[gdb/testsuite] Fix stepi pattern in gdb.btrace/reconnect.exp
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2020 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{btver1},
129 @code{btver2},
130 @code{generic32} and
131 @code{generic64}.
132
133 In addition to the basic instruction set, the assembler can be told to
134 accept various extension mnemonics. For example,
135 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
136 @var{vmx}. The following extensions are currently supported:
137 @code{8087},
138 @code{287},
139 @code{387},
140 @code{687},
141 @code{no87},
142 @code{no287},
143 @code{no387},
144 @code{no687},
145 @code{cmov},
146 @code{nocmov},
147 @code{fxsr},
148 @code{nofxsr},
149 @code{mmx},
150 @code{nommx},
151 @code{sse},
152 @code{sse2},
153 @code{sse3},
154 @code{sse4a},
155 @code{ssse3},
156 @code{sse4.1},
157 @code{sse4.2},
158 @code{sse4},
159 @code{nosse},
160 @code{nosse2},
161 @code{nosse3},
162 @code{nosse4a},
163 @code{nossse3},
164 @code{nosse4.1},
165 @code{nosse4.2},
166 @code{nosse4},
167 @code{avx},
168 @code{avx2},
169 @code{noavx},
170 @code{noavx2},
171 @code{adx},
172 @code{rdseed},
173 @code{prfchw},
174 @code{smap},
175 @code{mpx},
176 @code{sha},
177 @code{rdpid},
178 @code{ptwrite},
179 @code{cet},
180 @code{gfni},
181 @code{vaes},
182 @code{vpclmulqdq},
183 @code{prefetchwt1},
184 @code{clflushopt},
185 @code{se1},
186 @code{clwb},
187 @code{movdiri},
188 @code{movdir64b},
189 @code{enqcmd},
190 @code{avx512f},
191 @code{avx512cd},
192 @code{avx512er},
193 @code{avx512pf},
194 @code{avx512vl},
195 @code{avx512bw},
196 @code{avx512dq},
197 @code{avx512ifma},
198 @code{avx512vbmi},
199 @code{avx512_4fmaps},
200 @code{avx512_4vnniw},
201 @code{avx512_vpopcntdq},
202 @code{avx512_vbmi2},
203 @code{avx512_vnni},
204 @code{avx512_bitalg},
205 @code{avx512_bf16},
206 @code{noavx512f},
207 @code{noavx512cd},
208 @code{noavx512er},
209 @code{noavx512pf},
210 @code{noavx512vl},
211 @code{noavx512bw},
212 @code{noavx512dq},
213 @code{noavx512ifma},
214 @code{noavx512vbmi},
215 @code{noavx512_4fmaps},
216 @code{noavx512_4vnniw},
217 @code{noavx512_vpopcntdq},
218 @code{noavx512_vbmi2},
219 @code{noavx512_vnni},
220 @code{noavx512_bitalg},
221 @code{noavx512_vp2intersect},
222 @code{noavx512_bf16},
223 @code{noenqcmd},
224 @code{vmx},
225 @code{vmfunc},
226 @code{smx},
227 @code{xsave},
228 @code{xsaveopt},
229 @code{xsavec},
230 @code{xsaves},
231 @code{aes},
232 @code{pclmul},
233 @code{fsgsbase},
234 @code{rdrnd},
235 @code{f16c},
236 @code{bmi2},
237 @code{fma},
238 @code{movbe},
239 @code{ept},
240 @code{lzcnt},
241 @code{popcnt},
242 @code{hle},
243 @code{rtm},
244 @code{invpcid},
245 @code{clflush},
246 @code{mwaitx},
247 @code{clzero},
248 @code{wbnoinvd},
249 @code{pconfig},
250 @code{waitpkg},
251 @code{cldemote},
252 @code{rdpru},
253 @code{mcommit},
254 @code{sev_es},
255 @code{lwp},
256 @code{fma4},
257 @code{xop},
258 @code{cx16},
259 @code{syscall},
260 @code{rdtscp},
261 @code{3dnow},
262 @code{3dnowa},
263 @code{sse4a},
264 @code{sse5},
265 @code{svme} and
266 @code{padlock}.
267 Note that rather than extending a basic instruction set, the extension
268 mnemonics starting with @code{no} revoke the respective functionality.
269
270 When the @code{.arch} directive is used with @option{-march}, the
271 @code{.arch} directive will take precedent.
272
273 @cindex @samp{-mtune=} option, i386
274 @cindex @samp{-mtune=} option, x86-64
275 @item -mtune=@var{CPU}
276 This option specifies a processor to optimize for. When used in
277 conjunction with the @option{-march} option, only instructions
278 of the processor specified by the @option{-march} option will be
279 generated.
280
281 Valid @var{CPU} values are identical to the processor list of
282 @option{-march=@var{CPU}}.
283
284 @cindex @samp{-msse2avx} option, i386
285 @cindex @samp{-msse2avx} option, x86-64
286 @item -msse2avx
287 This option specifies that the assembler should encode SSE instructions
288 with VEX prefix.
289
290 @cindex @samp{-msse-check=} option, i386
291 @cindex @samp{-msse-check=} option, x86-64
292 @item -msse-check=@var{none}
293 @itemx -msse-check=@var{warning}
294 @itemx -msse-check=@var{error}
295 These options control if the assembler should check SSE instructions.
296 @option{-msse-check=@var{none}} will make the assembler not to check SSE
297 instructions, which is the default. @option{-msse-check=@var{warning}}
298 will make the assembler issue a warning for any SSE instruction.
299 @option{-msse-check=@var{error}} will make the assembler issue an error
300 for any SSE instruction.
