Remove trailing white spaces on gas
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @c man end
7
8 @ifset GENERIC
9 @page
10 @node i386-Dependent
11 @chapter 80386 Dependent Features
12 @end ifset
13 @ifclear GENERIC
14 @node Machine Dependencies
15 @chapter 80386 Dependent Features
16 @end ifclear
17
18 @cindex i386 support
19 @cindex i80386 support
20 @cindex x86-64 support
21
22 The i386 version @code{@value{AS}} supports both the original Intel 386
23 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24 extending the Intel architecture to 64-bits.
25
26 @menu
27 * i386-Options:: Options
28 * i386-Directives:: X86 specific directives
29 * i386-Syntax:: Syntactical considerations
30 * i386-Mnemonics:: Instruction Naming
31 * i386-Regs:: Register Naming
32 * i386-Prefixes:: Instruction Prefixes
33 * i386-Memory:: Memory References
34 * i386-Jumps:: Handling of Jump Instructions
35 * i386-Float:: Floating Point
36 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
37 * i386-LWP:: AMD's Lightweight Profiling Instructions
38 * i386-BMI:: Bit Manipulation Instruction
39 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
40 * i386-16bit:: Writing 16-bit Code
41 * i386-Arch:: Specifying an x86 CPU architecture
42 * i386-Bugs:: AT&T Syntax bugs
43 * i386-Notes:: Notes
44 @end menu
45
46 @node i386-Options
47 @section Options
48
49 @cindex options for i386
50 @cindex options for x86-64
51 @cindex i386 options
52 @cindex x86-64 options
53
54 The i386 version of @code{@value{AS}} has a few machine
55 dependent options:
56
57 @c man begin OPTIONS
58 @table @gcctabopt
59 @cindex @samp{--32} option, i386
60 @cindex @samp{--32} option, x86-64
61 @cindex @samp{--x32} option, i386
62 @cindex @samp{--x32} option, x86-64
63 @cindex @samp{--64} option, i386
64 @cindex @samp{--64} option, x86-64
65 @item --32 | --x32 | --64
66 Select the word size, either 32 bits or 64 bits. @samp{--32}
67 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
68 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 respectively.
70
71 These options are only available with the ELF object file format, and
72 require that the necessary BFD support has been included (on a 32-bit
73 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74 usage and use x86-64 as target platform).
75
76 @item -n
77 By default, x86 GAS replaces multiple nop instructions used for
78 alignment within code sections with multi-byte nop instructions such
79 as leal 0(%esi,1),%esi. This switch disables the optimization.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{btver1},
125 @code{btver2},
126 @code{generic32} and
127 @code{generic64}.
128
129 In addition to the basic instruction set, the assembler can be told to
130 accept various extension mnemonics. For example,
131 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
132 @var{vmx}. The following extensions are currently supported:
133 @code{8087},
134 @code{287},
135 @code{387},
136 @code{no87},
137 @code{mmx},
138 @code{nommx},
139 @code{sse},
140 @code{sse2},
141 @code{sse3},
142 @code{ssse3},
143 @code{sse4.1},
144 @code{sse4.2},
145 @code{sse4},
146 @code{nosse},
147 @code{avx},
148 @code{avx2},
149 @code{adx},
150 @code{rdseed},
151 @code{prfchw},
152 @code{noavx},
153 @code{vmx},
154 @code{vmfunc},
155 @code{smx},
156 @code{xsave},
157 @code{xsaveopt},
158 @code{aes},
159 @code{pclmul},
160 @code{fsgsbase},
161 @code{rdrnd},
162 @code{f16c},
163 @code{bmi2},
164 @code{fma},
165 @code{movbe},
166 @code{ept},
167 @code{lzcnt},
168 @code{hle},
169 @code{rtm},
170 @code{invpcid},
171 @code{clflush},
172 @code{lwp},
173 @code{fma4},
174 @code{xop},
175 @code{cx16},
176 @code{syscall},
177 @code{rdtscp},
178 @code{3dnow},
179 @code{3dnowa},
180 @code{sse4a},
181 @code{sse5},
182 @code{svme},
183 @code{abm} and
184 @code{padlock}.
