Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{btver1},
127 @code{btver2},
128 @code{generic32} and
129 @code{generic64}.
130
131 In addition to the basic instruction set, the assembler can be told to
132 accept various extension mnemonics. For example,
133 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134 @var{vmx}. The following extensions are currently supported:
135 @code{8087},
136 @code{287},
137 @code{387},
138 @code{687},
139 @code{no87},
140 @code{no287},
141 @code{no387},
142 @code{no687},
143 @code{mmx},
144 @code{nommx},
145 @code{sse},
146 @code{sse2},
147 @code{sse3},
148 @code{ssse3},
149 @code{sse4.1},
150 @code{sse4.2},
151 @code{sse4},
152 @code{nosse},
153 @code{nosse2},
154 @code{nosse3},
155 @code{nossse3},
156 @code{nosse4.1},
157 @code{nosse4.2},
158 @code{nosse4},
159 @code{avx},
160 @code{avx2},
161 @code{noavx},
162 @code{noavx2},
163 @code{adx},
164 @code{rdseed},
165 @code{prfchw},
166 @code{smap},
167 @code{mpx},
168 @code{sha},
169 @code{rdpid},
170 @code{ptwrite},
171 @code{cet},
172 @code{gfni},
173 @code{vaes},
174 @code{vpclmulqdq},
175 @code{prefetchwt1},
176 @code{clflushopt},
177 @code{se1},
178 @code{clwb},
179 @code{avx512f},
180 @code{avx512cd},
181 @code{avx512er},
182 @code{avx512pf},
183 @code{avx512vl},
184 @code{avx512bw},
185 @code{avx512dq},
186 @code{avx512ifma},
187 @code{avx512vbmi},
188 @code{avx512_4fmaps},
189 @code{avx512_4vnniw},
190 @code{avx512_vpopcntdq},
191 @code{avx512_vbmi2},
192 @code{avx512_vnni},
193 @code{avx512_bitalg},
194 @code{noavx512f},
195 @code{noavx512cd},
196 @code{noavx512er},
197 @code{noavx512pf},
198 @code{noavx512vl},
199 @code{noavx512bw},
200 @code{noavx512dq},
201 @code{noavx512ifma},
202 @code{noavx512vbmi},
203 @code{noavx512_4fmaps},
204 @code{noavx512_4vnniw},
205 @code{noavx512_vpopcntdq},
206 @code{noavx512_vbmi2},
207 @code{noavx512_vnni},
208 @code{noavx512_bitalg},
209 @code{vmx},
210 @code{vmfunc},
211 @code{smx},
212 @code{xsave},
213 @code{xsaveopt},
214 @code{xsavec},
215 @code{xsaves},
216 @code{aes},
217 @code{pclmul},
218 @code{fsgsbase},
219 @code{rdrnd},
220 @code{f16c},
221 @code{bmi2},
222 @code{fma},
223 @code{movbe},
224 @code{ept},
225 @code{lzcnt},
226 @code{hle},
227 @code{rtm},
228 @code{invpcid},
229 @code{clflush},
230 @code{mwaitx},
231 @code{clzero},
232 @code{lwp},
233 @code{fma4},
234 @code{xop},
235 @code{cx16},
236 @code{syscall},
237 @code{rdtscp},
238 @code{3dnow},
239 @code{3dnowa},
240 @code{sse4a},
241 @code{sse5},
242 @code{svme},
243 @code{abm} and
244 @code{padlock}.
245 Note that rather than extending a basic instruction set, the extension
246 mnemonics starting with @code{no} revoke the respective functionality.
247
248 When the @code{.arch} directive is used with @option{-march}, the
249 @code{.arch} directive will take precedent.
250
251 @cindex @samp{-mtune=} option, i386
252 @cindex @samp{-mtune=} option, x86-64
253 @item -mtune=@var{CPU}
254 This option specifies a processor to optimize for. When used in
255 conjunction with the @option{-march} option, only instructions
256 of the processor specified by the @option{-march} option will be
257 generated.
258
259 Valid @var{CPU} values are identical to the processor list of
260 @option{-march=@var{CPU}}.
261
262 @cindex @samp{-msse2avx} option, i386
263 @cindex @samp{-msse2avx} option, x86-64
264 @item -msse2avx
265 This option specifies that the assembler should encode SSE instructions
266 with VEX prefix.
267
268 @cindex @samp{-msse-check=} option, i386
269 @cindex @samp{-msse-check=} option, x86-64
270 @item -msse-check=@var{none}
271 @itemx -msse-check=@var{warning}
272 @itemx -msse-check=@var{error}
273 These options control if the assembler should check SSE instructions.
274 @option{-msse-check=@var{none}} will make the assembler not to check SSE
275 instructions, which is the default. @option{-msse-check=@var{warning}}
276 will make the assembler issue a warning for any SSE instruction.
