Add option -mfence-as-lock-add=[no|yes].
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2016 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{no87},
138 @code{mmx},
139 @code{nommx},
140 @code{sse},
141 @code{sse2},
142 @code{sse3},
143 @code{ssse3},
144 @code{sse4.1},
145 @code{sse4.2},
146 @code{sse4},
147 @code{nosse},
148 @code{avx},
149 @code{avx2},
150 @code{adx},
151 @code{rdseed},
152 @code{prfchw},
153 @code{smap},
154 @code{mpx},
155 @code{sha},
156 @code{prefetchwt1},
157 @code{clflushopt},
158 @code{se1},
159 @code{clwb},
160 @code{pcommit},
161 @code{avx512f},
162 @code{avx512cd},
163 @code{avx512er},
164 @code{avx512pf},
165 @code{avx512vl},
166 @code{avx512bw},
167 @code{avx512dq},
168 @code{avx512ifma},
169 @code{avx512vbmi},
170 @code{noavx},
171 @code{vmx},
172 @code{vmfunc},
173 @code{smx},
174 @code{xsave},
175 @code{xsaveopt},
176 @code{xsavec},
177 @code{xsaves},
178 @code{aes},
179 @code{pclmul},
180 @code{fsgsbase},
181 @code{rdrnd},
182 @code{f16c},
183 @code{bmi2},
184 @code{fma},
185 @code{movbe},
186 @code{ept},
187 @code{lzcnt},
188 @code{hle},
189 @code{rtm},
190 @code{invpcid},
191 @code{clflush},
192 @code{mwaitx},
193 @code{clzero},
194 @code{lwp},
195 @code{fma4},
196 @code{xop},
197 @code{cx16},
198 @code{syscall},
199 @code{rdtscp},
200 @code{3dnow},
201 @code{3dnowa},
202 @code{sse4a},
203 @code{sse5},
204 @code{svme},
205 @code{abm} and
206 @code{padlock}.
207 Note that rather than extending a basic instruction set, the extension
208 mnemonics starting with @code{no} revoke the respective functionality.
209
210 When the @code{.arch} directive is used with @option{-march}, the
211 @code{.arch} directive will take precedent.
212
213 @cindex @samp{-mtune=} option, i386
214 @cindex @samp{-mtune=} option, x86-64
215 @item -mtune=@var{CPU}
216 This option specifies a processor to optimize for. When used in
217 conjunction with the @option{-march} option, only instructions
218 of the processor specified by the @option{-march} option will be
219 generated.
220
221 Valid @var{CPU} values are identical to the processor list of
222 @option{-march=@var{CPU}}.
223
224 @cindex @samp{-msse2avx} option, i386
225 @cindex @samp{-msse2avx} option, x86-64
226 @item -msse2avx
227 This option specifies that the assembler should encode SSE instructions
228 with VEX prefix.
229
230 @cindex @samp{-msse-check=} option, i386
231 @cindex @samp{-msse-check=} option, x86-64
232 @item -msse-check=@var{none}
233 @itemx -msse-check=@var{warning}
234 @itemx -msse-check=@var{error}
235 These options control if the assembler should check SSE instructions.
236 @option{-msse-check=@var{none}} will make the assembler not to check SSE
237 instructions, which is the default. @option{-msse-check=@var{warning}}
238 will make the assembler issue a warning for any SSE instruction.
239 @option{-msse-check=@var{error}} will make the assembler issue an error
240 for any SSE instruction.
241
242 @cindex @samp{-mavxscalar=} option, i386
243 @cindex @samp{-mavxscalar=} option, x86-64
244 @item -mavxscalar=@var{128}
245 @itemx -mavxscalar=@var{256}
246 These options control how the assembler should encode scalar AVX
247 instructions. @option{-mavxscalar=@var{128}} will encode scalar
248 AVX instructions with 128bit vector length, which is the default.
249 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
250 with 256bit vector length.
251
252 @cindex @samp{-mevexlig=} option, i386
253 @cindex @samp{-mevexlig=} option, x86-64
254 @item -mevexlig=@var{128}
255 @itemx -mevexlig=@var{256}
256 @itemx -mevexlig=@var{512}
257 These options control how the assembler should encode length-ignored
258 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
259 EVEX instructions with 128bit vector length, which is the default.
260 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
261 encode LIG EVEX instructions with 256bit and 512bit vector length,
262 respectively.
