[ARM] Add support for ARMv8.1 PAN extension
[deliverable/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright (C) 1996-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4
5 @ifset GENERIC
6 @page
7 @node ARM-Dependent
8 @chapter ARM Dependent Features
9 @end ifset
10
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter ARM Dependent Features
14 @end ifclear
15
16 @cindex ARM support
17 @cindex Thumb support
18 @menu
19 * ARM Options:: Options
20 * ARM Syntax:: Syntax
21 * ARM Floating Point:: Floating Point
22 * ARM Directives:: ARM Machine Directives
23 * ARM Opcodes:: Opcodes
24 * ARM Mapping Symbols:: Mapping Symbols
25 * ARM Unwinding Tutorial:: Unwinding
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{fa526} (Faraday FA526 processor),
85 @code{fa626} (Faraday FA626 processor),
86 @code{arm9e},
87 @code{arm926e},
88 @code{arm926ej-s},
89 @code{arm946e-r0},
90 @code{arm946e},
91 @code{arm946e-s},
92 @code{arm966e-r0},
93 @code{arm966e},
94 @code{arm966e-s},
95 @code{arm968e-s},
96 @code{arm10t},
97 @code{arm10tdmi},
98 @code{arm10e},
99 @code{arm1020},
100 @code{arm1020t},
101 @code{arm1020e},
102 @code{arm1022e},
103 @code{arm1026ej-s},
104 @code{fa606te} (Faraday FA606TE processor),
105 @code{fa616te} (Faraday FA616TE processor),
106 @code{fa626te} (Faraday FA626TE processor),
107 @code{fmp626} (Faraday FMP626 processor),
108 @code{fa726te} (Faraday FA726TE processor),
109 @code{arm1136j-s},
110 @code{arm1136jf-s},
111 @code{arm1156t2-s},
112 @code{arm1156t2f-s},
113 @code{arm1176jz-s},
114 @code{arm1176jzf-s},
115 @code{mpcore},
116 @code{mpcorenovfp},
117 @code{cortex-a5},
118 @code{cortex-a7},
119 @code{cortex-a8},
120 @code{cortex-a9},
121 @code{cortex-a15},
122 @code{cortex-a53},
123 @code{cortex-a57},
124 @code{cortex-a72},
125 @code{cortex-r4},
126 @code{cortex-r4f},
127 @code{cortex-r5},
128 @code{cortex-r7},
129 @code{cortex-m7},
130 @code{cortex-m4},
131 @code{cortex-m3},
132 @code{cortex-m1},
133 @code{cortex-m0},
134 @code{cortex-m0plus},
135 @code{exynos-m1},
136 @code{marvell-pj4},
137 @code{marvell-whitney},
138 @code{xgene1},
139 @code{xgene2},
140 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
141 @code{i80200} (Intel XScale processor)
142 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
143 and
144 @code{xscale}.
145 The special name @code{all} may be used to allow the
146 assembler to accept instructions valid for any ARM processor.
147
148 In addition to the basic instruction set, the assembler can be told to
149 accept various extension mnemonics that extend the processor using the
150 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
151 is equivalent to specifying @code{-mcpu=ep9312}.
152
153 Multiple extensions may be specified, separated by a @code{+}. The
154 extensions should be specified in ascending alphabetical order.
155
156 Some extensions may be restricted to particular architectures; this is
157 documented in the list of extensions below.
158
159 Extension mnemonics may also be removed from those the assembler accepts.
160 This is done be prepending @code{no} to the option that adds the extension.
161 Extensions that are removed should be listed after all extensions which have
162 been added, again in ascending alphabetical order. For example,
163 @code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
164
165
166 The following extensions are currently supported:
167 @code{crc}
168 @code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
169 @code{fp} (Floating Point Extensions for v8-A architecture),
170 @code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
171 @code{iwmmxt},
172 @code{iwmmxt2},
173 @code{xscale},
174 @code{maverick},
175 @code{mp} (Multiprocessing Extensions for v7-A and v7-R
176 architectures),
177 @code{os} (Operating System for v6M architecture),
178 @code{sec} (Security Extensions for v6K and v7-A architectures),
179 @code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
180 @code{virt} (Virtualization Extensions for v7-A architecture, implies
181 @code{idiv}),
182 @code{pan} (Priviliged Access Never Extensions for v8-A architecture)
183 and
184 @code{xscale}.
185
186 @cindex @code{-march=} command line option, ARM
187 @item -march=@var{architecture}[+@var{extension}@dots{}]
188 This option specifies the target architecture. The assembler will issue
189 an error message if an attempt is made to assemble an instruction which
190 will not execute on the target architecture. The following architecture
191 names are recognized:
192 @code{armv1},
193 @code{armv2},
194 @code{armv2a},
195 @code{armv2s},
196 @code{armv3},
197 @code{armv3m},
198 @code{armv4},
199 @code{armv4xm},
200 @code{armv4t},
201 @code{armv4txm},
202 @code{armv5},
203 @code{armv5t},
204 @code{armv5txm},
205 @code{armv5te},
206 @code{armv5texp},
207 @code{armv6},
208 @code{armv6j},
209 @code{armv6k},
210 @code{armv6z},
211 @code{armv6zk},
212 @code{armv6-m},
213 @code{armv6s-m},
214 @code{armv7},
215 @code{armv7-a},
216 @code{armv7ve},
217 @code{armv7-r},
218 @code{armv7-m},
219 @code{armv7e-m},
220 @code{armv8-a},
221 @code{iwmmxt}
222 @code{iwmmxt2}
223 and
224 @code{xscale}.