301
302 @cindex @samp{-mavxscalar=} option, i386
303 @cindex @samp{-mavxscalar=} option, x86-64
304 @item -mavxscalar=@var{128}
305 @itemx -mavxscalar=@var{256}
306 These options control how the assembler should encode scalar AVX
307 instructions. @option{-mavxscalar=@var{128}} will encode scalar
308 AVX instructions with 128bit vector length, which is the default.
309 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
310 with 256bit vector length.
311
312 WARNING: Don't use this for production code - due to CPU errata the
313 resulting code may not work on certain models.
314
315 @cindex @samp{-mvexwig=} option, i386
316 @cindex @samp{-mvexwig=} option, x86-64
317 @item -mvexwig=@var{0}
318 @itemx -mvexwig=@var{1}
319 These options control how the assembler should encode VEX.W-ignored (WIG)
320 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
321 instructions with vex.w = 0, which is the default.
322 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
323 vex.w = 1.
324
325 WARNING: Don't use this for production code - due to CPU errata the
326 resulting code may not work on certain models.
327
328 @cindex @samp{-mevexlig=} option, i386
329 @cindex @samp{-mevexlig=} option, x86-64
330 @item -mevexlig=@var{128}
331 @itemx -mevexlig=@var{256}
332 @itemx -mevexlig=@var{512}
333 These options control how the assembler should encode length-ignored
334 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
335 EVEX instructions with 128bit vector length, which is the default.
336 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
337 encode LIG EVEX instructions with 256bit and 512bit vector length,
338 respectively.
339
340 @cindex @samp{-mevexwig=} option, i386
341 @cindex @samp{-mevexwig=} option, x86-64
342 @item -mevexwig=@var{0}
343 @itemx -mevexwig=@var{1}
344 These options control how the assembler should encode w-ignored (WIG)
345 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
346 EVEX instructions with evex.w = 0, which is the default.
347 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
348 evex.w = 1.
349
350 @cindex @samp{-mmnemonic=} option, i386
351 @cindex @samp{-mmnemonic=} option, x86-64
352 @item -mmnemonic=@var{att}
353 @itemx -mmnemonic=@var{intel}
354 This option specifies instruction mnemonic for matching instructions.
355 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
356 take precedent.
357
358 @cindex @samp{-msyntax=} option, i386
359 @cindex @samp{-msyntax=} option, x86-64
360 @item -msyntax=@var{att}
361 @itemx -msyntax=@var{intel}
362 This option specifies instruction syntax when processing instructions.
363 The @code{.att_syntax} and @code{.intel_syntax} directives will
364 take precedent.
365
366 @cindex @samp{-mnaked-reg} option, i386
367 @cindex @samp{-mnaked-reg} option, x86-64
368 @item -mnaked-reg
369 This option specifies that registers don't require a @samp{%} prefix.
370 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
371
372 @cindex @samp{-madd-bnd-prefix} option, i386
373 @cindex @samp{-madd-bnd-prefix} option, x86-64
374 @item -madd-bnd-prefix
375 This option forces the assembler to add BND prefix to all branches, even
376 if such prefix was not explicitly specified in the source code.
377
378 @cindex @samp{-mshared} option, i386
379 @cindex @samp{-mshared} option, x86-64
380 @item -mno-shared
381 On ELF target, the assembler normally optimizes out non-PLT relocations
382 against defined non-weak global branch targets with default visibility.
383 The @samp{-mshared} option tells the assembler to generate code which
384 may go into a shared library where all non-weak global branch targets
385 with default visibility can be preempted. The resulting code is
386 slightly bigger. This option only affects the handling of branch
387 instructions.
388
389 @cindex @samp{-mbig-obj} option, x86-64
390 @item -mbig-obj
391 On x86-64 PE/COFF target this option forces the use of big object file
392 format, which allows more than 32768 sections.
393
394 @cindex @samp{-momit-lock-prefix=} option, i386
395 @cindex @samp{-momit-lock-prefix=} option, x86-64
396 @item -momit-lock-prefix=@var{no}
397 @itemx -momit-lock-prefix=@var{yes}
398 These options control how the assembler should encode lock prefix.
399 This option is intended as a workaround for processors, that fail on
400 lock prefix. This option can only be safely used with single-core,
401 single-thread computers
402 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
403 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
404 which is the default.
405
406 @cindex @samp{-mfence-as-lock-add=} option, i386
407 @cindex @samp{-mfence-as-lock-add=} option, x86-64
408 @item -mfence-as-lock-add=@var{no}
409 @itemx -mfence-as-lock-add=@var{yes}
410 These options control how the assembler should encode lfence, mfence and
411 sfence.
412 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
413 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
414 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
415 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
416 sfence as usual, which is the default.
417
418 @cindex @samp{-mrelax-relocations=} option, i386
419 @cindex @samp{-mrelax-relocations=} option, x86-64
420 @item -mrelax-relocations=@var{no}
421 @itemx -mrelax-relocations=@var{yes}
422 These options control whether the assembler should generate relax
423 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
424 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
425 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
426 @option{-mrelax-relocations=@var{no}} will not generate relax
427 relocations. The default can be controlled by a configure option
428 @option{--enable-x86-relax-relocations}.
429
430 @cindex @samp{-malign-branch-boundary=} option, i386
431 @cindex @samp{-malign-branch-boundary=} option, x86-64
432 @item -malign-branch-boundary=@var{NUM}
433 This option controls how the assembler should align branches with segment
434 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
435 no less than 16. Branches will be aligned within @var{NUM} byte
436 boundary. @option{-malign-branch-boundary=0}, which is the default,
437 doesn't align branches.
