[PATCH gas/m68k] Fix a register range check
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{no87},
142 @code{no287},
143 @code{no387},
144 @code{no687},
145 @code{cmov},
146 @code{nocmov},
147 @code{fxsr},
148 @code{nofxsr},
149 @code{mmx},
150 @code{nommx},
151 @code{sse},
152 @code{sse2},
153 @code{sse3},
154 @code{sse4a},
155 @code{ssse3},
156 @code{sse4.1},
157 @code{sse4.2},
158 @code{sse4},
159 @code{nosse},
160 @code{nosse2},
161 @code{nosse3},
162 @code{nosse4a},
163 @code{nossse3},
164 @code{nosse4.1},
165 @code{nosse4.2},
166 @code{nosse4},
167 @code{avx},
168 @code{avx2},
169 @code{noavx},
170 @code{noavx2},
171 @code{adx},
172 @code{rdseed},
173 @code{prfchw},
174 @code{smap},
175 @code{mpx},
176 @code{sha},
177 @code{rdpid},
178 @code{ptwrite},
179 @code{cet},
180 @code{gfni},
181 @code{vaes},
182 @code{vpclmulqdq},
183 @code{prefetchwt1},
184 @code{clflushopt},
185 @code{se1},
186 @code{clwb},
187 @code{movdiri},
188 @code{movdir64b},
189 @code{enqcmd},
190 @code{avx512f},
191 @code{avx512cd},
192 @code{avx512er},
193 @code{avx512pf},
194 @code{avx512vl},
195 @code{avx512bw},
196 @code{avx512dq},
197 @code{avx512ifma},
198 @code{avx512vbmi},
199 @code{avx512_4fmaps},
200 @code{avx512_4vnniw},
201 @code{avx512_vpopcntdq},
202 @code{avx512_vbmi2},
203 @code{avx512_vnni},
204 @code{avx512_bitalg},
205 @code{avx512_bf16},
206 @code{noavx512f},
207 @code{noavx512cd},
208 @code{noavx512er},
209 @code{noavx512pf},
210 @code{noavx512vl},
211 @code{noavx512bw},
212 @code{noavx512dq},
213 @code{noavx512ifma},
214 @code{noavx512vbmi},
215 @code{noavx512_4fmaps},
216 @code{noavx512_4vnniw},
217 @code{noavx512_vpopcntdq},
218 @code{noavx512_vbmi2},
219 @code{noavx512_vnni},
220 @code{noavx512_bitalg},
221 @code{noavx512_vp2intersect},
222 @code{noavx512_bf16},
223 @code{noenqcmd},
224 @code{vmx},
225 @code{vmfunc},
226 @code{smx},
227 @code{xsave},
228 @code{xsaveopt},
229 @code{xsavec},
230 @code{xsaves},
231 @code{aes},
232 @code{pclmul},
233 @code{fsgsbase},
234 @code{rdrnd},
235 @code{f16c},
236 @code{bmi2},
237 @code{fma},
238 @code{movbe},
239 @code{ept},
240 @code{lzcnt},
241 @code{popcnt},
242 @code{hle},
243 @code{rtm},
244 @code{invpcid},
245 @code{clflush},
246 @code{mwaitx},
247 @code{clzero},
248 @code{wbnoinvd},
249 @code{pconfig},
250 @code{waitpkg},
251 @code{cldemote},
252 @code{rdpru},
253 @code{mcommit},
254 @code{sev_es},
255 @code{lwp},
256 @code{fma4},
257 @code{xop},
258 @code{cx16},
259 @code{syscall},
260 @code{rdtscp},
261 @code{3dnow},
262 @code{3dnowa},
263 @code{sse4a},
264 @code{sse5},
265 @code{svme} and
266 @code{padlock}.
267 Note that rather than extending a basic instruction set, the extension
268 mnemonics starting with @code{no} revoke the respective functionality.
269
270 When the @code{.arch} directive is used with @option{-march}, the
271 @code{.arch} directive will take precedent.
272
273 @cindex @samp{-mtune=} option, i386
274 @cindex @samp{-mtune=} option, x86-64
275 @item -mtune=@var{CPU}
276 This option specifies a processor to optimize for. When used in
277 conjunction with the @option{-march} option, only instructions
278 of the processor specified by the @option{-march} option will be
279 generated.
280
281 Valid @var{CPU} values are identical to the processor list of
282 @option{-march=@var{CPU}}.
283
284 @cindex @samp{-msse2avx} option, i386
285 @cindex @samp{-msse2avx} option, x86-64
286 @item -msse2avx
287 This option specifies that the assembler should encode SSE instructions
288 with VEX prefix.
289
290 @cindex @samp{-msse-check=} option, i386
291 @cindex @samp{-msse-check=} option, x86-64
292 @item -msse-check=@var{none}
293 @itemx -msse-check=@var{warning}
294 @itemx -msse-check=@var{error}
295 These options control if the assembler should check SSE instructions.
296 @option{-msse-check=@var{none}} will make the assembler not to check SSE
297 instructions, which is the default. @option{-msse-check=@var{warning}}
298 will make the assembler issue a warning for any SSE instruction.
299 @option{-msse-check=@var{error}} will make the assembler issue an error
300 for any SSE instruction.
301
302 @cindex @samp{-mavxscalar=} option, i386
303 @cindex @samp{-mavxscalar=} option, x86-64
304 @item -mavxscalar=@var{128}
305 @itemx -mavxscalar=@var{256}
306 These options control how the assembler should encode scalar AVX
307 instructions. @option{-mavxscalar=@var{128}} will encode scalar
308 AVX instructions with 128bit vector length, which is the default.
309 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
310 with 256bit vector length.
311
312 WARNING: Don't use this for production code - due to CPU errata the
313 resulting code may not work on certain models.
