x86: Add {rex} pseudo prefix
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{btver1},
127 @code{btver2},
128 @code{generic32} and
129 @code{generic64}.
130
131 In addition to the basic instruction set, the assembler can be told to
132 accept various extension mnemonics. For example,
133 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134 @var{vmx}. The following extensions are currently supported:
135 @code{8087},
136 @code{287},
137 @code{387},
138 @code{687},
139 @code{no87},
140 @code{no287},
141 @code{no387},
142 @code{no687},
143 @code{mmx},
144 @code{nommx},
145 @code{sse},
146 @code{sse2},
147 @code{sse3},
148 @code{ssse3},
149 @code{sse4.1},
150 @code{sse4.2},
151 @code{sse4},
152 @code{nosse},
153 @code{nosse2},
154 @code{nosse3},
155 @code{nossse3},
156 @code{nosse4.1},
157 @code{nosse4.2},
158 @code{nosse4},
159 @code{avx},
160 @code{avx2},
161 @code{noavx},
162 @code{noavx2},
163 @code{adx},
164 @code{rdseed},
165 @code{prfchw},
166 @code{smap},
167 @code{mpx},
168 @code{sha},
169 @code{rdpid},
170 @code{ptwrite},
171 @code{cet},
172 @code{gfni},
173 @code{vaes},
174 @code{vpclmulqdq},
175 @code{prefetchwt1},
176 @code{clflushopt},
177 @code{se1},
178 @code{clwb},
179 @code{avx512f},
180 @code{avx512cd},
181 @code{avx512er},
182 @code{avx512pf},
183 @code{avx512vl},
184 @code{avx512bw},
185 @code{avx512dq},
186 @code{avx512ifma},
187 @code{avx512vbmi},
188 @code{avx512_4fmaps},
189 @code{avx512_4vnniw},
190 @code{avx512_vpopcntdq},
191 @code{avx512_vbmi2},
192 @code{avx512_vnni},
193 @code{avx512_bitalg},
194 @code{noavx512f},
195 @code{noavx512cd},
196 @code{noavx512er},
197 @code{noavx512pf},
198 @code{noavx512vl},
199 @code{noavx512bw},
200 @code{noavx512dq},
201 @code{noavx512ifma},
202 @code{noavx512vbmi},
203 @code{noavx512_4fmaps},
204 @code{noavx512_4vnniw},
205 @code{noavx512_vpopcntdq},
206 @code{noavx512_vbmi2},
207 @code{noavx512_vnni},
208 @code{noavx512_bitalg},
209 @code{vmx},
210 @code{vmfunc},
211 @code{smx},
212 @code{xsave},
213 @code{xsaveopt},
214 @code{xsavec},
215 @code{xsaves},
216 @code{aes},
217 @code{pclmul},
218 @code{fsgsbase},
219 @code{rdrnd},
220 @code{f16c},
221 @code{bmi2},
222 @code{fma},
223 @code{movbe},
224 @code{ept},
225 @code{lzcnt},
226 @code{hle},
227 @code{rtm},
228 @code{invpcid},
229 @code{clflush},
230 @code{mwaitx},
231 @code{clzero},
232 @code{wbnoinvd},
233 @code{pconfig},
234 @code{lwp},
235 @code{fma4},
236 @code{xop},
237 @code{cx16},
238 @code{syscall},
239 @code{rdtscp},
240 @code{3dnow},
241 @code{3dnowa},
242 @code{sse4a},
243 @code{sse5},
244 @code{svme},
245 @code{abm} and
246 @code{padlock}.
247 Note that rather than extending a basic instruction set, the extension
248 mnemonics starting with @code{no} revoke the respective functionality.
249
250 When the @code{.arch} directive is used with @option{-march}, the
251 @code{.arch} directive will take precedent.
252
253 @cindex @samp{-mtune=} option, i386
254 @cindex @samp{-mtune=} option, x86-64
255 @item -mtune=@var{CPU}
256 This option specifies a processor to optimize for. When used in
257 conjunction with the @option{-march} option, only instructions
258 of the processor specified by the @option{-march} option will be
259 generated.
260
261 Valid @var{CPU} values are identical to the processor list of
262 @option{-march=@var{CPU}}.
263
264 @cindex @samp{-msse2avx} option, i386
265 @cindex @samp{-msse2avx} option, x86-64
266 @item -msse2avx
267 This option specifies that the assembler should encode SSE instructions
268 with VEX prefix.
269
270 @cindex @samp{-msse-check=} option, i386
271 @cindex @samp{-msse-check=} option, x86-64
272 @item -msse-check=@var{none}
273 @itemx -msse-check=@var{warning}
274 @itemx -msse-check=@var{error}
275 These options control if the assembler should check SSE instructions.
276 @option{-msse-check=@var{none}} will make the assembler not to check SSE
277 instructions, which is the default. @option{-msse-check=@var{warning}}
278 will make the assembler issue a warning for any SSE instruction.
