[GAS][AARCH64]Fix a typo for IP1 register alias.
[deliverable/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2017 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
41 * i386-Notes:: Notes
42 @end menu
43
44 @node i386-Options
45 @section Options
46
47 @cindex options for i386
48 @cindex options for x86-64
49 @cindex i386 options
50 @cindex x86-64 options
51
52 The i386 version of @code{@value{AS}} has a few machine
53 dependent options:
54
55 @c man begin OPTIONS
56 @table @gcctabopt
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67 respectively.
68
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
73
74 @item -n
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
78
79 @cindex @samp{--divide} option, i386
80 @item --divide
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
86
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
94 @code{i8086},
95 @code{i186},
96 @code{i286},
97 @code{i386},
98 @code{i486},
99 @code{i586},
100 @code{i686},
101 @code{pentium},
102 @code{pentiumpro},
103 @code{pentiumii},
104 @code{pentiumiii},
105 @code{pentium4},
106 @code{prescott},
107 @code{nocona},
108 @code{core},
109 @code{core2},
110 @code{corei7},
111 @code{l1om},
112 @code{k1om},
113 @code{iamcu},
114 @code{k6},
115 @code{k6_2},
116 @code{athlon},
117 @code{opteron},
118 @code{k8},
119 @code{amdfam10},
120 @code{bdver1},
121 @code{bdver2},
122 @code{bdver3},
123 @code{bdver4},
124 @code{znver1},
125 @code{btver1},
126 @code{btver2},
127 @code{generic32} and
128 @code{generic64}.
129
130 In addition to the basic instruction set, the assembler can be told to
131 accept various extension mnemonics. For example,
132 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133 @var{vmx}. The following extensions are currently supported:
134 @code{8087},
135 @code{287},
136 @code{387},
137 @code{687},
138 @code{no87},
139 @code{no287},
140 @code{no387},
141 @code{no687},
142 @code{mmx},
143 @code{nommx},
144 @code{sse},
145 @code{sse2},
146 @code{sse3},
147 @code{ssse3},
148 @code{sse4.1},
149 @code{sse4.2},
150 @code{sse4},
151 @code{nosse},
152 @code{nosse2},
153 @code{nosse3},
154 @code{nossse3},
155 @code{nosse4.1},
156 @code{nosse4.2},
157 @code{nosse4},
158 @code{avx},
159 @code{avx2},
160 @code{noavx},
161 @code{noavx2},
162 @code{adx},
163 @code{rdseed},
164 @code{prfchw},
165 @code{smap},
166 @code{mpx},
167 @code{sha},
168 @code{rdpid},
169 @code{ptwrite},
170 @code{cet},
171 @code{gfni},
172 @code{vaes},
173 @code{vpclmulqdq},
174 @code{prefetchwt1},
175 @code{clflushopt},
176 @code{se1},
177 @code{clwb},
178 @code{avx512f},
179 @code{avx512cd},
180 @code{avx512er},
181 @code{avx512pf},
182 @code{avx512vl},
183 @code{avx512bw},
184 @code{avx512dq},
185 @code{avx512ifma},
186 @code{avx512vbmi},
187 @code{avx512_4fmaps},
188 @code{avx512_4vnniw},
189 @code{avx512_vpopcntdq},
190 @code{avx512_vbmi2},
191 @code{avx512_vnni},
192 @code{avx512_bitalg},
193 @code{noavx512f},
194 @code{noavx512cd},
195 @code{noavx512er},
196 @code{noavx512pf},
197 @code{noavx512vl},
198 @code{noavx512bw},
199 @code{noavx512dq},
200 @code{noavx512ifma},
201 @code{noavx512vbmi},
202 @code{noavx512_4fmaps},
203 @code{noavx512_4vnniw},
204 @code{noavx512_vpopcntdq},
205 @code{noavx512_vbmi2},
206 @code{noavx512_vnni},
207 @code{noavx512_bitalg},
208 @code{vmx},
209 @code{vmfunc},
210 @code{smx},
211 @code{xsave},
212 @code{xsaveopt},
213 @code{xsavec},
214 @code{xsaves},
215 @code{aes},
216 @code{pclmul},
217 @code{fsgsbase},
218 @code{rdrnd},
219 @code{f16c},
220 @code{bmi2},
221 @code{fma},
222 @code{movbe},
223 @code{ept},
224 @code{lzcnt},
225 @code{hle},
226 @code{rtm},
227 @code{invpcid},
228 @code{clflush},
229 @code{mwaitx},
230 @code{clzero},
231 @code{lwp},
232 @code{fma4},
233 @code{xop},
234 @code{cx16},
235 @code{syscall},
236 @code{rdtscp},
237 @code{3dnow},
238 @code{3dnowa},
239 @code{sse4a},
240 @code{sse5},
241 @code{svme},
242 @code{abm} and
243 @code{padlock}.
244 Note that rather than extending a basic instruction set, the extension
245 mnemonics starting with @code{no} revoke the respective functionality.
