[PATCH 1/4]: microblaze: remove duplicate prototypes
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{no87},
142 @code{no287},
143 @code{no387},
144 @code{no687},
145 @code{cmov},
146 @code{nocmov},
147 @code{fxsr},
148 @code{nofxsr},
149 @code{mmx},
150 @code{nommx},
151 @code{sse},
152 @code{sse2},
153 @code{sse3},
154 @code{sse4a},
155 @code{ssse3},
156 @code{sse4.1},
157 @code{sse4.2},
158 @code{sse4},
159 @code{nosse},
160 @code{nosse2},
161 @code{nosse3},
162 @code{nosse4a},
163 @code{nossse3},
164 @code{nosse4.1},
165 @code{nosse4.2},
166 @code{nosse4},
167 @code{avx},
168 @code{avx2},
169 @code{noavx},
170 @code{noavx2},
171 @code{adx},
172 @code{rdseed},
173 @code{prfchw},
174 @code{smap},
175 @code{mpx},
176 @code{sha},
177 @code{rdpid},
178 @code{ptwrite},
179 @code{cet},
180 @code{gfni},
181 @code{vaes},
182 @code{vpclmulqdq},
183 @code{prefetchwt1},
184 @code{clflushopt},
185 @code{se1},
186 @code{clwb},
187 @code{movdiri},
188 @code{movdir64b},
189 @code{enqcmd},
190 @code{serialize},
191 @code{tsxldtrk},
192 @code{avx512f},
193 @code{avx512cd},
194 @code{avx512er},
195 @code{avx512pf},
196 @code{avx512vl},
197 @code{avx512bw},
198 @code{avx512dq},
199 @code{avx512ifma},
200 @code{avx512vbmi},
201 @code{avx512_4fmaps},
202 @code{avx512_4vnniw},
203 @code{avx512_vpopcntdq},
204 @code{avx512_vbmi2},
205 @code{avx512_vnni},
206 @code{avx512_bitalg},
207 @code{avx512_bf16},
208 @code{noavx512f},
209 @code{noavx512cd},
210 @code{noavx512er},
211 @code{noavx512pf},
212 @code{noavx512vl},
213 @code{noavx512bw},
214 @code{noavx512dq},
215 @code{noavx512ifma},
216 @code{noavx512vbmi},
217 @code{noavx512_4fmaps},
218 @code{noavx512_4vnniw},
219 @code{noavx512_vpopcntdq},
220 @code{noavx512_vbmi2},
221 @code{noavx512_vnni},
222 @code{noavx512_bitalg},
223 @code{noavx512_vp2intersect},
224 @code{noavx512_bf16},
225 @code{noenqcmd},
226 @code{noserialize},
227 @code{notsxldtrk},
228 @code{vmx},
229 @code{vmfunc},
230 @code{smx},
231 @code{xsave},
232 @code{xsaveopt},
233 @code{xsavec},
234 @code{xsaves},
235 @code{aes},
236 @code{pclmul},
237 @code{fsgsbase},
238 @code{rdrnd},
239 @code{f16c},
240 @code{bmi2},
241 @code{fma},
242 @code{movbe},
243 @code{ept},
244 @code{lzcnt},
245 @code{popcnt},
246 @code{hle},
247 @code{rtm},
248 @code{invpcid},
249 @code{clflush},
250 @code{mwaitx},
251 @code{clzero},
252 @code{wbnoinvd},
253 @code{pconfig},
254 @code{waitpkg},
255 @code{cldemote},
256 @code{rdpru},
257 @code{mcommit},
258 @code{sev_es},
259 @code{lwp},
260 @code{fma4},
261 @code{xop},
262 @code{cx16},
263 @code{syscall},
264 @code{rdtscp},
265 @code{3dnow},
266 @code{3dnowa},
267 @code{sse4a},
268 @code{sse5},
269 @code{svme} and
270 @code{padlock}.
271 Note that rather than extending a basic instruction set, the extension
272 mnemonics starting with @code{no} revoke the respective functionality.
273
274 When the @code{.arch} directive is used with @option{-march}, the
275 @code{.arch} directive will take precedent.
276
277 @cindex @samp{-mtune=} option, i386
278 @cindex @samp{-mtune=} option, x86-64
279 @item -mtune=@var{CPU}
280 This option specifies a processor to optimize for. When used in
281 conjunction with the @option{-march} option, only instructions
282 of the processor specified by the @option{-march} option will be
283 generated.
284
285 Valid @var{CPU} values are identical to the processor list of
286 @option{-march=@var{CPU}}.
287
288 @cindex @samp{-msse2avx} option, i386
289 @cindex @samp{-msse2avx} option, x86-64
290 @item -msse2avx
291 This option specifies that the assembler should encode SSE instructions
292 with VEX prefix.
293
294 @cindex @samp{-msse-check=} option, i386
295 @cindex @samp{-msse-check=} option, x86-64
296 @item -msse-check=@var{none}
297 @itemx -msse-check=@var{warning}
298 @itemx -msse-check=@var{error}
299 These options control if the assembler should check SSE instructions.
300 @option{-msse-check=@var{none}} will make the assembler not to check SSE
301 instructions, which is the default. @option{-msse-check=@var{warning}}
302 will make the assembler issue a warning for any SSE instruction.
303 @option{-msse-check=@var{error}} will make the assembler issue an error
304 for any SSE instruction.
305
306 @cindex @samp{-mavxscalar=} option, i386
307 @cindex @samp{-mavxscalar=} option, x86-64
308 @item -mavxscalar=@var{128}
309 @itemx -mavxscalar=@var{256}
310 These options control how the assembler should encode scalar AVX
311 instructions. @option{-mavxscalar=@var{128}} will encode scalar
312 AVX instructions with 128bit vector length, which is the default.
313 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
314 with 256bit vector length.
315
316 WARNING: Don't use this for production code - due to CPU errata the
317 resulting code may not work on certain models.
