9ac2924a917a4cc57c8a90670c824cabc2a068b8
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2014 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{k6},
114 @code{k6_2},
115 @code{athlon},
116 @code{opteron},
117 @code{k8},
118 @code{amdfam10},
119 @code{bdver1},
120 @code{bdver2},
121 @code{bdver3},
122 @code{bdver4},
123 @code{btver1},
124 @code{btver2},
125 @code{generic32} and
126 @code{generic64}.
127
128 In addition to the basic instruction set, the assembler can be told to
129 accept various extension mnemonics. For example,
130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131 @var{vmx}. The following extensions are currently supported:
132 @code{8087},
133 @code{287},
134 @code{387},
135 @code{no87},
136 @code{mmx},
137 @code{nommx},
138 @code{sse},
139 @code{sse2},
140 @code{sse3},
141 @code{ssse3},
142 @code{sse4.1},
143 @code{sse4.2},
144 @code{sse4},
145 @code{nosse},
146 @code{avx},
147 @code{avx2},
148 @code{adx},
149 @code{rdseed},
150 @code{prfchw},
151 @code{smap},
152 @code{mpx},
153 @code{sha},
154 @code{avx512f},
155 @code{avx512cd},
156 @code{avx512er},
157 @code{avx512pf},
158 @code{noavx},
159 @code{vmx},
160 @code{vmfunc},
161 @code{smx},
162 @code{xsave},
163 @code{xsaveopt},
164 @code{aes},
165 @code{pclmul},
166 @code{fsgsbase},
167 @code{rdrnd},
168 @code{f16c},
169 @code{bmi2},
170 @code{fma},
171 @code{movbe},
172 @code{ept},
173 @code{lzcnt},
174 @code{hle},
175 @code{rtm},
176 @code{invpcid},
177 @code{clflush},
178 @code{lwp},
179 @code{fma4},
180 @code{xop},
181 @code{cx16},
182 @code{syscall},
183 @code{rdtscp},
184 @code{3dnow},
185 @code{3dnowa},
186 @code{sse4a},
187 @code{sse5},
188 @code{svme},
189 @code{abm} and
190 @code{padlock}.
191 @code{avx512vl},
192 Note that rather than extending a basic instruction set, the extension
193 mnemonics starting with @code{no} revoke the respective functionality.
194
195 When the @code{.arch} directive is used with @option{-march}, the
196 @code{.arch} directive will take precedent.
197
198 @cindex @samp{-mtune=} option, i386
199 @cindex @samp{-mtune=} option, x86-64
200 @item -mtune=@var{CPU}
201 This option specifies a processor to optimize for. When used in
202 conjunction with the @option{-march} option, only instructions
203 of the processor specified by the @option{-march} option will be
204 generated.
205
206 Valid @var{CPU} values are identical to the processor list of
207 @option{-march=@var{CPU}}.
208
209 @cindex @samp{-msse2avx} option, i386
210 @cindex @samp{-msse2avx} option, x86-64
211 @item -msse2avx
212 This option specifies that the assembler should encode SSE instructions
213 with VEX prefix.
214
215 @cindex @samp{-msse-check=} option, i386
216 @cindex @samp{-msse-check=} option, x86-64
217 @item -msse-check=@var{none}
218 @itemx -msse-check=@var{warning}
219 @itemx -msse-check=@var{error}
220 These options control if the assembler should check SSE instructions.
221 @option{-msse-check=@var{none}} will make the assembler not to check SSE
222 instructions, which is the default. @option{-msse-check=@var{warning}}
223 will make the assembler issue a warning for any SSE instruction.
224 @option{-msse-check=@var{error}} will make the assembler issue an error
225 for any SSE instruction.
226
227 @cindex @samp{-mavxscalar=} option, i386
228 @cindex @samp{-mavxscalar=} option, x86-64
229 @item -mavxscalar=@var{128}
230 @itemx -mavxscalar=@var{256}
231 These options control how the assembler should encode scalar AVX
232 instructions. @option{-mavxscalar=@var{128}} will encode scalar
233 AVX instructions with 128bit vector length, which is the default.
234 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
235 with 256bit vector length.
