Implement Intel SMAP instructions
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2 @c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011
3 @c Free Software Foundation, Inc.
4 @c This is part of the GAS manual.
5 @c For copying conditions, see the file as.texinfo.
6 @c man end
7
8 @ifset GENERIC
9 @page
10 @node i386-Dependent
11 @chapter 80386 Dependent Features
12 @end ifset
13 @ifclear GENERIC
14 @node Machine Dependencies
15 @chapter 80386 Dependent Features
16 @end ifclear
17
18 @cindex i386 support
19 @cindex i80386 support
20 @cindex x86-64 support
21
22 The i386 version @code{@value{AS}} supports both the original Intel 386
23 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
24 extending the Intel architecture to 64-bits.
25
26 @menu
27 * i386-Options:: Options
28 * i386-Directives:: X86 specific directives
29 * i386-Syntax:: Syntactical considerations
30 * i386-Mnemonics:: Instruction Naming
31 * i386-Regs:: Register Naming
32 * i386-Prefixes:: Instruction Prefixes
33 * i386-Memory:: Memory References
34 * i386-Jumps:: Handling of Jump Instructions
35 * i386-Float:: Floating Point
36 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
37 * i386-LWP:: AMD's Lightweight Profiling Instructions
38 * i386-BMI:: Bit Manipulation Instruction
39 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
40 * i386-16bit:: Writing 16-bit Code
41 * i386-Arch:: Specifying an x86 CPU architecture
42 * i386-Bugs:: AT&T Syntax bugs
43 * i386-Notes:: Notes
44 @end menu
45
46 @node i386-Options
47 @section Options
48
49 @cindex options for i386
50 @cindex options for x86-64
51 @cindex i386 options
52 @cindex x86-64 options
53
54 The i386 version of @code{@value{AS}} has a few machine
55 dependent options:
56
57 @c man begin OPTIONS
58 @table @gcctabopt
59 @cindex @samp{--32} option, i386
60 @cindex @samp{--32} option, x86-64
61 @cindex @samp{--x32} option, i386
62 @cindex @samp{--x32} option, x86-64
63 @cindex @samp{--64} option, i386
64 @cindex @samp{--64} option, x86-64
65 @item --32 | --x32 | --64
66 Select the word size, either 32 bits or 64 bits. @samp{--32}
67 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
68 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 respectively.
70
71 These options are only available with the ELF object file format, and
72 require that the necessary BFD support has been included (on a 32-bit
73 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
74 usage and use x86-64 as target platform).
75
76 @item -n
77 By default, x86 GAS replaces multiple nop instructions used for
78 alignment within code sections with multi-byte nop instructions such
79 as leal 0(%esi,1),%esi. This switch disables the optimization.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{btver1},
125 @code{btver2},
126 @code{generic32} and
127 @code{generic64}.
128
129 In addition to the basic instruction set, the assembler can be told to
130 accept various extension mnemonics. For example,
131 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
132 @var{vmx}. The following extensions are currently supported:
133 @code{8087},
134 @code{287},
135 @code{387},
136 @code{no87},
137 @code{mmx},
138 @code{nommx},
139 @code{sse},
140 @code{sse2},
141 @code{sse3},
142 @code{ssse3},
143 @code{sse4.1},
144 @code{sse4.2},
145 @code{sse4},
146 @code{nosse},
147 @code{avx},
148 @code{avx2},
149 @code{adx},
150 @code{rdseed},
151 @code{prfchw},
152 @code{smap},
153 @code{noavx},
154 @code{vmx},
155 @code{vmfunc},
156 @code{smx},
157 @code{xsave},
158 @code{xsaveopt},
159 @code{aes},
160 @code{pclmul},
161 @code{fsgsbase},
162 @code{rdrnd},
163 @code{f16c},
164 @code{bmi2},
165 @code{fma},
166 @code{movbe},
167 @code{ept},
168 @code{lzcnt},
169 @code{hle},
170 @code{rtm},
171 @code{invpcid},
172 @code{clflush},
173 @code{lwp},
174 @code{fma4},
175 @code{xop},
176 @code{cx16},
177 @code{syscall},
178 @code{rdtscp},
179 @code{3dnow},
180 @code{3dnowa},
181 @code{sse4a},
182 @code{sse5},
183 @code{svme},
184 @code{abm} and
185 @code{padlock}.