246
247 When the @code{.arch} directive is used with @option{-march}, the
248 @code{.arch} directive will take precedent.
249
250 @cindex @samp{-mtune=} option, i386
251 @cindex @samp{-mtune=} option, x86-64
252 @item -mtune=@var{CPU}
253 This option specifies a processor to optimize for. When used in
254 conjunction with the @option{-march} option, only instructions
255 of the processor specified by the @option{-march} option will be
256 generated.
257
258 Valid @var{CPU} values are identical to the processor list of
259 @option{-march=@var{CPU}}.
260
261 @cindex @samp{-msse2avx} option, i386
262 @cindex @samp{-msse2avx} option, x86-64
263 @item -msse2avx
264 This option specifies that the assembler should encode SSE instructions
265 with VEX prefix.
266
267 @cindex @samp{-msse-check=} option, i386
268 @cindex @samp{-msse-check=} option, x86-64
269 @item -msse-check=@var{none}
270 @itemx -msse-check=@var{warning}
271 @itemx -msse-check=@var{error}
272 These options control if the assembler should check SSE instructions.
273 @option{-msse-check=@var{none}} will make the assembler not to check SSE
274 instructions, which is the default. @option{-msse-check=@var{warning}}
275 will make the assembler issue a warning for any SSE instruction.
276 @option{-msse-check=@var{error}} will make the assembler issue an error
277 for any SSE instruction.
278
279 @cindex @samp{-mavxscalar=} option, i386
280 @cindex @samp{-mavxscalar=} option, x86-64
281 @item -mavxscalar=@var{128}
282 @itemx -mavxscalar=@var{256}
283 These options control how the assembler should encode scalar AVX
284 instructions. @option{-mavxscalar=@var{128}} will encode scalar
285 AVX instructions with 128bit vector length, which is the default.
286 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
287 with 256bit vector length.
288
289 @cindex @samp{-mevexlig=} option, i386
290 @cindex @samp{-mevexlig=} option, x86-64
291 @item -mevexlig=@var{128}
292 @itemx -mevexlig=@var{256}
293 @itemx -mevexlig=@var{512}
294 These options control how the assembler should encode length-ignored
295 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
296 EVEX instructions with 128bit vector length, which is the default.
297 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
298 encode LIG EVEX instructions with 256bit and 512bit vector length,
299 respectively.
300
301 @cindex @samp{-mevexwig=} option, i386
302 @cindex @samp{-mevexwig=} option, x86-64
303 @item -mevexwig=@var{0}
304 @itemx -mevexwig=@var{1}
305 These options control how the assembler should encode w-ignored (WIG)
306 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
307 EVEX instructions with evex.w = 0, which is the default.
308 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
309 evex.w = 1.
310
311 @cindex @samp{-mmnemonic=} option, i386
312 @cindex @samp{-mmnemonic=} option, x86-64
313 @item -mmnemonic=@var{att}
314 @itemx -mmnemonic=@var{intel}
315 This option specifies instruction mnemonic for matching instructions.
316 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
317 take precedent.
318
319 @cindex @samp{-msyntax=} option, i386
320 @cindex @samp{-msyntax=} option, x86-64
321 @item -msyntax=@var{att}
322 @itemx -msyntax=@var{intel}
323 This option specifies instruction syntax when processing instructions.
324 The @code{.att_syntax} and @code{.intel_syntax} directives will
325 take precedent.
326
327 @cindex @samp{-mnaked-reg} option, i386
328 @cindex @samp{-mnaked-reg} option, x86-64
329 @item -mnaked-reg
330 This option specifies that registers don't require a @samp{%} prefix.
331 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
332
333 @cindex @samp{-madd-bnd-prefix} option, i386
334 @cindex @samp{-madd-bnd-prefix} option, x86-64
335 @item -madd-bnd-prefix
336 This option forces the assembler to add BND prefix to all branches, even
337 if such prefix was not explicitly specified in the source code.
338
339 @cindex @samp{-mshared} option, i386
340 @cindex @samp{-mshared} option, x86-64
341 @item -mno-shared
342 On ELF target, the assembler normally optimizes out non-PLT relocations
343 against defined non-weak global branch targets with default visibility.
344 The @samp{-mshared} option tells the assembler to generate code which
345 may go into a shared library where all non-weak global branch targets
346 with default visibility can be preempted. The resulting code is
347 slightly bigger. This option only affects the handling of branch
348 instructions.
349
350 @cindex @samp{-mbig-obj} option, x86-64
351 @item -mbig-obj
352 On x86-64 PE/COFF target this option forces the use of big object file
353 format, which allows more than 32768 sections.
354
355 @cindex @samp{-momit-lock-prefix=} option, i386
356 @cindex @samp{-momit-lock-prefix=} option, x86-64
357 @item -momit-lock-prefix=@var{no}
358 @itemx -momit-lock-prefix=@var{yes}
359 These options control how the assembler should encode lock prefix.
360 This option is intended as a workaround for processors, that fail on
361 lock prefix. This option can only be safely used with single-core,
362 single-thread computers
363 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
364 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
365 which is the default.
