Enable Intel VPCLMULQDQ instruction.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2017 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{687},
138 @code{no87},
139 @code{no287},
140 @code{no387},
141 @code{no687},
142 @code{mmx},
143 @code{nommx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{ssse3},
148 @code{sse4.1},
149 @code{sse4.2},
150 @code{sse4},
151 @code{nosse},
152 @code{nosse2},
153 @code{nosse3},
154 @code{nossse3},
155 @code{nosse4.1},
156 @code{nosse4.2},
157 @code{nosse4},
158 @code{avx},
159 @code{avx2},
160 @code{noavx},
161 @code{noavx2},
162 @code{adx},
163 @code{rdseed},
164 @code{prfchw},
165 @code{smap},
166 @code{mpx},
167 @code{sha},
168 @code{rdpid},
169 @code{ptwrite},
170 @code{cet},
171 @code{gfni},
172 @code{vaes},
173 @code{vpclmulqdq},
174 @code{prefetchwt1},
175 @code{clflushopt},
176 @code{se1},
177 @code{clwb},
178 @code{avx512f},
179 @code{avx512cd},
180 @code{avx512er},
181 @code{avx512pf},
182 @code{avx512vl},
183 @code{avx512bw},
184 @code{avx512dq},
185 @code{avx512ifma},
186 @code{avx512vbmi},
187 @code{avx512_4fmaps},
188 @code{avx512_4vnniw},
189 @code{avx512_vpopcntdq},
190 @code{avx512_vbmi2},
191 @code{noavx512f},
192 @code{noavx512cd},
193 @code{noavx512er},
194 @code{noavx512pf},
195 @code{noavx512vl},
196 @code{noavx512bw},
197 @code{noavx512dq},
198 @code{noavx512ifma},
199 @code{noavx512vbmi},
200 @code{noavx512_4fmaps},
201 @code{noavx512_4vnniw},
202 @code{noavx512_vpopcntdq},
203 @code{noavx512_vbmi2},
204 @code{vmx},
205 @code{vmfunc},
206 @code{smx},
207 @code{xsave},
208 @code{xsaveopt},
209 @code{xsavec},
210 @code{xsaves},
211 @code{aes},
212 @code{pclmul},
213 @code{fsgsbase},
214 @code{rdrnd},
215 @code{f16c},
216 @code{bmi2},
217 @code{fma},
218 @code{movbe},
219 @code{ept},
220 @code{lzcnt},
221 @code{hle},
222 @code{rtm},
223 @code{invpcid},
224 @code{clflush},
225 @code{mwaitx},
226 @code{clzero},
227 @code{lwp},
228 @code{fma4},
229 @code{xop},
230 @code{cx16},
231 @code{syscall},
232 @code{rdtscp},
233 @code{3dnow},
234 @code{3dnowa},
235 @code{sse4a},
236 @code{sse5},
237 @code{svme},
238 @code{abm} and
239 @code{padlock}.
240 Note that rather than extending a basic instruction set, the extension
241 mnemonics starting with @code{no} revoke the respective functionality.
242
243 When the @code{.arch} directive is used with @option{-march}, the
244 @code{.arch} directive will take precedent.
245
246 @cindex @samp{-mtune=} option, i386
247 @cindex @samp{-mtune=} option, x86-64
248 @item -mtune=@var{CPU}
249 This option specifies a processor to optimize for. When used in
250 conjunction with the @option{-march} option, only instructions
251 of the processor specified by the @option{-march} option will be
252 generated.
253
254 Valid @var{CPU} values are identical to the processor list of
255 @option{-march=@var{CPU}}.
256
257 @cindex @samp{-msse2avx} option, i386
258 @cindex @samp{-msse2avx} option, x86-64
259 @item -msse2avx
260 This option specifies that the assembler should encode SSE instructions
261 with VEX prefix.
262
263 @cindex @samp{-msse-check=} option, i386
264 @cindex @samp{-msse-check=} option, x86-64
265 @item -msse-check=@var{none}
266 @itemx -msse-check=@var{warning}
267 @itemx -msse-check=@var{error}
268 These options control if the assembler should check SSE instructions.
269 @option{-msse-check=@var{none}} will make the assembler not to check SSE
270 instructions, which is the default. @option{-msse-check=@var{warning}}
271 will make the assembler issue a warning for any SSE instruction.
272 @option{-msse-check=@var{error}} will make the assembler issue an error
273 for any SSE instruction.
274
275 @cindex @samp{-mavxscalar=} option, i386
276 @cindex @samp{-mavxscalar=} option, x86-64
277 @item -mavxscalar=@var{128}
278 @itemx -mavxscalar=@var{256}
279 These options control how the assembler should encode scalar AVX
280 instructions. @option{-mavxscalar=@var{128}} will encode scalar
281 AVX instructions with 128bit vector length, which is the default.
282 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
283 with 256bit vector length.