185 Note that rather than extending a basic instruction set, the extension
186 mnemonics starting with @code{no} revoke the respective functionality.
187
188 When the @code{.arch} directive is used with @option{-march}, the
189 @code{.arch} directive will take precedent.
190
191 @cindex @samp{-mtune=} option, i386
192 @cindex @samp{-mtune=} option, x86-64
193 @item -mtune=@var{CPU}
194 This option specifies a processor to optimize for. When used in
195 conjunction with the @option{-march} option, only instructions
196 of the processor specified by the @option{-march} option will be
197 generated.
198
199 Valid @var{CPU} values are identical to the processor list of
200 @option{-march=@var{CPU}}.
201
202 @cindex @samp{-msse2avx} option, i386
203 @cindex @samp{-msse2avx} option, x86-64
204 @item -msse2avx
205 This option specifies that the assembler should encode SSE instructions
206 with VEX prefix.
207
208 @cindex @samp{-msse-check=} option, i386
209 @cindex @samp{-msse-check=} option, x86-64
210 @item -msse-check=@var{none}
211 @itemx -msse-check=@var{warning}
212 @itemx -msse-check=@var{error}
213 These options control if the assembler should check SSE intructions.
214 @option{-msse-check=@var{none}} will make the assembler not to check SSE
215 instructions, which is the default. @option{-msse-check=@var{warning}}
216 will make the assembler issue a warning for any SSE intruction.
217 @option{-msse-check=@var{error}} will make the assembler issue an error
218 for any SSE intruction.
219
220 @cindex @samp{-mavxscalar=} option, i386
221 @cindex @samp{-mavxscalar=} option, x86-64
222 @item -mavxscalar=@var{128}
223 @itemx -mavxscalar=@var{256}
224 These options control how the assembler should encode scalar AVX
225 instructions. @option{-mavxscalar=@var{128}} will encode scalar
226 AVX instructions with 128bit vector length, which is the default.
227 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
228 with 256bit vector length.
229
230 @cindex @samp{-mmnemonic=} option, i386
231 @cindex @samp{-mmnemonic=} option, x86-64
232 @item -mmnemonic=@var{att}
233 @itemx -mmnemonic=@var{intel}
234 This option specifies instruction mnemonic for matching instructions.
235 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
236 take precedent.
237
238 @cindex @samp{-msyntax=} option, i386
239 @cindex @samp{-msyntax=} option, x86-64
240 @item -msyntax=@var{att}
241 @itemx -msyntax=@var{intel}
242 This option specifies instruction syntax when processing instructions.
243 The @code{.att_syntax} and @code{.intel_syntax} directives will
244 take precedent.
245
246 @cindex @samp{-mnaked-reg} option, i386
247 @cindex @samp{-mnaked-reg} option, x86-64
248 @item -mnaked-reg
249 This opetion specifies that registers don't require a @samp{%} prefix.
250 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
251
252 @end table
253 @c man end
254
255 @node i386-Directives
256 @section x86 specific Directives
257
258 @cindex machine directives, x86
259 @cindex x86 machine directives
260 @table @code
261
262 @cindex @code{lcomm} directive, COFF
263 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
264 Reserve @var{length} (an absolute expression) bytes for a local common
265 denoted by @var{symbol}. The section and value of @var{symbol} are
266 those of the new local common. The addresses are allocated in the bss
267 section, so that at run-time the bytes start off zeroed. Since
268 @var{symbol} is not declared global, it is normally not visible to
269 @code{@value{LD}}. The optional third parameter, @var{alignment},
270 specifies the desired alignment of the symbol in the bss section.
271
272 This directive is only available for COFF based x86 targets.
273
274 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
275 @c .largecomm
276
277 @end table
278
279 @node i386-Syntax
280 @section i386 Syntactical Considerations
281 @menu
282 * i386-Variations:: AT&T Syntax versus Intel Syntax
283 * i386-Chars:: Special Characters
284 @end menu
285
286 @node i386-Variations
287 @subsection AT&T Syntax versus Intel Syntax
288
289 @cindex i386 intel_syntax pseudo op
290 @cindex intel_syntax pseudo op, i386
291 @cindex i386 att_syntax pseudo op
292 @cindex att_syntax pseudo op, i386
293 @cindex i386 syntax compatibility
294 @cindex syntax compatibility, i386
295 @cindex x86-64 intel_syntax pseudo op
296 @cindex intel_syntax pseudo op, x86-64
297 @cindex x86-64 att_syntax pseudo op
298 @cindex att_syntax pseudo op, x86-64
299 @cindex x86-64 syntax compatibility
300 @cindex syntax compatibility, x86-64
301
302 @code{@value{AS}} now supports assembly using Intel assembler syntax.
