X86: Add pseudo prefixes to control encoding
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2017 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{687},
138 @code{no87},
139 @code{no287},
140 @code{no387},
141 @code{no687},
142 @code{mmx},
143 @code{nommx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{ssse3},
148 @code{sse4.1},
149 @code{sse4.2},
150 @code{sse4},
151 @code{nosse},
152 @code{nosse2},
153 @code{nosse3},
154 @code{nossse3},
155 @code{nosse4.1},
156 @code{nosse4.2},
157 @code{nosse4},
158 @code{avx},
159 @code{avx2},
160 @code{noavx},
161 @code{noavx2},
162 @code{adx},
163 @code{rdseed},
164 @code{prfchw},
165 @code{smap},
166 @code{mpx},
167 @code{sha},
168 @code{rdpid},
169 @code{ptwrite},
170 @code{cet},
171 @code{prefetchwt1},
172 @code{clflushopt},
173 @code{se1},
174 @code{clwb},
175 @code{avx512f},
176 @code{avx512cd},
177 @code{avx512er},
178 @code{avx512pf},
179 @code{avx512vl},
180 @code{avx512bw},
181 @code{avx512dq},
182 @code{avx512ifma},
183 @code{avx512vbmi},
184 @code{avx512_4fmaps},
185 @code{avx512_4vnniw},
186 @code{avx512_vpopcntdq},
187 @code{noavx512f},
188 @code{noavx512cd},
189 @code{noavx512er},
190 @code{noavx512pf},
191 @code{noavx512vl},
192 @code{noavx512bw},
193 @code{noavx512dq},
194 @code{noavx512ifma},
195 @code{noavx512vbmi},
196 @code{noavx512_4fmaps},
197 @code{noavx512_4vnniw},
198 @code{noavx512_vpopcntdq},
199 @code{vmx},
200 @code{vmfunc},
201 @code{smx},
202 @code{xsave},
203 @code{xsaveopt},
204 @code{xsavec},
205 @code{xsaves},
206 @code{aes},
207 @code{pclmul},
208 @code{fsgsbase},
209 @code{rdrnd},
210 @code{f16c},
211 @code{bmi2},
212 @code{fma},
213 @code{movbe},
214 @code{ept},
215 @code{lzcnt},
216 @code{hle},
217 @code{rtm},
218 @code{invpcid},
219 @code{clflush},
220 @code{mwaitx},
221 @code{clzero},
222 @code{lwp},
223 @code{fma4},
224 @code{xop},
225 @code{cx16},
226 @code{syscall},
227 @code{rdtscp},
228 @code{3dnow},
229 @code{3dnowa},
230 @code{sse4a},
231 @code{sse5},
232 @code{svme},
233 @code{abm} and
234 @code{padlock}.
235 Note that rather than extending a basic instruction set, the extension
236 mnemonics starting with @code{no} revoke the respective functionality.
237
238 When the @code{.arch} directive is used with @option{-march}, the
239 @code{.arch} directive will take precedent.
240
241 @cindex @samp{-mtune=} option, i386
242 @cindex @samp{-mtune=} option, x86-64
243 @item -mtune=@var{CPU}
244 This option specifies a processor to optimize for. When used in
245 conjunction with the @option{-march} option, only instructions
246 of the processor specified by the @option{-march} option will be
247 generated.
248
249 Valid @var{CPU} values are identical to the processor list of
250 @option{-march=@var{CPU}}.
251
252 @cindex @samp{-msse2avx} option, i386
253 @cindex @samp{-msse2avx} option, x86-64
254 @item -msse2avx
255 This option specifies that the assembler should encode SSE instructions
256 with VEX prefix.
257
258 @cindex @samp{-msse-check=} option, i386
259 @cindex @samp{-msse-check=} option, x86-64
260 @item -msse-check=@var{none}
261 @itemx -msse-check=@var{warning}
262 @itemx -msse-check=@var{error}
263 These options control if the assembler should check SSE instructions.
264 @option{-msse-check=@var{none}} will make the assembler not to check SSE
265 instructions, which is the default. @option{-msse-check=@var{warning}}
266 will make the assembler issue a warning for any SSE instruction.
267 @option{-msse-check=@var{error}} will make the assembler issue an error
268 for any SSE instruction.
269
270 @cindex @samp{-mavxscalar=} option, i386
271 @cindex @samp{-mavxscalar=} option, x86-64
272 @item -mavxscalar=@var{128}
273 @itemx -mavxscalar=@var{256}
274 These options control how the assembler should encode scalar AVX
275 instructions. @option{-mavxscalar=@var{128}} will encode scalar
276 AVX instructions with 128bit vector length, which is the default.
277 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
278 with 256bit vector length.