236
237 @cindex @samp{-mevexlig=} option, i386
238 @cindex @samp{-mevexlig=} option, x86-64
239 @item -mevexlig=@var{128}
240 @itemx -mevexlig=@var{256}
241 @itemx -mevexlig=@var{512}
242 These options control how the assembler should encode length-ignored
243 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
244 EVEX instructions with 128bit vector length, which is the default.
245 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
246 encode LIG EVEX instructions with 256bit and 512bit vector length,
247 respectively.
248
249 @cindex @samp{-mevexwig=} option, i386
250 @cindex @samp{-mevexwig=} option, x86-64
251 @item -mevexwig=@var{0}
252 @itemx -mevexwig=@var{1}
253 These options control how the assembler should encode w-ignored (WIG)
254 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
255 EVEX instructions with evex.w = 0, which is the default.
256 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
257 evex.w = 1.
258
259 @cindex @samp{-mmnemonic=} option, i386
260 @cindex @samp{-mmnemonic=} option, x86-64
261 @item -mmnemonic=@var{att}
262 @itemx -mmnemonic=@var{intel}
263 This option specifies instruction mnemonic for matching instructions.
264 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
265 take precedent.
266
267 @cindex @samp{-msyntax=} option, i386
268 @cindex @samp{-msyntax=} option, x86-64
269 @item -msyntax=@var{att}
270 @itemx -msyntax=@var{intel}
271 This option specifies instruction syntax when processing instructions.
272 The @code{.att_syntax} and @code{.intel_syntax} directives will
273 take precedent.
274
275 @cindex @samp{-mnaked-reg} option, i386
276 @cindex @samp{-mnaked-reg} option, x86-64
277 @item -mnaked-reg
278 This opetion specifies that registers don't require a @samp{%} prefix.
279 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
280
281 @cindex @samp{-madd-bnd-prefix} option, i386
282 @cindex @samp{-madd-bnd-prefix} option, x86-64
283 @item -madd-bnd-prefix
284 This option forces the assembler to add BND prefix to all branches, even
285 if such prefix was not explicitly specified in the source code.
286
287 @cindex @samp{-mbig-obj} option, x86-64
288 @item -mbig-obj
289 On x86-64 PE/COFF target this option forces the use of big object file
290 format, which allows more than 32768 sections.
291
292 @end table
293 @c man end
294
295 @node i386-Directives
296 @section x86 specific Directives
297
298 @cindex machine directives, x86
299 @cindex x86 machine directives
300 @table @code
301
302 @cindex @code{lcomm} directive, COFF
303 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
304 Reserve @var{length} (an absolute expression) bytes for a local common
305 denoted by @var{symbol}. The section and value of @var{symbol} are
306 those of the new local common. The addresses are allocated in the bss
307 section, so that at run-time the bytes start off zeroed. Since
308 @var{symbol} is not declared global, it is normally not visible to
309 @code{@value{LD}}. The optional third parameter, @var{alignment},
310 specifies the desired alignment of the symbol in the bss section.
311
312 This directive is only available for COFF based x86 targets.
313
314 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
315 @c .largecomm
316
317 @end table
318
319 @node i386-Syntax
320 @section i386 Syntactical Considerations
321 @menu
322 * i386-Variations:: AT&T Syntax versus Intel Syntax
323 * i386-Chars:: Special Characters
324 @end menu
325
326 @node i386-Variations
327 @subsection AT&T Syntax versus Intel Syntax
328
329 @cindex i386 intel_syntax pseudo op
330 @cindex intel_syntax pseudo op, i386
331 @cindex i386 att_syntax pseudo op
332 @cindex att_syntax pseudo op, i386
333 @cindex i386 syntax compatibility
334 @cindex syntax compatibility, i386
335 @cindex x86-64 intel_syntax pseudo op
336 @cindex intel_syntax pseudo op, x86-64
337 @cindex x86-64 att_syntax pseudo op
338 @cindex att_syntax pseudo op, x86-64
339 @cindex x86-64 syntax compatibility
340 @cindex syntax compatibility, x86-64
341
342 @code{@value{AS}} now supports assembly using Intel assembler syntax.