225 If both @code{-mcpu} and
226 @code{-march} are specified, the assembler will use
227 the setting for @code{-mcpu}.
228
229 The architecture option can be extended with the same instruction set
230 extension options as the @code{-mcpu} option.
231
232 @cindex @code{-mfpu=} command line option, ARM
233 @item -mfpu=@var{floating-point-format}
234
235 This option specifies the floating point format to assemble for. The
236 assembler will issue an error message if an attempt is made to assemble
237 an instruction which will not execute on the target floating point unit.
238 The following format options are recognized:
239 @code{softfpa},
240 @code{fpe},
241 @code{fpe2},
242 @code{fpe3},
243 @code{fpa},
244 @code{fpa10},
245 @code{fpa11},
246 @code{arm7500fe},
247 @code{softvfp},
248 @code{softvfp+vfp},
249 @code{vfp},
250 @code{vfp10},
251 @code{vfp10-r0},
252 @code{vfp9},
253 @code{vfpxd},
254 @code{vfpv2},
255 @code{vfpv3},
256 @code{vfpv3-fp16},
257 @code{vfpv3-d16},
258 @code{vfpv3-d16-fp16},
259 @code{vfpv3xd},
260 @code{vfpv3xd-d16},
261 @code{vfpv4},
262 @code{vfpv4-d16},
263 @code{fpv4-sp-d16},
264 @code{fpv5-sp-d16},
265 @code{fpv5-d16},
266 @code{fp-armv8},
267 @code{arm1020t},
268 @code{arm1020e},
269 @code{arm1136jf-s},
270 @code{maverick},
271 @code{neon},
272 @code{neon-vfpv4},
273 @code{neon-fp-armv8},
274 and
275 @code{crypto-neon-fp-armv8}.
276
277 In addition to determining which instructions are assembled, this option
278 also affects the way in which the @code{.double} assembler directive behaves
279 when assembling little-endian code.
280
281 The default is dependent on the processor selected. For Architecture 5 or
282 later, the default is to assembler for VFP instructions; for earlier
283 architectures the default is to assemble for FPA instructions.
284
285 @cindex @code{-mthumb} command line option, ARM
286 @item -mthumb
287 This option specifies that the assembler should start assembling Thumb
288 instructions; that is, it should behave as though the file starts with a
289 @code{.code 16} directive.
290
291 @cindex @code{-mthumb-interwork} command line option, ARM
292 @item -mthumb-interwork
293 This option specifies that the output generated by the assembler should
294 be marked as supporting interworking.
295
296 @cindex @code{-mimplicit-it} command line option, ARM
297 @item -mimplicit-it=never
298 @itemx -mimplicit-it=always
299 @itemx -mimplicit-it=arm
300 @itemx -mimplicit-it=thumb
301 The @code{-mimplicit-it} option controls the behavior of the assembler when
302 conditional instructions are not enclosed in IT blocks.
303 There are four possible behaviors.
304 If @code{never} is specified, such constructs cause a warning in ARM
305 code and an error in Thumb-2 code.
306 If @code{always} is specified, such constructs are accepted in both
307 ARM and Thumb-2 code, where the IT instruction is added implicitly.
308 If @code{arm} is specified, such constructs are accepted in ARM code
309 and cause an error in Thumb-2 code.
310 If @code{thumb} is specified, such constructs cause a warning in ARM
311 code and are accepted in Thumb-2 code. If you omit this option, the
312 behavior is equivalent to @code{-mimplicit-it=arm}.
313
314 @cindex @code{-mapcs-26} command line option, ARM
315 @cindex @code{-mapcs-32} command line option, ARM
316 @item -mapcs-26
317 @itemx -mapcs-32
318 These options specify that the output generated by the assembler should
319 be marked as supporting the indicated version of the Arm Procedure.
320 Calling Standard.
321
322 @cindex @code{-matpcs} command line option, ARM
323 @item -matpcs
324 This option specifies that the output generated by the assembler should
325 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
326 enabled this option will cause the assembler to create an empty
327 debugging section in the object file called .arm.atpcs. Debuggers can
328 use this to determine the ABI being used by.
329
330 @cindex @code{-mapcs-float} command line option, ARM
331 @item -mapcs-float
332 This indicates the floating point variant of the APCS should be
333 used. In this variant floating point arguments are passed in FP
334 registers rather than integer registers.
335
336 @cindex @code{-mapcs-reentrant} command line option, ARM
337 @item -mapcs-reentrant
338 This indicates that the reentrant variant of the APCS should be used.
339 This variant supports position independent code.
340
341 @cindex @code{-mfloat-abi=} command line option, ARM
342 @item -mfloat-abi=@var{abi}
343 This option specifies that the output generated by the assembler should be
344 marked as using specified floating point ABI.
345 The following values are recognized:
346 @code{soft},
347 @code{softfp}
348 and
349 @code{hard}.
350
351 @cindex @code{-eabi=} command line option, ARM
352 @item -meabi=@var{ver}
353 This option specifies which EABI version the produced object files should
354 conform to.
355 The following values are recognized:
356 @code{gnu},
357 @code{4}
358 and
359 @code{5}.
