* target.c (dummy_target): Don't initialize statically.
[deliverable/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987, 90, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*
23 * This is really a branch office of as-read.c. I split it out to clearly
24 * distinguish the world of expressions from the world of statements.
25 * (It also gives smaller files to re-compile.)
26 * Here, "operand"s are of expressions, not instructions.
27 */
28
29 #include <ctype.h>
30 #include <string.h>
31 #define min(a, b) ((a) < (b) ? (a) : (b))
32
33 #include "as.h"
34 #include "obstack.h"
35
36 static void floating_constant PARAMS ((expressionS * expressionP));
37 static void integer_constant PARAMS ((int radix, expressionS * expressionP));
38 static void mri_char_constant PARAMS ((expressionS *));
39 static void current_location PARAMS ((expressionS *));
40 static void clean_up_expression PARAMS ((expressionS * expressionP));
41 static segT operand PARAMS ((expressionS *));
42 static operatorT operator PARAMS ((void));
43
44 extern const char EXP_CHARS[], FLT_CHARS[];
45
46 /* We keep a mapping of expression symbols to file positions, so that
47 we can provide better error messages. */
48
49 struct expr_symbol_line
50 {
51 struct expr_symbol_line *next;
52 symbolS *sym;
53 char *file;
54 unsigned int line;
55 };
56
57 static struct expr_symbol_line *expr_symbol_lines;
58 \f
59 /* Build a dummy symbol to hold a complex expression. This is how we
60 build expressions up out of other expressions. The symbol is put
61 into the fake section expr_section. */
62
63 symbolS *
64 make_expr_symbol (expressionP)
65 expressionS *expressionP;
66 {
67 expressionS zero;
68 const char *fake;
69 symbolS *symbolP;
70 struct expr_symbol_line *n;
71
72 if (expressionP->X_op == O_symbol
73 && expressionP->X_add_number == 0)
74 return expressionP->X_add_symbol;
75
76 if (expressionP->X_op == O_big)
77 {
78 /* This won't work, because the actual value is stored in
79 generic_floating_point_number or generic_bignum, and we are
80 going to lose it if we haven't already. */
81 if (expressionP->X_add_number > 0)
82 as_bad (_("bignum invalid; zero assumed"));
83 else
84 as_bad (_("floating point number invalid; zero assumed"));
85 zero.X_op = O_constant;
86 zero.X_add_number = 0;
87 zero.X_unsigned = 0;
88 clean_up_expression (&zero);
89 expressionP = &zero;
90 }
91
92 fake = FAKE_LABEL_NAME;
93
94 /* Putting constant symbols in absolute_section rather than
95 expr_section is convenient for the old a.out code, for which
96 S_GET_SEGMENT does not always retrieve the value put in by
97 S_SET_SEGMENT. */
98 symbolP = symbol_create (fake,
99 (expressionP->X_op == O_constant
100 ? absolute_section
101 : expr_section),
102 0, &zero_address_frag);
103 symbolP->sy_value = *expressionP;
104
105 if (expressionP->X_op == O_constant)
106 resolve_symbol_value (symbolP, 1);
107
108 n = (struct expr_symbol_line *) xmalloc (sizeof *n);
109 n->sym = symbolP;
110 as_where (&n->file, &n->line);
111 n->next = expr_symbol_lines;
112 expr_symbol_lines = n;
113
114 return symbolP;
115 }
116
117 /* Return the file and line number for an expr symbol. Return
118 non-zero if something was found, 0 if no information is known for
119 the symbol. */
120
121 int
122 expr_symbol_where (sym, pfile, pline)
123 symbolS *sym;
124 char **pfile;
125 unsigned int *pline;
126 {
127 register struct expr_symbol_line *l;
128
129 for (l = expr_symbol_lines; l != NULL; l = l->next)
130 {
131 if (l->sym == sym)
132 {
133 *pfile = l->file;
134 *pline = l->line;
135 return 1;
136 }
137 }
138
139 return 0;
140 }
141 \f
142 /* Utilities for building expressions.
143 Since complex expressions are recorded as symbols for use in other
144 expressions these return a symbolS * and not an expressionS *.
145 These explicitly do not take an "add_number" argument. */
146 /* ??? For completeness' sake one might want expr_build_symbol.
147 It would just return its argument. */
148
149 /* Build an expression for an unsigned constant.
150 The corresponding one for signed constants is missing because
151 there's currently no need for it. One could add an unsigned_p flag
152 but that seems more clumsy. */
153
154 symbolS *
155 expr_build_uconstant (value)
156 offsetT value;
157 {
158 expressionS e;
159
160 e.X_op = O_constant;
161 e.X_add_number = value;
162 e.X_unsigned = 1;
163 return make_expr_symbol (&e);
164 }
165
166 /* Build an expression for OP s1. */
167
168 symbolS *
169 expr_build_unary (op, s1)
170 operatorT op;
171 symbolS *s1;
172 {
173 expressionS e;
174
175 e.X_op = op;
176 e.X_add_symbol = s1;
177 e.X_add_number = 0;
178 return make_expr_symbol (&e);
179 }
180
181 /* Build an expression for s1 OP s2. */
182
183 symbolS *
184 expr_build_binary (op, s1, s2)
185 operatorT op;
186 symbolS *s1;
187 symbolS *s2;
188 {
189 expressionS e;
190
191 e.X_op = op;
192 e.X_add_symbol = s1;
193 e.X_op_symbol = s2;
194 e.X_add_number = 0;
195 return make_expr_symbol (&e);
196 }
197
198 /* Build an expression for the current location ('.'). */
199
200 symbolS *
201 expr_build_dot ()
202 {
203 expressionS e;
204
205 current_location (&e);
206 return make_expr_symbol (&e);
207 }
208 \f
209 /*
210 * Build any floating-point literal here.
211 * Also build any bignum literal here.
212 */
213
214 /* Seems atof_machine can backscan through generic_bignum and hit whatever
215 happens to be loaded before it in memory. And its way too complicated
216 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
217 and never write into the early words, thus they'll always be zero.