279 @option{-msse-check=@var{error}} will make the assembler issue an error
280 for any SSE instruction.
281
282 @cindex @samp{-mavxscalar=} option, i386
283 @cindex @samp{-mavxscalar=} option, x86-64
284 @item -mavxscalar=@var{128}
285 @itemx -mavxscalar=@var{256}
286 These options control how the assembler should encode scalar AVX
287 instructions. @option{-mavxscalar=@var{128}} will encode scalar
288 AVX instructions with 128bit vector length, which is the default.
289 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
290 with 256bit vector length.
291
292 @cindex @samp{-mevexlig=} option, i386
293 @cindex @samp{-mevexlig=} option, x86-64
294 @item -mevexlig=@var{128}
295 @itemx -mevexlig=@var{256}
296 @itemx -mevexlig=@var{512}
297 These options control how the assembler should encode length-ignored
298 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
299 EVEX instructions with 128bit vector length, which is the default.
300 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
301 encode LIG EVEX instructions with 256bit and 512bit vector length,
302 respectively.
303
304 @cindex @samp{-mevexwig=} option, i386
305 @cindex @samp{-mevexwig=} option, x86-64
306 @item -mevexwig=@var{0}
307 @itemx -mevexwig=@var{1}
308 These options control how the assembler should encode w-ignored (WIG)
309 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
310 EVEX instructions with evex.w = 0, which is the default.
311 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
312 evex.w = 1.
313
314 @cindex @samp{-mmnemonic=} option, i386
315 @cindex @samp{-mmnemonic=} option, x86-64
316 @item -mmnemonic=@var{att}
317 @itemx -mmnemonic=@var{intel}
318 This option specifies instruction mnemonic for matching instructions.
319 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
320 take precedent.
321
322 @cindex @samp{-msyntax=} option, i386
323 @cindex @samp{-msyntax=} option, x86-64
324 @item -msyntax=@var{att}
325 @itemx -msyntax=@var{intel}
326 This option specifies instruction syntax when processing instructions.
327 The @code{.att_syntax} and @code{.intel_syntax} directives will
328 take precedent.
329
330 @cindex @samp{-mnaked-reg} option, i386
331 @cindex @samp{-mnaked-reg} option, x86-64
332 @item -mnaked-reg
333 This option specifies that registers don't require a @samp{%} prefix.
334 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
335
336 @cindex @samp{-madd-bnd-prefix} option, i386
337 @cindex @samp{-madd-bnd-prefix} option, x86-64
338 @item -madd-bnd-prefix
339 This option forces the assembler to add BND prefix to all branches, even
340 if such prefix was not explicitly specified in the source code.
341
342 @cindex @samp{-mshared} option, i386
343 @cindex @samp{-mshared} option, x86-64
344 @item -mno-shared
345 On ELF target, the assembler normally optimizes out non-PLT relocations
346 against defined non-weak global branch targets with default visibility.
347 The @samp{-mshared} option tells the assembler to generate code which
348 may go into a shared library where all non-weak global branch targets
349 with default visibility can be preempted. The resulting code is
350 slightly bigger. This option only affects the handling of branch
351 instructions.
352
353 @cindex @samp{-mbig-obj} option, x86-64
354 @item -mbig-obj
355 On x86-64 PE/COFF target this option forces the use of big object file
356 format, which allows more than 32768 sections.
357
358 @cindex @samp{-momit-lock-prefix=} option, i386
359 @cindex @samp{-momit-lock-prefix=} option, x86-64
360 @item -momit-lock-prefix=@var{no}
361 @itemx -momit-lock-prefix=@var{yes}
362 These options control how the assembler should encode lock prefix.
363 This option is intended as a workaround for processors, that fail on
364 lock prefix. This option can only be safely used with single-core,
365 single-thread computers
366 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
367 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
368 which is the default.
369
370 @cindex @samp{-mfence-as-lock-add=} option, i386
371 @cindex @samp{-mfence-as-lock-add=} option, x86-64
372 @item -mfence-as-lock-add=@var{no}
373 @itemx -mfence-as-lock-add=@var{yes}
374 These options control how the assembler should encode lfence, mfence and
375 sfence.
376 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
377 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
378 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
379 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
380 sfence as usual, which is the default.
381
382 @cindex @samp{-mrelax-relocations=} option, i386
383 @cindex @samp{-mrelax-relocations=} option, x86-64
384 @item -mrelax-relocations=@var{no}
385 @itemx -mrelax-relocations=@var{yes}
386 These options control whether the assembler should generate relax
387 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
388 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
389 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
390 @option{-mrelax-relocations=@var{no}} will not generate relax
391 relocations. The default can be controlled by a configure option
392 @option{--enable-x86-relax-relocations}.