303 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
304 back to the usual AT&T mode for compatibility with the output of
305 @code{@value{GCC}}. Either of these directives may have an optional
306 argument, @code{prefix}, or @code{noprefix} specifying whether registers
307 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
308 different from Intel syntax. We mention these differences because
309 almost all 80386 documents use Intel syntax. Notable differences
310 between the two syntaxes are:
311
312 @cindex immediate operands, i386
313 @cindex i386 immediate operands
314 @cindex register operands, i386
315 @cindex i386 register operands
316 @cindex jump/call operands, i386
317 @cindex i386 jump/call operands
318 @cindex operand delimiters, i386
319
320 @cindex immediate operands, x86-64
321 @cindex x86-64 immediate operands
322 @cindex register operands, x86-64
323 @cindex x86-64 register operands
324 @cindex jump/call operands, x86-64
325 @cindex x86-64 jump/call operands
326 @cindex operand delimiters, x86-64
327 @itemize @bullet
328 @item
329 AT&T immediate operands are preceded by @samp{$}; Intel immediate
330 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
331 AT&T register operands are preceded by @samp{%}; Intel register operands
332 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
333 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
334
335 @cindex i386 source, destination operands
336 @cindex source, destination operands; i386
337 @cindex x86-64 source, destination operands
338 @cindex source, destination operands; x86-64
339 @item
340 AT&T and Intel syntax use the opposite order for source and destination
341 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
342 @samp{source, dest} convention is maintained for compatibility with
343 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
344 instructions with 2 immediate operands, such as the @samp{enter}
345 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
346
347 @cindex mnemonic suffixes, i386
348 @cindex sizes operands, i386
349 @cindex i386 size suffixes
350 @cindex mnemonic suffixes, x86-64
351 @cindex sizes operands, x86-64
352 @cindex x86-64 size suffixes
353 @item
354 In AT&T syntax the size of memory operands is determined from the last
355 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
356 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
357 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
358 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
359 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
360 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
361 syntax.
362
363 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
364 instruction with the 64-bit displacement or immediate operand.
365
366 @cindex return instructions, i386
367 @cindex i386 jump, call, return
368 @cindex return instructions, x86-64
369 @cindex x86-64 jump, call, return
370 @item
371 Immediate form long jumps and calls are
372 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
373 Intel syntax is
374 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
375 instruction
376 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
377 @samp{ret far @var{stack-adjust}}.
378
379 @cindex sections, i386
380 @cindex i386 sections
381 @cindex sections, x86-64
382 @cindex x86-64 sections
383 @item
384 The AT&T assembler does not provide support for multiple section
385 programs. Unix style systems expect all programs to be single sections.
386 @end itemize
387
388 @node i386-Chars
389 @subsection Special Characters
390
391 @cindex line comment character, i386
392 @cindex i386 line comment character
393 The presence of a @samp{#} appearing anywhere on a line indicates the
394 start of a comment that extends to the end of that line.
395
396 If a @samp{#} appears as the first character of a line then the whole
397 line is treated as a comment, but in this case the line can also be a
398 logical line number directive (@pxref{Comments}) or a preprocessor
399 control command (@pxref{Preprocessing}).
400
401 If the @option{--divide} command line option has not been specified
402 then the @samp{/} character appearing anywhere on a line also
403 introduces a line comment.
404
405 @cindex line separator, i386
406 @cindex statement separator, i386
407 @cindex i386 line separator
408 The @samp{;} character can be used to separate statements on the same
409 line.