218 I hate Dean's floating-point code. Bleh. */
219 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
220 FLONUM_TYPE generic_floating_point_number =
221 {
222 &generic_bignum[6], /* low (JF: Was 0) */
223 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high JF: (added +6) */
224 0, /* leader */
225 0, /* exponent */
226 0 /* sign */
227 };
228 /* If nonzero, we've been asked to assemble nan, +inf or -inf */
229 int generic_floating_point_magic;
230 \f
231 static void
232 floating_constant (expressionP)
233 expressionS *expressionP;
234 {
235 /* input_line_pointer->*/
236 /* floating-point constant. */
237 int error_code;
238
239 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
240 &generic_floating_point_number);
241
242 if (error_code)
243 {
244 if (error_code == ERROR_EXPONENT_OVERFLOW)
245 {
246 as_bad (_("bad floating-point constant: exponent overflow, probably assembling junk"));
247 }
248 else
249 {
250 as_bad (_("bad floating-point constant: unknown error code=%d."), error_code);
251 }
252 }
253 expressionP->X_op = O_big;
254 /* input_line_pointer->just after constant, */
255 /* which may point to whitespace. */
256 expressionP->X_add_number = -1;
257 }
258
259 static valueT
260 generic_bignum_to_int32 ()
261 {
262 valueT number =
263 ((generic_bignum[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
264 | (generic_bignum[0] & LITTLENUM_MASK);
265 number &= 0xffffffff;
266 return number;
267 }
268
269 #ifdef BFD64
270 static valueT
271 generic_bignum_to_int64 ()
272 {
273 valueT number =
274 ((((((((valueT) generic_bignum[3] & LITTLENUM_MASK)
275 << LITTLENUM_NUMBER_OF_BITS)
276 | ((valueT) generic_bignum[2] & LITTLENUM_MASK))
277 << LITTLENUM_NUMBER_OF_BITS)
278 | ((valueT) generic_bignum[1] & LITTLENUM_MASK))
279 << LITTLENUM_NUMBER_OF_BITS)
280 | ((valueT) generic_bignum[0] & LITTLENUM_MASK));
281 return number;
282 }
283 #endif
284
285 static void
286 integer_constant (radix, expressionP)
287 int radix;
288 expressionS *expressionP;
289 {
290 char *start; /* start of number. */
291 char *suffix = NULL;
292 char c;
293 valueT number; /* offset or (absolute) value */
294 short int digit; /* value of next digit in current radix */
295 short int maxdig = 0;/* highest permitted digit value. */
296 int too_many_digits = 0; /* if we see >= this number of */
297 char *name; /* points to name of symbol */
298 symbolS *symbolP; /* points to symbol */
299
300 int small; /* true if fits in 32 bits. */
301
302 /* May be bignum, or may fit in 32 bits. */
303 /* Most numbers fit into 32 bits, and we want this case to be fast.
304 so we pretend it will fit into 32 bits. If, after making up a 32
305 bit number, we realise that we have scanned more digits than
306 comfortably fit into 32 bits, we re-scan the digits coding them
307 into a bignum. For decimal and octal numbers we are
308 conservative: Some numbers may be assumed bignums when in fact
309 they do fit into 32 bits. Numbers of any radix can have excess
310 leading zeros: We strive to recognise this and cast them back
311 into 32 bits. We must check that the bignum really is more than
312 32 bits, and change it back to a 32-bit number if it fits. The
313 number we are looking for is expected to be positive, but if it
314 fits into 32 bits as an unsigned number, we let it be a 32-bit
315 number. The cavalier approach is for speed in ordinary cases. */
316 /* This has been extended for 64 bits. We blindly assume that if
317 you're compiling in 64-bit mode, the target is a 64-bit machine.
318 This should be cleaned up. */
319
320 #ifdef BFD64
321 #define valuesize 64
322 #else /* includes non-bfd case, mostly */
323 #define valuesize 32
324 #endif
325
326 if (flag_m68k_mri && radix == 0)
327 {
328 int flt = 0;
329
330 /* In MRI mode, the number may have a suffix indicating the
331 radix. For that matter, it might actually be a floating
332 point constant. */
333 for (suffix = input_line_pointer;
334 isalnum ((unsigned char) *suffix);
335 suffix++)
336 {
337 if (*suffix == 'e' || *suffix == 'E')
338 flt = 1;
339 }
340
341 if (suffix == input_line_pointer)
342 {
343 radix = 10;
344 suffix = NULL;
345 }
346 else
347 {
348 c = *--suffix;
349 if (islower ((unsigned char) c))
350 c = toupper (c);
351 if (c == 'B')
352 radix = 2;
353 else if (c == 'D')
354 radix = 10;
355 else if (c == 'O' || c == 'Q')
356 radix = 8;
357 else if (c == 'H')
358 radix = 16;
359 else if (suffix[1] == '.' || c == 'E' || flt)
360 {
361 floating_constant (expressionP);
362 return;
363 }
364 else
365 {
366 radix = 10;
367 suffix = NULL;
368 }
369 }
370 }
371
372 switch (radix)
373 {
374 case 2:
375 maxdig = 2;
376 too_many_digits = valuesize + 1;
377 break;
378 case 8:
379 maxdig = radix = 8;
380 too_many_digits = (valuesize + 2) / 3 + 1;
381 break;
382 case 16:
383 maxdig = radix = 16;
384 too_many_digits = (valuesize + 3) / 4 + 1;
385 break;
386 case 10:
387 maxdig = radix = 10;
388 too_many_digits = (valuesize + 12) / 4; /* very rough */
389 }
390 #undef valuesize
391 start = input_line_pointer;
392 c = *input_line_pointer++;
393 for (number = 0;
394 (digit = hex_value (c)) < maxdig;
395 c = *input_line_pointer++)
396 {
397 number = number * radix + digit;
398 }
399 /* c contains character after number. */
400 /* input_line_pointer->char after c. */
401 small = (input_line_pointer - start - 1) < too_many_digits;
402
403 if (radix == 16 && c == '_')
404 {
405 /* This is literal of the form 0x333_0_12345678_1.
406 This example is equivalent to 0x00000333000000001234567800000001. */
407
408 int num_little_digits = 0;
409 int i;
410 input_line_pointer = start; /*->1st digit. */
411
412 know (LITTLENUM_NUMBER_OF_BITS == 16);
413
414 for (c = '_'; c == '_'; num_little_digits+=2)
415 {
416
417 /* Convert one 64-bit word. */
418 int ndigit = 0;
419 number = 0;
420 for (c = *input_line_pointer++;
421 (digit = hex_value (c)) < maxdig;
422 c = *(input_line_pointer++))
423 {
424 number = number * radix + digit;
425 ndigit++;
426 }
427
428 /* Check for 8 digit per word max. */
429 if (ndigit > 8)
430 as_bad (_("A bignum with underscores may not have more than 8 hex digits in any word."));
431
432 /* Add this chunk to the bignum. Shift things down 2 little digits.*/
433 know (LITTLENUM_NUMBER_OF_BITS == 16);
434 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1); i >= 2; i--)
435 generic_bignum[i] = generic_bignum[i-2];
436
437 /* Add the new digits as the least significant new ones. */
438 generic_bignum[0] = number & 0xffffffff;
439 generic_bignum[1] = number >> 16;
440 }
441
442 /* Again, c is char after number, input_line_pointer->after c. */
443
444 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
445 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
446
447 assert (num_little_digits >= 4);
448
449 if (num_little_digits != 8)
450 as_bad (_("A bignum with underscores must have exactly 4 words."));
451
452 /* We might have some leading zeros. These can be trimmed to give
453 * us a change to fit this constant into a small number.
454 */
455 while (generic_bignum[num_little_digits-1] == 0 && num_little_digits > 1)
456 num_little_digits--;
457
458 if (num_little_digits <= 2)
459 {
460 /* will fit into 32 bits. */
461 number = generic_bignum_to_int32 ();
462 small = 1;
463 }
464 #ifdef BFD64
465 else if (num_little_digits <= 4)
466 {
467 /* Will fit into 64 bits. */
468 number = generic_bignum_to_int64 ();
469 small = 1;
470 }
471 #endif
472 else
473 {
474 small = 0;
475 number = num_little_digits; /* number of littlenums in the bignum. */
476 }
477 }
478 else if (!small)
479 {
480 /*
481 * we saw a lot of digits. manufacture a bignum the hard way.