277 @option{-msse-check=@var{error}} will make the assembler issue an error
278 for any SSE instruction.
279
280 @cindex @samp{-mavxscalar=} option, i386
281 @cindex @samp{-mavxscalar=} option, x86-64
282 @item -mavxscalar=@var{128}
283 @itemx -mavxscalar=@var{256}
284 These options control how the assembler should encode scalar AVX
285 instructions. @option{-mavxscalar=@var{128}} will encode scalar
286 AVX instructions with 128bit vector length, which is the default.
287 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
288 with 256bit vector length.
289
290 @cindex @samp{-mevexlig=} option, i386
291 @cindex @samp{-mevexlig=} option, x86-64
292 @item -mevexlig=@var{128}
293 @itemx -mevexlig=@var{256}
294 @itemx -mevexlig=@var{512}
295 These options control how the assembler should encode length-ignored
296 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
297 EVEX instructions with 128bit vector length, which is the default.
298 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
299 encode LIG EVEX instructions with 256bit and 512bit vector length,
300 respectively.
301
302 @cindex @samp{-mevexwig=} option, i386
303 @cindex @samp{-mevexwig=} option, x86-64
304 @item -mevexwig=@var{0}
305 @itemx -mevexwig=@var{1}
306 These options control how the assembler should encode w-ignored (WIG)
307 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
308 EVEX instructions with evex.w = 0, which is the default.
309 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
310 evex.w = 1.
311
312 @cindex @samp{-mmnemonic=} option, i386
313 @cindex @samp{-mmnemonic=} option, x86-64
314 @item -mmnemonic=@var{att}
315 @itemx -mmnemonic=@var{intel}
316 This option specifies instruction mnemonic for matching instructions.
317 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
318 take precedent.
319
320 @cindex @samp{-msyntax=} option, i386
321 @cindex @samp{-msyntax=} option, x86-64
322 @item -msyntax=@var{att}
323 @itemx -msyntax=@var{intel}
324 This option specifies instruction syntax when processing instructions.
325 The @code{.att_syntax} and @code{.intel_syntax} directives will
326 take precedent.
327
328 @cindex @samp{-mnaked-reg} option, i386
329 @cindex @samp{-mnaked-reg} option, x86-64
330 @item -mnaked-reg
331 This option specifies that registers don't require a @samp{%} prefix.
332 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
333
334 @cindex @samp{-madd-bnd-prefix} option, i386
335 @cindex @samp{-madd-bnd-prefix} option, x86-64
336 @item -madd-bnd-prefix
337 This option forces the assembler to add BND prefix to all branches, even
338 if such prefix was not explicitly specified in the source code.
339
340 @cindex @samp{-mshared} option, i386
341 @cindex @samp{-mshared} option, x86-64
342 @item -mno-shared
343 On ELF target, the assembler normally optimizes out non-PLT relocations
344 against defined non-weak global branch targets with default visibility.
345 The @samp{-mshared} option tells the assembler to generate code which
346 may go into a shared library where all non-weak global branch targets
347 with default visibility can be preempted. The resulting code is
348 slightly bigger. This option only affects the handling of branch
349 instructions.
350
351 @cindex @samp{-mbig-obj} option, x86-64
352 @item -mbig-obj
353 On x86-64 PE/COFF target this option forces the use of big object file
354 format, which allows more than 32768 sections.
355
356 @cindex @samp{-momit-lock-prefix=} option, i386
357 @cindex @samp{-momit-lock-prefix=} option, x86-64
358 @item -momit-lock-prefix=@var{no}
359 @itemx -momit-lock-prefix=@var{yes}
360 These options control how the assembler should encode lock prefix.
361 This option is intended as a workaround for processors, that fail on
362 lock prefix. This option can only be safely used with single-core,
363 single-thread computers
364 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
365 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
366 which is the default.
367
368 @cindex @samp{-mfence-as-lock-add=} option, i386
369 @cindex @samp{-mfence-as-lock-add=} option, x86-64
370 @item -mfence-as-lock-add=@var{no}
371 @itemx -mfence-as-lock-add=@var{yes}
372 These options control how the assembler should encode lfence, mfence and
373 sfence.
374 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
375 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
376 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
377 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
378 sfence as usual, which is the default.
379
380 @cindex @samp{-mrelax-relocations=} option, i386
381 @cindex @samp{-mrelax-relocations=} option, x86-64
382 @item -mrelax-relocations=@var{no}
383 @itemx -mrelax-relocations=@var{yes}
384 These options control whether the assembler should generate relax
385 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
386 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
387 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
388 @option{-mrelax-relocations=@var{no}} will not generate relax
389 relocations. The default can be controlled by a configure option
390 @option{--enable-x86-relax-relocations}.