438
439 @cindex @samp{-malign-branch=} option, i386
440 @cindex @samp{-malign-branch=} option, x86-64
441 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
442 This option specifies types of branches to align. @var{TYPE} is
443 combination of @samp{jcc}, which aligns conditional jumps,
444 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
445 which aligns unconditional jumps, @samp{call} which aligns calls,
446 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
447 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
448
449 @cindex @samp{-malign-branch-prefix-size=} option, i386
450 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
451 @item -malign-branch-prefix-size=@var{NUM}
452 This option specifies the maximum number of prefixes on an instruction
453 to align branches. @var{NUM} should be between 0 and 5. The default
454 @var{NUM} is 5.
455
456 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
457 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
458 @item -mbranches-within-32B-boundaries
459 This option aligns conditional jumps, fused conditional jumps and
460 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
461 on an instruction. It is equivalent to
462 @option{-malign-branch-boundary=32}
463 @option{-malign-branch=jcc+fused+jmp}
464 @option{-malign-branch-prefix-size=5}.
465 The default doesn't align branches.
466
467 @cindex @samp{-mx86-used-note=} option, i386
468 @cindex @samp{-mx86-used-note=} option, x86-64
469 @item -mx86-used-note=@var{no}
470 @itemx -mx86-used-note=@var{yes}
471 These options control whether the assembler should generate
472 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
473 GNU property notes. The default can be controlled by the
474 @option{--enable-x86-used-note} configure option.
475
476 @cindex @samp{-mevexrcig=} option, i386
477 @cindex @samp{-mevexrcig=} option, x86-64
478 @item -mevexrcig=@var{rne}
479 @itemx -mevexrcig=@var{rd}
480 @itemx -mevexrcig=@var{ru}
481 @itemx -mevexrcig=@var{rz}
482 These options control how the assembler should encode SAE-only
483 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
484 of EVEX instruction with 00, which is the default.
485 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
486 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
487 with 01, 10 and 11 RC bits, respectively.
488
489 @cindex @samp{-mamd64} option, x86-64
490 @cindex @samp{-mintel64} option, x86-64
491 @item -mamd64
492 @itemx -mintel64
493 This option specifies that the assembler should accept only AMD64 or
494 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
495 only and AMD64 ISAs.
496
497 @cindex @samp{-O0} option, i386
498 @cindex @samp{-O0} option, x86-64
499 @cindex @samp{-O} option, i386
500 @cindex @samp{-O} option, x86-64
501 @cindex @samp{-O1} option, i386
502 @cindex @samp{-O1} option, x86-64
503 @cindex @samp{-O2} option, i386
504 @cindex @samp{-O2} option, x86-64
505 @cindex @samp{-Os} option, i386
506 @cindex @samp{-Os} option, x86-64
507 @item -O0 | -O | -O1 | -O2 | -Os
508 Optimize instruction encoding with smaller instruction size. @samp{-O}
509 and @samp{-O1} encode 64-bit register load instructions with 64-bit
510 immediate as 32-bit register load instructions with 31-bit or 32-bits
511 immediates, encode 64-bit register clearing instructions with 32-bit
512 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
513 register clearing instructions with 128-bit VEX vector register
514 clearing instructions, encode 128-bit/256-bit EVEX vector
515 register load/store instructions with VEX vector register load/store
516 instructions, and encode 128-bit/256-bit EVEX packed integer logical
517 instructions with 128-bit/256-bit VEX packed integer logical.
518
519 @samp{-O2} includes @samp{-O1} optimization plus encodes
520 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
521 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
522 instructions with commutative source operands will also have their
523 source operands swapped if this allows using the 2-byte VEX prefix form
524 instead of the 3-byte one. Certain forms of AND as well as OR with the
525 same (register) operand specified twice will also be changed to TEST.
526
527 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
528 and 64-bit register tests with immediate as 8-bit register test with
529 immediate. @samp{-O0} turns off this optimization.
530
531 @end table
532 @c man end
533
534 @node i386-Directives
535 @section x86 specific Directives
536
537 @cindex machine directives, x86
538 @cindex x86 machine directives
539 @table @code
540
541 @cindex @code{lcomm} directive, COFF
542 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
543 Reserve @var{length} (an absolute expression) bytes for a local common
544 denoted by @var{symbol}. The section and value of @var{symbol} are
545 those of the new local common. The addresses are allocated in the bss
546 section, so that at run-time the bytes start off zeroed. Since
547 @var{symbol} is not declared global, it is normally not visible to
548 @code{@value{LD}}. The optional third parameter, @var{alignment},
549 specifies the desired alignment of the symbol in the bss section.
550
551 This directive is only available for COFF based x86 targets.
552
553 @cindex @code{largecomm} directive, ELF
554 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
555 This directive behaves in the same way as the @code{comm} directive
556 except that the data is placed into the @var{.lbss} section instead of
557 the @var{.bss} section @ref{Comm}.
558
559 The directive is intended to be used for data which requires a large
560 amount of space, and it is only available for ELF based x86_64
561 targets.
562
563 @cindex @code{value} directive
564 @item .value @var{expression} [, @var{expression}]
565 This directive behaves in the same way as the @code{.short} directive,
566 taking a series of comma separated expressions and storing them as
567 two-byte wide values into the current section.
568
569 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
570
571 @end table
572
573 @node i386-Syntax
574 @section i386 Syntactical Considerations
575 @menu
576 * i386-Variations:: AT&T Syntax versus Intel Syntax
577 * i386-Chars:: Special Characters
578 @end menu
579
580 @node i386-Variations
581 @subsection AT&T Syntax versus Intel Syntax
582
583 @cindex i386 intel_syntax pseudo op
584 @cindex intel_syntax pseudo op, i386
585 @cindex i386 att_syntax pseudo op
586 @cindex att_syntax pseudo op, i386
587 @cindex i386 syntax compatibility
588 @cindex syntax compatibility, i386
589 @cindex x86-64 intel_syntax pseudo op
590 @cindex intel_syntax pseudo op, x86-64
591 @cindex x86-64 att_syntax pseudo op
592 @cindex att_syntax pseudo op, x86-64
593 @cindex x86-64 syntax compatibility
594 @cindex syntax compatibility, x86-64
595
596 @code{@value{AS}} now supports assembly using Intel assembler syntax.