284
285 @cindex @samp{-mevexlig=} option, i386
286 @cindex @samp{-mevexlig=} option, x86-64
287 @item -mevexlig=@var{128}
288 @itemx -mevexlig=@var{256}
289 @itemx -mevexlig=@var{512}
290 These options control how the assembler should encode length-ignored
291 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
292 EVEX instructions with 128bit vector length, which is the default.
293 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
294 encode LIG EVEX instructions with 256bit and 512bit vector length,
295 respectively.
296
297 @cindex @samp{-mevexwig=} option, i386
298 @cindex @samp{-mevexwig=} option, x86-64
299 @item -mevexwig=@var{0}
300 @itemx -mevexwig=@var{1}
301 These options control how the assembler should encode w-ignored (WIG)
302 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
303 EVEX instructions with evex.w = 0, which is the default.
304 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
305 evex.w = 1.
306
307 @cindex @samp{-mmnemonic=} option, i386
308 @cindex @samp{-mmnemonic=} option, x86-64
309 @item -mmnemonic=@var{att}
310 @itemx -mmnemonic=@var{intel}
311 This option specifies instruction mnemonic for matching instructions.
312 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
313 take precedent.
314
315 @cindex @samp{-msyntax=} option, i386
316 @cindex @samp{-msyntax=} option, x86-64
317 @item -msyntax=@var{att}
318 @itemx -msyntax=@var{intel}
319 This option specifies instruction syntax when processing instructions.
320 The @code{.att_syntax} and @code{.intel_syntax} directives will
321 take precedent.
322
323 @cindex @samp{-mnaked-reg} option, i386
324 @cindex @samp{-mnaked-reg} option, x86-64
325 @item -mnaked-reg
326 This option specifies that registers don't require a @samp{%} prefix.
327 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
328
329 @cindex @samp{-madd-bnd-prefix} option, i386
330 @cindex @samp{-madd-bnd-prefix} option, x86-64
331 @item -madd-bnd-prefix
332 This option forces the assembler to add BND prefix to all branches, even
333 if such prefix was not explicitly specified in the source code.
334
335 @cindex @samp{-mshared} option, i386
336 @cindex @samp{-mshared} option, x86-64
337 @item -mno-shared
338 On ELF target, the assembler normally optimizes out non-PLT relocations
339 against defined non-weak global branch targets with default visibility.
340 The @samp{-mshared} option tells the assembler to generate code which
341 may go into a shared library where all non-weak global branch targets
342 with default visibility can be preempted. The resulting code is
343 slightly bigger. This option only affects the handling of branch
344 instructions.
345
346 @cindex @samp{-mbig-obj} option, x86-64
347 @item -mbig-obj
348 On x86-64 PE/COFF target this option forces the use of big object file
349 format, which allows more than 32768 sections.
350
351 @cindex @samp{-momit-lock-prefix=} option, i386
352 @cindex @samp{-momit-lock-prefix=} option, x86-64
353 @item -momit-lock-prefix=@var{no}
354 @itemx -momit-lock-prefix=@var{yes}
355 These options control how the assembler should encode lock prefix.
356 This option is intended as a workaround for processors, that fail on
357 lock prefix. This option can only be safely used with single-core,
358 single-thread computers
359 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
360 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
361 which is the default.
362
363 @cindex @samp{-mfence-as-lock-add=} option, i386
364 @cindex @samp{-mfence-as-lock-add=} option, x86-64
365 @item -mfence-as-lock-add=@var{no}
366 @itemx -mfence-as-lock-add=@var{yes}
367 These options control how the assembler should encode lfence, mfence and
368 sfence.
369 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
370 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
371 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
372 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
373 sfence as usual, which is the default.
374
375 @cindex @samp{-mrelax-relocations=} option, i386
376 @cindex @samp{-mrelax-relocations=} option, x86-64
377 @item -mrelax-relocations=@var{no}
378 @itemx -mrelax-relocations=@var{yes}
379 These options control whether the assembler should generate relax
380 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
381 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
382 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
383 @option{-mrelax-relocations=@var{no}} will not generate relax
384 relocations. The default can be controlled by a configure option
385 @option{--enable-x86-relax-relocations}.
386
387 @cindex @samp{-mevexrcig=} option, i386
388 @cindex @samp{-mevexrcig=} option, x86-64
389 @item -mevexrcig=@var{rne}
390 @itemx -mevexrcig=@var{rd}
391 @itemx -mevexrcig=@var{ru}
392 @itemx -mevexrcig=@var{rz}
393 These options control how the assembler should encode SAE-only
394 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
395 of EVEX instruction with 00, which is the default.
