Correct x86 assembler manual
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2014 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{k6},
114 @code{k6_2},
115 @code{athlon},
116 @code{opteron},
117 @code{k8},
118 @code{amdfam10},
119 @code{bdver1},
120 @code{bdver2},
121 @code{bdver3},
122 @code{bdver4},
123 @code{btver1},
124 @code{btver2},
125 @code{generic32} and
126 @code{generic64}.
127
128 In addition to the basic instruction set, the assembler can be told to
129 accept various extension mnemonics. For example,
130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131 @var{vmx}. The following extensions are currently supported:
132 @code{8087},
133 @code{287},
134 @code{387},
135 @code{no87},
136 @code{mmx},
137 @code{nommx},
138 @code{sse},
139 @code{sse2},
140 @code{sse3},
141 @code{ssse3},
142 @code{sse4.1},
143 @code{sse4.2},
144 @code{sse4},
145 @code{nosse},
146 @code{avx},
147 @code{avx2},
148 @code{adx},
149 @code{rdseed},
150 @code{prfchw},
151 @code{smap},
152 @code{mpx},
153 @code{sha},
154 @code{prefetchwt1},
155 @code{clflushopt},
156 @code{se1},
157 @code{avx512f},
158 @code{avx512cd},
159 @code{avx512er},
160 @code{avx512pf},
161 @code{avx512vl},
162 @code{avx512bw},
163 @code{avx512dq},
164 @code{noavx},
165 @code{vmx},
166 @code{vmfunc},
167 @code{smx},
168 @code{xsave},
169 @code{xsaveopt},
170 @code{xsavec},
171 @code{xsaves},
172 @code{aes},
173 @code{pclmul},
174 @code{fsgsbase},
175 @code{rdrnd},
176 @code{f16c},
177 @code{bmi2},
178 @code{fma},
179 @code{movbe},
180 @code{ept},
181 @code{lzcnt},
182 @code{hle},
183 @code{rtm},
184 @code{invpcid},
185 @code{clflush},
186 @code{lwp},
187 @code{fma4},
188 @code{xop},
189 @code{cx16},
190 @code{syscall},
191 @code{rdtscp},
192 @code{3dnow},
193 @code{3dnowa},
194 @code{sse4a},
195 @code{sse5},
196 @code{svme},
197 @code{abm} and
198 @code{padlock}.
199 Note that rather than extending a basic instruction set, the extension
200 mnemonics starting with @code{no} revoke the respective functionality.
201
202 When the @code{.arch} directive is used with @option{-march}, the
203 @code{.arch} directive will take precedent.
204
205 @cindex @samp{-mtune=} option, i386
206 @cindex @samp{-mtune=} option, x86-64
207 @item -mtune=@var{CPU}
208 This option specifies a processor to optimize for. When used in
209 conjunction with the @option{-march} option, only instructions
210 of the processor specified by the @option{-march} option will be
211 generated.
212
213 Valid @var{CPU} values are identical to the processor list of
214 @option{-march=@var{CPU}}.
215
216 @cindex @samp{-msse2avx} option, i386
217 @cindex @samp{-msse2avx} option, x86-64
218 @item -msse2avx
219 This option specifies that the assembler should encode SSE instructions
220 with VEX prefix.
221
222 @cindex @samp{-msse-check=} option, i386
223 @cindex @samp{-msse-check=} option, x86-64
224 @item -msse-check=@var{none}
225 @itemx -msse-check=@var{warning}
226 @itemx -msse-check=@var{error}
227 These options control if the assembler should check SSE instructions.
228 @option{-msse-check=@var{none}} will make the assembler not to check SSE
229 instructions, which is the default. @option{-msse-check=@var{warning}}
230 will make the assembler issue a warning for any SSE instruction.
231 @option{-msse-check=@var{error}} will make the assembler issue an error
232 for any SSE instruction.
233
234 @cindex @samp{-mavxscalar=} option, i386
235 @cindex @samp{-mavxscalar=} option, x86-64
236 @item -mavxscalar=@var{128}
237 @itemx -mavxscalar=@var{256}
238 These options control how the assembler should encode scalar AVX
239 instructions. @option{-mavxscalar=@var{128}} will encode scalar
240 AVX instructions with 128bit vector length, which is the default.
241 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
242 with 256bit vector length.