366
367 @cindex @samp{-mfence-as-lock-add=} option, i386
368 @cindex @samp{-mfence-as-lock-add=} option, x86-64
369 @item -mfence-as-lock-add=@var{no}
370 @itemx -mfence-as-lock-add=@var{yes}
371 These options control how the assembler should encode lfence, mfence and
372 sfence.
373 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
374 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
375 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
376 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
377 sfence as usual, which is the default.
378
379 @cindex @samp{-mrelax-relocations=} option, i386
380 @cindex @samp{-mrelax-relocations=} option, x86-64
381 @item -mrelax-relocations=@var{no}
382 @itemx -mrelax-relocations=@var{yes}
383 These options control whether the assembler should generate relax
384 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
385 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
386 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
387 @option{-mrelax-relocations=@var{no}} will not generate relax
388 relocations. The default can be controlled by a configure option
389 @option{--enable-x86-relax-relocations}.
390
391 @cindex @samp{-mevexrcig=} option, i386
392 @cindex @samp{-mevexrcig=} option, x86-64
393 @item -mevexrcig=@var{rne}
394 @itemx -mevexrcig=@var{rd}
395 @itemx -mevexrcig=@var{ru}
396 @itemx -mevexrcig=@var{rz}
397 These options control how the assembler should encode SAE-only
398 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
399 of EVEX instruction with 00, which is the default.
400 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
401 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
402 with 01, 10 and 11 RC bits, respectively.
403
404 @cindex @samp{-mamd64} option, x86-64
405 @cindex @samp{-mintel64} option, x86-64
406 @item -mamd64
407 @itemx -mintel64
408 This option specifies that the assembler should accept only AMD64 or
409 Intel64 ISA in 64-bit mode. The default is to accept both.
410
411 @end table
412 @c man end
413
414 @node i386-Directives
415 @section x86 specific Directives
416
417 @cindex machine directives, x86
418 @cindex x86 machine directives
419 @table @code
420
421 @cindex @code{lcomm} directive, COFF
422 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
423 Reserve @var{length} (an absolute expression) bytes for a local common
424 denoted by @var{symbol}. The section and value of @var{symbol} are
425 those of the new local common. The addresses are allocated in the bss
426 section, so that at run-time the bytes start off zeroed. Since
427 @var{symbol} is not declared global, it is normally not visible to
428 @code{@value{LD}}. The optional third parameter, @var{alignment},
429 specifies the desired alignment of the symbol in the bss section.
430
431 This directive is only available for COFF based x86 targets.
432
433 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
434 @c .largecomm
435
436 @end table
437
438 @node i386-Syntax
439 @section i386 Syntactical Considerations
440 @menu
441 * i386-Variations:: AT&T Syntax versus Intel Syntax
442 * i386-Chars:: Special Characters
443 @end menu
444
445 @node i386-Variations
446 @subsection AT&T Syntax versus Intel Syntax
447
448 @cindex i386 intel_syntax pseudo op
449 @cindex intel_syntax pseudo op, i386
450 @cindex i386 att_syntax pseudo op
451 @cindex att_syntax pseudo op, i386
452 @cindex i386 syntax compatibility
453 @cindex syntax compatibility, i386
454 @cindex x86-64 intel_syntax pseudo op
455 @cindex intel_syntax pseudo op, x86-64
456 @cindex x86-64 att_syntax pseudo op
457 @cindex att_syntax pseudo op, x86-64
458 @cindex x86-64 syntax compatibility
459 @cindex syntax compatibility, x86-64
460
461 @code{@value{AS}} now supports assembly using Intel assembler syntax.
462 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
463 back to the usual AT&T mode for compatibility with the output of
464 @code{@value{GCC}}. Either of these directives may have an optional
465 argument, @code{prefix}, or @code{noprefix} specifying whether registers
466 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
467 different from Intel syntax. We mention these differences because
468 almost all 80386 documents use Intel syntax. Notable differences
469 between the two syntaxes are:
470
471 @cindex immediate operands, i386
472 @cindex i386 immediate operands
473 @cindex register operands, i386
474 @cindex i386 register operands
475 @cindex jump/call operands, i386
476 @cindex i386 jump/call operands
477 @cindex operand delimiters, i386
478
479 @cindex immediate operands, x86-64
480 @cindex x86-64 immediate operands
481 @cindex register operands, x86-64
482 @cindex x86-64 register operands
483 @cindex jump/call operands, x86-64
484 @cindex x86-64 jump/call operands
485 @cindex operand delimiters, x86-64
486 @itemize @bullet
487 @item
488 AT&T immediate operands are preceded by @samp{$}; Intel immediate
489 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
490 AT&T register operands are preceded by @samp{%}; Intel register operands
491 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
492 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
493
494 @cindex i386 source, destination operands
495 @cindex source, destination operands; i386
496 @cindex x86-64 source, destination operands
497 @cindex source, destination operands; x86-64
498 @item
499 AT&T and Intel syntax use the opposite order for source and destination
500 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
501 @samp{source, dest} convention is maintained for compatibility with
502 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
503 instructions with 2 immediate operands, such as the @samp{enter}
504 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
505
506 @cindex mnemonic suffixes, i386
507 @cindex sizes operands, i386
508 @cindex i386 size suffixes
509 @cindex mnemonic suffixes, x86-64
510 @cindex sizes operands, x86-64
511 @cindex x86-64 size suffixes
512 @item
513 In AT&T syntax the size of memory operands is determined from the last
514 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
515 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
516 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
517 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
518 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
519 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
520 syntax.