410
411 @node i386-Mnemonics
412 @section Instruction Naming
413
414 @cindex i386 instruction naming
415 @cindex instruction naming, i386
416 @cindex x86-64 instruction naming
417 @cindex instruction naming, x86-64
418
419 Instruction mnemonics are suffixed with one character modifiers which
420 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
421 and @samp{q} specify byte, word, long and quadruple word operands. If
422 no suffix is specified by an instruction then @code{@value{AS}} tries to
423 fill in the missing suffix based on the destination register operand
424 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
425 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
426 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
427 assembler which assumes that a missing mnemonic suffix implies long
428 operand size. (This incompatibility does not affect compiler output
429 since compilers always explicitly specify the mnemonic suffix.)
430
431 Almost all instructions have the same names in AT&T and Intel format.
432 There are a few exceptions. The sign extend and zero extend
433 instructions need two sizes to specify them. They need a size to
434 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
435 is accomplished by using two instruction mnemonic suffixes in AT&T
436 syntax. Base names for sign extend and zero extend are
437 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
438 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
439 are tacked on to this base name, the @emph{from} suffix before the
440 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
441 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
442 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
443 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
444 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
445 quadruple word).
446
447 @cindex encoding options, i386
448 @cindex encoding options, x86-64
449
450 Different encoding options can be specified via optional mnemonic
451 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
452 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
453 prefers 8bit or 32bit displacement in encoding.
454
455 @cindex conversion instructions, i386
456 @cindex i386 conversion instructions
457 @cindex conversion instructions, x86-64
458 @cindex x86-64 conversion instructions
459 The Intel-syntax conversion instructions
460
461 @itemize @bullet
462 @item
463 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
464
465 @item
466 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
467
468 @item
469 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
470
471 @item
472 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
473
474 @item
475 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
476 (x86-64 only),
477
478 @item
479 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
480 @samp{%rdx:%rax} (x86-64 only),
481 @end itemize
482
483 @noindent
484 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
485 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
486 instructions.
487
488 @cindex jump instructions, i386
489 @cindex call instructions, i386
490 @cindex jump instructions, x86-64
491 @cindex call instructions, x86-64
492 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
493 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
494 convention.
495
496 @section AT&T Mnemonic versus Intel Mnemonic
497
498 @cindex i386 mnemonic compatibility
499 @cindex mnemonic compatibility, i386
500
501 @code{@value{AS}} supports assembly using Intel mnemonic.
502 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
503 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
504 syntax for compatibility with the output of @code{@value{GCC}}.
505 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
506 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
507 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
508 assembler with different mnemonics from those in Intel IA32 specification.
509 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
510
511 @node i386-Regs
512 @section Register Naming
513
514 @cindex i386 registers
515 @cindex registers, i386
516 @cindex x86-64 registers
517 @cindex registers, x86-64
518 Register operands are always prefixed with @samp{%}. The 80386 registers
519 consist of
520
521 @itemize @bullet
522 @item
523 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
524 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
525 frame pointer), and @samp{%esp} (the stack pointer).
526
527 @item
528 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
529 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
530
531 @item
532 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
533 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
534 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
535 @samp{%cx}, and @samp{%dx})
536
537 @item
538 the 6 section registers @samp{%cs} (code section), @samp{%ds}
539 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
540 and @samp{%gs}.
541
542 @item
543 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
544 @samp{%cr3}.
545
546 @item
547 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
548 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
549
550 @item
551 the 2 test registers @samp{%tr6} and @samp{%tr7}.
552
553 @item
554 the 8 floating point register stack @samp{%st} or equivalently
555 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
556 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
557 These registers are overloaded by 8 MMX registers @samp{%mm0},
558 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
559 @samp{%mm6} and @samp{%mm7}.
560
561 @item
562 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
563 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
564 @end itemize
565
566 The AMD x86-64 architecture extends the register set by:
567
568 @itemize @bullet
569 @item
570 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
571 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
572 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
573 pointer)
574
575 @item
576 the 8 extended registers @samp{%r8}--@samp{%r15}.
577
578 @item
579 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
580
581 @item
582 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
583
584 @item
585 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
586
587 @item
588 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
589
590 @item
591 the 8 debug registers: @samp{%db8}--@samp{%db15}.