396 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
397 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
398 with 01, 10 and 11 RC bits, respectively.
399
400 @cindex @samp{-mamd64} option, x86-64
401 @cindex @samp{-mintel64} option, x86-64
402 @item -mamd64
403 @itemx -mintel64
404 This option specifies that the assembler should accept only AMD64 or
405 Intel64 ISA in 64-bit mode. The default is to accept both.
406
407 @end table
408 @c man end
409
410 @node i386-Directives
411 @section x86 specific Directives
412
413 @cindex machine directives, x86
414 @cindex x86 machine directives
415 @table @code
416
417 @cindex @code{lcomm} directive, COFF
418 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
419 Reserve @var{length} (an absolute expression) bytes for a local common
420 denoted by @var{symbol}. The section and value of @var{symbol} are
421 those of the new local common. The addresses are allocated in the bss
422 section, so that at run-time the bytes start off zeroed. Since
423 @var{symbol} is not declared global, it is normally not visible to
424 @code{@value{LD}}. The optional third parameter, @var{alignment},
425 specifies the desired alignment of the symbol in the bss section.
426
427 This directive is only available for COFF based x86 targets.
428
429 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
430 @c .largecomm
431
432 @end table
433
434 @node i386-Syntax
435 @section i386 Syntactical Considerations
436 @menu
437 * i386-Variations:: AT&T Syntax versus Intel Syntax
438 * i386-Chars:: Special Characters
439 @end menu
440
441 @node i386-Variations
442 @subsection AT&T Syntax versus Intel Syntax
443
444 @cindex i386 intel_syntax pseudo op
445 @cindex intel_syntax pseudo op, i386
446 @cindex i386 att_syntax pseudo op
447 @cindex att_syntax pseudo op, i386
448 @cindex i386 syntax compatibility
449 @cindex syntax compatibility, i386
450 @cindex x86-64 intel_syntax pseudo op
451 @cindex intel_syntax pseudo op, x86-64
452 @cindex x86-64 att_syntax pseudo op
453 @cindex att_syntax pseudo op, x86-64
454 @cindex x86-64 syntax compatibility
455 @cindex syntax compatibility, x86-64
456
457 @code{@value{AS}} now supports assembly using Intel assembler syntax.
458 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
459 back to the usual AT&T mode for compatibility with the output of
460 @code{@value{GCC}}. Either of these directives may have an optional
461 argument, @code{prefix}, or @code{noprefix} specifying whether registers
462 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
463 different from Intel syntax. We mention these differences because
464 almost all 80386 documents use Intel syntax. Notable differences
465 between the two syntaxes are:
466
467 @cindex immediate operands, i386
468 @cindex i386 immediate operands
469 @cindex register operands, i386
470 @cindex i386 register operands
471 @cindex jump/call operands, i386
472 @cindex i386 jump/call operands
473 @cindex operand delimiters, i386
474
475 @cindex immediate operands, x86-64
476 @cindex x86-64 immediate operands
477 @cindex register operands, x86-64
478 @cindex x86-64 register operands
479 @cindex jump/call operands, x86-64
480 @cindex x86-64 jump/call operands
481 @cindex operand delimiters, x86-64
482 @itemize @bullet
483 @item
484 AT&T immediate operands are preceded by @samp{$}; Intel immediate
485 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
486 AT&T register operands are preceded by @samp{%}; Intel register operands
487 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
488 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
489
490 @cindex i386 source, destination operands
491 @cindex source, destination operands; i386
492 @cindex x86-64 source, destination operands
493 @cindex source, destination operands; x86-64
494 @item
495 AT&T and Intel syntax use the opposite order for source and destination
496 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
497 @samp{source, dest} convention is maintained for compatibility with
498 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
499 instructions with 2 immediate operands, such as the @samp{enter}
500 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
501
502 @cindex mnemonic suffixes, i386
503 @cindex sizes operands, i386
504 @cindex i386 size suffixes
505 @cindex mnemonic suffixes, x86-64
506 @cindex sizes operands, x86-64
507 @cindex x86-64 size suffixes
508 @item
509 In AT&T syntax the size of memory operands is determined from the last
510 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
511 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
512 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
513 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
514 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
515 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
516 syntax.
517
518 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
519 instruction with the 64-bit displacement or immediate operand.
520
521 @cindex return instructions, i386
522 @cindex i386 jump, call, return
523 @cindex return instructions, x86-64
524 @cindex x86-64 jump, call, return
525 @item
526 Immediate form long jumps and calls are
527 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
528 Intel syntax is
529 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
530 instruction
531 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
532 @samp{ret far @var{stack-adjust}}.