482 */
483 LITTLENUM_TYPE *leader; /*->high order littlenum of the bignum. */
484 LITTLENUM_TYPE *pointer; /*->littlenum we are frobbing now. */
485 long carry;
486
487 leader = generic_bignum;
488 generic_bignum[0] = 0;
489 generic_bignum[1] = 0;
490 generic_bignum[2] = 0;
491 generic_bignum[3] = 0;
492 input_line_pointer = start; /*->1st digit. */
493 c = *input_line_pointer++;
494 for (;
495 (carry = hex_value (c)) < maxdig;
496 c = *input_line_pointer++)
497 {
498 for (pointer = generic_bignum;
499 pointer <= leader;
500 pointer++)
501 {
502 long work;
503
504 work = carry + radix * *pointer;
505 *pointer = work & LITTLENUM_MASK;
506 carry = work >> LITTLENUM_NUMBER_OF_BITS;
507 }
508 if (carry)
509 {
510 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
511 {
512 /* room to grow a longer bignum. */
513 *++leader = carry;
514 }
515 }
516 }
517 /* again, c is char after number, */
518 /* input_line_pointer->after c. */
519 know (LITTLENUM_NUMBER_OF_BITS == 16);
520 if (leader < generic_bignum + 2)
521 {
522 /* will fit into 32 bits. */
523 number = generic_bignum_to_int32 ();
524 small = 1;
525 }
526 #ifdef BFD64
527 else if (leader < generic_bignum + 4)
528 {
529 /* Will fit into 64 bits. */
530 number = generic_bignum_to_int64 ();
531 small = 1;
532 }
533 #endif
534 else
535 {
536 number = leader - generic_bignum + 1; /* number of littlenums in the bignum. */
537 }
538 }
539
540 if (flag_m68k_mri && suffix != NULL && input_line_pointer - 1 == suffix)
541 c = *input_line_pointer++;
542
543 if (small)
544 {
545 /*
546 * here with number, in correct radix. c is the next char.
547 * note that unlike un*x, we allow "011f" "0x9f" to
548 * both mean the same as the (conventional) "9f". this is simply easier
549 * than checking for strict canonical form. syntax sux!
550 */
551
552 if (LOCAL_LABELS_FB && c == 'b')
553 {
554 /*
555 * backward ref to local label.
556 * because it is backward, expect it to be defined.
557 */
558 /* Construct a local label. */
559 name = fb_label_name ((int) number, 0);
560
561 /* seen before, or symbol is defined: ok */
562 symbolP = symbol_find (name);
563 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
564 {
565 /* local labels are never absolute. don't waste time
566 checking absoluteness. */
567 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
568
569 expressionP->X_op = O_symbol;
570 expressionP->X_add_symbol = symbolP;
571 }
572 else
573 {
574 /* either not seen or not defined. */
575 /* @@ Should print out the original string instead of
576 the parsed number. */
577 as_bad (_("backw. ref to unknown label \"%d:\", 0 assumed."),
578 (int) number);
579 expressionP->X_op = O_constant;
580 }
581
582 expressionP->X_add_number = 0;
583 } /* case 'b' */
584 else if (LOCAL_LABELS_FB && c == 'f')
585 {
586 /*
587 * forward reference. expect symbol to be undefined or
588 * unknown. undefined: seen it before. unknown: never seen
589 * it before.
590 * construct a local label name, then an undefined symbol.
591 * don't create a xseg frag for it: caller may do that.
592 * just return it as never seen before.
593 */
594 name = fb_label_name ((int) number, 1);
595 symbolP = symbol_find_or_make (name);
596 /* we have no need to check symbol properties. */
597 #ifndef many_segments
598 /* since "know" puts its arg into a "string", we
599 can't have newlines in the argument. */
600 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
601 #endif
602 expressionP->X_op = O_symbol;
603 expressionP->X_add_symbol = symbolP;
604 expressionP->X_add_number = 0;
605 } /* case 'f' */
606 else if (LOCAL_LABELS_DOLLAR && c == '$')
607 {
608 /* If the dollar label is *currently* defined, then this is just
609 another reference to it. If it is not *currently* defined,
610 then this is a fresh instantiation of that number, so create
611 it. */
612
613 if (dollar_label_defined ((long) number))
614 {
615 name = dollar_label_name ((long) number, 0);
616 symbolP = symbol_find (name);
617 know (symbolP != NULL);
618 }
619 else
620 {
621 name = dollar_label_name ((long) number, 1);
622 symbolP = symbol_find_or_make (name);
623 }
624
625 expressionP->X_op = O_symbol;
626 expressionP->X_add_symbol = symbolP;
627 expressionP->X_add_number = 0;
628 } /* case '$' */
629 else
630 {
631 expressionP->X_op = O_constant;
632 #ifdef TARGET_WORD_SIZE
633 /* Sign extend NUMBER. */
634 number |= (-(number >> (TARGET_WORD_SIZE - 1))) << (TARGET_WORD_SIZE - 1);
635 #endif
636 expressionP->X_add_number = number;
637 input_line_pointer--; /* restore following character. */
638 } /* really just a number */
639 }
640 else
641 {
642 /* not a small number */
643 expressionP->X_op = O_big;
644 expressionP->X_add_number = number; /* number of littlenums */
645 input_line_pointer--; /*->char following number. */
646 }
647 }
648
649 /* Parse an MRI multi character constant. */
650
651 static void
652 mri_char_constant (expressionP)
653 expressionS *expressionP;
654 {
655 int i;
656
657 if (*input_line_pointer == '\''
658 && input_line_pointer[1] != '\'')
659 {
660 expressionP->X_op = O_constant;
661 expressionP->X_add_number = 0;
662 return;
663 }
664
665 /* In order to get the correct byte ordering, we must build the
666 number in reverse. */
667 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
668 {
669 int j;
670
671 generic_bignum[i] = 0;
672 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
673 {
674 if (*input_line_pointer == '\'')
675 {
676 if (input_line_pointer[1] != '\'')
677 break;
678 ++input_line_pointer;
679 }
680 generic_bignum[i] <<= 8;
681 generic_bignum[i] += *input_line_pointer;
682 ++input_line_pointer;
683 }
684
685 if (i < SIZE_OF_LARGE_NUMBER - 1)
686 {
687 /* If there is more than one littlenum, left justify the
688 last one to make it match the earlier ones. If there is
689 only one, we can just use the value directly. */
690 for (; j < CHARS_PER_LITTLENUM; j++)
691 generic_bignum[i] <<= 8;
692 }
693
694 if (*input_line_pointer == '\''
695 && input_line_pointer[1] != '\'')
696 break;
697 }
698
699 if (i < 0)
700 {
701 as_bad (_("Character constant too large"));
702 i = 0;
703 }
704
705 if (i > 0)
706 {
707 int c;
708 int j;
709
710 c = SIZE_OF_LARGE_NUMBER - i;
711 for (j = 0; j < c; j++)
712 generic_bignum[j] = generic_bignum[i + j];
713 i = c;
714 }
715
716 know (LITTLENUM_NUMBER_OF_BITS == 16);
717 if (i > 2)
718 {
719 expressionP->X_op = O_big;
720 expressionP->X_add_number = i;
721 }
722 else
723 {
724 expressionP->X_op = O_constant;
725 if (i < 2)
726 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
727 else
728 expressionP->X_add_number =
729 (((generic_bignum[1] & LITTLENUM_MASK)
730 << LITTLENUM_NUMBER_OF_BITS)
731 | (generic_bignum[0] & LITTLENUM_MASK));
732 }
733
734 /* Skip the final closing quote. */
735 ++input_line_pointer;
736 }
737
738 /* Return an expression representing the current location. This
739 handles the magic symbol `.'. */
740
741 static void
742 current_location (expressionp)
743 expressionS *expressionp;
744 {
745 if (now_seg == absolute_section)
746 {
747 expressionp->X_op = O_constant;
748 expressionp->X_add_number = abs_section_offset;
749 }
750 else
751 {
752 symbolS *symbolp;
753
754 symbolp = symbol_new (FAKE_LABEL_NAME, now_seg,
755 (valueT) frag_now_fix (),
756 frag_now);
757 expressionp->X_op = O_symbol;
758 expressionp->X_add_symbol = symbolp;
759 expressionp->X_add_number = 0;
760 }
761 }
762
763 /*
764 * Summary of operand().
