Add support for Intel CET instructions
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2017 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{687},
138 @code{no87},
139 @code{no287},
140 @code{no387},
141 @code{no687},
142 @code{mmx},
143 @code{nommx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{ssse3},
148 @code{sse4.1},
149 @code{sse4.2},
150 @code{sse4},
151 @code{nosse},
152 @code{nosse2},
153 @code{nosse3},
154 @code{nossse3},
155 @code{nosse4.1},
156 @code{nosse4.2},
157 @code{nosse4},
158 @code{avx},
159 @code{avx2},
160 @code{noavx},
161 @code{noavx2},
162 @code{adx},
163 @code{rdseed},
164 @code{prfchw},
165 @code{smap},
166 @code{mpx},
167 @code{sha},
168 @code{rdpid},
169 @code{ptwrite},
170 @code{cet},
171 @code{prefetchwt1},
172 @code{clflushopt},
173 @code{se1},
174 @code{clwb},
175 @code{avx512f},
176 @code{avx512cd},
177 @code{avx512er},
178 @code{avx512pf},
179 @code{avx512vl},
180 @code{avx512bw},
181 @code{avx512dq},
182 @code{avx512ifma},
183 @code{avx512vbmi},
184 @code{avx512_4fmaps},
185 @code{avx512_4vnniw},
186 @code{avx512_vpopcntdq},
187 @code{noavx512f},
188 @code{noavx512cd},
189 @code{noavx512er},
190 @code{noavx512pf},
191 @code{noavx512vl},
192 @code{noavx512bw},
193 @code{noavx512dq},
194 @code{noavx512ifma},
195 @code{noavx512vbmi},
196 @code{noavx512_4fmaps},
197 @code{noavx512_4vnniw},
198 @code{noavx512_vpopcntdq},
199 @code{vmx},
200 @code{vmfunc},
201 @code{smx},
202 @code{xsave},
203 @code{xsaveopt},
204 @code{xsavec},
205 @code{xsaves},
206 @code{aes},
207 @code{pclmul},
208 @code{fsgsbase},
209 @code{rdrnd},
210 @code{f16c},
211 @code{bmi2},
212 @code{fma},
213 @code{movbe},
214 @code{ept},
215 @code{lzcnt},
216 @code{hle},
217 @code{rtm},
218 @code{invpcid},
219 @code{clflush},
220 @code{mwaitx},
221 @code{clzero},
222 @code{lwp},
223 @code{fma4},
224 @code{xop},
225 @code{cx16},
226 @code{syscall},
227 @code{rdtscp},
228 @code{3dnow},
229 @code{3dnowa},
230 @code{sse4a},
231 @code{sse5},
232 @code{svme},
233 @code{abm} and
234 @code{padlock}.
235 Note that rather than extending a basic instruction set, the extension
236 mnemonics starting with @code{no} revoke the respective functionality.
237
238 When the @code{.arch} directive is used with @option{-march}, the
239 @code{.arch} directive will take precedent.
240
241 @cindex @samp{-mtune=} option, i386
242 @cindex @samp{-mtune=} option, x86-64
243 @item -mtune=@var{CPU}
244 This option specifies a processor to optimize for. When used in
245 conjunction with the @option{-march} option, only instructions
246 of the processor specified by the @option{-march} option will be
247 generated.
248
249 Valid @var{CPU} values are identical to the processor list of
250 @option{-march=@var{CPU}}.
251
252 @cindex @samp{-msse2avx} option, i386
253 @cindex @samp{-msse2avx} option, x86-64
254 @item -msse2avx
255 This option specifies that the assembler should encode SSE instructions
256 with VEX prefix.
257
258 @cindex @samp{-msse-check=} option, i386
259 @cindex @samp{-msse-check=} option, x86-64
260 @item -msse-check=@var{none}
261 @itemx -msse-check=@var{warning}
262 @itemx -msse-check=@var{error}
263 These options control if the assembler should check SSE instructions.
264 @option{-msse-check=@var{none}} will make the assembler not to check SSE
265 instructions, which is the default. @option{-msse-check=@var{warning}}
266 will make the assembler issue a warning for any SSE instruction.
267 @option{-msse-check=@var{error}} will make the assembler issue an error
268 for any SSE instruction.
269
270 @cindex @samp{-mavxscalar=} option, i386
271 @cindex @samp{-mavxscalar=} option, x86-64
272 @item -mavxscalar=@var{128}
273 @itemx -mavxscalar=@var{256}
274 These options control how the assembler should encode scalar AVX
275 instructions. @option{-mavxscalar=@var{128}} will encode scalar
276 AVX instructions with 128bit vector length, which is the default.
277 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
278 with 256bit vector length.