343 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
344 back to the usual AT&T mode for compatibility with the output of
345 @code{@value{GCC}}. Either of these directives may have an optional
346 argument, @code{prefix}, or @code{noprefix} specifying whether registers
347 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
348 different from Intel syntax. We mention these differences because
349 almost all 80386 documents use Intel syntax. Notable differences
350 between the two syntaxes are:
351
352 @cindex immediate operands, i386
353 @cindex i386 immediate operands
354 @cindex register operands, i386
355 @cindex i386 register operands
356 @cindex jump/call operands, i386
357 @cindex i386 jump/call operands
358 @cindex operand delimiters, i386
359
360 @cindex immediate operands, x86-64
361 @cindex x86-64 immediate operands
362 @cindex register operands, x86-64
363 @cindex x86-64 register operands
364 @cindex jump/call operands, x86-64
365 @cindex x86-64 jump/call operands
366 @cindex operand delimiters, x86-64
367 @itemize @bullet
368 @item
369 AT&T immediate operands are preceded by @samp{$}; Intel immediate
370 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
371 AT&T register operands are preceded by @samp{%}; Intel register operands
372 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
373 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
374
375 @cindex i386 source, destination operands
376 @cindex source, destination operands; i386
377 @cindex x86-64 source, destination operands
378 @cindex source, destination operands; x86-64
379 @item
380 AT&T and Intel syntax use the opposite order for source and destination
381 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
382 @samp{source, dest} convention is maintained for compatibility with
383 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
384 instructions with 2 immediate operands, such as the @samp{enter}
385 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
386
387 @cindex mnemonic suffixes, i386
388 @cindex sizes operands, i386
389 @cindex i386 size suffixes
390 @cindex mnemonic suffixes, x86-64
391 @cindex sizes operands, x86-64
392 @cindex x86-64 size suffixes
393 @item
394 In AT&T syntax the size of memory operands is determined from the last
395 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
396 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
397 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
398 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
399 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
400 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
401 syntax.
402
403 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
404 instruction with the 64-bit displacement or immediate operand.
405
406 @cindex return instructions, i386
407 @cindex i386 jump, call, return
408 @cindex return instructions, x86-64
409 @cindex x86-64 jump, call, return
410 @item
411 Immediate form long jumps and calls are
412 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
413 Intel syntax is
414 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
415 instruction
416 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
417 @samp{ret far @var{stack-adjust}}.
418
419 @cindex sections, i386
420 @cindex i386 sections
421 @cindex sections, x86-64
422 @cindex x86-64 sections
423 @item
424 The AT&T assembler does not provide support for multiple section
425 programs. Unix style systems expect all programs to be single sections.
426 @end itemize
427
428 @node i386-Chars
429 @subsection Special Characters
430
431 @cindex line comment character, i386
432 @cindex i386 line comment character
433 The presence of a @samp{#} appearing anywhere on a line indicates the
434 start of a comment that extends to the end of that line.
435
436 If a @samp{#} appears as the first character of a line then the whole
437 line is treated as a comment, but in this case the line can also be a
438 logical line number directive (@pxref{Comments}) or a preprocessor
439 control command (@pxref{Preprocessing}).
440
441 If the @option{--divide} command line option has not been specified
442 then the @samp{/} character appearing anywhere on a line also
443 introduces a line comment.
444
445 @cindex line separator, i386
446 @cindex statement separator, i386
447 @cindex i386 line separator
448 The @samp{;} character can be used to separate statements on the same
449 line.
450
451 @node i386-Mnemonics
452 @section Instruction Naming
453
454 @cindex i386 instruction naming
455 @cindex instruction naming, i386
456 @cindex x86-64 instruction naming
457 @cindex instruction naming, x86-64
458
459 Instruction mnemonics are suffixed with one character modifiers which
460 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
461 and @samp{q} specify byte, word, long and quadruple word operands. If
462 no suffix is specified by an instruction then @code{@value{AS}} tries to
463 fill in the missing suffix based on the destination register operand
464 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
465 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
466 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
467 assembler which assumes that a missing mnemonic suffix implies long
468 operand size. (This incompatibility does not affect compiler output
469 since compilers always explicitly specify the mnemonic suffix.)
