Revert "Add -mno-shared to x86 assembler"
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2015 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{no87},
138 @code{mmx},
139 @code{nommx},
140 @code{sse},
141 @code{sse2},
142 @code{sse3},
143 @code{ssse3},
144 @code{sse4.1},
145 @code{sse4.2},
146 @code{sse4},
147 @code{nosse},
148 @code{avx},
149 @code{avx2},
150 @code{adx},
151 @code{rdseed},
152 @code{prfchw},
153 @code{smap},
154 @code{mpx},
155 @code{sha},
156 @code{prefetchwt1},
157 @code{clflushopt},
158 @code{se1},
159 @code{clwb},
160 @code{pcommit},
161 @code{avx512f},
162 @code{avx512cd},
163 @code{avx512er},
164 @code{avx512pf},
165 @code{avx512vl},
166 @code{avx512bw},
167 @code{avx512dq},
168 @code{avx512ifma},
169 @code{avx512vbmi},
170 @code{noavx},
171 @code{vmx},
172 @code{vmfunc},
173 @code{smx},
174 @code{xsave},
175 @code{xsaveopt},
176 @code{xsavec},
177 @code{xsaves},
178 @code{aes},
179 @code{pclmul},
180 @code{fsgsbase},
181 @code{rdrnd},
182 @code{f16c},
183 @code{bmi2},
184 @code{fma},
185 @code{movbe},
186 @code{ept},
187 @code{lzcnt},
188 @code{hle},
189 @code{rtm},
190 @code{invpcid},
191 @code{clflush},
192 @code{clzero},
193 @code{lwp},
194 @code{fma4},
195 @code{xop},
196 @code{cx16},
197 @code{syscall},
198 @code{rdtscp},
199 @code{3dnow},
200 @code{3dnowa},
201 @code{sse4a},
202 @code{sse5},
203 @code{svme},
204 @code{abm} and
205 @code{padlock}.
206 Note that rather than extending a basic instruction set, the extension
207 mnemonics starting with @code{no} revoke the respective functionality.
208
209 When the @code{.arch} directive is used with @option{-march}, the
210 @code{.arch} directive will take precedent.
211
212 @cindex @samp{-mtune=} option, i386
213 @cindex @samp{-mtune=} option, x86-64
214 @item -mtune=@var{CPU}
215 This option specifies a processor to optimize for. When used in
216 conjunction with the @option{-march} option, only instructions
217 of the processor specified by the @option{-march} option will be
218 generated.
219
220 Valid @var{CPU} values are identical to the processor list of
221 @option{-march=@var{CPU}}.
222
223 @cindex @samp{-msse2avx} option, i386
224 @cindex @samp{-msse2avx} option, x86-64
225 @item -msse2avx
226 This option specifies that the assembler should encode SSE instructions
227 with VEX prefix.
228
229 @cindex @samp{-msse-check=} option, i386
230 @cindex @samp{-msse-check=} option, x86-64
231 @item -msse-check=@var{none}
232 @itemx -msse-check=@var{warning}
233 @itemx -msse-check=@var{error}
234 These options control if the assembler should check SSE instructions.
235 @option{-msse-check=@var{none}} will make the assembler not to check SSE
236 instructions, which is the default. @option{-msse-check=@var{warning}}
237 will make the assembler issue a warning for any SSE instruction.
238 @option{-msse-check=@var{error}} will make the assembler issue an error
239 for any SSE instruction.
240
241 @cindex @samp{-mavxscalar=} option, i386
242 @cindex @samp{-mavxscalar=} option, x86-64
243 @item -mavxscalar=@var{128}
244 @itemx -mavxscalar=@var{256}
245 These options control how the assembler should encode scalar AVX
246 instructions. @option{-mavxscalar=@var{128}} will encode scalar
247 AVX instructions with 128bit vector length, which is the default.
248 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
249 with 256bit vector length.
250
251 @cindex @samp{-mevexlig=} option, i386
252 @cindex @samp{-mevexlig=} option, x86-64
253 @item -mevexlig=@var{128}
254 @itemx -mevexlig=@var{256}
255 @itemx -mevexlig=@var{512}
256 These options control how the assembler should encode length-ignored
257 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
258 EVEX instructions with 128bit vector length, which is the default.
259 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
260 encode LIG EVEX instructions with 256bit and 512bit vector length,
261 respectively.