765 *
766 * in: Input_line_pointer points to 1st char of operand, which may
767 * be a space.
768 *
769 * out: A expressionS.
770 * The operand may have been empty: in this case X_op == O_absent.
771 * Input_line_pointer->(next non-blank) char after operand.
772 */
773
774 static segT
775 operand (expressionP)
776 expressionS *expressionP;
777 {
778 char c;
779 symbolS *symbolP; /* points to symbol */
780 char *name; /* points to name of symbol */
781 segT segment;
782
783 /* All integers are regarded as unsigned unless they are negated.
784 This is because the only thing which cares whether a number is
785 unsigned is the code in emit_expr which extends constants into
786 bignums. It should only sign extend negative numbers, so that
787 something like ``.quad 0x80000000'' is not sign extended even
788 though it appears negative if valueT is 32 bits. */
789 expressionP->X_unsigned = 1;
790
791 /* digits, assume it is a bignum. */
792
793 SKIP_WHITESPACE (); /* leading whitespace is part of operand. */
794 c = *input_line_pointer++; /* input_line_pointer->past char in c. */
795
796 switch (c)
797 {
798 case '1':
799 case '2':
800 case '3':
801 case '4':
802 case '5':
803 case '6':
804 case '7':
805 case '8':
806 case '9':
807 input_line_pointer--;
808
809 integer_constant (flag_m68k_mri ? 0 : 10, expressionP);
810 break;
811
812 case '0':
813 /* non-decimal radix */
814
815 if (flag_m68k_mri)
816 {
817 char *s;
818
819 /* Check for a hex constant. */
820 for (s = input_line_pointer; hex_p (*s); s++)
821 ;
822 if (*s == 'h' || *s == 'H')
823 {
824 --input_line_pointer;
825 integer_constant (0, expressionP);
826 break;
827 }
828 }
829
830 c = *input_line_pointer;
831 switch (c)
832 {
833 case 'o':
834 case 'O':
835 case 'q':
836 case 'Q':
837 case '8':
838 case '9':
839 if (flag_m68k_mri)
840 {
841 integer_constant (0, expressionP);
842 break;
843 }
844 /* Fall through. */
845 default:
846 default_case:
847 if (c && strchr (FLT_CHARS, c))
848 {
849 input_line_pointer++;
850 floating_constant (expressionP);
851 expressionP->X_add_number =
852 - (isupper ((unsigned char) c) ? tolower (c) : c);
853 }
854 else
855 {
856 /* The string was only zero */
857 expressionP->X_op = O_constant;
858 expressionP->X_add_number = 0;
859 }
860
861 break;
862
863 case 'x':
864 case 'X':
865 if (flag_m68k_mri)
866 goto default_case;
867 input_line_pointer++;
868 integer_constant (16, expressionP);
869 break;
870
871 case 'b':
872 if (LOCAL_LABELS_FB && ! flag_m68k_mri)
873 {
874 /* This code used to check for '+' and '-' here, and, in
875 some conditions, fall through to call
876 integer_constant. However, that didn't make sense,
877 as integer_constant only accepts digits. */
878 /* Some of our code elsewhere does permit digits greater
879 than the expected base; for consistency, do the same
880 here. */
881 if (input_line_pointer[1] < '0'
882 || input_line_pointer[1] > '9')
883 {
884 /* Parse this as a back reference to label 0. */
885 input_line_pointer--;
886 integer_constant (10, expressionP);
887 break;
888 }
889 /* Otherwise, parse this as a binary number. */
890 }
891 /* Fall through. */
892 case 'B':
893 input_line_pointer++;
894 if (flag_m68k_mri)
895 goto default_case;
896 integer_constant (2, expressionP);
897 break;
898
899 case '0':
900 case '1':
901 case '2':
902 case '3':
903 case '4':
904 case '5':
905 case '6':
906 case '7':
907 integer_constant (flag_m68k_mri ? 0 : 8, expressionP);
908 break;
909
910 case 'f':
911 if (LOCAL_LABELS_FB)
912 {
913 /* If it says "0f" and it could possibly be a floating point
914 number, make it one. Otherwise, make it a local label,
915 and try to deal with parsing the rest later. */
916 if (!input_line_pointer[1]
917 || (is_end_of_line[0xff & input_line_pointer[1]]))
918 goto is_0f_label;
919 {
920 char *cp = input_line_pointer + 1;
921 int r = atof_generic (&cp, ".", EXP_CHARS,
922 &generic_floating_point_number);
923 switch (r)
924 {
925 case 0:
926 case ERROR_EXPONENT_OVERFLOW:
927 if (cp == input_line_pointer + 1)
928 /* looks like a difference expression */
929 goto is_0f_label;
930 else
931 goto is_0f_float;
932 default:
933 as_fatal (_("expr.c(operand): bad atof_generic return val %d"),
934 r);
935 }
936 }
937
938 /* Okay, now we've sorted it out. We resume at one of these
939 two labels, depending on what we've decided we're probably
940 looking at. */
941 is_0f_label:
942 input_line_pointer--;
943 integer_constant (10, expressionP);
944 break;
945
946 is_0f_float:
947 /* fall through */
948 ;
949 }
950
951 case 'd':
952 case 'D':
953 if (flag_m68k_mri)
954 {
955 integer_constant (0, expressionP);
956 break;
957 }
958 /* Fall through. */
959 case 'F':
960 case 'r':
961 case 'e':
962 case 'E':
963 case 'g':
964 case 'G':
965 input_line_pointer++;
966 floating_constant (expressionP);
967 expressionP->X_add_number =
968 - (isupper ((unsigned char) c) ? tolower (c) : c);
969 break;
970
971 case '$':
972 if (LOCAL_LABELS_DOLLAR)
973 {
974 integer_constant (10, expressionP);
975 break;
976 }
977 else
978 goto default_case;
979 }
980
981 break;
982
983 case '(':
984 case '[':
985 /* didn't begin with digit & not a name */
986 segment = expression (expressionP);
987 /* Expression() will pass trailing whitespace */
988 if ((c == '(' && *input_line_pointer++ != ')')
