Add znver1 processor
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{k6},
114 @code{k6_2},
115 @code{athlon},
116 @code{opteron},
117 @code{k8},
118 @code{amdfam10},
119 @code{bdver1},
120 @code{bdver2},
121 @code{bdver3},
122 @code{bdver4},
123 @code{znver1},
124 @code{btver1},
125 @code{btver2},
126 @code{generic32} and
127 @code{generic64}.
128
129 In addition to the basic instruction set, the assembler can be told to
130 accept various extension mnemonics. For example,
131 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
132 @var{vmx}. The following extensions are currently supported:
133 @code{8087},
134 @code{287},
135 @code{387},
136 @code{no87},
137 @code{mmx},
138 @code{nommx},
139 @code{sse},
140 @code{sse2},
141 @code{sse3},
142 @code{ssse3},
143 @code{sse4.1},
144 @code{sse4.2},
145 @code{sse4},
146 @code{nosse},
147 @code{avx},
148 @code{avx2},
149 @code{adx},
150 @code{rdseed},
151 @code{prfchw},
152 @code{smap},
153 @code{mpx},
154 @code{sha},
155 @code{prefetchwt1},
156 @code{clflushopt},
157 @code{se1},
158 @code{clwb},
159 @code{pcommit},
160 @code{avx512f},
161 @code{avx512cd},
162 @code{avx512er},
163 @code{avx512pf},
164 @code{avx512vl},
165 @code{avx512bw},
166 @code{avx512dq},
167 @code{avx512ifma},
168 @code{avx512vbmi},
169 @code{noavx},
170 @code{vmx},
171 @code{vmfunc},
172 @code{smx},
173 @code{xsave},
174 @code{xsaveopt},
175 @code{xsavec},
176 @code{xsaves},
177 @code{aes},
178 @code{pclmul},
179 @code{fsgsbase},
180 @code{rdrnd},
181 @code{f16c},
182 @code{bmi2},
183 @code{fma},
184 @code{movbe},
185 @code{ept},
186 @code{lzcnt},
187 @code{hle},
188 @code{rtm},
189 @code{invpcid},
190 @code{clflush},
191 @code{clzero},
192 @code{lwp},
193 @code{fma4},
194 @code{xop},
195 @code{cx16},
196 @code{syscall},
197 @code{rdtscp},
198 @code{3dnow},
199 @code{3dnowa},
200 @code{sse4a},
201 @code{sse5},
202 @code{svme},
203 @code{abm} and
204 @code{padlock}.
205 Note that rather than extending a basic instruction set, the extension
206 mnemonics starting with @code{no} revoke the respective functionality.
207
208 When the @code{.arch} directive is used with @option{-march}, the
209 @code{.arch} directive will take precedent.
210
211 @cindex @samp{-mtune=} option, i386
212 @cindex @samp{-mtune=} option, x86-64
213 @item -mtune=@var{CPU}
214 This option specifies a processor to optimize for. When used in
215 conjunction with the @option{-march} option, only instructions
216 of the processor specified by the @option{-march} option will be
217 generated.
218
219 Valid @var{CPU} values are identical to the processor list of
220 @option{-march=@var{CPU}}.
221
222 @cindex @samp{-msse2avx} option, i386
223 @cindex @samp{-msse2avx} option, x86-64
224 @item -msse2avx
225 This option specifies that the assembler should encode SSE instructions
226 with VEX prefix.
227
228 @cindex @samp{-msse-check=} option, i386
229 @cindex @samp{-msse-check=} option, x86-64
230 @item -msse-check=@var{none}
231 @itemx -msse-check=@var{warning}
232 @itemx -msse-check=@var{error}
233 These options control if the assembler should check SSE instructions.
234 @option{-msse-check=@var{none}} will make the assembler not to check SSE
235 instructions, which is the default. @option{-msse-check=@var{warning}}
236 will make the assembler issue a warning for any SSE instruction.
237 @option{-msse-check=@var{error}} will make the assembler issue an error
238 for any SSE instruction.
239
240 @cindex @samp{-mavxscalar=} option, i386
241 @cindex @samp{-mavxscalar=} option, x86-64
242 @item -mavxscalar=@var{128}
243 @itemx -mavxscalar=@var{256}
244 These options control how the assembler should encode scalar AVX
245 instructions. @option{-mavxscalar=@var{128}} will encode scalar
246 AVX instructions with 128bit vector length, which is the default.
247 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
248 with 256bit vector length.