533
534 @cindex sections, i386
535 @cindex i386 sections
536 @cindex sections, x86-64
537 @cindex x86-64 sections
538 @item
539 The AT&T assembler does not provide support for multiple section
540 programs. Unix style systems expect all programs to be single sections.
541 @end itemize
542
543 @node i386-Chars
544 @subsection Special Characters
545
546 @cindex line comment character, i386
547 @cindex i386 line comment character
548 The presence of a @samp{#} appearing anywhere on a line indicates the
549 start of a comment that extends to the end of that line.
550
551 If a @samp{#} appears as the first character of a line then the whole
552 line is treated as a comment, but in this case the line can also be a
553 logical line number directive (@pxref{Comments}) or a preprocessor
554 control command (@pxref{Preprocessing}).
555
556 If the @option{--divide} command line option has not been specified
557 then the @samp{/} character appearing anywhere on a line also
558 introduces a line comment.
559
560 @cindex line separator, i386
561 @cindex statement separator, i386
562 @cindex i386 line separator
563 The @samp{;} character can be used to separate statements on the same
564 line.
565
566 @node i386-Mnemonics
567 @section i386-Mnemonics
568 @subsection Instruction Naming
569
570 @cindex i386 instruction naming
571 @cindex instruction naming, i386
572 @cindex x86-64 instruction naming
573 @cindex instruction naming, x86-64
574
575 Instruction mnemonics are suffixed with one character modifiers which
576 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
577 and @samp{q} specify byte, word, long and quadruple word operands. If
578 no suffix is specified by an instruction then @code{@value{AS}} tries to
579 fill in the missing suffix based on the destination register operand
580 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
581 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
582 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
583 assembler which assumes that a missing mnemonic suffix implies long
584 operand size. (This incompatibility does not affect compiler output
585 since compilers always explicitly specify the mnemonic suffix.)
586
587 Almost all instructions have the same names in AT&T and Intel format.
588 There are a few exceptions. The sign extend and zero extend
589 instructions need two sizes to specify them. They need a size to
590 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
591 is accomplished by using two instruction mnemonic suffixes in AT&T
592 syntax. Base names for sign extend and zero extend are
593 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
594 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
595 are tacked on to this base name, the @emph{from} suffix before the
596 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
597 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
598 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
599 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
600 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
601 quadruple word).
602
603 @cindex encoding options, i386
604 @cindex encoding options, x86-64
605
606 Different encoding options can be specified via pseudo prefixes:
607
608 @itemize @bullet
609 @item
610 @samp{@{disp8@}} -- prefer 8-bit displacement.
611
612 @item
613 @samp{@{disp32@}} -- prefer 32-bit displacement.
614
615 @item
616 @samp{@{load@}} -- prefer load-form instruction.
617
618 @item
619 @samp{@{store@}} -- prefer store-form instruction.
620
621 @item
622 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
623
624 @item
625 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
626
627 @item
628 @samp{@{evex@}} -- encode with EVEX prefix.
629 @end itemize
630
631 @cindex conversion instructions, i386
632 @cindex i386 conversion instructions
633 @cindex conversion instructions, x86-64
634 @cindex x86-64 conversion instructions
635 The Intel-syntax conversion instructions
636
637 @itemize @bullet
638 @item
639 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
640
641 @item
642 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
643
644 @item
645 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
646
647 @item
648 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
649
650 @item
651 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
652 (x86-64 only),
653
654 @item
655 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
656 @samp{%rdx:%rax} (x86-64 only),
657 @end itemize
658
659 @noindent
660 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
661 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
662 instructions.
663
664 @cindex jump instructions, i386
665 @cindex call instructions, i386
666 @cindex jump instructions, x86-64
667 @cindex call instructions, x86-64
668 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
669 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
670 convention.
671
672 @subsection AT&T Mnemonic versus Intel Mnemonic
673
674 @cindex i386 mnemonic compatibility
675 @cindex mnemonic compatibility, i386
676
677 @code{@value{AS}} supports assembly using Intel mnemonic.
678 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
679 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
680 syntax for compatibility with the output of @code{@value{GCC}}.
681 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
682 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
683 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
684 assembler with different mnemonics from those in Intel IA32 specification.
685 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
686
687 @node i386-Regs
688 @section Register Naming
689
690 @cindex i386 registers
691 @cindex registers, i386
692 @cindex x86-64 registers
693 @cindex registers, x86-64
694 Register operands are always prefixed with @samp{%}. The 80386 registers
695 consist of
696
697 @itemize @bullet
698 @item
699 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
700 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
701 frame pointer), and @samp{%esp} (the stack pointer).