521
522 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
523 instruction with the 64-bit displacement or immediate operand.
524
525 @cindex return instructions, i386
526 @cindex i386 jump, call, return
527 @cindex return instructions, x86-64
528 @cindex x86-64 jump, call, return
529 @item
530 Immediate form long jumps and calls are
531 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
532 Intel syntax is
533 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
534 instruction
535 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
536 @samp{ret far @var{stack-adjust}}.
537
538 @cindex sections, i386
539 @cindex i386 sections
540 @cindex sections, x86-64
541 @cindex x86-64 sections
542 @item
543 The AT&T assembler does not provide support for multiple section
544 programs. Unix style systems expect all programs to be single sections.
545 @end itemize
546
547 @node i386-Chars
548 @subsection Special Characters
549
550 @cindex line comment character, i386
551 @cindex i386 line comment character
552 The presence of a @samp{#} appearing anywhere on a line indicates the
553 start of a comment that extends to the end of that line.
554
555 If a @samp{#} appears as the first character of a line then the whole
556 line is treated as a comment, but in this case the line can also be a
557 logical line number directive (@pxref{Comments}) or a preprocessor
558 control command (@pxref{Preprocessing}).
559
560 If the @option{--divide} command line option has not been specified
561 then the @samp{/} character appearing anywhere on a line also
562 introduces a line comment.
563
564 @cindex line separator, i386
565 @cindex statement separator, i386
566 @cindex i386 line separator
567 The @samp{;} character can be used to separate statements on the same
568 line.
569
570 @node i386-Mnemonics
571 @section i386-Mnemonics
572 @subsection Instruction Naming
573
574 @cindex i386 instruction naming
575 @cindex instruction naming, i386
576 @cindex x86-64 instruction naming
577 @cindex instruction naming, x86-64
578
579 Instruction mnemonics are suffixed with one character modifiers which
580 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
581 and @samp{q} specify byte, word, long and quadruple word operands. If
582 no suffix is specified by an instruction then @code{@value{AS}} tries to
583 fill in the missing suffix based on the destination register operand
584 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
585 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
586 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
587 assembler which assumes that a missing mnemonic suffix implies long
588 operand size. (This incompatibility does not affect compiler output
589 since compilers always explicitly specify the mnemonic suffix.)
590
591 Almost all instructions have the same names in AT&T and Intel format.
592 There are a few exceptions. The sign extend and zero extend
593 instructions need two sizes to specify them. They need a size to
594 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
595 is accomplished by using two instruction mnemonic suffixes in AT&T
596 syntax. Base names for sign extend and zero extend are
597 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
598 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
599 are tacked on to this base name, the @emph{from} suffix before the
600 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
601 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
602 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
603 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
604 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
605 quadruple word).
606
607 @cindex encoding options, i386
608 @cindex encoding options, x86-64
609
610 Different encoding options can be specified via pseudo prefixes:
611
612 @itemize @bullet
613 @item
614 @samp{@{disp8@}} -- prefer 8-bit displacement.
615
616 @item
617 @samp{@{disp32@}} -- prefer 32-bit displacement.
618
619 @item
620 @samp{@{load@}} -- prefer load-form instruction.
621
622 @item
623 @samp{@{store@}} -- prefer store-form instruction.
624
625 @item
626 @samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
627
628 @item
629 @samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
630
631 @item
632 @samp{@{evex@}} -- encode with EVEX prefix.
633 @end itemize
634
635 @cindex conversion instructions, i386
636 @cindex i386 conversion instructions
637 @cindex conversion instructions, x86-64
638 @cindex x86-64 conversion instructions
639 The Intel-syntax conversion instructions
640
641 @itemize @bullet
642 @item
643 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
644
645 @item
646 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
647
648 @item
649 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
650
651 @item
652 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
653
654 @item
655 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
656 (x86-64 only),
657
658 @item
659 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
660 @samp{%rdx:%rax} (x86-64 only),
661 @end itemize
662
663 @noindent
664 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
665 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
666 instructions.
667
668 @cindex jump instructions, i386
669 @cindex call instructions, i386
670 @cindex jump instructions, x86-64
671 @cindex call instructions, x86-64
672 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
673 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
674 convention.