318
319 @cindex @samp{-mvexwig=} option, i386
320 @cindex @samp{-mvexwig=} option, x86-64
321 @item -mvexwig=@var{0}
322 @itemx -mvexwig=@var{1}
323 These options control how the assembler should encode VEX.W-ignored (WIG)
324 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
325 instructions with vex.w = 0, which is the default.
326 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
327 vex.w = 1.
328
329 WARNING: Don't use this for production code - due to CPU errata the
330 resulting code may not work on certain models.
331
332 @cindex @samp{-mevexlig=} option, i386
333 @cindex @samp{-mevexlig=} option, x86-64
334 @item -mevexlig=@var{128}
335 @itemx -mevexlig=@var{256}
336 @itemx -mevexlig=@var{512}
337 These options control how the assembler should encode length-ignored
338 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
339 EVEX instructions with 128bit vector length, which is the default.
340 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
341 encode LIG EVEX instructions with 256bit and 512bit vector length,
342 respectively.
343
344 @cindex @samp{-mevexwig=} option, i386
345 @cindex @samp{-mevexwig=} option, x86-64
346 @item -mevexwig=@var{0}
347 @itemx -mevexwig=@var{1}
348 These options control how the assembler should encode w-ignored (WIG)
349 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
350 EVEX instructions with evex.w = 0, which is the default.
351 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
352 evex.w = 1.
353
354 @cindex @samp{-mmnemonic=} option, i386
355 @cindex @samp{-mmnemonic=} option, x86-64
356 @item -mmnemonic=@var{att}
357 @itemx -mmnemonic=@var{intel}
358 This option specifies instruction mnemonic for matching instructions.
359 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
360 take precedent.
361
362 @cindex @samp{-msyntax=} option, i386
363 @cindex @samp{-msyntax=} option, x86-64
364 @item -msyntax=@var{att}
365 @itemx -msyntax=@var{intel}
366 This option specifies instruction syntax when processing instructions.
367 The @code{.att_syntax} and @code{.intel_syntax} directives will
368 take precedent.
369
370 @cindex @samp{-mnaked-reg} option, i386
371 @cindex @samp{-mnaked-reg} option, x86-64
372 @item -mnaked-reg
373 This option specifies that registers don't require a @samp{%} prefix.
374 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
375
376 @cindex @samp{-madd-bnd-prefix} option, i386
377 @cindex @samp{-madd-bnd-prefix} option, x86-64
378 @item -madd-bnd-prefix
379 This option forces the assembler to add BND prefix to all branches, even
380 if such prefix was not explicitly specified in the source code.
381
382 @cindex @samp{-mshared} option, i386
383 @cindex @samp{-mshared} option, x86-64
384 @item -mno-shared
385 On ELF target, the assembler normally optimizes out non-PLT relocations
386 against defined non-weak global branch targets with default visibility.
387 The @samp{-mshared} option tells the assembler to generate code which
388 may go into a shared library where all non-weak global branch targets
389 with default visibility can be preempted. The resulting code is
390 slightly bigger. This option only affects the handling of branch
391 instructions.
392
393 @cindex @samp{-mbig-obj} option, x86-64
394 @item -mbig-obj
395 On x86-64 PE/COFF target this option forces the use of big object file
396 format, which allows more than 32768 sections.
397
398 @cindex @samp{-momit-lock-prefix=} option, i386
399 @cindex @samp{-momit-lock-prefix=} option, x86-64
400 @item -momit-lock-prefix=@var{no}
401 @itemx -momit-lock-prefix=@var{yes}
402 These options control how the assembler should encode lock prefix.
403 This option is intended as a workaround for processors, that fail on
404 lock prefix. This option can only be safely used with single-core,
405 single-thread computers
406 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
407 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
408 which is the default.
409
410 @cindex @samp{-mfence-as-lock-add=} option, i386
411 @cindex @samp{-mfence-as-lock-add=} option, x86-64
412 @item -mfence-as-lock-add=@var{no}
413 @itemx -mfence-as-lock-add=@var{yes}
414 These options control how the assembler should encode lfence, mfence and
415 sfence.
416 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
417 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
418 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
419 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
420 sfence as usual, which is the default.
421
422 @cindex @samp{-mrelax-relocations=} option, i386
423 @cindex @samp{-mrelax-relocations=} option, x86-64
424 @item -mrelax-relocations=@var{no}
425 @itemx -mrelax-relocations=@var{yes}
426 These options control whether the assembler should generate relax
427 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
428 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
429 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
430 @option{-mrelax-relocations=@var{no}} will not generate relax
431 relocations. The default can be controlled by a configure option
432 @option{--enable-x86-relax-relocations}.
433
434 @cindex @samp{-malign-branch-boundary=} option, i386
435 @cindex @samp{-malign-branch-boundary=} option, x86-64
436 @item -malign-branch-boundary=@var{NUM}
437 This option controls how the assembler should align branches with segment
438 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
439 no less than 16. Branches will be aligned within @var{NUM} byte
440 boundary. @option{-malign-branch-boundary=0}, which is the default,
441 doesn't align branches.
442
443 @cindex @samp{-malign-branch=} option, i386
444 @cindex @samp{-malign-branch=} option, x86-64
445 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
446 This option specifies types of branches to align. @var{TYPE} is
447 combination of @samp{jcc}, which aligns conditional jumps,
448 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
449 which aligns unconditional jumps, @samp{call} which aligns calls,
450 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
451 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
452
453 @cindex @samp{-malign-branch-prefix-size=} option, i386
454 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
455 @item -malign-branch-prefix-size=@var{NUM}
456 This option specifies the maximum number of prefixes on an instruction
457 to align branches. @var{NUM} should be between 0 and 5. The default
458 @var{NUM} is 5.
459
460 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
461 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
462 @item -mbranches-within-32B-boundaries
463 This option aligns conditional jumps, fused conditional jumps and
464 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
465 on an instruction. It is equivalent to
466 @option{-malign-branch-boundary=32}
467 @option{-malign-branch=jcc+fused+jmp}
468 @option{-malign-branch-prefix-size=5}.