263
264 @cindex @samp{-mevexwig=} option, i386
265 @cindex @samp{-mevexwig=} option, x86-64
266 @item -mevexwig=@var{0}
267 @itemx -mevexwig=@var{1}
268 These options control how the assembler should encode w-ignored (WIG)
269 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
270 EVEX instructions with evex.w = 0, which is the default.
271 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
272 evex.w = 1.
273
274 @cindex @samp{-mmnemonic=} option, i386
275 @cindex @samp{-mmnemonic=} option, x86-64
276 @item -mmnemonic=@var{att}
277 @itemx -mmnemonic=@var{intel}
278 This option specifies instruction mnemonic for matching instructions.
279 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
280 take precedent.
281
282 @cindex @samp{-msyntax=} option, i386
283 @cindex @samp{-msyntax=} option, x86-64
284 @item -msyntax=@var{att}
285 @itemx -msyntax=@var{intel}
286 This option specifies instruction syntax when processing instructions.
287 The @code{.att_syntax} and @code{.intel_syntax} directives will
288 take precedent.
289
290 @cindex @samp{-mnaked-reg} option, i386
291 @cindex @samp{-mnaked-reg} option, x86-64
292 @item -mnaked-reg
293 This opetion specifies that registers don't require a @samp{%} prefix.
294 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
295
296 @cindex @samp{-madd-bnd-prefix} option, i386
297 @cindex @samp{-madd-bnd-prefix} option, x86-64
298 @item -madd-bnd-prefix
299 This option forces the assembler to add BND prefix to all branches, even
300 if such prefix was not explicitly specified in the source code.
301
302 @cindex @samp{-mshared} option, i386
303 @cindex @samp{-mshared} option, x86-64
304 @item -mno-shared
305 On ELF target, the assembler normally optimizes out non-PLT relocations
306 against defined non-weak global branch targets with default visibility.
307 The @samp{-mshared} option tells the assembler to generate code which
308 may go into a shared library where all non-weak global branch targets
309 with default visibility can be preempted. The resulting code is
310 slightly bigger. This option only affects the handling of branch
311 instructions.
312
313 @cindex @samp{-mbig-obj} option, x86-64
314 @item -mbig-obj
315 On x86-64 PE/COFF target this option forces the use of big object file
316 format, which allows more than 32768 sections.
317
318 @cindex @samp{-momit-lock-prefix=} option, i386
319 @cindex @samp{-momit-lock-prefix=} option, x86-64
320 @item -momit-lock-prefix=@var{no}
321 @itemx -momit-lock-prefix=@var{yes}
322 These options control how the assembler should encode lock prefix.
323 This option is intended as a workaround for processors, that fail on
324 lock prefix. This option can only be safely used with single-core,
325 single-thread computers
326 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
327 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
328 which is the default.
329
330 @cindex @samp{-mfence-as-lock-add=} option, i386
331 @cindex @samp{-mfence-as-lock-add=} option, x86-64
332 @item -mfence-as-lock-add=@var{no}
333 @itemx -mfence-as-lock-add=@var{yes}
334 These options control how the assembler should encode lfence, mfence and
335 sfence.
336 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
337 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
338 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
339 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
340 sfence as usual, which is the default.
341
342 @cindex @samp{-mevexrcig=} option, i386
343 @cindex @samp{-mevexrcig=} option, x86-64
344 @item -mevexrcig=@var{rne}
345 @itemx -mevexrcig=@var{rd}
346 @itemx -mevexrcig=@var{ru}
347 @itemx -mevexrcig=@var{rz}
348 These options control how the assembler should encode SAE-only
349 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
350 of EVEX instruction with 00, which is the default.
351 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
352 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
353 with 01, 10 and 11 RC bits, respectively.
354
355 @cindex @samp{-mamd64} option, x86-64
356 @cindex @samp{-mintel64} option, x86-64
357 @item -mamd64
358 @itemx -mintel64
359 This option specifies that the assembler should accept only AMD64 or
360 Intel64 ISA in 64-bit mode. The default is to accept both.
361
362 @end table
363 @c man end
364
365 @node i386-Directives
366 @section x86 specific Directives
367
368 @cindex machine directives, x86
369 @cindex x86 machine directives
370 @table @code
371
372 @cindex @code{lcomm} directive, COFF
373 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
374 Reserve @var{length} (an absolute expression) bytes for a local common
375 denoted by @var{symbol}. The section and value of @var{symbol} are
376 those of the new local common. The addresses are allocated in the bss
377 section, so that at run-time the bytes start off zeroed. Since
378 @var{symbol} is not declared global, it is normally not visible to
379 @code{@value{LD}}. The optional third parameter, @var{alignment},
380 specifies the desired alignment of the symbol in the bss section.