675
676 @subsection AT&T Mnemonic versus Intel Mnemonic
677
678 @cindex i386 mnemonic compatibility
679 @cindex mnemonic compatibility, i386
680
681 @code{@value{AS}} supports assembly using Intel mnemonic.
682 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
683 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
684 syntax for compatibility with the output of @code{@value{GCC}}.
685 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
686 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
687 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
688 assembler with different mnemonics from those in Intel IA32 specification.
689 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
690
691 @node i386-Regs
692 @section Register Naming
693
694 @cindex i386 registers
695 @cindex registers, i386
696 @cindex x86-64 registers
697 @cindex registers, x86-64
698 Register operands are always prefixed with @samp{%}. The 80386 registers
699 consist of
700
701 @itemize @bullet
702 @item
703 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
704 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
705 frame pointer), and @samp{%esp} (the stack pointer).
706
707 @item
708 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
709 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
710
711 @item
712 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
713 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
714 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
715 @samp{%cx}, and @samp{%dx})
716
717 @item
718 the 6 section registers @samp{%cs} (code section), @samp{%ds}
719 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
720 and @samp{%gs}.
721
722 @item
723 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
724 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
725
726 @item
727 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
728 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
729
730 @item
731 the 2 test registers @samp{%tr6} and @samp{%tr7}.
732
733 @item
734 the 8 floating point register stack @samp{%st} or equivalently
735 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
736 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
737 These registers are overloaded by 8 MMX registers @samp{%mm0},
738 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
739 @samp{%mm6} and @samp{%mm7}.
740
741 @item
742 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
743 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
744 @end itemize
745
746 The AMD x86-64 architecture extends the register set by:
747
748 @itemize @bullet
749 @item
750 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
751 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
752 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
753 pointer)
754
755 @item
756 the 8 extended registers @samp{%r8}--@samp{%r15}.
757
758 @item
759 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
760
761 @item
762 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
763
764 @item
765 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
766
767 @item
768 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
769
770 @item
771 the 8 debug registers: @samp{%db8}--@samp{%db15}.
772
773 @item
774 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
775 @end itemize
776
777 With the AVX extensions more registers were made available:
778
779 @itemize @bullet
780
781 @item
782 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
783 available in 32-bit mode). The bottom 128 bits are overlaid with the
784 @samp{xmm0}--@samp{xmm15} registers.
785
786 @end itemize
787
788 The AVX2 extensions made in 64-bit mode more registers available:
789
790 @itemize @bullet
791
792 @item
793 the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
794 registers @samp{%ymm16}--@samp{%ymm31}.
795
796 @end itemize
797
798 The AVX512 extensions added the following registers:
799
800 @itemize @bullet
801
802 @item
803 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
804 available in 32-bit mode). The bottom 128 bits are overlaid with the
805 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
806 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
807
808 @item
809 the 8 mask registers @samp{%k0}--@samp{%k7}.
810
811 @end itemize
812
813 @node i386-Prefixes
814 @section Instruction Prefixes
815
816 @cindex i386 instruction prefixes
817 @cindex instruction prefixes, i386
818 @cindex prefixes, i386
819 Instruction prefixes are used to modify the following instruction. They
820 are used to repeat string instructions, to provide section overrides, to
821 perform bus lock operations, and to change operand and address sizes.
822 (Most instructions that normally operate on 32-bit operands will use
823 16-bit operands if the instruction has an ``operand size'' prefix.)
824 Instruction prefixes are best written on the same line as the instruction
825 they act upon. For example, the @samp{scas} (scan string) instruction is
826 repeated with:
827
828 @smallexample
829 repne scas %es:(%edi),%al
830 @end smallexample
831
832 You may also place prefixes on the lines immediately preceding the
833 instruction, but this circumvents checks that @code{@value{AS}} does
834 with prefixes, and will not work with all prefixes.
835
836 Here is a list of instruction prefixes:
837
838 @cindex section override prefixes, i386
839 @itemize @bullet
840 @item
841 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
842 @samp{fs}, @samp{gs}. These are automatically added by specifying
843 using the @var{section}:@var{memory-operand} form for memory references.
844
845 @cindex size prefixes, i386
846 @item
847 Operand/Address size prefixes @samp{data16} and @samp{addr16}
848 change 32-bit operands/addresses into 16-bit operands/addresses,
849 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
850 @code{.code16} section) into 32-bit operands/addresses. These prefixes
851 @emph{must} appear on the same line of code as the instruction they
852 modify. For example, in a 16-bit @code{.code16} section, you might
853 write:
854
855 @smallexample
856 addr32 jmpl *(%ebx)
857 @end smallexample
858
859 @cindex bus lock prefixes, i386
860 @cindex inhibiting interrupts, i386
861 @item
862 The bus lock prefix @samp{lock} inhibits interrupts during execution of
863 the instruction it precedes. (This is only valid with certain
864 instructions; see a 80386 manual for details).
865
866 @cindex coprocessor wait, i386
867 @item
868 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
869 complete the current instruction. This should never be needed for the
870 80386/80387 combination.