279
280 @cindex @samp{-mevexlig=} option, i386
281 @cindex @samp{-mevexlig=} option, x86-64
282 @item -mevexlig=@var{128}
283 @itemx -mevexlig=@var{256}
284 @itemx -mevexlig=@var{512}
285 These options control how the assembler should encode length-ignored
286 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
287 EVEX instructions with 128bit vector length, which is the default.
288 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
289 encode LIG EVEX instructions with 256bit and 512bit vector length,
290 respectively.
291
292 @cindex @samp{-mevexwig=} option, i386
293 @cindex @samp{-mevexwig=} option, x86-64
294 @item -mevexwig=@var{0}
295 @itemx -mevexwig=@var{1}
296 These options control how the assembler should encode w-ignored (WIG)
297 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
298 EVEX instructions with evex.w = 0, which is the default.
299 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
300 evex.w = 1.
301
302 @cindex @samp{-mmnemonic=} option, i386
303 @cindex @samp{-mmnemonic=} option, x86-64
304 @item -mmnemonic=@var{att}
305 @itemx -mmnemonic=@var{intel}
306 This option specifies instruction mnemonic for matching instructions.
307 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
308 take precedent.
309
310 @cindex @samp{-msyntax=} option, i386
311 @cindex @samp{-msyntax=} option, x86-64
312 @item -msyntax=@var{att}
313 @itemx -msyntax=@var{intel}
314 This option specifies instruction syntax when processing instructions.
315 The @code{.att_syntax} and @code{.intel_syntax} directives will
316 take precedent.
317
318 @cindex @samp{-mnaked-reg} option, i386
319 @cindex @samp{-mnaked-reg} option, x86-64
320 @item -mnaked-reg
321 This option specifies that registers don't require a @samp{%} prefix.
322 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
323
324 @cindex @samp{-madd-bnd-prefix} option, i386
325 @cindex @samp{-madd-bnd-prefix} option, x86-64
326 @item -madd-bnd-prefix
327 This option forces the assembler to add BND prefix to all branches, even
328 if such prefix was not explicitly specified in the source code.
329
330 @cindex @samp{-mshared} option, i386
331 @cindex @samp{-mshared} option, x86-64
332 @item -mno-shared
333 On ELF target, the assembler normally optimizes out non-PLT relocations
334 against defined non-weak global branch targets with default visibility.
335 The @samp{-mshared} option tells the assembler to generate code which
336 may go into a shared library where all non-weak global branch targets
337 with default visibility can be preempted. The resulting code is
338 slightly bigger. This option only affects the handling of branch
339 instructions.
340
341 @cindex @samp{-mbig-obj} option, x86-64
342 @item -mbig-obj
343 On x86-64 PE/COFF target this option forces the use of big object file
344 format, which allows more than 32768 sections.
345
346 @cindex @samp{-momit-lock-prefix=} option, i386
347 @cindex @samp{-momit-lock-prefix=} option, x86-64
348 @item -momit-lock-prefix=@var{no}
349 @itemx -momit-lock-prefix=@var{yes}
350 These options control how the assembler should encode lock prefix.
351 This option is intended as a workaround for processors, that fail on
352 lock prefix. This option can only be safely used with single-core,
353 single-thread computers
354 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
355 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
356 which is the default.
357
358 @cindex @samp{-mfence-as-lock-add=} option, i386
359 @cindex @samp{-mfence-as-lock-add=} option, x86-64
360 @item -mfence-as-lock-add=@var{no}
361 @itemx -mfence-as-lock-add=@var{yes}
362 These options control how the assembler should encode lfence, mfence and
363 sfence.
364 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
365 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
366 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
367 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
368 sfence as usual, which is the default.
369
370 @cindex @samp{-mrelax-relocations=} option, i386
371 @cindex @samp{-mrelax-relocations=} option, x86-64
372 @item -mrelax-relocations=@var{no}
373 @itemx -mrelax-relocations=@var{yes}
374 These options control whether the assembler should generate relax
375 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
376 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
377 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
378 @option{-mrelax-relocations=@var{no}} will not generate relax
379 relocations. The default can be controlled by a configure option
380 @option{--enable-x86-relax-relocations}.
381
382 @cindex @samp{-mevexrcig=} option, i386
383 @cindex @samp{-mevexrcig=} option, x86-64
384 @item -mevexrcig=@var{rne}
385 @itemx -mevexrcig=@var{rd}
386 @itemx -mevexrcig=@var{ru}
387 @itemx -mevexrcig=@var{rz}
388 These options control how the assembler should encode SAE-only
389 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
390 of EVEX instruction with 00, which is the default.