186 Note that rather than extending a basic instruction set, the extension
187 mnemonics starting with @code{no} revoke the respective functionality.
188
189 When the @code{.arch} directive is used with @option{-march}, the
190 @code{.arch} directive will take precedent.
191
192 @cindex @samp{-mtune=} option, i386
193 @cindex @samp{-mtune=} option, x86-64
194 @item -mtune=@var{CPU}
195 This option specifies a processor to optimize for. When used in
196 conjunction with the @option{-march} option, only instructions
197 of the processor specified by the @option{-march} option will be
198 generated.
199
200 Valid @var{CPU} values are identical to the processor list of
201 @option{-march=@var{CPU}}.
202
203 @cindex @samp{-msse2avx} option, i386
204 @cindex @samp{-msse2avx} option, x86-64
205 @item -msse2avx
206 This option specifies that the assembler should encode SSE instructions
207 with VEX prefix.
208
209 @cindex @samp{-msse-check=} option, i386
210 @cindex @samp{-msse-check=} option, x86-64
211 @item -msse-check=@var{none}
212 @itemx -msse-check=@var{warning}
213 @itemx -msse-check=@var{error}
214 These options control if the assembler should check SSE intructions.
215 @option{-msse-check=@var{none}} will make the assembler not to check SSE
216 instructions, which is the default. @option{-msse-check=@var{warning}}
217 will make the assembler issue a warning for any SSE intruction.
218 @option{-msse-check=@var{error}} will make the assembler issue an error
219 for any SSE intruction.
220
221 @cindex @samp{-mavxscalar=} option, i386
222 @cindex @samp{-mavxscalar=} option, x86-64
223 @item -mavxscalar=@var{128}
224 @itemx -mavxscalar=@var{256}
225 These options control how the assembler should encode scalar AVX
226 instructions. @option{-mavxscalar=@var{128}} will encode scalar
227 AVX instructions with 128bit vector length, which is the default.
228 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
229 with 256bit vector length.
230
231 @cindex @samp{-mmnemonic=} option, i386
232 @cindex @samp{-mmnemonic=} option, x86-64
233 @item -mmnemonic=@var{att}
234 @itemx -mmnemonic=@var{intel}
235 This option specifies instruction mnemonic for matching instructions.
236 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
237 take precedent.
238
239 @cindex @samp{-msyntax=} option, i386
240 @cindex @samp{-msyntax=} option, x86-64
241 @item -msyntax=@var{att}
242 @itemx -msyntax=@var{intel}
243 This option specifies instruction syntax when processing instructions.
244 The @code{.att_syntax} and @code{.intel_syntax} directives will
245 take precedent.
246
247 @cindex @samp{-mnaked-reg} option, i386
248 @cindex @samp{-mnaked-reg} option, x86-64
249 @item -mnaked-reg
250 This opetion specifies that registers don't require a @samp{%} prefix.
251 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
252
253 @end table
254 @c man end
255
256 @node i386-Directives
257 @section x86 specific Directives
258
259 @cindex machine directives, x86
260 @cindex x86 machine directives
261 @table @code
262
263 @cindex @code{lcomm} directive, COFF
264 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
265 Reserve @var{length} (an absolute expression) bytes for a local common
266 denoted by @var{symbol}. The section and value of @var{symbol} are
267 those of the new local common. The addresses are allocated in the bss
268 section, so that at run-time the bytes start off zeroed. Since
269 @var{symbol} is not declared global, it is normally not visible to
270 @code{@value{LD}}. The optional third parameter, @var{alignment},
271 specifies the desired alignment of the symbol in the bss section.