470
471 Almost all instructions have the same names in AT&T and Intel format.
472 There are a few exceptions. The sign extend and zero extend
473 instructions need two sizes to specify them. They need a size to
474 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
475 is accomplished by using two instruction mnemonic suffixes in AT&T
476 syntax. Base names for sign extend and zero extend are
477 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
478 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
479 are tacked on to this base name, the @emph{from} suffix before the
480 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
481 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
482 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
483 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
484 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
485 quadruple word).
486
487 @cindex encoding options, i386
488 @cindex encoding options, x86-64
489
490 Different encoding options can be specified via optional mnemonic
491 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
492 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
493 prefers 8bit or 32bit displacement in encoding.
494
495 @cindex conversion instructions, i386
496 @cindex i386 conversion instructions
497 @cindex conversion instructions, x86-64
498 @cindex x86-64 conversion instructions
499 The Intel-syntax conversion instructions
500
501 @itemize @bullet
502 @item
503 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
504
505 @item
506 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
507
508 @item
509 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
510
511 @item
512 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
513
514 @item
515 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
516 (x86-64 only),
517
518 @item
519 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
520 @samp{%rdx:%rax} (x86-64 only),
521 @end itemize
522
523 @noindent
524 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
525 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
526 instructions.
527
528 @cindex jump instructions, i386
529 @cindex call instructions, i386
530 @cindex jump instructions, x86-64
531 @cindex call instructions, x86-64
532 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
533 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
534 convention.
535
536 @section AT&T Mnemonic versus Intel Mnemonic
537
538 @cindex i386 mnemonic compatibility
539 @cindex mnemonic compatibility, i386
540
541 @code{@value{AS}} supports assembly using Intel mnemonic.
542 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
543 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
544 syntax for compatibility with the output of @code{@value{GCC}}.
545 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
546 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
547 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
548 assembler with different mnemonics from those in Intel IA32 specification.
549 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
550
551 @node i386-Regs
552 @section Register Naming
553
554 @cindex i386 registers
555 @cindex registers, i386
556 @cindex x86-64 registers
557 @cindex registers, x86-64
558 Register operands are always prefixed with @samp{%}. The 80386 registers
559 consist of
560
561 @itemize @bullet
562 @item
563 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
564 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
565 frame pointer), and @samp{%esp} (the stack pointer).
566
567 @item
568 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
569 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
570
571 @item
572 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
573 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
574 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
575 @samp{%cx}, and @samp{%dx})
576
577 @item
578 the 6 section registers @samp{%cs} (code section), @samp{%ds}
579 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
580 and @samp{%gs}.
581
582 @item
583 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
584 @samp{%cr3}.
585
586 @item
587 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
588 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
589
590 @item
591 the 2 test registers @samp{%tr6} and @samp{%tr7}.
592
593 @item
594 the 8 floating point register stack @samp{%st} or equivalently
595 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
596 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
597 These registers are overloaded by 8 MMX registers @samp{%mm0},
598 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
599 @samp{%mm6} and @samp{%mm7}.
600
601 @item
602 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
603 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
604 @end itemize
605
606 The AMD x86-64 architecture extends the register set by:
607
608 @itemize @bullet
609 @item
610 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
611 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
612 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
613 pointer)
614
615 @item
616 the 8 extended registers @samp{%r8}--@samp{%r15}.
617
618 @item
619 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
620
621 @item
622 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
623
624 @item
625 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
626
627 @item
628 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
629
630 @item
631 the 8 debug registers: @samp{%db8}--@samp{%db15}.
632
633 @item
634 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
635 @end itemize
636
637 @node i386-Prefixes
638 @section Instruction Prefixes
639
640 @cindex i386 instruction prefixes
641 @cindex instruction prefixes, i386
642 @cindex prefixes, i386
643 Instruction prefixes are used to modify the following instruction. They
644 are used to repeat string instructions, to provide section overrides, to
645 perform bus lock operations, and to change operand and address sizes.
646 (Most instructions that normally operate on 32-bit operands will use
647 16-bit operands if the instruction has an ``operand size'' prefix.)
