Enable Intel AVX512_VP2INTERSECT insn
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2019 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78 byte nop (0x90) is explicitly specified as the fill byte for alignment.
79
80 @cindex @samp{--divide} option, i386
81 @item --divide
82 On SVR4-derived platforms, the character @samp{/} is treated as a comment
83 character, which means that it cannot be used in expressions. The
84 @samp{--divide} option turns @samp{/} into a normal character. This does
85 not disable @samp{/} at the beginning of a line starting a comment, or
86 affect using @samp{#} for starting a comment.
87
88 @cindex @samp{-march=} option, i386
89 @cindex @samp{-march=} option, x86-64
90 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91 This option specifies the target processor. The assembler will
92 issue an error message if an attempt is made to assemble an instruction
93 which will not execute on the target processor. The following
94 processor names are recognized:
95 @code{i8086},
96 @code{i186},
97 @code{i286},
98 @code{i386},
99 @code{i486},
100 @code{i586},
101 @code{i686},
102 @code{pentium},
103 @code{pentiumpro},
104 @code{pentiumii},
105 @code{pentiumiii},
106 @code{pentium4},
107 @code{prescott},
108 @code{nocona},
109 @code{core},
110 @code{core2},
111 @code{corei7},
112 @code{l1om},
113 @code{k1om},
114 @code{iamcu},
115 @code{k6},
116 @code{k6_2},
117 @code{athlon},
118 @code{opteron},
119 @code{k8},
120 @code{amdfam10},
121 @code{bdver1},
122 @code{bdver2},
123 @code{bdver3},
124 @code{bdver4},
125 @code{znver1},
126 @code{znver2},
127 @code{btver1},
128 @code{btver2},
129 @code{generic32} and
130 @code{generic64}.
131
132 In addition to the basic instruction set, the assembler can be told to
133 accept various extension mnemonics. For example,
134 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135 @var{vmx}. The following extensions are currently supported:
136 @code{8087},
137 @code{287},
138 @code{387},
139 @code{687},
140 @code{no87},
141 @code{no287},
142 @code{no387},
143 @code{no687},
144 @code{cmov},
145 @code{nocmov},
146 @code{fxsr},
147 @code{nofxsr},
148 @code{mmx},
149 @code{nommx},
150 @code{sse},
151 @code{sse2},
152 @code{sse3},
153 @code{ssse3},
154 @code{sse4.1},
155 @code{sse4.2},
156 @code{sse4},
157 @code{nosse},
158 @code{nosse2},
159 @code{nosse3},
160 @code{nossse3},
161 @code{nosse4.1},
162 @code{nosse4.2},
163 @code{nosse4},
164 @code{avx},
165 @code{avx2},
166 @code{noavx},
167 @code{noavx2},
168 @code{adx},
169 @code{rdseed},
170 @code{prfchw},
171 @code{smap},
172 @code{mpx},
173 @code{sha},
174 @code{rdpid},
175 @code{ptwrite},
176 @code{cet},
177 @code{gfni},
178 @code{vaes},
179 @code{vpclmulqdq},
180 @code{prefetchwt1},
181 @code{clflushopt},
182 @code{se1},
183 @code{clwb},
184 @code{movdiri},
185 @code{movdir64b},
186 @code{enqcmd},
187 @code{avx512f},
188 @code{avx512cd},
189 @code{avx512er},
190 @code{avx512pf},
191 @code{avx512vl},
192 @code{avx512bw},
193 @code{avx512dq},
194 @code{avx512ifma},
195 @code{avx512vbmi},
196 @code{avx512_4fmaps},
197 @code{avx512_4vnniw},
198 @code{avx512_vpopcntdq},
199 @code{avx512_vbmi2},
200 @code{avx512_vnni},
201 @code{avx512_bitalg},
202 @code{avx512_bf16},
203 @code{noavx512f},
204 @code{noavx512cd},
205 @code{noavx512er},
206 @code{noavx512pf},
207 @code{noavx512vl},
208 @code{noavx512bw},
209 @code{noavx512dq},
210 @code{noavx512ifma},
211 @code{noavx512vbmi},
212 @code{noavx512_4fmaps},
213 @code{noavx512_4vnniw},
214 @code{noavx512_vpopcntdq},
215 @code{noavx512_vbmi2},
216 @code{noavx512_vnni},
217 @code{noavx512_bitalg},
218 @code{noavx512_vp2intersect},
219 @code{noavx512_bf16},
220 @code{vmx},
221 @code{vmfunc},
222 @code{smx},
223 @code{xsave},
224 @code{xsaveopt},
225 @code{xsavec},
226 @code{xsaves},
227 @code{aes},
228 @code{pclmul},
229 @code{fsgsbase},
230 @code{rdrnd},
231 @code{f16c},
232 @code{bmi2},
233 @code{fma},
234 @code{movbe},
235 @code{ept},
236 @code{lzcnt},
237 @code{hle},
238 @code{rtm},
239 @code{invpcid},
240 @code{clflush},
241 @code{mwaitx},
242 @code{clzero},
243 @code{wbnoinvd},
244 @code{pconfig},
245 @code{waitpkg},
246 @code{cldemote},
247 @code{lwp},
248 @code{fma4},
249 @code{xop},
250 @code{cx16},
251 @code{syscall},
252 @code{rdtscp},
253 @code{3dnow},
254 @code{3dnowa},
255 @code{sse4a},
256 @code{sse5},
257 @code{svme},
258 @code{abm} and
259 @code{padlock}.