381
382 This directive is only available for COFF based x86 targets.
383
384 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
385 @c .largecomm
386
387 @end table
388
389 @node i386-Syntax
390 @section i386 Syntactical Considerations
391 @menu
392 * i386-Variations:: AT&T Syntax versus Intel Syntax
393 * i386-Chars:: Special Characters
394 @end menu
395
396 @node i386-Variations
397 @subsection AT&T Syntax versus Intel Syntax
398
399 @cindex i386 intel_syntax pseudo op
400 @cindex intel_syntax pseudo op, i386
401 @cindex i386 att_syntax pseudo op
402 @cindex att_syntax pseudo op, i386
403 @cindex i386 syntax compatibility
404 @cindex syntax compatibility, i386
405 @cindex x86-64 intel_syntax pseudo op
406 @cindex intel_syntax pseudo op, x86-64
407 @cindex x86-64 att_syntax pseudo op
408 @cindex att_syntax pseudo op, x86-64
409 @cindex x86-64 syntax compatibility
410 @cindex syntax compatibility, x86-64
411
412 @code{@value{AS}} now supports assembly using Intel assembler syntax.
413 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
414 back to the usual AT&T mode for compatibility with the output of
415 @code{@value{GCC}}. Either of these directives may have an optional
416 argument, @code{prefix}, or @code{noprefix} specifying whether registers
417 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
418 different from Intel syntax. We mention these differences because
419 almost all 80386 documents use Intel syntax. Notable differences
420 between the two syntaxes are:
421
422 @cindex immediate operands, i386
423 @cindex i386 immediate operands
424 @cindex register operands, i386
425 @cindex i386 register operands
426 @cindex jump/call operands, i386
427 @cindex i386 jump/call operands
428 @cindex operand delimiters, i386
429
430 @cindex immediate operands, x86-64
431 @cindex x86-64 immediate operands
432 @cindex register operands, x86-64
433 @cindex x86-64 register operands
434 @cindex jump/call operands, x86-64
435 @cindex x86-64 jump/call operands
436 @cindex operand delimiters, x86-64
437 @itemize @bullet
438 @item
439 AT&T immediate operands are preceded by @samp{$}; Intel immediate
440 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
441 AT&T register operands are preceded by @samp{%}; Intel register operands
442 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
443 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
444
445 @cindex i386 source, destination operands
446 @cindex source, destination operands; i386
447 @cindex x86-64 source, destination operands
448 @cindex source, destination operands; x86-64
449 @item
450 AT&T and Intel syntax use the opposite order for source and destination
451 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
452 @samp{source, dest} convention is maintained for compatibility with
453 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
454 instructions with 2 immediate operands, such as the @samp{enter}
455 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
456
457 @cindex mnemonic suffixes, i386
458 @cindex sizes operands, i386
459 @cindex i386 size suffixes
460 @cindex mnemonic suffixes, x86-64
461 @cindex sizes operands, x86-64
462 @cindex x86-64 size suffixes
463 @item
464 In AT&T syntax the size of memory operands is determined from the last
465 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
466 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
467 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
468 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
469 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
470 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
471 syntax.
472
473 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
474 instruction with the 64-bit displacement or immediate operand.
475
476 @cindex return instructions, i386
477 @cindex i386 jump, call, return
478 @cindex return instructions, x86-64
479 @cindex x86-64 jump, call, return
480 @item
481 Immediate form long jumps and calls are
482 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
483 Intel syntax is
484 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
485 instruction
486 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
487 @samp{ret far @var{stack-adjust}}.
488
489 @cindex sections, i386
490 @cindex i386 sections
491 @cindex sections, x86-64
492 @cindex x86-64 sections
493 @item
494 The AT&T assembler does not provide support for multiple section
495 programs. Unix style systems expect all programs to be single sections.
496 @end itemize
497
498 @node i386-Chars
499 @subsection Special Characters
500
501 @cindex line comment character, i386
502 @cindex i386 line comment character
503 The presence of a @samp{#} appearing anywhere on a line indicates the
504 start of a comment that extends to the end of that line.
