-float
251 This indicates the floating point variant of the APCS should be
252 used. In this variant floating point arguments are passed in FP
253 registers rather than integer registers.
254
255 @cindex @code{-mapcs-reentrant} command line option, ARM
256 @item -mapcs-reentrant
257 This indicates that the reentrant variant of the APCS should be used.
258 This variant supports position independent code.
259
260 @cindex @code{-mfloat-abi=} command line option, ARM
261 @item -mfloat-abi=@var{abi}
262 This option specifies that the output generated by the assembler should be
263 marked as using specified floating point ABI.
264 The following values are recognized:
265 @code{soft},
266 @code{softfp}
267 and
268 @code{hard}.
269
270 @cindex @code{-eabi=} command line option, ARM
271 @item -meabi=@var{ver}
272 This option specifies which EABI version the produced object files should
273 conform to.
274 The following values are recognized:
275 @code{gnu},
276 @code{4}
277 and
278 @code{5}.
279
280 @cindex @code{-EB} command line option, ARM
281 @item -EB
282 This option specifies that the output generated by the assembler should
283 be marked as being encoded for a big-endian processor.
284
285 @cindex @code{-EL} command line option, ARM
286 @item -EL
287 This option specifies that the output generated by the assembler should
288 be marked as being encoded for a little-endian processor.
289
290 @cindex @code{-k} command line option, ARM
291 @cindex PIC code generation for ARM
292 @item -k
293 This option specifies that the output of the assembler should be marked
294 as position-independent code (PIC).
295
296 @cindex @code{--fix-v4bx} command line option, ARM
297 @item --fix-v4bx
298 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
299 the linker option of the same name.
300
301 @cindex @code{-mwarn-deprecated} command line option, ARM
302 @item -mwarn-deprecated
303 @itemx -mno-warn-deprecated
304 Enable or disable warnings about using deprecated options or
305 features. The default is to warn.
306
307 @end table
308
309
310 @node ARM Syntax
311 @section Syntax
312 @menu
313 * ARM-Chars:: Special Characters
314 * ARM-Regs:: Register Names
315 * ARM-Relocations:: Relocations
316 @end menu
317
318 @node ARM-Chars
319 @subsection Special Characters
320
321 @cindex line comment character, ARM
322 @cindex ARM line comment character
323 The presence of a @samp{@@} on a line indicates the start of a comment
324 that extends to the end of the current line. If a @samp{#} appears as
325 the first character of a line, the whole line is treated as a comment.
326
327 @cindex line separator, ARM
328 @cindex statement separator, ARM
329 @cindex ARM line separator
330 The @samp{;} character can be used instead of a newline to separate
331 statements.
332
333 @cindex immediate character, ARM
334 @cindex ARM immediate character
335 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
336
337 @cindex identifiers, ARM
338 @cindex ARM identifiers
339 *TODO* Explain about /data modifier on symbols.
340
341 @node ARM-Regs
342 @subsection Register Names
343
344 @cindex ARM register names
345 @cindex register names, ARM
346 *TODO* Explain about ARM register naming, and the predefined names.
347
348 @node ARM Floating Point
349 @section Floating Point
350
351 @cindex floating point, ARM (@sc{ieee})
352 @cindex ARM floating point (@sc{ieee})
353 The ARM family uses @sc{ieee} floating-point numbers.
354
355 @node ARM-Relocations
356 @subsection ARM relocation generation
357
358 @cindex data relocations, ARM
359 @cindex ARM data relocations
360 Specific data relocations can be generated by putting the relocation name
361 in parentheses after the symbol name. For example:
362
363 @smallexample
364 .word foo(TARGET1)
365 @end smallexample
366
367 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
368 @var{foo}.
369 The following relocations are supported:
370 @code{GOT},
371 @code{GOTOFF},
372 @code{TARGET1},
373 @code{TARGET2},
374 @code{SBREL},
375 @code{TLSGD},
376 @code{TLSLDM},
377 @code{TLSLDO},
378 @code{GOTTPOFF}
379 and
380 @code{TPOFF}.
381
382 For compatibility with older toolchains the assembler also accepts
383 @code{(PLT)} after branch targets. This will generate the deprecated
384 @samp{R_ARM_PLT32} relocation.