272
273 This directive is only available for COFF based x86 targets.
274
275 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
276 @c .largecomm
277
278 @end table
279
280 @node i386-Syntax
281 @section i386 Syntactical Considerations
282 @menu
283 * i386-Variations:: AT&T Syntax versus Intel Syntax
284 * i386-Chars:: Special Characters
285 @end menu
286
287 @node i386-Variations
288 @subsection AT&T Syntax versus Intel Syntax
289
290 @cindex i386 intel_syntax pseudo op
291 @cindex intel_syntax pseudo op, i386
292 @cindex i386 att_syntax pseudo op
293 @cindex att_syntax pseudo op, i386
294 @cindex i386 syntax compatibility
295 @cindex syntax compatibility, i386
296 @cindex x86-64 intel_syntax pseudo op
297 @cindex intel_syntax pseudo op, x86-64
298 @cindex x86-64 att_syntax pseudo op
299 @cindex att_syntax pseudo op, x86-64
300 @cindex x86-64 syntax compatibility
301 @cindex syntax compatibility, x86-64
302
303 @code{@value{AS}} now supports assembly using Intel assembler syntax.
304 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
305 back to the usual AT&T mode for compatibility with the output of
306 @code{@value{GCC}}. Either of these directives may have an optional
307 argument, @code{prefix}, or @code{noprefix} specifying whether registers
308 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
309 different from Intel syntax. We mention these differences because
310 almost all 80386 documents use Intel syntax. Notable differences
311 between the two syntaxes are:
312
313 @cindex immediate operands, i386
314 @cindex i386 immediate operands
315 @cindex register operands, i386
316 @cindex i386 register operands
317 @cindex jump/call operands, i386
318 @cindex i386 jump/call operands
319 @cindex operand delimiters, i386
320
321 @cindex immediate operands, x86-64
322 @cindex x86-64 immediate operands
323 @cindex register operands, x86-64
324 @cindex x86-64 register operands
325 @cindex jump/call operands, x86-64
326 @cindex x86-64 jump/call operands
327 @cindex operand delimiters, x86-64
328 @itemize @bullet
329 @item
330 AT&T immediate operands are preceded by @samp{$}; Intel immediate
331 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
332 AT&T register operands are preceded by @samp{%}; Intel register operands
333 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
334 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
335
336 @cindex i386 source, destination operands
337 @cindex source, destination operands; i386
338 @cindex x86-64 source, destination operands
339 @cindex source, destination operands; x86-64
340 @item
341 AT&T and Intel syntax use the opposite order for source and destination
342 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
343 @samp{source, dest} convention is maintained for compatibility with
344 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
345 instructions with 2 immediate operands, such as the @samp{enter}
346 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
347
348 @cindex mnemonic suffixes, i386
349 @cindex sizes operands, i386
350 @cindex i386 size suffixes
351 @cindex mnemonic suffixes, x86-64
352 @cindex sizes operands, x86-64
353 @cindex x86-64 size suffixes
354 @item
355 In AT&T syntax the size of memory operands is determined from the last
356 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
357 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
358 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
359 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
360 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
361 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
362 syntax.
363
364 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
365 instruction with the 64-bit displacement or immediate operand.
366
367 @cindex return instructions, i386
368 @cindex i386 jump, call, return
369 @cindex return instructions, x86-64
370 @cindex x86-64 jump, call, return
371 @item
372 Immediate form long jumps and calls are
373 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
374 Intel syntax is
375 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
376 instruction
377 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
378 @samp{ret far @var{stack-adjust}}.
379
380 @cindex sections, i386
381 @cindex i386 sections
382 @cindex sections, x86-64
383 @cindex x86-64 sections
384 @item
385 The AT&T assembler does not provide support for multiple section
386 programs. Unix style systems expect all programs to be single sections.
387 @end itemize
388
389 @node i386-Chars
390 @subsection Special Characters
391
392 @cindex line comment character, i386
393 @cindex i386 line comment character
394 The presence of a @samp{#} appearing anywhere on a line indicates the
395 start of a comment that extends to the end of that line.
396
397 If a @samp{#} appears as the first character of a line then the whole
398 line is treated as a comment, but in this case the line can also be a
399 logical line number directive (@pxref{Comments}) or a preprocessor
400 control command (@pxref{Preprocessing}).
401
402 If the @option{--divide} command line option has not been specified
403 then the @samp{/} character appearing anywhere on a line also
404 introduces a line comment.
405
406 @cindex line separator, i386
407 @cindex statement separator, i386
408 @cindex i386 line separator
409 The @samp{;} character can be used to separate statements on the same
410 line.