469 The default doesn't align branches.
470
471 @cindex @samp{-mlfence-after-load=} option, i386
472 @cindex @samp{-mlfence-after-load=} option, x86-64
473 @item -mlfence-after-load=@var{no}
474 @itemx -mlfence-after-load=@var{yes}
475 These options control whether the assembler should generate lfence
476 after load instructions. @option{-mlfence-after-load=@var{yes}} will
477 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
478 lfence, which is the default.
479
480 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
481 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
482 @item -mlfence-before-indirect-branch=@var{none}
483 @item -mlfence-before-indirect-branch=@var{all}
484 @item -mlfence-before-indirect-branch=@var{register}
485 @itemx -mlfence-before-indirect-branch=@var{memory}
486 These options control whether the assembler should generate lfence
487 after indirect near branch instructions.
488 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
489 after indirect near branch via register and issue a warning before
490 indirect near branch via memory.
491 @option{-mlfence-before-indirect-branch=@var{register}} will generate
492 lfence after indirect near branch via register.
493 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
494 warning before indirect near branch via memory.
495 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
496 lfence nor issue warning, which is the default. Note that lfence won't
497 be generated before indirect near branch via register with
498 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
499 after loading branch target register.
500
501 @cindex @samp{-mlfence-before-ret=} option, i386
502 @cindex @samp{-mlfence-before-ret=} option, x86-64
503 @item -mlfence-before-ret=@var{none}
504 @item -mlfence-before-ret=@var{or}
505 @itemx -mlfence-before-ret=@var{not}
506 These options control whether the assembler should generate lfence
507 before ret. @option{-mlfence-before-ret=@var{or}} will generate
508 generate or instruction with lfence.
509 @option{-mlfence-before-ret=@var{not}} will generate not instruction
510 with lfence.
511 @option{-mlfence-before-ret=@var{none}} will not generate lfence,
512 which is the default.
513
514 @cindex @samp{-mx86-used-note=} option, i386
515 @cindex @samp{-mx86-used-note=} option, x86-64
516 @item -mx86-used-note=@var{no}
517 @itemx -mx86-used-note=@var{yes}
518 These options control whether the assembler should generate
519 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
520 GNU property notes. The default can be controlled by the
521 @option{--enable-x86-used-note} configure option.
522
523 @cindex @samp{-mevexrcig=} option, i386
524 @cindex @samp{-mevexrcig=} option, x86-64
525 @item -mevexrcig=@var{rne}
526 @itemx -mevexrcig=@var{rd}
527 @itemx -mevexrcig=@var{ru}
528 @itemx -mevexrcig=@var{rz}
529 These options control how the assembler should encode SAE-only
530 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
531 of EVEX instruction with 00, which is the default.
532 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
533 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
534 with 01, 10 and 11 RC bits, respectively.
535
536 @cindex @samp{-mamd64} option, x86-64
537 @cindex @samp{-mintel64} option, x86-64
538 @item -mamd64
539 @itemx -mintel64
540 This option specifies that the assembler should accept only AMD64 or
541 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
542 only and AMD64 ISAs.
543
544 @cindex @samp{-O0} option, i386
545 @cindex @samp{-O0} option, x86-64
546 @cindex @samp{-O} option, i386
547 @cindex @samp{-O} option, x86-64
548 @cindex @samp{-O1} option, i386
549 @cindex @samp{-O1} option, x86-64
550 @cindex @samp{-O2} option, i386
551 @cindex @samp{-O2} option, x86-64
552 @cindex @samp{-Os} option, i386
553 @cindex @samp{-Os} option, x86-64
554 @item -O0 | -O | -O1 | -O2 | -Os
555 Optimize instruction encoding with smaller instruction size. @samp{-O}
556 and @samp{-O1} encode 64-bit register load instructions with 64-bit
557 immediate as 32-bit register load instructions with 31-bit or 32-bits
558 immediates, encode 64-bit register clearing instructions with 32-bit
559 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
560 register clearing instructions with 128-bit VEX vector register
561 clearing instructions, encode 128-bit/256-bit EVEX vector
562 register load/store instructions with VEX vector register load/store
563 instructions, and encode 128-bit/256-bit EVEX packed integer logical
564 instructions with 128-bit/256-bit VEX packed integer logical.
565
566 @samp{-O2} includes @samp{-O1} optimization plus encodes
567 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
568 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
569 instructions with commutative source operands will also have their
570 source operands swapped if this allows using the 2-byte VEX prefix form
571 instead of the 3-byte one. Certain forms of AND as well as OR with the
572 same (register) operand specified twice will also be changed to TEST.
573
574 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
575 and 64-bit register tests with immediate as 8-bit register test with
576 immediate. @samp{-O0} turns off this optimization.
577
578 @end table
579 @c man end
580
581 @node i386-Directives
582 @section x86 specific Directives
583
584 @cindex machine directives, x86
585 @cindex x86 machine directives
586 @table @code
587
588 @cindex @code{lcomm} directive, COFF
589 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
590 Reserve @var{length} (an absolute expression) bytes for a local common
591 denoted by @var{symbol}. The section and value of @var{symbol} are
592 those of the new local common. The addresses are allocated in the bss
593 section, so that at run-time the bytes start off zeroed. Since
594 @var{symbol} is not declared global, it is normally not visible to
595 @code{@value{LD}}. The optional third parameter, @var{alignment},
596 specifies the desired alignment of the symbol in the bss section.
597
598 This directive is only available for COFF based x86 targets.
599
600 @cindex @code{largecomm} directive, ELF
601 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
602 This directive behaves in the same way as the @code{comm} directive
603 except that the data is placed into the @var{.lbss} section instead of
604 the @var{.bss} section @ref{Comm}.
605
606 The directive is intended to be used for data which requires a large
607 amount of space, and it is only available for ELF based x86_64
608 targets.