391 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
392 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
393 with 01, 10 and 11 RC bits, respectively.
394
395 @cindex @samp{-mamd64} option, x86-64
396 @cindex @samp{-mintel64} option, x86-64
397 @item -mamd64
398 @itemx -mintel64
399 This option specifies that the assembler should accept only AMD64 or
400 Intel64 ISA in 64-bit mode. The default is to accept both.
401
402 @end table
403 @c man end
404
405 @node i386-Directives
406 @section x86 specific Directives
407
408 @cindex machine directives, x86
409 @cindex x86 machine directives
410 @table @code
411
412 @cindex @code{lcomm} directive, COFF
413 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
414 Reserve @var{length} (an absolute expression) bytes for a local common
415 denoted by @var{symbol}. The section and value of @var{symbol} are
416 those of the new local common. The addresses are allocated in the bss
417 section, so that at run-time the bytes start off zeroed. Since
418 @var{symbol} is not declared global, it is normally not visible to
419 @code{@value{LD}}. The optional third parameter, @var{alignment},
420 specifies the desired alignment of the symbol in the bss section.
421
422 This directive is only available for COFF based x86 targets.
423
424 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
425 @c .largecomm
426
427 @end table
428
429 @node i386-Syntax
430 @section i386 Syntactical Considerations
431 @menu
432 * i386-Variations:: AT&T Syntax versus Intel Syntax
433 * i386-Chars:: Special Characters
434 @end menu
435
436 @node i386-Variations
437 @subsection AT&T Syntax versus Intel Syntax
438
439 @cindex i386 intel_syntax pseudo op
440 @cindex intel_syntax pseudo op, i386
441 @cindex i386 att_syntax pseudo op
442 @cindex att_syntax pseudo op, i386
443 @cindex i386 syntax compatibility
444 @cindex syntax compatibility, i386
445 @cindex x86-64 intel_syntax pseudo op
446 @cindex intel_syntax pseudo op, x86-64
447 @cindex x86-64 att_syntax pseudo op
448 @cindex att_syntax pseudo op, x86-64
449 @cindex x86-64 syntax compatibility
450 @cindex syntax compatibility, x86-64
451
452 @code{@value{AS}} now supports assembly using Intel assembler syntax.
453 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
454 back to the usual AT&T mode for compatibility with the output of
455 @code{@value{GCC}}. Either of these directives may have an optional
456 argument, @code{prefix}, or @code{noprefix} specifying whether registers
457 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
458 different from Intel syntax. We mention these differences because
459 almost all 80386 documents use Intel syntax. Notable differences
460 between the two syntaxes are:
461
462 @cindex immediate operands, i386
463 @cindex i386 immediate operands
464 @cindex register operands, i386
465 @cindex i386 register operands
466 @cindex jump/call operands, i386
467 @cindex i386 jump/call operands
468 @cindex operand delimiters, i386
469
470 @cindex immediate operands, x86-64
471 @cindex x86-64 immediate operands
472 @cindex register operands, x86-64
473 @cindex x86-64 register operands
474 @cindex jump/call operands, x86-64
475 @cindex x86-64 jump/call operands
476 @cindex operand delimiters, x86-64
477 @itemize @bullet
478 @item
479 AT&T immediate operands are preceded by @samp{$}; Intel immediate
480 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
481 AT&T register operands are preceded by @samp{%}; Intel register operands
482 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
483 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
484
485 @cindex i386 source, destination operands
486 @cindex source, destination operands; i386
487 @cindex x86-64 source, destination operands
488 @cindex source, destination operands; x86-64
489 @item
490 AT&T and Intel syntax use the opposite order for source and destination
491 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
492 @samp{source, dest} convention is maintained for compatibility with
493 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
494 instructions with 2 immediate operands, such as the @samp{enter}
495 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
496
497 @cindex mnemonic suffixes, i386
498 @cindex sizes operands, i386
499 @cindex i386 size suffixes
500 @cindex mnemonic suffixes, x86-64
501 @cindex sizes operands, x86-64
502 @cindex x86-64 size suffixes
503 @item
504 In AT&T syntax the size of memory operands is determined from the last
505 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
506 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
507 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
508 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
509 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
510 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
511 syntax.
512
513 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
514 instruction with the 64-bit displacement or immediate operand.
515
516 @cindex return instructions, i386
517 @cindex i386 jump, call, return
518 @cindex return instructions, x86-64
519 @cindex x86-64 jump, call, return
520 @item
521 Immediate form long jumps and calls are
522 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
523 Intel syntax is
524 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
525 instruction
526 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
527 @samp{ret far @var{stack-adjust}}.