393
394 @cindex @samp{-mevexrcig=} option, i386
395 @cindex @samp{-mevexrcig=} option, x86-64
396 @item -mevexrcig=@var{rne}
397 @itemx -mevexrcig=@var{rd}
398 @itemx -mevexrcig=@var{ru}
399 @itemx -mevexrcig=@var{rz}
400 These options control how the assembler should encode SAE-only
401 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
402 of EVEX instruction with 00, which is the default.
403 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
404 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
405 with 01, 10 and 11 RC bits, respectively.
406
407 @cindex @samp{-mamd64} option, x86-64
408 @cindex @samp{-mintel64} option, x86-64
409 @item -mamd64
410 @itemx -mintel64
411 This option specifies that the assembler should accept only AMD64 or
412 Intel64 ISA in 64-bit mode. The default is to accept both.
413
414 @end table
415 @c man end
416
417 @node i386-Directives
418 @section x86 specific Directives
419
420 @cindex machine directives, x86
421 @cindex x86 machine directives
422 @table @code
423
424 @cindex @code{lcomm} directive, COFF
425 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
426 Reserve @var{length} (an absolute expression) bytes for a local common
427 denoted by @var{symbol}. The section and value of @var{symbol} are
428 those of the new local common. The addresses are allocated in the bss
429 section, so that at run-time the bytes start off zeroed. Since
430 @var{symbol} is not declared global, it is normally not visible to
431 @code{@value{LD}}. The optional third parameter, @var{alignment},
432 specifies the desired alignment of the symbol in the bss section.
433
434 This directive is only available for COFF based x86 targets.
435
436 @cindex @code{largecomm} directive, ELF
437 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
438 This directive behaves in the same way as the @code{comm} directive
439 except that the data is placed into the @var{.lbss} section instead of
440 the @var{.bss} section @ref{Comm}.
441
442 The directive is intended to be used for data which requires a large
443 amount of space, and it is only available for ELF based x86_64
444 targets.
445
446 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
447
448 @end table
449
450 @node i386-Syntax
451 @section i386 Syntactical Considerations
452 @menu
453 * i386-Variations:: AT&T Syntax versus Intel Syntax
454 * i386-Chars:: Special Characters
455 @end menu
456
457 @node i386-Variations
458 @subsection AT&T Syntax versus Intel Syntax
459
460 @cindex i386 intel_syntax pseudo op
461 @cindex intel_syntax pseudo op, i386
462 @cindex i386 att_syntax pseudo op
463 @cindex att_syntax pseudo op, i386
464 @cindex i386 syntax compatibility
465 @cindex syntax compatibility, i386
466 @cindex x86-64 intel_syntax pseudo op
467 @cindex intel_syntax pseudo op, x86-64
468 @cindex x86-64 att_syntax pseudo op
469 @cindex att_syntax pseudo op, x86-64
470 @cindex x86-64 syntax compatibility
471 @cindex syntax compatibility, x86-64
472
473 @code{@value{AS}} now supports assembly using Intel assembler syntax.
474 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
475 back to the usual AT&T mode for compatibility with the output of
476 @code{@value{GCC}}. Either of these directives may have an optional
477 argument, @code{prefix}, or @code{noprefix} specifying whether registers
478 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
479 different from Intel syntax. We mention these differences because
480 almost all 80386 documents use Intel syntax. Notable differences
481 between the two syntaxes are:
482
483 @cindex immediate operands, i386
484 @cindex i386 immediate operands
485 @cindex register operands, i386
486 @cindex i386 register operands
487 @cindex jump/call operands, i386
488 @cindex i386 jump/call operands
489 @cindex operand delimiters, i386
490
491 @cindex immediate operands, x86-64
492 @cindex x86-64 immediate operands
493 @cindex register operands, x86-64
494 @cindex x86-64 register operands
495 @cindex jump/call operands, x86-64
496 @cindex x86-64 jump/call operands
497 @cindex operand delimiters, x86-64
498 @itemize @bullet
499 @item
500 AT&T immediate operands are preceded by @samp{$}; Intel immediate
501 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
502 AT&T register operands are preceded by @samp{%}; Intel register operands
503 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
504 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
505
506 @cindex i386 source, destination operands
507 @cindex source, destination operands; i386
508 @cindex x86-64 source, destination operands
509 @cindex source, destination operands; x86-64
510 @item
511 AT&T and Intel syntax use the opposite order for source and destination
512 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
513 @samp{source, dest} convention is maintained for compatibility with
514 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
515 instructions with 2 immediate operands, such as the @samp{enter}
516 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
517
518 @cindex mnemonic suffixes, i386
519 @cindex sizes operands, i386
520 @cindex i386 size suffixes
521 @cindex mnemonic suffixes, x86-64
522 @cindex sizes operands, x86-64
523 @cindex x86-64 size suffixes
524 @item
525 In AT&T syntax the size of memory operands is determined from the last
526 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
527 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
528 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
529 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
530 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
531 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
532 syntax.