609
610 @cindex @code{value} directive
611 @item .value @var{expression} [, @var{expression}]
612 This directive behaves in the same way as the @code{.short} directive,
613 taking a series of comma separated expressions and storing them as
614 two-byte wide values into the current section.
615
616 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
617
618 @end table
619
620 @node i386-Syntax
621 @section i386 Syntactical Considerations
622 @menu
623 * i386-Variations:: AT&T Syntax versus Intel Syntax
624 * i386-Chars:: Special Characters
625 @end menu
626
627 @node i386-Variations
628 @subsection AT&T Syntax versus Intel Syntax
629
630 @cindex i386 intel_syntax pseudo op
631 @cindex intel_syntax pseudo op, i386
632 @cindex i386 att_syntax pseudo op
633 @cindex att_syntax pseudo op, i386
634 @cindex i386 syntax compatibility
635 @cindex syntax compatibility, i386
636 @cindex x86-64 intel_syntax pseudo op
637 @cindex intel_syntax pseudo op, x86-64
638 @cindex x86-64 att_syntax pseudo op
639 @cindex att_syntax pseudo op, x86-64
640 @cindex x86-64 syntax compatibility
641 @cindex syntax compatibility, x86-64
642
643 @code{@value{AS}} now supports assembly using Intel assembler syntax.
644 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
645 back to the usual AT&T mode for compatibility with the output of
646 @code{@value{GCC}}. Either of these directives may have an optional
647 argument, @code{prefix}, or @code{noprefix} specifying whether registers
648 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
649 different from Intel syntax. We mention these differences because
650 almost all 80386 documents use Intel syntax. Notable differences
651 between the two syntaxes are:
652
653 @cindex immediate operands, i386
654 @cindex i386 immediate operands
655 @cindex register operands, i386
656 @cindex i386 register operands
657 @cindex jump/call operands, i386
658 @cindex i386 jump/call operands
659 @cindex operand delimiters, i386
660
661 @cindex immediate operands, x86-64
662 @cindex x86-64 immediate operands
663 @cindex register operands, x86-64
664 @cindex x86-64 register operands
665 @cindex jump/call operands, x86-64
666 @cindex x86-64 jump/call operands
667 @cindex operand delimiters, x86-64
668 @itemize @bullet
669 @item
670 AT&T immediate operands are preceded by @samp{$}; Intel immediate
671 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
672 AT&T register operands are preceded by @samp{%}; Intel register operands
673 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
674 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
675
676 @cindex i386 source, destination operands
677 @cindex source, destination operands; i386
678 @cindex x86-64 source, destination operands
679 @cindex source, destination operands; x86-64
680 @item
681 AT&T and Intel syntax use the opposite order for source and destination
682 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
683 @samp{source, dest} convention is maintained for compatibility with
684 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
685 instructions with 2 immediate operands, such as the @samp{enter}
686 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
687
688 @cindex mnemonic suffixes, i386
689 @cindex sizes operands, i386
690 @cindex i386 size suffixes
691 @cindex mnemonic suffixes, x86-64
692 @cindex sizes operands, x86-64
693 @cindex x86-64 size suffixes
694 @item
695 In AT&T syntax the size of memory operands is determined from the last
696 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
697 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
698 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
699 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
700 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
701 no other way to disambiguate an instruction. Intel syntax accomplishes this by
702 prefixing memory operands (@emph{not} the instruction mnemonics) with
703 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
704 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
705 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
706 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
707 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
708
709 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
710 instruction with the 64-bit displacement or immediate operand.
711
712 @cindex return instructions, i386
713 @cindex i386 jump, call, return
714 @cindex return instructions, x86-64
715 @cindex x86-64 jump, call, return
716 @item
717 Immediate form long jumps and calls are
718 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
719 Intel syntax is
720 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
721 instruction
722 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
723 @samp{ret far @var{stack-adjust}}.
724
725 @cindex sections, i386
726 @cindex i386 sections
727 @cindex sections, x86-64
728 @cindex x86-64 sections
729 @item
730 The AT&T assembler does not provide support for multiple section
731 programs. Unix style systems expect all programs to be single sections.
732 @end itemize
733
734 @node i386-Chars
735 @subsection Special Characters
736
737 @cindex line comment character, i386
738 @cindex i386 line comment character
739 The presence of a @samp{#} appearing anywhere on a line indicates the
740 start of a comment that extends to the end of that line.
741
742 If a @samp{#} appears as the first character of a line then the whole
743 line is treated as a comment, but in this case the line can also be a
744 logical line number directive (@pxref{Comments}) or a preprocessor
745 control command (@pxref{Preprocessing}).
746
747 If the @option{--divide} command-line option has not been specified
748 then the @samp{/} character appearing anywhere on a line also
749 introduces a line comment.
750
751 @cindex line separator, i386
752 @cindex statement separator, i386
753 @cindex i386 line separator
754 The @samp{;} character can be used to separate statements on the same
755 line.
756
757 @node i386-Mnemonics
758 @section i386-Mnemonics
759 @subsection Instruction Naming
760
761 @cindex i386 instruction naming
762 @cindex instruction naming, i386
763 @cindex x86-64 instruction naming
764 @cindex instruction naming, x86-64
765
766 Instruction mnemonics are suffixed with one character modifiers which
767 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
768 and @samp{q} specify byte, word, long and quadruple word operands. If
769 no suffix is specified by an instruction then @code{@value{AS}} tries to
770 fill in the missing suffix based on the destination register operand
771 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
772 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
773 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
774 assembler which assumes that a missing mnemonic suffix implies long
775 operand size. (This incompatibility does not affect compiler output
776 since compilers always explicitly specify the mnemonic suffix.)
777
778 When there is no sizing suffix and no (suitable) register operands to
779 deduce the size of memory operands, with a few exceptions and where long
780 operand size is possible in the first place, operand size will default
781 to long in 32- and 64-bit modes. Similarly it will default to short in
782 16-bit mode. Noteworthy exceptions are
783
784 @itemize @bullet
785 @item
786 Instructions with an implicit on-stack operand as well as branches,
787 which default to quad in 64-bit mode.