528
529 @cindex sections, i386
530 @cindex i386 sections
531 @cindex sections, x86-64
532 @cindex x86-64 sections
533 @item
534 The AT&T assembler does not provide support for multiple section
535 programs. Unix style systems expect all programs to be single sections.
536 @end itemize
537
538 @node i386-Chars
539 @subsection Special Characters
540
541 @cindex line comment character, i386
542 @cindex i386 line comment character
543 The presence of a @samp{#} appearing anywhere on a line indicates the
544 start of a comment that extends to the end of that line.
545
546 If a @samp{#} appears as the first character of a line then the whole
547 line is treated as a comment, but in this case the line can also be a
548 logical line number directive (@pxref{Comments}) or a preprocessor
549 control command (@pxref{Preprocessing}).
550
551 If the @option{--divide} command line option has not been specified
552 then the @samp{/} character appearing anywhere on a line also
553 introduces a line comment.
554
555 @cindex line separator, i386
556 @cindex statement separator, i386
557 @cindex i386 line separator
558 The @samp{;} character can be used to separate statements on the same
559 line.
560
561 @node i386-Mnemonics
562 @section i386-Mnemonics
563 @subsection Instruction Naming
564
565 @cindex i386 instruction naming
566 @cindex instruction naming, i386
567 @cindex x86-64 instruction naming
568 @cindex instruction naming, x86-64
569
570 Instruction mnemonics are suffixed with one character modifiers which
571 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
572 and @samp{q} specify byte, word, long and quadruple word operands. If
573 no suffix is specified by an instruction then @code{@value{AS}} tries to
574 fill in the missing suffix based on the destination register operand
575 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
576 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
577 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
578 assembler which assumes that a missing mnemonic suffix implies long
579 operand size. (This incompatibility does not affect compiler output
580 since compilers always explicitly specify the mnemonic suffix.)
581
582 Almost all instructions have the same names in AT&T and Intel format.
583 There are a few exceptions. The sign extend and zero extend
584 instructions need two sizes to specify them. They need a size to
585 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
586 is accomplished by using two instruction mnemonic suffixes in AT&T
587 syntax. Base names for sign extend and zero extend are
588 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
589 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
590 are tacked on to this base name, the @emph{from} suffix before the
591 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
592 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
593 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
594 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
595 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
596 quadruple word).
597
598 @cindex encoding options, i386
599 @cindex encoding options, x86-64
600
601 Different encoding options can be specified via optional mnemonic
602 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
603 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
604 prefers 8bit or 32bit displacement in encoding.
605
606 @cindex conversion instructions, i386
607 @cindex i386 conversion instructions
608 @cindex conversion instructions, x86-64
609 @cindex x86-64 conversion instructions
610 The Intel-syntax conversion instructions
611
612 @itemize @bullet
613 @item
614 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
615
616 @item
617 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
618
619 @item
620 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
621
622 @item
623 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
624
625 @item
626 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
627 (x86-64 only),
628
629 @item
630 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
631 @samp{%rdx:%rax} (x86-64 only),
632 @end itemize
633
634 @noindent
635 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
636 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
637 instructions.
638
639 @cindex jump instructions, i386
640 @cindex call instructions, i386
641 @cindex jump instructions, x86-64
642 @cindex call instructions, x86-64
643 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
644 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
645 convention.
646
647 @subsection AT&T Mnemonic versus Intel Mnemonic
648
649 @cindex i386 mnemonic compatibility
650 @cindex mnemonic compatibility, i386
651
652 @code{@value{AS}} supports assembly using Intel mnemonic.
653 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
654 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
655 syntax for compatibility with the output of @code{@value{GCC}}.
656 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
657 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
658 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
659 assembler with different mnemonics from those in Intel IA32 specification.
660 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
661
662 @node i386-Regs
663 @section Register Naming
664
665 @cindex i386 registers
666 @cindex registers, i386
667 @cindex x86-64 registers
668 @cindex registers, x86-64
669 Register operands are always prefixed with @samp{%}. The 80386 registers
670 consist of
671
672 @itemize @bullet
673 @item
674 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
675 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
676 frame pointer), and @samp{%esp} (the stack pointer).
677
678 @item
679 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
680 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
681
682 @item
683 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
684 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
685 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
686 @samp{%cx}, and @samp{%dx})
687
688 @item
689 the 6 section registers @samp{%cs} (code section), @samp{%ds}
690 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
691 and @samp{%gs}.
692
693 @item
694 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
695 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
696
697 @item
698 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
699 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
700
701 @item
702 the 2 test registers @samp{%tr6} and @samp{%tr7}.