505
506 If a @samp{#} appears as the first character of a line then the whole
507 line is treated as a comment, but in this case the line can also be a
508 logical line number directive (@pxref{Comments}) or a preprocessor
509 control command (@pxref{Preprocessing}).
510
511 If the @option{--divide} command line option has not been specified
512 then the @samp{/} character appearing anywhere on a line also
513 introduces a line comment.
514
515 @cindex line separator, i386
516 @cindex statement separator, i386
517 @cindex i386 line separator
518 The @samp{;} character can be used to separate statements on the same
519 line.
520
521 @node i386-Mnemonics
522 @section i386-Mnemonics
523 @subsection Instruction Naming
524
525 @cindex i386 instruction naming
526 @cindex instruction naming, i386
527 @cindex x86-64 instruction naming
528 @cindex instruction naming, x86-64
529
530 Instruction mnemonics are suffixed with one character modifiers which
531 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
532 and @samp{q} specify byte, word, long and quadruple word operands. If
533 no suffix is specified by an instruction then @code{@value{AS}} tries to
534 fill in the missing suffix based on the destination register operand
535 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
536 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
537 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
538 assembler which assumes that a missing mnemonic suffix implies long
539 operand size. (This incompatibility does not affect compiler output
540 since compilers always explicitly specify the mnemonic suffix.)
541
542 Almost all instructions have the same names in AT&T and Intel format.
543 There are a few exceptions. The sign extend and zero extend
544 instructions need two sizes to specify them. They need a size to
545 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
546 is accomplished by using two instruction mnemonic suffixes in AT&T
547 syntax. Base names for sign extend and zero extend are
548 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
549 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
550 are tacked on to this base name, the @emph{from} suffix before the
551 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
552 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
553 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
554 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
555 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
556 quadruple word).
557
558 @cindex encoding options, i386
559 @cindex encoding options, x86-64
560
561 Different encoding options can be specified via optional mnemonic
562 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
563 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
564 prefers 8bit or 32bit displacement in encoding.
565
566 @cindex conversion instructions, i386
567 @cindex i386 conversion instructions
568 @cindex conversion instructions, x86-64
569 @cindex x86-64 conversion instructions
570 The Intel-syntax conversion instructions
571
572 @itemize @bullet
573 @item
574 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
575
576 @item
577 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
578
579 @item
580 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
581
582 @item
583 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
584
585 @item
586 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
587 (x86-64 only),
588
589 @item
590 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
591 @samp{%rdx:%rax} (x86-64 only),
592 @end itemize
593
594 @noindent
595 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
596 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
597 instructions.
598
599 @cindex jump instructions, i386
600 @cindex call instructions, i386
601 @cindex jump instructions, x86-64
602 @cindex call instructions, x86-64
603 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
604 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
605 convention.
606
607 @subsection AT&T Mnemonic versus Intel Mnemonic
608
609 @cindex i386 mnemonic compatibility
610 @cindex mnemonic compatibility, i386
611
612 @code{@value{AS}} supports assembly using Intel mnemonic.
613 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
614 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
615 syntax for compatibility with the output of @code{@value{GCC}}.
616 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
617 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
618 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
619 assembler with different mnemonics from those in Intel IA32 specification.
620 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
621
622 @node i386-Regs
623 @section Register Naming
624
625 @cindex i386 registers
626 @cindex registers, i386
627 @cindex x86-64 registers
628 @cindex registers, x86-64
629 Register operands are always prefixed with @samp{%}. The 80386 registers
630 consist of
631
632 @itemize @bullet
633 @item
634 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
635 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
636 frame pointer), and @samp{%esp} (the stack pointer).
637
638 @item
639 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
640 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
641
642 @item
643 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
644 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
645 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
646 @samp{%cx}, and @samp{%dx})
647
648 @item
649 the 6 section registers @samp{%cs} (code section), @samp{%ds}
650 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
651 and @samp{%gs}.
652
653 @item
654 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
655 @samp{%cr3}.
656
657 @item
658 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
659 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
660
661 @item
662 the 2 test registers @samp{%tr6} and @samp{%tr7}.
663
664 @item
665 the 8 floating point register stack @samp{%st} or equivalently
666 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
667 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
668 These registers are overloaded by 8 MMX registers @samp{%mm0},
669 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
670 @samp{%mm6} and @samp{%mm7}.