788
789 @item
790 Sign- and zero-extending moves, which default to byte size source
791 operands.
792
793 @item
794 Floating point insns with integer operands, which default to short (for
795 perhaps historical reasons).
796
797 @item
798 CRC32 with a 64-bit destination, which defaults to a quad source
799 operand.
800
801 @end itemize
802
803 @cindex encoding options, i386
804 @cindex encoding options, x86-64
805
806 Different encoding options can be specified via pseudo prefixes:
807
808 @itemize @bullet
809 @item
810 @samp{@{disp8@}} -- prefer 8-bit displacement.
811
812 @item
813 @samp{@{disp32@}} -- prefer 32-bit displacement.
814
815 @item
816 @samp{@{load@}} -- prefer load-form instruction.
817
818 @item
819 @samp{@{store@}} -- prefer store-form instruction.
820
821 @item
822 @samp{@{vex@}} -- encode with VEX prefix.
823
824 @item
825 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
826
827 @item
828 @samp{@{evex@}} -- encode with EVEX prefix.
829
830 @item
831 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
832 instructions (x86-64 only). Note that this differs from the @samp{rex}
833 prefix which generates REX prefix unconditionally.
834
835 @item
836 @samp{@{nooptimize@}} -- disable instruction size optimization.
837 @end itemize
838
839 @cindex conversion instructions, i386
840 @cindex i386 conversion instructions
841 @cindex conversion instructions, x86-64
842 @cindex x86-64 conversion instructions
843 The Intel-syntax conversion instructions
844
845 @itemize @bullet
846 @item
847 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
848
849 @item
850 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
851
852 @item
853 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
854
855 @item
856 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
857
858 @item
859 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
860 (x86-64 only),
861
862 @item
863 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
864 @samp{%rdx:%rax} (x86-64 only),
865 @end itemize
866
867 @noindent
868 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
869 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
870 instructions.
871
872 @cindex extension instructions, i386
873 @cindex i386 extension instructions
874 @cindex extension instructions, x86-64
875 @cindex x86-64 extension instructions
876 The Intel-syntax extension instructions
877
878 @itemize @bullet
879 @item
880 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
881
882 @item
883 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
884
885 @item
886 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
887 (x86-64 only).
888
889 @item
890 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
891
892 @item
893 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
894 (x86-64 only).
895
896 @item
897 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
898 (x86-64 only).
899
900 @item
901 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
902
903 @item
904 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
905
906 @item
907 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
908 (x86-64 only).
909
910 @item
911 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
912
913 @item
914 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
915 (x86-64 only).
916 @end itemize
917
918 @noindent
919 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
920 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
921 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
922 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
923 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
924
925 @cindex jump instructions, i386
926 @cindex call instructions, i386
927 @cindex jump instructions, x86-64
928 @cindex call instructions, x86-64
929 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
930 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
931 convention.
932
933 @subsection AT&T Mnemonic versus Intel Mnemonic
934
935 @cindex i386 mnemonic compatibility
936 @cindex mnemonic compatibility, i386
937
938 @code{@value{AS}} supports assembly using Intel mnemonic.
939 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
940 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
941 syntax for compatibility with the output of @code{@value{GCC}}.
942 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
943 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
944 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
945 assembler with different mnemonics from those in Intel IA32 specification.
946 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
947
948 @itemize @bullet
949 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
950 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
951 destination register with both AT&T and Intel mnemonics.
952 @end itemize
953
954 @node i386-Regs
955 @section Register Naming
956
957 @cindex i386 registers
958 @cindex registers, i386
959 @cindex x86-64 registers
960 @cindex registers, x86-64
961 Register operands are always prefixed with @samp{%}. The 80386 registers
962 consist of
963
964 @itemize @bullet
965 @item
966 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
967 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
968 frame pointer), and @samp{%esp} (the stack pointer).
969
970 @item
971 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
972 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
973
974 @item
975 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
976 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
977 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
978 @samp{%cx}, and @samp{%dx})
979
980 @item
981 the 6 section registers @samp{%cs} (code section), @samp{%ds}
982 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
983 and @samp{%gs}.
984
985 @item
986 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
987 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
988
989 @item
990 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
991 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
992
993 @item
994 the 2 test registers @samp{%tr6} and @samp{%tr7}.
995
996 @item
997 the 8 floating point register stack @samp{%st} or equivalently
998 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
999 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1000 These registers are overloaded by 8 MMX registers @samp{%mm0},
1001 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1002 @samp{%mm6} and @samp{%mm7}.
1003
1004 @item
1005 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1006 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1007 @end itemize
1008
1009 The AMD x86-64 architecture extends the register set by:
1010
1011 @itemize @bullet
1012 @item
1013 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1014 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1015 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1016 pointer)
1017
1018 @item
1019 the 8 extended registers @samp{%r8}--@samp{%r15}.
1020
1021 @item
1022 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1023
1024 @item
1025 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1026
1027 @item
1028 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1029
1030 @item
1031 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1032
1033 @item
1034 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1035
1036 @item
1037 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1038 @end itemize
1039
1040 With the AVX extensions more registers were made available:
1041
1042 @itemize @bullet
1043
1044 @item
1045 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1046 available in 32-bit mode). The bottom 128 bits are overlaid with the
1047 @samp{xmm0}--@samp{xmm15} registers.
1048
1049 @end itemize
1050
1051 The AVX2 extensions made in 64-bit mode more registers available:
1052
1053 @itemize @bullet
1054
1055 @item
1056 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1057 registers @samp{%ymm16}--@samp{%ymm31}.
1058
1059 @end itemize
1060
1061 The AVX512 extensions added the following registers:
1062
1063 @itemize @bullet
1064
1065 @item
1066 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1067 available in 32-bit mode). The bottom 128 bits are overlaid with the
1068 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1069 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1070
1071 @item
1072 the 8 mask registers @samp{%k0}--@samp{%k7}.