243
244 @cindex @samp{-mevexlig=} option, i386
245 @cindex @samp{-mevexlig=} option, x86-64
246 @item -mevexlig=@var{128}
247 @itemx -mevexlig=@var{256}
248 @itemx -mevexlig=@var{512}
249 These options control how the assembler should encode length-ignored
250 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
251 EVEX instructions with 128bit vector length, which is the default.
252 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
253 encode LIG EVEX instructions with 256bit and 512bit vector length,
254 respectively.
255
256 @cindex @samp{-mevexwig=} option, i386
257 @cindex @samp{-mevexwig=} option, x86-64
258 @item -mevexwig=@var{0}
259 @itemx -mevexwig=@var{1}
260 These options control how the assembler should encode w-ignored (WIG)
261 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
262 EVEX instructions with evex.w = 0, which is the default.
263 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
264 evex.w = 1.
265
266 @cindex @samp{-mmnemonic=} option, i386
267 @cindex @samp{-mmnemonic=} option, x86-64
268 @item -mmnemonic=@var{att}
269 @itemx -mmnemonic=@var{intel}
270 This option specifies instruction mnemonic for matching instructions.
271 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
272 take precedent.
273
274 @cindex @samp{-msyntax=} option, i386
275 @cindex @samp{-msyntax=} option, x86-64
276 @item -msyntax=@var{att}
277 @itemx -msyntax=@var{intel}
278 This option specifies instruction syntax when processing instructions.
279 The @code{.att_syntax} and @code{.intel_syntax} directives will
280 take precedent.
281
282 @cindex @samp{-mnaked-reg} option, i386
283 @cindex @samp{-mnaked-reg} option, x86-64
284 @item -mnaked-reg
285 This opetion specifies that registers don't require a @samp{%} prefix.
286 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
287
288 @cindex @samp{-madd-bnd-prefix} option, i386
289 @cindex @samp{-madd-bnd-prefix} option, x86-64
290 @item -madd-bnd-prefix
291 This option forces the assembler to add BND prefix to all branches, even
292 if such prefix was not explicitly specified in the source code.
293
294 @cindex @samp{-mbig-obj} option, x86-64
295 @item -mbig-obj
296 On x86-64 PE/COFF target this option forces the use of big object file
297 format, which allows more than 32768 sections.
298
299 @cindex @samp{-momit-lock-prefix=} option, i386
300 @cindex @samp{-momit-lock-prefix=} option, x86-64
301 @item -momit-lock-prefix=@var{no}
302 @itemx -momit-lock-prefix=@var{yes}
303 These options control how the assembler should encode lock prefix.
304 This option is intended as a workaround for processors, that fail on
305 lock prefix. This option can only be safely used with single-core,
306 single-thread computers
307 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
308 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
309 which is the default.
310
311 @cindex @samp{-mevexrcig=} option, i386
312 @cindex @samp{-mevexrcig=} option, x86-64
313 @item -mevexrcig=@var{rne}
314 @itemx -mevexrcig=@var{rd}
315 @itemx -mevexrcig=@var{ru}
316 @itemx -mevexrcig=@var{rz}
317 These options control how the assembler should encode SAE-only
318 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
319 of EVEX instruction with 00, which is the default.
320 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
321 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
322 with 01, 10 and 11 RC bits, respectively.
323
324 @end table
325 @c man end
326
327 @node i386-Directives
328 @section x86 specific Directives
329
330 @cindex machine directives, x86
331 @cindex x86 machine directives
332 @table @code
333
334 @cindex @code{lcomm} directive, COFF
335 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
336 Reserve @var{length} (an absolute expression) bytes for a local common
337 denoted by @var{symbol}. The section and value of @var{symbol} are
338 those of the new local common. The addresses are allocated in the bss
339 section, so that at run-time the bytes start off zeroed. Since
340 @var{symbol} is not declared global, it is normally not visible to
341 @code{@value{LD}}. The optional third parameter, @var{alignment},
342 specifies the desired alignment of the symbol in the bss section.