279
280 @cindex @samp{-mevexlig=} option, i386
281 @cindex @samp{-mevexlig=} option, x86-64
282 @item -mevexlig=@var{128}
283 @itemx -mevexlig=@var{256}
284 @itemx -mevexlig=@var{512}
285 These options control how the assembler should encode length-ignored
286 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
287 EVEX instructions with 128bit vector length, which is the default.
288 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
289 encode LIG EVEX instructions with 256bit and 512bit vector length,
290 respectively.
291
292 @cindex @samp{-mevexwig=} option, i386
293 @cindex @samp{-mevexwig=} option, x86-64
294 @item -mevexwig=@var{0}
295 @itemx -mevexwig=@var{1}
296 These options control how the assembler should encode w-ignored (WIG)
297 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
298 EVEX instructions with evex.w = 0, which is the default.
299 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
300 evex.w = 1.
301
302 @cindex @samp{-mmnemonic=} option, i386
303 @cindex @samp{-mmnemonic=} option, x86-64
304 @item -mmnemonic=@var{att}
305 @itemx -mmnemonic=@var{intel}
306 This option specifies instruction mnemonic for matching instructions.
307 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
308 take precedent.
309
310 @cindex @samp{-msyntax=} option, i386
311 @cindex @samp{-msyntax=} option, x86-64
312 @item -msyntax=@var{att}
313 @itemx -msyntax=@var{intel}
314 This option specifies instruction syntax when processing instructions.
315 The @code{.att_syntax} and @code{.intel_syntax} directives will
316 take precedent.
317
318 @cindex @samp{-mnaked-reg} option, i386
319 @cindex @samp{-mnaked-reg} option, x86-64
320 @item -mnaked-reg
321 This option specifies that registers don't require a @samp{%} prefix.
322 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
323
324 @cindex @samp{-madd-bnd-prefix} option, i386
325 @cindex @samp{-madd-bnd-prefix} option, x86-64
326 @item -madd-bnd-prefix
327 This option forces the assembler to add BND prefix to all branches, even
328 if such prefix was not explicitly specified in the source code.
329
330 @cindex @samp{-mshared} option, i386
331 @cindex @samp{-mshared} option, x86-64
332 @item -mno-shared
333 On ELF target, the assembler normally optimizes out non-PLT relocations
334 against defined non-weak global branch targets with default visibility.
335 The @samp{-mshared} option tells the assembler to generate code which
336 may go into a shared library where all non-weak global branch targets
337 with default visibility can be preempted. The resulting code is
338 slightly bigger. This option only affects the handling of branch
339 instructions.
340
341 @cindex @samp{-mbig-obj} option, x86-64
342 @item -mbig-obj
343 On x86-64 PE/COFF target this option forces the use of big object file
344 format, which allows more than 32768 sections.
345
346 @cindex @samp{-momit-lock-prefix=} option, i386
347 @cindex @samp{-momit-lock-prefix=} option, x86-64
348 @item -momit-lock-prefix=@var{no}
349 @itemx -momit-lock-prefix=@var{yes}
350 These options control how the assembler should encode lock prefix.
351 This option is intended as a workaround for processors, that fail on
352 lock prefix. This option can only be safely used with single-core,
353 single-thread computers
354 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
355 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
356 which is the default.
357
358 @cindex @samp{-mfence-as-lock-add=} option, i386
359 @cindex @samp{-mfence-as-lock-add=} option, x86-64
360 @item -mfence-as-lock-add=@var{no}
361 @itemx -mfence-as-lock-add=@var{yes}
362 These options control how the assembler should encode lfence, mfence and
363 sfence.
364 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
365 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
366 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
367 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
368 sfence as usual, which is the default.
369
370 @cindex @samp{-mrelax-relocations=} option, i386
371 @cindex @samp{-mrelax-relocations=} option, x86-64
372 @item -mrelax-relocations=@var{no}
373 @itemx -mrelax-relocations=@var{yes}
374 These options control whether the assembler should generate relax
375 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
376 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
377 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
378 @option{-mrelax-relocations=@var{no}} will not generate relax
379 relocations. The default can be controlled by a configure option
380 @option{--enable-x86-relax-relocations}.
381
382 @cindex @samp{-mevexrcig=} option, i386
383 @cindex @samp{-mevexrcig=} option, x86-64
384 @item -mevexrcig=@var{rne}
385 @itemx -mevexrcig=@var{rd}
386 @itemx -mevexrcig=@var{ru}
387 @itemx -mevexrcig=@var{rz}
388 These options control how the assembler should encode SAE-only
389 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
390 of EVEX instruction with 00, which is the default.
391 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
392 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
393 with 01, 10 and 11 RC bits, respectively.