260 Note that rather than extending a basic instruction set, the extension
261 mnemonics starting with @code{no} revoke the respective functionality.
262
263 When the @code{.arch} directive is used with @option{-march}, the
264 @code{.arch} directive will take precedent.
265
266 @cindex @samp{-mtune=} option, i386
267 @cindex @samp{-mtune=} option, x86-64
268 @item -mtune=@var{CPU}
269 This option specifies a processor to optimize for. When used in
270 conjunction with the @option{-march} option, only instructions
271 of the processor specified by the @option{-march} option will be
272 generated.
273
274 Valid @var{CPU} values are identical to the processor list of
275 @option{-march=@var{CPU}}.
276
277 @cindex @samp{-msse2avx} option, i386
278 @cindex @samp{-msse2avx} option, x86-64
279 @item -msse2avx
280 This option specifies that the assembler should encode SSE instructions
281 with VEX prefix.
282
283 @cindex @samp{-msse-check=} option, i386
284 @cindex @samp{-msse-check=} option, x86-64
285 @item -msse-check=@var{none}
286 @itemx -msse-check=@var{warning}
287 @itemx -msse-check=@var{error}
288 These options control if the assembler should check SSE instructions.
289 @option{-msse-check=@var{none}} will make the assembler not to check SSE
290 instructions, which is the default. @option{-msse-check=@var{warning}}
291 will make the assembler issue a warning for any SSE instruction.
292 @option{-msse-check=@var{error}} will make the assembler issue an error
293 for any SSE instruction.
294
295 @cindex @samp{-mavxscalar=} option, i386
296 @cindex @samp{-mavxscalar=} option, x86-64
297 @item -mavxscalar=@var{128}
298 @itemx -mavxscalar=@var{256}
299 These options control how the assembler should encode scalar AVX
300 instructions. @option{-mavxscalar=@var{128}} will encode scalar
301 AVX instructions with 128bit vector length, which is the default.
302 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
303 with 256bit vector length.
304
305 @cindex @samp{-mvexwig=} option, i386
306 @cindex @samp{-mvexwig=} option, x86-64
307 @item -mvexwig=@var{0}
308 @itemx -mvexwig=@var{1}
309 These options control how the assembler should encode VEX.W-ignored (WIG)
310 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
311 instructions with vex.w = 0, which is the default.
312 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
313 vex.w = 1.
314
315 @cindex @samp{-mevexlig=} option, i386
316 @cindex @samp{-mevexlig=} option, x86-64
317 @item -mevexlig=@var{128}
318 @itemx -mevexlig=@var{256}
319 @itemx -mevexlig=@var{512}
320 These options control how the assembler should encode length-ignored
321 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
322 EVEX instructions with 128bit vector length, which is the default.
323 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
324 encode LIG EVEX instructions with 256bit and 512bit vector length,
325 respectively.
326
327 @cindex @samp{-mevexwig=} option, i386
328 @cindex @samp{-mevexwig=} option, x86-64
329 @item -mevexwig=@var{0}
330 @itemx -mevexwig=@var{1}
331 These options control how the assembler should encode w-ignored (WIG)
332 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
333 EVEX instructions with evex.w = 0, which is the default.
334 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
335 evex.w = 1.
336
337 @cindex @samp{-mmnemonic=} option, i386
338 @cindex @samp{-mmnemonic=} option, x86-64
339 @item -mmnemonic=@var{att}
340 @itemx -mmnemonic=@var{intel}
341 This option specifies instruction mnemonic for matching instructions.
342 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
343 take precedent.
344
345 @cindex @samp{-msyntax=} option, i386
346 @cindex @samp{-msyntax=} option, x86-64
347 @item -msyntax=@var{att}
348 @itemx -msyntax=@var{intel}
349 This option specifies instruction syntax when processing instructions.
350 The @code{.att_syntax} and @code{.intel_syntax} directives will
351 take precedent.
352
353 @cindex @samp{-mnaked-reg} option, i386
354 @cindex @samp{-mnaked-reg} option, x86-64
355 @item -mnaked-reg
356 This option specifies that registers don't require a @samp{%} prefix.
357 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
358
359 @cindex @samp{-madd-bnd-prefix} option, i386
360 @cindex @samp{-madd-bnd-prefix} option, x86-64
361 @item -madd-bnd-prefix
362 This option forces the assembler to add BND prefix to all branches, even
363 if such prefix was not explicitly specified in the source code.
364
365 @cindex @samp{-mshared} option, i386
366 @cindex @samp{-mshared} option, x86-64
367 @item -mno-shared
368 On ELF target, the assembler normally optimizes out non-PLT relocations
369 against defined non-weak global branch targets with default visibility.
370 The @samp{-mshared} option tells the assembler to generate code which
371 may go into a shared library where all non-weak global branch targets
372 with default visibility can be preempted. The resulting code is
373 slightly bigger. This option only affects the handling of branch
374 instructions.
375
376 @cindex @samp{-mbig-obj} option, x86-64
377 @item -mbig-obj
378 On x86-64 PE/COFF target this option forces the use of big object file
379 format, which allows more than 32768 sections.