262
263 @cindex @samp{-mevexwig=} option, i386
264 @cindex @samp{-mevexwig=} option, x86-64
265 @item -mevexwig=@var{0}
266 @itemx -mevexwig=@var{1}
267 These options control how the assembler should encode w-ignored (WIG)
268 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
269 EVEX instructions with evex.w = 0, which is the default.
270 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
271 evex.w = 1.
272
273 @cindex @samp{-mmnemonic=} option, i386
274 @cindex @samp{-mmnemonic=} option, x86-64
275 @item -mmnemonic=@var{att}
276 @itemx -mmnemonic=@var{intel}
277 This option specifies instruction mnemonic for matching instructions.
278 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
279 take precedent.
280
281 @cindex @samp{-msyntax=} option, i386
282 @cindex @samp{-msyntax=} option, x86-64
283 @item -msyntax=@var{att}
284 @itemx -msyntax=@var{intel}
285 This option specifies instruction syntax when processing instructions.
286 The @code{.att_syntax} and @code{.intel_syntax} directives will
287 take precedent.
288
289 @cindex @samp{-mnaked-reg} option, i386
290 @cindex @samp{-mnaked-reg} option, x86-64
291 @item -mnaked-reg
292 This opetion specifies that registers don't require a @samp{%} prefix.
293 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
294
295 @cindex @samp{-madd-bnd-prefix} option, i386
296 @cindex @samp{-madd-bnd-prefix} option, x86-64
297 @item -madd-bnd-prefix
298 This option forces the assembler to add BND prefix to all branches, even
299 if such prefix was not explicitly specified in the source code.
300
301 @cindex @samp{-mbig-obj} option, x86-64
302 @item -mbig-obj
303 On x86-64 PE/COFF target this option forces the use of big object file
304 format, which allows more than 32768 sections.
305
306 @cindex @samp{-momit-lock-prefix=} option, i386
307 @cindex @samp{-momit-lock-prefix=} option, x86-64
308 @item -momit-lock-prefix=@var{no}
309 @itemx -momit-lock-prefix=@var{yes}
310 These options control how the assembler should encode lock prefix.
311 This option is intended as a workaround for processors, that fail on
312 lock prefix. This option can only be safely used with single-core,
313 single-thread computers
314 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
315 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
316 which is the default.
317
318 @cindex @samp{-mevexrcig=} option, i386
319 @cindex @samp{-mevexrcig=} option, x86-64
320 @item -mevexrcig=@var{rne}
321 @itemx -mevexrcig=@var{rd}
322 @itemx -mevexrcig=@var{ru}
323 @itemx -mevexrcig=@var{rz}
324 These options control how the assembler should encode SAE-only
325 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
326 of EVEX instruction with 00, which is the default.
327 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
328 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
329 with 01, 10 and 11 RC bits, respectively.
330
331 @end table
332 @c man end
333
334 @node i386-Directives
335 @section x86 specific Directives
336
337 @cindex machine directives, x86
338 @cindex x86 machine directives
339 @table @code
340
341 @cindex @code{lcomm} directive, COFF
342 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
343 Reserve @var{length} (an absolute expression) bytes for a local common
344 denoted by @var{symbol}. The section and value of @var{symbol} are
345 those of the new local common. The addresses are allocated in the bss
346 section, so that at run-time the bytes start off zeroed. Since
347 @var{symbol} is not declared global, it is normally not visible to
348 @code{@value{LD}}. The optional third parameter, @var{alignment},
349 specifies the desired alignment of the symbol in the bss section.