314
315 @cindex @samp{-mvexwig=} option, i386
316 @cindex @samp{-mvexwig=} option, x86-64
317 @item -mvexwig=@var{0}
318 @itemx -mvexwig=@var{1}
319 These options control how the assembler should encode VEX.W-ignored (WIG)
320 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
321 instructions with vex.w = 0, which is the default.
322 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
323 vex.w = 1.
324
325 WARNING: Don't use this for production code - due to CPU errata the
326 resulting code may not work on certain models.
327
328 @cindex @samp{-mevexlig=} option, i386
329 @cindex @samp{-mevexlig=} option, x86-64
330 @item -mevexlig=@var{128}
331 @itemx -mevexlig=@var{256}
332 @itemx -mevexlig=@var{512}
333 These options control how the assembler should encode length-ignored
334 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
335 EVEX instructions with 128bit vector length, which is the default.
336 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
337 encode LIG EVEX instructions with 256bit and 512bit vector length,
338 respectively.
339
340 @cindex @samp{-mevexwig=} option, i386
341 @cindex @samp{-mevexwig=} option, x86-64
342 @item -mevexwig=@var{0}
343 @itemx -mevexwig=@var{1}
344 These options control how the assembler should encode w-ignored (WIG)
345 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
346 EVEX instructions with evex.w = 0, which is the default.
347 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
348 evex.w = 1.
349
350 @cindex @samp{-mmnemonic=} option, i386
351 @cindex @samp{-mmnemonic=} option, x86-64
352 @item -mmnemonic=@var{att}
353 @itemx -mmnemonic=@var{intel}
354 This option specifies instruction mnemonic for matching instructions.
355 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
356 take precedent.
357
358 @cindex @samp{-msyntax=} option, i386
359 @cindex @samp{-msyntax=} option, x86-64
360 @item -msyntax=@var{att}
361 @itemx -msyntax=@var{intel}
362 This option specifies instruction syntax when processing instructions.
363 The @code{.att_syntax} and @code{.intel_syntax} directives will
364 take precedent.
365
366 @cindex @samp{-mnaked-reg} option, i386
367 @cindex @samp{-mnaked-reg} option, x86-64
368 @item -mnaked-reg
369 This option specifies that registers don't require a @samp{%} prefix.
370 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
371
372 @cindex @samp{-madd-bnd-prefix} option, i386
373 @cindex @samp{-madd-bnd-prefix} option, x86-64
374 @item -madd-bnd-prefix
375 This option forces the assembler to add BND prefix to all branches, even
376 if such prefix was not explicitly specified in the source code.
377
378 @cindex @samp{-mshared} option, i386
379 @cindex @samp{-mshared} option, x86-64
380 @item -mno-shared
381 On ELF target, the assembler normally optimizes out non-PLT relocations
382 against defined non-weak global branch targets with default visibility.
383 The @samp{-mshared} option tells the assembler to generate code which
384 may go into a shared library where all non-weak global branch targets
385 with default visibility can be preempted. The resulting code is
386 slightly bigger. This option only affects the handling of branch
387 instructions.
388
389 @cindex @samp{-mbig-obj} option, x86-64
390 @item -mbig-obj
391 On x86-64 PE/COFF target this option forces the use of big object file
392 format, which allows more than 32768 sections.
393
394 @cindex @samp{-momit-lock-prefix=} option, i386
395 @cindex @samp{-momit-lock-prefix=} option, x86-64
396 @item -momit-lock-prefix=@var{no}
397 @itemx -momit-lock-prefix=@var{yes}
398 These options control how the assembler should encode lock prefix.
399 This option is intended as a workaround for processors, that fail on
400 lock prefix. This option can only be safely used with single-core,
401 single-thread computers
402 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
403 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
404 which is the default.
405
406 @cindex @samp{-mfence-as-lock-add=} option, i386
407 @cindex @samp{-mfence-as-lock-add=} option, x86-64
408 @item -mfence-as-lock-add=@var{no}
409 @itemx -mfence-as-lock-add=@var{yes}
410 These options control how the assembler should encode lfence, mfence and
411 sfence.
412 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
413 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
414 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
415 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
416 sfence as usual, which is the default.
417
418 @cindex @samp{-mrelax-relocations=} option, i386
419 @cindex @samp{-mrelax-relocations=} option, x86-64
420 @item -mrelax-relocations=@var{no}
421 @itemx -mrelax-relocations=@var{yes}
422 These options control whether the assembler should generate relax
423 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
424 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
425 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
426 @option{-mrelax-relocations=@var{no}} will not generate relax
427 relocations. The default can be controlled by a configure option
428 @option{--enable-x86-relax-relocations}.
429
430 @cindex @samp{-malign-branch-boundary=} option, i386
431 @cindex @samp{-malign-branch-boundary=} option, x86-64
432 @item -malign-branch-boundary=@var{NUM}
433 This option controls how the assembler should align branches with segment
434 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
435 no less than 16. Branches will be aligned within @var{NUM} byte
436 boundary. @option{-malign-branch-boundary=0}, which is the default,
437 doesn't align branches.
438
439 @cindex @samp{-malign-branch=} option, i386
440 @cindex @samp{-malign-branch=} option, x86-64
441 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
442 This option specifies types of branches to align. @var{TYPE} is
443 combination of @samp{jcc}, which aligns conditional jumps,
444 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
445 which aligns unconditional jumps, @samp{call} which aligns calls,
446 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
447 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
448
449 @cindex @samp{-malign-branch-prefix-size=} option, i386
450 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
451 @item -malign-branch-prefix-size=@var{NUM}
452 This option specifies the maximum number of prefixes on an instruction
453 to align branches. @var{NUM} should be between 0 and 5. The default
454 @var{NUM} is 5.
455
456 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
457 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
458 @item -mbranches-within-32B-boundaries
459 This option aligns conditional jumps, fused conditional jumps and
460 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
461 on an instruction. It is equivalent to
462 @option{-malign-branch-boundary=32}
463 @option{-malign-branch=jcc+fused+jmp}
464 @option{-malign-branch-prefix-size=5}.