648 Instruction prefixes are best written on the same line as the instruction
649 they act upon. For example, the @samp{scas} (scan string) instruction is
650 repeated with:
651
652 @smallexample
653 repne scas %es:(%edi),%al
654 @end smallexample
655
656 You may also place prefixes on the lines immediately preceding the
657 instruction, but this circumvents checks that @code{@value{AS}} does
658 with prefixes, and will not work with all prefixes.
659
660 Here is a list of instruction prefixes:
661
662 @cindex section override prefixes, i386
663 @itemize @bullet
664 @item
665 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
666 @samp{fs}, @samp{gs}. These are automatically added by specifying
667 using the @var{section}:@var{memory-operand} form for memory references.
668
669 @cindex size prefixes, i386
670 @item
671 Operand/Address size prefixes @samp{data16} and @samp{addr16}
672 change 32-bit operands/addresses into 16-bit operands/addresses,
673 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
674 @code{.code16} section) into 32-bit operands/addresses. These prefixes
675 @emph{must} appear on the same line of code as the instruction they
676 modify. For example, in a 16-bit @code{.code16} section, you might
677 write:
678
679 @smallexample
680 addr32 jmpl *(%ebx)
681 @end smallexample
682
683 @cindex bus lock prefixes, i386
684 @cindex inhibiting interrupts, i386
685 @item
686 The bus lock prefix @samp{lock} inhibits interrupts during execution of
687 the instruction it precedes. (This is only valid with certain
688 instructions; see a 80386 manual for details).
689
690 @cindex coprocessor wait, i386
691 @item
692 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
693 complete the current instruction. This should never be needed for the
694 80386/80387 combination.
695
696 @cindex repeat prefixes, i386
697 @item
698 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
699 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
700 times if the current address size is 16-bits).
701 @cindex REX prefixes, i386
702 @item
703 The @samp{rex} family of prefixes is used by x86-64 to encode
704 extensions to i386 instruction set. The @samp{rex} prefix has four
705 bits --- an operand size overwrite (@code{64}) used to change operand size
706 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
707 register set.
708
709 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
710 instruction emits @samp{rex} prefix with all the bits set. By omitting
711 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
712 prefixes as well. Normally, there is no need to write the prefixes
713 explicitly, since gas will automatically generate them based on the
714 instruction operands.
715 @end itemize
716
717 @node i386-Memory
718 @section Memory References
719
720 @cindex i386 memory references
721 @cindex memory references, i386
722 @cindex x86-64 memory references
723 @cindex memory references, x86-64
724 An Intel syntax indirect memory reference of the form
725
726 @smallexample
727 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
728 @end smallexample
729
730 @noindent
731 is translated into the AT&T syntax
732
733 @smallexample
734 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
735 @end smallexample
736
737 @noindent
738 where @var{base} and @var{index} are the optional 32-bit base and
739 index registers, @var{disp} is the optional displacement, and
740 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
741 to calculate the address of the operand. If no @var{scale} is
742 specified, @var{scale} is taken to be 1. @var{section} specifies the
743 optional section register for the memory operand, and may override the
744 default section register (see a 80386 manual for section register
745 defaults). Note that section overrides in AT&T syntax @emph{must}
746 be preceded by a @samp{%}. If you specify a section override which
747 coincides with the default section register, @code{@value{AS}} does @emph{not}
748 output any section register override prefixes to assemble the given
749 instruction. Thus, section overrides can be specified to emphasize which
750 section register is used for a given memory operand.
751
752 Here are some examples of Intel and AT&T style memory references:
753
754 @table @asis
755 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
756 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
757 missing, and the default section is used (@samp{%ss} for addressing with
758 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
759
760 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
761 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
762 @samp{foo}. All other fields are missing. The section register here
763 defaults to @samp{%ds}.
764
765 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
766 This uses the value pointed to by @samp{foo} as a memory operand.
767 Note that @var{base} and @var{index} are both missing, but there is only
768 @emph{one} @samp{,}. This is a syntactic exception.
769
770 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
771 This selects the contents of the variable @samp{foo} with section
772 register @var{section} being @samp{%gs}.
773 @end table
774
775 Absolute (as opposed to PC relative) call and jump operands must be
776 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
777 always chooses PC relative addressing for jump/call labels.