385
386 @cindex MOVW and MOVT relocations, ARM
387 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
388 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
389 respectively. For example to load the 32-bit address of foo into r0:
390
391 @smallexample
392 MOVW r0, #:lower16:foo
393 MOVT r0, #:upper16:foo
394 @end smallexample
395
396 @node ARM Directives
397 @section ARM Machine Directives
398
399 @cindex machine directives, ARM
400 @cindex ARM machine directives
401 @table @code
402
403 @c AAAAAAAAAAAAAAAAAAAAAAAAA
404
405 @cindex @code{.2byte} directive, ARM
406 @cindex @code{.4byte} directive, ARM
407 @cindex @code{.8byte} directive, ARM
408 @item .2byte @var{expression} [, @var{expression}]*
409 @itemx .4byte @var{expression} [, @var{expression}]*
410 @itemx .8byte @var{expression} [, @var{expression}]*
411 These directives write 2, 4 or 8 byte values to the output section.
412
413 @cindex @code{.align} directive, ARM
414 @item .align @var{expression} [, @var{expression}]
415 This is the generic @var{.align} directive. For the ARM however if the
416 first argument is zero (ie no alignment is needed) the assembler will
417 behave as if the argument had been 2 (ie pad to the next four byte
418 boundary). This is for compatibility with ARM's own assembler.
419
420 @cindex @code{.arch} directive, ARM
421 @item .arch @var{name}
422 Select the target architecture. Valid values for @var{name} are the same as
423 for the @option{-march} commandline option.
424
425 @cindex @code{.arm} directive, ARM
426 @item .arm
427 This performs the same action as @var{.code 32}.
428
429 @anchor{arm_pad}
430 @cindex @code{.pad} directive, ARM
431 @item .pad #@var{count}
432 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
433 A positive value indicates the function prologue allocated stack space by
434 decrementing the stack pointer.
435
436 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
437
438 @cindex @code{.bss} directive, ARM
439 @item .bss
440 This directive switches to the @code{.bss} section.
441
442 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
443
444 @cindex @code{.cantunwind} directive, ARM
445 @item .cantunwind
446 Prevents unwinding through the current function. No personality routine
447 or exception table data is required or permitted.
448
449 @cindex @code{.code} directive, ARM
450 @item .code @code{[16|32]}
451 This directive selects the instruction set being generated. The value 16
452 selects Thumb, with the value 32 selecting ARM.
453
454 @cindex @code{.cpu} directive, ARM
455 @item .cpu @var{name}
456 Select the target processor. Valid values for @var{name} are the same as
457 for the @option{-mcpu} commandline option.
458
459 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
460
461 @cindex @code{.dn} and @code{.qn} directives, ARM
462 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
463 @item @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
464
465 The @code{dn} and @code{qn} directives are used to create typed
466 and/or indexed register aliases for use in Advanced SIMD Extension
467 (Neon) instructions. The former should be used to create aliases
468 of double-precision registers, and the latter to create aliases of
469 quad-precision registers.
470
471 If these directives are used to create typed aliases, those aliases can
472 be used in Neon instructions instead of writing types after the mnemonic
473 or after each operand. For example:
474
475 @smallexample
476 x .dn d2.f32
477 y .dn d3.f32
478 z .dn d4.f32[1]
479 vmul x,y,z
480 @end smallexample
481
482 This is equivalent to writing the following:
483
484 @smallexample
485 vmul.f32 d2,d3,d4[1]
486 @end smallexample
487
488 Aliases created using @code{dn} or @code{qn} can be destroyed using
489 @code{unreq}.
490
491 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
492
493 @cindex @code{.eabi_attribute} directive, ARM
494 @item .eabi_attribute @var{tag}, @var{value}
495 Set the EABI object attribute @var{tag} to @var{value}.
496
497 The @var{tag} is either an attribute number, or one of the following:
498 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
499 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
500 @code{Tag_THUMB_ISA_use}, @code{Tag_VFP_arch}, @code{Tag_WMMX_arch},
501 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
502 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
503 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
504 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
505 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
506 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
507 @code{Tag_ABI_align8_needed}, @code{Tag_ABI_align8_preserved},
508 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
509 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
510 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
511 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
512 @code{Tag_VFP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
513 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
514 @code{Tag_conformance}, @code{Tag_T2EE_use},
515 @code{Tag_Virtualization_use}, @code{Tag_MPextension_use}
516
517 The @var{value} is either a @code{number}, @code{"string"}, or
518 @code{number, "string"} depending on the tag.