380
381 @cindex @samp{-momit-lock-prefix=} option, i386
382 @cindex @samp{-momit-lock-prefix=} option, x86-64
383 @item -momit-lock-prefix=@var{no}
384 @itemx -momit-lock-prefix=@var{yes}
385 These options control how the assembler should encode lock prefix.
386 This option is intended as a workaround for processors, that fail on
387 lock prefix. This option can only be safely used with single-core,
388 single-thread computers
389 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
390 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
391 which is the default.
392
393 @cindex @samp{-mfence-as-lock-add=} option, i386
394 @cindex @samp{-mfence-as-lock-add=} option, x86-64
395 @item -mfence-as-lock-add=@var{no}
396 @itemx -mfence-as-lock-add=@var{yes}
397 These options control how the assembler should encode lfence, mfence and
398 sfence.
399 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
400 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
401 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
402 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
403 sfence as usual, which is the default.
404
405 @cindex @samp{-mrelax-relocations=} option, i386
406 @cindex @samp{-mrelax-relocations=} option, x86-64
407 @item -mrelax-relocations=@var{no}
408 @itemx -mrelax-relocations=@var{yes}
409 These options control whether the assembler should generate relax
410 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
411 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
412 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
413 @option{-mrelax-relocations=@var{no}} will not generate relax
414 relocations. The default can be controlled by a configure option
415 @option{--enable-x86-relax-relocations}.
416
417 @cindex @samp{-mx86-used-note=} option, i386
418 @cindex @samp{-mx86-used-note=} option, x86-64
419 @item -mx86-used-note=@var{no}
420 @itemx -mx86-used-note=@var{yes}
421 These options control whether the assembler should generate
422 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
423 GNU property notes. The default can be controlled by the
424 @option{--enable-x86-used-note} configure option.
425
426 @cindex @samp{-mevexrcig=} option, i386
427 @cindex @samp{-mevexrcig=} option, x86-64
428 @item -mevexrcig=@var{rne}
429 @itemx -mevexrcig=@var{rd}
430 @itemx -mevexrcig=@var{ru}
431 @itemx -mevexrcig=@var{rz}
432 These options control how the assembler should encode SAE-only
433 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
434 of EVEX instruction with 00, which is the default.
435 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
436 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
437 with 01, 10 and 11 RC bits, respectively.
438
439 @cindex @samp{-mamd64} option, x86-64
440 @cindex @samp{-mintel64} option, x86-64
441 @item -mamd64
442 @itemx -mintel64
443 This option specifies that the assembler should accept only AMD64 or
444 Intel64 ISA in 64-bit mode. The default is to accept both.
445
446 @cindex @samp{-O0} option, i386
447 @cindex @samp{-O0} option, x86-64
448 @cindex @samp{-O} option, i386
449 @cindex @samp{-O} option, x86-64
450 @cindex @samp{-O1} option, i386
451 @cindex @samp{-O1} option, x86-64
452 @cindex @samp{-O2} option, i386
453 @cindex @samp{-O2} option, x86-64
454 @cindex @samp{-Os} option, i386
455 @cindex @samp{-Os} option, x86-64
456 @item -O0 | -O | -O1 | -O2 | -Os
457 Optimize instruction encoding with smaller instruction size. @samp{-O}
458 and @samp{-O1} encode 64-bit register load instructions with 64-bit
459 immediate as 32-bit register load instructions with 31-bit or 32-bits
460 immediates, encode 64-bit register clearing instructions with 32-bit
461 register clearing instructions and encode 256-bit/512-bit VEX/EVEX
462 vector register clearing instructions with 128-bit VEX vector register
463 clearing instructions as well as encode 128-bit/256-bit EVEX vector
464 register load/store instructions with VEX vector register load/store
465 instructions. @samp{-O2} includes @samp{-O1} optimization plus
466 encodes 256-bit/512-bit EVEX vector register clearing instructions with
467 128-bit EVEX vector register clearing instructions.
468 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
469 and 64-bit register tests with immediate as 8-bit register test with
470 immediate. @samp{-O0} turns off this optimization.
471
472 @end table
473 @c man end
474
475 @node i386-Directives
476 @section x86 specific Directives
477
478 @cindex machine directives, x86
479 @cindex x86 machine directives
480 @table @code
481
482 @cindex @code{lcomm} directive, COFF
483 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
484 Reserve @var{length} (an absolute expression) bytes for a local common
485 denoted by @var{symbol}. The section and value of @var{symbol} are
486 those of the new local common. The addresses are allocated in the bss
487 section, so that at run-time the bytes start off zeroed. Since
488 @var{symbol} is not declared global, it is normally not visible to
489 @code{@value{LD}}. The optional third parameter, @var{alignment},
490 specifies the desired alignment of the symbol in the bss section.
491
492 This directive is only available for COFF based x86 targets.
493
494 @cindex @code{largecomm} directive, ELF
495 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
496 This directive behaves in the same way as the @code{comm} directive
497 except that the data is placed into the @var{.lbss} section instead of
498 the @var{.bss} section @ref{Comm}.
499
500 The directive is intended to be used for data which requires a large
501 amount of space, and it is only available for ELF based x86_64
502 targets.