597 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
598 back to the usual AT&T mode for compatibility with the output of
599 @code{@value{GCC}}. Either of these directives may have an optional
600 argument, @code{prefix}, or @code{noprefix} specifying whether registers
601 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
602 different from Intel syntax. We mention these differences because
603 almost all 80386 documents use Intel syntax. Notable differences
604 between the two syntaxes are:
605
606 @cindex immediate operands, i386
607 @cindex i386 immediate operands
608 @cindex register operands, i386
609 @cindex i386 register operands
610 @cindex jump/call operands, i386
611 @cindex i386 jump/call operands
612 @cindex operand delimiters, i386
613
614 @cindex immediate operands, x86-64
615 @cindex x86-64 immediate operands
616 @cindex register operands, x86-64
617 @cindex x86-64 register operands
618 @cindex jump/call operands, x86-64
619 @cindex x86-64 jump/call operands
620 @cindex operand delimiters, x86-64
621 @itemize @bullet
622 @item
623 AT&T immediate operands are preceded by @samp{$}; Intel immediate
624 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
625 AT&T register operands are preceded by @samp{%}; Intel register operands
626 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
627 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
628
629 @cindex i386 source, destination operands
630 @cindex source, destination operands; i386
631 @cindex x86-64 source, destination operands
632 @cindex source, destination operands; x86-64
633 @item
634 AT&T and Intel syntax use the opposite order for source and destination
635 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
636 @samp{source, dest} convention is maintained for compatibility with
637 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
638 instructions with 2 immediate operands, such as the @samp{enter}
639 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
640
641 @cindex mnemonic suffixes, i386
642 @cindex sizes operands, i386
643 @cindex i386 size suffixes
644 @cindex mnemonic suffixes, x86-64
645 @cindex sizes operands, x86-64
646 @cindex x86-64 size suffixes
647 @item
648 In AT&T syntax the size of memory operands is determined from the last
649 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
650 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
651 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
652 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
653 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
654 no other way to disambiguate an instruction. Intel syntax accomplishes this by
655 prefixing memory operands (@emph{not} the instruction mnemonics) with
656 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
657 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
658 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
659 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
660 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
661
662 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
663 instruction with the 64-bit displacement or immediate operand.
664
665 @cindex return instructions, i386
666 @cindex i386 jump, call, return
667 @cindex return instructions, x86-64
668 @cindex x86-64 jump, call, return
669 @item
670 Immediate form long jumps and calls are
671 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
672 Intel syntax is
673 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
674 instruction
675 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
676 @samp{ret far @var{stack-adjust}}.
677
678 @cindex sections, i386
679 @cindex i386 sections
680 @cindex sections, x86-64
681 @cindex x86-64 sections
682 @item
683 The AT&T assembler does not provide support for multiple section
684 programs. Unix style systems expect all programs to be single sections.
685 @end itemize
686
687 @node i386-Chars
688 @subsection Special Characters
689
690 @cindex line comment character, i386
691 @cindex i386 line comment character
692 The presence of a @samp{#} appearing anywhere on a line indicates the
693 start of a comment that extends to the end of that line.
694
695 If a @samp{#} appears as the first character of a line then the whole
696 line is treated as a comment, but in this case the line can also be a
697 logical line number directive (@pxref{Comments}) or a preprocessor
698 control command (@pxref{Preprocessing}).
699
700 If the @option{--divide} command-line option has not been specified
701 then the @samp{/} character appearing anywhere on a line also
702 introduces a line comment.
703
704 @cindex line separator, i386
705 @cindex statement separator, i386
706 @cindex i386 line separator
707 The @samp{;} character can be used to separate statements on the same
708 line.
709
710 @node i386-Mnemonics
711 @section i386-Mnemonics
712 @subsection Instruction Naming
713
714 @cindex i386 instruction naming
715 @cindex instruction naming, i386
716 @cindex x86-64 instruction naming
717 @cindex instruction naming, x86-64
718
719 Instruction mnemonics are suffixed with one character modifiers which
720 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
721 and @samp{q} specify byte, word, long and quadruple word operands. If
722 no suffix is specified by an instruction then @code{@value{AS}} tries to
723 fill in the missing suffix based on the destination register operand
724 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
725 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
726 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
727 assembler which assumes that a missing mnemonic suffix implies long
728 operand size. (This incompatibility does not affect compiler output
729 since compilers always explicitly specify the mnemonic suffix.)
730
731 When there is no sizing suffix and no (suitable) register operands to
732 deduce the size of memory operands, with a few exceptions and where long
733 operand size is possible in the first place, operand size will default
734 to long in 32- and 64-bit modes. Similarly it will default to short in
735 16-bit mode. Noteworthy exceptions are
736
737 @itemize @bullet
738 @item
739 Instructions with an implicit on-stack operand as well as branches,
740 which default to quad in 64-bit mode.
741
742 @item
743 Sign- and zero-extending moves, which default to byte size source
744 operands.
745
746 @item
747 Floating point insns with integer operands, which default to short (for
748 perhaps historical reasons).
749
750 @item
751 CRC32 with a 64-bit destination, which defaults to a quad source
752 operand.
753
754 @end itemize
755
756 @cindex encoding options, i386
757 @cindex encoding options, x86-64
758
759 Different encoding options can be specified via pseudo prefixes:
760
761 @itemize @bullet
762 @item
763 @samp{@{disp8@}} -- prefer 8-bit displacement.