533
534 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
535 instruction with the 64-bit displacement or immediate operand.
536
537 @cindex return instructions, i386
538 @cindex i386 jump, call, return
539 @cindex return instructions, x86-64
540 @cindex x86-64 jump, call, return
541 @item
542 Immediate form long jumps and calls are
543 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
544 Intel syntax is
545 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
546 instruction
547 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
548 @samp{ret far @var{stack-adjust}}.
549
550 @cindex sections, i386
551 @cindex i386 sections
552 @cindex sections, x86-64
553 @cindex x86-64 sections
554 @item
555 The AT&T assembler does not provide support for multiple section
556 programs. Unix style systems expect all programs to be single sections.
557 @end itemize
558
559 @node i386-Chars
560 @subsection Special Characters
561
562 @cindex line comment character, i386
563 @cindex i386 line comment character
564 The presence of a @samp{#} appearing anywhere on a line indicates the
565 start of a comment that extends to the end of that line.
566
567 If a @samp{#} appears as the first character of a line then the whole
568 line is treated as a comment, but in this case the line can also be a
569 logical line number directive (@pxref{Comments}) or a preprocessor
570 control command (@pxref{Preprocessing}).
571
572 If the @option{--divide} command line option has not been specified
573 then the @samp{/} character appearing anywhere on a line also
574 introduces a line comment.
575
576 @cindex line separator, i386
577 @cindex statement separator, i386
578 @cindex i386 line separator
579 The @samp{;} character can be used to separate statements on the same
580 line.
581
582 @node i386-Mnemonics
583 @section i386-Mnemonics
584 @subsection Instruction Naming
585
586 @cindex i386 instruction naming
587 @cindex instruction naming, i386
588 @cindex x86-64 instruction naming
589 @cindex instruction naming, x86-64
590
591 Instruction mnemonics are suffixed with one character modifiers which
592 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
593 and @samp{q} specify byte, word, long and quadruple word operands. If
594 no suffix is specified by an instruction then @code{@value{AS}} tries to
595 fill in the missing suffix based on the destination register operand
596 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
597 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
598 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
599 assembler which assumes that a missing mnemonic suffix implies long
600 operand size. (This incompatibility does not affect compiler output
601 since compilers always explicitly specify the mnemonic suffix.)
602
603 Almost all instructions have the same names in AT&T and Intel format.
604 There are a few exceptions. The sign extend and zero extend
605 instructions need two sizes to specify them. They need a size to
606 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
607 is accomplished by using two instruction mnemonic suffixes in AT&T
608 syntax. Base names for sign extend and zero extend are
609 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
610 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
611 are tacked on to this base name, the @emph{from} suffix before the
612 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
613 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
614 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
615 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
616 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
617 quadruple word).
618
619 @cindex encoding options, i386
620 @cindex encoding options, x86-64
621
622 Different encoding options can be specified via pseudo prefixes:
623
624 @itemize @bullet
625 @item
626 @samp{@{disp8@}} -- prefer 8-bit displacement.
627
628 @item
629 @samp{@{disp32@}} -- prefer 32-bit displacement.
630
631 @item
632 @samp{@{load@}} -- prefer load-form instruction.
633
634 @item
635 @samp{@{store@}} -- prefer store-form instruction.
636
637 @item
638 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
639
640 @item
641 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
642
643 @item
644 @samp{@{evex@}} -- encode with EVEX prefix.
645
646 @item
647 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
648 instructions (x86-64 only). Note that this differs from the @samp{rex}
649 prefix which generates REX prefix unconditionally.
650 @end itemize
651
652 @cindex conversion instructions, i386
653 @cindex i386 conversion instructions
654 @cindex conversion instructions, x86-64
655 @cindex x86-64 conversion instructions
656 The Intel-syntax conversion instructions
657
658 @itemize @bullet
659 @item
660 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
661
662 @item
663 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
664
665 @item
666 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
667
668 @item
669 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
670
671 @item
672 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
673 (x86-64 only),
674
675 @item
676 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
677 @samp{%rdx:%rax} (x86-64 only),
678 @end itemize
679
680 @noindent
681 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
682 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
683 instructions.
684
685 @cindex jump instructions, i386
686 @cindex call instructions, i386
687 @cindex jump instructions, x86-64
688 @cindex call instructions, x86-64
689 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
690 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
691 convention.
692
693 @subsection AT&T Mnemonic versus Intel Mnemonic
694
695 @cindex i386 mnemonic compatibility
696 @cindex mnemonic compatibility, i386
697
698 @code{@value{AS}} supports assembly using Intel mnemonic.
699 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
700 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
701 syntax for compatibility with the output of @code{@value{GCC}}.
702 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
703 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
704 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
705 assembler with different mnemonics from those in Intel IA32 specification.