519
520 @cindex @code{.even} directive, ARM
521 @item .even
522 This directive aligns to an even-numbered address.
523
524 @cindex @code{.extend} directive, ARM
525 @cindex @code{.ldouble} directive, ARM
526 @item .extend @var{expression} [, @var{expression}]*
527 @itemx .ldouble @var{expression} [, @var{expression}]*
528 These directives write 12byte long double floating-point values to the
529 output section. These are not compatible with current ARM processors
530 or ABIs.
531
532 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
533
534 @anchor{arm_fnend}
535 @cindex @code{.fnend} directive, ARM
536 @item .fnend
537 Marks the end of a function with an unwind table entry. The unwind index
538 table entry is created when this directive is processed.
539
540 If no personality routine has been specified then standard personality
541 routine 0 or 1 will be used, depending on the number of unwind opcodes
542 required.
543
544 @anchor{arm_fnstart}
545 @cindex @code{.fnstart} directive, ARM
546 @item .fnstart
547 Marks the start of a function with an unwind table entry.
548
549 @cindex @code{.force_thumb} directive, ARM
550 @item .force_thumb
551 This directive forces the selection of Thumb instructions, even if the
552 target processor does not support those instructions
553
554 @cindex @code{.fpu} directive, ARM
555 @item .fpu @var{name}
556 Select the floating-point unit to assemble for. Valid values for @var{name}
557 are the same as for the @option{-mfpu} commandline option.
558
559 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
560 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
561
562 @cindex @code{.handlerdata} directive, ARM
563 @item .handlerdata
564 Marks the end of the current function, and the start of the exception table
565 entry for that function. Anything between this directive and the
566 @code{.fnend} directive will be added to the exception table entry.
567
568 Must be preceded by a @code{.personality} or @code{.personalityindex}
569 directive.
570
571 @c IIIIIIIIIIIIIIIIIIIIIIIIII
572
573 @cindex @code{.inst} directive, ARM
574 @item .inst @var{opcode} [ , @dots{} ]
575 @item .inst.n @var{opcode} [ , @dots{} ]
576 @item .inst.w @var{opcode} [ , @dots{} ]
577 Generates the instruction corresponding to the numerical value @var{opcode}.
578 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
579 specified explicitly, overriding the normal encoding rules.
580
581 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
582 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
583 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
584
585 @item .ldouble @var{expression} [, @var{expression}]*
586 See @code{.extend}.
587
588 @cindex @code{.ltorg} directive, ARM
589 @item .ltorg
590 This directive causes the current contents of the literal pool to be
591 dumped into the current section (which is assumed to be the .text
592 section) at the current location (aligned to a word boundary).
593 @code{GAS} maintains a separate literal pool for each section and each
594 sub-section. The @code{.ltorg} directive will only affect the literal
595 pool of the current section and sub-section. At the end of assembly
596 all remaining, un-empty literal pools will automatically be dumped.
597
598 Note - older versions of @code{GAS} would dump the current literal
599 pool any time a section change occurred. This is no longer done, since
600 it prevents accurate control of the placement of literal pools.
601
602 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
603
604 @cindex @code{.movsp} directive, ARM
605 @item .movsp @var{reg} [, #@var{offset}]
606 Tell the unwinder that @var{reg} contains an offset from the current
607 stack pointer. If @var{offset} is not specified then it is assumed to be
608 zero.
609
610 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
611 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
612
613 @cindex @code{.object_arch} directive, ARM
614 @item .object_arch @var{name}
615 Override the architecture recorded in the EABI object attribute section.
616 Valid values for @var{name} are the same as for the @code{.arch} directive.
617 Typically this is useful when code uses runtime detection of CPU features.
618
619 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
620
621 @cindex @code{.packed} directive, ARM
622 @item .packed @var{expression} [, @var{expression}]*
623 This directive writes 12-byte packed floating-point values to the
624 output section. These are not compatible with current ARM processors
625 or ABIs.
626
627 @cindex @code{.pad} directive, ARM
628 @item .pad #@var{count}
629 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
630 A positive value indicates the function prologue allocated stack space by
631 decrementing the stack pointer.
632
633 @cindex @code{.personality} directive, ARM
634 @item .personality @var{name}
635 Sets the personality routine for the current function to @var{name}.
636
637 @cindex @code{.personalityindex} directive, ARM
638 @item .personalityindex @var{index}
639 Sets the personality routine for the current function to the EABI standard
640 routine number @var{index}
641
642 @cindex @code{.pool} directive, ARM
643 @item .pool
644 This is a synonym for .ltorg.
645
646 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
647 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
648
649 @cindex @code{.req} directive, ARM
650 @item @var{name} .req @var{register name}
651 This creates an alias for @var{register name} called @var{name}. For
652 example:
653
654 @smallexample
655 foo .req r0
656 @end smallexample
657
658 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
659
660 @anchor{arm_save}
661 @cindex @code{.save} directive, ARM
662 @item .save @var{reglist}
663 Generate unwinder annotations to restore the registers in @var{reglist}.
664 The format of @var{reglist} is the same as the corresponding store-multiple
665 instruction.