350
351 This directive is only available for COFF based x86 targets.
352
353 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
354 @c .largecomm
355
356 @end table
357
358 @node i386-Syntax
359 @section i386 Syntactical Considerations
360 @menu
361 * i386-Variations:: AT&T Syntax versus Intel Syntax
362 * i386-Chars:: Special Characters
363 @end menu
364
365 @node i386-Variations
366 @subsection AT&T Syntax versus Intel Syntax
367
368 @cindex i386 intel_syntax pseudo op
369 @cindex intel_syntax pseudo op, i386
370 @cindex i386 att_syntax pseudo op
371 @cindex att_syntax pseudo op, i386
372 @cindex i386 syntax compatibility
373 @cindex syntax compatibility, i386
374 @cindex x86-64 intel_syntax pseudo op
375 @cindex intel_syntax pseudo op, x86-64
376 @cindex x86-64 att_syntax pseudo op
377 @cindex att_syntax pseudo op, x86-64
378 @cindex x86-64 syntax compatibility
379 @cindex syntax compatibility, x86-64
380
381 @code{@value{AS}} now supports assembly using Intel assembler syntax.
382 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
383 back to the usual AT&T mode for compatibility with the output of
384 @code{@value{GCC}}. Either of these directives may have an optional
385 argument, @code{prefix}, or @code{noprefix} specifying whether registers
386 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
387 different from Intel syntax. We mention these differences because
388 almost all 80386 documents use Intel syntax. Notable differences
389 between the two syntaxes are:
390
391 @cindex immediate operands, i386
392 @cindex i386 immediate operands
393 @cindex register operands, i386
394 @cindex i386 register operands
395 @cindex jump/call operands, i386
396 @cindex i386 jump/call operands
397 @cindex operand delimiters, i386
398
399 @cindex immediate operands, x86-64
400 @cindex x86-64 immediate operands
401 @cindex register operands, x86-64
402 @cindex x86-64 register operands
403 @cindex jump/call operands, x86-64
404 @cindex x86-64 jump/call operands
405 @cindex operand delimiters, x86-64
406 @itemize @bullet
407 @item
408 AT&T immediate operands are preceded by @samp{$}; Intel immediate
409 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
410 AT&T register operands are preceded by @samp{%}; Intel register operands
411 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
412 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
413
414 @cindex i386 source, destination operands
415 @cindex source, destination operands; i386
416 @cindex x86-64 source, destination operands
417 @cindex source, destination operands; x86-64
418 @item
419 AT&T and Intel syntax use the opposite order for source and destination
420 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
421 @samp{source, dest} convention is maintained for compatibility with
422 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
423 instructions with 2 immediate operands, such as the @samp{enter}
424 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
425
426 @cindex mnemonic suffixes, i386
427 @cindex sizes operands, i386
428 @cindex i386 size suffixes
429 @cindex mnemonic suffixes, x86-64
430 @cindex sizes operands, x86-64
431 @cindex x86-64 size suffixes
432 @item
433 In AT&T syntax the size of memory operands is determined from the last
434 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
435 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
436 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
437 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
438 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
439 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
440 syntax.
441
442 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
443 instruction with the 64-bit displacement or immediate operand.
444
445 @cindex return instructions, i386
446 @cindex i386 jump, call, return
447 @cindex return instructions, x86-64
448 @cindex x86-64 jump, call, return
449 @item
450 Immediate form long jumps and calls are
451 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
452 Intel syntax is
453 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
454 instruction
455 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
456 @samp{ret far @var{stack-adjust}}.
457
458 @cindex sections, i386
459 @cindex i386 sections
460 @cindex sections, x86-64
461 @cindex x86-64 sections
462 @item
463 The AT&T assembler does not provide support for multiple section
464 programs. Unix style systems expect all programs to be single sections.
465 @end itemize
466
467 @node i386-Chars
468 @subsection Special Characters
469
470 @cindex line comment character, i386
471 @cindex i386 line comment character
472 The presence of a @samp{#} appearing anywhere on a line indicates the
473 start of a comment that extends to the end of that line.
474
475 If a @samp{#} appears as the first character of a line then the whole
476 line is treated as a comment, but in this case the line can also be a
477 logical line number directive (@pxref{Comments}) or a preprocessor
478 control command (@pxref{Preprocessing}).
479
480 If the @option{--divide} command line option has not been specified
481 then the @samp{/} character appearing anywhere on a line also
482 introduces a line comment.
483
484 @cindex line separator, i386
485 @cindex statement separator, i386
486 @cindex i386 line separator
487 The @samp{;} character can be used to separate statements on the same
488 line.