249
250 @cindex @samp{-mevexlig=} option, i386
251 @cindex @samp{-mevexlig=} option, x86-64
252 @item -mevexlig=@var{128}
253 @itemx -mevexlig=@var{256}
254 @itemx -mevexlig=@var{512}
255 These options control how the assembler should encode length-ignored
256 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
257 EVEX instructions with 128bit vector length, which is the default.
258 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
259 encode LIG EVEX instructions with 256bit and 512bit vector length,
260 respectively.
261
262 @cindex @samp{-mevexwig=} option, i386
263 @cindex @samp{-mevexwig=} option, x86-64
264 @item -mevexwig=@var{0}
265 @itemx -mevexwig=@var{1}
266 These options control how the assembler should encode w-ignored (WIG)
267 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
268 EVEX instructions with evex.w = 0, which is the default.
269 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
270 evex.w = 1.
271
272 @cindex @samp{-mmnemonic=} option, i386
273 @cindex @samp{-mmnemonic=} option, x86-64
274 @item -mmnemonic=@var{att}
275 @itemx -mmnemonic=@var{intel}
276 This option specifies instruction mnemonic for matching instructions.
277 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
278 take precedent.
279
280 @cindex @samp{-msyntax=} option, i386
281 @cindex @samp{-msyntax=} option, x86-64
282 @item -msyntax=@var{att}
283 @itemx -msyntax=@var{intel}
284 This option specifies instruction syntax when processing instructions.
285 The @code{.att_syntax} and @code{.intel_syntax} directives will
286 take precedent.
287
288 @cindex @samp{-mnaked-reg} option, i386
289 @cindex @samp{-mnaked-reg} option, x86-64
290 @item -mnaked-reg
291 This opetion specifies that registers don't require a @samp{%} prefix.
292 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
293
294 @cindex @samp{-madd-bnd-prefix} option, i386
295 @cindex @samp{-madd-bnd-prefix} option, x86-64
296 @item -madd-bnd-prefix
297 This option forces the assembler to add BND prefix to all branches, even
298 if such prefix was not explicitly specified in the source code.
299
300 @cindex @samp{-mbig-obj} option, x86-64
301 @item -mbig-obj
302 On x86-64 PE/COFF target this option forces the use of big object file
303 format, which allows more than 32768 sections.
304
305 @cindex @samp{-momit-lock-prefix=} option, i386
306 @cindex @samp{-momit-lock-prefix=} option, x86-64
307 @item -momit-lock-prefix=@var{no}
308 @itemx -momit-lock-prefix=@var{yes}
309 These options control how the assembler should encode lock prefix.
310 This option is intended as a workaround for processors, that fail on
311 lock prefix. This option can only be safely used with single-core,
312 single-thread computers
313 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
314 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
315 which is the default.
316
317 @cindex @samp{-mevexrcig=} option, i386
318 @cindex @samp{-mevexrcig=} option, x86-64
319 @item -mevexrcig=@var{rne}
320 @itemx -mevexrcig=@var{rd}
321 @itemx -mevexrcig=@var{ru}
322 @itemx -mevexrcig=@var{rz}
323 These options control how the assembler should encode SAE-only
324 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
325 of EVEX instruction with 00, which is the default.
326 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
327 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
328 with 01, 10 and 11 RC bits, respectively.
329
330 @end table
331 @c man end
332
333 @node i386-Directives
334 @section x86 specific Directives
335
336 @cindex machine directives, x86
337 @cindex x86 machine directives
338 @table @code
339
340 @cindex @code{lcomm} directive, COFF
341 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
342 Reserve @var{length} (an absolute expression) bytes for a local common
343 denoted by @var{symbol}. The section and value of @var{symbol} are
344 those of the new local common. The addresses are allocated in the bss
345 section, so that at run-time the bytes start off zeroed. Since
346 @var{symbol} is not declared global, it is normally not visible to
347 @code{@value{LD}}. The optional third parameter, @var{alignment},
348 specifies the desired alignment of the symbol in the bss section.