666
667 @smallexample
668 @exdent @emph{core registers}
669 .save @{r4, r5, r6, lr@}
670 stmfd sp!, @{r4, r5, r6, lr@}
671 @exdent @emph{FPA registers}
672 .save f4, 2
673 sfmfd f4, 2, [sp]!
674 @exdent @emph{VFP registers}
675 .save @{d8, d9, d10@}
676 fstmdx sp!, @{d8, d9, d10@}
677 @exdent @emph{iWMMXt registers}
678 .save @{wr10, wr11@}
679 wstrd wr11, [sp, #-8]!
680 wstrd wr10, [sp, #-8]!
681 or
682 .save wr11
683 wstrd wr11, [sp, #-8]!
684 .save wr10
685 wstrd wr10, [sp, #-8]!
686 @end smallexample
687
688 @anchor{arm_setfp}
689 @cindex @code{.setfp} directive, ARM
690 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
691 Make all unwinder annotations relative to a frame pointer. Without this
692 the unwinder will use offsets from the stack pointer.
693
694 The syntax of this directive is the same as the @code{sub} or @code{mov}
695 instruction used to set the frame pointer. @var{spreg} must be either
696 @code{sp} or mentioned in a previous @code{.movsp} directive.
697
698 @smallexample
699 .movsp ip
700 mov ip, sp
701 @dots{}
702 .setfp fp, ip, #4
703 sub fp, ip, #4
704 @end smallexample
705
706 @cindex @code{.secrel32} directive, ARM
707 @item .secrel32 @var{expression} [, @var{expression}]*
708 This directive emits relocations that evaluate to the section-relative
709 offset of each expression's symbol. This directive is only supported
710 for PE targets.
711
712 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
713
714 @cindex @code{.thumb} directive, ARM
715 @item .thumb
716 This performs the same action as @var{.code 16}.
717
718 @cindex @code{.thumb_func} directive, ARM
719 @item .thumb_func
720 This directive specifies that the following symbol is the name of a
721 Thumb encoded function. This information is necessary in order to allow
722 the assembler and linker to generate correct code for interworking
723 between Arm and Thumb instructions and should be used even if
724 interworking is not going to be performed. The presence of this
725 directive also implies @code{.thumb}
726
727 This directive is not neccessary when generating EABI objects. On these
728 targets the encoding is implicit when generating Thumb code.
729
730 @cindex @code{.thumb_set} directive, ARM
731 @item .thumb_set
732 This performs the equivalent of a @code{.set} directive in that it
733 creates a symbol which is an alias for another symbol (possibly not yet
734 defined). This directive also has the added property in that it marks
735 the aliased symbol as being a thumb function entry point, in the same
736 way that the @code{.thumb_func} directive does.
737
738 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
739
740 @cindex @code{.unreq} directive, ARM
741 @item .unreq @var{alias-name}
742 This undefines a register alias which was previously defined using the
743 @code{req}, @code{dn} or @code{qn} directives. For example:
744
745 @smallexample
746 foo .req r0
747 .unreq foo
748 @end smallexample
749
750 An error occurs if the name is undefined. Note - this pseudo op can
751 be used to delete builtin in register name aliases (eg 'r0'). This
752 should only be done if it is really necessary.
753
754 @cindex @code{.unwind_raw} directive, ARM
755 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
756 Insert one of more arbitary unwind opcode bytes, which are known to adjust
757 the stack pointer by @var{offset} bytes.
758
759 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
760 @code{.save @{r0@}}
761
762 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
763
764 @cindex @code{.vsave} directive, ARM
765 @item .vsave @var{vfp-reglist}
766 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
767 using FLDMD. Also works for VFPv3 registers
768 that are to be restored using VLDM.
769 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
770 instruction.