1073
1074 @end itemize
1075
1076 @node i386-Prefixes
1077 @section Instruction Prefixes
1078
1079 @cindex i386 instruction prefixes
1080 @cindex instruction prefixes, i386
1081 @cindex prefixes, i386
1082 Instruction prefixes are used to modify the following instruction. They
1083 are used to repeat string instructions, to provide section overrides, to
1084 perform bus lock operations, and to change operand and address sizes.
1085 (Most instructions that normally operate on 32-bit operands will use
1086 16-bit operands if the instruction has an ``operand size'' prefix.)
1087 Instruction prefixes are best written on the same line as the instruction
1088 they act upon. For example, the @samp{scas} (scan string) instruction is
1089 repeated with:
1090
1091 @smallexample
1092 repne scas %es:(%edi),%al
1093 @end smallexample
1094
1095 You may also place prefixes on the lines immediately preceding the
1096 instruction, but this circumvents checks that @code{@value{AS}} does
1097 with prefixes, and will not work with all prefixes.
1098
1099 Here is a list of instruction prefixes:
1100
1101 @cindex section override prefixes, i386
1102 @itemize @bullet
1103 @item
1104 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1105 @samp{fs}, @samp{gs}. These are automatically added by specifying
1106 using the @var{section}:@var{memory-operand} form for memory references.
1107
1108 @cindex size prefixes, i386
1109 @item
1110 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1111 change 32-bit operands/addresses into 16-bit operands/addresses,
1112 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1113 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1114 @emph{must} appear on the same line of code as the instruction they
1115 modify. For example, in a 16-bit @code{.code16} section, you might
1116 write:
1117
1118 @smallexample
1119 addr32 jmpl *(%ebx)
1120 @end smallexample
1121
1122 @cindex bus lock prefixes, i386
1123 @cindex inhibiting interrupts, i386
1124 @item
1125 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1126 the instruction it precedes. (This is only valid with certain
1127 instructions; see a 80386 manual for details).
1128
1129 @cindex coprocessor wait, i386
1130 @item
1131 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1132 complete the current instruction. This should never be needed for the
1133 80386/80387 combination.
1134
1135 @cindex repeat prefixes, i386
1136 @item
1137 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1138 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1139 times if the current address size is 16-bits).
1140 @cindex REX prefixes, i386
1141 @item
1142 The @samp{rex} family of prefixes is used by x86-64 to encode
1143 extensions to i386 instruction set. The @samp{rex} prefix has four
1144 bits --- an operand size overwrite (@code{64}) used to change operand size
1145 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1146 register set.
1147
1148 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1149 instruction emits @samp{rex} prefix with all the bits set. By omitting
1150 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1151 prefixes as well. Normally, there is no need to write the prefixes
1152 explicitly, since gas will automatically generate them based on the
1153 instruction operands.
1154 @end itemize
1155
1156 @node i386-Memory
1157 @section Memory References
1158
1159 @cindex i386 memory references
1160 @cindex memory references, i386
1161 @cindex x86-64 memory references
1162 @cindex memory references, x86-64
1163 An Intel syntax indirect memory reference of the form
1164
1165 @smallexample
1166 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1167 @end smallexample
1168
1169 @noindent
1170 is translated into the AT&T syntax
1171
1172 @smallexample
1173 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1174 @end smallexample
1175
1176 @noindent
1177 where @var{base} and @var{index} are the optional 32-bit base and
1178 index registers, @var{disp} is the optional displacement, and
1179 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1180 to calculate the address of the operand. If no @var{scale} is
1181 specified, @var{scale} is taken to be 1. @var{section} specifies the
1182 optional section register for the memory operand, and may override the
1183 default section register (see a 80386 manual for section register
1184 defaults). Note that section overrides in AT&T syntax @emph{must}
1185 be preceded by a @samp{%}. If you specify a section override which
1186 coincides with the default section register, @code{@value{AS}} does @emph{not}
1187 output any section register override prefixes to assemble the given
1188 instruction. Thus, section overrides can be specified to emphasize which
1189 section register is used for a given memory operand.
1190
1191 Here are some examples of Intel and AT&T style memory references:
1192
1193 @table @asis
1194 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1195 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1196 missing, and the default section is used (@samp{%ss} for addressing with
1197 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1198
1199 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1200 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1201 @samp{foo}. All other fields are missing. The section register here
1202 defaults to @samp{%ds}.
1203
1204 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1205 This uses the value pointed to by @samp{foo} as a memory operand.
1206 Note that @var{base} and @var{index} are both missing, but there is only
1207 @emph{one} @samp{,}. This is a syntactic exception.
1208
1209 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1210 This selects the contents of the variable @samp{foo} with section
1211 register @var{section} being @samp{%gs}.
1212 @end table
1213
1214 Absolute (as opposed to PC relative) call and jump operands must be
1215 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1216 always chooses PC relative addressing for jump/call labels.
1217
1218 Any instruction that has a memory operand, but no register operand,
1219 @emph{must} specify its size (byte, word, long, or quadruple) with an
1220 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1221 respectively).
1222
1223 The x86-64 architecture adds an RIP (instruction pointer relative)
1224 addressing. This addressing mode is specified by using @samp{rip} as a
1225 base register. Only constant offsets are valid. For example:
1226
1227 @table @asis
1228 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1229 Points to the address 1234 bytes past the end of the current
1230 instruction.
1231
1232 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1233 Points to the @code{symbol} in RIP relative way, this is shorter than
1234 the default absolute addressing.
1235 @end table
1236
1237 Other addressing modes remain unchanged in x86-64 architecture, except
1238 registers used are 64-bit instead of 32-bit.