465 The default doesn't align branches.
466
467 @cindex @samp{-mlfence-after-load=} option, i386
468 @cindex @samp{-mlfence-after-load=} option, x86-64
469 @item -mlfence-after-load=@var{no}
470 @itemx -mlfence-after-load=@var{yes}
471 These options control whether the assembler should generate lfence
472 after load instructions. @option{-mlfence-after-load=@var{yes}} will
473 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
474 lfence, which is the default.
475
476 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
477 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
478 @item -mlfence-before-indirect-branch=@var{none}
479 @item -mlfence-before-indirect-branch=@var{all}
480 @item -mlfence-before-indirect-branch=@var{register}
481 @itemx -mlfence-before-indirect-branch=@var{memory}
482 These options control whether the assembler should generate lfence
483 after indirect near branch instructions.
484 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
485 after indirect near branch via register and issue a warning before
486 indirect near branch via memory.
487 @option{-mlfence-before-indirect-branch=@var{register}} will generate
488 lfence after indirect near branch via register.
489 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
490 warning before indirect near branch via memory.
491 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
492 lfence nor issue warning, which is the default. Note that lfence won't
493 be generated before indirect near branch via register with
494 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
495 after loading branch target register.
496
497 @cindex @samp{-mlfence-before-ret=} option, i386
498 @cindex @samp{-mlfence-before-ret=} option, x86-64
499 @item -mlfence-before-ret=@var{none}
500 @item -mlfence-before-ret=@var{or}
501 @itemx -mlfence-before-ret=@var{not}
502 These options control whether the assembler should generate lfence
503 before ret. @option{-mlfence-before-ret=@var{or}} will generate
504 generate or instruction with lfence.
505 @option{-mlfence-before-ret=@var{not}} will generate not instruction
506 with lfence.
507 @option{-mlfence-before-ret=@var{none}} will not generate lfence,
508 which is the default.
509
510 @cindex @samp{-mx86-used-note=} option, i386
511 @cindex @samp{-mx86-used-note=} option, x86-64
512 @item -mx86-used-note=@var{no}
513 @itemx -mx86-used-note=@var{yes}
514 These options control whether the assembler should generate
515 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
516 GNU property notes. The default can be controlled by the
517 @option{--enable-x86-used-note} configure option.
518
519 @cindex @samp{-mevexrcig=} option, i386
520 @cindex @samp{-mevexrcig=} option, x86-64
521 @item -mevexrcig=@var{rne}
522 @itemx -mevexrcig=@var{rd}
523 @itemx -mevexrcig=@var{ru}
524 @itemx -mevexrcig=@var{rz}
525 These options control how the assembler should encode SAE-only
526 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
527 of EVEX instruction with 00, which is the default.
528 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
529 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
530 with 01, 10 and 11 RC bits, respectively.
531
532 @cindex @samp{-mamd64} option, x86-64
533 @cindex @samp{-mintel64} option, x86-64
534 @item -mamd64
535 @itemx -mintel64
536 This option specifies that the assembler should accept only AMD64 or
537 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
538 only and AMD64 ISAs.
539
540 @cindex @samp{-O0} option, i386
541 @cindex @samp{-O0} option, x86-64
542 @cindex @samp{-O} option, i386
543 @cindex @samp{-O} option, x86-64
544 @cindex @samp{-O1} option, i386
545 @cindex @samp{-O1} option, x86-64
546 @cindex @samp{-O2} option, i386
547 @cindex @samp{-O2} option, x86-64
548 @cindex @samp{-Os} option, i386
549 @cindex @samp{-Os} option, x86-64
550 @item -O0 | -O | -O1 | -O2 | -Os
551 Optimize instruction encoding with smaller instruction size. @samp{-O}
552 and @samp{-O1} encode 64-bit register load instructions with 64-bit
553 immediate as 32-bit register load instructions with 31-bit or 32-bits
554 immediates, encode 64-bit register clearing instructions with 32-bit
555 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
556 register clearing instructions with 128-bit VEX vector register
557 clearing instructions, encode 128-bit/256-bit EVEX vector
558 register load/store instructions with VEX vector register load/store
559 instructions, and encode 128-bit/256-bit EVEX packed integer logical
560 instructions with 128-bit/256-bit VEX packed integer logical.
561
562 @samp{-O2} includes @samp{-O1} optimization plus encodes
563 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
564 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
565 instructions with commutative source operands will also have their
566 source operands swapped if this allows using the 2-byte VEX prefix form
567 instead of the 3-byte one. Certain forms of AND as well as OR with the
568 same (register) operand specified twice will also be changed to TEST.
569
570 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
571 and 64-bit register tests with immediate as 8-bit register test with
572 immediate. @samp{-O0} turns off this optimization.
573
574 @end table
575 @c man end
576
577 @node i386-Directives
578 @section x86 specific Directives
579
580 @cindex machine directives, x86
581 @cindex x86 machine directives
582 @table @code
583
584 @cindex @code{lcomm} directive, COFF
585 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
586 Reserve @var{length} (an absolute expression) bytes for a local common
587 denoted by @var{symbol}. The section and value of @var{symbol} are
588 those of the new local common. The addresses are allocated in the bss
589 section, so that at run-time the bytes start off zeroed. Since
590 @var{symbol} is not declared global, it is normally not visible to
591 @code{@value{LD}}. The optional third parameter, @var{alignment},
592 specifies the desired alignment of the symbol in the bss section.
593
594 This directive is only available for COFF based x86 targets.
595
596 @cindex @code{largecomm} directive, ELF
597 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
598 This directive behaves in the same way as the @code{comm} directive
599 except that the data is placed into the @var{.lbss} section instead of
600 the @var{.bss} section @ref{Comm}.
601
602 The directive is intended to be used for data which requires a large
603 amount of space, and it is only available for ELF based x86_64
604 targets.