360
361 @cindex @code{-EB} command line option, ARM
362 @item -EB
363 This option specifies that the output generated by the assembler should
364 be marked as being encoded for a big-endian processor.
365
366 Note: If a program is being built for a system with big-endian data
367 and little-endian instructions then it should be assembled with the
368 @option{-EB} option, (all of it, code and data) and then linked with
369 the @option{--be8} option. This will reverse the endianness of the
370 instructions back to little-endian, but leave the data as big-endian.
371
372 @cindex @code{-EL} command line option, ARM
373 @item -EL
374 This option specifies that the output generated by the assembler should
375 be marked as being encoded for a little-endian processor.
376
377 @cindex @code{-k} command line option, ARM
378 @cindex PIC code generation for ARM
379 @item -k
380 This option specifies that the output of the assembler should be marked
381 as position-independent code (PIC).
382
383 @cindex @code{--fix-v4bx} command line option, ARM
384 @item --fix-v4bx
385 Allow @code{BX} instructions in ARMv4 code. This is intended for use with
386 the linker option of the same name.
387
388 @cindex @code{-mwarn-deprecated} command line option, ARM
389 @item -mwarn-deprecated
390 @itemx -mno-warn-deprecated
391 Enable or disable warnings about using deprecated options or
392 features. The default is to warn.
393
394 @cindex @code{-mccs} command line option, ARM
395 @item -mccs
396 Turns on CodeComposer Studio assembly syntax compatibility mode.
397
398 @cindex @code{-mwarn-syms} command line option, ARM
399 @item -mwarn-syms
400 @itemx -mno-warn-syms
401 Enable or disable warnings about symbols that match the names of ARM
402 instructions. The default is to warn.
403
404 @end table
405
406
407 @node ARM Syntax
408 @section Syntax
409 @menu
410 * ARM-Instruction-Set:: Instruction Set
411 * ARM-Chars:: Special Characters
412 * ARM-Regs:: Register Names
413 * ARM-Relocations:: Relocations
414 * ARM-Neon-Alignment:: NEON Alignment Specifiers
415 @end menu
416
417 @node ARM-Instruction-Set
418 @subsection Instruction Set Syntax
419 Two slightly different syntaxes are support for ARM and THUMB
420 instructions. The default, @code{divided}, uses the old style where
421 ARM and THUMB instructions had their own, separate syntaxes. The new,
422 @code{unified} syntax, which can be selected via the @code{.syntax}
423 directive, and has the following main features:
424
425 @itemize @bullet
426 @item
427 Immediate operands do not require a @code{#} prefix.
428
429 @item
430 The @code{IT} instruction may appear, and if it does it is validated
431 against subsequent conditional affixes. In ARM mode it does not
432 generate machine code, in THUMB mode it does.
433
434 @item
435 For ARM instructions the conditional affixes always appear at the end
436 of the instruction. For THUMB instructions conditional affixes can be
437 used, but only inside the scope of an @code{IT} instruction.
438
439 @item
440 All of the instructions new to the V6T2 architecture (and later) are
441 available. (Only a few such instructions can be written in the
442 @code{divided} syntax).
443
444 @item
445 The @code{.N} and @code{.W} suffixes are recognized and honored.
446
447 @item
448 All instructions set the flags if and only if they have an @code{s}
449 affix.
450 @end itemize
451
452 @node ARM-Chars
453 @subsection Special Characters
454
455 @cindex line comment character, ARM
456 @cindex ARM line comment character
457 The presence of a @samp{@@} anywhere on a line indicates the start of
458 a comment that extends to the end of that line.
459
460 If a @samp{#} appears as the first character of a line then the whole
461 line is treated as a comment, but in this case the line could also be
462 a logical line number directive (@pxref{Comments}) or a preprocessor
463 control command (@pxref{Preprocessing}).
464
465 @cindex line separator, ARM
466 @cindex statement separator, ARM
467 @cindex ARM line separator
468 The @samp{;} character can be used instead of a newline to separate
469 statements.
470
471 @cindex immediate character, ARM
472 @cindex ARM immediate character
473 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
474
475 @cindex identifiers, ARM
476 @cindex ARM identifiers
477 *TODO* Explain about /data modifier on symbols.
478
479 @node ARM-Regs
480 @subsection Register Names
481
482 @cindex ARM register names
483 @cindex register names, ARM
484 *TODO* Explain about ARM register naming, and the predefined names.
485
486 @node ARM-Relocations
487 @subsection ARM relocation generation
488
489 @cindex data relocations, ARM
490 @cindex ARM data relocations
491 Specific data relocations can be generated by putting the relocation name
492 in parentheses after the symbol name. For example:
493
494 @smallexample
495 .word foo(TARGET1)
496 @end smallexample
497
498 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
499 @var{foo}.
500 The following relocations are supported:
501 @code{GOT},
502 @code{GOTOFF},
503 @code{TARGET1},
504 @code{TARGET2},
505 @code{SBREL},
506 @code{TLSGD},
507 @code{TLSLDM},
508 @code{TLSLDO},
509 @code{TLSDESC},
510 @code{TLSCALL},
511 @code{GOTTPOFF},
512 @code{GOT_PREL}
513 and
514 @code{TPOFF}.