503
504 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
505
506 @end table
507
508 @node i386-Syntax
509 @section i386 Syntactical Considerations
510 @menu
511 * i386-Variations:: AT&T Syntax versus Intel Syntax
512 * i386-Chars:: Special Characters
513 @end menu
514
515 @node i386-Variations
516 @subsection AT&T Syntax versus Intel Syntax
517
518 @cindex i386 intel_syntax pseudo op
519 @cindex intel_syntax pseudo op, i386
520 @cindex i386 att_syntax pseudo op
521 @cindex att_syntax pseudo op, i386
522 @cindex i386 syntax compatibility
523 @cindex syntax compatibility, i386
524 @cindex x86-64 intel_syntax pseudo op
525 @cindex intel_syntax pseudo op, x86-64
526 @cindex x86-64 att_syntax pseudo op
527 @cindex att_syntax pseudo op, x86-64
528 @cindex x86-64 syntax compatibility
529 @cindex syntax compatibility, x86-64
530
531 @code{@value{AS}} now supports assembly using Intel assembler syntax.
532 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
533 back to the usual AT&T mode for compatibility with the output of
534 @code{@value{GCC}}. Either of these directives may have an optional
535 argument, @code{prefix}, or @code{noprefix} specifying whether registers
536 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
537 different from Intel syntax. We mention these differences because
538 almost all 80386 documents use Intel syntax. Notable differences
539 between the two syntaxes are:
540
541 @cindex immediate operands, i386
542 @cindex i386 immediate operands
543 @cindex register operands, i386
544 @cindex i386 register operands
545 @cindex jump/call operands, i386
546 @cindex i386 jump/call operands
547 @cindex operand delimiters, i386
548
549 @cindex immediate operands, x86-64
550 @cindex x86-64 immediate operands
551 @cindex register operands, x86-64
552 @cindex x86-64 register operands
553 @cindex jump/call operands, x86-64
554 @cindex x86-64 jump/call operands
555 @cindex operand delimiters, x86-64
556 @itemize @bullet
557 @item
558 AT&T immediate operands are preceded by @samp{$}; Intel immediate
559 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
560 AT&T register operands are preceded by @samp{%}; Intel register operands
561 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
562 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
563
564 @cindex i386 source, destination operands
565 @cindex source, destination operands; i386
566 @cindex x86-64 source, destination operands
567 @cindex source, destination operands; x86-64
568 @item
569 AT&T and Intel syntax use the opposite order for source and destination
570 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
571 @samp{source, dest} convention is maintained for compatibility with
572 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
573 instructions with 2 immediate operands, such as the @samp{enter}
574 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
575
576 @cindex mnemonic suffixes, i386
577 @cindex sizes operands, i386
578 @cindex i386 size suffixes
579 @cindex mnemonic suffixes, x86-64
580 @cindex sizes operands, x86-64
581 @cindex x86-64 size suffixes
582 @item
583 In AT&T syntax the size of memory operands is determined from the last
584 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
585 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
586 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
587 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
588 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
589 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
590 syntax.
591
592 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
593 instruction with the 64-bit displacement or immediate operand.
594
595 @cindex return instructions, i386
596 @cindex i386 jump, call, return
597 @cindex return instructions, x86-64
598 @cindex x86-64 jump, call, return
599 @item
600 Immediate form long jumps and calls are
601 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
602 Intel syntax is
603 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
604 instruction
605 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
606 @samp{ret far @var{stack-adjust}}.
607
608 @cindex sections, i386
609 @cindex i386 sections
610 @cindex sections, x86-64
611 @cindex x86-64 sections
612 @item
613 The AT&T assembler does not provide support for multiple section
614 programs. Unix style systems expect all programs to be single sections.
615 @end itemize
616
617 @node i386-Chars
618 @subsection Special Characters
619
620 @cindex line comment character, i386
621 @cindex i386 line comment character
622 The presence of a @samp{#} appearing anywhere on a line indicates the
623 start of a comment that extends to the end of that line.
624
625 If a @samp{#} appears as the first character of a line then the whole
626 line is treated as a comment, but in this case the line can also be a
627 logical line number directive (@pxref{Comments}) or a preprocessor
628 control command (@pxref{Preprocessing}).
629
630 If the @option{--divide} command-line option has not been specified
631 then the @samp{/} character appearing anywhere on a line also
632 introduces a line comment.
633
634 @cindex line separator, i386
635 @cindex statement separator, i386
636 @cindex i386 line separator
637 The @samp{;} character can be used to separate statements on the same
638 line.
639
640 @node i386-Mnemonics
641 @section i386-Mnemonics
642 @subsection Instruction Naming
643
644 @cindex i386 instruction naming
645 @cindex instruction naming, i386
646 @cindex x86-64 instruction naming
647 @cindex instruction naming, x86-64
648
649 Instruction mnemonics are suffixed with one character modifiers which
650 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
651 and @samp{q} specify byte, word, long and quadruple word operands. If
652 no suffix is specified by an instruction then @code{@value{AS}} tries to
653 fill in the missing suffix based on the destination register operand
654 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
655 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
656 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
657 assembler which assumes that a missing mnemonic suffix implies long
658 operand size. (This incompatibility does not affect compiler output
659 since compilers always explicitly specify the mnemonic suffix.)
660
661 Almost all instructions have the same names in AT&T and Intel format.
662 There are a few exceptions. The sign extend and zero extend
663 instructions need two sizes to specify them. They need a size to
664 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
665 is accomplished by using two instruction mnemonic suffixes in AT&T
666 syntax. Base names for sign extend and zero extend are
667 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
668 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
669 are tacked on to this base name, the @emph{from} suffix before the
670 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
671 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
672 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
673 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
674 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
675 quadruple word).