411
412 @node i386-Mnemonics
413 @section Instruction Naming
414
415 @cindex i386 instruction naming
416 @cindex instruction naming, i386
417 @cindex x86-64 instruction naming
418 @cindex instruction naming, x86-64
419
420 Instruction mnemonics are suffixed with one character modifiers which
421 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
422 and @samp{q} specify byte, word, long and quadruple word operands. If
423 no suffix is specified by an instruction then @code{@value{AS}} tries to
424 fill in the missing suffix based on the destination register operand
425 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
426 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
427 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
428 assembler which assumes that a missing mnemonic suffix implies long
429 operand size. (This incompatibility does not affect compiler output
430 since compilers always explicitly specify the mnemonic suffix.)
431
432 Almost all instructions have the same names in AT&T and Intel format.
433 There are a few exceptions. The sign extend and zero extend
434 instructions need two sizes to specify them. They need a size to
435 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
436 is accomplished by using two instruction mnemonic suffixes in AT&T
437 syntax. Base names for sign extend and zero extend are
438 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
439 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
440 are tacked on to this base name, the @emph{from} suffix before the
441 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
442 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
443 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
444 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
445 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
446 quadruple word).
447
448 @cindex encoding options, i386
449 @cindex encoding options, x86-64
450
451 Different encoding options can be specified via optional mnemonic
452 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
453 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
454 prefers 8bit or 32bit displacement in encoding.
455
456 @cindex conversion instructions, i386
457 @cindex i386 conversion instructions
458 @cindex conversion instructions, x86-64
459 @cindex x86-64 conversion instructions
460 The Intel-syntax conversion instructions
461
462 @itemize @bullet
463 @item
464 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
465
466 @item
467 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
468
469 @item
470 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
471
472 @item
473 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
474
475 @item
476 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
477 (x86-64 only),
478
479 @item
480 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
481 @samp{%rdx:%rax} (x86-64 only),
482 @end itemize
483
484 @noindent
485 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
486 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
487 instructions.
488
489 @cindex jump instructions, i386
490 @cindex call instructions, i386
491 @cindex jump instructions, x86-64
492 @cindex call instructions, x86-64
493 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
494 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
495 convention.
496
497 @section AT&T Mnemonic versus Intel Mnemonic
498
499 @cindex i386 mnemonic compatibility
500 @cindex mnemonic compatibility, i386
501
502 @code{@value{AS}} supports assembly using Intel mnemonic.
503 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
504 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
505 syntax for compatibility with the output of @code{@value{GCC}}.
506 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
507 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
508 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
509 assembler with different mnemonics from those in Intel IA32 specification.
510 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
511
512 @node i386-Regs
513 @section Register Naming
514
515 @cindex i386 registers
516 @cindex registers, i386
517 @cindex x86-64 registers
518 @cindex registers, x86-64
519 Register operands are always prefixed with @samp{%}. The 80386 registers
520 consist of
521
522 @itemize @bullet
523 @item
524 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
525 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
526 frame pointer), and @samp{%esp} (the stack pointer).
527
528 @item
529 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
530 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
531
532 @item
533 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
534 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
535 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
536 @samp{%cx}, and @samp{%dx})
537
538 @item
539 the 6 section registers @samp{%cs} (code section), @samp{%ds}
540 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
541 and @samp{%gs}.
542
543 @item
544 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
545 @samp{%cr3}.
546
547 @item
548 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
549 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
550
551 @item
552 the 2 test registers @samp{%tr6} and @samp{%tr7}.
553
554 @item
555 the 8 floating point register stack @samp{%st} or equivalently
556 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
557 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
558 These registers are overloaded by 8 MMX registers @samp{%mm0},
559 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
560 @samp{%mm6} and @samp{%mm7}.
561
562 @item
563 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
564 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
565 @end itemize
566
567 The AMD x86-64 architecture extends the register set by:
568
569 @itemize @bullet
570 @item
571 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
572 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
573 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
574 pointer)
575
576 @item
577 the 8 extended registers @samp{%r8}--@samp{%r15}.
578
579 @item
580 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
581
582 @item
583 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
584
585 @item
586 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
587
588 @item
589 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
590
591 @item
592 the 8 debug registers: @samp{%db8}--@samp{%db15}.