515
516 For compatibility with older toolchains the assembler also accepts
517 @code{(PLT)} after branch targets. On legacy targets this will
518 generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
519 targets it will encode either the @samp{R_ARM_CALL} or
520 @samp{R_ARM_JUMP24} relocation, as appropriate.
521
522 @cindex MOVW and MOVT relocations, ARM
523 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
524 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
525 respectively. For example to load the 32-bit address of foo into r0:
526
527 @smallexample
528 MOVW r0, #:lower16:foo
529 MOVT r0, #:upper16:foo
530 @end smallexample
531
532 @node ARM-Neon-Alignment
533 @subsection NEON Alignment Specifiers
534
535 @cindex alignment for NEON instructions
536 Some NEON load/store instructions allow an optional address
537 alignment qualifier.
538 The ARM documentation specifies that this is indicated by
539 @samp{@@ @var{align}}. However GAS already interprets
540 the @samp{@@} character as a "line comment" start,
541 so @samp{: @var{align}} is used instead. For example:
542
543 @smallexample
544 vld1.8 @{q0@}, [r0, :128]
545 @end smallexample
546
547 @node ARM Floating Point
548 @section Floating Point
549
550 @cindex floating point, ARM (@sc{ieee})
551 @cindex ARM floating point (@sc{ieee})
552 The ARM family uses @sc{ieee} floating-point numbers.
553
554 @node ARM Directives
555 @section ARM Machine Directives
556
557 @cindex machine directives, ARM
558 @cindex ARM machine directives
559 @table @code
560
561 @c AAAAAAAAAAAAAAAAAAAAAAAAA
562
563 @cindex @code{.2byte} directive, ARM
564 @cindex @code{.4byte} directive, ARM
565 @cindex @code{.8byte} directive, ARM
566 @item .2byte @var{expression} [, @var{expression}]*
567 @itemx .4byte @var{expression} [, @var{expression}]*
568 @itemx .8byte @var{expression} [, @var{expression}]*
569 These directives write 2, 4 or 8 byte values to the output section.
570
571 @cindex @code{.align} directive, ARM
572 @item .align @var{expression} [, @var{expression}]
573 This is the generic @var{.align} directive. For the ARM however if the
574 first argument is zero (ie no alignment is needed) the assembler will
575 behave as if the argument had been 2 (ie pad to the next four byte
576 boundary). This is for compatibility with ARM's own assembler.
577
578 @cindex @code{.arch} directive, ARM
579 @item .arch @var{name}
580 Select the target architecture. Valid values for @var{name} are the same as
581 for the @option{-march} commandline option.
582
583 Specifying @code{.arch} clears any previously selected architecture
584 extensions.
585
586 @cindex @code{.arch_extension} directive, ARM
587 @item .arch_extension @var{name}
588 Add or remove an architecture extension to the target architecture. Valid
589 values for @var{name} are the same as those accepted as architectural
590 extensions by the @option{-mcpu} commandline option.
591
592 @code{.arch_extension} may be used multiple times to add or remove extensions
593 incrementally to the architecture being compiled for.
594
595 @cindex @code{.arm} directive, ARM
596 @item .arm
597 This performs the same action as @var{.code 32}.
598
599 @c BBBBBBBBBBBBBBBBBBBBBBBBBB
600
601 @cindex @code{.bss} directive, ARM
602 @item .bss
603 This directive switches to the @code{.bss} section.
604
605 @c CCCCCCCCCCCCCCCCCCCCCCCCCC
606
607 @cindex @code{.cantunwind} directive, ARM
608 @item .cantunwind
609 Prevents unwinding through the current function. No personality routine
610 or exception table data is required or permitted.
611
612 @cindex @code{.code} directive, ARM
613 @item .code @code{[16|32]}
614 This directive selects the instruction set being generated. The value 16
615 selects Thumb, with the value 32 selecting ARM.
616
617 @cindex @code{.cpu} directive, ARM
618 @item .cpu @var{name}
619 Select the target processor. Valid values for @var{name} are the same as
620 for the @option{-mcpu} commandline option.
621
622 Specifying @code{.cpu} clears any previously selected architecture
623 extensions.
624
625 @c DDDDDDDDDDDDDDDDDDDDDDDDDD
626
627 @cindex @code{.dn} and @code{.qn} directives, ARM
628 @item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
629 @itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
630
631 The @code{dn} and @code{qn} directives are used to create typed
632 and/or indexed register aliases for use in Advanced SIMD Extension
633 (Neon) instructions. The former should be used to create aliases
634 of double-precision registers, and the latter to create aliases of
635 quad-precision registers.
636
637 If these directives are used to create typed aliases, those aliases can
638 be used in Neon instructions instead of writing types after the mnemonic
639 or after each operand. For example:
640
641 @smallexample
642 x .dn d2.f32
643 y .dn d3.f32
644 z .dn d4.f32[1]
645 vmul x,y,z
646 @end smallexample
647
648 This is equivalent to writing the following:
649
650 @smallexample
651 vmul.f32 d2,d3,d4[1]
652 @end smallexample
653
654 Aliases created using @code{dn} or @code{qn} can be destroyed using
655 @code{unreq}.