349
350 This directive is only available for COFF based x86 targets.
351
352 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
353 @c .largecomm
354
355 @end table
356
357 @node i386-Syntax
358 @section i386 Syntactical Considerations
359 @menu
360 * i386-Variations:: AT&T Syntax versus Intel Syntax
361 * i386-Chars:: Special Characters
362 @end menu
363
364 @node i386-Variations
365 @subsection AT&T Syntax versus Intel Syntax
366
367 @cindex i386 intel_syntax pseudo op
368 @cindex intel_syntax pseudo op, i386
369 @cindex i386 att_syntax pseudo op
370 @cindex att_syntax pseudo op, i386
371 @cindex i386 syntax compatibility
372 @cindex syntax compatibility, i386
373 @cindex x86-64 intel_syntax pseudo op
374 @cindex intel_syntax pseudo op, x86-64
375 @cindex x86-64 att_syntax pseudo op
376 @cindex att_syntax pseudo op, x86-64
377 @cindex x86-64 syntax compatibility
378 @cindex syntax compatibility, x86-64
379
380 @code{@value{AS}} now supports assembly using Intel assembler syntax.
381 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
382 back to the usual AT&T mode for compatibility with the output of
383 @code{@value{GCC}}. Either of these directives may have an optional
384 argument, @code{prefix}, or @code{noprefix} specifying whether registers
385 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
386 different from Intel syntax. We mention these differences because
387 almost all 80386 documents use Intel syntax. Notable differences
388 between the two syntaxes are:
389
390 @cindex immediate operands, i386
391 @cindex i386 immediate operands
392 @cindex register operands, i386
393 @cindex i386 register operands
394 @cindex jump/call operands, i386
395 @cindex i386 jump/call operands
396 @cindex operand delimiters, i386
397
398 @cindex immediate operands, x86-64
399 @cindex x86-64 immediate operands
400 @cindex register operands, x86-64
401 @cindex x86-64 register operands
402 @cindex jump/call operands, x86-64
403 @cindex x86-64 jump/call operands
404 @cindex operand delimiters, x86-64
405 @itemize @bullet
406 @item
407 AT&T immediate operands are preceded by @samp{$}; Intel immediate
408 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
409 AT&T register operands are preceded by @samp{%}; Intel register operands
410 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
411 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
412
413 @cindex i386 source, destination operands
414 @cindex source, destination operands; i386
415 @cindex x86-64 source, destination operands
416 @cindex source, destination operands; x86-64
417 @item
418 AT&T and Intel syntax use the opposite order for source and destination
419 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
420 @samp{source, dest} convention is maintained for compatibility with
421 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
422 instructions with 2 immediate operands, such as the @samp{enter}
423 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
424
425 @cindex mnemonic suffixes, i386
426 @cindex sizes operands, i386
427 @cindex i386 size suffixes
428 @cindex mnemonic suffixes, x86-64
429 @cindex sizes operands, x86-64
430 @cindex x86-64 size suffixes
431 @item
432 In AT&T syntax the size of memory operands is determined from the last
433 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
434 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
435 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
436 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
437 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
438 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
439 syntax.
440
441 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
442 instruction with the 64-bit displacement or immediate operand.
443
444 @cindex return instructions, i386
445 @cindex i386 jump, call, return
446 @cindex return instructions, x86-64
447 @cindex x86-64 jump, call, return
448 @item
449 Immediate form long jumps and calls are
450 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
451 Intel syntax is
452 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
453 instruction
454 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
455 @samp{ret far @var{stack-adjust}}.
456
457 @cindex sections, i386
458 @cindex i386 sections
459 @cindex sections, x86-64
460 @cindex x86-64 sections
461 @item
462 The AT&T assembler does not provide support for multiple section
463 programs. Unix style systems expect all programs to be single sections.
464 @end itemize
465
466 @node i386-Chars
467 @subsection Special Characters
468
469 @cindex line comment character, i386
470 @cindex i386 line comment character
471 The presence of a @samp{#} appearing anywhere on a line indicates the
472 start of a comment that extends to the end of that line.
473
474 If a @samp{#} appears as the first character of a line then the whole
475 line is treated as a comment, but in this case the line can also be a
476 logical line number directive (@pxref{Comments}) or a preprocessor
477 control command (@pxref{Preprocessing}).
478
479 If the @option{--divide} command line option has not been specified
480 then the @samp{/} character appearing anywhere on a line also
481 introduces a line comment.