703
704 @item
705 the 8 floating point register stack @samp{%st} or equivalently
706 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
707 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
708 These registers are overloaded by 8 MMX registers @samp{%mm0},
709 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
710 @samp{%mm6} and @samp{%mm7}.
711
712 @item
713 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
714 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
715 @end itemize
716
717 The AMD x86-64 architecture extends the register set by:
718
719 @itemize @bullet
720 @item
721 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
722 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
723 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
724 pointer)
725
726 @item
727 the 8 extended registers @samp{%r8}--@samp{%r15}.
728
729 @item
730 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
731
732 @item
733 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
734
735 @item
736 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
737
738 @item
739 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
740
741 @item
742 the 8 debug registers: @samp{%db8}--@samp{%db15}.
743
744 @item
745 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
746 @end itemize
747
748 With the AVX extensions more registers were made available:
749
750 @itemize @bullet
751
752 @item
753 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
754 available in 32-bit mode). The bottom 128 bits are overlaid with the
755 @samp{xmm0}--@samp{xmm15} registers.
756
757 @end itemize
758
759 The AVX2 extensions made in 64-bit mode more registers available:
760
761 @itemize @bullet
762
763 @item
764 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
765 registers @samp{%ymm16}--@samp{%ymm31}.
766
767 @end itemize
768
769 The AVX512 extensions added the following registers:
770
771 @itemize @bullet
772
773 @item
774 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
775 available in 32-bit mode). The bottom 128 bits are overlaid with the
776 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
777 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
778
779 @item
780 the 8 mask registers @samp{%k0}--@samp{%k7}.
781
782 @end itemize
783
784 @node i386-Prefixes
785 @section Instruction Prefixes
786
787 @cindex i386 instruction prefixes
788 @cindex instruction prefixes, i386
789 @cindex prefixes, i386
790 Instruction prefixes are used to modify the following instruction. They
791 are used to repeat string instructions, to provide section overrides, to
792 perform bus lock operations, and to change operand and address sizes.
793 (Most instructions that normally operate on 32-bit operands will use
794 16-bit operands if the instruction has an ``operand size'' prefix.)
795 Instruction prefixes are best written on the same line as the instruction
796 they act upon. For example, the @samp{scas} (scan string) instruction is
797 repeated with:
798
799 @smallexample
800 repne scas %es:(%edi),%al
801 @end smallexample
802
803 You may also place prefixes on the lines immediately preceding the
804 instruction, but this circumvents checks that @code{@value{AS}} does
805 with prefixes, and will not work with all prefixes.
806
807 Here is a list of instruction prefixes:
808
809 @cindex section override prefixes, i386
810 @itemize @bullet
811 @item
812 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
813 @samp{fs}, @samp{gs}. These are automatically added by specifying
814 using the @var{section}:@var{memory-operand} form for memory references.
815
816 @cindex size prefixes, i386
817 @item
818 Operand/Address size prefixes @samp{data16} and @samp{addr16}
819 change 32-bit operands/addresses into 16-bit operands/addresses,
820 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
821 @code{.code16} section) into 32-bit operands/addresses. These prefixes
822 @emph{must} appear on the same line of code as the instruction they
823 modify. For example, in a 16-bit @code{.code16} section, you might
824 write:
825
826 @smallexample
827 addr32 jmpl *(%ebx)
828 @end smallexample
829
830 @cindex bus lock prefixes, i386
831 @cindex inhibiting interrupts, i386
832 @item
833 The bus lock prefix @samp{lock} inhibits interrupts during execution of
834 the instruction it precedes. (This is only valid with certain
835 instructions; see a 80386 manual for details).
836
837 @cindex coprocessor wait, i386
838 @item
839 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
840 complete the current instruction. This should never be needed for the
841 80386/80387 combination.
842
843 @cindex repeat prefixes, i386
844 @item
845 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
846 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
847 times if the current address size is 16-bits).
848 @cindex REX prefixes, i386
849 @item
850 The @samp{rex} family of prefixes is used by x86-64 to encode
851 extensions to i386 instruction set. The @samp{rex} prefix has four
852 bits --- an operand size overwrite (@code{64}) used to change operand size
853 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
854 register set.
855
856 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
857 instruction emits @samp{rex} prefix with all the bits set. By omitting
858 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
859 prefixes as well. Normally, there is no need to write the prefixes
860 explicitly, since gas will automatically generate them based on the
861 instruction operands.