592
593 @item
594 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
595 @end itemize
596
597 @node i386-Prefixes
598 @section Instruction Prefixes
599
600 @cindex i386 instruction prefixes
601 @cindex instruction prefixes, i386
602 @cindex prefixes, i386
603 Instruction prefixes are used to modify the following instruction. They
604 are used to repeat string instructions, to provide section overrides, to
605 perform bus lock operations, and to change operand and address sizes.
606 (Most instructions that normally operate on 32-bit operands will use
607 16-bit operands if the instruction has an ``operand size'' prefix.)
608 Instruction prefixes are best written on the same line as the instruction
609 they act upon. For example, the @samp{scas} (scan string) instruction is
610 repeated with:
611
612 @smallexample
613 repne scas %es:(%edi),%al
614 @end smallexample
615
616 You may also place prefixes on the lines immediately preceding the
617 instruction, but this circumvents checks that @code{@value{AS}} does
618 with prefixes, and will not work with all prefixes.
619
620 Here is a list of instruction prefixes:
621
622 @cindex section override prefixes, i386
623 @itemize @bullet
624 @item
625 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
626 @samp{fs}, @samp{gs}. These are automatically added by specifying
627 using the @var{section}:@var{memory-operand} form for memory references.
628
629 @cindex size prefixes, i386
630 @item
631 Operand/Address size prefixes @samp{data16} and @samp{addr16}
632 change 32-bit operands/addresses into 16-bit operands/addresses,
633 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
634 @code{.code16} section) into 32-bit operands/addresses. These prefixes
635 @emph{must} appear on the same line of code as the instruction they
636 modify. For example, in a 16-bit @code{.code16} section, you might
637 write:
638
639 @smallexample
640 addr32 jmpl *(%ebx)
641 @end smallexample
642
643 @cindex bus lock prefixes, i386
644 @cindex inhibiting interrupts, i386
645 @item
646 The bus lock prefix @samp{lock} inhibits interrupts during execution of
647 the instruction it precedes. (This is only valid with certain
648 instructions; see a 80386 manual for details).
649
650 @cindex coprocessor wait, i386
651 @item
652 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
653 complete the current instruction. This should never be needed for the
654 80386/80387 combination.
655
656 @cindex repeat prefixes, i386
657 @item
658 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
659 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
660 times if the current address size is 16-bits).
661 @cindex REX prefixes, i386
662 @item
663 The @samp{rex} family of prefixes is used by x86-64 to encode
664 extensions to i386 instruction set. The @samp{rex} prefix has four
665 bits --- an operand size overwrite (@code{64}) used to change operand size
666 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
667 register set.
668
669 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
670 instruction emits @samp{rex} prefix with all the bits set. By omitting
671 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
672 prefixes as well. Normally, there is no need to write the prefixes
673 explicitly, since gas will automatically generate them based on the
674 instruction operands.
675 @end itemize
676
677 @node i386-Memory
678 @section Memory References
679
680 @cindex i386 memory references
681 @cindex memory references, i386
682 @cindex x86-64 memory references
683 @cindex memory references, x86-64
684 An Intel syntax indirect memory reference of the form
685
686 @smallexample
687 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
688 @end smallexample
689
690 @noindent
691 is translated into the AT&T syntax
692
693 @smallexample
694 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
695 @end smallexample
696
697 @noindent
698 where @var{base} and @var{index} are the optional 32-bit base and
699 index registers, @var{disp} is the optional displacement, and
700 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
701 to calculate the address of the operand. If no @var{scale} is
702 specified, @var{scale} is taken to be 1. @var{section} specifies the
703 optional section register for the memory operand, and may override the
704 default section register (see a 80386 manual for section register
705 defaults). Note that section overrides in AT&T syntax @emph{must}
706 be preceded by a @samp{%}. If you specify a section override which
707 coincides with the default section register, @code{@value{AS}} does @emph{not}
708 output any section register override prefixes to assemble the given
709 instruction. Thus, section overrides can be specified to emphasize which
710 section register is used for a given memory operand.
711
712 Here are some examples of Intel and AT&T style memory references:
713
714 @table @asis
715 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
716 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
717 missing, and the default section is used (@samp{%ss} for addressing with
718 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
719
720 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
721 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
722 @samp{foo}. All other fields are missing. The section register here
723 defaults to @samp{%ds}.