676
677 @cindex encoding options, i386
678 @cindex encoding options, x86-64
679
680 Different encoding options can be specified via pseudo prefixes:
681
682 @itemize @bullet
683 @item
684 @samp{@{disp8@}} -- prefer 8-bit displacement.
685
686 @item
687 @samp{@{disp32@}} -- prefer 32-bit displacement.
688
689 @item
690 @samp{@{load@}} -- prefer load-form instruction.
691
692 @item
693 @samp{@{store@}} -- prefer store-form instruction.
694
695 @item
696 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
697
698 @item
699 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
700
701 @item
702 @samp{@{evex@}} -- encode with EVEX prefix.
703
704 @item
705 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
706 instructions (x86-64 only). Note that this differs from the @samp{rex}
707 prefix which generates REX prefix unconditionally.
708
709 @item
710 @samp{@{nooptimize@}} -- disable instruction size optimization.
711 @end itemize
712
713 @cindex conversion instructions, i386
714 @cindex i386 conversion instructions
715 @cindex conversion instructions, x86-64
716 @cindex x86-64 conversion instructions
717 The Intel-syntax conversion instructions
718
719 @itemize @bullet
720 @item
721 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
722
723 @item
724 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
725
726 @item
727 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
728
729 @item
730 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
731
732 @item
733 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
734 (x86-64 only),
735
736 @item
737 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
738 @samp{%rdx:%rax} (x86-64 only),
739 @end itemize
740
741 @noindent
742 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
743 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
744 instructions.
745
746 @cindex jump instructions, i386
747 @cindex call instructions, i386
748 @cindex jump instructions, x86-64
749 @cindex call instructions, x86-64
750 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
751 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
752 convention.
753
754 @subsection AT&T Mnemonic versus Intel Mnemonic
755
756 @cindex i386 mnemonic compatibility
757 @cindex mnemonic compatibility, i386
758
759 @code{@value{AS}} supports assembly using Intel mnemonic.
760 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
761 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
762 syntax for compatibility with the output of @code{@value{GCC}}.
763 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
764 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
765 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
766 assembler with different mnemonics from those in Intel IA32 specification.
767 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
768
769 @node i386-Regs
770 @section Register Naming
771
772 @cindex i386 registers
773 @cindex registers, i386
774 @cindex x86-64 registers
775 @cindex registers, x86-64
776 Register operands are always prefixed with @samp{%}. The 80386 registers
777 consist of
778
779 @itemize @bullet
780 @item
781 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
782 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
783 frame pointer), and @samp{%esp} (the stack pointer).
784
785 @item
786 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
787 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
788
789 @item
790 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
791 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
792 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
793 @samp{%cx}, and @samp{%dx})
794
795 @item
796 the 6 section registers @samp{%cs} (code section), @samp{%ds}
797 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
798 and @samp{%gs}.
799
800 @item
801 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
802 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
803
804 @item
805 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
806 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
807
808 @item
809 the 2 test registers @samp{%tr6} and @samp{%tr7}.
810
811 @item
812 the 8 floating point register stack @samp{%st} or equivalently
813 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
814 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
815 These registers are overloaded by 8 MMX registers @samp{%mm0},
816 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
817 @samp{%mm6} and @samp{%mm7}.
818
819 @item
820 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
821 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
822 @end itemize
823
824 The AMD x86-64 architecture extends the register set by:
825
826 @itemize @bullet
827 @item
828 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
829 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
830 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
831 pointer)
832
833 @item
834 the 8 extended registers @samp{%r8}--@samp{%r15}.
835
836 @item
837 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
838
839 @item
840 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
841
842 @item
843 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
844
845 @item
846 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
847
848 @item
849 the 8 debug registers: @samp{%db8}--@samp{%db15}.
850
851 @item
852 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
853 @end itemize
854
855 With the AVX extensions more registers were made available:
856
857 @itemize @bullet
858
859 @item
860 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
861 available in 32-bit mode). The bottom 128 bits are overlaid with the
862 @samp{xmm0}--@samp{xmm15} registers.
863
864 @end itemize
865
866 The AVX2 extensions made in 64-bit mode more registers available:
867
868 @itemize @bullet
869
870 @item
871 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
872 registers @samp{%ymm16}--@samp{%ymm31}.
873
874 @end itemize
875
876 The AVX512 extensions added the following registers:
877
878 @itemize @bullet
879
880 @item
881 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
882 available in 32-bit mode). The bottom 128 bits are overlaid with the
883 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
884 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
885
886 @item
887 the 8 mask registers @samp{%k0}--@samp{%k7}.
888
889 @end itemize
890
891 @node i386-Prefixes
892 @section Instruction Prefixes
893
894 @cindex i386 instruction prefixes
895 @cindex instruction prefixes, i386
896 @cindex prefixes, i386
897 Instruction prefixes are used to modify the following instruction. They
898 are used to repeat string instructions, to provide section overrides, to
899 perform bus lock operations, and to change operand and address sizes.
900 (Most instructions that normally operate on 32-bit operands will use
901 16-bit operands if the instruction has an ``operand size'' prefix.)
902 Instruction prefixes are best written on the same line as the instruction
903 they act upon. For example, the @samp{scas} (scan string) instruction is
904 repeated with:
905
906 @smallexample
907 repne scas %es:(%edi),%al
908 @end smallexample
909
910 You may also place prefixes on the lines immediately preceding the
911 instruction, but this circumvents checks that @code{@value{AS}} does
912 with prefixes, and will not work with all prefixes.