989 || (c == '[' && *input_line_pointer++ != ']'))
990 {
991 as_bad (_("Missing ')' assumed"));
992 input_line_pointer--;
993 }
994 SKIP_WHITESPACE ();
995 /* here with input_line_pointer->char after "(...)" */
996 return segment;
997
998 case 'E':
999 if (! flag_m68k_mri || *input_line_pointer != '\'')
1000 goto de_fault;
1001 as_bad (_("EBCDIC constants are not supported"));
1002 /* Fall through. */
1003 case 'A':
1004 if (! flag_m68k_mri || *input_line_pointer != '\'')
1005 goto de_fault;
1006 ++input_line_pointer;
1007 /* Fall through. */
1008 case '\'':
1009 if (! flag_m68k_mri)
1010 {
1011 /* Warning: to conform to other people's assemblers NO
1012 ESCAPEMENT is permitted for a single quote. The next
1013 character, parity errors and all, is taken as the value
1014 of the operand. VERY KINKY. */
1015 expressionP->X_op = O_constant;
1016 expressionP->X_add_number = *input_line_pointer++;
1017 break;
1018 }
1019
1020 mri_char_constant (expressionP);
1021 break;
1022
1023 case '+':
1024 (void) operand (expressionP);
1025 break;
1026
1027 case '"':
1028 /* Double quote is the bitwise not operator in MRI mode. */
1029 if (! flag_m68k_mri)
1030 goto de_fault;
1031 /* Fall through. */
1032 case '~':
1033 /* ~ is permitted to start a label on the Delta. */
1034 if (is_name_beginner (c))
1035 goto isname;
1036 case '!':
1037 case '-':
1038 {
1039 operand (expressionP);
1040 if (expressionP->X_op == O_constant)
1041 {
1042 /* input_line_pointer -> char after operand */
1043 if (c == '-')
1044 {
1045 expressionP->X_add_number = - expressionP->X_add_number;
1046 /* Notice: '-' may overflow: no warning is given. This is
1047 compatible with other people's assemblers. Sigh. */
1048 expressionP->X_unsigned = 0;
1049 }
1050 else if (c == '~' || c == '"')
1051 expressionP->X_add_number = ~ expressionP->X_add_number;
1052 else
1053 expressionP->X_add_number = ! expressionP->X_add_number;
1054 }
1055 else if (expressionP->X_op != O_illegal
1056 && expressionP->X_op != O_absent)
1057 {
1058 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1059 if (c == '-')
1060 expressionP->X_op = O_uminus;
1061 else if (c == '~' || c == '"')
1062 expressionP->X_op = O_bit_not;
1063 else
1064 expressionP->X_op = O_logical_not;
1065 expressionP->X_add_number = 0;
1066 }
1067 else
1068 as_warn (_("Unary operator %c ignored because bad operand follows"),
1069 c);
1070 }
1071 break;
1072
1073 case '$':
1074 /* $ is the program counter when in MRI mode, or when DOLLAR_DOT
1075 is defined. */
1076 #ifndef DOLLAR_DOT
1077 if (! flag_m68k_mri)
1078 goto de_fault;
1079 #endif
1080 if (flag_m68k_mri && hex_p (*input_line_pointer))
1081 {
1082 /* In MRI mode, $ is also used as the prefix for a
1083 hexadecimal constant. */
1084 integer_constant (16, expressionP);
1085 break;
1086 }
1087
1088 if (is_part_of_name (*input_line_pointer))
1089 goto isname;
1090
1091 current_location (expressionP);
1092 break;
1093
1094 case '.':
1095 if (!is_part_of_name (*input_line_pointer))
1096 {
1097 current_location (expressionP);
1098 break;
1099 }
1100 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1101 && ! is_part_of_name (input_line_pointer[8]))
1102 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1103 && ! is_part_of_name (input_line_pointer[7])))
1104 {
1105 int start;
1106
1107 start = (input_line_pointer[1] == 't'
1108 || input_line_pointer[1] == 'T');
1109 input_line_pointer += start ? 8 : 7;
1110 SKIP_WHITESPACE ();
1111 if (*input_line_pointer != '(')
1112 as_bad (_("syntax error in .startof. or .sizeof."));
1113 else
1114 {
1115 char *buf;
1116
1117 ++input_line_pointer;
1118 SKIP_WHITESPACE ();
1119 name = input_line_pointer;
1120 c = get_symbol_end ();
1121
1122 buf = (char *) xmalloc (strlen (name) + 10);
1123 if (start)
1124 sprintf (buf, ".startof.%s", name);
1125 else
1126 sprintf (buf, ".sizeof.%s", name);
1127 symbolP = symbol_make (buf);
1128 free (buf);
1129
1130 expressionP->X_op = O_symbol;
1131 expressionP->X_add_symbol = symbolP;
1132 expressionP->X_add_number = 0;
1133
1134 *input_line_pointer = c;
1135 SKIP_WHITESPACE ();
1136 if (*input_line_pointer != ')')
1137 as_bad (_("syntax error in .startof. or .sizeof."));
1138 else
1139 ++input_line_pointer;
1140 }
1141 break;
1142 }
1143 else
1144 {
1145 goto isname;
1146 }
1147 case ',':
1148 case '\n':
1149 case '\0':
1150 eol:
1151 /* can't imagine any other kind of operand */
1152 expressionP->X_op = O_absent;
1153 input_line_pointer--;
1154 break;
1155
1156 case '%':
1157 if (! flag_m68k_mri)
1158 goto de_fault;
1159 integer_constant (2, expressionP);
1160 break;
1161
1162 case '@':
1163 if (! flag_m68k_mri)
1164 goto de_fault;
1165 integer_constant (8, expressionP);
1166 break;
1167
1168 case ':':
1169 if (! flag_m68k_mri)
1170 goto de_fault;
1171
1172 /* In MRI mode, this is a floating point constant represented
1173 using hexadecimal digits. */
1174
1175 ++input_line_pointer;
1176 integer_constant (16, expressionP);
1177 break;
1178
1179 case '*':
1180 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1181 goto de_fault;
1182
1183 current_location (expressionP);
1184 break;
1185
1186 default:
1187 de_fault:
1188 if (is_end_of_line[(unsigned char) c])
1189 goto eol;
1190 if (is_name_beginner (c)) /* here if did not begin with a digit */
1191 {
1192 /*
1193 * Identifier begins here.