771
772 @smallexample
773 @exdent @emph{VFP registers}
774 .vsave @{d8, d9, d10@}
775 fstmdd sp!, @{d8, d9, d10@}
776 @exdent @emph{VFPv3 registers}
777 .vsave @{d15, d16, d17@}
778 vstm sp!, @{d15, d16, d17@}
779 @end smallexample
780
781 Since FLDMX and FSTMX are now deprecated, this directive should be
782 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
783
784 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
785 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
786 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
787 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
788
789 @end table
790
791 @node ARM Opcodes
792 @section Opcodes
793
794 @cindex ARM opcodes
795 @cindex opcodes for ARM
796 @code{@value{AS}} implements all the standard ARM opcodes. It also
797 implements several pseudo opcodes, including several synthetic load
798 instructions.
799
800 @table @code
801
802 @cindex @code{NOP} pseudo op, ARM
803 @item NOP
804 @smallexample
805 nop
806 @end smallexample
807
808 This pseudo op will always evaluate to a legal ARM instruction that does
809 nothing. Currently it will evaluate to MOV r0, r0.
810
811 @cindex @code{LDR reg,=<label>} pseudo op, ARM
812 @item LDR
813 @smallexample
814 ldr <register> , = <expression>
815 @end smallexample
816
817 If expression evaluates to a numeric constant then a MOV or MVN
818 instruction will be used in place of the LDR instruction, if the
819 constant can be generated by either of these instructions. Otherwise
820 the constant will be placed into the nearest literal pool (if it not
821 already there) and a PC relative LDR instruction will be generated.
822
823 @cindex @code{ADR reg,<label>} pseudo op, ARM
824 @item ADR
825 @smallexample
826 adr <register> <label>
827 @end smallexample
828
829 This instruction will load the address of @var{label} into the indicated
830 register. The instruction will evaluate to a PC relative ADD or SUB
831 instruction depending upon where the label is located. If the label is
832 out of range, or if it is not defined in the same file (and section) as
833 the ADR instruction, then an error will be generated. This instruction
834 will not make use of the literal pool.
835
836 @cindex @code{ADRL reg,<label>} pseudo op, ARM
837 @item ADRL
838 @smallexample
839 adrl <register> <label>
840 @end smallexample
841
842 This instruction will load the address of @var{label} into the indicated
843 register. The instruction will evaluate to one or two PC relative ADD
844 or SUB instructions depending upon where the label is located. If a
845 second instruction is not needed a NOP instruction will be generated in
846 its place, so that this instruction is always 8 bytes long.
847
848 If the label is out of range, or if it is not defined in the same file
849 (and section) as the ADRL instruction, then an error will be generated.
850 This instruction will not make use of the literal pool.
851
852 @end table
853
854 For information on the ARM or Thumb instruction sets, see @cite{ARM
855 Software Development Toolkit Reference Manual}, Advanced RISC Machines
856 Ltd.
857
858 @node ARM Mapping Symbols
859 @section Mapping Symbols
860
861 The ARM ELF specification requires that special symbols be inserted
862 into object files to mark certain features:
863
864 @table @code
865
866 @cindex @code{$a}
867 @item $a
868 At the start of a region of code containing ARM instructions.
869
870 @cindex @code{$t}
871 @item $t
872 At the start of a region of code containing THUMB instructions.
873
874 @cindex @code{$d}
875 @item $d
876 At the start of a region of data.
877
878 @end table
879
880 The assembler will automatically insert these symbols for you - there
881 is no need to code them yourself. Support for tagging symbols ($b,
882 $f, $p and $m) which is also mentioned in the current ARM ELF
883 specification is not implemented. This is because they have been
884 dropped from the new EABI and so tools cannot rely upon their
885 presence.
886
887 @node ARM Unwinding Tutorial
888 @section Unwinding
889
890 The ABI for the ARM Architecture specifies a standard format for
891 exception unwind information. This information is used when an
892 exception is thrown to determine where control should be transferred.
893 In particular, the unwind information is used to determine which
894 function called the function that threw the exception, and which
895 function called that one, and so forth. This information is also used
896 to restore the values of callee-saved registers in the function
897 catching the exception.
898
899 If you are writing functions in assembly code, and those functions
900 call other functions that throw exceptions, you must use assembly
901 pseudo ops to ensure that appropriate exception unwind information is
902 generated. Otherwise, if one of the functions called by your assembly
903 code throws an exception, the run-time library will be unable to
904 unwind the stack through your assembly code and your program will not
905 behave correctly.
906
907 To illustrate the use of these pseudo ops, we will examine the code
908 that G++ generates for the following C++ input:
909
910 @verbatim
911 void callee (int *);
912
913 int
914 caller ()
915 {
916 int i;
917 callee (&i);
918 return i;
919 }
920 @end verbatim
921
922 This example does not show how to throw or catch an exception from
923 assembly code. That is a much more complex operation and should
924 always be done in a high-level language, such as C++, that directly
925 supports exceptions.