489
490 @node i386-Mnemonics
491 @section i386-Mnemonics
492 @subsection Instruction Naming
493
494 @cindex i386 instruction naming
495 @cindex instruction naming, i386
496 @cindex x86-64 instruction naming
497 @cindex instruction naming, x86-64
498
499 Instruction mnemonics are suffixed with one character modifiers which
500 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
501 and @samp{q} specify byte, word, long and quadruple word operands. If
502 no suffix is specified by an instruction then @code{@value{AS}} tries to
503 fill in the missing suffix based on the destination register operand
504 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
505 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
506 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
507 assembler which assumes that a missing mnemonic suffix implies long
508 operand size. (This incompatibility does not affect compiler output
509 since compilers always explicitly specify the mnemonic suffix.)
510
511 Almost all instructions have the same names in AT&T and Intel format.
512 There are a few exceptions. The sign extend and zero extend
513 instructions need two sizes to specify them. They need a size to
514 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
515 is accomplished by using two instruction mnemonic suffixes in AT&T
516 syntax. Base names for sign extend and zero extend are
517 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
518 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
519 are tacked on to this base name, the @emph{from} suffix before the
520 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
521 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
522 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
523 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
524 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
525 quadruple word).
526
527 @cindex encoding options, i386
528 @cindex encoding options, x86-64
529
530 Different encoding options can be specified via optional mnemonic
531 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
532 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
533 prefers 8bit or 32bit displacement in encoding.
534
535 @cindex conversion instructions, i386
536 @cindex i386 conversion instructions
537 @cindex conversion instructions, x86-64
538 @cindex x86-64 conversion instructions
539 The Intel-syntax conversion instructions
540
541 @itemize @bullet
542 @item
543 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
544
545 @item
546 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
547
548 @item
549 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
550
551 @item
552 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
553
554 @item
555 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
556 (x86-64 only),
557
558 @item
559 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
560 @samp{%rdx:%rax} (x86-64 only),
561 @end itemize
562
563 @noindent
564 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
565 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
566 instructions.
567
568 @cindex jump instructions, i386
569 @cindex call instructions, i386
570 @cindex jump instructions, x86-64
571 @cindex call instructions, x86-64
572 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
573 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
574 convention.
575
576 @subsection AT&T Mnemonic versus Intel Mnemonic
577
578 @cindex i386 mnemonic compatibility
579 @cindex mnemonic compatibility, i386
580
581 @code{@value{AS}} supports assembly using Intel mnemonic.
582 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
583 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
584 syntax for compatibility with the output of @code{@value{GCC}}.
585 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
586 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
587 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
588 assembler with different mnemonics from those in Intel IA32 specification.
589 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
590
591 @node i386-Regs
592 @section Register Naming
593
594 @cindex i386 registers
595 @cindex registers, i386
596 @cindex x86-64 registers
597 @cindex registers, x86-64
598 Register operands are always prefixed with @samp{%}. The 80386 registers
599 consist of
600
601 @itemize @bullet
602 @item
603 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
604 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
605 frame pointer), and @samp{%esp} (the stack pointer).
606
607 @item
608 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
609 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
610
611 @item
612 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
613 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
614 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
615 @samp{%cx}, and @samp{%dx})
616
617 @item
618 the 6 section registers @samp{%cs} (code section), @samp{%ds}
619 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
620 and @samp{%gs}.
621
622 @item
623 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
624 @samp{%cr3}.
625
626 @item
627 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
628 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
629
630 @item
631 the 2 test registers @samp{%tr6} and @samp{%tr7}.
632
633 @item
634 the 8 floating point register stack @samp{%st} or equivalently
635 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
636 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
637 These registers are overloaded by 8 MMX registers @samp{%mm0},
638 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
639 @samp{%mm6} and @samp{%mm7}.
640
641 @item
642 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
643 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
644 @end itemize
645
646 The AMD x86-64 architecture extends the register set by:
647
648 @itemize @bullet
649 @item
650 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
651 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
652 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
653 pointer)
654
655 @item
656 the 8 extended registers @samp{%r8}--@samp{%r15}.
657
658 @item
659 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
660
661 @item
662 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
663
664 @item
665 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
666
667 @item
668 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
669
670 @item
671 the 8 debug registers: @samp{%db8}--@samp{%db15}.