671
672 @item
673 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
674 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
675 @end itemize
676
677 The AMD x86-64 architecture extends the register set by:
678
679 @itemize @bullet
680 @item
681 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
682 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
683 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
684 pointer)
685
686 @item
687 the 8 extended registers @samp{%r8}--@samp{%r15}.
688
689 @item
690 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
691
692 @item
693 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
694
695 @item
696 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
697
698 @item
699 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
700
701 @item
702 the 8 debug registers: @samp{%db8}--@samp{%db15}.
703
704 @item
705 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
706 @end itemize
707
708 @node i386-Prefixes
709 @section Instruction Prefixes
710
711 @cindex i386 instruction prefixes
712 @cindex instruction prefixes, i386
713 @cindex prefixes, i386
714 Instruction prefixes are used to modify the following instruction. They
715 are used to repeat string instructions, to provide section overrides, to
716 perform bus lock operations, and to change operand and address sizes.
717 (Most instructions that normally operate on 32-bit operands will use
718 16-bit operands if the instruction has an ``operand size'' prefix.)
719 Instruction prefixes are best written on the same line as the instruction
720 they act upon. For example, the @samp{scas} (scan string) instruction is
721 repeated with:
722
723 @smallexample
724 repne scas %es:(%edi),%al
725 @end smallexample
726
727 You may also place prefixes on the lines immediately preceding the
728 instruction, but this circumvents checks that @code{@value{AS}} does
729 with prefixes, and will not work with all prefixes.
730
731 Here is a list of instruction prefixes:
732
733 @cindex section override prefixes, i386
734 @itemize @bullet
735 @item
736 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
737 @samp{fs}, @samp{gs}. These are automatically added by specifying
738 using the @var{section}:@var{memory-operand} form for memory references.
739
740 @cindex size prefixes, i386
741 @item
742 Operand/Address size prefixes @samp{data16} and @samp{addr16}
743 change 32-bit operands/addresses into 16-bit operands/addresses,
744 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
745 @code{.code16} section) into 32-bit operands/addresses. These prefixes
746 @emph{must} appear on the same line of code as the instruction they
747 modify. For example, in a 16-bit @code{.code16} section, you might
748 write:
749
750 @smallexample
751 addr32 jmpl *(%ebx)
752 @end smallexample
753
754 @cindex bus lock prefixes, i386
755 @cindex inhibiting interrupts, i386
756 @item
757 The bus lock prefix @samp{lock} inhibits interrupts during execution of
758 the instruction it precedes. (This is only valid with certain
759 instructions; see a 80386 manual for details).
760
761 @cindex coprocessor wait, i386
762 @item
763 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
764 complete the current instruction. This should never be needed for the
765 80386/80387 combination.
766
767 @cindex repeat prefixes, i386
768 @item
769 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
770 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
771 times if the current address size is 16-bits).
772 @cindex REX prefixes, i386
773 @item
774 The @samp{rex} family of prefixes is used by x86-64 to encode
775 extensions to i386 instruction set. The @samp{rex} prefix has four
776 bits --- an operand size overwrite (@code{64}) used to change operand size
777 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
778 register set.
779
780 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
781 instruction emits @samp{rex} prefix with all the bits set. By omitting
782 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
783 prefixes as well. Normally, there is no need to write the prefixes
784 explicitly, since gas will automatically generate them based on the
785 instruction operands.
786 @end itemize
787
788 @node i386-Memory
789 @section Memory References
790
791 @cindex i386 memory references
792 @cindex memory references, i386
793 @cindex x86-64 memory references
794 @cindex memory references, x86-64
795 An Intel syntax indirect memory reference of the form
796
797 @smallexample
798 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
799 @end smallexample
800
801 @noindent
802 is translated into the AT&T syntax
803
804 @smallexample
805 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
806 @end smallexample
807
808 @noindent
809 where @var{base} and @var{index} are the optional 32-bit base and
810 index registers, @var{disp} is the optional displacement, and
811 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
812 to calculate the address of the operand. If no @var{scale} is
813 specified, @var{scale} is taken to be 1. @var{section} specifies the
814 optional section register for the memory operand, and may override the
815 default section register (see a 80386 manual for section register
816 defaults). Note that section overrides in AT&T syntax @emph{must}
817 be preceded by a @samp{%}. If you specify a section override which
818 coincides with the default section register, @code{@value{AS}} does @emph{not}
819 output any section register override prefixes to assemble the given
820 instruction. Thus, section overrides can be specified to emphasize which
821 section register is used for a given memory operand.