394
395 @cindex @samp{-mamd64} option, x86-64
396 @cindex @samp{-mintel64} option, x86-64
397 @item -mamd64
398 @itemx -mintel64
399 This option specifies that the assembler should accept only AMD64 or
400 Intel64 ISA in 64-bit mode. The default is to accept both.
401
402 @end table
403 @c man end
404
405 @node i386-Directives
406 @section x86 specific Directives
407
408 @cindex machine directives, x86
409 @cindex x86 machine directives
410 @table @code
411
412 @cindex @code{lcomm} directive, COFF
413 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
414 Reserve @var{length} (an absolute expression) bytes for a local common
415 denoted by @var{symbol}. The section and value of @var{symbol} are
416 those of the new local common. The addresses are allocated in the bss
417 section, so that at run-time the bytes start off zeroed. Since
418 @var{symbol} is not declared global, it is normally not visible to
419 @code{@value{LD}}. The optional third parameter, @var{alignment},
420 specifies the desired alignment of the symbol in the bss section.
421
422 This directive is only available for COFF based x86 targets.
423
424 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
425 @c .largecomm
426
427 @end table
428
429 @node i386-Syntax
430 @section i386 Syntactical Considerations
431 @menu
432 * i386-Variations:: AT&T Syntax versus Intel Syntax
433 * i386-Chars:: Special Characters
434 @end menu
435
436 @node i386-Variations
437 @subsection AT&T Syntax versus Intel Syntax
438
439 @cindex i386 intel_syntax pseudo op
440 @cindex intel_syntax pseudo op, i386
441 @cindex i386 att_syntax pseudo op
442 @cindex att_syntax pseudo op, i386
443 @cindex i386 syntax compatibility
444 @cindex syntax compatibility, i386
445 @cindex x86-64 intel_syntax pseudo op
446 @cindex intel_syntax pseudo op, x86-64
447 @cindex x86-64 att_syntax pseudo op
448 @cindex att_syntax pseudo op, x86-64
449 @cindex x86-64 syntax compatibility
450 @cindex syntax compatibility, x86-64
451
452 @code{@value{AS}} now supports assembly using Intel assembler syntax.
453 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
454 back to the usual AT&T mode for compatibility with the output of
455 @code{@value{GCC}}. Either of these directives may have an optional
456 argument, @code{prefix}, or @code{noprefix} specifying whether registers
457 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
458 different from Intel syntax. We mention these differences because
459 almost all 80386 documents use Intel syntax. Notable differences
460 between the two syntaxes are:
461
462 @cindex immediate operands, i386
463 @cindex i386 immediate operands
464 @cindex register operands, i386
465 @cindex i386 register operands
466 @cindex jump/call operands, i386
467 @cindex i386 jump/call operands
468 @cindex operand delimiters, i386
469
470 @cindex immediate operands, x86-64
471 @cindex x86-64 immediate operands
472 @cindex register operands, x86-64
473 @cindex x86-64 register operands
474 @cindex jump/call operands, x86-64
475 @cindex x86-64 jump/call operands
476 @cindex operand delimiters, x86-64
477 @itemize @bullet
478 @item
479 AT&T immediate operands are preceded by @samp{$}; Intel immediate
480 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
481 AT&T register operands are preceded by @samp{%}; Intel register operands
482 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
483 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
484
485 @cindex i386 source, destination operands
486 @cindex source, destination operands; i386
487 @cindex x86-64 source, destination operands
488 @cindex source, destination operands; x86-64
489 @item
490 AT&T and Intel syntax use the opposite order for source and destination
491 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
492 @samp{source, dest} convention is maintained for compatibility with
493 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
494 instructions with 2 immediate operands, such as the @samp{enter}
495 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
496
497 @cindex mnemonic suffixes, i386
498 @cindex sizes operands, i386
499 @cindex i386 size suffixes
500 @cindex mnemonic suffixes, x86-64
501 @cindex sizes operands, x86-64
502 @cindex x86-64 size suffixes
503 @item
504 In AT&T syntax the size of memory operands is determined from the last
505 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
506 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
507 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
508 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
509 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
510 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
511 syntax.
512
513 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
514 instruction with the 64-bit displacement or immediate operand.
515
516 @cindex return instructions, i386
517 @cindex i386 jump, call, return
518 @cindex return instructions, x86-64
519 @cindex x86-64 jump, call, return
520 @item
521 Immediate form long jumps and calls are
522 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
523 Intel syntax is
524 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
525 instruction
526 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
527 @samp{ret far @var{stack-adjust}}.
528
529 @cindex sections, i386
530 @cindex i386 sections
531 @cindex sections, x86-64
532 @cindex x86-64 sections
533 @item
534 The AT&T assembler does not provide support for multiple section
535 programs. Unix style systems expect all programs to be single sections.