672
673 @item
674 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
675 @end itemize
676
677 @node i386-Prefixes
678 @section Instruction Prefixes
679
680 @cindex i386 instruction prefixes
681 @cindex instruction prefixes, i386
682 @cindex prefixes, i386
683 Instruction prefixes are used to modify the following instruction. They
684 are used to repeat string instructions, to provide section overrides, to
685 perform bus lock operations, and to change operand and address sizes.
686 (Most instructions that normally operate on 32-bit operands will use
687 16-bit operands if the instruction has an ``operand size'' prefix.)
688 Instruction prefixes are best written on the same line as the instruction
689 they act upon. For example, the @samp{scas} (scan string) instruction is
690 repeated with:
691
692 @smallexample
693 repne scas %es:(%edi),%al
694 @end smallexample
695
696 You may also place prefixes on the lines immediately preceding the
697 instruction, but this circumvents checks that @code{@value{AS}} does
698 with prefixes, and will not work with all prefixes.
699
700 Here is a list of instruction prefixes:
701
702 @cindex section override prefixes, i386
703 @itemize @bullet
704 @item
705 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
706 @samp{fs}, @samp{gs}. These are automatically added by specifying
707 using the @var{section}:@var{memory-operand} form for memory references.
708
709 @cindex size prefixes, i386
710 @item
711 Operand/Address size prefixes @samp{data16} and @samp{addr16}
712 change 32-bit operands/addresses into 16-bit operands/addresses,
713 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
714 @code{.code16} section) into 32-bit operands/addresses. These prefixes
715 @emph{must} appear on the same line of code as the instruction they
716 modify. For example, in a 16-bit @code{.code16} section, you might
717 write:
718
719 @smallexample
720 addr32 jmpl *(%ebx)
721 @end smallexample
722
723 @cindex bus lock prefixes, i386
724 @cindex inhibiting interrupts, i386
725 @item
726 The bus lock prefix @samp{lock} inhibits interrupts during execution of
727 the instruction it precedes. (This is only valid with certain
728 instructions; see a 80386 manual for details).
729
730 @cindex coprocessor wait, i386
731 @item
732 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
733 complete the current instruction. This should never be needed for the
734 80386/80387 combination.
735
736 @cindex repeat prefixes, i386
737 @item
738 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
739 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
740 times if the current address size is 16-bits).
741 @cindex REX prefixes, i386
742 @item
743 The @samp{rex} family of prefixes is used by x86-64 to encode
744 extensions to i386 instruction set. The @samp{rex} prefix has four
745 bits --- an operand size overwrite (@code{64}) used to change operand size
746 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
747 register set.
748
749 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
750 instruction emits @samp{rex} prefix with all the bits set. By omitting
751 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
752 prefixes as well. Normally, there is no need to write the prefixes
753 explicitly, since gas will automatically generate them based on the
754 instruction operands.
755 @end itemize
756
757 @node i386-Memory
758 @section Memory References
759
760 @cindex i386 memory references
761 @cindex memory references, i386
762 @cindex x86-64 memory references
763 @cindex memory references, x86-64
764 An Intel syntax indirect memory reference of the form
765
766 @smallexample
767 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
768 @end smallexample
769
770 @noindent
771 is translated into the AT&T syntax
772
773 @smallexample
774 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
775 @end smallexample
776
777 @noindent
778 where @var{base} and @var{index} are the optional 32-bit base and
779 index registers, @var{disp} is the optional displacement, and
780 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
781 to calculate the address of the operand. If no @var{scale} is
782 specified, @var{scale} is taken to be 1. @var{section} specifies the
783 optional section register for the memory operand, and may override the
784 default section register (see a 80386 manual for section register
785 defaults). Note that section overrides in AT&T syntax @emph{must}
786 be preceded by a @samp{%}. If you specify a section override which
787 coincides with the default section register, @code{@value{AS}} does @emph{not}
788 output any section register override prefixes to assemble the given
789 instruction. Thus, section overrides can be specified to emphasize which
790 section register is used for a given memory operand.
791
792 Here are some examples of Intel and AT&T style memory references:
793
794 @table @asis
795 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
796 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
797 missing, and the default section is used (@samp{%ss} for addressing with
798 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
799
800 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
801 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
802 @samp{foo}. All other fields are missing. The section register here
803 defaults to @samp{%ds}.