862 @end itemize
863
864 @node i386-Memory
865 @section Memory References
866
867 @cindex i386 memory references
868 @cindex memory references, i386
869 @cindex x86-64 memory references
870 @cindex memory references, x86-64
871 An Intel syntax indirect memory reference of the form
872
873 @smallexample
874 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
875 @end smallexample
876
877 @noindent
878 is translated into the AT&T syntax
879
880 @smallexample
881 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
882 @end smallexample
883
884 @noindent
885 where @var{base} and @var{index} are the optional 32-bit base and
886 index registers, @var{disp} is the optional displacement, and
887 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
888 to calculate the address of the operand. If no @var{scale} is
889 specified, @var{scale} is taken to be 1. @var{section} specifies the
890 optional section register for the memory operand, and may override the
891 default section register (see a 80386 manual for section register
892 defaults). Note that section overrides in AT&T syntax @emph{must}
893 be preceded by a @samp{%}. If you specify a section override which
894 coincides with the default section register, @code{@value{AS}} does @emph{not}
895 output any section register override prefixes to assemble the given
896 instruction. Thus, section overrides can be specified to emphasize which
897 section register is used for a given memory operand.
898
899 Here are some examples of Intel and AT&T style memory references:
900
901 @table @asis
902 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
903 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
904 missing, and the default section is used (@samp{%ss} for addressing with
905 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
906
907 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
908 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
909 @samp{foo}. All other fields are missing. The section register here
910 defaults to @samp{%ds}.
911
912 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
913 This uses the value pointed to by @samp{foo} as a memory operand.
914 Note that @var{base} and @var{index} are both missing, but there is only
915 @emph{one} @samp{,}. This is a syntactic exception.
916
917 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
918 This selects the contents of the variable @samp{foo} with section
919 register @var{section} being @samp{%gs}.
920 @end table
921
922 Absolute (as opposed to PC relative) call and jump operands must be
923 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
924 always chooses PC relative addressing for jump/call labels.
925
926 Any instruction that has a memory operand, but no register operand,
927 @emph{must} specify its size (byte, word, long, or quadruple) with an
928 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
929 respectively).
930
931 The x86-64 architecture adds an RIP (instruction pointer relative)
932 addressing. This addressing mode is specified by using @samp{rip} as a
933 base register. Only constant offsets are valid. For example:
934
935 @table @asis
936 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
937 Points to the address 1234 bytes past the end of the current
938 instruction.
939
940 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
941 Points to the @code{symbol} in RIP relative way, this is shorter than
942 the default absolute addressing.
943 @end table
944
945 Other addressing modes remain unchanged in x86-64 architecture, except
946 registers used are 64-bit instead of 32-bit.
947
948 @node i386-Jumps
949 @section Handling of Jump Instructions
950
951 @cindex jump optimization, i386
952 @cindex i386 jump optimization
953 @cindex jump optimization, x86-64
954 @cindex x86-64 jump optimization
955 Jump instructions are always optimized to use the smallest possible
956 displacements. This is accomplished by using byte (8-bit) displacement
957 jumps whenever the target is sufficiently close. If a byte displacement
958 is insufficient a long displacement is used. We do not support
959 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
960 instruction with the @samp{data16} instruction prefix), since the 80386
961 insists upon masking @samp{%eip} to 16 bits after the word displacement
962 is added. (See also @pxref{i386-Arch})
963
964 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
965 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
966 displacements, so that if you use these instructions (@code{@value{GCC}} does
967 not use them) you may get an error message (and incorrect code). The AT&T
968 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
969 to
970
971 @smallexample
972 jcxz cx_zero
973 jmp cx_nonzero
974 cx_zero: jmp foo
975 cx_nonzero:
976 @end smallexample
977
978 @node i386-Float
979 @section Floating Point
980
981 @cindex i386 floating point
982 @cindex floating point, i386
983 @cindex x86-64 floating point
984 @cindex floating point, x86-64
985 All 80387 floating point types except packed BCD are supported.
986 (BCD support may be added without much difficulty). These data
987 types are 16-, 32-, and 64- bit integers, and single (32-bit),
988 double (64-bit), and extended (80-bit) precision floating point.
989 Each supported type has an instruction mnemonic suffix and a constructor
990 associated with it. Instruction mnemonic suffixes specify the operand's
991 data type. Constructors build these data types into memory.