536 @end itemize
537
538 @node i386-Chars
539 @subsection Special Characters
540
541 @cindex line comment character, i386
542 @cindex i386 line comment character
543 The presence of a @samp{#} appearing anywhere on a line indicates the
544 start of a comment that extends to the end of that line.
545
546 If a @samp{#} appears as the first character of a line then the whole
547 line is treated as a comment, but in this case the line can also be a
548 logical line number directive (@pxref{Comments}) or a preprocessor
549 control command (@pxref{Preprocessing}).
550
551 If the @option{--divide} command line option has not been specified
552 then the @samp{/} character appearing anywhere on a line also
553 introduces a line comment.
554
555 @cindex line separator, i386
556 @cindex statement separator, i386
557 @cindex i386 line separator
558 The @samp{;} character can be used to separate statements on the same
559 line.
560
561 @node i386-Mnemonics
562 @section i386-Mnemonics
563 @subsection Instruction Naming
564
565 @cindex i386 instruction naming
566 @cindex instruction naming, i386
567 @cindex x86-64 instruction naming
568 @cindex instruction naming, x86-64
569
570 Instruction mnemonics are suffixed with one character modifiers which
571 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
572 and @samp{q} specify byte, word, long and quadruple word operands. If
573 no suffix is specified by an instruction then @code{@value{AS}} tries to
574 fill in the missing suffix based on the destination register operand
575 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
576 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
577 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
578 assembler which assumes that a missing mnemonic suffix implies long
579 operand size. (This incompatibility does not affect compiler output
580 since compilers always explicitly specify the mnemonic suffix.)
581
582 Almost all instructions have the same names in AT&T and Intel format.
583 There are a few exceptions. The sign extend and zero extend
584 instructions need two sizes to specify them. They need a size to
585 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
586 is accomplished by using two instruction mnemonic suffixes in AT&T
587 syntax. Base names for sign extend and zero extend are
588 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
589 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
590 are tacked on to this base name, the @emph{from} suffix before the
591 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
592 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
593 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
594 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
595 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
596 quadruple word).
597
598 @cindex encoding options, i386
599 @cindex encoding options, x86-64
600
601 Different encoding options can be specified via pseudo prefixes:
602
603 @itemize @bullet
604 @item
605 @samp{@{disp8@}} -- prefer 8-bit displacement.
606
607 @item
608 @samp{@{disp32@}} -- prefer 32-bit displacement.
609
610 @item
611 @samp{@{load@}} -- prefer load-form instruction.
612
613 @item
614 @samp{@{store@}} -- prefer store-form instruction.
615
616 @item
617 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
618
619 @item
620 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
621
622 @item
623 @samp{@{evex@}} -- encode with EVEX prefix.
624 @end itemize
625
626 @cindex conversion instructions, i386
627 @cindex i386 conversion instructions
628 @cindex conversion instructions, x86-64
629 @cindex x86-64 conversion instructions
630 The Intel-syntax conversion instructions
631
632 @itemize @bullet
633 @item
634 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
635
636 @item
637 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
638
639 @item
640 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
641
642 @item
643 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
644
645 @item
646 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
647 (x86-64 only),
648
649 @item
650 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
651 @samp{%rdx:%rax} (x86-64 only),
652 @end itemize
653
654 @noindent
655 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
656 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
657 instructions.
658
659 @cindex jump instructions, i386
660 @cindex call instructions, i386
661 @cindex jump instructions, x86-64
662 @cindex call instructions, x86-64
663 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
664 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
665 convention.
666
667 @subsection AT&T Mnemonic versus Intel Mnemonic
668
669 @cindex i386 mnemonic compatibility
670 @cindex mnemonic compatibility, i386
671
672 @code{@value{AS}} supports assembly using Intel mnemonic.
673 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
674 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
675 syntax for compatibility with the output of @code{@value{GCC}}.
676 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
677 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
678 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
679 assembler with different mnemonics from those in Intel IA32 specification.
680 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
681
682 @node i386-Regs
683 @section Register Naming
684
685 @cindex i386 registers
686 @cindex registers, i386
687 @cindex x86-64 registers
688 @cindex registers, x86-64
689 Register operands are always prefixed with @samp{%}. The 80386 registers
690 consist of
691
692 @itemize @bullet
693 @item
694 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
695 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
696 frame pointer), and @samp{%esp} (the stack pointer).
697
698 @item
699 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
700 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
701
702 @item
703 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
704 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
705 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
706 @samp{%cx}, and @samp{%dx})
707
708 @item
709 the 6 section registers @samp{%cs} (code section), @samp{%ds}
710 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
711 and @samp{%gs}.