391
392 @cindex @samp{-mevexrcig=} option, i386
393 @cindex @samp{-mevexrcig=} option, x86-64
394 @item -mevexrcig=@var{rne}
395 @itemx -mevexrcig=@var{rd}
396 @itemx -mevexrcig=@var{ru}
397 @itemx -mevexrcig=@var{rz}
398 These options control how the assembler should encode SAE-only
399 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
400 of EVEX instruction with 00, which is the default.
401 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
402 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
403 with 01, 10 and 11 RC bits, respectively.
404
405 @cindex @samp{-mamd64} option, x86-64
406 @cindex @samp{-mintel64} option, x86-64
407 @item -mamd64
408 @itemx -mintel64
409 This option specifies that the assembler should accept only AMD64 or
410 Intel64 ISA in 64-bit mode. The default is to accept both.
411
412 @end table
413 @c man end
414
415 @node i386-Directives
416 @section x86 specific Directives
417
418 @cindex machine directives, x86
419 @cindex x86 machine directives
420 @table @code
421
422 @cindex @code{lcomm} directive, COFF
423 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
424 Reserve @var{length} (an absolute expression) bytes for a local common
425 denoted by @var{symbol}. The section and value of @var{symbol} are
426 those of the new local common. The addresses are allocated in the bss
427 section, so that at run-time the bytes start off zeroed. Since
428 @var{symbol} is not declared global, it is normally not visible to
429 @code{@value{LD}}. The optional third parameter, @var{alignment},
430 specifies the desired alignment of the symbol in the bss section.
431
432 This directive is only available for COFF based x86 targets.
433
434 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
435 @c .largecomm
436
437 @end table
438
439 @node i386-Syntax
440 @section i386 Syntactical Considerations
441 @menu
442 * i386-Variations:: AT&T Syntax versus Intel Syntax
443 * i386-Chars:: Special Characters
444 @end menu
445
446 @node i386-Variations
447 @subsection AT&T Syntax versus Intel Syntax
448
449 @cindex i386 intel_syntax pseudo op
450 @cindex intel_syntax pseudo op, i386
451 @cindex i386 att_syntax pseudo op
452 @cindex att_syntax pseudo op, i386
453 @cindex i386 syntax compatibility
454 @cindex syntax compatibility, i386
455 @cindex x86-64 intel_syntax pseudo op
456 @cindex intel_syntax pseudo op, x86-64
457 @cindex x86-64 att_syntax pseudo op
458 @cindex att_syntax pseudo op, x86-64
459 @cindex x86-64 syntax compatibility
460 @cindex syntax compatibility, x86-64
461
462 @code{@value{AS}} now supports assembly using Intel assembler syntax.
463 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
464 back to the usual AT&T mode for compatibility with the output of
465 @code{@value{GCC}}. Either of these directives may have an optional
466 argument, @code{prefix}, or @code{noprefix} specifying whether registers
467 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
468 different from Intel syntax. We mention these differences because
469 almost all 80386 documents use Intel syntax. Notable differences
470 between the two syntaxes are:
471
472 @cindex immediate operands, i386
473 @cindex i386 immediate operands
474 @cindex register operands, i386
475 @cindex i386 register operands
476 @cindex jump/call operands, i386
477 @cindex i386 jump/call operands
478 @cindex operand delimiters, i386
479
480 @cindex immediate operands, x86-64
481 @cindex x86-64 immediate operands
482 @cindex register operands, x86-64
483 @cindex x86-64 register operands
484 @cindex jump/call operands, x86-64
485 @cindex x86-64 jump/call operands
486 @cindex operand delimiters, x86-64
487 @itemize @bullet
488 @item
489 AT&T immediate operands are preceded by @samp{$}; Intel immediate
490 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
491 AT&T register operands are preceded by @samp{%}; Intel register operands
492 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
493 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
494
495 @cindex i386 source, destination operands
496 @cindex source, destination operands; i386
497 @cindex x86-64 source, destination operands
498 @cindex source, destination operands; x86-64
499 @item
500 AT&T and Intel syntax use the opposite order for source and destination
501 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
502 @samp{source, dest} convention is maintained for compatibility with
503 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
504 instructions with 2 immediate operands, such as the @samp{enter}
505 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
506
507 @cindex mnemonic suffixes, i386
508 @cindex sizes operands, i386
509 @cindex i386 size suffixes
510 @cindex mnemonic suffixes, x86-64
511 @cindex sizes operands, x86-64
512 @cindex x86-64 size suffixes
513 @item
514 In AT&T syntax the size of memory operands is determined from the last
515 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
516 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
517 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
518 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
519 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
520 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
521 syntax.
522
523 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
524 instruction with the 64-bit displacement or immediate operand.