871
872 @cindex repeat prefixes, i386
873 @item
874 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
875 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
876 times if the current address size is 16-bits).
877 @cindex REX prefixes, i386
878 @item
879 The @samp{rex} family of prefixes is used by x86-64 to encode
880 extensions to i386 instruction set. The @samp{rex} prefix has four
881 bits --- an operand size overwrite (@code{64}) used to change operand size
882 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
883 register set.
884
885 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
886 instruction emits @samp{rex} prefix with all the bits set. By omitting
887 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
888 prefixes as well. Normally, there is no need to write the prefixes
889 explicitly, since gas will automatically generate them based on the
890 instruction operands.
891 @end itemize
892
893 @node i386-Memory
894 @section Memory References
895
896 @cindex i386 memory references
897 @cindex memory references, i386
898 @cindex x86-64 memory references
899 @cindex memory references, x86-64
900 An Intel syntax indirect memory reference of the form
901
902 @smallexample
903 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
904 @end smallexample
905
906 @noindent
907 is translated into the AT&T syntax
908
909 @smallexample
910 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
911 @end smallexample
912
913 @noindent
914 where @var{base} and @var{index} are the optional 32-bit base and
915 index registers, @var{disp} is the optional displacement, and
916 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
917 to calculate the address of the operand. If no @var{scale} is
918 specified, @var{scale} is taken to be 1. @var{section} specifies the
919 optional section register for the memory operand, and may override the
920 default section register (see a 80386 manual for section register
921 defaults). Note that section overrides in AT&T syntax @emph{must}
922 be preceded by a @samp{%}. If you specify a section override which
923 coincides with the default section register, @code{@value{AS}} does @emph{not}
924 output any section register override prefixes to assemble the given
925 instruction. Thus, section overrides can be specified to emphasize which
926 section register is used for a given memory operand.
927
928 Here are some examples of Intel and AT&T style memory references:
929
930 @table @asis
931 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
932 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
933 missing, and the default section is used (@samp{%ss} for addressing with
934 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
935
936 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
937 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
938 @samp{foo}. All other fields are missing. The section register here
939 defaults to @samp{%ds}.
940
941 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
942 This uses the value pointed to by @samp{foo} as a memory operand.
943 Note that @var{base} and @var{index} are both missing, but there is only
944 @emph{one} @samp{,}. This is a syntactic exception.
945
946 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
947 This selects the contents of the variable @samp{foo} with section
948 register @var{section} being @samp{%gs}.
949 @end table
950
951 Absolute (as opposed to PC relative) call and jump operands must be
952 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
953 always chooses PC relative addressing for jump/call labels.
954
955 Any instruction that has a memory operand, but no register operand,
956 @emph{must} specify its size (byte, word, long, or quadruple) with an
957 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
958 respectively).
959
960 The x86-64 architecture adds an RIP (instruction pointer relative)
961 addressing. This addressing mode is specified by using @samp{rip} as a
962 base register. Only constant offsets are valid. For example:
963
964 @table @asis
965 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
966 Points to the address 1234 bytes past the end of the current
967 instruction.
968
969 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
970 Points to the @code{symbol} in RIP relative way, this is shorter than
971 the default absolute addressing.
972 @end table
973
974 Other addressing modes remain unchanged in x86-64 architecture, except
975 registers used are 64-bit instead of 32-bit.
976
977 @node i386-Jumps
978 @section Handling of Jump Instructions
979
980 @cindex jump optimization, i386
981 @cindex i386 jump optimization
982 @cindex jump optimization, x86-64
983 @cindex x86-64 jump optimization
984 Jump instructions are always optimized to use the smallest possible
985 displacements. This is accomplished by using byte (8-bit) displacement
986 jumps whenever the target is sufficiently close. If a byte displacement
987 is insufficient a long displacement is used. We do not support
988 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
989 instruction with the @samp{data16} instruction prefix), since the 80386
990 insists upon masking @samp{%eip} to 16 bits after the word displacement
991 is added. (See also @pxref{i386-Arch})
992
993 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
994 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
995 displacements, so that if you use these instructions (@code{@value{GCC}} does
996 not use them) you may get an error message (and incorrect code). The AT&T
997 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
998 to
999
1000 @smallexample
1001 jcxz cx_zero
1002 jmp cx_nonzero
1003 cx_zero: jmp foo
1004 cx_nonzero:
1005 @end smallexample
1006
1007 @node i386-Float
1008 @section Floating Point
1009
1010 @cindex i386 floating point
1011 @cindex floating point, i386
1012 @cindex x86-64 floating point
1013 @cindex floating point, x86-64
1014 All 80387 floating point types except packed BCD are supported.
1015 (BCD support may be added without much difficulty). These data
1016 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1017 double (64-bit), and extended (80-bit) precision floating point.
1018 Each supported type has an instruction mnemonic suffix and a constructor
1019 associated with it. Instruction mnemonic suffixes specify the operand's
1020 data type. Constructors build these data types into memory.