593
594 @item
595 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
596 @end itemize
597
598 @node i386-Prefixes
599 @section Instruction Prefixes
600
601 @cindex i386 instruction prefixes
602 @cindex instruction prefixes, i386
603 @cindex prefixes, i386
604 Instruction prefixes are used to modify the following instruction. They
605 are used to repeat string instructions, to provide section overrides, to
606 perform bus lock operations, and to change operand and address sizes.
607 (Most instructions that normally operate on 32-bit operands will use
608 16-bit operands if the instruction has an ``operand size'' prefix.)
609 Instruction prefixes are best written on the same line as the instruction
610 they act upon. For example, the @samp{scas} (scan string) instruction is
611 repeated with:
612
613 @smallexample
614 repne scas %es:(%edi),%al
615 @end smallexample
616
617 You may also place prefixes on the lines immediately preceding the
618 instruction, but this circumvents checks that @code{@value{AS}} does
619 with prefixes, and will not work with all prefixes.
620
621 Here is a list of instruction prefixes:
622
623 @cindex section override prefixes, i386
624 @itemize @bullet
625 @item
626 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
627 @samp{fs}, @samp{gs}. These are automatically added by specifying
628 using the @var{section}:@var{memory-operand} form for memory references.
629
630 @cindex size prefixes, i386
631 @item
632 Operand/Address size prefixes @samp{data16} and @samp{addr16}
633 change 32-bit operands/addresses into 16-bit operands/addresses,
634 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
635 @code{.code16} section) into 32-bit operands/addresses. These prefixes
636 @emph{must} appear on the same line of code as the instruction they
637 modify. For example, in a 16-bit @code{.code16} section, you might
638 write:
639
640 @smallexample
641 addr32 jmpl *(%ebx)
642 @end smallexample
643
644 @cindex bus lock prefixes, i386
645 @cindex inhibiting interrupts, i386
646 @item
647 The bus lock prefix @samp{lock} inhibits interrupts during execution of
648 the instruction it precedes. (This is only valid with certain
649 instructions; see a 80386 manual for details).
650
651 @cindex coprocessor wait, i386
652 @item
653 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
654 complete the current instruction. This should never be needed for the
655 80386/80387 combination.
656
657 @cindex repeat prefixes, i386
658 @item
659 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
660 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
661 times if the current address size is 16-bits).
662 @cindex REX prefixes, i386
663 @item
664 The @samp{rex} family of prefixes is used by x86-64 to encode
665 extensions to i386 instruction set. The @samp{rex} prefix has four
666 bits --- an operand size overwrite (@code{64}) used to change operand size
667 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
668 register set.
669
670 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
671 instruction emits @samp{rex} prefix with all the bits set. By omitting
672 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
673 prefixes as well. Normally, there is no need to write the prefixes
674 explicitly, since gas will automatically generate them based on the
675 instruction operands.
676 @end itemize
677
678 @node i386-Memory
679 @section Memory References
680
681 @cindex i386 memory references
682 @cindex memory references, i386
683 @cindex x86-64 memory references
684 @cindex memory references, x86-64
685 An Intel syntax indirect memory reference of the form
686
687 @smallexample
688 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
689 @end smallexample
690
691 @noindent
692 is translated into the AT&T syntax
693
694 @smallexample
695 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
696 @end smallexample
697
698 @noindent
699 where @var{base} and @var{index} are the optional 32-bit base and
700 index registers, @var{disp} is the optional displacement, and
701 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
702 to calculate the address of the operand. If no @var{scale} is
703 specified, @var{scale} is taken to be 1. @var{section} specifies the
704 optional section register for the memory operand, and may override the
705 default section register (see a 80386 manual for section register
706 defaults). Note that section overrides in AT&T syntax @emph{must}
707 be preceded by a @samp{%}. If you specify a section override which
708 coincides with the default section register, @code{@value{AS}} does @emph{not}
709 output any section register override prefixes to assemble the given
710 instruction. Thus, section overrides can be specified to emphasize which
711 section register is used for a given memory operand.
712
713 Here are some examples of Intel and AT&T style memory references:
714
715 @table @asis
716 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
717 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
718 missing, and the default section is used (@samp{%ss} for addressing with
719 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
720
721 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
722 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
723 @samp{foo}. All other fields are missing. The section register here
724 defaults to @samp{%ds}.