913
914 Here is a list of instruction prefixes:
915
916 @cindex section override prefixes, i386
917 @itemize @bullet
918 @item
919 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
920 @samp{fs}, @samp{gs}. These are automatically added by specifying
921 using the @var{section}:@var{memory-operand} form for memory references.
922
923 @cindex size prefixes, i386
924 @item
925 Operand/Address size prefixes @samp{data16} and @samp{addr16}
926 change 32-bit operands/addresses into 16-bit operands/addresses,
927 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
928 @code{.code16} section) into 32-bit operands/addresses. These prefixes
929 @emph{must} appear on the same line of code as the instruction they
930 modify. For example, in a 16-bit @code{.code16} section, you might
931 write:
932
933 @smallexample
934 addr32 jmpl *(%ebx)
935 @end smallexample
936
937 @cindex bus lock prefixes, i386
938 @cindex inhibiting interrupts, i386
939 @item
940 The bus lock prefix @samp{lock} inhibits interrupts during execution of
941 the instruction it precedes. (This is only valid with certain
942 instructions; see a 80386 manual for details).
943
944 @cindex coprocessor wait, i386
945 @item
946 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
947 complete the current instruction. This should never be needed for the
948 80386/80387 combination.
949
950 @cindex repeat prefixes, i386
951 @item
952 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
953 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
954 times if the current address size is 16-bits).
955 @cindex REX prefixes, i386
956 @item
957 The @samp{rex} family of prefixes is used by x86-64 to encode
958 extensions to i386 instruction set. The @samp{rex} prefix has four
959 bits --- an operand size overwrite (@code{64}) used to change operand size
960 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
961 register set.
962
963 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
964 instruction emits @samp{rex} prefix with all the bits set. By omitting
965 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
966 prefixes as well. Normally, there is no need to write the prefixes
967 explicitly, since gas will automatically generate them based on the
968 instruction operands.
969 @end itemize
970
971 @node i386-Memory
972 @section Memory References
973
974 @cindex i386 memory references
975 @cindex memory references, i386
976 @cindex x86-64 memory references
977 @cindex memory references, x86-64
978 An Intel syntax indirect memory reference of the form
979
980 @smallexample
981 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
982 @end smallexample
983
984 @noindent
985 is translated into the AT&T syntax
986
987 @smallexample
988 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
989 @end smallexample
990
991 @noindent
992 where @var{base} and @var{index} are the optional 32-bit base and
993 index registers, @var{disp} is the optional displacement, and
994 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
995 to calculate the address of the operand. If no @var{scale} is
996 specified, @var{scale} is taken to be 1. @var{section} specifies the
997 optional section register for the memory operand, and may override the
998 default section register (see a 80386 manual for section register
999 defaults). Note that section overrides in AT&T syntax @emph{must}
1000 be preceded by a @samp{%}. If you specify a section override which
1001 coincides with the default section register, @code{@value{AS}} does @emph{not}
1002 output any section register override prefixes to assemble the given
1003 instruction. Thus, section overrides can be specified to emphasize which
1004 section register is used for a given memory operand.
1005
1006 Here are some examples of Intel and AT&T style memory references:
1007
1008 @table @asis
1009 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1010 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1011 missing, and the default section is used (@samp{%ss} for addressing with
1012 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1013
1014 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1015 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1016 @samp{foo}. All other fields are missing. The section register here
1017 defaults to @samp{%ds}.
1018
1019 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1020 This uses the value pointed to by @samp{foo} as a memory operand.
1021 Note that @var{base} and @var{index} are both missing, but there is only
1022 @emph{one} @samp{,}. This is a syntactic exception.
1023
1024 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1025 This selects the contents of the variable @samp{foo} with section
1026 register @var{section} being @samp{%gs}.
1027 @end table
1028
1029 Absolute (as opposed to PC relative) call and jump operands must be
1030 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1031 always chooses PC relative addressing for jump/call labels.
1032
1033 Any instruction that has a memory operand, but no register operand,
1034 @emph{must} specify its size (byte, word, long, or quadruple) with an
1035 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1036 respectively).
1037
1038 The x86-64 architecture adds an RIP (instruction pointer relative)
1039 addressing. This addressing mode is specified by using @samp{rip} as a
1040 base register. Only constant offsets are valid. For example:
1041
1042 @table @asis
1043 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1044 Points to the address 1234 bytes past the end of the current
1045 instruction.
1046
1047 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1048 Points to the @code{symbol} in RIP relative way, this is shorter than
1049 the default absolute addressing.
1050 @end table
1051
1052 Other addressing modes remain unchanged in x86-64 architecture, except
1053 registers used are 64-bit instead of 32-bit.