605
606 @cindex @code{value} directive
607 @item .value @var{expression} [, @var{expression}]
608 This directive behaves in the same way as the @code{.short} directive,
609 taking a series of comma separated expressions and storing them as
610 two-byte wide values into the current section.
611
612 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
613
614 @end table
615
616 @node i386-Syntax
617 @section i386 Syntactical Considerations
618 @menu
619 * i386-Variations:: AT&T Syntax versus Intel Syntax
620 * i386-Chars:: Special Characters
621 @end menu
622
623 @node i386-Variations
624 @subsection AT&T Syntax versus Intel Syntax
625
626 @cindex i386 intel_syntax pseudo op
627 @cindex intel_syntax pseudo op, i386
628 @cindex i386 att_syntax pseudo op
629 @cindex att_syntax pseudo op, i386
630 @cindex i386 syntax compatibility
631 @cindex syntax compatibility, i386
632 @cindex x86-64 intel_syntax pseudo op
633 @cindex intel_syntax pseudo op, x86-64
634 @cindex x86-64 att_syntax pseudo op
635 @cindex att_syntax pseudo op, x86-64
636 @cindex x86-64 syntax compatibility
637 @cindex syntax compatibility, x86-64
638
639 @code{@value{AS}} now supports assembly using Intel assembler syntax.
640 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
641 back to the usual AT&T mode for compatibility with the output of
642 @code{@value{GCC}}. Either of these directives may have an optional
643 argument, @code{prefix}, or @code{noprefix} specifying whether registers
644 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
645 different from Intel syntax. We mention these differences because
646 almost all 80386 documents use Intel syntax. Notable differences
647 between the two syntaxes are:
648
649 @cindex immediate operands, i386
650 @cindex i386 immediate operands
651 @cindex register operands, i386
652 @cindex i386 register operands
653 @cindex jump/call operands, i386
654 @cindex i386 jump/call operands
655 @cindex operand delimiters, i386
656
657 @cindex immediate operands, x86-64
658 @cindex x86-64 immediate operands
659 @cindex register operands, x86-64
660 @cindex x86-64 register operands
661 @cindex jump/call operands, x86-64
662 @cindex x86-64 jump/call operands
663 @cindex operand delimiters, x86-64
664 @itemize @bullet
665 @item
666 AT&T immediate operands are preceded by @samp{$}; Intel immediate
667 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
668 AT&T register operands are preceded by @samp{%}; Intel register operands
669 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
670 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
671
672 @cindex i386 source, destination operands
673 @cindex source, destination operands; i386
674 @cindex x86-64 source, destination operands
675 @cindex source, destination operands; x86-64
676 @item
677 AT&T and Intel syntax use the opposite order for source and destination
678 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
679 @samp{source, dest} convention is maintained for compatibility with
680 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
681 instructions with 2 immediate operands, such as the @samp{enter}
682 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
683
684 @cindex mnemonic suffixes, i386
685 @cindex sizes operands, i386
686 @cindex i386 size suffixes
687 @cindex mnemonic suffixes, x86-64
688 @cindex sizes operands, x86-64
689 @cindex x86-64 size suffixes
690 @item
691 In AT&T syntax the size of memory operands is determined from the last
692 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
693 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
694 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
695 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
696 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
697 no other way to disambiguate an instruction. Intel syntax accomplishes this by
698 prefixing memory operands (@emph{not} the instruction mnemonics) with
699 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
700 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
701 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
702 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
703 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
704
705 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
706 instruction with the 64-bit displacement or immediate operand.
707
708 @cindex return instructions, i386
709 @cindex i386 jump, call, return
710 @cindex return instructions, x86-64
711 @cindex x86-64 jump, call, return
712 @item
713 Immediate form long jumps and calls are
714 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
715 Intel syntax is
716 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
717 instruction
718 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
719 @samp{ret far @var{stack-adjust}}.
720
721 @cindex sections, i386
722 @cindex i386 sections
723 @cindex sections, x86-64
724 @cindex x86-64 sections
725 @item
726 The AT&T assembler does not provide support for multiple section
727 programs. Unix style systems expect all programs to be single sections.
728 @end itemize
729
730 @node i386-Chars
731 @subsection Special Characters
732
733 @cindex line comment character, i386
734 @cindex i386 line comment character
735 The presence of a @samp{#} appearing anywhere on a line indicates the
736 start of a comment that extends to the end of that line.
737
738 If a @samp{#} appears as the first character of a line then the whole
739 line is treated as a comment, but in this case the line can also be a
740 logical line number directive (@pxref{Comments}) or a preprocessor
741 control command (@pxref{Preprocessing}).
742
743 If the @option{--divide} command-line option has not been specified
744 then the @samp{/} character appearing anywhere on a line also
745 introduces a line comment.
746
747 @cindex line separator, i386
748 @cindex statement separator, i386
749 @cindex i386 line separator
750 The @samp{;} character can be used to separate statements on the same
751 line.
752
753 @node i386-Mnemonics
754 @section i386-Mnemonics
755 @subsection Instruction Naming
756
757 @cindex i386 instruction naming
758 @cindex instruction naming, i386
759 @cindex x86-64 instruction naming
760 @cindex instruction naming, x86-64
761
762 Instruction mnemonics are suffixed with one character modifiers which
763 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
764 and @samp{q} specify byte, word, long and quadruple word operands. If
765 no suffix is specified by an instruction then @code{@value{AS}} tries to
766 fill in the missing suffix based on the destination register operand
767 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
768 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
769 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
770 assembler which assumes that a missing mnemonic suffix implies long
771 operand size. (This incompatibility does not affect compiler output
772 since compilers always explicitly specify the mnemonic suffix.)
773
774 When there is no sizing suffix and no (suitable) register operands to
775 deduce the size of memory operands, with a few exceptions and where long
776 operand size is possible in the first place, operand size will default
777 to long in 32- and 64-bit modes. Similarly it will default to short in
778 16-bit mode. Noteworthy exceptions are
779
780 @itemize @bullet
781 @item
782 Instructions with an implicit on-stack operand as well as branches,
783 which default to quad in 64-bit mode.