764
765 @item
766 @samp{@{disp32@}} -- prefer 32-bit displacement.
767
768 @item
769 @samp{@{load@}} -- prefer load-form instruction.
770
771 @item
772 @samp{@{store@}} -- prefer store-form instruction.
773
774 @item
775 @samp{@{vex@}} -- encode with VEX prefix.
776
777 @item
778 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
779
780 @item
781 @samp{@{evex@}} -- encode with EVEX prefix.
782
783 @item
784 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
785 instructions (x86-64 only). Note that this differs from the @samp{rex}
786 prefix which generates REX prefix unconditionally.
787
788 @item
789 @samp{@{nooptimize@}} -- disable instruction size optimization.
790 @end itemize
791
792 @cindex conversion instructions, i386
793 @cindex i386 conversion instructions
794 @cindex conversion instructions, x86-64
795 @cindex x86-64 conversion instructions
796 The Intel-syntax conversion instructions
797
798 @itemize @bullet
799 @item
800 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
801
802 @item
803 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
804
805 @item
806 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
807
808 @item
809 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
810
811 @item
812 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
813 (x86-64 only),
814
815 @item
816 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
817 @samp{%rdx:%rax} (x86-64 only),
818 @end itemize
819
820 @noindent
821 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
822 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
823 instructions.
824
825 @cindex extension instructions, i386
826 @cindex i386 extension instructions
827 @cindex extension instructions, x86-64
828 @cindex x86-64 extension instructions
829 The Intel-syntax extension instructions
830
831 @itemize @bullet
832 @item
833 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
834
835 @item
836 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
837
838 @item
839 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
840 (x86-64 only).
841
842 @item
843 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
844
845 @item
846 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
847 (x86-64 only).
848
849 @item
850 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
851 (x86-64 only).
852
853 @item
854 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
855
856 @item
857 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
858
859 @item
860 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
861 (x86-64 only).
862
863 @item
864 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
865
866 @item
867 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
868 (x86-64 only).
869 @end itemize
870
871 @noindent
872 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
873 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
874 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
875 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
876 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
877
878 @cindex jump instructions, i386
879 @cindex call instructions, i386
880 @cindex jump instructions, x86-64
881 @cindex call instructions, x86-64
882 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
883 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
884 convention.
885
886 @subsection AT&T Mnemonic versus Intel Mnemonic
887
888 @cindex i386 mnemonic compatibility
889 @cindex mnemonic compatibility, i386
890
891 @code{@value{AS}} supports assembly using Intel mnemonic.
892 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
893 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
894 syntax for compatibility with the output of @code{@value{GCC}}.
895 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
896 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
897 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
898 assembler with different mnemonics from those in Intel IA32 specification.
899 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
900
901 @itemize @bullet
902 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
903 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
904 destination register with both AT&T and Intel mnemonics.
905 @end itemize
906
907 @node i386-Regs
908 @section Register Naming
909
910 @cindex i386 registers
911 @cindex registers, i386
912 @cindex x86-64 registers
913 @cindex registers, x86-64
914 Register operands are always prefixed with @samp{%}. The 80386 registers
915 consist of
916
917 @itemize @bullet
918 @item
919 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
920 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
921 frame pointer), and @samp{%esp} (the stack pointer).
922
923 @item
924 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
925 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
926
927 @item
928 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
929 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
930 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
931 @samp{%cx}, and @samp{%dx})
932
933 @item
934 the 6 section registers @samp{%cs} (code section), @samp{%ds}
935 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
936 and @samp{%gs}.
937
938 @item
939 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
940 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
941
942 @item
943 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
944 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
945
946 @item
947 the 2 test registers @samp{%tr6} and @samp{%tr7}.
948
949 @item
950 the 8 floating point register stack @samp{%st} or equivalently
951 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
952 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
953 These registers are overloaded by 8 MMX registers @samp{%mm0},
954 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
955 @samp{%mm6} and @samp{%mm7}.
956
957 @item
958 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
959 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
960 @end itemize
961
962 The AMD x86-64 architecture extends the register set by:
963
964 @itemize @bullet
965 @item
966 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
967 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
968 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
969 pointer)
970
971 @item
972 the 8 extended registers @samp{%r8}--@samp{%r15}.
973
974 @item
975 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
976
977 @item
978 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
979
980 @item
981 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
982
983 @item
984 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
985
986 @item
987 the 8 debug registers: @samp{%db8}--@samp{%db15}.
988
989 @item
990 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
991 @end itemize
992
993 With the AVX extensions more registers were made available:
994
995 @itemize @bullet
996
997 @item
998 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
999 available in 32-bit mode). The bottom 128 bits are overlaid with the
1000 @samp{xmm0}--@samp{xmm15} registers.
1001
1002 @end itemize
1003
1004 The AVX2 extensions made in 64-bit mode more registers available:
1005
1006 @itemize @bullet
1007
1008 @item
1009 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
1010 registers @samp{%ymm16}--@samp{%ymm31}.
1011
1012 @end itemize
1013
1014 The AVX512 extensions added the following registers:
1015
1016 @itemize @bullet
1017
1018 @item
1019 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1020 available in 32-bit mode). The bottom 128 bits are overlaid with the
1021 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1022 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1023
1024 @item
1025 the 8 mask registers @samp{%k0}--@samp{%k7}.
1026
1027 @end itemize
1028
1029 @node i386-Prefixes
1030 @section Instruction Prefixes
1031
1032 @cindex i386 instruction prefixes
1033 @cindex instruction prefixes, i386
1034 @cindex prefixes, i386
1035 Instruction prefixes are used to modify the following instruction. They
1036 are used to repeat string instructions, to provide section overrides, to
1037 perform bus lock operations, and to change operand and address sizes.