712
713 @item
714 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
715 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
716
717 @item
718 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
719 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
720
721 @item
722 the 2 test registers @samp{%tr6} and @samp{%tr7}.
723
724 @item
725 the 8 floating point register stack @samp{%st} or equivalently
726 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
727 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
728 These registers are overloaded by 8 MMX registers @samp{%mm0},
729 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
730 @samp{%mm6} and @samp{%mm7}.
731
732 @item
733 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
734 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
735 @end itemize
736
737 The AMD x86-64 architecture extends the register set by:
738
739 @itemize @bullet
740 @item
741 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
742 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
743 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
744 pointer)
745
746 @item
747 the 8 extended registers @samp{%r8}--@samp{%r15}.
748
749 @item
750 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
751
752 @item
753 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
754
755 @item
756 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
757
758 @item
759 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
760
761 @item
762 the 8 debug registers: @samp{%db8}--@samp{%db15}.
763
764 @item
765 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
766 @end itemize
767
768 With the AVX extensions more registers were made available:
769
770 @itemize @bullet
771
772 @item
773 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
774 available in 32-bit mode). The bottom 128 bits are overlaid with the
775 @samp{xmm0}--@samp{xmm15} registers.
776
777 @end itemize
778
779 The AVX2 extensions made in 64-bit mode more registers available:
780
781 @itemize @bullet
782
783 @item
784 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
785 registers @samp{%ymm16}--@samp{%ymm31}.
786
787 @end itemize
788
789 The AVX512 extensions added the following registers:
790
791 @itemize @bullet
792
793 @item
794 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
795 available in 32-bit mode). The bottom 128 bits are overlaid with the
796 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
797 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
798
799 @item
800 the 8 mask registers @samp{%k0}--@samp{%k7}.
801
802 @end itemize
803
804 @node i386-Prefixes
805 @section Instruction Prefixes
806
807 @cindex i386 instruction prefixes
808 @cindex instruction prefixes, i386
809 @cindex prefixes, i386
810 Instruction prefixes are used to modify the following instruction. They
811 are used to repeat string instructions, to provide section overrides, to
812 perform bus lock operations, and to change operand and address sizes.
813 (Most instructions that normally operate on 32-bit operands will use
814 16-bit operands if the instruction has an ``operand size'' prefix.)
815 Instruction prefixes are best written on the same line as the instruction
816 they act upon. For example, the @samp{scas} (scan string) instruction is
817 repeated with:
818
819 @smallexample
820 repne scas %es:(%edi),%al
821 @end smallexample
822
823 You may also place prefixes on the lines immediately preceding the
824 instruction, but this circumvents checks that @code{@value{AS}} does
825 with prefixes, and will not work with all prefixes.
826
827 Here is a list of instruction prefixes:
828
829 @cindex section override prefixes, i386
830 @itemize @bullet
831 @item
832 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
833 @samp{fs}, @samp{gs}. These are automatically added by specifying
834 using the @var{section}:@var{memory-operand} form for memory references.
835
836 @cindex size prefixes, i386
837 @item
838 Operand/Address size prefixes @samp{data16} and @samp{addr16}
839 change 32-bit operands/addresses into 16-bit operands/addresses,
840 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
841 @code{.code16} section) into 32-bit operands/addresses. These prefixes
842 @emph{must} appear on the same line of code as the instruction they
843 modify. For example, in a 16-bit @code{.code16} section, you might
844 write:
845
846 @smallexample
847 addr32 jmpl *(%ebx)
848 @end smallexample
849
850 @cindex bus lock prefixes, i386
851 @cindex inhibiting interrupts, i386
852 @item
853 The bus lock prefix @samp{lock} inhibits interrupts during execution of
854 the instruction it precedes. (This is only valid with certain
855 instructions; see a 80386 manual for details).
856
857 @cindex coprocessor wait, i386
858 @item
859 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
860 complete the current instruction. This should never be needed for the
861 80386/80387 combination.
862
863 @cindex repeat prefixes, i386
864 @item
865 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
866 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
867 times if the current address size is 16-bits).
868 @cindex REX prefixes, i386
869 @item
870 The @samp{rex} family of prefixes is used by x86-64 to encode
871 extensions to i386 instruction set. The @samp{rex} prefix has four
872 bits --- an operand size overwrite (@code{64}) used to change operand size
873 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
874 register set.
875
876 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
877 instruction emits @samp{rex} prefix with all the bits set. By omitting
878 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
879 prefixes as well. Normally, there is no need to write the prefixes
880 explicitly, since gas will automatically generate them based on the
881 instruction operands.