702
703 @item
704 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
705 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
706
707 @item
708 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
709 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
710 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
711 @samp{%cx}, and @samp{%dx})
712
713 @item
714 the 6 section registers @samp{%cs} (code section), @samp{%ds}
715 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
716 and @samp{%gs}.
717
718 @item
719 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
720 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
721
722 @item
723 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
724 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
725
726 @item
727 the 2 test registers @samp{%tr6} and @samp{%tr7}.
728
729 @item
730 the 8 floating point register stack @samp{%st} or equivalently
731 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
732 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
733 These registers are overloaded by 8 MMX registers @samp{%mm0},
734 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
735 @samp{%mm6} and @samp{%mm7}.
736
737 @item
738 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
739 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
740 @end itemize
741
742 The AMD x86-64 architecture extends the register set by:
743
744 @itemize @bullet
745 @item
746 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
747 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
748 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
749 pointer)
750
751 @item
752 the 8 extended registers @samp{%r8}--@samp{%r15}.
753
754 @item
755 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
756
757 @item
758 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
759
760 @item
761 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
762
763 @item
764 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
765
766 @item
767 the 8 debug registers: @samp{%db8}--@samp{%db15}.
768
769 @item
770 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
771 @end itemize
772
773 With the AVX extensions more registers were made available:
774
775 @itemize @bullet
776
777 @item
778 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
779 available in 32-bit mode). The bottom 128 bits are overlaid with the
780 @samp{xmm0}--@samp{xmm15} registers.
781
782 @end itemize
783
784 The AVX2 extensions made in 64-bit mode more registers available:
785
786 @itemize @bullet
787
788 @item
789 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
790 registers @samp{%ymm16}--@samp{%ymm31}.
791
792 @end itemize
793
794 The AVX512 extensions added the following registers:
795
796 @itemize @bullet
797
798 @item
799 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
800 available in 32-bit mode). The bottom 128 bits are overlaid with the
801 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
802 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
803
804 @item
805 the 8 mask registers @samp{%k0}--@samp{%k7}.
806
807 @end itemize
808
809 @node i386-Prefixes
810 @section Instruction Prefixes
811
812 @cindex i386 instruction prefixes
813 @cindex instruction prefixes, i386
814 @cindex prefixes, i386
815 Instruction prefixes are used to modify the following instruction. They
816 are used to repeat string instructions, to provide section overrides, to
817 perform bus lock operations, and to change operand and address sizes.
818 (Most instructions that normally operate on 32-bit operands will use
819 16-bit operands if the instruction has an ``operand size'' prefix.)
820 Instruction prefixes are best written on the same line as the instruction
821 they act upon. For example, the @samp{scas} (scan string) instruction is
822 repeated with:
823
824 @smallexample
825 repne scas %es:(%edi),%al
826 @end smallexample
827
828 You may also place prefixes on the lines immediately preceding the
829 instruction, but this circumvents checks that @code{@value{AS}} does
830 with prefixes, and will not work with all prefixes.
831
832 Here is a list of instruction prefixes:
833
834 @cindex section override prefixes, i386
835 @itemize @bullet
836 @item
837 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
838 @samp{fs}, @samp{gs}. These are automatically added by specifying
839 using the @var{section}:@var{memory-operand} form for memory references.
840
841 @cindex size prefixes, i386
842 @item
843 Operand/Address size prefixes @samp{data16} and @samp{addr16}
844 change 32-bit operands/addresses into 16-bit operands/addresses,
845 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
846 @code{.code16} section) into 32-bit operands/addresses. These prefixes
847 @emph{must} appear on the same line of code as the instruction they
848 modify. For example, in a 16-bit @code{.code16} section, you might
849 write:
850
851 @smallexample
852 addr32 jmpl *(%ebx)
853 @end smallexample
854
855 @cindex bus lock prefixes, i386
856 @cindex inhibiting interrupts, i386
857 @item
858 The bus lock prefix @samp{lock} inhibits interrupts during execution of
859 the instruction it precedes. (This is only valid with certain
860 instructions; see a 80386 manual for details).
861
862 @cindex coprocessor wait, i386
863 @item
864 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
865 complete the current instruction. This should never be needed for the
866 80386/80387 combination.
867
868 @cindex repeat prefixes, i386
869 @item
870 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
871 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
872 times if the current address size is 16-bits).
873 @cindex REX prefixes, i386
874 @item
875 The @samp{rex} family of prefixes is used by x86-64 to encode
876 extensions to i386 instruction set. The @samp{rex} prefix has four
877 bits --- an operand size overwrite (@code{64}) used to change operand size
878 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
879 register set.
880
881 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
882 instruction emits @samp{rex} prefix with all the bits set. By omitting
883 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
884 prefixes as well. Normally, there is no need to write the prefixes
885 explicitly, since gas will automatically generate them based on the
886 instruction operands.