482
483 @cindex line separator, i386
484 @cindex statement separator, i386
485 @cindex i386 line separator
486 The @samp{;} character can be used to separate statements on the same
487 line.
488
489 @node i386-Mnemonics
490 @section Instruction Naming
491
492 @cindex i386 instruction naming
493 @cindex instruction naming, i386
494 @cindex x86-64 instruction naming
495 @cindex instruction naming, x86-64
496
497 Instruction mnemonics are suffixed with one character modifiers which
498 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
499 and @samp{q} specify byte, word, long and quadruple word operands. If
500 no suffix is specified by an instruction then @code{@value{AS}} tries to
501 fill in the missing suffix based on the destination register operand
502 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
503 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
504 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
505 assembler which assumes that a missing mnemonic suffix implies long
506 operand size. (This incompatibility does not affect compiler output
507 since compilers always explicitly specify the mnemonic suffix.)
508
509 Almost all instructions have the same names in AT&T and Intel format.
510 There are a few exceptions. The sign extend and zero extend
511 instructions need two sizes to specify them. They need a size to
512 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
513 is accomplished by using two instruction mnemonic suffixes in AT&T
514 syntax. Base names for sign extend and zero extend are
515 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
516 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
517 are tacked on to this base name, the @emph{from} suffix before the
518 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
519 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
520 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
521 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
522 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
523 quadruple word).
524
525 @cindex encoding options, i386
526 @cindex encoding options, x86-64
527
528 Different encoding options can be specified via optional mnemonic
529 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
530 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
531 prefers 8bit or 32bit displacement in encoding.
532
533 @cindex conversion instructions, i386
534 @cindex i386 conversion instructions
535 @cindex conversion instructions, x86-64
536 @cindex x86-64 conversion instructions
537 The Intel-syntax conversion instructions
538
539 @itemize @bullet
540 @item
541 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
542
543 @item
544 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
545
546 @item
547 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
548
549 @item
550 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
551
552 @item
553 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
554 (x86-64 only),
555
556 @item
557 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
558 @samp{%rdx:%rax} (x86-64 only),
559 @end itemize
560
561 @noindent
562 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
563 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
564 instructions.
565
566 @cindex jump instructions, i386
567 @cindex call instructions, i386
568 @cindex jump instructions, x86-64
569 @cindex call instructions, x86-64
570 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
571 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
572 convention.
573
574 @section AT&T Mnemonic versus Intel Mnemonic
575
576 @cindex i386 mnemonic compatibility
577 @cindex mnemonic compatibility, i386
578
579 @code{@value{AS}} supports assembly using Intel mnemonic.
580 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
581 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
582 syntax for compatibility with the output of @code{@value{GCC}}.
583 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
584 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
585 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
586 assembler with different mnemonics from those in Intel IA32 specification.
587 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
588
589 @node i386-Regs
590 @section Register Naming
591
592 @cindex i386 registers
593 @cindex registers, i386
594 @cindex x86-64 registers
595 @cindex registers, x86-64
596 Register operands are always prefixed with @samp{%}. The 80386 registers
597 consist of
598
599 @itemize @bullet
600 @item
601 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
602 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
603 frame pointer), and @samp{%esp} (the stack pointer).
604
605 @item
606 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
607 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
608
609 @item
610 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
611 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
612 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
613 @samp{%cx}, and @samp{%dx})
614
615 @item
616 the 6 section registers @samp{%cs} (code section), @samp{%ds}
617 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
618 and @samp{%gs}.
619
620 @item
621 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
622 @samp{%cr3}.
623
624 @item
625 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
626 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
627
628 @item
629 the 2 test registers @samp{%tr6} and @samp{%tr7}.
630
631 @item
632 the 8 floating point register stack @samp{%st} or equivalently
633 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
634 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
635 These registers are overloaded by 8 MMX registers @samp{%mm0},
636 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
637 @samp{%mm6} and @samp{%mm7}.
638
639 @item
640 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
641 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
642 @end itemize
643
644 The AMD x86-64 architecture extends the register set by:
645
646 @itemize @bullet
647 @item
648 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
649 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
650 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
651 pointer)
652
653 @item
654 the 8 extended registers @samp{%r8}--@samp{%r15}.