1054
1055 @node i386-Jumps
1056 @section Handling of Jump Instructions
1057
1058 @cindex jump optimization, i386
1059 @cindex i386 jump optimization
1060 @cindex jump optimization, x86-64
1061 @cindex x86-64 jump optimization
1062 Jump instructions are always optimized to use the smallest possible
1063 displacements. This is accomplished by using byte (8-bit) displacement
1064 jumps whenever the target is sufficiently close. If a byte displacement
1065 is insufficient a long displacement is used. We do not support
1066 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1067 instruction with the @samp{data16} instruction prefix), since the 80386
1068 insists upon masking @samp{%eip} to 16 bits after the word displacement
1069 is added. (See also @pxref{i386-Arch})
1070
1071 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1072 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1073 displacements, so that if you use these instructions (@code{@value{GCC}} does
1074 not use them) you may get an error message (and incorrect code). The AT&T
1075 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1076 to
1077
1078 @smallexample
1079 jcxz cx_zero
1080 jmp cx_nonzero
1081 cx_zero: jmp foo
1082 cx_nonzero:
1083 @end smallexample
1084
1085 @node i386-Float
1086 @section Floating Point
1087
1088 @cindex i386 floating point
1089 @cindex floating point, i386
1090 @cindex x86-64 floating point
1091 @cindex floating point, x86-64
1092 All 80387 floating point types except packed BCD are supported.
1093 (BCD support may be added without much difficulty). These data
1094 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1095 double (64-bit), and extended (80-bit) precision floating point.
1096 Each supported type has an instruction mnemonic suffix and a constructor
1097 associated with it. Instruction mnemonic suffixes specify the operand's
1098 data type. Constructors build these data types into memory.
1099
1100 @cindex @code{float} directive, i386
1101 @cindex @code{single} directive, i386
1102 @cindex @code{double} directive, i386
1103 @cindex @code{tfloat} directive, i386
1104 @cindex @code{float} directive, x86-64
1105 @cindex @code{single} directive, x86-64
1106 @cindex @code{double} directive, x86-64
1107 @cindex @code{tfloat} directive, x86-64
1108 @itemize @bullet
1109 @item
1110 Floating point constructors are @samp{.float} or @samp{.single},
1111 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1112 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1113 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1114 only supports this format via the @samp{fldt} (load 80-bit real to stack
1115 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1116
1117 @cindex @code{word} directive, i386
1118 @cindex @code{long} directive, i386
1119 @cindex @code{int} directive, i386
1120 @cindex @code{quad} directive, i386
1121 @cindex @code{word} directive, x86-64
1122 @cindex @code{long} directive, x86-64
1123 @cindex @code{int} directive, x86-64
1124 @cindex @code{quad} directive, x86-64
1125 @item
1126 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1127 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1128 corresponding instruction mnemonic suffixes are @samp{s} (single),
1129 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1130 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1131 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1132 stack) instructions.
1133 @end itemize
1134
1135 Register to register operations should not use instruction mnemonic suffixes.
1136 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1137 wrote @samp{fst %st, %st(1)}, since all register to register operations
1138 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1139 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1140 then stores the result in the 4 byte location @samp{mem})
1141
1142 @node i386-SIMD
1143 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1144
1145 @cindex MMX, i386
1146 @cindex 3DNow!, i386
1147 @cindex SIMD, i386
1148 @cindex MMX, x86-64
1149 @cindex 3DNow!, x86-64
1150 @cindex SIMD, x86-64
1151
1152 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1153 instructions for integer data), available on Intel's Pentium MMX
1154 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1155 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1156 instruction set (SIMD instructions for 32-bit floating point data)
1157 available on AMD's K6-2 processor and possibly others in the future.
1158
1159 Currently, @code{@value{AS}} does not support Intel's floating point
1160 SIMD, Katmai (KNI).
1161
1162 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1163 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1164 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1165 floating point values. The MMX registers cannot be used at the same time
1166 as the floating point stack.
1167
1168 See Intel and AMD documentation, keeping in mind that the operand order in
1169 instructions is reversed from the Intel syntax.
1170
1171 @node i386-LWP
1172 @section AMD's Lightweight Profiling Instructions
1173
1174 @cindex LWP, i386
1175 @cindex LWP, x86-64
1176
1177 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1178 instruction set, available on AMD's Family 15h (Orochi) processors.
1179
1180 LWP enables applications to collect and manage performance data, and
1181 react to performance events. The collection of performance data
1182 requires no context switches. LWP runs in the context of a thread and
1183 so several counters can be used independently across multiple threads.
1184 LWP can be used in both 64-bit and legacy 32-bit modes.
1185
1186 For detailed information on the LWP instruction set, see the
1187 @cite{AMD Lightweight Profiling Specification} available at
1188 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1189
1190 @node i386-BMI
1191 @section Bit Manipulation Instructions
1192
1193 @cindex BMI, i386
1194 @cindex BMI, x86-64
1195
1196 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1197
1198 BMI instructions provide several instructions implementing individual
1199 bit manipulation operations such as isolation, masking, setting, or
1200 resetting.
1201
1202 @c Need to add a specification citation here when available.
1203
1204 @node i386-TBM
1205 @section AMD's Trailing Bit Manipulation Instructions
1206
1207 @cindex TBM, i386
1208 @cindex TBM, x86-64
1209
1210 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1211 instruction set, available on AMD's BDVER2 processors (Trinity and
1212 Viperfish).
1213
1214 TBM instructions provide instructions implementing individual bit
1215 manipulation operations such as isolating, masking, setting, resetting,
1216 complementing, and operations on trailing zeros and ones.
1217
1218 @c Need to add a specification citation here when available.