343
344 This directive is only available for COFF based x86 targets.
345
346 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
347 @c .largecomm
348
349 @end table
350
351 @node i386-Syntax
352 @section i386 Syntactical Considerations
353 @menu
354 * i386-Variations:: AT&T Syntax versus Intel Syntax
355 * i386-Chars:: Special Characters
356 @end menu
357
358 @node i386-Variations
359 @subsection AT&T Syntax versus Intel Syntax
360
361 @cindex i386 intel_syntax pseudo op
362 @cindex intel_syntax pseudo op, i386
363 @cindex i386 att_syntax pseudo op
364 @cindex att_syntax pseudo op, i386
365 @cindex i386 syntax compatibility
366 @cindex syntax compatibility, i386
367 @cindex x86-64 intel_syntax pseudo op
368 @cindex intel_syntax pseudo op, x86-64
369 @cindex x86-64 att_syntax pseudo op
370 @cindex att_syntax pseudo op, x86-64
371 @cindex x86-64 syntax compatibility
372 @cindex syntax compatibility, x86-64
373
374 @code{@value{AS}} now supports assembly using Intel assembler syntax.
375 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
376 back to the usual AT&T mode for compatibility with the output of
377 @code{@value{GCC}}. Either of these directives may have an optional
378 argument, @code{prefix}, or @code{noprefix} specifying whether registers
379 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
380 different from Intel syntax. We mention these differences because
381 almost all 80386 documents use Intel syntax. Notable differences
382 between the two syntaxes are:
383
384 @cindex immediate operands, i386
385 @cindex i386 immediate operands
386 @cindex register operands, i386
387 @cindex i386 register operands
388 @cindex jump/call operands, i386
389 @cindex i386 jump/call operands
390 @cindex operand delimiters, i386
391
392 @cindex immediate operands, x86-64
393 @cindex x86-64 immediate operands
394 @cindex register operands, x86-64
395 @cindex x86-64 register operands
396 @cindex jump/call operands, x86-64
397 @cindex x86-64 jump/call operands
398 @cindex operand delimiters, x86-64
399 @itemize @bullet
400 @item
401 AT&T immediate operands are preceded by @samp{$}; Intel immediate
402 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
403 AT&T register operands are preceded by @samp{%}; Intel register operands
404 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
405 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
406
407 @cindex i386 source, destination operands
408 @cindex source, destination operands; i386
409 @cindex x86-64 source, destination operands
410 @cindex source, destination operands; x86-64
411 @item
412 AT&T and Intel syntax use the opposite order for source and destination
413 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
414 @samp{source, dest} convention is maintained for compatibility with
415 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
416 instructions with 2 immediate operands, such as the @samp{enter}
417 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
418
419 @cindex mnemonic suffixes, i386
420 @cindex sizes operands, i386
421 @cindex i386 size suffixes
422 @cindex mnemonic suffixes, x86-64
423 @cindex sizes operands, x86-64
424 @cindex x86-64 size suffixes
425 @item
426 In AT&T syntax the size of memory operands is determined from the last
427 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
428 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
429 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
430 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
431 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
432 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
433 syntax.
434
435 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
436 instruction with the 64-bit displacement or immediate operand.
437
438 @cindex return instructions, i386
439 @cindex i386 jump, call, return
440 @cindex return instructions, x86-64
441 @cindex x86-64 jump, call, return
442 @item
443 Immediate form long jumps and calls are
444 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
445 Intel syntax is
446 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
447 instruction
448 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
449 @samp{ret far @var{stack-adjust}}.
450
451 @cindex sections, i386
452 @cindex i386 sections
453 @cindex sections, x86-64
454 @cindex x86-64 sections
455 @item
456 The AT&T assembler does not provide support for multiple section
457 programs. Unix style systems expect all programs to be single sections.
458 @end itemize
459
460 @node i386-Chars
461 @subsection Special Characters
462
463 @cindex line comment character, i386
464 @cindex i386 line comment character
465 The presence of a @samp{#} appearing anywhere on a line indicates the
466 start of a comment that extends to the end of that line.
467
468 If a @samp{#} appears as the first character of a line then the whole
469 line is treated as a comment, but in this case the line can also be a
470 logical line number directive (@pxref{Comments}) or a preprocessor
471 control command (@pxref{Preprocessing}).
472
473 If the @option{--divide} command line option has not been specified
474 then the @samp{/} character appearing anywhere on a line also
475 introduces a line comment.