887 @end itemize
888
889 @node i386-Memory
890 @section Memory References
891
892 @cindex i386 memory references
893 @cindex memory references, i386
894 @cindex x86-64 memory references
895 @cindex memory references, x86-64
896 An Intel syntax indirect memory reference of the form
897
898 @smallexample
899 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
900 @end smallexample
901
902 @noindent
903 is translated into the AT&T syntax
904
905 @smallexample
906 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
907 @end smallexample
908
909 @noindent
910 where @var{base} and @var{index} are the optional 32-bit base and
911 index registers, @var{disp} is the optional displacement, and
912 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
913 to calculate the address of the operand. If no @var{scale} is
914 specified, @var{scale} is taken to be 1. @var{section} specifies the
915 optional section register for the memory operand, and may override the
916 default section register (see a 80386 manual for section register
917 defaults). Note that section overrides in AT&T syntax @emph{must}
918 be preceded by a @samp{%}. If you specify a section override which
919 coincides with the default section register, @code{@value{AS}} does @emph{not}
920 output any section register override prefixes to assemble the given
921 instruction. Thus, section overrides can be specified to emphasize which
922 section register is used for a given memory operand.
923
924 Here are some examples of Intel and AT&T style memory references:
925
926 @table @asis
927 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
928 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
929 missing, and the default section is used (@samp{%ss} for addressing with
930 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
931
932 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
933 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
934 @samp{foo}. All other fields are missing. The section register here
935 defaults to @samp{%ds}.
936
937 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
938 This uses the value pointed to by @samp{foo} as a memory operand.
939 Note that @var{base} and @var{index} are both missing, but there is only
940 @emph{one} @samp{,}. This is a syntactic exception.
941
942 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
943 This selects the contents of the variable @samp{foo} with section
944 register @var{section} being @samp{%gs}.
945 @end table
946
947 Absolute (as opposed to PC relative) call and jump operands must be
948 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
949 always chooses PC relative addressing for jump/call labels.
950
951 Any instruction that has a memory operand, but no register operand,
952 @emph{must} specify its size (byte, word, long, or quadruple) with an
953 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
954 respectively).
955
956 The x86-64 architecture adds an RIP (instruction pointer relative)
957 addressing. This addressing mode is specified by using @samp{rip} as a
958 base register. Only constant offsets are valid. For example:
959
960 @table @asis
961 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
962 Points to the address 1234 bytes past the end of the current
963 instruction.
964
965 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
966 Points to the @code{symbol} in RIP relative way, this is shorter than
967 the default absolute addressing.
968 @end table
969
970 Other addressing modes remain unchanged in x86-64 architecture, except
971 registers used are 64-bit instead of 32-bit.
972
973 @node i386-Jumps
974 @section Handling of Jump Instructions
975
976 @cindex jump optimization, i386
977 @cindex i386 jump optimization
978 @cindex jump optimization, x86-64
979 @cindex x86-64 jump optimization
980 Jump instructions are always optimized to use the smallest possible
981 displacements. This is accomplished by using byte (8-bit) displacement
982 jumps whenever the target is sufficiently close. If a byte displacement
983 is insufficient a long displacement is used. We do not support
984 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
985 instruction with the @samp{data16} instruction prefix), since the 80386
986 insists upon masking @samp{%eip} to 16 bits after the word displacement
987 is added. (See also @pxref{i386-Arch})
988
989 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
990 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
991 displacements, so that if you use these instructions (@code{@value{GCC}} does
992 not use them) you may get an error message (and incorrect code). The AT&T
993 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
994 to
995
996 @smallexample
997 jcxz cx_zero
998 jmp cx_nonzero
999 cx_zero: jmp foo
1000 cx_nonzero:
1001 @end smallexample
1002
1003 @node i386-Float
1004 @section Floating Point
1005
1006 @cindex i386 floating point
1007 @cindex floating point, i386
1008 @cindex x86-64 floating point
1009 @cindex floating point, x86-64
1010 All 80387 floating point types except packed BCD are supported.
1011 (BCD support may be added without much difficulty). These data
1012 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1013 double (64-bit), and extended (80-bit) precision floating point.
1014 Each supported type has an instruction mnemonic suffix and a constructor
1015 associated with it. Instruction mnemonic suffixes specify the operand's
1016 data type. Constructors build these data types into memory.