724
725 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
726 This uses the value pointed to by @samp{foo} as a memory operand.
727 Note that @var{base} and @var{index} are both missing, but there is only
728 @emph{one} @samp{,}. This is a syntactic exception.
729
730 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
731 This selects the contents of the variable @samp{foo} with section
732 register @var{section} being @samp{%gs}.
733 @end table
734
735 Absolute (as opposed to PC relative) call and jump operands must be
736 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
737 always chooses PC relative addressing for jump/call labels.
738
739 Any instruction that has a memory operand, but no register operand,
740 @emph{must} specify its size (byte, word, long, or quadruple) with an
741 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
742 respectively).
743
744 The x86-64 architecture adds an RIP (instruction pointer relative)
745 addressing. This addressing mode is specified by using @samp{rip} as a
746 base register. Only constant offsets are valid. For example:
747
748 @table @asis
749 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
750 Points to the address 1234 bytes past the end of the current
751 instruction.
752
753 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
754 Points to the @code{symbol} in RIP relative way, this is shorter than
755 the default absolute addressing.
756 @end table
757
758 Other addressing modes remain unchanged in x86-64 architecture, except
759 registers used are 64-bit instead of 32-bit.
760
761 @node i386-Jumps
762 @section Handling of Jump Instructions
763
764 @cindex jump optimization, i386
765 @cindex i386 jump optimization
766 @cindex jump optimization, x86-64
767 @cindex x86-64 jump optimization
768 Jump instructions are always optimized to use the smallest possible
769 displacements. This is accomplished by using byte (8-bit) displacement
770 jumps whenever the target is sufficiently close. If a byte displacement
771 is insufficient a long displacement is used. We do not support
772 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
773 instruction with the @samp{data16} instruction prefix), since the 80386
774 insists upon masking @samp{%eip} to 16 bits after the word displacement
775 is added. (See also @pxref{i386-Arch})
776
777 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
778 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
779 displacements, so that if you use these instructions (@code{@value{GCC}} does
780 not use them) you may get an error message (and incorrect code). The AT&T
781 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
782 to
783
784 @smallexample
785 jcxz cx_zero
786 jmp cx_nonzero
787 cx_zero: jmp foo
788 cx_nonzero:
789 @end smallexample
790
791 @node i386-Float
792 @section Floating Point
793
794 @cindex i386 floating point
795 @cindex floating point, i386
796 @cindex x86-64 floating point
797 @cindex floating point, x86-64
798 All 80387 floating point types except packed BCD are supported.
799 (BCD support may be added without much difficulty). These data
800 types are 16-, 32-, and 64- bit integers, and single (32-bit),
801 double (64-bit), and extended (80-bit) precision floating point.
802 Each supported type has an instruction mnemonic suffix and a constructor
803 associated with it. Instruction mnemonic suffixes specify the operand's
804 data type. Constructors build these data types into memory.
805
806 @cindex @code{float} directive, i386
807 @cindex @code{single} directive, i386
808 @cindex @code{double} directive, i386
809 @cindex @code{tfloat} directive, i386
810 @cindex @code{float} directive, x86-64
811 @cindex @code{single} directive, x86-64
812 @cindex @code{double} directive, x86-64
813 @cindex @code{tfloat} directive, x86-64
814 @itemize @bullet
815 @item
816 Floating point constructors are @samp{.float} or @samp{.single},
817 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
818 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
819 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
820 only supports this format via the @samp{fldt} (load 80-bit real to stack
821 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
822
823 @cindex @code{word} directive, i386
824 @cindex @code{long} directive, i386
825 @cindex @code{int} directive, i386
826 @cindex @code{quad} directive, i386
827 @cindex @code{word} directive, x86-64
828 @cindex @code{long} directive, x86-64
829 @cindex @code{int} directive, x86-64
830 @cindex @code{quad} directive, x86-64
831 @item
832 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
833 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
834 corresponding instruction mnemonic suffixes are @samp{s} (single),
835 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
836 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
837 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
838 stack) instructions.