804
805 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
806 This uses the value pointed to by @samp{foo} as a memory operand.
807 Note that @var{base} and @var{index} are both missing, but there is only
808 @emph{one} @samp{,}. This is a syntactic exception.
809
810 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
811 This selects the contents of the variable @samp{foo} with section
812 register @var{section} being @samp{%gs}.
813 @end table
814
815 Absolute (as opposed to PC relative) call and jump operands must be
816 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
817 always chooses PC relative addressing for jump/call labels.
818
819 Any instruction that has a memory operand, but no register operand,
820 @emph{must} specify its size (byte, word, long, or quadruple) with an
821 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
822 respectively).
823
824 The x86-64 architecture adds an RIP (instruction pointer relative)
825 addressing. This addressing mode is specified by using @samp{rip} as a
826 base register. Only constant offsets are valid. For example:
827
828 @table @asis
829 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
830 Points to the address 1234 bytes past the end of the current
831 instruction.
832
833 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
834 Points to the @code{symbol} in RIP relative way, this is shorter than
835 the default absolute addressing.
836 @end table
837
838 Other addressing modes remain unchanged in x86-64 architecture, except
839 registers used are 64-bit instead of 32-bit.
840
841 @node i386-Jumps
842 @section Handling of Jump Instructions
843
844 @cindex jump optimization, i386
845 @cindex i386 jump optimization
846 @cindex jump optimization, x86-64
847 @cindex x86-64 jump optimization
848 Jump instructions are always optimized to use the smallest possible
849 displacements. This is accomplished by using byte (8-bit) displacement
850 jumps whenever the target is sufficiently close. If a byte displacement
851 is insufficient a long displacement is used. We do not support
852 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
853 instruction with the @samp{data16} instruction prefix), since the 80386
854 insists upon masking @samp{%eip} to 16 bits after the word displacement
855 is added. (See also @pxref{i386-Arch})
856
857 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
858 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
859 displacements, so that if you use these instructions (@code{@value{GCC}} does
860 not use them) you may get an error message (and incorrect code). The AT&T
861 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
862 to
863
864 @smallexample
865 jcxz cx_zero
866 jmp cx_nonzero
867 cx_zero: jmp foo
868 cx_nonzero:
869 @end smallexample
870
871 @node i386-Float
872 @section Floating Point
873
874 @cindex i386 floating point
875 @cindex floating point, i386
876 @cindex x86-64 floating point
877 @cindex floating point, x86-64
878 All 80387 floating point types except packed BCD are supported.
879 (BCD support may be added without much difficulty). These data
880 types are 16-, 32-, and 64- bit integers, and single (32-bit),
881 double (64-bit), and extended (80-bit) precision floating point.
882 Each supported type has an instruction mnemonic suffix and a constructor
883 associated with it. Instruction mnemonic suffixes specify the operand's
884 data type. Constructors build these data types into memory.
885
886 @cindex @code{float} directive, i386
887 @cindex @code{single} directive, i386
888 @cindex @code{double} directive, i386
889 @cindex @code{tfloat} directive, i386
890 @cindex @code{float} directive, x86-64
891 @cindex @code{single} directive, x86-64
892 @cindex @code{double} directive, x86-64
893 @cindex @code{tfloat} directive, x86-64
894 @itemize @bullet
895 @item
896 Floating point constructors are @samp{.float} or @samp{.single},
897 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
898 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
899 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
900 only supports this format via the @samp{fldt} (load 80-bit real to stack
901 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
902
903 @cindex @code{word} directive, i386
904 @cindex @code{long} directive, i386
905 @cindex @code{int} directive, i386
906 @cindex @code{quad} directive, i386
907 @cindex @code{word} directive, x86-64
908 @cindex @code{long} directive, x86-64
909 @cindex @code{int} directive, x86-64
910 @cindex @code{quad} directive, x86-64
911 @item
912 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
913 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
914 corresponding instruction mnemonic suffixes are @samp{s} (single),
915 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
916 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
917 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
918 stack) instructions.