1017
1018 @cindex @code{float} directive, i386
1019 @cindex @code{single} directive, i386
1020 @cindex @code{double} directive, i386
1021 @cindex @code{tfloat} directive, i386
1022 @cindex @code{float} directive, x86-64
1023 @cindex @code{single} directive, x86-64
1024 @cindex @code{double} directive, x86-64
1025 @cindex @code{tfloat} directive, x86-64
1026 @itemize @bullet
1027 @item
1028 Floating point constructors are @samp{.float} or @samp{.single},
1029 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1030 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1031 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1032 only supports this format via the @samp{fldt} (load 80-bit real to stack
1033 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1034
1035 @cindex @code{word} directive, i386
1036 @cindex @code{long} directive, i386
1037 @cindex @code{int} directive, i386
1038 @cindex @code{quad} directive, i386
1039 @cindex @code{word} directive, x86-64
1040 @cindex @code{long} directive, x86-64
1041 @cindex @code{int} directive, x86-64
1042 @cindex @code{quad} directive, x86-64
1043 @item
1044 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1045 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1046 corresponding instruction mnemonic suffixes are @samp{s} (single),
1047 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1048 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1049 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1050 stack) instructions.
1051 @end itemize
1052
1053 Register to register operations should not use instruction mnemonic suffixes.
1054 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1055 wrote @samp{fst %st, %st(1)}, since all register to register operations
1056 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1057 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1058 then stores the result in the 4 byte location @samp{mem})
1059
1060 @node i386-SIMD
1061 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1062
1063 @cindex MMX, i386
1064 @cindex 3DNow!, i386
1065 @cindex SIMD, i386
1066 @cindex MMX, x86-64
1067 @cindex 3DNow!, x86-64
1068 @cindex SIMD, x86-64
1069
1070 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1071 instructions for integer data), available on Intel's Pentium MMX
1072 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1073 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1074 instruction set (SIMD instructions for 32-bit floating point data)
1075 available on AMD's K6-2 processor and possibly others in the future.
1076
1077 Currently, @code{@value{AS}} does not support Intel's floating point
1078 SIMD, Katmai (KNI).
1079
1080 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1081 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1082 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1083 floating point values. The MMX registers cannot be used at the same time
1084 as the floating point stack.
1085
1086 See Intel and AMD documentation, keeping in mind that the operand order in
1087 instructions is reversed from the Intel syntax.
1088
1089 @node i386-LWP
1090 @section AMD's Lightweight Profiling Instructions
1091
1092 @cindex LWP, i386
1093 @cindex LWP, x86-64
1094
1095 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1096 instruction set, available on AMD's Family 15h (Orochi) processors.
1097
1098 LWP enables applications to collect and manage performance data, and
1099 react to performance events. The collection of performance data
1100 requires no context switches. LWP runs in the context of a thread and
1101 so several counters can be used independently across multiple threads.
1102 LWP can be used in both 64-bit and legacy 32-bit modes.
1103
1104 For detailed information on the LWP instruction set, see the
1105 @cite{AMD Lightweight Profiling Specification} available at
1106 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1107
1108 @node i386-BMI
1109 @section Bit Manipulation Instructions
1110
1111 @cindex BMI, i386
1112 @cindex BMI, x86-64
1113
1114 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1115
1116 BMI instructions provide several instructions implementing individual
1117 bit manipulation operations such as isolation, masking, setting, or
1118 resetting.
1119
1120 @c Need to add a specification citation here when available.
1121
1122 @node i386-TBM
1123 @section AMD's Trailing Bit Manipulation Instructions
1124
1125 @cindex TBM, i386
1126 @cindex TBM, x86-64
1127
1128 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1129 instruction set, available on AMD's BDVER2 processors (Trinity and
1130 Viperfish).
1131
1132 TBM instructions provide instructions implementing individual bit
1133 manipulation operations such as isolating, masking, setting, resetting,
1134 complementing, and operations on trailing zeros and ones.
1135
1136 @c Need to add a specification citation here when available.
1137
1138 @node i386-16bit
1139 @section Writing 16-bit Code
1140
1141 @cindex i386 16-bit code
1142 @cindex 16-bit code, i386
1143 @cindex real-mode code, i386
1144 @cindex @code{code16gcc} directive, i386
1145 @cindex @code{code16} directive, i386
1146 @cindex @code{code32} directive, i386
1147 @cindex @code{code64} directive, i386
1148 @cindex @code{code64} directive, x86-64
1149 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1150 or 64-bit x86-64 code depending on the default configuration,
1151 it also supports writing code to run in real mode or in 16-bit protected
1152 mode code segments. To do this, put a @samp{.code16} or
1153 @samp{.code16gcc} directive before the assembly language instructions to
1154 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1155 32-bit code with the @samp{.code32} directive or 64-bit code with the
1156 @samp{.code64} directive.
1157
1158 @samp{.code16gcc} provides experimental support for generating 16-bit
1159 code from gcc, and differs from @samp{.code16} in that @samp{call},
1160 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1161 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1162 default to 32-bit size. This is so that the stack pointer is
1163 manipulated in the same way over function calls, allowing access to
1164 function parameters at the same stack offsets as in 32-bit mode.