822
823 Here are some examples of Intel and AT&T style memory references:
824
825 @table @asis
826 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
827 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
828 missing, and the default section is used (@samp{%ss} for addressing with
829 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
830
831 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
832 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
833 @samp{foo}. All other fields are missing. The section register here
834 defaults to @samp{%ds}.
835
836 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
837 This uses the value pointed to by @samp{foo} as a memory operand.
838 Note that @var{base} and @var{index} are both missing, but there is only
839 @emph{one} @samp{,}. This is a syntactic exception.
840
841 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
842 This selects the contents of the variable @samp{foo} with section
843 register @var{section} being @samp{%gs}.
844 @end table
845
846 Absolute (as opposed to PC relative) call and jump operands must be
847 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
848 always chooses PC relative addressing for jump/call labels.
849
850 Any instruction that has a memory operand, but no register operand,
851 @emph{must} specify its size (byte, word, long, or quadruple) with an
852 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
853 respectively).
854
855 The x86-64 architecture adds an RIP (instruction pointer relative)
856 addressing. This addressing mode is specified by using @samp{rip} as a
857 base register. Only constant offsets are valid. For example:
858
859 @table @asis
860 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
861 Points to the address 1234 bytes past the end of the current
862 instruction.
863
864 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
865 Points to the @code{symbol} in RIP relative way, this is shorter than
866 the default absolute addressing.
867 @end table
868
869 Other addressing modes remain unchanged in x86-64 architecture, except
870 registers used are 64-bit instead of 32-bit.
871
872 @node i386-Jumps
873 @section Handling of Jump Instructions
874
875 @cindex jump optimization, i386
876 @cindex i386 jump optimization
877 @cindex jump optimization, x86-64
878 @cindex x86-64 jump optimization
879 Jump instructions are always optimized to use the smallest possible
880 displacements. This is accomplished by using byte (8-bit) displacement
881 jumps whenever the target is sufficiently close. If a byte displacement
882 is insufficient a long displacement is used. We do not support
883 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
884 instruction with the @samp{data16} instruction prefix), since the 80386
885 insists upon masking @samp{%eip} to 16 bits after the word displacement
886 is added. (See also @pxref{i386-Arch})
887
888 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
889 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
890 displacements, so that if you use these instructions (@code{@value{GCC}} does
891 not use them) you may get an error message (and incorrect code). The AT&T
892 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
893 to
894
895 @smallexample
896 jcxz cx_zero
897 jmp cx_nonzero
898 cx_zero: jmp foo
899 cx_nonzero:
900 @end smallexample
901
902 @node i386-Float
903 @section Floating Point
904
905 @cindex i386 floating point
906 @cindex floating point, i386
907 @cindex x86-64 floating point
908 @cindex floating point, x86-64
909 All 80387 floating point types except packed BCD are supported.
910 (BCD support may be added without much difficulty). These data
911 types are 16-, 32-, and 64- bit integers, and single (32-bit),
912 double (64-bit), and extended (80-bit) precision floating point.
913 Each supported type has an instruction mnemonic suffix and a constructor
914 associated with it. Instruction mnemonic suffixes specify the operand's
915 data type. Constructors build these data types into memory.
916
917 @cindex @code{float} directive, i386
918 @cindex @code{single} directive, i386
919 @cindex @code{double} directive, i386
920 @cindex @code{tfloat} directive, i386
921 @cindex @code{float} directive, x86-64
922 @cindex @code{single} directive, x86-64
923 @cindex @code{double} directive, x86-64
924 @cindex @code{tfloat} directive, x86-64
925 @itemize @bullet
926 @item
927 Floating point constructors are @samp{.float} or @samp{.single},
928 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
929 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
930 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
931 only supports this format via the @samp{fldt} (load 80-bit real to stack
932 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
933
934 @cindex @code{word} directive, i386
935 @cindex @code{long} directive, i386
936 @cindex @code{int} directive, i386
937 @cindex @code{quad} directive, i386
938 @cindex @code{word} directive, x86-64
939 @cindex @code{long} directive, x86-64
940 @cindex @code{int} directive, x86-64
941 @cindex @code{quad} directive, x86-64
942 @item
943 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
944 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
945 corresponding instruction mnemonic suffixes are @samp{s} (single),
946 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
947 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
948 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
949 stack) instructions.