476
477 @cindex line separator, i386
478 @cindex statement separator, i386
479 @cindex i386 line separator
480 The @samp{;} character can be used to separate statements on the same
481 line.
482
483 @node i386-Mnemonics
484 @section Instruction Naming
485
486 @cindex i386 instruction naming
487 @cindex instruction naming, i386
488 @cindex x86-64 instruction naming
489 @cindex instruction naming, x86-64
490
491 Instruction mnemonics are suffixed with one character modifiers which
492 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
493 and @samp{q} specify byte, word, long and quadruple word operands. If
494 no suffix is specified by an instruction then @code{@value{AS}} tries to
495 fill in the missing suffix based on the destination register operand
496 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
497 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
498 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
499 assembler which assumes that a missing mnemonic suffix implies long
500 operand size. (This incompatibility does not affect compiler output
501 since compilers always explicitly specify the mnemonic suffix.)
502
503 Almost all instructions have the same names in AT&T and Intel format.
504 There are a few exceptions. The sign extend and zero extend
505 instructions need two sizes to specify them. They need a size to
506 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
507 is accomplished by using two instruction mnemonic suffixes in AT&T
508 syntax. Base names for sign extend and zero extend are
509 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
510 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
511 are tacked on to this base name, the @emph{from} suffix before the
512 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
513 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
514 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
515 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
516 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
517 quadruple word).
518
519 @cindex encoding options, i386
520 @cindex encoding options, x86-64
521
522 Different encoding options can be specified via optional mnemonic
523 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
524 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
525 prefers 8bit or 32bit displacement in encoding.
526
527 @cindex conversion instructions, i386
528 @cindex i386 conversion instructions
529 @cindex conversion instructions, x86-64
530 @cindex x86-64 conversion instructions
531 The Intel-syntax conversion instructions
532
533 @itemize @bullet
534 @item
535 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
536
537 @item
538 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
539
540 @item
541 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
542
543 @item
544 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
545
546 @item
547 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
548 (x86-64 only),
549
550 @item
551 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
552 @samp{%rdx:%rax} (x86-64 only),
553 @end itemize
554
555 @noindent
556 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
557 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
558 instructions.
559
560 @cindex jump instructions, i386
561 @cindex call instructions, i386
562 @cindex jump instructions, x86-64
563 @cindex call instructions, x86-64
564 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
565 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
566 convention.
567
568 @section AT&T Mnemonic versus Intel Mnemonic
569
570 @cindex i386 mnemonic compatibility
571 @cindex mnemonic compatibility, i386
572
573 @code{@value{AS}} supports assembly using Intel mnemonic.
574 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
575 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
576 syntax for compatibility with the output of @code{@value{GCC}}.
577 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
578 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
579 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
580 assembler with different mnemonics from those in Intel IA32 specification.
581 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
582
583 @node i386-Regs
584 @section Register Naming
585
586 @cindex i386 registers
587 @cindex registers, i386
588 @cindex x86-64 registers
589 @cindex registers, x86-64
590 Register operands are always prefixed with @samp{%}. The 80386 registers
591 consist of
592
593 @itemize @bullet
594 @item
595 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
596 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
597 frame pointer), and @samp{%esp} (the stack pointer).
598
599 @item
600 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
601 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
602
603 @item
604 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
605 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
606 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
607 @samp{%cx}, and @samp{%dx})
608
609 @item
610 the 6 section registers @samp{%cs} (code section), @samp{%ds}
611 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
612 and @samp{%gs}.
613
614 @item
615 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
616 @samp{%cr3}.
617
618 @item
619 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
620 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
621
622 @item
623 the 2 test registers @samp{%tr6} and @samp{%tr7}.
624
625 @item
626 the 8 floating point register stack @samp{%st} or equivalently
627 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
628 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
629 These registers are overloaded by 8 MMX registers @samp{%mm0},
630 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
631 @samp{%mm6} and @samp{%mm7}.
632
633 @item
634 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
635 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
636 @end itemize
637
638 The AMD x86-64 architecture extends the register set by:
639
640 @itemize @bullet
641 @item
642 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
643 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
644 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
645 pointer)
646
647 @item
648 the 8 extended registers @samp{%r8}--@samp{%r15}.