784
785 @item
786 Sign- and zero-extending moves, which default to byte size source
787 operands.
788
789 @item
790 Floating point insns with integer operands, which default to short (for
791 perhaps historical reasons).
792
793 @item
794 CRC32 with a 64-bit destination, which defaults to a quad source
795 operand.
796
797 @end itemize
798
799 @cindex encoding options, i386
800 @cindex encoding options, x86-64
801
802 Different encoding options can be specified via pseudo prefixes:
803
804 @itemize @bullet
805 @item
806 @samp{@{disp8@}} -- prefer 8-bit displacement.
807
808 @item
809 @samp{@{disp32@}} -- prefer 32-bit displacement.
810
811 @item
812 @samp{@{load@}} -- prefer load-form instruction.
813
814 @item
815 @samp{@{store@}} -- prefer store-form instruction.
816
817 @item
818 @samp{@{vex@}} -- encode with VEX prefix.
819
820 @item
821 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
822
823 @item
824 @samp{@{evex@}} -- encode with EVEX prefix.
825
826 @item
827 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
828 instructions (x86-64 only). Note that this differs from the @samp{rex}
829 prefix which generates REX prefix unconditionally.
830
831 @item
832 @samp{@{nooptimize@}} -- disable instruction size optimization.
833 @end itemize
834
835 @cindex conversion instructions, i386
836 @cindex i386 conversion instructions
837 @cindex conversion instructions, x86-64
838 @cindex x86-64 conversion instructions
839 The Intel-syntax conversion instructions
840
841 @itemize @bullet
842 @item
843 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
844
845 @item
846 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
847
848 @item
849 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
850
851 @item
852 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
853
854 @item
855 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
856 (x86-64 only),
857
858 @item
859 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
860 @samp{%rdx:%rax} (x86-64 only),
861 @end itemize
862
863 @noindent
864 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
865 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
866 instructions.
867
868 @cindex extension instructions, i386
869 @cindex i386 extension instructions
870 @cindex extension instructions, x86-64
871 @cindex x86-64 extension instructions
872 The Intel-syntax extension instructions
873
874 @itemize @bullet
875 @item
876 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
877
878 @item
879 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
880
881 @item
882 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
883 (x86-64 only).
884
885 @item
886 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
887
888 @item
889 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
890 (x86-64 only).
891
892 @item
893 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
894 (x86-64 only).
895
896 @item
897 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
898
899 @item
900 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
901
902 @item
903 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
904 (x86-64 only).
905
906 @item
907 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
908
909 @item
910 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
911 (x86-64 only).
912 @end itemize
913
914 @noindent
915 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
916 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
917 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
918 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
919 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
920
921 @cindex jump instructions, i386
922 @cindex call instructions, i386
923 @cindex jump instructions, x86-64
924 @cindex call instructions, x86-64
925 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
926 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
927 convention.
928
929 @subsection AT&T Mnemonic versus Intel Mnemonic
930
931 @cindex i386 mnemonic compatibility
932 @cindex mnemonic compatibility, i386
933
934 @code{@value{AS}} supports assembly using Intel mnemonic.
935 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
936 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
937 syntax for compatibility with the output of @code{@value{GCC}}.
938 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
939 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
940 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
941 assembler with different mnemonics from those in Intel IA32 specification.
942 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
943
944 @itemize @bullet
945 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
946 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
947 destination register with both AT&T and Intel mnemonics.
948 @end itemize
949
950 @node i386-Regs
951 @section Register Naming
952
953 @cindex i386 registers
954 @cindex registers, i386
955 @cindex x86-64 registers
956 @cindex registers, x86-64
957 Register operands are always prefixed with @samp{%}. The 80386 registers
958 consist of
959
960 @itemize @bullet
961 @item
962 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
963 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
964 frame pointer), and @samp{%esp} (the stack pointer).
965
966 @item
967 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
968 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
969
970 @item
971 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
972 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
973 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
974 @samp{%cx}, and @samp{%dx})
975
976 @item
977 the 6 section registers @samp{%cs} (code section), @samp{%ds}
978 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
979 and @samp{%gs}.
980
981 @item
982 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
983 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
984
985 @item
986 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
987 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
988
989 @item
990 the 2 test registers @samp{%tr6} and @samp{%tr7}.
991
992 @item
993 the 8 floating point register stack @samp{%st} or equivalently
994 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
995 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
996 These registers are overloaded by 8 MMX registers @samp{%mm0},
997 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
998 @samp{%mm6} and @samp{%mm7}.
999
1000 @item
1001 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1002 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1003 @end itemize
1004
1005 The AMD x86-64 architecture extends the register set by:
1006
1007 @itemize @bullet
1008 @item
1009 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1010 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1011 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1012 pointer)
1013
1014 @item
1015 the 8 extended registers @samp{%r8}--@samp{%r15}.
1016
1017 @item
1018 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1019
1020 @item
1021 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1022
1023 @item
1024 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1025
1026 @item
1027 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1028
1029 @item
1030 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1031
1032 @item
1033 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1034 @end itemize
1035
1036 With the AVX extensions more registers were made available:
1037
1038 @itemize @bullet
1039
1040 @item
1041 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1042 available in 32-bit mode). The bottom 128 bits are overlaid with the
1043 @samp{xmm0}--@samp{xmm15} registers.
1044
1045 @end itemize
1046
1047 The AVX2 extensions made in 64-bit mode more registers available:
1048
1049 @itemize @bullet
1050
1051 @item
1052 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1053 registers @samp{%ymm16}--@samp{%ymm31}.
1054
1055 @end itemize
1056
1057 The AVX512 extensions added the following registers:
1058
1059 @itemize @bullet
1060
1061 @item
1062 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1063 available in 32-bit mode). The bottom 128 bits are overlaid with the
1064 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1065 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1066
1067 @item
1068 the 8 mask registers @samp{%k0}--@samp{%k7}.