1194 * This is kludged for speed, so code is repeated.
1195 */
1196 isname:
1197 name = --input_line_pointer;
1198 c = get_symbol_end ();
1199
1200 #ifdef md_parse_name
1201 /* This is a hook for the backend to parse certain names
1202 specially in certain contexts. If a name always has a
1203 specific value, it can often be handled by simply
1204 entering it in the symbol table. */
1205 if (md_parse_name (name, expressionP))
1206 {
1207 *input_line_pointer = c;
1208 break;
1209 }
1210 #endif
1211
1212 #ifdef TC_I960
1213 /* The MRI i960 assembler permits
1214 lda sizeof code,g13
1215 FIXME: This should use md_parse_name. */
1216 if (flag_mri
1217 && (strcasecmp (name, "sizeof") == 0
1218 || strcasecmp (name, "startof") == 0))
1219 {
1220 int start;
1221 char *buf;
1222
1223 start = (name[1] == 't'
1224 || name[1] == 'T');
1225
1226 *input_line_pointer = c;
1227 SKIP_WHITESPACE ();
1228
1229 name = input_line_pointer;
1230 c = get_symbol_end ();
1231
1232 buf = (char *) xmalloc (strlen (name) + 10);
1233 if (start)
1234 sprintf (buf, ".startof.%s", name);
1235 else
1236 sprintf (buf, ".sizeof.%s", name);
1237 symbolP = symbol_make (buf);
1238 free (buf);
1239
1240 expressionP->X_op = O_symbol;
1241 expressionP->X_add_symbol = symbolP;
1242 expressionP->X_add_number = 0;
1243
1244 *input_line_pointer = c;
1245 SKIP_WHITESPACE ();
1246
1247 break;
1248 }
1249 #endif
1250
1251 symbolP = symbol_find_or_make (name);
1252
1253 /* If we have an absolute symbol or a reg, then we know its
1254 value now. */
1255 segment = S_GET_SEGMENT (symbolP);
1256 if (segment == absolute_section)
1257 {
1258 expressionP->X_op = O_constant;
1259 expressionP->X_add_number = S_GET_VALUE (symbolP);
1260 }
1261 else if (segment == reg_section)
1262 {
1263 expressionP->X_op = O_register;
1264 expressionP->X_add_number = S_GET_VALUE (symbolP);
1265 }
1266 else
1267 {
1268 expressionP->X_op = O_symbol;
1269 expressionP->X_add_symbol = symbolP;
1270 expressionP->X_add_number = 0;
1271 }
1272 *input_line_pointer = c;
1273 }
1274 else
1275 {
1276 /* Let the target try to parse it. Success is indicated by changing
1277 the X_op field to something other than O_absent and pointing
1278 input_line_pointer passed the expression. If it can't parse the
1279 expression, X_op and input_line_pointer should be unchanged. */
1280 expressionP->X_op = O_absent;
1281 --input_line_pointer;
1282 md_operand (expressionP);
1283 if (expressionP->X_op == O_absent)
1284 {
1285 ++input_line_pointer;
1286 as_bad (_("Bad expression"));
1287 expressionP->X_op = O_constant;
1288 expressionP->X_add_number = 0;
1289 }
1290 }
1291 break;
1292 }
1293
1294 /*
1295 * It is more 'efficient' to clean up the expressionS when they are created.
1296 * Doing it here saves lines of code.
1297 */
1298 clean_up_expression (expressionP);
1299 SKIP_WHITESPACE (); /*->1st char after operand. */
1300 know (*input_line_pointer != ' ');
1301
1302 /* The PA port needs this information. */
1303 if (expressionP->X_add_symbol)
1304 expressionP->X_add_symbol->sy_used = 1;
1305
1306 switch (expressionP->X_op)
1307 {
1308 default:
1309 return absolute_section;
1310 case O_symbol:
1311 return S_GET_SEGMENT (expressionP->X_add_symbol);
1312 case O_register:
1313 return reg_section;
1314 }
1315 } /* operand() */
1316 \f
1317 /* Internal. Simplify a struct expression for use by expr() */
1318
1319 /*
1320 * In: address of a expressionS.
1321 * The X_op field of the expressionS may only take certain values.
1322 * Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1323 * Out: expressionS may have been modified:
1324 * 'foo-foo' symbol references cancelled to 0,
1325 * which changes X_op from O_subtract to O_constant.
1326 * Unused fields zeroed to help expr().
1327 */
1328
1329 static void
1330 clean_up_expression (expressionP)
1331 expressionS *expressionP;
1332 {
1333 switch (expressionP->X_op)
1334 {
1335 case O_illegal:
1336 case O_absent:
1337 expressionP->X_add_number = 0;
1338 /* Fall through. */
1339 case O_big:
1340 case O_constant:
1341 case O_register:
1342 expressionP->X_add_symbol = NULL;
1343 /* Fall through. */
1344 case O_symbol:
1345 case O_uminus:
1346 case O_bit_not:
1347 expressionP->X_op_symbol = NULL;
1348 break;
1349 case O_subtract:
1350 if (expressionP->X_op_symbol == expressionP->X_add_symbol
1351 || ((expressionP->X_op_symbol->sy_frag
1352 == expressionP->X_add_symbol->sy_frag)
1353 && SEG_NORMAL (S_GET_SEGMENT (expressionP->X_add_symbol))
1354 && (S_GET_VALUE (expressionP->X_op_symbol)
1355 == S_GET_VALUE (expressionP->X_add_symbol))))
1356 {
1357 addressT diff = (S_GET_VALUE (expressionP->X_add_symbol)
1358 - S_GET_VALUE (expressionP->X_op_symbol));
1359
1360 expressionP->X_op = O_constant;
1361 expressionP->X_add_symbol = NULL;
1362 expressionP->X_op_symbol = NULL;
1363 expressionP->X_add_number += diff;
1364 }
1365 break;
1366 default:
1367 break;
1368 }
1369 }
1370 \f
1371 /* Expression parser. */
1372
1373 /*
1374 * We allow an empty expression, and just assume (absolute,0) silently.
1375 * Unary operators and parenthetical expressions are treated as operands.
1376 * As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1377 *
1378 * We used to do a aho/ullman shift-reduce parser, but the logic got so
1379 * warped that I flushed it and wrote a recursive-descent parser instead.
1380 * Now things are stable, would anybody like to write a fast parser?
1381 * Most expressions are either register (which does not even reach here)
1382 * or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1383 * So I guess it doesn't really matter how inefficient more complex expressions
1384 * are parsed.
1385 *
1386 * After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1387 * Also, we have consumed any leading or trailing spaces (operand does that)
1388 * and done all intervening operators.
1389 *
1390 * This returns the segment of the result, which will be
1391 * absolute_section or the segment of a symbol.