839 @end itemize
840
841 Register to register operations should not use instruction mnemonic suffixes.
842 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
843 wrote @samp{fst %st, %st(1)}, since all register to register operations
844 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
845 which converts @samp{%st} from 80-bit to 64-bit floating point format,
846 then stores the result in the 4 byte location @samp{mem})
847
848 @node i386-SIMD
849 @section Intel's MMX and AMD's 3DNow! SIMD Operations
850
851 @cindex MMX, i386
852 @cindex 3DNow!, i386
853 @cindex SIMD, i386
854 @cindex MMX, x86-64
855 @cindex 3DNow!, x86-64
856 @cindex SIMD, x86-64
857
858 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
859 instructions for integer data), available on Intel's Pentium MMX
860 processors and Pentium II processors, AMD's K6 and K6-2 processors,
861 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
862 instruction set (SIMD instructions for 32-bit floating point data)
863 available on AMD's K6-2 processor and possibly others in the future.
864
865 Currently, @code{@value{AS}} does not support Intel's floating point
866 SIMD, Katmai (KNI).
867
868 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
869 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
870 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
871 floating point values. The MMX registers cannot be used at the same time
872 as the floating point stack.
873
874 See Intel and AMD documentation, keeping in mind that the operand order in
875 instructions is reversed from the Intel syntax.
876
877 @node i386-LWP
878 @section AMD's Lightweight Profiling Instructions
879
880 @cindex LWP, i386
881 @cindex LWP, x86-64
882
883 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
884 instruction set, available on AMD's Family 15h (Orochi) processors.
885
886 LWP enables applications to collect and manage performance data, and
887 react to performance events. The collection of performance data
888 requires no context switches. LWP runs in the context of a thread and
889 so several counters can be used independently across multiple threads.
890 LWP can be used in both 64-bit and legacy 32-bit modes.
891
892 For detailed information on the LWP instruction set, see the
893 @cite{AMD Lightweight Profiling Specification} available at
894 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
895
896 @node i386-BMI
897 @section Bit Manipulation Instructions
898
899 @cindex BMI, i386
900 @cindex BMI, x86-64
901
902 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
903
904 BMI instructions provide several instructions implementing individual
905 bit manipulation operations such as isolation, masking, setting, or
906 resetting.
907
908 @c Need to add a specification citation here when available.
909
910 @node i386-TBM
911 @section AMD's Trailing Bit Manipulation Instructions
912
913 @cindex TBM, i386
914 @cindex TBM, x86-64
915
916 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
917 instruction set, available on AMD's BDVER2 processors (Trinity and
918 Viperfish).
919
920 TBM instructions provide instructions implementing individual bit
921 manipulation operations such as isolating, masking, setting, resetting,
922 complementing, and operations on trailing zeros and ones.
923
924 @c Need to add a specification citation here when available.
925
926 @node i386-16bit
927 @section Writing 16-bit Code
928
929 @cindex i386 16-bit code
930 @cindex 16-bit code, i386
931 @cindex real-mode code, i386
932 @cindex @code{code16gcc} directive, i386
933 @cindex @code{code16} directive, i386
934 @cindex @code{code32} directive, i386
935 @cindex @code{code64} directive, i386
936 @cindex @code{code64} directive, x86-64
937 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
938 or 64-bit x86-64 code depending on the default configuration,
939 it also supports writing code to run in real mode or in 16-bit protected
940 mode code segments. To do this, put a @samp{.code16} or
941 @samp{.code16gcc} directive before the assembly language instructions to
942 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
943 32-bit code with the @samp{.code32} directive or 64-bit code with the
944 @samp{.code64} directive.
945
946 @samp{.code16gcc} provides experimental support for generating 16-bit
947 code from gcc, and differs from @samp{.code16} in that @samp{call},
948 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
949 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
950 default to 32-bit size. This is so that the stack pointer is
951 manipulated in the same way over function calls, allowing access to
952 function parameters at the same stack offsets as in 32-bit mode.
953 @samp{.code16gcc} also automatically adds address size prefixes where
954 necessary to use the 32-bit addressing modes that gcc generates.
955
956 The code which @code{@value{AS}} generates in 16-bit mode will not
957 necessarily run on a 16-bit pre-80386 processor. To write code that
958 runs on such a processor, you must refrain from using @emph{any} 32-bit
959 constructs which require @code{@value{AS}} to output address or operand
960 size prefixes.