778
779 Any instruction that has a memory operand, but no register operand,
780 @emph{must} specify its size (byte, word, long, or quadruple) with an
781 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
782 respectively).
783
784 The x86-64 architecture adds an RIP (instruction pointer relative)
785 addressing. This addressing mode is specified by using @samp{rip} as a
786 base register. Only constant offsets are valid. For example:
787
788 @table @asis
789 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
790 Points to the address 1234 bytes past the end of the current
791 instruction.
792
793 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
794 Points to the @code{symbol} in RIP relative way, this is shorter than
795 the default absolute addressing.
796 @end table
797
798 Other addressing modes remain unchanged in x86-64 architecture, except
799 registers used are 64-bit instead of 32-bit.
800
801 @node i386-Jumps
802 @section Handling of Jump Instructions
803
804 @cindex jump optimization, i386
805 @cindex i386 jump optimization
806 @cindex jump optimization, x86-64
807 @cindex x86-64 jump optimization
808 Jump instructions are always optimized to use the smallest possible
809 displacements. This is accomplished by using byte (8-bit) displacement
810 jumps whenever the target is sufficiently close. If a byte displacement
811 is insufficient a long displacement is used. We do not support
812 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
813 instruction with the @samp{data16} instruction prefix), since the 80386
814 insists upon masking @samp{%eip} to 16 bits after the word displacement
815 is added. (See also @pxref{i386-Arch})
816
817 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
818 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
819 displacements, so that if you use these instructions (@code{@value{GCC}} does
820 not use them) you may get an error message (and incorrect code). The AT&T
821 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
822 to
823
824 @smallexample
825 jcxz cx_zero
826 jmp cx_nonzero
827 cx_zero: jmp foo
828 cx_nonzero:
829 @end smallexample
830
831 @node i386-Float
832 @section Floating Point
833
834 @cindex i386 floating point
835 @cindex floating point, i386
836 @cindex x86-64 floating point
837 @cindex floating point, x86-64
838 All 80387 floating point types except packed BCD are supported.
839 (BCD support may be added without much difficulty). These data
840 types are 16-, 32-, and 64- bit integers, and single (32-bit),
841 double (64-bit), and extended (80-bit) precision floating point.
842 Each supported type has an instruction mnemonic suffix and a constructor
843 associated with it. Instruction mnemonic suffixes specify the operand's
844 data type. Constructors build these data types into memory.
845
846 @cindex @code{float} directive, i386
847 @cindex @code{single} directive, i386
848 @cindex @code{double} directive, i386
849 @cindex @code{tfloat} directive, i386
850 @cindex @code{float} directive, x86-64
851 @cindex @code{single} directive, x86-64
852 @cindex @code{double} directive, x86-64
853 @cindex @code{tfloat} directive, x86-64
854 @itemize @bullet
855 @item
856 Floating point constructors are @samp{.float} or @samp{.single},
857 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
858 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
859 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
860 only supports this format via the @samp{fldt} (load 80-bit real to stack
861 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
862
863 @cindex @code{word} directive, i386
864 @cindex @code{long} directive, i386
865 @cindex @code{int} directive, i386
866 @cindex @code{quad} directive, i386
867 @cindex @code{word} directive, x86-64
868 @cindex @code{long} directive, x86-64
869 @cindex @code{int} directive, x86-64
870 @cindex @code{quad} directive, x86-64
871 @item
872 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
873 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
874 corresponding instruction mnemonic suffixes are @samp{s} (single),
875 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
876 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
877 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
878 stack) instructions.
879 @end itemize
880
881 Register to register operations should not use instruction mnemonic suffixes.
882 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
883 wrote @samp{fst %st, %st(1)}, since all register to register operations
884 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
885 which converts @samp{%st} from 80-bit to 64-bit floating point format,
886 then stores the result in the 4 byte location @samp{mem})
887
888 @node i386-SIMD
889 @section Intel's MMX and AMD's 3DNow! SIMD Operations
890
891 @cindex MMX, i386
892 @cindex 3DNow!, i386
893 @cindex SIMD, i386
894 @cindex MMX, x86-64
895 @cindex 3DNow!, x86-64
896 @cindex SIMD, x86-64
897
898 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
899 instructions for integer data), available on Intel's Pentium MMX
900 processors and Pentium II processors, AMD's K6 and K6-2 processors,
901 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
902 instruction set (SIMD instructions for 32-bit floating point data)
903 available on AMD's K6-2 processor and possibly others in the future.