1239
1240 @node i386-Jumps
1241 @section Handling of Jump Instructions
1242
1243 @cindex jump optimization, i386
1244 @cindex i386 jump optimization
1245 @cindex jump optimization, x86-64
1246 @cindex x86-64 jump optimization
1247 Jump instructions are always optimized to use the smallest possible
1248 displacements. This is accomplished by using byte (8-bit) displacement
1249 jumps whenever the target is sufficiently close. If a byte displacement
1250 is insufficient a long displacement is used. We do not support
1251 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1252 instruction with the @samp{data16} instruction prefix), since the 80386
1253 insists upon masking @samp{%eip} to 16 bits after the word displacement
1254 is added. (See also @pxref{i386-Arch})
1255
1256 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1257 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1258 displacements, so that if you use these instructions (@code{@value{GCC}} does
1259 not use them) you may get an error message (and incorrect code). The AT&T
1260 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1261 to
1262
1263 @smallexample
1264 jcxz cx_zero
1265 jmp cx_nonzero
1266 cx_zero: jmp foo
1267 cx_nonzero:
1268 @end smallexample
1269
1270 @node i386-Float
1271 @section Floating Point
1272
1273 @cindex i386 floating point
1274 @cindex floating point, i386
1275 @cindex x86-64 floating point
1276 @cindex floating point, x86-64
1277 All 80387 floating point types except packed BCD are supported.
1278 (BCD support may be added without much difficulty). These data
1279 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1280 double (64-bit), and extended (80-bit) precision floating point.
1281 Each supported type has an instruction mnemonic suffix and a constructor
1282 associated with it. Instruction mnemonic suffixes specify the operand's
1283 data type. Constructors build these data types into memory.
1284
1285 @cindex @code{float} directive, i386
1286 @cindex @code{single} directive, i386
1287 @cindex @code{double} directive, i386
1288 @cindex @code{tfloat} directive, i386
1289 @cindex @code{float} directive, x86-64
1290 @cindex @code{single} directive, x86-64
1291 @cindex @code{double} directive, x86-64
1292 @cindex @code{tfloat} directive, x86-64
1293 @itemize @bullet
1294 @item
1295 Floating point constructors are @samp{.float} or @samp{.single},
1296 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1297 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1298 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1299 only supports this format via the @samp{fldt} (load 80-bit real to stack
1300 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1301
1302 @cindex @code{word} directive, i386
1303 @cindex @code{long} directive, i386
1304 @cindex @code{int} directive, i386
1305 @cindex @code{quad} directive, i386
1306 @cindex @code{word} directive, x86-64
1307 @cindex @code{long} directive, x86-64
1308 @cindex @code{int} directive, x86-64
1309 @cindex @code{quad} directive, x86-64
1310 @item
1311 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1312 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1313 corresponding instruction mnemonic suffixes are @samp{s} (single),
1314 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1315 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1316 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1317 stack) instructions.
1318 @end itemize
1319
1320 Register to register operations should not use instruction mnemonic suffixes.
1321 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1322 wrote @samp{fst %st, %st(1)}, since all register to register operations
1323 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1324 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1325 then stores the result in the 4 byte location @samp{mem})
1326
1327 @node i386-SIMD
1328 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1329
1330 @cindex MMX, i386
1331 @cindex 3DNow!, i386
1332 @cindex SIMD, i386
1333 @cindex MMX, x86-64
1334 @cindex 3DNow!, x86-64
1335 @cindex SIMD, x86-64
1336
1337 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1338 instructions for integer data), available on Intel's Pentium MMX
1339 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1340 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1341 instruction set (SIMD instructions for 32-bit floating point data)
1342 available on AMD's K6-2 processor and possibly others in the future.
1343
1344 Currently, @code{@value{AS}} does not support Intel's floating point
1345 SIMD, Katmai (KNI).
1346
1347 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1348 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1349 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1350 floating point values. The MMX registers cannot be used at the same time
1351 as the floating point stack.
1352
1353 See Intel and AMD documentation, keeping in mind that the operand order in
1354 instructions is reversed from the Intel syntax.
1355
1356 @node i386-LWP
1357 @section AMD's Lightweight Profiling Instructions
1358
1359 @cindex LWP, i386
1360 @cindex LWP, x86-64
1361
1362 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1363 instruction set, available on AMD's Family 15h (Orochi) processors.
1364
1365 LWP enables applications to collect and manage performance data, and
1366 react to performance events. The collection of performance data
1367 requires no context switches. LWP runs in the context of a thread and
1368 so several counters can be used independently across multiple threads.
1369 LWP can be used in both 64-bit and legacy 32-bit modes.
1370
1371 For detailed information on the LWP instruction set, see the
1372 @cite{AMD Lightweight Profiling Specification} available at
1373 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1374
1375 @node i386-BMI
1376 @section Bit Manipulation Instructions
1377
1378 @cindex BMI, i386
1379 @cindex BMI, x86-64
1380
1381 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1382
1383 BMI instructions provide several instructions implementing individual
1384 bit manipulation operations such as isolation, masking, setting, or
1385 resetting.
1386
1387 @c Need to add a specification citation here when available.
1388
1389 @node i386-TBM
1390 @section AMD's Trailing Bit Manipulation Instructions
1391
1392 @cindex TBM, i386
1393 @cindex TBM, x86-64
1394
1395 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1396 instruction set, available on AMD's BDVER2 processors (Trinity and
1397 Viperfish).
1398
1399 TBM instructions provide instructions implementing individual bit
1400 manipulation operations such as isolating, masking, setting, resetting,
1401 complementing, and operations on trailing zeros and ones.
1402
1403 @c Need to add a specification citation here when available.
1404
1405 @node i386-16bit
1406 @section Writing 16-bit Code
1407
1408 @cindex i386 16-bit code
1409 @cindex 16-bit code, i386
1410 @cindex real-mode code, i386
1411 @cindex @code{code16gcc} directive, i386
1412 @cindex @code{code16} directive, i386
1413 @cindex @code{code32} directive, i386
1414 @cindex @code{code64} directive, i386
1415 @cindex @code{code64} directive, x86-64
1416 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1417 or 64-bit x86-64 code depending on the default configuration,
1418 it also supports writing code to run in real mode or in 16-bit protected
1419 mode code segments. To do this, put a @samp{.code16} or
1420 @samp{.code16gcc} directive before the assembly language instructions to
1421 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1422 32-bit code with the @samp{.code32} directive or 64-bit code with the
1423 @samp{.code64} directive.