525
526 @cindex return instructions, i386
527 @cindex i386 jump, call, return
528 @cindex return instructions, x86-64
529 @cindex x86-64 jump, call, return
530 @item
531 Immediate form long jumps and calls are
532 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
533 Intel syntax is
534 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
535 instruction
536 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
537 @samp{ret far @var{stack-adjust}}.
538
539 @cindex sections, i386
540 @cindex i386 sections
541 @cindex sections, x86-64
542 @cindex x86-64 sections
543 @item
544 The AT&T assembler does not provide support for multiple section
545 programs. Unix style systems expect all programs to be single sections.
546 @end itemize
547
548 @node i386-Chars
549 @subsection Special Characters
550
551 @cindex line comment character, i386
552 @cindex i386 line comment character
553 The presence of a @samp{#} appearing anywhere on a line indicates the
554 start of a comment that extends to the end of that line.
555
556 If a @samp{#} appears as the first character of a line then the whole
557 line is treated as a comment, but in this case the line can also be a
558 logical line number directive (@pxref{Comments}) or a preprocessor
559 control command (@pxref{Preprocessing}).
560
561 If the @option{--divide} command line option has not been specified
562 then the @samp{/} character appearing anywhere on a line also
563 introduces a line comment.
564
565 @cindex line separator, i386
566 @cindex statement separator, i386
567 @cindex i386 line separator
568 The @samp{;} character can be used to separate statements on the same
569 line.
570
571 @node i386-Mnemonics
572 @section i386-Mnemonics
573 @subsection Instruction Naming
574
575 @cindex i386 instruction naming
576 @cindex instruction naming, i386
577 @cindex x86-64 instruction naming
578 @cindex instruction naming, x86-64
579
580 Instruction mnemonics are suffixed with one character modifiers which
581 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
582 and @samp{q} specify byte, word, long and quadruple word operands. If
583 no suffix is specified by an instruction then @code{@value{AS}} tries to
584 fill in the missing suffix based on the destination register operand
585 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
586 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
587 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
588 assembler which assumes that a missing mnemonic suffix implies long
589 operand size. (This incompatibility does not affect compiler output
590 since compilers always explicitly specify the mnemonic suffix.)
591
592 Almost all instructions have the same names in AT&T and Intel format.
593 There are a few exceptions. The sign extend and zero extend
594 instructions need two sizes to specify them. They need a size to
595 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
596 is accomplished by using two instruction mnemonic suffixes in AT&T
597 syntax. Base names for sign extend and zero extend are
598 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
599 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
600 are tacked on to this base name, the @emph{from} suffix before the
601 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
602 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
603 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
604 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
605 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
606 quadruple word).
607
608 @cindex encoding options, i386
609 @cindex encoding options, x86-64
610
611 Different encoding options can be specified via pseudo prefixes:
612
613 @itemize @bullet
614 @item
615 @samp{@{disp8@}} -- prefer 8-bit displacement.
616
617 @item
618 @samp{@{disp32@}} -- prefer 32-bit displacement.
619
620 @item
621 @samp{@{load@}} -- prefer load-form instruction.
622
623 @item
624 @samp{@{store@}} -- prefer store-form instruction.
625
626 @item
627 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
628
629 @item
630 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
631
632 @item
633 @samp{@{evex@}} -- encode with EVEX prefix.
634 @end itemize
635
636 @cindex conversion instructions, i386
637 @cindex i386 conversion instructions
638 @cindex conversion instructions, x86-64
639 @cindex x86-64 conversion instructions
640 The Intel-syntax conversion instructions
641
642 @itemize @bullet
643 @item
644 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
645
646 @item
647 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
648
649 @item
650 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
651
652 @item
653 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
654
655 @item
656 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
657 (x86-64 only),
658
659 @item
660 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
661 @samp{%rdx:%rax} (x86-64 only),
662 @end itemize
663
664 @noindent
665 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
666 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
667 instructions.
668
669 @cindex jump instructions, i386
670 @cindex call instructions, i386
671 @cindex jump instructions, x86-64
672 @cindex call instructions, x86-64
673 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
674 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
675 convention.
676
677 @subsection AT&T Mnemonic versus Intel Mnemonic
678
679 @cindex i386 mnemonic compatibility
680 @cindex mnemonic compatibility, i386
681
682 @code{@value{AS}} supports assembly using Intel mnemonic.
683 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
684 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
685 syntax for compatibility with the output of @code{@value{GCC}}.
686 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
687 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
688 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
689 assembler with different mnemonics from those in Intel IA32 specification.
690 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
691
692 @node i386-Regs
693 @section Register Naming
694
695 @cindex i386 registers
696 @cindex registers, i386
697 @cindex x86-64 registers
698 @cindex registers, x86-64
699 Register operands are always prefixed with @samp{%}. The 80386 registers
700 consist of
701
702 @itemize @bullet
703 @item
704 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
705 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
706 frame pointer), and @samp{%esp} (the stack pointer).