1069
1070 @end itemize
1071
1072 @node i386-Prefixes
1073 @section Instruction Prefixes
1074
1075 @cindex i386 instruction prefixes
1076 @cindex instruction prefixes, i386
1077 @cindex prefixes, i386
1078 Instruction prefixes are used to modify the following instruction. They
1079 are used to repeat string instructions, to provide section overrides, to
1080 perform bus lock operations, and to change operand and address sizes.
1081 (Most instructions that normally operate on 32-bit operands will use
1082 16-bit operands if the instruction has an ``operand size'' prefix.)
1083 Instruction prefixes are best written on the same line as the instruction
1084 they act upon. For example, the @samp{scas} (scan string) instruction is
1085 repeated with:
1086
1087 @smallexample
1088 repne scas %es:(%edi),%al
1089 @end smallexample
1090
1091 You may also place prefixes on the lines immediately preceding the
1092 instruction, but this circumvents checks that @code{@value{AS}} does
1093 with prefixes, and will not work with all prefixes.
1094
1095 Here is a list of instruction prefixes:
1096
1097 @cindex section override prefixes, i386
1098 @itemize @bullet
1099 @item
1100 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1101 @samp{fs}, @samp{gs}. These are automatically added by specifying
1102 using the @var{section}:@var{memory-operand} form for memory references.
1103
1104 @cindex size prefixes, i386
1105 @item
1106 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1107 change 32-bit operands/addresses into 16-bit operands/addresses,
1108 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1109 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1110 @emph{must} appear on the same line of code as the instruction they
1111 modify. For example, in a 16-bit @code{.code16} section, you might
1112 write:
1113
1114 @smallexample
1115 addr32 jmpl *(%ebx)
1116 @end smallexample
1117
1118 @cindex bus lock prefixes, i386
1119 @cindex inhibiting interrupts, i386
1120 @item
1121 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1122 the instruction it precedes. (This is only valid with certain
1123 instructions; see a 80386 manual for details).
1124
1125 @cindex coprocessor wait, i386
1126 @item
1127 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1128 complete the current instruction. This should never be needed for the
1129 80386/80387 combination.
1130
1131 @cindex repeat prefixes, i386
1132 @item
1133 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1134 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1135 times if the current address size is 16-bits).
1136 @cindex REX prefixes, i386
1137 @item
1138 The @samp{rex} family of prefixes is used by x86-64 to encode
1139 extensions to i386 instruction set. The @samp{rex} prefix has four
1140 bits --- an operand size overwrite (@code{64}) used to change operand size
1141 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1142 register set.
1143
1144 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1145 instruction emits @samp{rex} prefix with all the bits set. By omitting
1146 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1147 prefixes as well. Normally, there is no need to write the prefixes
1148 explicitly, since gas will automatically generate them based on the
1149 instruction operands.
1150 @end itemize
1151
1152 @node i386-Memory
1153 @section Memory References
1154
1155 @cindex i386 memory references
1156 @cindex memory references, i386
1157 @cindex x86-64 memory references
1158 @cindex memory references, x86-64
1159 An Intel syntax indirect memory reference of the form
1160
1161 @smallexample
1162 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1163 @end smallexample
1164
1165 @noindent
1166 is translated into the AT&T syntax
1167
1168 @smallexample
1169 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1170 @end smallexample
1171
1172 @noindent
1173 where @var{base} and @var{index} are the optional 32-bit base and
1174 index registers, @var{disp} is the optional displacement, and
1175 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1176 to calculate the address of the operand. If no @var{scale} is
1177 specified, @var{scale} is taken to be 1. @var{section} specifies the
1178 optional section register for the memory operand, and may override the
1179 default section register (see a 80386 manual for section register
1180 defaults). Note that section overrides in AT&T syntax @emph{must}
1181 be preceded by a @samp{%}. If you specify a section override which
1182 coincides with the default section register, @code{@value{AS}} does @emph{not}
1183 output any section register override prefixes to assemble the given
1184 instruction. Thus, section overrides can be specified to emphasize which
1185 section register is used for a given memory operand.
1186
1187 Here are some examples of Intel and AT&T style memory references:
1188
1189 @table @asis
1190 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1191 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1192 missing, and the default section is used (@samp{%ss} for addressing with
1193 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1194
1195 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1196 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1197 @samp{foo}. All other fields are missing. The section register here
1198 defaults to @samp{%ds}.
1199
1200 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1201 This uses the value pointed to by @samp{foo} as a memory operand.
1202 Note that @var{base} and @var{index} are both missing, but there is only
1203 @emph{one} @samp{,}. This is a syntactic exception.
1204
1205 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1206 This selects the contents of the variable @samp{foo} with section
1207 register @var{section} being @samp{%gs}.
1208 @end table
1209
1210 Absolute (as opposed to PC relative) call and jump operands must be
1211 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1212 always chooses PC relative addressing for jump/call labels.
1213
1214 Any instruction that has a memory operand, but no register operand,
1215 @emph{must} specify its size (byte, word, long, or quadruple) with an
1216 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1217 respectively).
1218
1219 The x86-64 architecture adds an RIP (instruction pointer relative)
1220 addressing. This addressing mode is specified by using @samp{rip} as a
1221 base register. Only constant offsets are valid. For example:
1222
1223 @table @asis
1224 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1225 Points to the address 1234 bytes past the end of the current
1226 instruction.
1227
1228 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1229 Points to the @code{symbol} in RIP relative way, this is shorter than
1230 the default absolute addressing.
1231 @end table
1232
1233 Other addressing modes remain unchanged in x86-64 architecture, except
1234 registers used are 64-bit instead of 32-bit.