992
993 @cindex @code{float} directive, i386
994 @cindex @code{single} directive, i386
995 @cindex @code{double} directive, i386
996 @cindex @code{tfloat} directive, i386
997 @cindex @code{float} directive, x86-64
998 @cindex @code{single} directive, x86-64
999 @cindex @code{double} directive, x86-64
1000 @cindex @code{tfloat} directive, x86-64
1001 @itemize @bullet
1002 @item
1003 Floating point constructors are @samp{.float} or @samp{.single},
1004 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1005 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1006 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1007 only supports this format via the @samp{fldt} (load 80-bit real to stack
1008 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1009
1010 @cindex @code{word} directive, i386
1011 @cindex @code{long} directive, i386
1012 @cindex @code{int} directive, i386
1013 @cindex @code{quad} directive, i386
1014 @cindex @code{word} directive, x86-64
1015 @cindex @code{long} directive, x86-64
1016 @cindex @code{int} directive, x86-64
1017 @cindex @code{quad} directive, x86-64
1018 @item
1019 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1020 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1021 corresponding instruction mnemonic suffixes are @samp{s} (single),
1022 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1023 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1024 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1025 stack) instructions.
1026 @end itemize
1027
1028 Register to register operations should not use instruction mnemonic suffixes.
1029 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1030 wrote @samp{fst %st, %st(1)}, since all register to register operations
1031 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1032 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1033 then stores the result in the 4 byte location @samp{mem})
1034
1035 @node i386-SIMD
1036 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1037
1038 @cindex MMX, i386
1039 @cindex 3DNow!, i386
1040 @cindex SIMD, i386
1041 @cindex MMX, x86-64
1042 @cindex 3DNow!, x86-64
1043 @cindex SIMD, x86-64
1044
1045 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1046 instructions for integer data), available on Intel's Pentium MMX
1047 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1048 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1049 instruction set (SIMD instructions for 32-bit floating point data)
1050 available on AMD's K6-2 processor and possibly others in the future.
1051
1052 Currently, @code{@value{AS}} does not support Intel's floating point
1053 SIMD, Katmai (KNI).
1054
1055 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1056 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1057 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1058 floating point values. The MMX registers cannot be used at the same time
1059 as the floating point stack.
1060
1061 See Intel and AMD documentation, keeping in mind that the operand order in
1062 instructions is reversed from the Intel syntax.
1063
1064 @node i386-LWP
1065 @section AMD's Lightweight Profiling Instructions
1066
1067 @cindex LWP, i386
1068 @cindex LWP, x86-64
1069
1070 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1071 instruction set, available on AMD's Family 15h (Orochi) processors.
1072
1073 LWP enables applications to collect and manage performance data, and
1074 react to performance events. The collection of performance data
1075 requires no context switches. LWP runs in the context of a thread and
1076 so several counters can be used independently across multiple threads.
1077 LWP can be used in both 64-bit and legacy 32-bit modes.
1078
1079 For detailed information on the LWP instruction set, see the
1080 @cite{AMD Lightweight Profiling Specification} available at
1081 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1082
1083 @node i386-BMI
1084 @section Bit Manipulation Instructions
1085
1086 @cindex BMI, i386
1087 @cindex BMI, x86-64
1088
1089 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1090
1091 BMI instructions provide several instructions implementing individual
1092 bit manipulation operations such as isolation, masking, setting, or
1093 resetting.
1094
1095 @c Need to add a specification citation here when available.
1096
1097 @node i386-TBM
1098 @section AMD's Trailing Bit Manipulation Instructions
1099
1100 @cindex TBM, i386
1101 @cindex TBM, x86-64
1102
1103 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1104 instruction set, available on AMD's BDVER2 processors (Trinity and
1105 Viperfish).
1106
1107 TBM instructions provide instructions implementing individual bit
1108 manipulation operations such as isolating, masking, setting, resetting,
1109 complementing, and operations on trailing zeros and ones.
1110
1111 @c Need to add a specification citation here when available.
1112
1113 @node i386-16bit
1114 @section Writing 16-bit Code
1115
1116 @cindex i386 16-bit code
1117 @cindex 16-bit code, i386
1118 @cindex real-mode code, i386
1119 @cindex @code{code16gcc} directive, i386
1120 @cindex @code{code16} directive, i386
1121 @cindex @code{code32} directive, i386
1122 @cindex @code{code64} directive, i386
1123 @cindex @code{code64} directive, x86-64
1124 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1125 or 64-bit x86-64 code depending on the default configuration,
1126 it also supports writing code to run in real mode or in 16-bit protected
1127 mode code segments. To do this, put a @samp{.code16} or
1128 @samp{.code16gcc} directive before the assembly language instructions to
1129 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1130 32-bit code with the @samp{.code32} directive or 64-bit code with the
1131 @samp{.code64} directive.
1132
1133 @samp{.code16gcc} provides experimental support for generating 16-bit
1134 code from gcc, and differs from @samp{.code16} in that @samp{call},
1135 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1136 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1137 default to 32-bit size. This is so that the stack pointer is
1138 manipulated in the same way over function calls, allowing access to
1139 function parameters at the same stack offsets as in 32-bit mode.