649
650 @item
651 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
652
653 @item
654 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
655
656 @item
657 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
658
659 @item
660 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
661
662 @item
663 the 8 debug registers: @samp{%db8}--@samp{%db15}.
664
665 @item
666 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
667 @end itemize
668
669 @node i386-Prefixes
670 @section Instruction Prefixes
671
672 @cindex i386 instruction prefixes
673 @cindex instruction prefixes, i386
674 @cindex prefixes, i386
675 Instruction prefixes are used to modify the following instruction. They
676 are used to repeat string instructions, to provide section overrides, to
677 perform bus lock operations, and to change operand and address sizes.
678 (Most instructions that normally operate on 32-bit operands will use
679 16-bit operands if the instruction has an ``operand size'' prefix.)
680 Instruction prefixes are best written on the same line as the instruction
681 they act upon. For example, the @samp{scas} (scan string) instruction is
682 repeated with:
683
684 @smallexample
685 repne scas %es:(%edi),%al
686 @end smallexample
687
688 You may also place prefixes on the lines immediately preceding the
689 instruction, but this circumvents checks that @code{@value{AS}} does
690 with prefixes, and will not work with all prefixes.
691
692 Here is a list of instruction prefixes:
693
694 @cindex section override prefixes, i386
695 @itemize @bullet
696 @item
697 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
698 @samp{fs}, @samp{gs}. These are automatically added by specifying
699 using the @var{section}:@var{memory-operand} form for memory references.
700
701 @cindex size prefixes, i386
702 @item
703 Operand/Address size prefixes @samp{data16} and @samp{addr16}
704 change 32-bit operands/addresses into 16-bit operands/addresses,
705 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
706 @code{.code16} section) into 32-bit operands/addresses. These prefixes
707 @emph{must} appear on the same line of code as the instruction they
708 modify. For example, in a 16-bit @code{.code16} section, you might
709 write:
710
711 @smallexample
712 addr32 jmpl *(%ebx)
713 @end smallexample
714
715 @cindex bus lock prefixes, i386
716 @cindex inhibiting interrupts, i386
717 @item
718 The bus lock prefix @samp{lock} inhibits interrupts during execution of
719 the instruction it precedes. (This is only valid with certain
720 instructions; see a 80386 manual for details).
721
722 @cindex coprocessor wait, i386
723 @item
724 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
725 complete the current instruction. This should never be needed for the
726 80386/80387 combination.
727
728 @cindex repeat prefixes, i386
729 @item
730 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
731 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
732 times if the current address size is 16-bits).
733 @cindex REX prefixes, i386
734 @item
735 The @samp{rex} family of prefixes is used by x86-64 to encode
736 extensions to i386 instruction set. The @samp{rex} prefix has four
737 bits --- an operand size overwrite (@code{64}) used to change operand size
738 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
739 register set.
740
741 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
742 instruction emits @samp{rex} prefix with all the bits set. By omitting
743 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
744 prefixes as well. Normally, there is no need to write the prefixes
745 explicitly, since gas will automatically generate them based on the
746 instruction operands.
747 @end itemize
748
749 @node i386-Memory
750 @section Memory References
751
752 @cindex i386 memory references
753 @cindex memory references, i386
754 @cindex x86-64 memory references
755 @cindex memory references, x86-64
756 An Intel syntax indirect memory reference of the form
757
758 @smallexample
759 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
760 @end smallexample
761
762 @noindent
763 is translated into the AT&T syntax
764
765 @smallexample
766 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
767 @end smallexample
768
769 @noindent
770 where @var{base} and @var{index} are the optional 32-bit base and
771 index registers, @var{disp} is the optional displacement, and
772 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
773 to calculate the address of the operand. If no @var{scale} is
774 specified, @var{scale} is taken to be 1. @var{section} specifies the
775 optional section register for the memory operand, and may override the
776 default section register (see a 80386 manual for section register
777 defaults). Note that section overrides in AT&T syntax @emph{must}
778 be preceded by a @samp{%}. If you specify a section override which
779 coincides with the default section register, @code{@value{AS}} does @emph{not}
780 output any section register override prefixes to assemble the given
781 instruction. Thus, section overrides can be specified to emphasize which
782 section register is used for a given memory operand.