656
657 @c EEEEEEEEEEEEEEEEEEEEEEEEEE
658
659 @cindex @code{.eabi_attribute} directive, ARM
660 @item .eabi_attribute @var{tag}, @var{value}
661 Set the EABI object attribute @var{tag} to @var{value}.
662
663 The @var{tag} is either an attribute number, or one of the following:
664 @code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
665 @code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
666 @code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
667 @code{Tag_Advanced_SIMD_arch}, @code{Tag_PCS_config},
668 @code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
669 @code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
670 @code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
671 @code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
672 @code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
673 @code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
674 @code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
675 @code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
676 @code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
677 @code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
678 @code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
679 @code{Tag_MPextension_use}, @code{Tag_DIV_use},
680 @code{Tag_nodefaults}, @code{Tag_also_compatible_with},
681 @code{Tag_conformance}, @code{Tag_T2EE_use},
682 @code{Tag_Virtualization_use}
683
684 The @var{value} is either a @code{number}, @code{"string"}, or
685 @code{number, "string"} depending on the tag.
686
687 Note - the following legacy values are also accepted by @var{tag}:
688 @code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
689 @code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
690
691 @cindex @code{.even} directive, ARM
692 @item .even
693 This directive aligns to an even-numbered address.
694
695 @cindex @code{.extend} directive, ARM
696 @cindex @code{.ldouble} directive, ARM
697 @item .extend @var{expression} [, @var{expression}]*
698 @itemx .ldouble @var{expression} [, @var{expression}]*
699 These directives write 12byte long double floating-point values to the
700 output section. These are not compatible with current ARM processors
701 or ABIs.
702
703 @c FFFFFFFFFFFFFFFFFFFFFFFFFF
704
705 @anchor{arm_fnend}
706 @cindex @code{.fnend} directive, ARM
707 @item .fnend
708 Marks the end of a function with an unwind table entry. The unwind index
709 table entry is created when this directive is processed.
710
711 If no personality routine has been specified then standard personality
712 routine 0 or 1 will be used, depending on the number of unwind opcodes
713 required.
714
715 @anchor{arm_fnstart}
716 @cindex @code{.fnstart} directive, ARM
717 @item .fnstart
718 Marks the start of a function with an unwind table entry.
719
720 @cindex @code{.force_thumb} directive, ARM
721 @item .force_thumb
722 This directive forces the selection of Thumb instructions, even if the
723 target processor does not support those instructions
724
725 @cindex @code{.fpu} directive, ARM
726 @item .fpu @var{name}
727 Select the floating-point unit to assemble for. Valid values for @var{name}
728 are the same as for the @option{-mfpu} commandline option.
729
730 @c GGGGGGGGGGGGGGGGGGGGGGGGGG
731 @c HHHHHHHHHHHHHHHHHHHHHHHHHH
732
733 @cindex @code{.handlerdata} directive, ARM
734 @item .handlerdata
735 Marks the end of the current function, and the start of the exception table
736 entry for that function. Anything between this directive and the
737 @code{.fnend} directive will be added to the exception table entry.
738
739 Must be preceded by a @code{.personality} or @code{.personalityindex}
740 directive.
741
742 @c IIIIIIIIIIIIIIIIIIIIIIIIII
743
744 @cindex @code{.inst} directive, ARM
745 @item .inst @var{opcode} [ , @dots{} ]
746 @itemx .inst.n @var{opcode} [ , @dots{} ]
747 @itemx .inst.w @var{opcode} [ , @dots{} ]
748 Generates the instruction corresponding to the numerical value @var{opcode}.
749 @code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
750 specified explicitly, overriding the normal encoding rules.
751
752 @c JJJJJJJJJJJJJJJJJJJJJJJJJJ
753 @c KKKKKKKKKKKKKKKKKKKKKKKKKK
754 @c LLLLLLLLLLLLLLLLLLLLLLLLLL
755
756 @item .ldouble @var{expression} [, @var{expression}]*
757 See @code{.extend}.
758
759 @cindex @code{.ltorg} directive, ARM
760 @item .ltorg
761 This directive causes the current contents of the literal pool to be
762 dumped into the current section (which is assumed to be the .text
763 section) at the current location (aligned to a word boundary).
764 @code{GAS} maintains a separate literal pool for each section and each
765 sub-section. The @code{.ltorg} directive will only affect the literal
766 pool of the current section and sub-section. At the end of assembly
767 all remaining, un-empty literal pools will automatically be dumped.
768
769 Note - older versions of @code{GAS} would dump the current literal
770 pool any time a section change occurred. This is no longer done, since
771 it prevents accurate control of the placement of literal pools.
772
773 @c MMMMMMMMMMMMMMMMMMMMMMMMMM
774
775 @cindex @code{.movsp} directive, ARM
776 @item .movsp @var{reg} [, #@var{offset}]
777 Tell the unwinder that @var{reg} contains an offset from the current
778 stack pointer. If @var{offset} is not specified then it is assumed to be
779 zero.
780
781 @c NNNNNNNNNNNNNNNNNNNNNNNNNN
782 @c OOOOOOOOOOOOOOOOOOOOOOOOOO
783
784 @cindex @code{.object_arch} directive, ARM
785 @item .object_arch @var{name}
786 Override the architecture recorded in the EABI object attribute section.
787 Valid values for @var{name} are the same as for the @code{.arch} directive.
788 Typically this is useful when code uses runtime detection of CPU features.
789
790 @c PPPPPPPPPPPPPPPPPPPPPPPPPP
791
792 @cindex @code{.packed} directive, ARM
793 @item .packed @var{expression} [, @var{expression}]*
794 This directive writes 12-byte packed floating-point values to the
795 output section. These are not compatible with current ARM processors
796 or ABIs.