1392 */
1393
1394 #undef __
1395 #define __ O_illegal
1396
1397 static const operatorT op_encoding[256] =
1398 { /* maps ASCII->operators */
1399
1400 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1401 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1402
1403 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1404 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1405 __, __, __, __, __, __, __, __,
1406 __, __, __, __, O_lt, __, O_gt, __,
1407 __, __, __, __, __, __, __, __,
1408 __, __, __, __, __, __, __, __,
1409 __, __, __, __, __, __, __, __,
1410 __, __, __, __, __, __, O_bit_exclusive_or, __,
1411 __, __, __, __, __, __, __, __,
1412 __, __, __, __, __, __, __, __,
1413 __, __, __, __, __, __, __, __,
1414 __, __, __, __, O_bit_inclusive_or, __, __, __,
1415
1416 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1417 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1418 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1419 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1420 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1421 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1422 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1423 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1424 };
1425
1426
1427 /*
1428 * Rank Examples
1429 * 0 operand, (expression)
1430 * 1 ||
1431 * 2 &&
1432 * 3 = <> < <= >= >
1433 * 4 + -
1434 * 5 used for * / % in MRI mode
1435 * 6 & ^ ! |
1436 * 7 * / % << >>
1437 * 8 unary - unary ~
1438 */
1439 static operator_rankT op_rank[] =
1440 {
1441 0, /* O_illegal */
1442 0, /* O_absent */
1443 0, /* O_constant */
1444 0, /* O_symbol */
1445 0, /* O_symbol_rva */
1446 0, /* O_register */
1447 0, /* O_bit */
1448 8, /* O_uminus */
1449 8, /* O_bit_not */
1450 8, /* O_logical_not */
1451 7, /* O_multiply */
1452 7, /* O_divide */
1453 7, /* O_modulus */
1454 7, /* O_left_shift */
1455 7, /* O_right_shift */
1456 6, /* O_bit_inclusive_or */
1457 6, /* O_bit_or_not */
1458 6, /* O_bit_exclusive_or */
1459 6, /* O_bit_and */
1460 4, /* O_add */
1461 4, /* O_subtract */
1462 3, /* O_eq */
1463 3, /* O_ne */
1464 3, /* O_lt */
1465 3, /* O_le */
1466 3, /* O_ge */
1467 3, /* O_gt */
1468 2, /* O_logical_and */
1469 1 /* O_logical_or */
1470 };
1471
1472 /* Unfortunately, in MRI mode for the m68k, multiplication and
1473 division have lower precedence than the bit wise operators. This
1474 function sets the operator precedences correctly for the current
1475 mode. Also, MRI uses a different bit_not operator, and this fixes
1476 that as well. */
1477
1478 #define STANDARD_MUL_PRECEDENCE (7)
1479 #define MRI_MUL_PRECEDENCE (5)
1480
1481 void
1482 expr_set_precedence ()
1483 {
1484 if (flag_m68k_mri)
1485 {
1486 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1487 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1488 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1489 }
1490 else
1491 {
1492 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1493 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1494 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1495 }
1496 }
1497
1498 /* Initialize the expression parser. */
1499
1500 void
1501 expr_begin ()
1502 {
1503 expr_set_precedence ();
1504
1505 /* Verify that X_op field is wide enough. */
1506 {
1507 expressionS e;
1508 e.X_op = O_max;
1509 assert (e.X_op == O_max);
1510 }
1511 }
1512 \f
1513 /* Return the encoding for the operator at INPUT_LINE_POINTER.
1514 Advance INPUT_LINE_POINTER to the last character in the operator
1515 (i.e., don't change it for a single character operator). */
1516
1517 static inline operatorT
1518 operator ()
1519 {
1520 int c;
1521 operatorT ret;
1522
1523 c = *input_line_pointer;
1524
1525 switch (c)
1526 {
1527 default:
1528 return op_encoding[c];
1529
1530 case '<':
1531 switch (input_line_pointer[1])
1532 {
1533 default:
1534 return op_encoding[c];
1535 case '<':
1536 ret = O_left_shift;
1537 break;
1538 case '>':
1539 ret = O_ne;
1540 break;
1541 case '=':
1542 ret = O_le;
1543 break;
1544 }
1545 ++input_line_pointer;
1546 return ret;
1547
1548 case '=':
1549 if (input_line_pointer[1] != '=')
1550 return op_encoding[c];
1551
1552 ++input_line_pointer;
1553 return O_eq;
1554
1555 case '>':
1556 switch (input_line_pointer[1])
1557 {
1558 default:
1559 return op_encoding[c];
1560 case '>':
1561 ret = O_right_shift;
1562 break;
1563 case '=':
1564 ret = O_ge;
1565 break;
1566 }
1567 ++input_line_pointer;
1568 return ret;
1569
1570 case '!':
1571 /* We accept !! as equivalent to ^ for MRI compatibility. */
1572 if (input_line_pointer[1] != '!')
1573 {
1574 if (flag_m68k_mri)
1575 return O_bit_inclusive_or;
1576 return op_encoding[c];
1577 }
1578 ++input_line_pointer;
1579 return O_bit_exclusive_or;
1580
1581 case '|':
1582 if (input_line_pointer[1] != '|')
1583 return op_encoding[c];
1584
1585 ++input_line_pointer;
1586 return O_logical_or;
1587
1588 case '&':
1589 if (input_line_pointer[1] != '&')
1590 return op_encoding[c];
1591
1592 ++input_line_pointer;
1593 return O_logical_and;
1594 }
1595
1596 /*NOTREACHED*/
1597 }
1598
1599 /* Parse an expression. */
1600
1601 segT
1602 expr (rank, resultP)
1603 operator_rankT rank; /* Larger # is higher rank. */
1604 expressionS *resultP; /* Deliver result here. */
1605 {
1606 segT retval;
1607 expressionS right;
1608 operatorT op_left;
1609 operatorT op_right;
1610
1611 know (rank >= 0);
1612
1613 retval = operand (resultP);
1614
1615 know (*input_line_pointer != ' '); /* Operand() gobbles spaces. */
1616
1617 op_left = operator ();
1618 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1619 {
1620 segT rightseg;
1621
1622 input_line_pointer++; /*->after 1st character of operator. */
1623
1624 rightseg = expr (op_rank[(int) op_left], &right);
1625 if (right.X_op == O_absent)
1626 {
1627 as_warn (_("missing operand; zero assumed"));
1628 right.X_op = O_constant;
1629 right.X_add_number = 0;
1630 right.X_add_symbol = NULL;
1631 right.X_op_symbol = NULL;
1632 }
1633
1634 know (*input_line_pointer != ' ');
1635
1636 if (retval == undefined_section)
1637 {
1638 if (SEG_NORMAL (rightseg))
1639 retval = rightseg;
1640 }
1641 else if (! SEG_NORMAL (retval))
1642 retval = rightseg;
1643 else if (SEG_NORMAL (rightseg)
1644 && retval != rightseg
1645 #ifdef DIFF_EXPR_OK
1646 && op_left != O_subtract
1647 #endif
1648 )
1649 as_bad (_("operation combines symbols in different segments"));
1650
1651 op_right = operator ();
1652