655
656 @item
657 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
658
659 @item
660 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
661
662 @item
663 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
664
665 @item
666 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
667
668 @item
669 the 8 debug registers: @samp{%db8}--@samp{%db15}.
670
671 @item
672 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
673 @end itemize
674
675 @node i386-Prefixes
676 @section Instruction Prefixes
677
678 @cindex i386 instruction prefixes
679 @cindex instruction prefixes, i386
680 @cindex prefixes, i386
681 Instruction prefixes are used to modify the following instruction. They
682 are used to repeat string instructions, to provide section overrides, to
683 perform bus lock operations, and to change operand and address sizes.
684 (Most instructions that normally operate on 32-bit operands will use
685 16-bit operands if the instruction has an ``operand size'' prefix.)
686 Instruction prefixes are best written on the same line as the instruction
687 they act upon. For example, the @samp{scas} (scan string) instruction is
688 repeated with:
689
690 @smallexample
691 repne scas %es:(%edi),%al
692 @end smallexample
693
694 You may also place prefixes on the lines immediately preceding the
695 instruction, but this circumvents checks that @code{@value{AS}} does
696 with prefixes, and will not work with all prefixes.
697
698 Here is a list of instruction prefixes:
699
700 @cindex section override prefixes, i386
701 @itemize @bullet
702 @item
703 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
704 @samp{fs}, @samp{gs}. These are automatically added by specifying
705 using the @var{section}:@var{memory-operand} form for memory references.
706
707 @cindex size prefixes, i386
708 @item
709 Operand/Address size prefixes @samp{data16} and @samp{addr16}
710 change 32-bit operands/addresses into 16-bit operands/addresses,
711 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
712 @code{.code16} section) into 32-bit operands/addresses. These prefixes
713 @emph{must} appear on the same line of code as the instruction they
714 modify. For example, in a 16-bit @code{.code16} section, you might
715 write:
716
717 @smallexample
718 addr32 jmpl *(%ebx)
719 @end smallexample
720
721 @cindex bus lock prefixes, i386
722 @cindex inhibiting interrupts, i386
723 @item
724 The bus lock prefix @samp{lock} inhibits interrupts during execution of
725 the instruction it precedes. (This is only valid with certain
726 instructions; see a 80386 manual for details).
727
728 @cindex coprocessor wait, i386
729 @item
730 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
731 complete the current instruction. This should never be needed for the
732 80386/80387 combination.
733
734 @cindex repeat prefixes, i386
735 @item
736 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
737 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
738 times if the current address size is 16-bits).
739 @cindex REX prefixes, i386
740 @item
741 The @samp{rex} family of prefixes is used by x86-64 to encode
742 extensions to i386 instruction set. The @samp{rex} prefix has four
743 bits --- an operand size overwrite (@code{64}) used to change operand size
744 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
745 register set.
746
747 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
748 instruction emits @samp{rex} prefix with all the bits set. By omitting
749 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
750 prefixes as well. Normally, there is no need to write the prefixes
751 explicitly, since gas will automatically generate them based on the
752 instruction operands.
753 @end itemize
754
755 @node i386-Memory
756 @section Memory References
757
758 @cindex i386 memory references
759 @cindex memory references, i386
760 @cindex x86-64 memory references
761 @cindex memory references, x86-64
762 An Intel syntax indirect memory reference of the form
763
764 @smallexample
765 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
766 @end smallexample
767
768 @noindent
769 is translated into the AT&T syntax
770
771 @smallexample
772 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
773 @end smallexample
774
775 @noindent
776 where @var{base} and @var{index} are the optional 32-bit base and
777 index registers, @var{disp} is the optional displacement, and
778 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
779 to calculate the address of the operand. If no @var{scale} is
780 specified, @var{scale} is taken to be 1. @var{section} specifies the
781 optional section register for the memory operand, and may override the
782 default section register (see a 80386 manual for section register
783 defaults). Note that section overrides in AT&T syntax @emph{must}
784 be preceded by a @samp{%}. If you specify a section override which
785 coincides with the default section register, @code{@value{AS}} does @emph{not}
786 output any section register override prefixes to assemble the given
787 instruction. Thus, section overrides can be specified to emphasize which
788 section register is used for a given memory operand.