882 @end itemize
883
884 @node i386-Memory
885 @section Memory References
886
887 @cindex i386 memory references
888 @cindex memory references, i386
889 @cindex x86-64 memory references
890 @cindex memory references, x86-64
891 An Intel syntax indirect memory reference of the form
892
893 @smallexample
894 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
895 @end smallexample
896
897 @noindent
898 is translated into the AT&T syntax
899
900 @smallexample
901 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
902 @end smallexample
903
904 @noindent
905 where @var{base} and @var{index} are the optional 32-bit base and
906 index registers, @var{disp} is the optional displacement, and
907 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
908 to calculate the address of the operand. If no @var{scale} is
909 specified, @var{scale} is taken to be 1. @var{section} specifies the
910 optional section register for the memory operand, and may override the
911 default section register (see a 80386 manual for section register
912 defaults). Note that section overrides in AT&T syntax @emph{must}
913 be preceded by a @samp{%}. If you specify a section override which
914 coincides with the default section register, @code{@value{AS}} does @emph{not}
915 output any section register override prefixes to assemble the given
916 instruction. Thus, section overrides can be specified to emphasize which
917 section register is used for a given memory operand.
918
919 Here are some examples of Intel and AT&T style memory references:
920
921 @table @asis
922 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
923 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
924 missing, and the default section is used (@samp{%ss} for addressing with
925 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
926
927 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
928 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
929 @samp{foo}. All other fields are missing. The section register here
930 defaults to @samp{%ds}.
931
932 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
933 This uses the value pointed to by @samp{foo} as a memory operand.
934 Note that @var{base} and @var{index} are both missing, but there is only
935 @emph{one} @samp{,}. This is a syntactic exception.
936
937 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
938 This selects the contents of the variable @samp{foo} with section
939 register @var{section} being @samp{%gs}.
940 @end table
941
942 Absolute (as opposed to PC relative) call and jump operands must be
943 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
944 always chooses PC relative addressing for jump/call labels.
945
946 Any instruction that has a memory operand, but no register operand,
947 @emph{must} specify its size (byte, word, long, or quadruple) with an
948 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
949 respectively).
950
951 The x86-64 architecture adds an RIP (instruction pointer relative)
952 addressing. This addressing mode is specified by using @samp{rip} as a
953 base register. Only constant offsets are valid. For example:
954
955 @table @asis
956 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
957 Points to the address 1234 bytes past the end of the current
958 instruction.
959
960 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
961 Points to the @code{symbol} in RIP relative way, this is shorter than
962 the default absolute addressing.
963 @end table
964
965 Other addressing modes remain unchanged in x86-64 architecture, except
966 registers used are 64-bit instead of 32-bit.
967
968 @node i386-Jumps
969 @section Handling of Jump Instructions
970
971 @cindex jump optimization, i386
972 @cindex i386 jump optimization
973 @cindex jump optimization, x86-64
974 @cindex x86-64 jump optimization
975 Jump instructions are always optimized to use the smallest possible
976 displacements. This is accomplished by using byte (8-bit) displacement
977 jumps whenever the target is sufficiently close. If a byte displacement
978 is insufficient a long displacement is used. We do not support
979 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
980 instruction with the @samp{data16} instruction prefix), since the 80386
981 insists upon masking @samp{%eip} to 16 bits after the word displacement
982 is added. (See also @pxref{i386-Arch})
983
984 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
985 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
986 displacements, so that if you use these instructions (@code{@value{GCC}} does
987 not use them) you may get an error message (and incorrect code). The AT&T
988 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
989 to
990
991 @smallexample
992 jcxz cx_zero
993 jmp cx_nonzero
994 cx_zero: jmp foo
995 cx_nonzero:
996 @end smallexample
997
998 @node i386-Float
999 @section Floating Point
1000
1001 @cindex i386 floating point
1002 @cindex floating point, i386
1003 @cindex x86-64 floating point
1004 @cindex floating point, x86-64
1005 All 80387 floating point types except packed BCD are supported.
1006 (BCD support may be added without much difficulty). These data
1007 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1008 double (64-bit), and extended (80-bit) precision floating point.
1009 Each supported type has an instruction mnemonic suffix and a constructor
1010 associated with it. Instruction mnemonic suffixes specify the operand's
1011 data type. Constructors build these data types into memory.