1140 @samp{.code16gcc} also automatically adds address size prefixes where
1141 necessary to use the 32-bit addressing modes that gcc generates.
1142
1143 The code which @code{@value{AS}} generates in 16-bit mode will not
1144 necessarily run on a 16-bit pre-80386 processor. To write code that
1145 runs on such a processor, you must refrain from using @emph{any} 32-bit
1146 constructs which require @code{@value{AS}} to output address or operand
1147 size prefixes.
1148
1149 Note that writing 16-bit code instructions by explicitly specifying a
1150 prefix or an instruction mnemonic suffix within a 32-bit code section
1151 generates different machine instructions than those generated for a
1152 16-bit code segment. In a 32-bit code section, the following code
1153 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1154 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1155
1156 @smallexample
1157 pushw $4
1158 @end smallexample
1159
1160 The same code in a 16-bit code section would generate the machine
1161 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1162 is correct since the processor default operand size is assumed to be 16
1163 bits in a 16-bit code section.
1164
1165 @node i386-Arch
1166 @section Specifying CPU Architecture
1167
1168 @cindex arch directive, i386
1169 @cindex i386 arch directive
1170 @cindex arch directive, x86-64
1171 @cindex x86-64 arch directive
1172
1173 @code{@value{AS}} may be told to assemble for a particular CPU
1174 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1175 directive enables a warning when gas detects an instruction that is not
1176 supported on the CPU specified. The choices for @var{cpu_type} are:
1177
1178 @multitable @columnfractions .20 .20 .20 .20
1179 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1180 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1181 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1182 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1183 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1184 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1185 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1186 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1187 @item @samp{generic32} @tab @samp{generic64}
1188 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1189 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1190 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1191 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1192 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1193 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1194 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1195 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1196 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1197 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1198 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1199 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1200 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1201 @item @samp{.avx512_vpopcntdq} @tab @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite}
1202 @item @samp{.cet}
1203 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1204 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1205 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1206 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1207 @end multitable
1208
1209 Apart from the warning, there are only two other effects on
1210 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1211 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1212 will automatically use a two byte opcode sequence. The larger three
1213 byte opcode sequence is used on the 486 (and when no architecture is
1214 specified) because it executes faster on the 486. Note that you can
1215 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1216 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1217 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1218 conditional jumps will be promoted when necessary to a two instruction
1219 sequence consisting of a conditional jump of the opposite sense around
1220 an unconditional jump to the target.
1221
1222 Following the CPU architecture (but not a sub-architecture, which are those
1223 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1224 control automatic promotion of conditional jumps. @samp{jumps} is the
1225 default, and enables jump promotion; All external jumps will be of the long
1226 variety, and file-local jumps will be promoted as necessary.
1227 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1228 byte offset jumps, and warns about file-local conditional jumps that
1229 @code{@value{AS}} promotes.
1230 Unconditional jumps are treated as for @samp{jumps}.
1231
1232 For example
1233
1234 @smallexample
1235 .arch i8086,nojumps
1236 @end smallexample
1237
1238 @node i386-Bugs
1239 @section AT&T Syntax bugs
1240
1241 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1242 assemblers, generate floating point instructions with reversed source
1243 and destination registers in certain cases. Unfortunately, gcc and
1244 possibly many other programs use this reversed syntax, so we're stuck
1245 with it.
1246
1247 For example
1248
1249 @smallexample
1250 fsub %st,%st(3)
1251 @end smallexample
1252 @noindent
1253 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1254 than the expected @samp{%st(3) - %st}. This happens with all the
1255 non-commutative arithmetic floating point operations with two register
1256 operands where the source register is @samp{%st} and the destination
1257 register is @samp{%st(i)}.
1258
1259 @node i386-Notes
1260 @section Notes
1261
1262 @cindex i386 @code{mul}, @code{imul} instructions
1263 @cindex @code{mul} instruction, i386
1264 @cindex @code{imul} instruction, i386
1265 @cindex @code{mul} instruction, x86-64
1266 @cindex @code{imul} instruction, x86-64
1267 There is some trickery concerning the @samp{mul} and @samp{imul}
1268 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1269 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1270 for @samp{imul}) can be output only in the one operand form. Thus,
1271 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1272 the expanding multiply would clobber the @samp{%edx} register, and this
1273 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1274 64-bit product in @samp{%edx:%eax}.
1275
1276 We have added a two operand form of @samp{imul} when the first operand
1277 is an immediate mode expression and the second operand is a register.
1278 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1279 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1280 $69, %eax, %eax}.
1281
This page took 0.086267 seconds and 5 git commands to generate.