950 @end itemize
951
952 Register to register operations should not use instruction mnemonic suffixes.
953 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
954 wrote @samp{fst %st, %st(1)}, since all register to register operations
955 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
956 which converts @samp{%st} from 80-bit to 64-bit floating point format,
957 then stores the result in the 4 byte location @samp{mem})
958
959 @node i386-SIMD
960 @section Intel's MMX and AMD's 3DNow! SIMD Operations
961
962 @cindex MMX, i386
963 @cindex 3DNow!, i386
964 @cindex SIMD, i386
965 @cindex MMX, x86-64
966 @cindex 3DNow!, x86-64
967 @cindex SIMD, x86-64
968
969 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
970 instructions for integer data), available on Intel's Pentium MMX
971 processors and Pentium II processors, AMD's K6 and K6-2 processors,
972 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
973 instruction set (SIMD instructions for 32-bit floating point data)
974 available on AMD's K6-2 processor and possibly others in the future.
975
976 Currently, @code{@value{AS}} does not support Intel's floating point
977 SIMD, Katmai (KNI).
978
979 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
980 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
981 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
982 floating point values. The MMX registers cannot be used at the same time
983 as the floating point stack.
984
985 See Intel and AMD documentation, keeping in mind that the operand order in
986 instructions is reversed from the Intel syntax.
987
988 @node i386-LWP
989 @section AMD's Lightweight Profiling Instructions
990
991 @cindex LWP, i386
992 @cindex LWP, x86-64
993
994 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
995 instruction set, available on AMD's Family 15h (Orochi) processors.
996
997 LWP enables applications to collect and manage performance data, and
998 react to performance events. The collection of performance data
999 requires no context switches. LWP runs in the context of a thread and
1000 so several counters can be used independently across multiple threads.
1001 LWP can be used in both 64-bit and legacy 32-bit modes.
1002
1003 For detailed information on the LWP instruction set, see the
1004 @cite{AMD Lightweight Profiling Specification} available at
1005 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1006
1007 @node i386-BMI
1008 @section Bit Manipulation Instructions
1009
1010 @cindex BMI, i386
1011 @cindex BMI, x86-64
1012
1013 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1014
1015 BMI instructions provide several instructions implementing individual
1016 bit manipulation operations such as isolation, masking, setting, or
1017 resetting.
1018
1019 @c Need to add a specification citation here when available.
1020
1021 @node i386-TBM
1022 @section AMD's Trailing Bit Manipulation Instructions
1023
1024 @cindex TBM, i386
1025 @cindex TBM, x86-64
1026
1027 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1028 instruction set, available on AMD's BDVER2 processors (Trinity and
1029 Viperfish).
1030
1031 TBM instructions provide instructions implementing individual bit
1032 manipulation operations such as isolating, masking, setting, resetting,
1033 complementing, and operations on trailing zeros and ones.
1034
1035 @c Need to add a specification citation here when available.
1036
1037 @node i386-16bit
1038 @section Writing 16-bit Code
1039
1040 @cindex i386 16-bit code
1041 @cindex 16-bit code, i386
1042 @cindex real-mode code, i386
1043 @cindex @code{code16gcc} directive, i386
1044 @cindex @code{code16} directive, i386
1045 @cindex @code{code32} directive, i386
1046 @cindex @code{code64} directive, i386
1047 @cindex @code{code64} directive, x86-64
1048 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1049 or 64-bit x86-64 code depending on the default configuration,
1050 it also supports writing code to run in real mode or in 16-bit protected
1051 mode code segments. To do this, put a @samp{.code16} or
1052 @samp{.code16gcc} directive before the assembly language instructions to
1053 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1054 32-bit code with the @samp{.code32} directive or 64-bit code with the
1055 @samp{.code64} directive.
1056
1057 @samp{.code16gcc} provides experimental support for generating 16-bit
1058 code from gcc, and differs from @samp{.code16} in that @samp{call},
1059 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1060 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1061 default to 32-bit size. This is so that the stack pointer is
1062 manipulated in the same way over function calls, allowing access to
1063 function parameters at the same stack offsets as in 32-bit mode.
1064 @samp{.code16gcc} also automatically adds address size prefixes where
1065 necessary to use the 32-bit addressing modes that gcc generates.