926
927 The code generated by one particular version of G++ when compiling the
928 example above is:
929
930 @verbatim
931 _Z6callerv:
932 .fnstart
933 .LFB2:
934 @ Function supports interworking.
935 @ args = 0, pretend = 0, frame = 8
936 @ frame_needed = 1, uses_anonymous_args = 0
937 stmfd sp!, {fp, lr}
938 .save {fp, lr}
939 .LCFI0:
940 .setfp fp, sp, #4
941 add fp, sp, #4
942 .LCFI1:
943 .pad #8
944 sub sp, sp, #8
945 .LCFI2:
946 sub r3, fp, #8
947 mov r0, r3
948 bl _Z6calleePi
949 ldr r3, [fp, #-8]
950 mov r0, r3
951 sub sp, fp, #4
952 ldmfd sp!, {fp, lr}
953 bx lr
954 .LFE2:
955 .fnend
956 @end verbatim
957
958 Of course, the sequence of instructions varies based on the options
959 you pass to GCC and on the version of GCC in use. The exact
960 instructions are not important since we are focusing on the pseudo ops
961 that are used to generate unwind information.
962
963 An important assumption made by the unwinder is that the stack frame
964 does not change during the body of the function. In particular, since
965 we assume that the assembly code does not itself throw an exception,
966 the only point where an exception can be thrown is from a call, such
967 as the @code{bl} instruction above. At each call site, the same saved
968 registers (including @code{lr}, which indicates the return address)
969 must be located in the same locations relative to the frame pointer.
970
971 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
972 op appears immediately before the first instruction of the function
973 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
974 op appears immediately after the last instruction of the function.
975 These pseudo ops specify the range of the function.
976
977 Only the order of the other pseudos ops (e.g., @code{.setfp} or
978 @code{.pad}) matters; their exact locations are irrelevant. In the
979 example above, the compiler emits the pseudo ops with particular
980 instructions. That makes it easier to understand the code, but it is
981 not required for correctness. It would work just as well to emit all
982 of the pseudo ops other than @code{.fnend} in the same order, but
983 immediately after @code{.fnstart}.
984
985 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
986 indicates registers that have been saved to the stack so that they can
987 be restored before the function returns. The argument to the
988 @code{.save} pseudo op is a list of registers to save. If a register
989 is ``callee-saved'' (as specified by the ABI) and is modified by the
990 function you are writing, then your code must save the value before it
991 is modified and restore the original value before the function
992 returns. If an exception is thrown, the run-time library restores the
993 values of these registers from their locations on the stack before
994 returning control to the exception handler. (Of course, if an
995 exception is not thrown, the function that contains the @code{.save}
996 pseudo op restores these registers in the function epilogue, as is
997 done with the @code{ldmfd} instruction above.)
998
999 You do not have to save callee-saved registers at the very beginning
1000 of the function and you do not need to use the @code{.save} pseudo op
1001 immediately following the point at which the registers are saved.
1002 However, if you modify a callee-saved register, you must save it on
1003 the stack before modifying it and before calling any functions which
1004 might throw an exception. And, you must use the @code{.save} pseudo
1005 op to indicate that you have done so.
1006
1007 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1008 modification of the stack pointer that does not save any registers.
1009 The argument is the number of bytes (in decimal) that are subtracted
1010 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1011 subtracting from the stack pointer increases the size of the stack.)
1012
1013 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1014 indicates the register that contains the frame pointer. The first
1015 argument is the register that is set, which is typically @code{fp}.
1016 The second argument indicates the register from which the frame
1017 pointer takes its value. The third argument, if present, is the value
1018 (in decimal) added to the register specified by the second argument to
1019 compute the value of the frame pointer. You should not modify the
1020 frame pointer in the body of the function.
1021
1022 If you do not use a frame pointer, then you should not use the
1023 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1024 should avoid modifying the stack pointer outside of the function
1025 prologue. Otherwise, the run-time library will be unable to find
1026 saved registers when it is unwinding the stack.
1027
1028 The pseudo ops described above are sufficient for writing assembly
1029 code that calls functions which may throw exceptions. If you need to
1030 know more about the object-file format used to represent unwind
1031 information, you may consult the @cite{Exception Handling ABI for the
1032 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.051768 seconds and 5 git commands to generate.