706 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
707
708 @node i386-Regs
709 @section Register Naming
710
711 @cindex i386 registers
712 @cindex registers, i386
713 @cindex x86-64 registers
714 @cindex registers, x86-64
715 Register operands are always prefixed with @samp{%}. The 80386 registers
716 consist of
717
718 @itemize @bullet
719 @item
720 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
721 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
722 frame pointer), and @samp{%esp} (the stack pointer).
723
724 @item
725 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
726 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
727
728 @item
729 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
730 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
731 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
732 @samp{%cx}, and @samp{%dx})
733
734 @item
735 the 6 section registers @samp{%cs} (code section), @samp{%ds}
736 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
737 and @samp{%gs}.
738
739 @item
740 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
741 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
742
743 @item
744 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
745 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
746
747 @item
748 the 2 test registers @samp{%tr6} and @samp{%tr7}.
749
750 @item
751 the 8 floating point register stack @samp{%st} or equivalently
752 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
753 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
754 These registers are overloaded by 8 MMX registers @samp{%mm0},
755 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
756 @samp{%mm6} and @samp{%mm7}.
757
758 @item
759 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
760 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
761 @end itemize
762
763 The AMD x86-64 architecture extends the register set by:
764
765 @itemize @bullet
766 @item
767 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
768 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
769 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
770 pointer)
771
772 @item
773 the 8 extended registers @samp{%r8}--@samp{%r15}.
774
775 @item
776 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
777
778 @item
779 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
780
781 @item
782 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
783
784 @item
785 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
786
787 @item
788 the 8 debug registers: @samp{%db8}--@samp{%db15}.
789
790 @item
791 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
792 @end itemize
793
794 With the AVX extensions more registers were made available:
795
796 @itemize @bullet
797
798 @item
799 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
800 available in 32-bit mode). The bottom 128 bits are overlaid with the
801 @samp{xmm0}--@samp{xmm15} registers.
802
803 @end itemize
804
805 The AVX2 extensions made in 64-bit mode more registers available:
806
807 @itemize @bullet
808
809 @item
810 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
811 registers @samp{%ymm16}--@samp{%ymm31}.
812
813 @end itemize
814
815 The AVX512 extensions added the following registers:
816
817 @itemize @bullet
818
819 @item
820 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
821 available in 32-bit mode). The bottom 128 bits are overlaid with the
822 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
823 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
824
825 @item
826 the 8 mask registers @samp{%k0}--@samp{%k7}.
827
828 @end itemize
829
830 @node i386-Prefixes
831 @section Instruction Prefixes
832
833 @cindex i386 instruction prefixes
834 @cindex instruction prefixes, i386
835 @cindex prefixes, i386
836 Instruction prefixes are used to modify the following instruction. They
837 are used to repeat string instructions, to provide section overrides, to
838 perform bus lock operations, and to change operand and address sizes.
839 (Most instructions that normally operate on 32-bit operands will use
840 16-bit operands if the instruction has an ``operand size'' prefix.)
841 Instruction prefixes are best written on the same line as the instruction
842 they act upon. For example, the @samp{scas} (scan string) instruction is
843 repeated with:
844
845 @smallexample
846 repne scas %es:(%edi),%al
847 @end smallexample
848
849 You may also place prefixes on the lines immediately preceding the
850 instruction, but this circumvents checks that @code{@value{AS}} does
851 with prefixes, and will not work with all prefixes.
852
853 Here is a list of instruction prefixes:
854
855 @cindex section override prefixes, i386
856 @itemize @bullet
857 @item
858 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
859 @samp{fs}, @samp{gs}. These are automatically added by specifying
860 using the @var{section}:@var{memory-operand} form for memory references.
861
862 @cindex size prefixes, i386
863 @item
864 Operand/Address size prefixes @samp{data16} and @samp{addr16}
865 change 32-bit operands/addresses into 16-bit operands/addresses,
866 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
867 @code{.code16} section) into 32-bit operands/addresses. These prefixes
868 @emph{must} appear on the same line of code as the instruction they
869 modify. For example, in a 16-bit @code{.code16} section, you might
870 write:
871
872 @smallexample
873 addr32 jmpl *(%ebx)
874 @end smallexample
875
876 @cindex bus lock prefixes, i386
877 @cindex inhibiting interrupts, i386
878 @item
879 The bus lock prefix @samp{lock} inhibits interrupts during execution of
880 the instruction it precedes. (This is only valid with certain
881 instructions; see a 80386 manual for details).
882
883 @cindex coprocessor wait, i386
884 @item
885 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
886 complete the current instruction. This should never be needed for the
887 80386/80387 combination.
888
889 @cindex repeat prefixes, i386
890 @item
891 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
892 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
893 times if the current address size is 16-bits).
894 @cindex REX prefixes, i386
895 @item
896 The @samp{rex} family of prefixes is used by x86-64 to encode
897 extensions to i386 instruction set. The @samp{rex} prefix has four
898 bits --- an operand size overwrite (@code{64}) used to change operand size
899 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
900 register set.