1021
1022 @cindex @code{float} directive, i386
1023 @cindex @code{single} directive, i386
1024 @cindex @code{double} directive, i386
1025 @cindex @code{tfloat} directive, i386
1026 @cindex @code{float} directive, x86-64
1027 @cindex @code{single} directive, x86-64
1028 @cindex @code{double} directive, x86-64
1029 @cindex @code{tfloat} directive, x86-64
1030 @itemize @bullet
1031 @item
1032 Floating point constructors are @samp{.float} or @samp{.single},
1033 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1034 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1035 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1036 only supports this format via the @samp{fldt} (load 80-bit real to stack
1037 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1038
1039 @cindex @code{word} directive, i386
1040 @cindex @code{long} directive, i386
1041 @cindex @code{int} directive, i386
1042 @cindex @code{quad} directive, i386
1043 @cindex @code{word} directive, x86-64
1044 @cindex @code{long} directive, x86-64
1045 @cindex @code{int} directive, x86-64
1046 @cindex @code{quad} directive, x86-64
1047 @item
1048 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1049 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1050 corresponding instruction mnemonic suffixes are @samp{s} (single),
1051 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1052 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1053 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1054 stack) instructions.
1055 @end itemize
1056
1057 Register to register operations should not use instruction mnemonic suffixes.
1058 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1059 wrote @samp{fst %st, %st(1)}, since all register to register operations
1060 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1061 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1062 then stores the result in the 4 byte location @samp{mem})
1063
1064 @node i386-SIMD
1065 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1066
1067 @cindex MMX, i386
1068 @cindex 3DNow!, i386
1069 @cindex SIMD, i386
1070 @cindex MMX, x86-64
1071 @cindex 3DNow!, x86-64
1072 @cindex SIMD, x86-64
1073
1074 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1075 instructions for integer data), available on Intel's Pentium MMX
1076 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1077 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1078 instruction set (SIMD instructions for 32-bit floating point data)
1079 available on AMD's K6-2 processor and possibly others in the future.
1080
1081 Currently, @code{@value{AS}} does not support Intel's floating point
1082 SIMD, Katmai (KNI).
1083
1084 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1085 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1086 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1087 floating point values. The MMX registers cannot be used at the same time
1088 as the floating point stack.
1089
1090 See Intel and AMD documentation, keeping in mind that the operand order in
1091 instructions is reversed from the Intel syntax.
1092
1093 @node i386-LWP
1094 @section AMD's Lightweight Profiling Instructions
1095
1096 @cindex LWP, i386
1097 @cindex LWP, x86-64
1098
1099 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1100 instruction set, available on AMD's Family 15h (Orochi) processors.
1101
1102 LWP enables applications to collect and manage performance data, and
1103 react to performance events. The collection of performance data
1104 requires no context switches. LWP runs in the context of a thread and
1105 so several counters can be used independently across multiple threads.
1106 LWP can be used in both 64-bit and legacy 32-bit modes.
1107
1108 For detailed information on the LWP instruction set, see the
1109 @cite{AMD Lightweight Profiling Specification} available at
1110 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1111
1112 @node i386-BMI
1113 @section Bit Manipulation Instructions
1114
1115 @cindex BMI, i386
1116 @cindex BMI, x86-64
1117
1118 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1119
1120 BMI instructions provide several instructions implementing individual
1121 bit manipulation operations such as isolation, masking, setting, or
1122 resetting.
1123
1124 @c Need to add a specification citation here when available.
1125
1126 @node i386-TBM
1127 @section AMD's Trailing Bit Manipulation Instructions
1128
1129 @cindex TBM, i386
1130 @cindex TBM, x86-64
1131
1132 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1133 instruction set, available on AMD's BDVER2 processors (Trinity and
1134 Viperfish).
1135
1136 TBM instructions provide instructions implementing individual bit
1137 manipulation operations such as isolating, masking, setting, resetting,
1138 complementing, and operations on trailing zeros and ones.
1139
1140 @c Need to add a specification citation here when available.
1141
1142 @node i386-16bit
1143 @section Writing 16-bit Code
1144
1145 @cindex i386 16-bit code
1146 @cindex 16-bit code, i386
1147 @cindex real-mode code, i386
1148 @cindex @code{code16gcc} directive, i386
1149 @cindex @code{code16} directive, i386
1150 @cindex @code{code32} directive, i386
1151 @cindex @code{code64} directive, i386
1152 @cindex @code{code64} directive, x86-64
1153 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1154 or 64-bit x86-64 code depending on the default configuration,
1155 it also supports writing code to run in real mode or in 16-bit protected
1156 mode code segments. To do this, put a @samp{.code16} or
1157 @samp{.code16gcc} directive before the assembly language instructions to
1158 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1159 32-bit code with the @samp{.code32} directive or 64-bit code with the
1160 @samp{.code64} directive.