961
962 Note that writing 16-bit code instructions by explicitly specifying a
963 prefix or an instruction mnemonic suffix within a 32-bit code section
964 generates different machine instructions than those generated for a
965 16-bit code segment. In a 32-bit code section, the following code
966 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
967 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
968
969 @smallexample
970 pushw $4
971 @end smallexample
972
973 The same code in a 16-bit code section would generate the machine
974 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
975 is correct since the processor default operand size is assumed to be 16
976 bits in a 16-bit code section.
977
978 @node i386-Bugs
979 @section AT&T Syntax bugs
980
981 The UnixWare assembler, and probably other AT&T derived ix86 Unix
982 assemblers, generate floating point instructions with reversed source
983 and destination registers in certain cases. Unfortunately, gcc and
984 possibly many other programs use this reversed syntax, so we're stuck
985 with it.
986
987 For example
988
989 @smallexample
990 fsub %st,%st(3)
991 @end smallexample
992 @noindent
993 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
994 than the expected @samp{%st(3) - %st}. This happens with all the
995 non-commutative arithmetic floating point operations with two register
996 operands where the source register is @samp{%st} and the destination
997 register is @samp{%st(i)}.
998
999 @node i386-Arch
1000 @section Specifying CPU Architecture
1001
1002 @cindex arch directive, i386
1003 @cindex i386 arch directive
1004 @cindex arch directive, x86-64
1005 @cindex x86-64 arch directive
1006
1007 @code{@value{AS}} may be told to assemble for a particular CPU
1008 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1009 directive enables a warning when gas detects an instruction that is not
1010 supported on the CPU specified. The choices for @var{cpu_type} are:
1011
1012 @multitable @columnfractions .20 .20 .20 .20
1013 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1014 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1015 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1016 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1017 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1018 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1019 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1020 @item @samp{btver1} @tab @samp{btver2}
1021 @item @samp{generic32} @tab @samp{generic64}
1022 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1023 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1024 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1025 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1026 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1027 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1028 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1029 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1030 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1031 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1032 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1033 @item @samp{.padlock}
1034 @end multitable
1035
1036 Apart from the warning, there are only two other effects on
1037 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1038 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1039 will automatically use a two byte opcode sequence. The larger three
1040 byte opcode sequence is used on the 486 (and when no architecture is
1041 specified) because it executes faster on the 486. Note that you can
1042 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1043 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1044 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1045 conditional jumps will be promoted when necessary to a two instruction
1046 sequence consisting of a conditional jump of the opposite sense around
1047 an unconditional jump to the target.
1048
1049 Following the CPU architecture (but not a sub-architecture, which are those
1050 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1051 control automatic promotion of conditional jumps. @samp{jumps} is the
1052 default, and enables jump promotion; All external jumps will be of the long
1053 variety, and file-local jumps will be promoted as necessary.
1054 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1055 byte offset jumps, and warns about file-local conditional jumps that
1056 @code{@value{AS}} promotes.
1057 Unconditional jumps are treated as for @samp{jumps}.
1058
1059 For example
1060
1061 @smallexample
1062 .arch i8086,nojumps
1063 @end smallexample
1064
1065 @node i386-Notes
1066 @section Notes
1067
1068 @cindex i386 @code{mul}, @code{imul} instructions
1069 @cindex @code{mul} instruction, i386
1070 @cindex @code{imul} instruction, i386
1071 @cindex @code{mul} instruction, x86-64
1072 @cindex @code{imul} instruction, x86-64
1073 There is some trickery concerning the @samp{mul} and @samp{imul}
1074 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1075 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1076 for @samp{imul}) can be output only in the one operand form. Thus,
1077 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1078 the expanding multiply would clobber the @samp{%edx} register, and this
1079 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1080 64-bit product in @samp{%edx:%eax}.
1081
1082 We have added a two operand form of @samp{imul} when the first operand
1083 is an immediate mode expression and the second operand is a register.
1084 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1085 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1086 $69, %eax, %eax}.
1087
This page took 0.058031 seconds and 5 git commands to generate.