783
784 Here are some examples of Intel and AT&T style memory references:
785
786 @table @asis
787 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
788 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
789 missing, and the default section is used (@samp{%ss} for addressing with
790 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
791
792 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
793 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
794 @samp{foo}. All other fields are missing. The section register here
795 defaults to @samp{%ds}.
796
797 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
798 This uses the value pointed to by @samp{foo} as a memory operand.
799 Note that @var{base} and @var{index} are both missing, but there is only
800 @emph{one} @samp{,}. This is a syntactic exception.
801
802 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
803 This selects the contents of the variable @samp{foo} with section
804 register @var{section} being @samp{%gs}.
805 @end table
806
807 Absolute (as opposed to PC relative) call and jump operands must be
808 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
809 always chooses PC relative addressing for jump/call labels.
810
811 Any instruction that has a memory operand, but no register operand,
812 @emph{must} specify its size (byte, word, long, or quadruple) with an
813 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
814 respectively).
815
816 The x86-64 architecture adds an RIP (instruction pointer relative)
817 addressing. This addressing mode is specified by using @samp{rip} as a
818 base register. Only constant offsets are valid. For example:
819
820 @table @asis
821 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
822 Points to the address 1234 bytes past the end of the current
823 instruction.
824
825 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
826 Points to the @code{symbol} in RIP relative way, this is shorter than
827 the default absolute addressing.
828 @end table
829
830 Other addressing modes remain unchanged in x86-64 architecture, except
831 registers used are 64-bit instead of 32-bit.
832
833 @node i386-Jumps
834 @section Handling of Jump Instructions
835
836 @cindex jump optimization, i386
837 @cindex i386 jump optimization
838 @cindex jump optimization, x86-64
839 @cindex x86-64 jump optimization
840 Jump instructions are always optimized to use the smallest possible
841 displacements. This is accomplished by using byte (8-bit) displacement
842 jumps whenever the target is sufficiently close. If a byte displacement
843 is insufficient a long displacement is used. We do not support
844 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
845 instruction with the @samp{data16} instruction prefix), since the 80386
846 insists upon masking @samp{%eip} to 16 bits after the word displacement
847 is added. (See also @pxref{i386-Arch})
848
849 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
850 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
851 displacements, so that if you use these instructions (@code{@value{GCC}} does
852 not use them) you may get an error message (and incorrect code). The AT&T
853 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
854 to
855
856 @smallexample
857 jcxz cx_zero
858 jmp cx_nonzero
859 cx_zero: jmp foo
860 cx_nonzero:
861 @end smallexample
862
863 @node i386-Float
864 @section Floating Point
865
866 @cindex i386 floating point
867 @cindex floating point, i386
868 @cindex x86-64 floating point
869 @cindex floating point, x86-64
870 All 80387 floating point types except packed BCD are supported.
871 (BCD support may be added without much difficulty). These data
872 types are 16-, 32-, and 64- bit integers, and single (32-bit),
873 double (64-bit), and extended (80-bit) precision floating point.
874 Each supported type has an instruction mnemonic suffix and a constructor
875 associated with it. Instruction mnemonic suffixes specify the operand's
876 data type. Constructors build these data types into memory.
877
878 @cindex @code{float} directive, i386
879 @cindex @code{single} directive, i386
880 @cindex @code{double} directive, i386
881 @cindex @code{tfloat} directive, i386
882 @cindex @code{float} directive, x86-64
883 @cindex @code{single} directive, x86-64
884 @cindex @code{double} directive, x86-64
885 @cindex @code{tfloat} directive, x86-64
886 @itemize @bullet
887 @item
888 Floating point constructors are @samp{.float} or @samp{.single},
889 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
890 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
891 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
892 only supports this format via the @samp{fldt} (load 80-bit real to stack
893 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
894
895 @cindex @code{word} directive, i386
896 @cindex @code{long} directive, i386
897 @cindex @code{int} directive, i386
898 @cindex @code{quad} directive, i386
899 @cindex @code{word} directive, x86-64
900 @cindex @code{long} directive, x86-64
901 @cindex @code{int} directive, x86-64
902 @cindex @code{quad} directive, x86-64
903 @item
904 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
905 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
906 corresponding instruction mnemonic suffixes are @samp{s} (single),
907 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
908 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
909 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
910 stack) instructions.