1424
1425 @samp{.code16gcc} provides experimental support for generating 16-bit
1426 code from gcc, and differs from @samp{.code16} in that @samp{call},
1427 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1428 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1429 default to 32-bit size. This is so that the stack pointer is
1430 manipulated in the same way over function calls, allowing access to
1431 function parameters at the same stack offsets as in 32-bit mode.
1432 @samp{.code16gcc} also automatically adds address size prefixes where
1433 necessary to use the 32-bit addressing modes that gcc generates.
1434
1435 The code which @code{@value{AS}} generates in 16-bit mode will not
1436 necessarily run on a 16-bit pre-80386 processor. To write code that
1437 runs on such a processor, you must refrain from using @emph{any} 32-bit
1438 constructs which require @code{@value{AS}} to output address or operand
1439 size prefixes.
1440
1441 Note that writing 16-bit code instructions by explicitly specifying a
1442 prefix or an instruction mnemonic suffix within a 32-bit code section
1443 generates different machine instructions than those generated for a
1444 16-bit code segment. In a 32-bit code section, the following code
1445 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1446 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1447
1448 @smallexample
1449 pushw $4
1450 @end smallexample
1451
1452 The same code in a 16-bit code section would generate the machine
1453 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1454 is correct since the processor default operand size is assumed to be 16
1455 bits in a 16-bit code section.
1456
1457 @node i386-Arch
1458 @section Specifying CPU Architecture
1459
1460 @cindex arch directive, i386
1461 @cindex i386 arch directive
1462 @cindex arch directive, x86-64
1463 @cindex x86-64 arch directive
1464
1465 @code{@value{AS}} may be told to assemble for a particular CPU
1466 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1467 directive enables a warning when gas detects an instruction that is not
1468 supported on the CPU specified. The choices for @var{cpu_type} are:
1469
1470 @multitable @columnfractions .20 .20 .20 .20
1471 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1472 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1473 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1474 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1475 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1476 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1477 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1478 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1479 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1480 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1481 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1482 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1483 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1484 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1485 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1486 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1487 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1488 @item @samp{.hle}
1489 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1490 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1491 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1492 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1493 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1494 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1495 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1496 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1497 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1498 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1499 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1500 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1501 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1502 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1503 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1504 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1505 @item @samp{.mcommit} @tab @samp{.sev_es}
1506 @end multitable
1507
1508 Apart from the warning, there are only two other effects on
1509 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1510 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1511 will automatically use a two byte opcode sequence. The larger three
1512 byte opcode sequence is used on the 486 (and when no architecture is
1513 specified) because it executes faster on the 486. Note that you can
1514 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1515 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1516 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1517 conditional jumps will be promoted when necessary to a two instruction
1518 sequence consisting of a conditional jump of the opposite sense around
1519 an unconditional jump to the target.
1520
1521 Following the CPU architecture (but not a sub-architecture, which are those
1522 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1523 control automatic promotion of conditional jumps. @samp{jumps} is the
1524 default, and enables jump promotion; All external jumps will be of the long
1525 variety, and file-local jumps will be promoted as necessary.
1526 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1527 byte offset jumps, and warns about file-local conditional jumps that
1528 @code{@value{AS}} promotes.
1529 Unconditional jumps are treated as for @samp{jumps}.
1530
1531 For example
1532
1533 @smallexample
1534 .arch i8086,nojumps
1535 @end smallexample
1536
1537 @node i386-ISA
1538 @section AMD64 ISA vs. Intel64 ISA
1539
1540 There are some discrepancies between AMD64 and Intel64 ISAs.
1541
1542 @itemize @bullet
1543 @item For @samp{movsxd} with 16-bit destination register, AMD64
1544 supports 32-bit source operand and Intel64 supports 16-bit source
1545 operand.
1546
1547 @item For far branches (with explicit memory operand), both ISAs support
1548 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1549 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1550 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1551 syntax.
1552
1553 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1554 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1555 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1556 operands).
1557
1558 @end itemize
1559
1560 @node i386-Bugs
1561 @section AT&T Syntax bugs
1562
1563 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1564 assemblers, generate floating point instructions with reversed source
1565 and destination registers in certain cases. Unfortunately, gcc and
1566 possibly many other programs use this reversed syntax, so we're stuck
1567 with it.
1568
1569 For example
1570
1571 @smallexample
1572 fsub %st,%st(3)
1573 @end smallexample
1574 @noindent
1575 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1576 than the expected @samp{%st(3) - %st}. This happens with all the
1577 non-commutative arithmetic floating point operations with two register
1578 operands where the source register is @samp{%st} and the destination
1579 register is @samp{%st(i)}.
1580
1581 @node i386-Notes
1582 @section Notes
1583
1584 @cindex i386 @code{mul}, @code{imul} instructions
1585 @cindex @code{mul} instruction, i386
1586 @cindex @code{imul} instruction, i386
1587 @cindex @code{mul} instruction, x86-64
1588 @cindex @code{imul} instruction, x86-64
1589 There is some trickery concerning the @samp{mul} and @samp{imul}
1590 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1591 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1592 for @samp{imul}) can be output only in the one operand form. Thus,
1593 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1594 the expanding multiply would clobber the @samp{%edx} register, and this
1595 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1596 64-bit product in @samp{%edx:%eax}.
1597
1598 We have added a two operand form of @samp{imul} when the first operand
1599 is an immediate mode expression and the second operand is a register.
1600 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1601 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1602 $69, %eax, %eax}.
1603
This page took 0.063421 seconds and 4 git commands to generate.