901
902 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
903 instruction emits @samp{rex} prefix with all the bits set. By omitting
904 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
905 prefixes as well. Normally, there is no need to write the prefixes
906 explicitly, since gas will automatically generate them based on the
907 instruction operands.
908 @end itemize
909
910 @node i386-Memory
911 @section Memory References
912
913 @cindex i386 memory references
914 @cindex memory references, i386
915 @cindex x86-64 memory references
916 @cindex memory references, x86-64
917 An Intel syntax indirect memory reference of the form
918
919 @smallexample
920 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
921 @end smallexample
922
923 @noindent
924 is translated into the AT&T syntax
925
926 @smallexample
927 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
928 @end smallexample
929
930 @noindent
931 where @var{base} and @var{index} are the optional 32-bit base and
932 index registers, @var{disp} is the optional displacement, and
933 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
934 to calculate the address of the operand. If no @var{scale} is
935 specified, @var{scale} is taken to be 1. @var{section} specifies the
936 optional section register for the memory operand, and may override the
937 default section register (see a 80386 manual for section register
938 defaults). Note that section overrides in AT&T syntax @emph{must}
939 be preceded by a @samp{%}. If you specify a section override which
940 coincides with the default section register, @code{@value{AS}} does @emph{not}
941 output any section register override prefixes to assemble the given
942 instruction. Thus, section overrides can be specified to emphasize which
943 section register is used for a given memory operand.
944
945 Here are some examples of Intel and AT&T style memory references:
946
947 @table @asis
948 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
949 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
950 missing, and the default section is used (@samp{%ss} for addressing with
951 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
952
953 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
954 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
955 @samp{foo}. All other fields are missing. The section register here
956 defaults to @samp{%ds}.
957
958 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
959 This uses the value pointed to by @samp{foo} as a memory operand.
960 Note that @var{base} and @var{index} are both missing, but there is only
961 @emph{one} @samp{,}. This is a syntactic exception.
962
963 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
964 This selects the contents of the variable @samp{foo} with section
965 register @var{section} being @samp{%gs}.
966 @end table
967
968 Absolute (as opposed to PC relative) call and jump operands must be
969 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
970 always chooses PC relative addressing for jump/call labels.
971
972 Any instruction that has a memory operand, but no register operand,
973 @emph{must} specify its size (byte, word, long, or quadruple) with an
974 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
975 respectively).
976
977 The x86-64 architecture adds an RIP (instruction pointer relative)
978 addressing. This addressing mode is specified by using @samp{rip} as a
979 base register. Only constant offsets are valid. For example:
980
981 @table @asis
982 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
983 Points to the address 1234 bytes past the end of the current
984 instruction.
985
986 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
987 Points to the @code{symbol} in RIP relative way, this is shorter than
988 the default absolute addressing.
989 @end table
990
991 Other addressing modes remain unchanged in x86-64 architecture, except
992 registers used are 64-bit instead of 32-bit.
993
994 @node i386-Jumps
995 @section Handling of Jump Instructions
996
997 @cindex jump optimization, i386
998 @cindex i386 jump optimization
999 @cindex jump optimization, x86-64
1000 @cindex x86-64 jump optimization
1001 Jump instructions are always optimized to use the smallest possible
1002 displacements. This is accomplished by using byte (8-bit) displacement
1003 jumps whenever the target is sufficiently close. If a byte displacement
1004 is insufficient a long displacement is used. We do not support
1005 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1006 instruction with the @samp{data16} instruction prefix), since the 80386
1007 insists upon masking @samp{%eip} to 16 bits after the word displacement
1008 is added. (See also @pxref{i386-Arch})
1009
1010 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1011 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1012 displacements, so that if you use these instructions (@code{@value{GCC}} does
1013 not use them) you may get an error message (and incorrect code). The AT&T
1014 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1015 to
1016
1017 @smallexample
1018 jcxz cx_zero
1019 jmp cx_nonzero
1020 cx_zero: jmp foo
1021 cx_nonzero:
1022 @end smallexample
1023
1024 @node i386-Float
1025 @section Floating Point
1026
1027 @cindex i386 floating point
1028 @cindex floating point, i386
1029 @cindex x86-64 floating point
1030 @cindex floating point, x86-64
1031 All 80387 floating point types except packed BCD are supported.
1032 (BCD support may be added without much difficulty). These data
1033 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1034 double (64-bit), and extended (80-bit) precision floating point.
1035 Each supported type has an instruction mnemonic suffix and a constructor
1036 associated with it. Instruction mnemonic suffixes specify the operand's
1037 data type. Constructors build these data types into memory.