789
790 Here are some examples of Intel and AT&T style memory references:
791
792 @table @asis
793 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
794 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
795 missing, and the default section is used (@samp{%ss} for addressing with
796 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
797
798 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
799 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
800 @samp{foo}. All other fields are missing. The section register here
801 defaults to @samp{%ds}.
802
803 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
804 This uses the value pointed to by @samp{foo} as a memory operand.
805 Note that @var{base} and @var{index} are both missing, but there is only
806 @emph{one} @samp{,}. This is a syntactic exception.
807
808 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
809 This selects the contents of the variable @samp{foo} with section
810 register @var{section} being @samp{%gs}.
811 @end table
812
813 Absolute (as opposed to PC relative) call and jump operands must be
814 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
815 always chooses PC relative addressing for jump/call labels.
816
817 Any instruction that has a memory operand, but no register operand,
818 @emph{must} specify its size (byte, word, long, or quadruple) with an
819 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
820 respectively).
821
822 The x86-64 architecture adds an RIP (instruction pointer relative)
823 addressing. This addressing mode is specified by using @samp{rip} as a
824 base register. Only constant offsets are valid. For example:
825
826 @table @asis
827 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
828 Points to the address 1234 bytes past the end of the current
829 instruction.
830
831 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
832 Points to the @code{symbol} in RIP relative way, this is shorter than
833 the default absolute addressing.
834 @end table
835
836 Other addressing modes remain unchanged in x86-64 architecture, except
837 registers used are 64-bit instead of 32-bit.
838
839 @node i386-Jumps
840 @section Handling of Jump Instructions
841
842 @cindex jump optimization, i386
843 @cindex i386 jump optimization
844 @cindex jump optimization, x86-64
845 @cindex x86-64 jump optimization
846 Jump instructions are always optimized to use the smallest possible
847 displacements. This is accomplished by using byte (8-bit) displacement
848 jumps whenever the target is sufficiently close. If a byte displacement
849 is insufficient a long displacement is used. We do not support
850 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
851 instruction with the @samp{data16} instruction prefix), since the 80386
852 insists upon masking @samp{%eip} to 16 bits after the word displacement
853 is added. (See also @pxref{i386-Arch})
854
855 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
856 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
857 displacements, so that if you use these instructions (@code{@value{GCC}} does
858 not use them) you may get an error message (and incorrect code). The AT&T
859 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
860 to
861
862 @smallexample
863 jcxz cx_zero
864 jmp cx_nonzero
865 cx_zero: jmp foo
866 cx_nonzero:
867 @end smallexample
868
869 @node i386-Float
870 @section Floating Point
871
872 @cindex i386 floating point
873 @cindex floating point, i386
874 @cindex x86-64 floating point
875 @cindex floating point, x86-64
876 All 80387 floating point types except packed BCD are supported.
877 (BCD support may be added without much difficulty). These data
878 types are 16-, 32-, and 64- bit integers, and single (32-bit),
879 double (64-bit), and extended (80-bit) precision floating point.
880 Each supported type has an instruction mnemonic suffix and a constructor
881 associated with it. Instruction mnemonic suffixes specify the operand's
882 data type. Constructors build these data types into memory.
883
884 @cindex @code{float} directive, i386
885 @cindex @code{single} directive, i386
886 @cindex @code{double} directive, i386
887 @cindex @code{tfloat} directive, i386
888 @cindex @code{float} directive, x86-64
889 @cindex @code{single} directive, x86-64
890 @cindex @code{double} directive, x86-64
891 @cindex @code{tfloat} directive, x86-64
892 @itemize @bullet
893 @item
894 Floating point constructors are @samp{.float} or @samp{.single},
895 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
896 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
897 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
898 only supports this format via the @samp{fldt} (load 80-bit real to stack
899 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
900
901 @cindex @code{word} directive, i386
902 @cindex @code{long} directive, i386
903 @cindex @code{int} directive, i386
904 @cindex @code{quad} directive, i386
905 @cindex @code{word} directive, x86-64
906 @cindex @code{long} directive, x86-64
907 @cindex @code{int} directive, x86-64
908 @cindex @code{quad} directive, x86-64
909 @item
910 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
911 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
912 corresponding instruction mnemonic suffixes are @samp{s} (single),
913 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
914 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
915 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
916 stack) instructions.