797
798 @anchor{arm_pad}
799 @cindex @code{.pad} directive, ARM
800 @item .pad #@var{count}
801 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
802 A positive value indicates the function prologue allocated stack space by
803 decrementing the stack pointer.
804
805 @cindex @code{.personality} directive, ARM
806 @item .personality @var{name}
807 Sets the personality routine for the current function to @var{name}.
808
809 @cindex @code{.personalityindex} directive, ARM
810 @item .personalityindex @var{index}
811 Sets the personality routine for the current function to the EABI standard
812 routine number @var{index}
813
814 @cindex @code{.pool} directive, ARM
815 @item .pool
816 This is a synonym for .ltorg.
817
818 @c QQQQQQQQQQQQQQQQQQQQQQQQQQ
819 @c RRRRRRRRRRRRRRRRRRRRRRRRRR
820
821 @cindex @code{.req} directive, ARM
822 @item @var{name} .req @var{register name}
823 This creates an alias for @var{register name} called @var{name}. For
824 example:
825
826 @smallexample
827 foo .req r0
828 @end smallexample
829
830 @c SSSSSSSSSSSSSSSSSSSSSSSSSS
831
832 @anchor{arm_save}
833 @cindex @code{.save} directive, ARM
834 @item .save @var{reglist}
835 Generate unwinder annotations to restore the registers in @var{reglist}.
836 The format of @var{reglist} is the same as the corresponding store-multiple
837 instruction.
838
839 @smallexample
840 @exdent @emph{core registers}
841 .save @{r4, r5, r6, lr@}
842 stmfd sp!, @{r4, r5, r6, lr@}
843 @exdent @emph{FPA registers}
844 .save f4, 2
845 sfmfd f4, 2, [sp]!
846 @exdent @emph{VFP registers}
847 .save @{d8, d9, d10@}
848 fstmdx sp!, @{d8, d9, d10@}
849 @exdent @emph{iWMMXt registers}
850 .save @{wr10, wr11@}
851 wstrd wr11, [sp, #-8]!
852 wstrd wr10, [sp, #-8]!
853 or
854 .save wr11
855 wstrd wr11, [sp, #-8]!
856 .save wr10
857 wstrd wr10, [sp, #-8]!
858 @end smallexample
859
860 @anchor{arm_setfp}
861 @cindex @code{.setfp} directive, ARM
862 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
863 Make all unwinder annotations relative to a frame pointer. Without this
864 the unwinder will use offsets from the stack pointer.
865
866 The syntax of this directive is the same as the @code{add} or @code{mov}
867 instruction used to set the frame pointer. @var{spreg} must be either
868 @code{sp} or mentioned in a previous @code{.movsp} directive.
869
870 @smallexample
871 .movsp ip
872 mov ip, sp
873 @dots{}
874 .setfp fp, ip, #4
875 add fp, ip, #4
876 @end smallexample
877
878 @cindex @code{.secrel32} directive, ARM
879 @item .secrel32 @var{expression} [, @var{expression}]*
880 This directive emits relocations that evaluate to the section-relative
881 offset of each expression's symbol. This directive is only supported
882 for PE targets.
883
884 @cindex @code{.syntax} directive, ARM
885 @item .syntax [@code{unified} | @code{divided}]
886 This directive sets the Instruction Set Syntax as described in the
887 @ref{ARM-Instruction-Set} section.
888
889 @c TTTTTTTTTTTTTTTTTTTTTTTTTT
890
891 @cindex @code{.thumb} directive, ARM
892 @item .thumb
893 This performs the same action as @var{.code 16}.
894
895 @cindex @code{.thumb_func} directive, ARM
896 @item .thumb_func
897 This directive specifies that the following symbol is the name of a
898 Thumb encoded function. This information is necessary in order to allow
899 the assembler and linker to generate correct code for interworking
900 between Arm and Thumb instructions and should be used even if
901 interworking is not going to be performed. The presence of this
902 directive also implies @code{.thumb}
903
904 This directive is not neccessary when generating EABI objects. On these
905 targets the encoding is implicit when generating Thumb code.
906
907 @cindex @code{.thumb_set} directive, ARM
908 @item .thumb_set
909 This performs the equivalent of a @code{.set} directive in that it
910 creates a symbol which is an alias for another symbol (possibly not yet
911 defined). This directive also has the added property in that it marks
912 the aliased symbol as being a thumb function entry point, in the same
913 way that the @code{.thumb_func} directive does.
914
915 @cindex @code{.tlsdescseq} directive, ARM
916 @item .tlsdescseq @var{tls-variable}
917 This directive is used to annotate parts of an inlined TLS descriptor
918 trampoline. Normally the trampoline is provided by the linker, and
919 this directive is not needed.
920
921 @c UUUUUUUUUUUUUUUUUUUUUUUUUU
922
923 @cindex @code{.unreq} directive, ARM
924 @item .unreq @var{alias-name}
925 This undefines a register alias which was previously defined using the
926 @code{req}, @code{dn} or @code{qn} directives. For example:
927
928 @smallexample
929 foo .req r0
930 .unreq foo
931 @end smallexample
932
933 An error occurs if the name is undefined. Note - this pseudo op can
934 be used to delete builtin in register name aliases (eg 'r0'). This
935 should only be done if it is really necessary.