1038
1039 @cindex @code{float} directive, i386
1040 @cindex @code{single} directive, i386
1041 @cindex @code{double} directive, i386
1042 @cindex @code{tfloat} directive, i386
1043 @cindex @code{float} directive, x86-64
1044 @cindex @code{single} directive, x86-64
1045 @cindex @code{double} directive, x86-64
1046 @cindex @code{tfloat} directive, x86-64
1047 @itemize @bullet
1048 @item
1049 Floating point constructors are @samp{.float} or @samp{.single},
1050 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1051 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1052 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1053 only supports this format via the @samp{fldt} (load 80-bit real to stack
1054 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1055
1056 @cindex @code{word} directive, i386
1057 @cindex @code{long} directive, i386
1058 @cindex @code{int} directive, i386
1059 @cindex @code{quad} directive, i386
1060 @cindex @code{word} directive, x86-64
1061 @cindex @code{long} directive, x86-64
1062 @cindex @code{int} directive, x86-64
1063 @cindex @code{quad} directive, x86-64
1064 @item
1065 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1066 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1067 corresponding instruction mnemonic suffixes are @samp{s} (single),
1068 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1069 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1070 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1071 stack) instructions.
1072 @end itemize
1073
1074 Register to register operations should not use instruction mnemonic suffixes.
1075 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1076 wrote @samp{fst %st, %st(1)}, since all register to register operations
1077 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1078 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1079 then stores the result in the 4 byte location @samp{mem})
1080
1081 @node i386-SIMD
1082 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1083
1084 @cindex MMX, i386
1085 @cindex 3DNow!, i386
1086 @cindex SIMD, i386
1087 @cindex MMX, x86-64
1088 @cindex 3DNow!, x86-64
1089 @cindex SIMD, x86-64
1090
1091 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1092 instructions for integer data), available on Intel's Pentium MMX
1093 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1094 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1095 instruction set (SIMD instructions for 32-bit floating point data)
1096 available on AMD's K6-2 processor and possibly others in the future.
1097
1098 Currently, @code{@value{AS}} does not support Intel's floating point
1099 SIMD, Katmai (KNI).
1100
1101 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1102 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1103 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1104 floating point values. The MMX registers cannot be used at the same time
1105 as the floating point stack.
1106
1107 See Intel and AMD documentation, keeping in mind that the operand order in
1108 instructions is reversed from the Intel syntax.
1109
1110 @node i386-LWP
1111 @section AMD's Lightweight Profiling Instructions
1112
1113 @cindex LWP, i386
1114 @cindex LWP, x86-64
1115
1116 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1117 instruction set, available on AMD's Family 15h (Orochi) processors.
1118
1119 LWP enables applications to collect and manage performance data, and
1120 react to performance events. The collection of performance data
1121 requires no context switches. LWP runs in the context of a thread and
1122 so several counters can be used independently across multiple threads.
1123 LWP can be used in both 64-bit and legacy 32-bit modes.
1124
1125 For detailed information on the LWP instruction set, see the
1126 @cite{AMD Lightweight Profiling Specification} available at
1127 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1128
1129 @node i386-BMI
1130 @section Bit Manipulation Instructions
1131
1132 @cindex BMI, i386
1133 @cindex BMI, x86-64
1134
1135 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1136
1137 BMI instructions provide several instructions implementing individual
1138 bit manipulation operations such as isolation, masking, setting, or
1139 resetting.
1140
1141 @c Need to add a specification citation here when available.
1142
1143 @node i386-TBM
1144 @section AMD's Trailing Bit Manipulation Instructions
1145
1146 @cindex TBM, i386
1147 @cindex TBM, x86-64
1148
1149 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1150 instruction set, available on AMD's BDVER2 processors (Trinity and
1151 Viperfish).
1152
1153 TBM instructions provide instructions implementing individual bit
1154 manipulation operations such as isolating, masking, setting, resetting,
1155 complementing, and operations on trailing zeros and ones.
1156
1157 @c Need to add a specification citation here when available.
1158
1159 @node i386-16bit
1160 @section Writing 16-bit Code
1161
1162 @cindex i386 16-bit code
1163 @cindex 16-bit code, i386
1164 @cindex real-mode code, i386
1165 @cindex @code{code16gcc} directive, i386
1166 @cindex @code{code16} directive, i386
1167 @cindex @code{code32} directive, i386
1168 @cindex @code{code64} directive, i386
1169 @cindex @code{code64} directive, x86-64
1170 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1171 or 64-bit x86-64 code depending on the default configuration,
1172 it also supports writing code to run in real mode or in 16-bit protected
1173 mode code segments. To do this, put a @samp{.code16} or
1174 @samp{.code16gcc} directive before the assembly language instructions to
1175 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1176 32-bit code with the @samp{.code32} directive or 64-bit code with the
1177 @samp{.code64} directive.