1012
1013 @cindex @code{float} directive, i386
1014 @cindex @code{single} directive, i386
1015 @cindex @code{double} directive, i386
1016 @cindex @code{tfloat} directive, i386
1017 @cindex @code{float} directive, x86-64
1018 @cindex @code{single} directive, x86-64
1019 @cindex @code{double} directive, x86-64
1020 @cindex @code{tfloat} directive, x86-64
1021 @itemize @bullet
1022 @item
1023 Floating point constructors are @samp{.float} or @samp{.single},
1024 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1025 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1026 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1027 only supports this format via the @samp{fldt} (load 80-bit real to stack
1028 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1029
1030 @cindex @code{word} directive, i386
1031 @cindex @code{long} directive, i386
1032 @cindex @code{int} directive, i386
1033 @cindex @code{quad} directive, i386
1034 @cindex @code{word} directive, x86-64
1035 @cindex @code{long} directive, x86-64
1036 @cindex @code{int} directive, x86-64
1037 @cindex @code{quad} directive, x86-64
1038 @item
1039 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1040 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1041 corresponding instruction mnemonic suffixes are @samp{s} (single),
1042 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1043 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1044 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1045 stack) instructions.
1046 @end itemize
1047
1048 Register to register operations should not use instruction mnemonic suffixes.
1049 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1050 wrote @samp{fst %st, %st(1)}, since all register to register operations
1051 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1052 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1053 then stores the result in the 4 byte location @samp{mem})
1054
1055 @node i386-SIMD
1056 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1057
1058 @cindex MMX, i386
1059 @cindex 3DNow!, i386
1060 @cindex SIMD, i386
1061 @cindex MMX, x86-64
1062 @cindex 3DNow!, x86-64
1063 @cindex SIMD, x86-64
1064
1065 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1066 instructions for integer data), available on Intel's Pentium MMX
1067 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1068 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1069 instruction set (SIMD instructions for 32-bit floating point data)
1070 available on AMD's K6-2 processor and possibly others in the future.
1071
1072 Currently, @code{@value{AS}} does not support Intel's floating point
1073 SIMD, Katmai (KNI).
1074
1075 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1076 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1077 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1078 floating point values. The MMX registers cannot be used at the same time
1079 as the floating point stack.
1080
1081 See Intel and AMD documentation, keeping in mind that the operand order in
1082 instructions is reversed from the Intel syntax.
1083
1084 @node i386-LWP
1085 @section AMD's Lightweight Profiling Instructions
1086
1087 @cindex LWP, i386
1088 @cindex LWP, x86-64
1089
1090 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1091 instruction set, available on AMD's Family 15h (Orochi) processors.
1092
1093 LWP enables applications to collect and manage performance data, and
1094 react to performance events. The collection of performance data
1095 requires no context switches. LWP runs in the context of a thread and
1096 so several counters can be used independently across multiple threads.
1097 LWP can be used in both 64-bit and legacy 32-bit modes.
1098
1099 For detailed information on the LWP instruction set, see the
1100 @cite{AMD Lightweight Profiling Specification} available at
1101 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1102
1103 @node i386-BMI
1104 @section Bit Manipulation Instructions
1105
1106 @cindex BMI, i386
1107 @cindex BMI, x86-64
1108
1109 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1110
1111 BMI instructions provide several instructions implementing individual
1112 bit manipulation operations such as isolation, masking, setting, or
1113 resetting.
1114
1115 @c Need to add a specification citation here when available.
1116
1117 @node i386-TBM
1118 @section AMD's Trailing Bit Manipulation Instructions
1119
1120 @cindex TBM, i386
1121 @cindex TBM, x86-64
1122
1123 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1124 instruction set, available on AMD's BDVER2 processors (Trinity and
1125 Viperfish).
1126
1127 TBM instructions provide instructions implementing individual bit
1128 manipulation operations such as isolating, masking, setting, resetting,
1129 complementing, and operations on trailing zeros and ones.
1130
1131 @c Need to add a specification citation here when available.
1132
1133 @node i386-16bit
1134 @section Writing 16-bit Code
1135
1136 @cindex i386 16-bit code
1137 @cindex 16-bit code, i386
1138 @cindex real-mode code, i386
1139 @cindex @code{code16gcc} directive, i386
1140 @cindex @code{code16} directive, i386
1141 @cindex @code{code32} directive, i386
1142 @cindex @code{code64} directive, i386
1143 @cindex @code{code64} directive, x86-64
1144 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1145 or 64-bit x86-64 code depending on the default configuration,
1146 it also supports writing code to run in real mode or in 16-bit protected
1147 mode code segments. To do this, put a @samp{.code16} or
1148 @samp{.code16gcc} directive before the assembly language instructions to
1149 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1150 32-bit code with the @samp{.code32} directive or 64-bit code with the
1151 @samp{.code64} directive.
1152
1153 @samp{.code16gcc} provides experimental support for generating 16-bit
1154 code from gcc, and differs from @samp{.code16} in that @samp{call},
1155 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1156 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1157 default to 32-bit size. This is so that the stack pointer is
1158 manipulated in the same way over function calls, allowing access to
1159 function parameters at the same stack offsets as in 32-bit mode.