1038 (Most instructions that normally operate on 32-bit operands will use
1039 16-bit operands if the instruction has an ``operand size'' prefix.)
1040 Instruction prefixes are best written on the same line as the instruction
1041 they act upon. For example, the @samp{scas} (scan string) instruction is
1042 repeated with:
1043
1044 @smallexample
1045 repne scas %es:(%edi),%al
1046 @end smallexample
1047
1048 You may also place prefixes on the lines immediately preceding the
1049 instruction, but this circumvents checks that @code{@value{AS}} does
1050 with prefixes, and will not work with all prefixes.
1051
1052 Here is a list of instruction prefixes:
1053
1054 @cindex section override prefixes, i386
1055 @itemize @bullet
1056 @item
1057 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1058 @samp{fs}, @samp{gs}. These are automatically added by specifying
1059 using the @var{section}:@var{memory-operand} form for memory references.
1060
1061 @cindex size prefixes, i386
1062 @item
1063 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1064 change 32-bit operands/addresses into 16-bit operands/addresses,
1065 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1066 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1067 @emph{must} appear on the same line of code as the instruction they
1068 modify. For example, in a 16-bit @code{.code16} section, you might
1069 write:
1070
1071 @smallexample
1072 addr32 jmpl *(%ebx)
1073 @end smallexample
1074
1075 @cindex bus lock prefixes, i386
1076 @cindex inhibiting interrupts, i386
1077 @item
1078 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1079 the instruction it precedes. (This is only valid with certain
1080 instructions; see a 80386 manual for details).
1081
1082 @cindex coprocessor wait, i386
1083 @item
1084 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1085 complete the current instruction. This should never be needed for the
1086 80386/80387 combination.
1087
1088 @cindex repeat prefixes, i386
1089 @item
1090 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1091 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1092 times if the current address size is 16-bits).
1093 @cindex REX prefixes, i386
1094 @item
1095 The @samp{rex} family of prefixes is used by x86-64 to encode
1096 extensions to i386 instruction set. The @samp{rex} prefix has four
1097 bits --- an operand size overwrite (@code{64}) used to change operand size
1098 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1099 register set.
1100
1101 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1102 instruction emits @samp{rex} prefix with all the bits set. By omitting
1103 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1104 prefixes as well. Normally, there is no need to write the prefixes
1105 explicitly, since gas will automatically generate them based on the
1106 instruction operands.
1107 @end itemize
1108
1109 @node i386-Memory
1110 @section Memory References
1111
1112 @cindex i386 memory references
1113 @cindex memory references, i386
1114 @cindex x86-64 memory references
1115 @cindex memory references, x86-64
1116 An Intel syntax indirect memory reference of the form
1117
1118 @smallexample
1119 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1120 @end smallexample
1121
1122 @noindent
1123 is translated into the AT&T syntax
1124
1125 @smallexample
1126 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1127 @end smallexample
1128
1129 @noindent
1130 where @var{base} and @var{index} are the optional 32-bit base and
1131 index registers, @var{disp} is the optional displacement, and
1132 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1133 to calculate the address of the operand. If no @var{scale} is
1134 specified, @var{scale} is taken to be 1. @var{section} specifies the
1135 optional section register for the memory operand, and may override the
1136 default section register (see a 80386 manual for section register
1137 defaults). Note that section overrides in AT&T syntax @emph{must}
1138 be preceded by a @samp{%}. If you specify a section override which
1139 coincides with the default section register, @code{@value{AS}} does @emph{not}
1140 output any section register override prefixes to assemble the given
1141 instruction. Thus, section overrides can be specified to emphasize which
1142 section register is used for a given memory operand.
1143
1144 Here are some examples of Intel and AT&T style memory references:
1145
1146 @table @asis
1147 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1148 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1149 missing, and the default section is used (@samp{%ss} for addressing with
1150 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1151
1152 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1153 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1154 @samp{foo}. All other fields are missing. The section register here
1155 defaults to @samp{%ds}.
1156
1157 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1158 This uses the value pointed to by @samp{foo} as a memory operand.
1159 Note that @var{base} and @var{index} are both missing, but there is only
1160 @emph{one} @samp{,}. This is a syntactic exception.
1161
1162 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1163 This selects the contents of the variable @samp{foo} with section
1164 register @var{section} being @samp{%gs}.
1165 @end table
1166
1167 Absolute (as opposed to PC relative) call and jump operands must be
1168 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1169 always chooses PC relative addressing for jump/call labels.
1170
1171 Any instruction that has a memory operand, but no register operand,
1172 @emph{must} specify its size (byte, word, long, or quadruple) with an
1173 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1174 respectively).
1175
1176 The x86-64 architecture adds an RIP (instruction pointer relative)
1177 addressing. This addressing mode is specified by using @samp{rip} as a
1178 base register. Only constant offsets are valid. For example:
1179
1180 @table @asis
1181 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1182 Points to the address 1234 bytes past the end of the current
1183 instruction.
1184
1185 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1186 Points to the @code{symbol} in RIP relative way, this is shorter than
1187 the default absolute addressing.
1188 @end table
1189
1190 Other addressing modes remain unchanged in x86-64 architecture, except
1191 registers used are 64-bit instead of 32-bit.