904
905 Currently, @code{@value{AS}} does not support Intel's floating point
906 SIMD, Katmai (KNI).
907
908 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
909 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
910 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
911 floating point values. The MMX registers cannot be used at the same time
912 as the floating point stack.
913
914 See Intel and AMD documentation, keeping in mind that the operand order in
915 instructions is reversed from the Intel syntax.
916
917 @node i386-LWP
918 @section AMD's Lightweight Profiling Instructions
919
920 @cindex LWP, i386
921 @cindex LWP, x86-64
922
923 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
924 instruction set, available on AMD's Family 15h (Orochi) processors.
925
926 LWP enables applications to collect and manage performance data, and
927 react to performance events. The collection of performance data
928 requires no context switches. LWP runs in the context of a thread and
929 so several counters can be used independently across multiple threads.
930 LWP can be used in both 64-bit and legacy 32-bit modes.
931
932 For detailed information on the LWP instruction set, see the
933 @cite{AMD Lightweight Profiling Specification} available at
934 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
935
936 @node i386-BMI
937 @section Bit Manipulation Instructions
938
939 @cindex BMI, i386
940 @cindex BMI, x86-64
941
942 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
943
944 BMI instructions provide several instructions implementing individual
945 bit manipulation operations such as isolation, masking, setting, or
946 resetting.
947
948 @c Need to add a specification citation here when available.
949
950 @node i386-TBM
951 @section AMD's Trailing Bit Manipulation Instructions
952
953 @cindex TBM, i386
954 @cindex TBM, x86-64
955
956 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
957 instruction set, available on AMD's BDVER2 processors (Trinity and
958 Viperfish).
959
960 TBM instructions provide instructions implementing individual bit
961 manipulation operations such as isolating, masking, setting, resetting,
962 complementing, and operations on trailing zeros and ones.
963
964 @c Need to add a specification citation here when available.
965
966 @node i386-16bit
967 @section Writing 16-bit Code
968
969 @cindex i386 16-bit code
970 @cindex 16-bit code, i386
971 @cindex real-mode code, i386
972 @cindex @code{code16gcc} directive, i386
973 @cindex @code{code16} directive, i386
974 @cindex @code{code32} directive, i386
975 @cindex @code{code64} directive, i386
976 @cindex @code{code64} directive, x86-64
977 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
978 or 64-bit x86-64 code depending on the default configuration,
979 it also supports writing code to run in real mode or in 16-bit protected
980 mode code segments. To do this, put a @samp{.code16} or
981 @samp{.code16gcc} directive before the assembly language instructions to
982 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
983 32-bit code with the @samp{.code32} directive or 64-bit code with the
984 @samp{.code64} directive.
985
986 @samp{.code16gcc} provides experimental support for generating 16-bit
987 code from gcc, and differs from @samp{.code16} in that @samp{call},
988 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
989 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
990 default to 32-bit size. This is so that the stack pointer is
991 manipulated in the same way over function calls, allowing access to
992 function parameters at the same stack offsets as in 32-bit mode.
993 @samp{.code16gcc} also automatically adds address size prefixes where
994 necessary to use the 32-bit addressing modes that gcc generates.
995
996 The code which @code{@value{AS}} generates in 16-bit mode will not
997 necessarily run on a 16-bit pre-80386 processor. To write code that
998 runs on such a processor, you must refrain from using @emph{any} 32-bit
999 constructs which require @code{@value{AS}} to output address or operand
1000 size prefixes.
1001
1002 Note that writing 16-bit code instructions by explicitly specifying a
1003 prefix or an instruction mnemonic suffix within a 32-bit code section
1004 generates different machine instructions than those generated for a
1005 16-bit code segment. In a 32-bit code section, the following code
1006 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1007 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1008
1009 @smallexample
1010 pushw $4
1011 @end smallexample
1012
1013 The same code in a 16-bit code section would generate the machine
1014 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1015 is correct since the processor default operand size is assumed to be 16
1016 bits in a 16-bit code section.