725
726 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
727 This uses the value pointed to by @samp{foo} as a memory operand.
728 Note that @var{base} and @var{index} are both missing, but there is only
729 @emph{one} @samp{,}. This is a syntactic exception.
730
731 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
732 This selects the contents of the variable @samp{foo} with section
733 register @var{section} being @samp{%gs}.
734 @end table
735
736 Absolute (as opposed to PC relative) call and jump operands must be
737 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
738 always chooses PC relative addressing for jump/call labels.
739
740 Any instruction that has a memory operand, but no register operand,
741 @emph{must} specify its size (byte, word, long, or quadruple) with an
742 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
743 respectively).
744
745 The x86-64 architecture adds an RIP (instruction pointer relative)
746 addressing. This addressing mode is specified by using @samp{rip} as a
747 base register. Only constant offsets are valid. For example:
748
749 @table @asis
750 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
751 Points to the address 1234 bytes past the end of the current
752 instruction.
753
754 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
755 Points to the @code{symbol} in RIP relative way, this is shorter than
756 the default absolute addressing.
757 @end table
758
759 Other addressing modes remain unchanged in x86-64 architecture, except
760 registers used are 64-bit instead of 32-bit.
761
762 @node i386-Jumps
763 @section Handling of Jump Instructions
764
765 @cindex jump optimization, i386
766 @cindex i386 jump optimization
767 @cindex jump optimization, x86-64
768 @cindex x86-64 jump optimization
769 Jump instructions are always optimized to use the smallest possible
770 displacements. This is accomplished by using byte (8-bit) displacement
771 jumps whenever the target is sufficiently close. If a byte displacement
772 is insufficient a long displacement is used. We do not support
773 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
774 instruction with the @samp{data16} instruction prefix), since the 80386
775 insists upon masking @samp{%eip} to 16 bits after the word displacement
776 is added. (See also @pxref{i386-Arch})
777
778 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
779 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
780 displacements, so that if you use these instructions (@code{@value{GCC}} does
781 not use them) you may get an error message (and incorrect code). The AT&T
782 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
783 to
784
785 @smallexample
786 jcxz cx_zero
787 jmp cx_nonzero
788 cx_zero: jmp foo
789 cx_nonzero:
790 @end smallexample
791
792 @node i386-Float
793 @section Floating Point
794
795 @cindex i386 floating point
796 @cindex floating point, i386
797 @cindex x86-64 floating point
798 @cindex floating point, x86-64
799 All 80387 floating point types except packed BCD are supported.
800 (BCD support may be added without much difficulty). These data
801 types are 16-, 32-, and 64- bit integers, and single (32-bit),
802 double (64-bit), and extended (80-bit) precision floating point.
803 Each supported type has an instruction mnemonic suffix and a constructor
804 associated with it. Instruction mnemonic suffixes specify the operand's
805 data type. Constructors build these data types into memory.
806
807 @cindex @code{float} directive, i386
808 @cindex @code{single} directive, i386
809 @cindex @code{double} directive, i386
810 @cindex @code{tfloat} directive, i386
811 @cindex @code{float} directive, x86-64
812 @cindex @code{single} directive, x86-64
813 @cindex @code{double} directive, x86-64
814 @cindex @code{tfloat} directive, x86-64
815 @itemize @bullet
816 @item
817 Floating point constructors are @samp{.float} or @samp{.single},
818 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
819 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
820 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
821 only supports this format via the @samp{fldt} (load 80-bit real to stack
822 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
823
824 @cindex @code{word} directive, i386
825 @cindex @code{long} directive, i386
826 @cindex @code{int} directive, i386
827 @cindex @code{quad} directive, i386
828 @cindex @code{word} directive, x86-64
829 @cindex @code{long} directive, x86-64
830 @cindex @code{int} directive, x86-64
831 @cindex @code{quad} directive, x86-64
832 @item
833 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
834 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
835 corresponding instruction mnemonic suffixes are @samp{s} (single),
836 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
837 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
838 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
839 stack) instructions.