1192
1193 @node i386-Jumps
1194 @section Handling of Jump Instructions
1195
1196 @cindex jump optimization, i386
1197 @cindex i386 jump optimization
1198 @cindex jump optimization, x86-64
1199 @cindex x86-64 jump optimization
1200 Jump instructions are always optimized to use the smallest possible
1201 displacements. This is accomplished by using byte (8-bit) displacement
1202 jumps whenever the target is sufficiently close. If a byte displacement
1203 is insufficient a long displacement is used. We do not support
1204 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1205 instruction with the @samp{data16} instruction prefix), since the 80386
1206 insists upon masking @samp{%eip} to 16 bits after the word displacement
1207 is added. (See also @pxref{i386-Arch})
1208
1209 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1210 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1211 displacements, so that if you use these instructions (@code{@value{GCC}} does
1212 not use them) you may get an error message (and incorrect code). The AT&T
1213 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1214 to
1215
1216 @smallexample
1217 jcxz cx_zero
1218 jmp cx_nonzero
1219 cx_zero: jmp foo
1220 cx_nonzero:
1221 @end smallexample
1222
1223 @node i386-Float
1224 @section Floating Point
1225
1226 @cindex i386 floating point
1227 @cindex floating point, i386
1228 @cindex x86-64 floating point
1229 @cindex floating point, x86-64
1230 All 80387 floating point types except packed BCD are supported.
1231 (BCD support may be added without much difficulty). These data
1232 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1233 double (64-bit), and extended (80-bit) precision floating point.
1234 Each supported type has an instruction mnemonic suffix and a constructor
1235 associated with it. Instruction mnemonic suffixes specify the operand's
1236 data type. Constructors build these data types into memory.
1237
1238 @cindex @code{float} directive, i386
1239 @cindex @code{single} directive, i386
1240 @cindex @code{double} directive, i386
1241 @cindex @code{tfloat} directive, i386
1242 @cindex @code{float} directive, x86-64
1243 @cindex @code{single} directive, x86-64
1244 @cindex @code{double} directive, x86-64
1245 @cindex @code{tfloat} directive, x86-64
1246 @itemize @bullet
1247 @item
1248 Floating point constructors are @samp{.float} or @samp{.single},
1249 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1250 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1251 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1252 only supports this format via the @samp{fldt} (load 80-bit real to stack
1253 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1254
1255 @cindex @code{word} directive, i386
1256 @cindex @code{long} directive, i386
1257 @cindex @code{int} directive, i386
1258 @cindex @code{quad} directive, i386
1259 @cindex @code{word} directive, x86-64
1260 @cindex @code{long} directive, x86-64
1261 @cindex @code{int} directive, x86-64
1262 @cindex @code{quad} directive, x86-64
1263 @item
1264 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1265 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1266 corresponding instruction mnemonic suffixes are @samp{s} (single),
1267 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1268 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1269 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1270 stack) instructions.
1271 @end itemize
1272
1273 Register to register operations should not use instruction mnemonic suffixes.
1274 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1275 wrote @samp{fst %st, %st(1)}, since all register to register operations
1276 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1277 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1278 then stores the result in the 4 byte location @samp{mem})
1279
1280 @node i386-SIMD
1281 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1282
1283 @cindex MMX, i386
1284 @cindex 3DNow!, i386
1285 @cindex SIMD, i386
1286 @cindex MMX, x86-64
1287 @cindex 3DNow!, x86-64
1288 @cindex SIMD, x86-64
1289
1290 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1291 instructions for integer data), available on Intel's Pentium MMX
1292 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1293 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1294 instruction set (SIMD instructions for 32-bit floating point data)
1295 available on AMD's K6-2 processor and possibly others in the future.
1296
1297 Currently, @code{@value{AS}} does not support Intel's floating point
1298 SIMD, Katmai (KNI).
1299
1300 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1301 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1302 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1303 floating point values. The MMX registers cannot be used at the same time
1304 as the floating point stack.
1305
1306 See Intel and AMD documentation, keeping in mind that the operand order in
1307 instructions is reversed from the Intel syntax.
1308
1309 @node i386-LWP
1310 @section AMD's Lightweight Profiling Instructions
1311
1312 @cindex LWP, i386
1313 @cindex LWP, x86-64
1314
1315 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1316 instruction set, available on AMD's Family 15h (Orochi) processors.
1317
1318 LWP enables applications to collect and manage performance data, and
1319 react to performance events. The collection of performance data
1320 requires no context switches. LWP runs in the context of a thread and
1321 so several counters can be used independently across multiple threads.
1322 LWP can be used in both 64-bit and legacy 32-bit modes.
1323
1324 For detailed information on the LWP instruction set, see the
1325 @cite{AMD Lightweight Profiling Specification} available at
1326 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1327
1328 @node i386-BMI
1329 @section Bit Manipulation Instructions
1330
1331 @cindex BMI, i386
1332 @cindex BMI, x86-64
1333
1334 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1335
1336 BMI instructions provide several instructions implementing individual
1337 bit manipulation operations such as isolation, masking, setting, or
1338 resetting.
1339
1340 @c Need to add a specification citation here when available.
1341
1342 @node i386-TBM
1343 @section AMD's Trailing Bit Manipulation Instructions
1344
1345 @cindex TBM, i386
1346 @cindex TBM, x86-64
1347
1348 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1349 instruction set, available on AMD's BDVER2 processors (Trinity and
1350 Viperfish).
1351
1352 TBM instructions provide instructions implementing individual bit
1353 manipulation operations such as isolating, masking, setting, resetting,
1354 complementing, and operations on trailing zeros and ones.
1355
1356 @c Need to add a specification citation here when available.
1357
1358 @node i386-16bit
1359 @section Writing 16-bit Code
1360
1361 @cindex i386 16-bit code
1362 @cindex 16-bit code, i386
1363 @cindex real-mode code, i386
1364 @cindex @code{code16gcc} directive, i386
1365 @cindex @code{code16} directive, i386
1366 @cindex @code{code32} directive, i386
1367 @cindex @code{code64} directive, i386
1368 @cindex @code{code64} directive, x86-64
1369 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1370 or 64-bit x86-64 code depending on the default configuration,
1371 it also supports writing code to run in real mode or in 16-bit protected
1372 mode code segments. To do this, put a @samp{.code16} or
1373 @samp{.code16gcc} directive before the assembly language instructions to
1374 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1375 32-bit code with the @samp{.code32} directive or 64-bit code with the
1376 @samp{.code64} directive.