1653 know (op_right == O_illegal || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1654 know ((int) op_left >= (int) O_multiply
1655 && (int) op_left <= (int) O_logical_or);
1656
1657 /* input_line_pointer->after right-hand quantity. */
1658 /* left-hand quantity in resultP */
1659 /* right-hand quantity in right. */
1660 /* operator in op_left. */
1661
1662 if (resultP->X_op == O_big)
1663 {
1664 if (resultP->X_add_number > 0)
1665 as_warn (_("left operand is a bignum; integer 0 assumed"));
1666 else
1667 as_warn (_("left operand is a float; integer 0 assumed"));
1668 resultP->X_op = O_constant;
1669 resultP->X_add_number = 0;
1670 resultP->X_add_symbol = NULL;
1671 resultP->X_op_symbol = NULL;
1672 }
1673 if (right.X_op == O_big)
1674 {
1675 if (right.X_add_number > 0)
1676 as_warn (_("right operand is a bignum; integer 0 assumed"));
1677 as_warn (_("right operand is a float; integer 0 assumed"));
1678 right.X_op = O_constant;
1679 right.X_add_number = 0;
1680 right.X_add_symbol = NULL;
1681 right.X_op_symbol = NULL;
1682 }
1683
1684 /* Optimize common cases. */
1685 if (op_left == O_add && right.X_op == O_constant)
1686 {
1687 /* X + constant. */
1688 resultP->X_add_number += right.X_add_number;
1689 }
1690 /* This case comes up in PIC code. */
1691 else if (op_left == O_subtract
1692 && right.X_op == O_symbol
1693 && resultP->X_op == O_symbol
1694 && (right.X_add_symbol->sy_frag
1695 == resultP->X_add_symbol->sy_frag)
1696 && SEG_NORMAL (S_GET_SEGMENT (right.X_add_symbol)))
1697
1698 {
1699 resultP->X_add_number -= right.X_add_number;
1700 resultP->X_add_number += (S_GET_VALUE (resultP->X_add_symbol)
1701 - S_GET_VALUE (right.X_add_symbol));
1702 resultP->X_op = O_constant;
1703 resultP->X_add_symbol = 0;
1704 }
1705 else if (op_left == O_subtract && right.X_op == O_constant)
1706 {
1707 /* X - constant. */
1708 resultP->X_add_number -= right.X_add_number;
1709 }
1710 else if (op_left == O_add && resultP->X_op == O_constant)
1711 {
1712 /* Constant + X. */
1713 resultP->X_op = right.X_op;
1714 resultP->X_add_symbol = right.X_add_symbol;
1715 resultP->X_op_symbol = right.X_op_symbol;
1716 resultP->X_add_number += right.X_add_number;
1717 retval = rightseg;
1718 }
1719 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1720 {
1721 /* Constant OP constant. */
1722 offsetT v = right.X_add_number;
1723 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1724 {
1725 as_warn (_("division by zero"));
1726 v = 1;
1727 }
1728 switch (op_left)
1729 {
1730 default: abort ();
1731 case O_multiply: resultP->X_add_number *= v; break;
1732 case O_divide: resultP->X_add_number /= v; break;
1733 case O_modulus: resultP->X_add_number %= v; break;
1734 case O_left_shift: resultP->X_add_number <<= v; break;
1735 case O_right_shift:
1736 /* We always use unsigned shifts, to avoid relying on
1737 characteristics of the compiler used to compile gas. */
1738 resultP->X_add_number =
1739 (offsetT) ((valueT) resultP->X_add_number >> (valueT) v);
1740 break;
1741 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1742 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1743 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1744 case O_bit_and: resultP->X_add_number &= v; break;
1745 case O_add: resultP->X_add_number += v; break;
1746 case O_subtract: resultP->X_add_number -= v; break;
1747 case O_eq:
1748 resultP->X_add_number =
1749 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1750 break;
1751 case O_ne:
1752 resultP->X_add_number =
1753 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
1754 break;
1755 case O_lt:
1756 resultP->X_add_number =
1757 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
1758 break;
1759 case O_le:
1760 resultP->X_add_number =
1761 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
1762 break;
1763 case O_ge:
1764 resultP->X_add_number =
1765 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
1766 break;
1767 case O_gt:
1768 resultP->X_add_number =
1769 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
1770 break;
1771 case O_logical_and:
1772 resultP->X_add_number = resultP->X_add_number && v;
1773 break;
1774 case O_logical_or:
1775 resultP->X_add_number = resultP->X_add_number || v;
1776 break;
1777 }
1778 }
1779 else if (resultP->X_op == O_symbol
1780 && right.X_op == O_symbol
1781 && (op_left == O_add
1782 || op_left == O_subtract
1783 || (resultP->X_add_number == 0
1784 && right.X_add_number == 0)))
1785 {
1786 /* Symbol OP symbol. */
1787 resultP->X_op = op_left;
1788 resultP->X_op_symbol = right.X_add_symbol;
1789 if (op_left == O_add)
1790 resultP->X_add_number += right.X_add_number;
1791 else if (op_left == O_subtract)
1792 resultP->X_add_number -= right.X_add_number;
1793 }
1794 else
1795 {
1796 /* The general case. */
1797 resultP->X_add_symbol = make_expr_symbol (resultP);
1798 resultP->X_op_symbol = make_expr_symbol (&right);
1799 resultP->X_op = op_left;
1800 resultP->X_add_number = 0;
1801 resultP->X_unsigned = 1;
1802 }
1803
1804 op_left = op_right;
1805 } /* While next operator is >= this rank. */
1806
1807 /* The PA port needs this information. */
1808 if (resultP->X_add_symbol)
1809 resultP->X_add_symbol->sy_used = 1;
1810
1811 return resultP->X_op == O_constant ? absolute_section : retval;
1812 }
1813 \f
1814 /*
1815 * get_symbol_end()
1816 *
1817 * This lives here because it belongs equally in expr.c & read.c.
1818 * Expr.c is just a branch office read.c anyway, and putting it
1819 * here lessens the crowd at read.c.
1820 *
1821 * Assume input_line_pointer is at start of symbol name.
1822 * Advance input_line_pointer past symbol name.
1823 * Turn that character into a '\0', returning its former value.
1824 * This allows a string compare (RMS wants symbol names to be strings)
1825 * of the symbol name.
1826 * There will always be a char following symbol name, because all good
1827 * lines end in end-of-line.
1828 */
1829 char
1830 get_symbol_end ()
1831 {
1832 char c;
1833
1834 /* We accept \001 in a name in case this is being called with a
1835 constructed string. */
1836 if (is_name_beginner (c = *input_line_pointer++) || c == '\001')
1837 while (is_part_of_name (c = *input_line_pointer++)
1838 || c == '\001')
1839 ;
1840 *--input_line_pointer = 0;
1841 return (c);
1842 }
1843
1844
1845 unsigned int
1846 get_single_number ()
1847 {
1848 expressionS exp;
1849 operand (&exp);
1850 return exp.X_add_number;
1851
1852 }
1853
1854 /* end of expr.c */
This page took 0.068062 seconds and 4 git commands to generate.