1219
1220 @node i386-16bit
1221 @section Writing 16-bit Code
1222
1223 @cindex i386 16-bit code
1224 @cindex 16-bit code, i386
1225 @cindex real-mode code, i386
1226 @cindex @code{code16gcc} directive, i386
1227 @cindex @code{code16} directive, i386
1228 @cindex @code{code32} directive, i386
1229 @cindex @code{code64} directive, i386
1230 @cindex @code{code64} directive, x86-64
1231 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1232 or 64-bit x86-64 code depending on the default configuration,
1233 it also supports writing code to run in real mode or in 16-bit protected
1234 mode code segments. To do this, put a @samp{.code16} or
1235 @samp{.code16gcc} directive before the assembly language instructions to
1236 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1237 32-bit code with the @samp{.code32} directive or 64-bit code with the
1238 @samp{.code64} directive.
1239
1240 @samp{.code16gcc} provides experimental support for generating 16-bit
1241 code from gcc, and differs from @samp{.code16} in that @samp{call},
1242 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1243 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1244 default to 32-bit size. This is so that the stack pointer is
1245 manipulated in the same way over function calls, allowing access to
1246 function parameters at the same stack offsets as in 32-bit mode.
1247 @samp{.code16gcc} also automatically adds address size prefixes where
1248 necessary to use the 32-bit addressing modes that gcc generates.
1249
1250 The code which @code{@value{AS}} generates in 16-bit mode will not
1251 necessarily run on a 16-bit pre-80386 processor. To write code that
1252 runs on such a processor, you must refrain from using @emph{any} 32-bit
1253 constructs which require @code{@value{AS}} to output address or operand
1254 size prefixes.
1255
1256 Note that writing 16-bit code instructions by explicitly specifying a
1257 prefix or an instruction mnemonic suffix within a 32-bit code section
1258 generates different machine instructions than those generated for a
1259 16-bit code segment. In a 32-bit code section, the following code
1260 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1261 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1262
1263 @smallexample
1264 pushw $4
1265 @end smallexample
1266
1267 The same code in a 16-bit code section would generate the machine
1268 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1269 is correct since the processor default operand size is assumed to be 16
1270 bits in a 16-bit code section.
1271
1272 @node i386-Arch
1273 @section Specifying CPU Architecture
1274
1275 @cindex arch directive, i386
1276 @cindex i386 arch directive
1277 @cindex arch directive, x86-64
1278 @cindex x86-64 arch directive
1279
1280 @code{@value{AS}} may be told to assemble for a particular CPU
1281 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1282 directive enables a warning when gas detects an instruction that is not
1283 supported on the CPU specified. The choices for @var{cpu_type} are:
1284
1285 @multitable @columnfractions .20 .20 .20 .20
1286 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1287 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1288 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1289 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1290 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1291 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1292 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1293 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
1294 @item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1295 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1296 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1297 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1298 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1299 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1300 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1301 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1302 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1303 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1304 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1305 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1306 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1307 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1308 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1309 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1310 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1311 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1312 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1313 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1314 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1315 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1316 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1317 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1318 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1319 @end multitable
1320
1321 Apart from the warning, there are only two other effects on
1322 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1323 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1324 will automatically use a two byte opcode sequence. The larger three
1325 byte opcode sequence is used on the 486 (and when no architecture is
1326 specified) because it executes faster on the 486. Note that you can
1327 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1328 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1329 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1330 conditional jumps will be promoted when necessary to a two instruction
1331 sequence consisting of a conditional jump of the opposite sense around
1332 an unconditional jump to the target.
1333
1334 Following the CPU architecture (but not a sub-architecture, which are those
1335 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1336 control automatic promotion of conditional jumps. @samp{jumps} is the
1337 default, and enables jump promotion; All external jumps will be of the long
1338 variety, and file-local jumps will be promoted as necessary.
1339 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1340 byte offset jumps, and warns about file-local conditional jumps that
1341 @code{@value{AS}} promotes.
1342 Unconditional jumps are treated as for @samp{jumps}.
1343
1344 For example
1345
1346 @smallexample
1347 .arch i8086,nojumps
1348 @end smallexample
1349
1350 @node i386-Bugs
1351 @section AT&T Syntax bugs
1352
1353 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1354 assemblers, generate floating point instructions with reversed source
1355 and destination registers in certain cases. Unfortunately, gcc and
1356 possibly many other programs use this reversed syntax, so we're stuck
1357 with it.
1358
1359 For example
1360
1361 @smallexample
1362 fsub %st,%st(3)
1363 @end smallexample
1364 @noindent
1365 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1366 than the expected @samp{%st(3) - %st}. This happens with all the
1367 non-commutative arithmetic floating point operations with two register
1368 operands where the source register is @samp{%st} and the destination
1369 register is @samp{%st(i)}.
1370
1371 @node i386-Notes
1372 @section Notes
1373
1374 @cindex i386 @code{mul}, @code{imul} instructions
1375 @cindex @code{mul} instruction, i386
1376 @cindex @code{imul} instruction, i386
1377 @cindex @code{mul} instruction, x86-64
1378 @cindex @code{imul} instruction, x86-64
1379 There is some trickery concerning the @samp{mul} and @samp{imul}
1380 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1381 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1382 for @samp{imul}) can be output only in the one operand form. Thus,
1383 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1384 the expanding multiply would clobber the @samp{%edx} register, and this
1385 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1386 64-bit product in @samp{%edx:%eax}.
1387
1388 We have added a two operand form of @samp{imul} when the first operand
1389 is an immediate mode expression and the second operand is a register.
1390 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1391 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1392 $69, %eax, %eax}.
1393
This page took 0.063253 seconds and 5 git commands to generate.