936
937 @cindex @code{.unwind_raw} directive, ARM
938 @item .unwind_raw @var{offset}, @var{byte1}, @dots{}
939 Insert one of more arbitary unwind opcode bytes, which are known to adjust
940 the stack pointer by @var{offset} bytes.
941
942 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
943 @code{.save @{r0@}}
944
945 @c VVVVVVVVVVVVVVVVVVVVVVVVVV
946
947 @cindex @code{.vsave} directive, ARM
948 @item .vsave @var{vfp-reglist}
949 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
950 using FLDMD. Also works for VFPv3 registers
951 that are to be restored using VLDM.
952 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
953 instruction.
954
955 @smallexample
956 @exdent @emph{VFP registers}
957 .vsave @{d8, d9, d10@}
958 fstmdd sp!, @{d8, d9, d10@}
959 @exdent @emph{VFPv3 registers}
960 .vsave @{d15, d16, d17@}
961 vstm sp!, @{d15, d16, d17@}
962 @end smallexample
963
964 Since FLDMX and FSTMX are now deprecated, this directive should be
965 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
966
967 @c WWWWWWWWWWWWWWWWWWWWWWWWWW
968 @c XXXXXXXXXXXXXXXXXXXXXXXXXX
969 @c YYYYYYYYYYYYYYYYYYYYYYYYYY
970 @c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
971
972 @end table
973
974 @node ARM Opcodes
975 @section Opcodes
976
977 @cindex ARM opcodes
978 @cindex opcodes for ARM
979 @code{@value{AS}} implements all the standard ARM opcodes. It also
980 implements several pseudo opcodes, including several synthetic load
981 instructions.
982
983 @table @code
984
985 @cindex @code{NOP} pseudo op, ARM
986 @item NOP
987 @smallexample
988 nop
989 @end smallexample
990
991 This pseudo op will always evaluate to a legal ARM instruction that does
992 nothing. Currently it will evaluate to MOV r0, r0.
993
994 @cindex @code{LDR reg,=<label>} pseudo op, ARM
995 @item LDR
996 @smallexample
997 ldr <register> , = <expression>
998 @end smallexample
999
1000 If expression evaluates to a numeric constant then a MOV or MVN
1001 instruction will be used in place of the LDR instruction, if the
1002 constant can be generated by either of these instructions. Otherwise
1003 the constant will be placed into the nearest literal pool (if it not
1004 already there) and a PC relative LDR instruction will be generated.
1005
1006 @cindex @code{ADR reg,<label>} pseudo op, ARM
1007 @item ADR
1008 @smallexample
1009 adr <register> <label>
1010 @end smallexample
1011
1012 This instruction will load the address of @var{label} into the indicated
1013 register. The instruction will evaluate to a PC relative ADD or SUB
1014 instruction depending upon where the label is located. If the label is
1015 out of range, or if it is not defined in the same file (and section) as
1016 the ADR instruction, then an error will be generated. This instruction
1017 will not make use of the literal pool.
1018
1019 @cindex @code{ADRL reg,<label>} pseudo op, ARM
1020 @item ADRL
1021 @smallexample
1022 adrl <register> <label>
1023 @end smallexample
1024
1025 This instruction will load the address of @var{label} into the indicated
1026 register. The instruction will evaluate to one or two PC relative ADD
1027 or SUB instructions depending upon where the label is located. If a
1028 second instruction is not needed a NOP instruction will be generated in
1029 its place, so that this instruction is always 8 bytes long.
1030
1031 If the label is out of range, or if it is not defined in the same file
1032 (and section) as the ADRL instruction, then an error will be generated.
1033 This instruction will not make use of the literal pool.
1034
1035 @end table
1036
1037 For information on the ARM or Thumb instruction sets, see @cite{ARM
1038 Software Development Toolkit Reference Manual}, Advanced RISC Machines
1039 Ltd.
1040
1041 @node ARM Mapping Symbols
1042 @section Mapping Symbols
1043
1044 The ARM ELF specification requires that special symbols be inserted
1045 into object files to mark certain features:
1046
1047 @table @code
1048
1049 @cindex @code{$a}
1050 @item $a
1051 At the start of a region of code containing ARM instructions.
1052
1053 @cindex @code{$t}
1054 @item $t
1055 At the start of a region of code containing THUMB instructions.
1056
1057 @cindex @code{$d}
1058 @item $d
1059 At the start of a region of data.
1060
1061 @end table
1062
1063 The assembler will automatically insert these symbols for you - there
1064 is no need to code them yourself. Support for tagging symbols ($b,
1065 $f, $p and $m) which is also mentioned in the current ARM ELF
1066 specification is not implemented. This is because they have been
1067 dropped from the new EABI and so tools cannot rely upon their
1068 presence.
1069
1070 @node ARM Unwinding Tutorial
1071 @section Unwinding
1072
1073 The ABI for the ARM Architecture specifies a standard format for
1074 exception unwind information. This information is used when an
1075 exception is thrown to determine where control should be transferred.
1076 In particular, the unwind information is used to determine which
1077 function called the function that threw the exception, and which
1078 function called that one, and so forth. This information is also used
1079 to restore the values of callee-saved registers in the function
1080 catching the exception.