911 @end itemize
912
913 Register to register operations should not use instruction mnemonic suffixes.
914 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
915 wrote @samp{fst %st, %st(1)}, since all register to register operations
916 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
917 which converts @samp{%st} from 80-bit to 64-bit floating point format,
918 then stores the result in the 4 byte location @samp{mem})
919
920 @node i386-SIMD
921 @section Intel's MMX and AMD's 3DNow! SIMD Operations
922
923 @cindex MMX, i386
924 @cindex 3DNow!, i386
925 @cindex SIMD, i386
926 @cindex MMX, x86-64
927 @cindex 3DNow!, x86-64
928 @cindex SIMD, x86-64
929
930 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
931 instructions for integer data), available on Intel's Pentium MMX
932 processors and Pentium II processors, AMD's K6 and K6-2 processors,
933 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
934 instruction set (SIMD instructions for 32-bit floating point data)
935 available on AMD's K6-2 processor and possibly others in the future.
936
937 Currently, @code{@value{AS}} does not support Intel's floating point
938 SIMD, Katmai (KNI).
939
940 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
941 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
942 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
943 floating point values. The MMX registers cannot be used at the same time
944 as the floating point stack.
945
946 See Intel and AMD documentation, keeping in mind that the operand order in
947 instructions is reversed from the Intel syntax.
948
949 @node i386-LWP
950 @section AMD's Lightweight Profiling Instructions
951
952 @cindex LWP, i386
953 @cindex LWP, x86-64
954
955 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
956 instruction set, available on AMD's Family 15h (Orochi) processors.
957
958 LWP enables applications to collect and manage performance data, and
959 react to performance events. The collection of performance data
960 requires no context switches. LWP runs in the context of a thread and
961 so several counters can be used independently across multiple threads.
962 LWP can be used in both 64-bit and legacy 32-bit modes.
963
964 For detailed information on the LWP instruction set, see the
965 @cite{AMD Lightweight Profiling Specification} available at
966 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
967
968 @node i386-BMI
969 @section Bit Manipulation Instructions
970
971 @cindex BMI, i386
972 @cindex BMI, x86-64
973
974 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
975
976 BMI instructions provide several instructions implementing individual
977 bit manipulation operations such as isolation, masking, setting, or
978 resetting.
979
980 @c Need to add a specification citation here when available.
981
982 @node i386-TBM
983 @section AMD's Trailing Bit Manipulation Instructions
984
985 @cindex TBM, i386
986 @cindex TBM, x86-64
987
988 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
989 instruction set, available on AMD's BDVER2 processors (Trinity and
990 Viperfish).
991
992 TBM instructions provide instructions implementing individual bit
993 manipulation operations such as isolating, masking, setting, resetting,
994 complementing, and operations on trailing zeros and ones.
995
996 @c Need to add a specification citation here when available.
997
998 @node i386-16bit
999 @section Writing 16-bit Code
1000
1001 @cindex i386 16-bit code
1002 @cindex 16-bit code, i386
1003 @cindex real-mode code, i386
1004 @cindex @code{code16gcc} directive, i386
1005 @cindex @code{code16} directive, i386
1006 @cindex @code{code32} directive, i386
1007 @cindex @code{code64} directive, i386
1008 @cindex @code{code64} directive, x86-64
1009 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1010 or 64-bit x86-64 code depending on the default configuration,
1011 it also supports writing code to run in real mode or in 16-bit protected
1012 mode code segments. To do this, put a @samp{.code16} or
1013 @samp{.code16gcc} directive before the assembly language instructions to
1014 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1015 32-bit code with the @samp{.code32} directive or 64-bit code with the
1016 @samp{.code64} directive.
1017
1018 @samp{.code16gcc} provides experimental support for generating 16-bit
1019 code from gcc, and differs from @samp{.code16} in that @samp{call},
1020 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1021 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1022 default to 32-bit size. This is so that the stack pointer is
1023 manipulated in the same way over function calls, allowing access to
1024 function parameters at the same stack offsets as in 32-bit mode.
1025 @samp{.code16gcc} also automatically adds address size prefixes where
1026 necessary to use the 32-bit addressing modes that gcc generates.