1165 @samp{.code16gcc} also automatically adds address size prefixes where
1166 necessary to use the 32-bit addressing modes that gcc generates.
1167
1168 The code which @code{@value{AS}} generates in 16-bit mode will not
1169 necessarily run on a 16-bit pre-80386 processor. To write code that
1170 runs on such a processor, you must refrain from using @emph{any} 32-bit
1171 constructs which require @code{@value{AS}} to output address or operand
1172 size prefixes.
1173
1174 Note that writing 16-bit code instructions by explicitly specifying a
1175 prefix or an instruction mnemonic suffix within a 32-bit code section
1176 generates different machine instructions than those generated for a
1177 16-bit code segment. In a 32-bit code section, the following code
1178 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1179 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1180
1181 @smallexample
1182 pushw $4
1183 @end smallexample
1184
1185 The same code in a 16-bit code section would generate the machine
1186 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1187 is correct since the processor default operand size is assumed to be 16
1188 bits in a 16-bit code section.
1189
1190 @node i386-Arch
1191 @section Specifying CPU Architecture
1192
1193 @cindex arch directive, i386
1194 @cindex i386 arch directive
1195 @cindex arch directive, x86-64
1196 @cindex x86-64 arch directive
1197
1198 @code{@value{AS}} may be told to assemble for a particular CPU
1199 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1200 directive enables a warning when gas detects an instruction that is not
1201 supported on the CPU specified. The choices for @var{cpu_type} are:
1202
1203 @multitable @columnfractions .20 .20 .20 .20
1204 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1205 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1206 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1207 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1208 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1209 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1210 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1211 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1212 @item @samp{generic32} @tab @samp{generic64}
1213 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1214 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1215 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1216 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1217 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1218 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1219 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1220 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1221 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1222 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1223 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1224 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1225 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1226 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2}
1227 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1228 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1229 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1230 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1231 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.gfni}
1232 @item @samp{.vaes} @tab @samp{.vpclmulqdq}
1233 @end multitable
1234
1235 Apart from the warning, there are only two other effects on
1236 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1237 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1238 will automatically use a two byte opcode sequence. The larger three
1239 byte opcode sequence is used on the 486 (and when no architecture is
1240 specified) because it executes faster on the 486. Note that you can
1241 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1242 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1243 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1244 conditional jumps will be promoted when necessary to a two instruction
1245 sequence consisting of a conditional jump of the opposite sense around
1246 an unconditional jump to the target.
1247
1248 Following the CPU architecture (but not a sub-architecture, which are those
1249 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1250 control automatic promotion of conditional jumps. @samp{jumps} is the
1251 default, and enables jump promotion; All external jumps will be of the long
1252 variety, and file-local jumps will be promoted as necessary.
1253 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1254 byte offset jumps, and warns about file-local conditional jumps that
1255 @code{@value{AS}} promotes.
1256 Unconditional jumps are treated as for @samp{jumps}.
1257
1258 For example
1259
1260 @smallexample
1261 .arch i8086,nojumps
1262 @end smallexample
1263
1264 @node i386-Bugs
1265 @section AT&T Syntax bugs
1266
1267 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1268 assemblers, generate floating point instructions with reversed source
1269 and destination registers in certain cases. Unfortunately, gcc and
1270 possibly many other programs use this reversed syntax, so we're stuck
1271 with it.
1272
1273 For example
1274
1275 @smallexample
1276 fsub %st,%st(3)
1277 @end smallexample
1278 @noindent
1279 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1280 than the expected @samp{%st(3) - %st}. This happens with all the
1281 non-commutative arithmetic floating point operations with two register
1282 operands where the source register is @samp{%st} and the destination
1283 register is @samp{%st(i)}.
1284
1285 @node i386-Notes
1286 @section Notes
1287
1288 @cindex i386 @code{mul}, @code{imul} instructions
1289 @cindex @code{mul} instruction, i386
1290 @cindex @code{imul} instruction, i386
1291 @cindex @code{mul} instruction, x86-64
1292 @cindex @code{imul} instruction, x86-64
1293 There is some trickery concerning the @samp{mul} and @samp{imul}
1294 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1295 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1296 for @samp{imul}) can be output only in the one operand form. Thus,
1297 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1298 the expanding multiply would clobber the @samp{%edx} register, and this
1299 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1300 64-bit product in @samp{%edx:%eax}.
1301
1302 We have added a two operand form of @samp{imul} when the first operand
1303 is an immediate mode expression and the second operand is a register.
1304 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1305 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1306 $69, %eax, %eax}.
1307
This page took 0.07115 seconds and 4 git commands to generate.