707
708 @item
709 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
710 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
711
712 @item
713 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
714 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
715 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
716 @samp{%cx}, and @samp{%dx})
717
718 @item
719 the 6 section registers @samp{%cs} (code section), @samp{%ds}
720 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
721 and @samp{%gs}.
722
723 @item
724 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
725 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
726
727 @item
728 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
729 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
730
731 @item
732 the 2 test registers @samp{%tr6} and @samp{%tr7}.
733
734 @item
735 the 8 floating point register stack @samp{%st} or equivalently
736 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
737 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
738 These registers are overloaded by 8 MMX registers @samp{%mm0},
739 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
740 @samp{%mm6} and @samp{%mm7}.
741
742 @item
743 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
744 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
745 @end itemize
746
747 The AMD x86-64 architecture extends the register set by:
748
749 @itemize @bullet
750 @item
751 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
752 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
753 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
754 pointer)
755
756 @item
757 the 8 extended registers @samp{%r8}--@samp{%r15}.
758
759 @item
760 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
761
762 @item
763 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
764
765 @item
766 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
767
768 @item
769 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
770
771 @item
772 the 8 debug registers: @samp{%db8}--@samp{%db15}.
773
774 @item
775 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
776 @end itemize
777
778 With the AVX extensions more registers were made available:
779
780 @itemize @bullet
781
782 @item
783 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
784 available in 32-bit mode). The bottom 128 bits are overlaid with the
785 @samp{xmm0}--@samp{xmm15} registers.
786
787 @end itemize
788
789 The AVX2 extensions made in 64-bit mode more registers available:
790
791 @itemize @bullet
792
793 @item
794 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
795 registers @samp{%ymm16}--@samp{%ymm31}.
796
797 @end itemize
798
799 The AVX512 extensions added the following registers:
800
801 @itemize @bullet
802
803 @item
804 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
805 available in 32-bit mode). The bottom 128 bits are overlaid with the
806 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
807 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
808
809 @item
810 the 8 mask registers @samp{%k0}--@samp{%k7}.
811
812 @end itemize
813
814 @node i386-Prefixes
815 @section Instruction Prefixes
816
817 @cindex i386 instruction prefixes
818 @cindex instruction prefixes, i386
819 @cindex prefixes, i386
820 Instruction prefixes are used to modify the following instruction. They
821 are used to repeat string instructions, to provide section overrides, to
822 perform bus lock operations, and to change operand and address sizes.
823 (Most instructions that normally operate on 32-bit operands will use
824 16-bit operands if the instruction has an ``operand size'' prefix.)
825 Instruction prefixes are best written on the same line as the instruction
826 they act upon. For example, the @samp{scas} (scan string) instruction is
827 repeated with:
828
829 @smallexample
830 repne scas %es:(%edi),%al
831 @end smallexample
832
833 You may also place prefixes on the lines immediately preceding the
834 instruction, but this circumvents checks that @code{@value{AS}} does
835 with prefixes, and will not work with all prefixes.
836
837 Here is a list of instruction prefixes:
838
839 @cindex section override prefixes, i386
840 @itemize @bullet
841 @item
842 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
843 @samp{fs}, @samp{gs}. These are automatically added by specifying
844 using the @var{section}:@var{memory-operand} form for memory references.
845
846 @cindex size prefixes, i386
847 @item
848 Operand/Address size prefixes @samp{data16} and @samp{addr16}
849 change 32-bit operands/addresses into 16-bit operands/addresses,
850 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
851 @code{.code16} section) into 32-bit operands/addresses. These prefixes
852 @emph{must} appear on the same line of code as the instruction they
853 modify. For example, in a 16-bit @code{.code16} section, you might
854 write:
855
856 @smallexample
857 addr32 jmpl *(%ebx)
858 @end smallexample
859
860 @cindex bus lock prefixes, i386
861 @cindex inhibiting interrupts, i386
862 @item
863 The bus lock prefix @samp{lock} inhibits interrupts during execution of
864 the instruction it precedes. (This is only valid with certain
865 instructions; see a 80386 manual for details).
866
867 @cindex coprocessor wait, i386
868 @item
869 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
870 complete the current instruction. This should never be needed for the
871 80386/80387 combination.
872
873 @cindex repeat prefixes, i386
874 @item
875 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
876 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
877 times if the current address size is 16-bits).
878 @cindex REX prefixes, i386
879 @item
880 The @samp{rex} family of prefixes is used by x86-64 to encode
881 extensions to i386 instruction set. The @samp{rex} prefix has four
882 bits --- an operand size overwrite (@code{64}) used to change operand size
883 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
884 register set.