1161
1162 @samp{.code16gcc} provides experimental support for generating 16-bit
1163 code from gcc, and differs from @samp{.code16} in that @samp{call},
1164 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1165 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1166 default to 32-bit size. This is so that the stack pointer is
1167 manipulated in the same way over function calls, allowing access to
1168 function parameters at the same stack offsets as in 32-bit mode.
1169 @samp{.code16gcc} also automatically adds address size prefixes where
1170 necessary to use the 32-bit addressing modes that gcc generates.
1171
1172 The code which @code{@value{AS}} generates in 16-bit mode will not
1173 necessarily run on a 16-bit pre-80386 processor. To write code that
1174 runs on such a processor, you must refrain from using @emph{any} 32-bit
1175 constructs which require @code{@value{AS}} to output address or operand
1176 size prefixes.
1177
1178 Note that writing 16-bit code instructions by explicitly specifying a
1179 prefix or an instruction mnemonic suffix within a 32-bit code section
1180 generates different machine instructions than those generated for a
1181 16-bit code segment. In a 32-bit code section, the following code
1182 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1183 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1184
1185 @smallexample
1186 pushw $4
1187 @end smallexample
1188
1189 The same code in a 16-bit code section would generate the machine
1190 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1191 is correct since the processor default operand size is assumed to be 16
1192 bits in a 16-bit code section.
1193
1194 @node i386-Arch
1195 @section Specifying CPU Architecture
1196
1197 @cindex arch directive, i386
1198 @cindex i386 arch directive
1199 @cindex arch directive, x86-64
1200 @cindex x86-64 arch directive
1201
1202 @code{@value{AS}} may be told to assemble for a particular CPU
1203 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1204 directive enables a warning when gas detects an instruction that is not
1205 supported on the CPU specified. The choices for @var{cpu_type} are:
1206
1207 @multitable @columnfractions .20 .20 .20 .20
1208 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1209 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1210 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1211 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1212 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1213 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1214 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1215 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1216 @item @samp{generic32} @tab @samp{generic64}
1217 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1218 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1219 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1220 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1221 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1222 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1223 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1224 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1225 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1226 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1227 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1228 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1229 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1230 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1231 @item @samp{.avx512_bitalg}
1232 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.cet}
1233 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1234 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1235 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1236 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.gfni}
1237 @item @samp{.vaes} @tab @samp{.vpclmulqdq}
1238 @end multitable
1239
1240 Apart from the warning, there are only two other effects on
1241 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1242 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1243 will automatically use a two byte opcode sequence. The larger three
1244 byte opcode sequence is used on the 486 (and when no architecture is
1245 specified) because it executes faster on the 486. Note that you can
1246 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1247 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1248 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1249 conditional jumps will be promoted when necessary to a two instruction
1250 sequence consisting of a conditional jump of the opposite sense around
1251 an unconditional jump to the target.
1252
1253 Following the CPU architecture (but not a sub-architecture, which are those
1254 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1255 control automatic promotion of conditional jumps. @samp{jumps} is the
1256 default, and enables jump promotion; All external jumps will be of the long
1257 variety, and file-local jumps will be promoted as necessary.
1258 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1259 byte offset jumps, and warns about file-local conditional jumps that
1260 @code{@value{AS}} promotes.
1261 Unconditional jumps are treated as for @samp{jumps}.
1262
1263 For example
1264
1265 @smallexample
1266 .arch i8086,nojumps
1267 @end smallexample
1268
1269 @node i386-Bugs
1270 @section AT&T Syntax bugs
1271
1272 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1273 assemblers, generate floating point instructions with reversed source
1274 and destination registers in certain cases. Unfortunately, gcc and
1275 possibly many other programs use this reversed syntax, so we're stuck
1276 with it.
1277
1278 For example
1279
1280 @smallexample
1281 fsub %st,%st(3)
1282 @end smallexample
1283 @noindent
1284 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1285 than the expected @samp{%st(3) - %st}. This happens with all the
1286 non-commutative arithmetic floating point operations with two register
1287 operands where the source register is @samp{%st} and the destination
1288 register is @samp{%st(i)}.
1289
1290 @node i386-Notes
1291 @section Notes
1292
1293 @cindex i386 @code{mul}, @code{imul} instructions
1294 @cindex @code{mul} instruction, i386
1295 @cindex @code{imul} instruction, i386
1296 @cindex @code{mul} instruction, x86-64
1297 @cindex @code{imul} instruction, x86-64
1298 There is some trickery concerning the @samp{mul} and @samp{imul}
1299 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1300 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1301 for @samp{imul}) can be output only in the one operand form. Thus,
1302 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1303 the expanding multiply would clobber the @samp{%edx} register, and this
1304 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1305 64-bit product in @samp{%edx:%eax}.
1306
1307 We have added a two operand form of @samp{imul} when the first operand
1308 is an immediate mode expression and the second operand is a register.
1309 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1310 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1311 $69, %eax, %eax}.
1312
This page took 0.057158 seconds and 5 git commands to generate.