840 @end itemize
841
842 Register to register operations should not use instruction mnemonic suffixes.
843 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
844 wrote @samp{fst %st, %st(1)}, since all register to register operations
845 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
846 which converts @samp{%st} from 80-bit to 64-bit floating point format,
847 then stores the result in the 4 byte location @samp{mem})
848
849 @node i386-SIMD
850 @section Intel's MMX and AMD's 3DNow! SIMD Operations
851
852 @cindex MMX, i386
853 @cindex 3DNow!, i386
854 @cindex SIMD, i386
855 @cindex MMX, x86-64
856 @cindex 3DNow!, x86-64
857 @cindex SIMD, x86-64
858
859 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
860 instructions for integer data), available on Intel's Pentium MMX
861 processors and Pentium II processors, AMD's K6 and K6-2 processors,
862 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
863 instruction set (SIMD instructions for 32-bit floating point data)
864 available on AMD's K6-2 processor and possibly others in the future.
865
866 Currently, @code{@value{AS}} does not support Intel's floating point
867 SIMD, Katmai (KNI).
868
869 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
870 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
871 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
872 floating point values. The MMX registers cannot be used at the same time
873 as the floating point stack.
874
875 See Intel and AMD documentation, keeping in mind that the operand order in
876 instructions is reversed from the Intel syntax.
877
878 @node i386-LWP
879 @section AMD's Lightweight Profiling Instructions
880
881 @cindex LWP, i386
882 @cindex LWP, x86-64
883
884 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
885 instruction set, available on AMD's Family 15h (Orochi) processors.
886
887 LWP enables applications to collect and manage performance data, and
888 react to performance events. The collection of performance data
889 requires no context switches. LWP runs in the context of a thread and
890 so several counters can be used independently across multiple threads.
891 LWP can be used in both 64-bit and legacy 32-bit modes.
892
893 For detailed information on the LWP instruction set, see the
894 @cite{AMD Lightweight Profiling Specification} available at
895 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
896
897 @node i386-BMI
898 @section Bit Manipulation Instructions
899
900 @cindex BMI, i386
901 @cindex BMI, x86-64
902
903 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
904
905 BMI instructions provide several instructions implementing individual
906 bit manipulation operations such as isolation, masking, setting, or
907 resetting.
908
909 @c Need to add a specification citation here when available.
910
911 @node i386-TBM
912 @section AMD's Trailing Bit Manipulation Instructions
913
914 @cindex TBM, i386
915 @cindex TBM, x86-64
916
917 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
918 instruction set, available on AMD's BDVER2 processors (Trinity and
919 Viperfish).
920
921 TBM instructions provide instructions implementing individual bit
922 manipulation operations such as isolating, masking, setting, resetting,
923 complementing, and operations on trailing zeros and ones.
924
925 @c Need to add a specification citation here when available.
926
927 @node i386-16bit
928 @section Writing 16-bit Code
929
930 @cindex i386 16-bit code
931 @cindex 16-bit code, i386
932 @cindex real-mode code, i386
933 @cindex @code{code16gcc} directive, i386
934 @cindex @code{code16} directive, i386
935 @cindex @code{code32} directive, i386
936 @cindex @code{code64} directive, i386
937 @cindex @code{code64} directive, x86-64
938 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
939 or 64-bit x86-64 code depending on the default configuration,
940 it also supports writing code to run in real mode or in 16-bit protected
941 mode code segments. To do this, put a @samp{.code16} or
942 @samp{.code16gcc} directive before the assembly language instructions to
943 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
944 32-bit code with the @samp{.code32} directive or 64-bit code with the
945 @samp{.code64} directive.
946
947 @samp{.code16gcc} provides experimental support for generating 16-bit
948 code from gcc, and differs from @samp{.code16} in that @samp{call},
949 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
950 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
951 default to 32-bit size. This is so that the stack pointer is
952 manipulated in the same way over function calls, allowing access to
953 function parameters at the same stack offsets as in 32-bit mode.
954 @samp{.code16gcc} also automatically adds address size prefixes where
955 necessary to use the 32-bit addressing modes that gcc generates.
956
957 The code which @code{@value{AS}} generates in 16-bit mode will not
958 necessarily run on a 16-bit pre-80386 processor. To write code that
959 runs on such a processor, you must refrain from using @emph{any} 32-bit
960 constructs which require @code{@value{AS}} to output address or operand
961 size prefixes.