885
886 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
887 instruction emits @samp{rex} prefix with all the bits set. By omitting
888 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
889 prefixes as well. Normally, there is no need to write the prefixes
890 explicitly, since gas will automatically generate them based on the
891 instruction operands.
892 @end itemize
893
894 @node i386-Memory
895 @section Memory References
896
897 @cindex i386 memory references
898 @cindex memory references, i386
899 @cindex x86-64 memory references
900 @cindex memory references, x86-64
901 An Intel syntax indirect memory reference of the form
902
903 @smallexample
904 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
905 @end smallexample
906
907 @noindent
908 is translated into the AT&T syntax
909
910 @smallexample
911 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
912 @end smallexample
913
914 @noindent
915 where @var{base} and @var{index} are the optional 32-bit base and
916 index registers, @var{disp} is the optional displacement, and
917 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
918 to calculate the address of the operand. If no @var{scale} is
919 specified, @var{scale} is taken to be 1. @var{section} specifies the
920 optional section register for the memory operand, and may override the
921 default section register (see a 80386 manual for section register
922 defaults). Note that section overrides in AT&T syntax @emph{must}
923 be preceded by a @samp{%}. If you specify a section override which
924 coincides with the default section register, @code{@value{AS}} does @emph{not}
925 output any section register override prefixes to assemble the given
926 instruction. Thus, section overrides can be specified to emphasize which
927 section register is used for a given memory operand.
928
929 Here are some examples of Intel and AT&T style memory references:
930
931 @table @asis
932 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
933 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
934 missing, and the default section is used (@samp{%ss} for addressing with
935 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
936
937 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
938 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
939 @samp{foo}. All other fields are missing. The section register here
940 defaults to @samp{%ds}.
941
942 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
943 This uses the value pointed to by @samp{foo} as a memory operand.
944 Note that @var{base} and @var{index} are both missing, but there is only
945 @emph{one} @samp{,}. This is a syntactic exception.
946
947 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
948 This selects the contents of the variable @samp{foo} with section
949 register @var{section} being @samp{%gs}.
950 @end table
951
952 Absolute (as opposed to PC relative) call and jump operands must be
953 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
954 always chooses PC relative addressing for jump/call labels.
955
956 Any instruction that has a memory operand, but no register operand,
957 @emph{must} specify its size (byte, word, long, or quadruple) with an
958 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
959 respectively).
960
961 The x86-64 architecture adds an RIP (instruction pointer relative)
962 addressing. This addressing mode is specified by using @samp{rip} as a
963 base register. Only constant offsets are valid. For example:
964
965 @table @asis
966 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
967 Points to the address 1234 bytes past the end of the current
968 instruction.
969
970 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
971 Points to the @code{symbol} in RIP relative way, this is shorter than
972 the default absolute addressing.
973 @end table
974
975 Other addressing modes remain unchanged in x86-64 architecture, except
976 registers used are 64-bit instead of 32-bit.
977
978 @node i386-Jumps
979 @section Handling of Jump Instructions
980
981 @cindex jump optimization, i386
982 @cindex i386 jump optimization
983 @cindex jump optimization, x86-64
984 @cindex x86-64 jump optimization
985 Jump instructions are always optimized to use the smallest possible
986 displacements. This is accomplished by using byte (8-bit) displacement
987 jumps whenever the target is sufficiently close. If a byte displacement
988 is insufficient a long displacement is used. We do not support
989 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
990 instruction with the @samp{data16} instruction prefix), since the 80386
991 insists upon masking @samp{%eip} to 16 bits after the word displacement
992 is added. (See also @pxref{i386-Arch})
993
994 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
995 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
996 displacements, so that if you use these instructions (@code{@value{GCC}} does
997 not use them) you may get an error message (and incorrect code). The AT&T
998 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
999 to
1000
1001 @smallexample
1002 jcxz cx_zero
1003 jmp cx_nonzero
1004 cx_zero: jmp foo
1005 cx_nonzero:
1006 @end smallexample
1007
1008 @node i386-Float
1009 @section Floating Point
1010
1011 @cindex i386 floating point
1012 @cindex floating point, i386
1013 @cindex x86-64 floating point
1014 @cindex floating point, x86-64
1015 All 80387 floating point types except packed BCD are supported.
1016 (BCD support may be added without much difficulty). These data
1017 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1018 double (64-bit), and extended (80-bit) precision floating point.
1019 Each supported type has an instruction mnemonic suffix and a constructor
1020 associated with it. Instruction mnemonic suffixes specify the operand's
1021 data type. Constructors build these data types into memory.