919 @end itemize
920
921 Register to register operations should not use instruction mnemonic suffixes.
922 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
923 wrote @samp{fst %st, %st(1)}, since all register to register operations
924 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
925 which converts @samp{%st} from 80-bit to 64-bit floating point format,
926 then stores the result in the 4 byte location @samp{mem})
927
928 @node i386-SIMD
929 @section Intel's MMX and AMD's 3DNow! SIMD Operations
930
931 @cindex MMX, i386
932 @cindex 3DNow!, i386
933 @cindex SIMD, i386
934 @cindex MMX, x86-64
935 @cindex 3DNow!, x86-64
936 @cindex SIMD, x86-64
937
938 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
939 instructions for integer data), available on Intel's Pentium MMX
940 processors and Pentium II processors, AMD's K6 and K6-2 processors,
941 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
942 instruction set (SIMD instructions for 32-bit floating point data)
943 available on AMD's K6-2 processor and possibly others in the future.
944
945 Currently, @code{@value{AS}} does not support Intel's floating point
946 SIMD, Katmai (KNI).
947
948 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
949 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
950 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
951 floating point values. The MMX registers cannot be used at the same time
952 as the floating point stack.
953
954 See Intel and AMD documentation, keeping in mind that the operand order in
955 instructions is reversed from the Intel syntax.
956
957 @node i386-LWP
958 @section AMD's Lightweight Profiling Instructions
959
960 @cindex LWP, i386
961 @cindex LWP, x86-64
962
963 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
964 instruction set, available on AMD's Family 15h (Orochi) processors.
965
966 LWP enables applications to collect and manage performance data, and
967 react to performance events. The collection of performance data
968 requires no context switches. LWP runs in the context of a thread and
969 so several counters can be used independently across multiple threads.
970 LWP can be used in both 64-bit and legacy 32-bit modes.
971
972 For detailed information on the LWP instruction set, see the
973 @cite{AMD Lightweight Profiling Specification} available at
974 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
975
976 @node i386-BMI
977 @section Bit Manipulation Instructions
978
979 @cindex BMI, i386
980 @cindex BMI, x86-64
981
982 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
983
984 BMI instructions provide several instructions implementing individual
985 bit manipulation operations such as isolation, masking, setting, or
986 resetting.
987
988 @c Need to add a specification citation here when available.
989
990 @node i386-TBM
991 @section AMD's Trailing Bit Manipulation Instructions
992
993 @cindex TBM, i386
994 @cindex TBM, x86-64
995
996 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
997 instruction set, available on AMD's BDVER2 processors (Trinity and
998 Viperfish).
999
1000 TBM instructions provide instructions implementing individual bit
1001 manipulation operations such as isolating, masking, setting, resetting,
1002 complementing, and operations on trailing zeros and ones.
1003
1004 @c Need to add a specification citation here when available.
1005
1006 @node i386-16bit
1007 @section Writing 16-bit Code
1008
1009 @cindex i386 16-bit code
1010 @cindex 16-bit code, i386
1011 @cindex real-mode code, i386
1012 @cindex @code{code16gcc} directive, i386
1013 @cindex @code{code16} directive, i386
1014 @cindex @code{code32} directive, i386
1015 @cindex @code{code64} directive, i386
1016 @cindex @code{code64} directive, x86-64
1017 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1018 or 64-bit x86-64 code depending on the default configuration,
1019 it also supports writing code to run in real mode or in 16-bit protected
1020 mode code segments. To do this, put a @samp{.code16} or
1021 @samp{.code16gcc} directive before the assembly language instructions to
1022 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1023 32-bit code with the @samp{.code32} directive or 64-bit code with the
1024 @samp{.code64} directive.
1025
1026 @samp{.code16gcc} provides experimental support for generating 16-bit
1027 code from gcc, and differs from @samp{.code16} in that @samp{call},
1028 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1029 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1030 default to 32-bit size. This is so that the stack pointer is
1031 manipulated in the same way over function calls, allowing access to
1032 function parameters at the same stack offsets as in 32-bit mode.
1033 @samp{.code16gcc} also automatically adds address size prefixes where
1034 necessary to use the 32-bit addressing modes that gcc generates.
1035
1036 The code which @code{@value{AS}} generates in 16-bit mode will not
1037 necessarily run on a 16-bit pre-80386 processor. To write code that
1038 runs on such a processor, you must refrain from using @emph{any} 32-bit
1039 constructs which require @code{@value{AS}} to output address or operand
1040 size prefixes.