1017
1018 @node i386-Bugs
1019 @section AT&T Syntax bugs
1020
1021 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1022 assemblers, generate floating point instructions with reversed source
1023 and destination registers in certain cases. Unfortunately, gcc and
1024 possibly many other programs use this reversed syntax, so we're stuck
1025 with it.
1026
1027 For example
1028
1029 @smallexample
1030 fsub %st,%st(3)
1031 @end smallexample
1032 @noindent
1033 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1034 than the expected @samp{%st(3) - %st}. This happens with all the
1035 non-commutative arithmetic floating point operations with two register
1036 operands where the source register is @samp{%st} and the destination
1037 register is @samp{%st(i)}.
1038
1039 @node i386-Arch
1040 @section Specifying CPU Architecture
1041
1042 @cindex arch directive, i386
1043 @cindex i386 arch directive
1044 @cindex arch directive, x86-64
1045 @cindex x86-64 arch directive
1046
1047 @code{@value{AS}} may be told to assemble for a particular CPU
1048 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1049 directive enables a warning when gas detects an instruction that is not
1050 supported on the CPU specified. The choices for @var{cpu_type} are:
1051
1052 @multitable @columnfractions .20 .20 .20 .20
1053 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1054 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1055 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1056 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1057 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1058 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1059 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1060 @item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1061 @item @samp{generic32} @tab @samp{generic64}
1062 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1063 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1064 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1065 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1066 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1067 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1068 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1069 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1070 @item @samp{.smap} @tab @samp{.mpx}
1071 @item @samp{.smap} @tab @samp{.sha}
1072 @item @samp{.smap} @tab @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves}
1073 @item @samp{.smap} @tab @samp{.prefetchwt1}
1074 @item @samp{.smap} @tab @samp{.avx512vl}
1075 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1076 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1077 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1078 @item @samp{.padlock}
1079 @item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1080 @item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1081 @item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1082 @item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1083 @item @samp{.cx16} @tab @samp{.padlock}
1084 @end multitable
1085
1086 Apart from the warning, there are only two other effects on
1087 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1088 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1089 will automatically use a two byte opcode sequence. The larger three
1090 byte opcode sequence is used on the 486 (and when no architecture is
1091 specified) because it executes faster on the 486. Note that you can
1092 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1093 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1094 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1095 conditional jumps will be promoted when necessary to a two instruction
1096 sequence consisting of a conditional jump of the opposite sense around
1097 an unconditional jump to the target.
1098
1099 Following the CPU architecture (but not a sub-architecture, which are those
1100 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1101 control automatic promotion of conditional jumps. @samp{jumps} is the
1102 default, and enables jump promotion; All external jumps will be of the long
1103 variety, and file-local jumps will be promoted as necessary.
1104 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1105 byte offset jumps, and warns about file-local conditional jumps that
1106 @code{@value{AS}} promotes.
1107 Unconditional jumps are treated as for @samp{jumps}.
1108
1109 For example
1110
1111 @smallexample
1112 .arch i8086,nojumps
1113 @end smallexample
1114
1115 @node i386-Notes
1116 @section Notes
1117
1118 @cindex i386 @code{mul}, @code{imul} instructions
1119 @cindex @code{mul} instruction, i386
1120 @cindex @code{imul} instruction, i386
1121 @cindex @code{mul} instruction, x86-64
1122 @cindex @code{imul} instruction, x86-64
1123 There is some trickery concerning the @samp{mul} and @samp{imul}
1124 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1125 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1126 for @samp{imul}) can be output only in the one operand form. Thus,
1127 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1128 the expanding multiply would clobber the @samp{%edx} register, and this
1129 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1130 64-bit product in @samp{%edx:%eax}.
1131
1132 We have added a two operand form of @samp{imul} when the first operand
1133 is an immediate mode expression and the second operand is a register.
1134 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1135 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1136 $69, %eax, %eax}.
1137
This page took 0.053951 seconds and 3 git commands to generate.