1022
1023 @cindex @code{float} directive, i386
1024 @cindex @code{single} directive, i386
1025 @cindex @code{double} directive, i386
1026 @cindex @code{tfloat} directive, i386
1027 @cindex @code{float} directive, x86-64
1028 @cindex @code{single} directive, x86-64
1029 @cindex @code{double} directive, x86-64
1030 @cindex @code{tfloat} directive, x86-64
1031 @itemize @bullet
1032 @item
1033 Floating point constructors are @samp{.float} or @samp{.single},
1034 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1035 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1036 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1037 only supports this format via the @samp{fldt} (load 80-bit real to stack
1038 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1039
1040 @cindex @code{word} directive, i386
1041 @cindex @code{long} directive, i386
1042 @cindex @code{int} directive, i386
1043 @cindex @code{quad} directive, i386
1044 @cindex @code{word} directive, x86-64
1045 @cindex @code{long} directive, x86-64
1046 @cindex @code{int} directive, x86-64
1047 @cindex @code{quad} directive, x86-64
1048 @item
1049 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1050 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1051 corresponding instruction mnemonic suffixes are @samp{s} (single),
1052 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1053 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1054 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1055 stack) instructions.
1056 @end itemize
1057
1058 Register to register operations should not use instruction mnemonic suffixes.
1059 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1060 wrote @samp{fst %st, %st(1)}, since all register to register operations
1061 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1062 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1063 then stores the result in the 4 byte location @samp{mem})
1064
1065 @node i386-SIMD
1066 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1067
1068 @cindex MMX, i386
1069 @cindex 3DNow!, i386
1070 @cindex SIMD, i386
1071 @cindex MMX, x86-64
1072 @cindex 3DNow!, x86-64
1073 @cindex SIMD, x86-64
1074
1075 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1076 instructions for integer data), available on Intel's Pentium MMX
1077 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1078 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1079 instruction set (SIMD instructions for 32-bit floating point data)
1080 available on AMD's K6-2 processor and possibly others in the future.
1081
1082 Currently, @code{@value{AS}} does not support Intel's floating point
1083 SIMD, Katmai (KNI).
1084
1085 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1086 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1087 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1088 floating point values. The MMX registers cannot be used at the same time
1089 as the floating point stack.
1090
1091 See Intel and AMD documentation, keeping in mind that the operand order in
1092 instructions is reversed from the Intel syntax.
1093
1094 @node i386-LWP
1095 @section AMD's Lightweight Profiling Instructions
1096
1097 @cindex LWP, i386
1098 @cindex LWP, x86-64
1099
1100 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1101 instruction set, available on AMD's Family 15h (Orochi) processors.
1102
1103 LWP enables applications to collect and manage performance data, and
1104 react to performance events. The collection of performance data
1105 requires no context switches. LWP runs in the context of a thread and
1106 so several counters can be used independently across multiple threads.
1107 LWP can be used in both 64-bit and legacy 32-bit modes.
1108
1109 For detailed information on the LWP instruction set, see the
1110 @cite{AMD Lightweight Profiling Specification} available at
1111 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1112
1113 @node i386-BMI
1114 @section Bit Manipulation Instructions
1115
1116 @cindex BMI, i386
1117 @cindex BMI, x86-64
1118
1119 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1120
1121 BMI instructions provide several instructions implementing individual
1122 bit manipulation operations such as isolation, masking, setting, or
1123 resetting.
1124
1125 @c Need to add a specification citation here when available.
1126
1127 @node i386-TBM
1128 @section AMD's Trailing Bit Manipulation Instructions
1129
1130 @cindex TBM, i386
1131 @cindex TBM, x86-64
1132
1133 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1134 instruction set, available on AMD's BDVER2 processors (Trinity and
1135 Viperfish).
1136
1137 TBM instructions provide instructions implementing individual bit
1138 manipulation operations such as isolating, masking, setting, resetting,
1139 complementing, and operations on trailing zeros and ones.
1140
1141 @c Need to add a specification citation here when available.
1142
1143 @node i386-16bit
1144 @section Writing 16-bit Code
1145
1146 @cindex i386 16-bit code
1147 @cindex 16-bit code, i386
1148 @cindex real-mode code, i386
1149 @cindex @code{code16gcc} directive, i386
1150 @cindex @code{code16} directive, i386
1151 @cindex @code{code32} directive, i386
1152 @cindex @code{code64} directive, i386
1153 @cindex @code{code64} directive, x86-64
1154 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1155 or 64-bit x86-64 code depending on the default configuration,
1156 it also supports writing code to run in real mode or in 16-bit protected
1157 mode code segments. To do this, put a @samp{.code16} or
1158 @samp{.code16gcc} directive before the assembly language instructions to
1159 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1160 32-bit code with the @samp{.code32} directive or 64-bit code with the
1161 @samp{.code64} directive.
1162
1163 @samp{.code16gcc} provides experimental support for generating 16-bit
1164 code from gcc, and differs from @samp{.code16} in that @samp{call},
1165 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1166 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1167 default to 32-bit size. This is so that the stack pointer is
1168 manipulated in the same way over function calls, allowing access to
1169 function parameters at the same stack offsets as in 32-bit mode.