1235
1236 @node i386-Jumps
1237 @section Handling of Jump Instructions
1238
1239 @cindex jump optimization, i386
1240 @cindex i386 jump optimization
1241 @cindex jump optimization, x86-64
1242 @cindex x86-64 jump optimization
1243 Jump instructions are always optimized to use the smallest possible
1244 displacements. This is accomplished by using byte (8-bit) displacement
1245 jumps whenever the target is sufficiently close. If a byte displacement
1246 is insufficient a long displacement is used. We do not support
1247 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1248 instruction with the @samp{data16} instruction prefix), since the 80386
1249 insists upon masking @samp{%eip} to 16 bits after the word displacement
1250 is added. (See also @pxref{i386-Arch})
1251
1252 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1253 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1254 displacements, so that if you use these instructions (@code{@value{GCC}} does
1255 not use them) you may get an error message (and incorrect code). The AT&T
1256 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1257 to
1258
1259 @smallexample
1260 jcxz cx_zero
1261 jmp cx_nonzero
1262 cx_zero: jmp foo
1263 cx_nonzero:
1264 @end smallexample
1265
1266 @node i386-Float
1267 @section Floating Point
1268
1269 @cindex i386 floating point
1270 @cindex floating point, i386
1271 @cindex x86-64 floating point
1272 @cindex floating point, x86-64
1273 All 80387 floating point types except packed BCD are supported.
1274 (BCD support may be added without much difficulty). These data
1275 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1276 double (64-bit), and extended (80-bit) precision floating point.
1277 Each supported type has an instruction mnemonic suffix and a constructor
1278 associated with it. Instruction mnemonic suffixes specify the operand's
1279 data type. Constructors build these data types into memory.
1280
1281 @cindex @code{float} directive, i386
1282 @cindex @code{single} directive, i386
1283 @cindex @code{double} directive, i386
1284 @cindex @code{tfloat} directive, i386
1285 @cindex @code{float} directive, x86-64
1286 @cindex @code{single} directive, x86-64
1287 @cindex @code{double} directive, x86-64
1288 @cindex @code{tfloat} directive, x86-64
1289 @itemize @bullet
1290 @item
1291 Floating point constructors are @samp{.float} or @samp{.single},
1292 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1293 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1294 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1295 only supports this format via the @samp{fldt} (load 80-bit real to stack
1296 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1297
1298 @cindex @code{word} directive, i386
1299 @cindex @code{long} directive, i386
1300 @cindex @code{int} directive, i386
1301 @cindex @code{quad} directive, i386
1302 @cindex @code{word} directive, x86-64
1303 @cindex @code{long} directive, x86-64
1304 @cindex @code{int} directive, x86-64
1305 @cindex @code{quad} directive, x86-64
1306 @item
1307 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1308 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1309 corresponding instruction mnemonic suffixes are @samp{s} (single),
1310 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1311 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1312 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1313 stack) instructions.
1314 @end itemize
1315
1316 Register to register operations should not use instruction mnemonic suffixes.
1317 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1318 wrote @samp{fst %st, %st(1)}, since all register to register operations
1319 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1320 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1321 then stores the result in the 4 byte location @samp{mem})
1322
1323 @node i386-SIMD
1324 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1325
1326 @cindex MMX, i386
1327 @cindex 3DNow!, i386
1328 @cindex SIMD, i386
1329 @cindex MMX, x86-64
1330 @cindex 3DNow!, x86-64
1331 @cindex SIMD, x86-64
1332
1333 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1334 instructions for integer data), available on Intel's Pentium MMX
1335 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1336 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1337 instruction set (SIMD instructions for 32-bit floating point data)
1338 available on AMD's K6-2 processor and possibly others in the future.
1339
1340 Currently, @code{@value{AS}} does not support Intel's floating point
1341 SIMD, Katmai (KNI).
1342
1343 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1344 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1345 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1346 floating point values. The MMX registers cannot be used at the same time
1347 as the floating point stack.
1348
1349 See Intel and AMD documentation, keeping in mind that the operand order in
1350 instructions is reversed from the Intel syntax.
1351
1352 @node i386-LWP
1353 @section AMD's Lightweight Profiling Instructions
1354
1355 @cindex LWP, i386
1356 @cindex LWP, x86-64
1357
1358 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1359 instruction set, available on AMD's Family 15h (Orochi) processors.
1360
1361 LWP enables applications to collect and manage performance data, and
1362 react to performance events. The collection of performance data
1363 requires no context switches. LWP runs in the context of a thread and
1364 so several counters can be used independently across multiple threads.
1365 LWP can be used in both 64-bit and legacy 32-bit modes.
1366
1367 For detailed information on the LWP instruction set, see the
1368 @cite{AMD Lightweight Profiling Specification} available at
1369 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1370
1371 @node i386-BMI
1372 @section Bit Manipulation Instructions
1373
1374 @cindex BMI, i386
1375 @cindex BMI, x86-64
1376
1377 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1378
1379 BMI instructions provide several instructions implementing individual
1380 bit manipulation operations such as isolation, masking, setting, or
1381 resetting.
1382
1383 @c Need to add a specification citation here when available.
1384
1385 @node i386-TBM
1386 @section AMD's Trailing Bit Manipulation Instructions
1387
1388 @cindex TBM, i386
1389 @cindex TBM, x86-64
1390
1391 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1392 instruction set, available on AMD's BDVER2 processors (Trinity and
1393 Viperfish).
1394
1395 TBM instructions provide instructions implementing individual bit
1396 manipulation operations such as isolating, masking, setting, resetting,
1397 complementing, and operations on trailing zeros and ones.
1398
1399 @c Need to add a specification citation here when available.
1400
1401 @node i386-16bit
1402 @section Writing 16-bit Code
1403
1404 @cindex i386 16-bit code
1405 @cindex 16-bit code, i386
1406 @cindex real-mode code, i386
1407 @cindex @code{code16gcc} directive, i386
1408 @cindex @code{code16} directive, i386
1409 @cindex @code{code32} directive, i386
1410 @cindex @code{code64} directive, i386
1411 @cindex @code{code64} directive, x86-64
1412 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1413 or 64-bit x86-64 code depending on the default configuration,
1414 it also supports writing code to run in real mode or in 16-bit protected
1415 mode code segments. To do this, put a @samp{.code16} or
1416 @samp{.code16gcc} directive before the assembly language instructions to
1417 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1418 32-bit code with the @samp{.code32} directive or 64-bit code with the
1419 @samp{.code64} directive.