917 @end itemize
918
919 Register to register operations should not use instruction mnemonic suffixes.
920 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
921 wrote @samp{fst %st, %st(1)}, since all register to register operations
922 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
923 which converts @samp{%st} from 80-bit to 64-bit floating point format,
924 then stores the result in the 4 byte location @samp{mem})
925
926 @node i386-SIMD
927 @section Intel's MMX and AMD's 3DNow! SIMD Operations
928
929 @cindex MMX, i386
930 @cindex 3DNow!, i386
931 @cindex SIMD, i386
932 @cindex MMX, x86-64
933 @cindex 3DNow!, x86-64
934 @cindex SIMD, x86-64
935
936 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
937 instructions for integer data), available on Intel's Pentium MMX
938 processors and Pentium II processors, AMD's K6 and K6-2 processors,
939 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
940 instruction set (SIMD instructions for 32-bit floating point data)
941 available on AMD's K6-2 processor and possibly others in the future.
942
943 Currently, @code{@value{AS}} does not support Intel's floating point
944 SIMD, Katmai (KNI).
945
946 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
947 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
948 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
949 floating point values. The MMX registers cannot be used at the same time
950 as the floating point stack.
951
952 See Intel and AMD documentation, keeping in mind that the operand order in
953 instructions is reversed from the Intel syntax.
954
955 @node i386-LWP
956 @section AMD's Lightweight Profiling Instructions
957
958 @cindex LWP, i386
959 @cindex LWP, x86-64
960
961 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
962 instruction set, available on AMD's Family 15h (Orochi) processors.
963
964 LWP enables applications to collect and manage performance data, and
965 react to performance events. The collection of performance data
966 requires no context switches. LWP runs in the context of a thread and
967 so several counters can be used independently across multiple threads.
968 LWP can be used in both 64-bit and legacy 32-bit modes.
969
970 For detailed information on the LWP instruction set, see the
971 @cite{AMD Lightweight Profiling Specification} available at
972 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
973
974 @node i386-BMI
975 @section Bit Manipulation Instructions
976
977 @cindex BMI, i386
978 @cindex BMI, x86-64
979
980 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
981
982 BMI instructions provide several instructions implementing individual
983 bit manipulation operations such as isolation, masking, setting, or
984 resetting.
985
986 @c Need to add a specification citation here when available.
987
988 @node i386-TBM
989 @section AMD's Trailing Bit Manipulation Instructions
990
991 @cindex TBM, i386
992 @cindex TBM, x86-64
993
994 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
995 instruction set, available on AMD's BDVER2 processors (Trinity and
996 Viperfish).
997
998 TBM instructions provide instructions implementing individual bit
999 manipulation operations such as isolating, masking, setting, resetting,
1000 complementing, and operations on trailing zeros and ones.
1001
1002 @c Need to add a specification citation here when available.
1003
1004 @node i386-16bit
1005 @section Writing 16-bit Code
1006
1007 @cindex i386 16-bit code
1008 @cindex 16-bit code, i386
1009 @cindex real-mode code, i386
1010 @cindex @code{code16gcc} directive, i386
1011 @cindex @code{code16} directive, i386
1012 @cindex @code{code32} directive, i386
1013 @cindex @code{code64} directive, i386
1014 @cindex @code{code64} directive, x86-64
1015 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1016 or 64-bit x86-64 code depending on the default configuration,
1017 it also supports writing code to run in real mode or in 16-bit protected
1018 mode code segments. To do this, put a @samp{.code16} or
1019 @samp{.code16gcc} directive before the assembly language instructions to
1020 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1021 32-bit code with the @samp{.code32} directive or 64-bit code with the
1022 @samp{.code64} directive.
1023
1024 @samp{.code16gcc} provides experimental support for generating 16-bit
1025 code from gcc, and differs from @samp{.code16} in that @samp{call},
1026 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1027 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1028 default to 32-bit size. This is so that the stack pointer is
1029 manipulated in the same way over function calls, allowing access to
1030 function parameters at the same stack offsets as in 32-bit mode.
1031 @samp{.code16gcc} also automatically adds address size prefixes where
1032 necessary to use the 32-bit addressing modes that gcc generates.