1027
1028 The code which @code{@value{AS}} generates in 16-bit mode will not
1029 necessarily run on a 16-bit pre-80386 processor. To write code that
1030 runs on such a processor, you must refrain from using @emph{any} 32-bit
1031 constructs which require @code{@value{AS}} to output address or operand
1032 size prefixes.
1033
1034 Note that writing 16-bit code instructions by explicitly specifying a
1035 prefix or an instruction mnemonic suffix within a 32-bit code section
1036 generates different machine instructions than those generated for a
1037 16-bit code segment. In a 32-bit code section, the following code
1038 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1039 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1040
1041 @smallexample
1042 pushw $4
1043 @end smallexample
1044
1045 The same code in a 16-bit code section would generate the machine
1046 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1047 is correct since the processor default operand size is assumed to be 16
1048 bits in a 16-bit code section.
1049
1050 @node i386-Bugs
1051 @section AT&T Syntax bugs
1052
1053 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1054 assemblers, generate floating point instructions with reversed source
1055 and destination registers in certain cases. Unfortunately, gcc and
1056 possibly many other programs use this reversed syntax, so we're stuck
1057 with it.
1058
1059 For example
1060
1061 @smallexample
1062 fsub %st,%st(3)
1063 @end smallexample
1064 @noindent
1065 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1066 than the expected @samp{%st(3) - %st}. This happens with all the
1067 non-commutative arithmetic floating point operations with two register
1068 operands where the source register is @samp{%st} and the destination
1069 register is @samp{%st(i)}.
1070
1071 @node i386-Arch
1072 @section Specifying CPU Architecture
1073
1074 @cindex arch directive, i386
1075 @cindex i386 arch directive
1076 @cindex arch directive, x86-64
1077 @cindex x86-64 arch directive
1078
1079 @code{@value{AS}} may be told to assemble for a particular CPU
1080 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1081 directive enables a warning when gas detects an instruction that is not
1082 supported on the CPU specified. The choices for @var{cpu_type} are:
1083
1084 @multitable @columnfractions .20 .20 .20 .20
1085 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1086 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1087 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1088 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1089 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1090 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1091 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1092 @item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1093 @item @samp{generic32} @tab @samp{generic64}
1094 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1095 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1096 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1097 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1098 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1099 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1100 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1101 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1102 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1103 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1104 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1105 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq}
1106 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1107 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1108 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1109 @item @samp{.padlock}
1110 @end multitable
1111
1112 Apart from the warning, there are only two other effects on
1113 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1114 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1115 will automatically use a two byte opcode sequence. The larger three
1116 byte opcode sequence is used on the 486 (and when no architecture is
1117 specified) because it executes faster on the 486. Note that you can
1118 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1119 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1120 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1121 conditional jumps will be promoted when necessary to a two instruction
1122 sequence consisting of a conditional jump of the opposite sense around
1123 an unconditional jump to the target.
1124
1125 Following the CPU architecture (but not a sub-architecture, which are those
1126 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1127 control automatic promotion of conditional jumps. @samp{jumps} is the
1128 default, and enables jump promotion; All external jumps will be of the long
1129 variety, and file-local jumps will be promoted as necessary.
1130 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1131 byte offset jumps, and warns about file-local conditional jumps that
1132 @code{@value{AS}} promotes.
1133 Unconditional jumps are treated as for @samp{jumps}.
1134
1135 For example
1136
1137 @smallexample
1138 .arch i8086,nojumps
1139 @end smallexample
1140
1141 @node i386-Notes
1142 @section Notes
1143
1144 @cindex i386 @code{mul}, @code{imul} instructions
1145 @cindex @code{mul} instruction, i386
1146 @cindex @code{imul} instruction, i386
1147 @cindex @code{mul} instruction, x86-64
1148 @cindex @code{imul} instruction, x86-64
1149 There is some trickery concerning the @samp{mul} and @samp{imul}
1150 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1151 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1152 for @samp{imul}) can be output only in the one operand form. Thus,
1153 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1154 the expanding multiply would clobber the @samp{%edx} register, and this
1155 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1156 64-bit product in @samp{%edx:%eax}.
1157
1158 We have added a two operand form of @samp{imul} when the first operand
1159 is an immediate mode expression and the second operand is a register.
1160 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1161 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1162 $69, %eax, %eax}.
1163
This page took 0.053473 seconds and 5 git commands to generate.