1420
1421 @samp{.code16gcc} provides experimental support for generating 16-bit
1422 code from gcc, and differs from @samp{.code16} in that @samp{call},
1423 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1424 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1425 default to 32-bit size. This is so that the stack pointer is
1426 manipulated in the same way over function calls, allowing access to
1427 function parameters at the same stack offsets as in 32-bit mode.
1428 @samp{.code16gcc} also automatically adds address size prefixes where
1429 necessary to use the 32-bit addressing modes that gcc generates.
1430
1431 The code which @code{@value{AS}} generates in 16-bit mode will not
1432 necessarily run on a 16-bit pre-80386 processor. To write code that
1433 runs on such a processor, you must refrain from using @emph{any} 32-bit
1434 constructs which require @code{@value{AS}} to output address or operand
1435 size prefixes.
1436
1437 Note that writing 16-bit code instructions by explicitly specifying a
1438 prefix or an instruction mnemonic suffix within a 32-bit code section
1439 generates different machine instructions than those generated for a
1440 16-bit code segment. In a 32-bit code section, the following code
1441 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1442 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1443
1444 @smallexample
1445 pushw $4
1446 @end smallexample
1447
1448 The same code in a 16-bit code section would generate the machine
1449 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1450 is correct since the processor default operand size is assumed to be 16
1451 bits in a 16-bit code section.
1452
1453 @node i386-Arch
1454 @section Specifying CPU Architecture
1455
1456 @cindex arch directive, i386
1457 @cindex i386 arch directive
1458 @cindex arch directive, x86-64
1459 @cindex x86-64 arch directive
1460
1461 @code{@value{AS}} may be told to assemble for a particular CPU
1462 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1463 directive enables a warning when gas detects an instruction that is not
1464 supported on the CPU specified. The choices for @var{cpu_type} are:
1465
1466 @multitable @columnfractions .20 .20 .20 .20
1467 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1468 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1469 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1470 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1471 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1472 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1473 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1474 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1475 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1476 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1477 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1478 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1479 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1480 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1481 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1482 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1483 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1484 @item @samp{.hle}
1485 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1486 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1487 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1488 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1489 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1490 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1491 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1492 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1493 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1494 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1495 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1496 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1497 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1498 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1499 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1500 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1501 @item @samp{.mcommit} @tab @samp{.sev_es}
1502 @end multitable
1503
1504 Apart from the warning, there are only two other effects on
1505 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1506 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1507 will automatically use a two byte opcode sequence. The larger three
1508 byte opcode sequence is used on the 486 (and when no architecture is
1509 specified) because it executes faster on the 486. Note that you can
1510 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1511 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1512 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1513 conditional jumps will be promoted when necessary to a two instruction
1514 sequence consisting of a conditional jump of the opposite sense around
1515 an unconditional jump to the target.
1516
1517 Following the CPU architecture (but not a sub-architecture, which are those
1518 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1519 control automatic promotion of conditional jumps. @samp{jumps} is the
1520 default, and enables jump promotion; All external jumps will be of the long
1521 variety, and file-local jumps will be promoted as necessary.
1522 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1523 byte offset jumps, and warns about file-local conditional jumps that
1524 @code{@value{AS}} promotes.
1525 Unconditional jumps are treated as for @samp{jumps}.
1526
1527 For example
1528
1529 @smallexample
1530 .arch i8086,nojumps
1531 @end smallexample
1532
1533 @node i386-ISA
1534 @section AMD64 ISA vs. Intel64 ISA
1535
1536 There are some discrepancies between AMD64 and Intel64 ISAs.
1537
1538 @itemize @bullet
1539 @item For @samp{movsxd} with 16-bit destination register, AMD64
1540 supports 32-bit source operand and Intel64 supports 16-bit source
1541 operand.
1542
1543 @item For far branches (with explicit memory operand), both ISAs support
1544 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1545 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1546 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1547 syntax.
1548
1549 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1550 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1551 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1552 operands).
1553
1554 @end itemize
1555
1556 @node i386-Bugs
1557 @section AT&T Syntax bugs
1558
1559 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1560 assemblers, generate floating point instructions with reversed source
1561 and destination registers in certain cases. Unfortunately, gcc and
1562 possibly many other programs use this reversed syntax, so we're stuck
1563 with it.
1564
1565 For example
1566
1567 @smallexample
1568 fsub %st,%st(3)
1569 @end smallexample
1570 @noindent
1571 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1572 than the expected @samp{%st(3) - %st}. This happens with all the
1573 non-commutative arithmetic floating point operations with two register
1574 operands where the source register is @samp{%st} and the destination
1575 register is @samp{%st(i)}.
1576
1577 @node i386-Notes
1578 @section Notes
1579
1580 @cindex i386 @code{mul}, @code{imul} instructions
1581 @cindex @code{mul} instruction, i386
1582 @cindex @code{imul} instruction, i386
1583 @cindex @code{mul} instruction, x86-64
1584 @cindex @code{imul} instruction, x86-64
1585 There is some trickery concerning the @samp{mul} and @samp{imul}
1586 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1587 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1588 for @samp{imul}) can be output only in the one operand form. Thus,
1589 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1590 the expanding multiply would clobber the @samp{%edx} register, and this
1591 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1592 64-bit product in @samp{%edx:%eax}.
1593
1594 We have added a two operand form of @samp{imul} when the first operand
1595 is an immediate mode expression and the second operand is a register.
1596 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1597 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1598 $69, %eax, %eax}.
1599
This page took 0.084949 seconds and 4 git commands to generate.