1170 @samp{.code16gcc} also automatically adds address size prefixes where
1171 necessary to use the 32-bit addressing modes that gcc generates.
1172
1173 The code which @code{@value{AS}} generates in 16-bit mode will not
1174 necessarily run on a 16-bit pre-80386 processor. To write code that
1175 runs on such a processor, you must refrain from using @emph{any} 32-bit
1176 constructs which require @code{@value{AS}} to output address or operand
1177 size prefixes.
1178
1179 Note that writing 16-bit code instructions by explicitly specifying a
1180 prefix or an instruction mnemonic suffix within a 32-bit code section
1181 generates different machine instructions than those generated for a
1182 16-bit code segment. In a 32-bit code section, the following code
1183 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1184 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1185
1186 @smallexample
1187 pushw $4
1188 @end smallexample
1189
1190 The same code in a 16-bit code section would generate the machine
1191 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1192 is correct since the processor default operand size is assumed to be 16
1193 bits in a 16-bit code section.
1194
1195 @node i386-Arch
1196 @section Specifying CPU Architecture
1197
1198 @cindex arch directive, i386
1199 @cindex i386 arch directive
1200 @cindex arch directive, x86-64
1201 @cindex x86-64 arch directive
1202
1203 @code{@value{AS}} may be told to assemble for a particular CPU
1204 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1205 directive enables a warning when gas detects an instruction that is not
1206 supported on the CPU specified. The choices for @var{cpu_type} are:
1207
1208 @multitable @columnfractions .20 .20 .20 .20
1209 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1210 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1211 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1212 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1213 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1214 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1215 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1216 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1217 @item @samp{generic32} @tab @samp{generic64}
1218 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1219 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1220 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1221 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1222 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1223 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1224 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1225 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1226 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1227 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1228 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1229 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1230 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1231 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1232 @item @samp{.avx512_bitalg}
1233 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1234 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1235 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1236 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1237 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.gfni}
1238 @item @samp{.vaes} @tab @samp{.vpclmulqdq}
1239 @end multitable
1240
1241 Apart from the warning, there are only two other effects on
1242 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1243 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1244 will automatically use a two byte opcode sequence. The larger three
1245 byte opcode sequence is used on the 486 (and when no architecture is
1246 specified) because it executes faster on the 486. Note that you can
1247 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1248 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1249 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1250 conditional jumps will be promoted when necessary to a two instruction
1251 sequence consisting of a conditional jump of the opposite sense around
1252 an unconditional jump to the target.
1253
1254 Following the CPU architecture (but not a sub-architecture, which are those
1255 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1256 control automatic promotion of conditional jumps. @samp{jumps} is the
1257 default, and enables jump promotion; All external jumps will be of the long
1258 variety, and file-local jumps will be promoted as necessary.
1259 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1260 byte offset jumps, and warns about file-local conditional jumps that
1261 @code{@value{AS}} promotes.
1262 Unconditional jumps are treated as for @samp{jumps}.
1263
1264 For example
1265
1266 @smallexample
1267 .arch i8086,nojumps
1268 @end smallexample
1269
1270 @node i386-Bugs
1271 @section AT&T Syntax bugs
1272
1273 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1274 assemblers, generate floating point instructions with reversed source
1275 and destination registers in certain cases. Unfortunately, gcc and
1276 possibly many other programs use this reversed syntax, so we're stuck
1277 with it.
1278
1279 For example
1280
1281 @smallexample
1282 fsub %st,%st(3)
1283 @end smallexample
1284 @noindent
1285 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1286 than the expected @samp{%st(3) - %st}. This happens with all the
1287 non-commutative arithmetic floating point operations with two register
1288 operands where the source register is @samp{%st} and the destination
1289 register is @samp{%st(i)}.
1290
1291 @node i386-Notes
1292 @section Notes
1293
1294 @cindex i386 @code{mul}, @code{imul} instructions
1295 @cindex @code{mul} instruction, i386
1296 @cindex @code{imul} instruction, i386
1297 @cindex @code{mul} instruction, x86-64
1298 @cindex @code{imul} instruction, x86-64
1299 There is some trickery concerning the @samp{mul} and @samp{imul}
1300 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1301 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1302 for @samp{imul}) can be output only in the one operand form. Thus,
1303 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1304 the expanding multiply would clobber the @samp{%edx} register, and this
1305 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1306 64-bit product in @samp{%edx:%eax}.
1307
1308 We have added a two operand form of @samp{imul} when the first operand
1309 is an immediate mode expression and the second operand is a register.
1310 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1311 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1312 $69, %eax, %eax}.
1313
This page took 0.113471 seconds and 5 git commands to generate.