1041
1042 Note that writing 16-bit code instructions by explicitly specifying a
1043 prefix or an instruction mnemonic suffix within a 32-bit code section
1044 generates different machine instructions than those generated for a
1045 16-bit code segment. In a 32-bit code section, the following code
1046 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1047 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1048
1049 @smallexample
1050 pushw $4
1051 @end smallexample
1052
1053 The same code in a 16-bit code section would generate the machine
1054 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1055 is correct since the processor default operand size is assumed to be 16
1056 bits in a 16-bit code section.
1057
1058 @node i386-Arch
1059 @section Specifying CPU Architecture
1060
1061 @cindex arch directive, i386
1062 @cindex i386 arch directive
1063 @cindex arch directive, x86-64
1064 @cindex x86-64 arch directive
1065
1066 @code{@value{AS}} may be told to assemble for a particular CPU
1067 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1068 directive enables a warning when gas detects an instruction that is not
1069 supported on the CPU specified. The choices for @var{cpu_type} are:
1070
1071 @multitable @columnfractions .20 .20 .20 .20
1072 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1073 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1074 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1075 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1076 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1077 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1078 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1079 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1080 @item @samp{generic32} @tab @samp{generic64}
1081 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1082 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1083 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1084 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1085 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1086 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1087 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1088 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1089 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1090 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1091 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1092 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1093 @item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1094 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1095 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1096 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1097 @item @samp{.padlock} @tab @samp{.clzero}
1098 @end multitable
1099
1100 Apart from the warning, there are only two other effects on
1101 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1102 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1103 will automatically use a two byte opcode sequence. The larger three
1104 byte opcode sequence is used on the 486 (and when no architecture is
1105 specified) because it executes faster on the 486. Note that you can
1106 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1107 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1108 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1109 conditional jumps will be promoted when necessary to a two instruction
1110 sequence consisting of a conditional jump of the opposite sense around
1111 an unconditional jump to the target.
1112
1113 Following the CPU architecture (but not a sub-architecture, which are those
1114 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1115 control automatic promotion of conditional jumps. @samp{jumps} is the
1116 default, and enables jump promotion; All external jumps will be of the long
1117 variety, and file-local jumps will be promoted as necessary.
1118 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1119 byte offset jumps, and warns about file-local conditional jumps that
1120 @code{@value{AS}} promotes.
1121 Unconditional jumps are treated as for @samp{jumps}.
1122
1123 For example
1124
1125 @smallexample
1126 .arch i8086,nojumps
1127 @end smallexample
1128
1129 @node i386-Bugs
1130 @section AT&T Syntax bugs
1131
1132 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1133 assemblers, generate floating point instructions with reversed source
1134 and destination registers in certain cases. Unfortunately, gcc and
1135 possibly many other programs use this reversed syntax, so we're stuck
1136 with it.
1137
1138 For example
1139
1140 @smallexample
1141 fsub %st,%st(3)
1142 @end smallexample
1143 @noindent
1144 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1145 than the expected @samp{%st(3) - %st}. This happens with all the
1146 non-commutative arithmetic floating point operations with two register
1147 operands where the source register is @samp{%st} and the destination
1148 register is @samp{%st(i)}.
1149
1150 @node i386-Notes
1151 @section Notes
1152
1153 @cindex i386 @code{mul}, @code{imul} instructions
1154 @cindex @code{mul} instruction, i386
1155 @cindex @code{imul} instruction, i386
1156 @cindex @code{mul} instruction, x86-64
1157 @cindex @code{imul} instruction, x86-64
1158 There is some trickery concerning the @samp{mul} and @samp{imul}
1159 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1160 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1161 for @samp{imul}) can be output only in the one operand form. Thus,
1162 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1163 the expanding multiply would clobber the @samp{%edx} register, and this
1164 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1165 64-bit product in @samp{%edx:%eax}.
1166
1167 We have added a two operand form of @samp{imul} when the first operand
1168 is an immediate mode expression and the second operand is a register.
1169 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1170 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1171 $69, %eax, %eax}.
1172
This page took 0.088318 seconds and 5 git commands to generate.