1066
1067 The code which @code{@value{AS}} generates in 16-bit mode will not
1068 necessarily run on a 16-bit pre-80386 processor. To write code that
1069 runs on such a processor, you must refrain from using @emph{any} 32-bit
1070 constructs which require @code{@value{AS}} to output address or operand
1071 size prefixes.
1072
1073 Note that writing 16-bit code instructions by explicitly specifying a
1074 prefix or an instruction mnemonic suffix within a 32-bit code section
1075 generates different machine instructions than those generated for a
1076 16-bit code segment. In a 32-bit code section, the following code
1077 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1078 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1079
1080 @smallexample
1081 pushw $4
1082 @end smallexample
1083
1084 The same code in a 16-bit code section would generate the machine
1085 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1086 is correct since the processor default operand size is assumed to be 16
1087 bits in a 16-bit code section.
1088
1089 @node i386-Arch
1090 @section Specifying CPU Architecture
1091
1092 @cindex arch directive, i386
1093 @cindex i386 arch directive
1094 @cindex arch directive, x86-64
1095 @cindex x86-64 arch directive
1096
1097 @code{@value{AS}} may be told to assemble for a particular CPU
1098 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1099 directive enables a warning when gas detects an instruction that is not
1100 supported on the CPU specified. The choices for @var{cpu_type} are:
1101
1102 @multitable @columnfractions .20 .20 .20 .20
1103 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1104 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1105 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1106 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1107 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1108 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1109 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1110 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1111 @item @samp{generic32} @tab @samp{generic64}
1112 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1113 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1114 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1115 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1116 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1117 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1118 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1119 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1120 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1121 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1122 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1123 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1124 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1125 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1126 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1127 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1128 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
1129 @end multitable
1130
1131 Apart from the warning, there are only two other effects on
1132 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1133 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1134 will automatically use a two byte opcode sequence. The larger three
1135 byte opcode sequence is used on the 486 (and when no architecture is
1136 specified) because it executes faster on the 486. Note that you can
1137 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1138 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1139 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1140 conditional jumps will be promoted when necessary to a two instruction
1141 sequence consisting of a conditional jump of the opposite sense around
1142 an unconditional jump to the target.
1143
1144 Following the CPU architecture (but not a sub-architecture, which are those
1145 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1146 control automatic promotion of conditional jumps. @samp{jumps} is the
1147 default, and enables jump promotion; All external jumps will be of the long
1148 variety, and file-local jumps will be promoted as necessary.
1149 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1150 byte offset jumps, and warns about file-local conditional jumps that
1151 @code{@value{AS}} promotes.
1152 Unconditional jumps are treated as for @samp{jumps}.
1153
1154 For example
1155
1156 @smallexample
1157 .arch i8086,nojumps
1158 @end smallexample
1159
1160 @node i386-Bugs
1161 @section AT&T Syntax bugs
1162
1163 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1164 assemblers, generate floating point instructions with reversed source
1165 and destination registers in certain cases. Unfortunately, gcc and
1166 possibly many other programs use this reversed syntax, so we're stuck
1167 with it.
1168
1169 For example
1170
1171 @smallexample
1172 fsub %st,%st(3)
1173 @end smallexample
1174 @noindent
1175 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1176 than the expected @samp{%st(3) - %st}. This happens with all the
1177 non-commutative arithmetic floating point operations with two register
1178 operands where the source register is @samp{%st} and the destination
1179 register is @samp{%st(i)}.
1180
1181 @node i386-Notes
1182 @section Notes
1183
1184 @cindex i386 @code{mul}, @code{imul} instructions
1185 @cindex @code{mul} instruction, i386
1186 @cindex @code{imul} instruction, i386
1187 @cindex @code{mul} instruction, x86-64
1188 @cindex @code{imul} instruction, x86-64
1189 There is some trickery concerning the @samp{mul} and @samp{imul}
1190 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1191 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1192 for @samp{imul}) can be output only in the one operand form. Thus,
1193 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1194 the expanding multiply would clobber the @samp{%edx} register, and this
1195 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1196 64-bit product in @samp{%edx:%eax}.
1197
1198 We have added a two operand form of @samp{imul} when the first operand
1199 is an immediate mode expression and the second operand is a register.
1200 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1201 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1202 $69, %eax, %eax}.
1203
This page took 0.071912 seconds and 5 git commands to generate.