1081
1082 If you are writing functions in assembly code, and those functions
1083 call other functions that throw exceptions, you must use assembly
1084 pseudo ops to ensure that appropriate exception unwind information is
1085 generated. Otherwise, if one of the functions called by your assembly
1086 code throws an exception, the run-time library will be unable to
1087 unwind the stack through your assembly code and your program will not
1088 behave correctly.
1089
1090 To illustrate the use of these pseudo ops, we will examine the code
1091 that G++ generates for the following C++ input:
1092
1093 @verbatim
1094 void callee (int *);
1095
1096 int
1097 caller ()
1098 {
1099 int i;
1100 callee (&i);
1101 return i;
1102 }
1103 @end verbatim
1104
1105 This example does not show how to throw or catch an exception from
1106 assembly code. That is a much more complex operation and should
1107 always be done in a high-level language, such as C++, that directly
1108 supports exceptions.
1109
1110 The code generated by one particular version of G++ when compiling the
1111 example above is:
1112
1113 @verbatim
1114 _Z6callerv:
1115 .fnstart
1116 .LFB2:
1117 @ Function supports interworking.
1118 @ args = 0, pretend = 0, frame = 8
1119 @ frame_needed = 1, uses_anonymous_args = 0
1120 stmfd sp!, {fp, lr}
1121 .save {fp, lr}
1122 .LCFI0:
1123 .setfp fp, sp, #4
1124 add fp, sp, #4
1125 .LCFI1:
1126 .pad #8
1127 sub sp, sp, #8
1128 .LCFI2:
1129 sub r3, fp, #8
1130 mov r0, r3
1131 bl _Z6calleePi
1132 ldr r3, [fp, #-8]
1133 mov r0, r3
1134 sub sp, fp, #4
1135 ldmfd sp!, {fp, lr}
1136 bx lr
1137 .LFE2:
1138 .fnend
1139 @end verbatim
1140
1141 Of course, the sequence of instructions varies based on the options
1142 you pass to GCC and on the version of GCC in use. The exact
1143 instructions are not important since we are focusing on the pseudo ops
1144 that are used to generate unwind information.
1145
1146 An important assumption made by the unwinder is that the stack frame
1147 does not change during the body of the function. In particular, since
1148 we assume that the assembly code does not itself throw an exception,
1149 the only point where an exception can be thrown is from a call, such
1150 as the @code{bl} instruction above. At each call site, the same saved
1151 registers (including @code{lr}, which indicates the return address)
1152 must be located in the same locations relative to the frame pointer.
1153
1154 The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1155 op appears immediately before the first instruction of the function
1156 while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1157 op appears immediately after the last instruction of the function.
1158 These pseudo ops specify the range of the function.
1159
1160 Only the order of the other pseudos ops (e.g., @code{.setfp} or
1161 @code{.pad}) matters; their exact locations are irrelevant. In the
1162 example above, the compiler emits the pseudo ops with particular
1163 instructions. That makes it easier to understand the code, but it is
1164 not required for correctness. It would work just as well to emit all
1165 of the pseudo ops other than @code{.fnend} in the same order, but
1166 immediately after @code{.fnstart}.
1167
1168 The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1169 indicates registers that have been saved to the stack so that they can
1170 be restored before the function returns. The argument to the
1171 @code{.save} pseudo op is a list of registers to save. If a register
1172 is ``callee-saved'' (as specified by the ABI) and is modified by the
1173 function you are writing, then your code must save the value before it
1174 is modified and restore the original value before the function
1175 returns. If an exception is thrown, the run-time library restores the
1176 values of these registers from their locations on the stack before
1177 returning control to the exception handler. (Of course, if an
1178 exception is not thrown, the function that contains the @code{.save}
1179 pseudo op restores these registers in the function epilogue, as is
1180 done with the @code{ldmfd} instruction above.)
1181
1182 You do not have to save callee-saved registers at the very beginning
1183 of the function and you do not need to use the @code{.save} pseudo op
1184 immediately following the point at which the registers are saved.
1185 However, if you modify a callee-saved register, you must save it on
1186 the stack before modifying it and before calling any functions which
1187 might throw an exception. And, you must use the @code{.save} pseudo
1188 op to indicate that you have done so.
1189
1190 The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1191 modification of the stack pointer that does not save any registers.
1192 The argument is the number of bytes (in decimal) that are subtracted
1193 from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1194 subtracting from the stack pointer increases the size of the stack.)
1195
1196 The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1197 indicates the register that contains the frame pointer. The first
1198 argument is the register that is set, which is typically @code{fp}.
1199 The second argument indicates the register from which the frame
1200 pointer takes its value. The third argument, if present, is the value
1201 (in decimal) added to the register specified by the second argument to
1202 compute the value of the frame pointer. You should not modify the
1203 frame pointer in the body of the function.
1204
1205 If you do not use a frame pointer, then you should not use the
1206 @code{.setfp} pseudo op. If you do not use a frame pointer, then you
1207 should avoid modifying the stack pointer outside of the function
1208 prologue. Otherwise, the run-time library will be unable to find
1209 saved registers when it is unwinding the stack.
1210
1211 The pseudo ops described above are sufficient for writing assembly
1212 code that calls functions which may throw exceptions. If you need to
1213 know more about the object-file format used to represent unwind
1214 information, you may consult the @cite{Exception Handling ABI for the
1215 ARM Architecture} available from @uref{http://infocenter.arm.com}.
This page took 0.084608 seconds and 5 git commands to generate.