1160 @samp{.code16gcc} also automatically adds address size prefixes where
1161 necessary to use the 32-bit addressing modes that gcc generates.
1162
1163 The code which @code{@value{AS}} generates in 16-bit mode will not
1164 necessarily run on a 16-bit pre-80386 processor. To write code that
1165 runs on such a processor, you must refrain from using @emph{any} 32-bit
1166 constructs which require @code{@value{AS}} to output address or operand
1167 size prefixes.
1168
1169 Note that writing 16-bit code instructions by explicitly specifying a
1170 prefix or an instruction mnemonic suffix within a 32-bit code section
1171 generates different machine instructions than those generated for a
1172 16-bit code segment. In a 32-bit code section, the following code
1173 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1174 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1175
1176 @smallexample
1177 pushw $4
1178 @end smallexample
1179
1180 The same code in a 16-bit code section would generate the machine
1181 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1182 is correct since the processor default operand size is assumed to be 16
1183 bits in a 16-bit code section.
1184
1185 @node i386-Arch
1186 @section Specifying CPU Architecture
1187
1188 @cindex arch directive, i386
1189 @cindex i386 arch directive
1190 @cindex arch directive, x86-64
1191 @cindex x86-64 arch directive
1192
1193 @code{@value{AS}} may be told to assemble for a particular CPU
1194 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1195 directive enables a warning when gas detects an instruction that is not
1196 supported on the CPU specified. The choices for @var{cpu_type} are:
1197
1198 @multitable @columnfractions .20 .20 .20 .20
1199 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1200 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1201 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1202 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1203 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1204 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1205 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1206 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1207 @item @samp{generic32} @tab @samp{generic64}
1208 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1209 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1210 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1211 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1212 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1213 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1214 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1215 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1216 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1217 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1218 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1219 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1220 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1221 @item @samp{.avx512_vpopcntdq} @tab @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite}
1222 @item @samp{.cet}
1223 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1224 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1225 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1226 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1227 @end multitable
1228
1229 Apart from the warning, there are only two other effects on
1230 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1231 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1232 will automatically use a two byte opcode sequence. The larger three
1233 byte opcode sequence is used on the 486 (and when no architecture is
1234 specified) because it executes faster on the 486. Note that you can
1235 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1236 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1237 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1238 conditional jumps will be promoted when necessary to a two instruction
1239 sequence consisting of a conditional jump of the opposite sense around
1240 an unconditional jump to the target.
1241
1242 Following the CPU architecture (but not a sub-architecture, which are those
1243 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1244 control automatic promotion of conditional jumps. @samp{jumps} is the
1245 default, and enables jump promotion; All external jumps will be of the long
1246 variety, and file-local jumps will be promoted as necessary.
1247 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1248 byte offset jumps, and warns about file-local conditional jumps that
1249 @code{@value{AS}} promotes.
1250 Unconditional jumps are treated as for @samp{jumps}.
1251
1252 For example
1253
1254 @smallexample
1255 .arch i8086,nojumps
1256 @end smallexample
1257
1258 @node i386-Bugs
1259 @section AT&T Syntax bugs
1260
1261 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1262 assemblers, generate floating point instructions with reversed source
1263 and destination registers in certain cases. Unfortunately, gcc and
1264 possibly many other programs use this reversed syntax, so we're stuck
1265 with it.
1266
1267 For example
1268
1269 @smallexample
1270 fsub %st,%st(3)
1271 @end smallexample
1272 @noindent
1273 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1274 than the expected @samp{%st(3) - %st}. This happens with all the
1275 non-commutative arithmetic floating point operations with two register
1276 operands where the source register is @samp{%st} and the destination
1277 register is @samp{%st(i)}.
1278
1279 @node i386-Notes
1280 @section Notes
1281
1282 @cindex i386 @code{mul}, @code{imul} instructions
1283 @cindex @code{mul} instruction, i386
1284 @cindex @code{imul} instruction, i386
1285 @cindex @code{mul} instruction, x86-64
1286 @cindex @code{imul} instruction, x86-64
1287 There is some trickery concerning the @samp{mul} and @samp{imul}
1288 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1289 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1290 for @samp{imul}) can be output only in the one operand form. Thus,
1291 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1292 the expanding multiply would clobber the @samp{%edx} register, and this
1293 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1294 64-bit product in @samp{%edx:%eax}.
1295
1296 We have added a two operand form of @samp{imul} when the first operand
1297 is an immediate mode expression and the second operand is a register.
1298 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1299 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1300 $69, %eax, %eax}.
1301
This page took 0.059338 seconds and 5 git commands to generate.