962
963 Note that writing 16-bit code instructions by explicitly specifying a
964 prefix or an instruction mnemonic suffix within a 32-bit code section
965 generates different machine instructions than those generated for a
966 16-bit code segment. In a 32-bit code section, the following code
967 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
968 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
969
970 @smallexample
971 pushw $4
972 @end smallexample
973
974 The same code in a 16-bit code section would generate the machine
975 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
976 is correct since the processor default operand size is assumed to be 16
977 bits in a 16-bit code section.
978
979 @node i386-Bugs
980 @section AT&T Syntax bugs
981
982 The UnixWare assembler, and probably other AT&T derived ix86 Unix
983 assemblers, generate floating point instructions with reversed source
984 and destination registers in certain cases. Unfortunately, gcc and
985 possibly many other programs use this reversed syntax, so we're stuck
986 with it.
987
988 For example
989
990 @smallexample
991 fsub %st,%st(3)
992 @end smallexample
993 @noindent
994 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
995 than the expected @samp{%st(3) - %st}. This happens with all the
996 non-commutative arithmetic floating point operations with two register
997 operands where the source register is @samp{%st} and the destination
998 register is @samp{%st(i)}.
999
1000 @node i386-Arch
1001 @section Specifying CPU Architecture
1002
1003 @cindex arch directive, i386
1004 @cindex i386 arch directive
1005 @cindex arch directive, x86-64
1006 @cindex x86-64 arch directive
1007
1008 @code{@value{AS}} may be told to assemble for a particular CPU
1009 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1010 directive enables a warning when gas detects an instruction that is not
1011 supported on the CPU specified. The choices for @var{cpu_type} are:
1012
1013 @multitable @columnfractions .20 .20 .20 .20
1014 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1015 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1016 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1017 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1018 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1019 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1020 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1021 @item @samp{btver1} @tab @samp{btver2}
1022 @item @samp{generic32} @tab @samp{generic64}
1023 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1024 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1025 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1026 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1027 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1028 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1029 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1030 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1031 @item @samp{.smap}
1032 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1033 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1034 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1035 @item @samp{.padlock}
1036 @end multitable
1037
1038 Apart from the warning, there are only two other effects on
1039 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1040 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1041 will automatically use a two byte opcode sequence. The larger three
1042 byte opcode sequence is used on the 486 (and when no architecture is
1043 specified) because it executes faster on the 486. Note that you can
1044 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1045 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1046 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1047 conditional jumps will be promoted when necessary to a two instruction
1048 sequence consisting of a conditional jump of the opposite sense around
1049 an unconditional jump to the target.
1050
1051 Following the CPU architecture (but not a sub-architecture, which are those
1052 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1053 control automatic promotion of conditional jumps. @samp{jumps} is the
1054 default, and enables jump promotion; All external jumps will be of the long
1055 variety, and file-local jumps will be promoted as necessary.
1056 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1057 byte offset jumps, and warns about file-local conditional jumps that
1058 @code{@value{AS}} promotes.
1059 Unconditional jumps are treated as for @samp{jumps}.
1060
1061 For example
1062
1063 @smallexample
1064 .arch i8086,nojumps
1065 @end smallexample
1066
1067 @node i386-Notes
1068 @section Notes
1069
1070 @cindex i386 @code{mul}, @code{imul} instructions
1071 @cindex @code{mul} instruction, i386
1072 @cindex @code{imul} instruction, i386
1073 @cindex @code{mul} instruction, x86-64
1074 @cindex @code{imul} instruction, x86-64
1075 There is some trickery concerning the @samp{mul} and @samp{imul}
1076 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1077 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1078 for @samp{imul}) can be output only in the one operand form. Thus,
1079 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1080 the expanding multiply would clobber the @samp{%edx} register, and this
1081 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1082 64-bit product in @samp{%edx:%eax}.
1083
1084 We have added a two operand form of @samp{imul} when the first operand
1085 is an immediate mode expression and the second operand is a register.
1086 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1087 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1088 $69, %eax, %eax}.
1089
This page took 0.083372 seconds and 5 git commands to generate.