1033
1034 The code which @code{@value{AS}} generates in 16-bit mode will not
1035 necessarily run on a 16-bit pre-80386 processor. To write code that
1036 runs on such a processor, you must refrain from using @emph{any} 32-bit
1037 constructs which require @code{@value{AS}} to output address or operand
1038 size prefixes.
1039
1040 Note that writing 16-bit code instructions by explicitly specifying a
1041 prefix or an instruction mnemonic suffix within a 32-bit code section
1042 generates different machine instructions than those generated for a
1043 16-bit code segment. In a 32-bit code section, the following code
1044 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1045 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1046
1047 @smallexample
1048 pushw $4
1049 @end smallexample
1050
1051 The same code in a 16-bit code section would generate the machine
1052 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1053 is correct since the processor default operand size is assumed to be 16
1054 bits in a 16-bit code section.
1055
1056 @node i386-Arch
1057 @section Specifying CPU Architecture
1058
1059 @cindex arch directive, i386
1060 @cindex i386 arch directive
1061 @cindex arch directive, x86-64
1062 @cindex x86-64 arch directive
1063
1064 @code{@value{AS}} may be told to assemble for a particular CPU
1065 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1066 directive enables a warning when gas detects an instruction that is not
1067 supported on the CPU specified. The choices for @var{cpu_type} are:
1068
1069 @multitable @columnfractions .20 .20 .20 .20
1070 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1071 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1072 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1073 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1074 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1075 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1076 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1077 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1078 @item @samp{generic32} @tab @samp{generic64}
1079 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1080 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1081 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1082 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1083 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1084 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1085 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1086 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1087 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1088 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1089 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1090 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1091 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1092 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1093 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1094 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1095 @item @samp{.padlock} @tab @samp{.clzero}
1096 @end multitable
1097
1098 Apart from the warning, there are only two other effects on
1099 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1100 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1101 will automatically use a two byte opcode sequence. The larger three
1102 byte opcode sequence is used on the 486 (and when no architecture is
1103 specified) because it executes faster on the 486. Note that you can
1104 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1105 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1106 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1107 conditional jumps will be promoted when necessary to a two instruction
1108 sequence consisting of a conditional jump of the opposite sense around
1109 an unconditional jump to the target.
1110
1111 Following the CPU architecture (but not a sub-architecture, which are those
1112 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1113 control automatic promotion of conditional jumps. @samp{jumps} is the
1114 default, and enables jump promotion; All external jumps will be of the long
1115 variety, and file-local jumps will be promoted as necessary.
1116 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1117 byte offset jumps, and warns about file-local conditional jumps that
1118 @code{@value{AS}} promotes.
1119 Unconditional jumps are treated as for @samp{jumps}.
1120
1121 For example
1122
1123 @smallexample
1124 .arch i8086,nojumps
1125 @end smallexample
1126
1127 @node i386-Bugs
1128 @section AT&T Syntax bugs
1129
1130 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1131 assemblers, generate floating point instructions with reversed source
1132 and destination registers in certain cases. Unfortunately, gcc and
1133 possibly many other programs use this reversed syntax, so we're stuck
1134 with it.
1135
1136 For example
1137
1138 @smallexample
1139 fsub %st,%st(3)
1140 @end smallexample
1141 @noindent
1142 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1143 than the expected @samp{%st(3) - %st}. This happens with all the
1144 non-commutative arithmetic floating point operations with two register
1145 operands where the source register is @samp{%st} and the destination
1146 register is @samp{%st(i)}.
1147
1148 @node i386-Notes
1149 @section Notes
1150
1151 @cindex i386 @code{mul}, @code{imul} instructions
1152 @cindex @code{mul} instruction, i386
1153 @cindex @code{imul} instruction, i386
1154 @cindex @code{mul} instruction, x86-64
1155 @cindex @code{imul} instruction, x86-64
1156 There is some trickery concerning the @samp{mul} and @samp{imul}
1157 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1158 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1159 for @samp{imul}) can be output only in the one operand form. Thus,
1160 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1161 the expanding multiply would clobber the @samp{%edx} register, and this
1162 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1163 64-bit product in @samp{%edx:%eax}.
1164
1165 We have added a two operand form of @samp{imul} when the first operand
1166 is an immediate mode expression and the second operand is a register.
1167 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1168 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1169 $69, %eax, %eax}.
1170
This page took 0.070369 seconds and 5 git commands to generate.