1377
1378 @samp{.code16gcc} provides experimental support for generating 16-bit
1379 code from gcc, and differs from @samp{.code16} in that @samp{call},
1380 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1381 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1382 default to 32-bit size. This is so that the stack pointer is
1383 manipulated in the same way over function calls, allowing access to
1384 function parameters at the same stack offsets as in 32-bit mode.
1385 @samp{.code16gcc} also automatically adds address size prefixes where
1386 necessary to use the 32-bit addressing modes that gcc generates.
1387
1388 The code which @code{@value{AS}} generates in 16-bit mode will not
1389 necessarily run on a 16-bit pre-80386 processor. To write code that
1390 runs on such a processor, you must refrain from using @emph{any} 32-bit
1391 constructs which require @code{@value{AS}} to output address or operand
1392 size prefixes.
1393
1394 Note that writing 16-bit code instructions by explicitly specifying a
1395 prefix or an instruction mnemonic suffix within a 32-bit code section
1396 generates different machine instructions than those generated for a
1397 16-bit code segment. In a 32-bit code section, the following code
1398 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1399 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1400
1401 @smallexample
1402 pushw $4
1403 @end smallexample
1404
1405 The same code in a 16-bit code section would generate the machine
1406 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1407 is correct since the processor default operand size is assumed to be 16
1408 bits in a 16-bit code section.
1409
1410 @node i386-Arch
1411 @section Specifying CPU Architecture
1412
1413 @cindex arch directive, i386
1414 @cindex i386 arch directive
1415 @cindex arch directive, x86-64
1416 @cindex x86-64 arch directive
1417
1418 @code{@value{AS}} may be told to assemble for a particular CPU
1419 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1420 directive enables a warning when gas detects an instruction that is not
1421 supported on the CPU specified. The choices for @var{cpu_type} are:
1422
1423 @multitable @columnfractions .20 .20 .20 .20
1424 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1425 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1426 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1427 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1428 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1429 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1430 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1431 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1432 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1433 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1434 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1435 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1436 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1437 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1438 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1439 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1440 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1441 @item @samp{.hle}
1442 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1443 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1444 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1445 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1446 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1447 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1448 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1449 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1450 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1451 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1452 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1453 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1454 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1455 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1456 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1457 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1458 @item @samp{.mcommit} @tab @samp{.sev_es}
1459 @end multitable
1460
1461 Apart from the warning, there are only two other effects on
1462 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1463 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1464 will automatically use a two byte opcode sequence. The larger three
1465 byte opcode sequence is used on the 486 (and when no architecture is
1466 specified) because it executes faster on the 486. Note that you can
1467 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1468 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1469 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1470 conditional jumps will be promoted when necessary to a two instruction
1471 sequence consisting of a conditional jump of the opposite sense around
1472 an unconditional jump to the target.
1473
1474 Following the CPU architecture (but not a sub-architecture, which are those
1475 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1476 control automatic promotion of conditional jumps. @samp{jumps} is the
1477 default, and enables jump promotion; All external jumps will be of the long
1478 variety, and file-local jumps will be promoted as necessary.
1479 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1480 byte offset jumps, and warns about file-local conditional jumps that
1481 @code{@value{AS}} promotes.
1482 Unconditional jumps are treated as for @samp{jumps}.
1483
1484 For example
1485
1486 @smallexample
1487 .arch i8086,nojumps
1488 @end smallexample
1489
1490 @node i386-ISA
1491 @section AMD64 ISA vs. Intel64 ISA
1492
1493 There are some discrepancies between AMD64 and Intel64 ISAs.
1494
1495 @itemize @bullet
1496 @item For @samp{movsxd} with 16-bit destination register, AMD64
1497 supports 32-bit source operand and Intel64 supports 16-bit source
1498 operand.
1499
1500 @item For far branches (with explicit memory operand), both ISAs support
1501 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1502 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1503 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1504 syntax.
1505
1506 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1507 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1508 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1509 operands).
1510
1511 @end itemize
1512
1513 @node i386-Bugs
1514 @section AT&T Syntax bugs
1515
1516 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1517 assemblers, generate floating point instructions with reversed source
1518 and destination registers in certain cases. Unfortunately, gcc and
1519 possibly many other programs use this reversed syntax, so we're stuck
1520 with it.
1521
1522 For example
1523
1524 @smallexample
1525 fsub %st,%st(3)
1526 @end smallexample
1527 @noindent
1528 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1529 than the expected @samp{%st(3) - %st}. This happens with all the
1530 non-commutative arithmetic floating point operations with two register
1531 operands where the source register is @samp{%st} and the destination
1532 register is @samp{%st(i)}.
1533
1534 @node i386-Notes
1535 @section Notes
1536
1537 @cindex i386 @code{mul}, @code{imul} instructions
1538 @cindex @code{mul} instruction, i386
1539 @cindex @code{imul} instruction, i386
1540 @cindex @code{mul} instruction, x86-64
1541 @cindex @code{imul} instruction, x86-64
1542 There is some trickery concerning the @samp{mul} and @samp{imul}
1543 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1544 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1545 for @samp{imul}) can be output only in the one operand form. Thus,
1546 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1547 the expanding multiply would clobber the @samp{%edx} register, and this
1548 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1549 64-bit product in @samp{%edx:%eax}.
1550
1551 We have added a two operand form of @samp{imul} when the first operand
1552 is an immediate mode expression and the second operand is a register.
1553 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1554 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1555 $69, %eax, %eax}.
1556
This page took 0.061463 seconds and 4 git commands to generate.