1178
1179 @samp{.code16gcc} provides experimental support for generating 16-bit
1180 code from gcc, and differs from @samp{.code16} in that @samp{call},
1181 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1182 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1183 default to 32-bit size. This is so that the stack pointer is
1184 manipulated in the same way over function calls, allowing access to
1185 function parameters at the same stack offsets as in 32-bit mode.
1186 @samp{.code16gcc} also automatically adds address size prefixes where
1187 necessary to use the 32-bit addressing modes that gcc generates.
1188
1189 The code which @code{@value{AS}} generates in 16-bit mode will not
1190 necessarily run on a 16-bit pre-80386 processor. To write code that
1191 runs on such a processor, you must refrain from using @emph{any} 32-bit
1192 constructs which require @code{@value{AS}} to output address or operand
1193 size prefixes.
1194
1195 Note that writing 16-bit code instructions by explicitly specifying a
1196 prefix or an instruction mnemonic suffix within a 32-bit code section
1197 generates different machine instructions than those generated for a
1198 16-bit code segment. In a 32-bit code section, the following code
1199 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1200 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1201
1202 @smallexample
1203 pushw $4
1204 @end smallexample
1205
1206 The same code in a 16-bit code section would generate the machine
1207 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1208 is correct since the processor default operand size is assumed to be 16
1209 bits in a 16-bit code section.
1210
1211 @node i386-Arch
1212 @section Specifying CPU Architecture
1213
1214 @cindex arch directive, i386
1215 @cindex i386 arch directive
1216 @cindex arch directive, x86-64
1217 @cindex x86-64 arch directive
1218
1219 @code{@value{AS}} may be told to assemble for a particular CPU
1220 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1221 directive enables a warning when gas detects an instruction that is not
1222 supported on the CPU specified. The choices for @var{cpu_type} are:
1223
1224 @multitable @columnfractions .20 .20 .20 .20
1225 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1226 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1227 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1228 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1229 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1230 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1231 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1232 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1233 @item @samp{generic32} @tab @samp{generic64}
1234 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1235 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1236 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1237 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1238 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1239 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1240 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1241 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1242 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1243 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1244 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1245 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1246 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1247 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1248 @item @samp{.avx512_bitalg}
1249 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1250 @item @samp{.wbnoinvd} @tab @samp{.pconfig}
1251 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1252 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1253 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1254 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1255 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1256 @end multitable
1257
1258 Apart from the warning, there are only two other effects on
1259 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1260 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1261 will automatically use a two byte opcode sequence. The larger three
1262 byte opcode sequence is used on the 486 (and when no architecture is
1263 specified) because it executes faster on the 486. Note that you can
1264 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1265 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1266 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1267 conditional jumps will be promoted when necessary to a two instruction
1268 sequence consisting of a conditional jump of the opposite sense around
1269 an unconditional jump to the target.
1270
1271 Following the CPU architecture (but not a sub-architecture, which are those
1272 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1273 control automatic promotion of conditional jumps. @samp{jumps} is the
1274 default, and enables jump promotion; All external jumps will be of the long
1275 variety, and file-local jumps will be promoted as necessary.
1276 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1277 byte offset jumps, and warns about file-local conditional jumps that
1278 @code{@value{AS}} promotes.
1279 Unconditional jumps are treated as for @samp{jumps}.
1280
1281 For example
1282
1283 @smallexample
1284 .arch i8086,nojumps
1285 @end smallexample
1286
1287 @node i386-Bugs
1288 @section AT&T Syntax bugs
1289
1290 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1291 assemblers, generate floating point instructions with reversed source
1292 and destination registers in certain cases. Unfortunately, gcc and
1293 possibly many other programs use this reversed syntax, so we're stuck
1294 with it.
1295
1296 For example
1297
1298 @smallexample
1299 fsub %st,%st(3)
1300 @end smallexample
1301 @noindent
1302 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1303 than the expected @samp{%st(3) - %st}. This happens with all the
1304 non-commutative arithmetic floating point operations with two register
1305 operands where the source register is @samp{%st} and the destination
1306 register is @samp{%st(i)}.
1307
1308 @node i386-Notes
1309 @section Notes
1310
1311 @cindex i386 @code{mul}, @code{imul} instructions
1312 @cindex @code{mul} instruction, i386
1313 @cindex @code{imul} instruction, i386
1314 @cindex @code{mul} instruction, x86-64
1315 @cindex @code{imul} instruction, x86-64
1316 There is some trickery concerning the @samp{mul} and @samp{imul}
1317 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1318 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1319 for @samp{imul}) can be output only in the one operand form. Thus,
1320 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1321 the expanding multiply would clobber the @samp{%edx} register, and this
1322 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1323 64-bit product in @samp{%edx:%eax}.
1324
1325 We have added a two operand form of @samp{imul} when the first operand
1326 is an immediate mode expression and the second operand is a register.
1327 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1328 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1329 $69, %eax, %eax}.
1330
This page took 0.058364 seconds and 4 git commands to generate.